WO2010098141A1 - 蛍光体及びその製造方法並びにこれを用いた発光装置 - Google Patents

蛍光体及びその製造方法並びにこれを用いた発光装置 Download PDF

Info

Publication number
WO2010098141A1
WO2010098141A1 PCT/JP2010/001349 JP2010001349W WO2010098141A1 WO 2010098141 A1 WO2010098141 A1 WO 2010098141A1 JP 2010001349 W JP2010001349 W JP 2010001349W WO 2010098141 A1 WO2010098141 A1 WO 2010098141A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
examples
range
phosphors
Prior art date
Application number
PCT/JP2010/001349
Other languages
English (en)
French (fr)
Inventor
篠原雄之
細川昌治
Original Assignee
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日亜化学工業株式会社 filed Critical 日亜化学工業株式会社
Priority to JP2011501526A priority Critical patent/JP5833918B2/ja
Priority to US13/203,444 priority patent/US9708531B2/en
Publication of WO2010098141A1 publication Critical patent/WO2010098141A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a phosphor, a method for producing the same, and a light emitting device using the same, and more particularly to a phosphor that contains oxygen and nitrogen and is chemically stable, a method for producing the same, and a light emitting device using the same.
  • a light-emitting device that can emit light of various wavelengths based on the principle of color mixing of light has been developed.
  • a white color using a semiconductor light emitting element (LED) that emits blue light and a yttrium, aluminum, garnet phosphor (Y 3 Al 5 O 12 : Ce) that emits green to yellow light.
  • LED semiconductor light emitting element
  • Y 3 Al 5 O 12 : Ce garnet phosphor
  • this white LED light emitting device green to yellow light in which a part of blue light emitted from the light emitting element is wavelength-converted and blue light that has not been converted are additively mixed to obtain white light.
  • this method has a problem in that since the visible light does not emit light in the long wavelength region, red light such as a light bulb color cannot be obtained, and color rendering is low.
  • a light-emitting device that uses a light-emitting element that emits blue light and a phosphor that emits green and red light when excited by the blue light of the light-emitting element is blue, green, and red, which are the three primary colors of light. These three primary colors can be added and mixed to obtain white light with good color rendering.
  • a light emitting element that emits light in the near ultraviolet region is used, and fluorescence of blue, green, and red light is emitted by light in the near ultraviolet region emitted from the light emitting element.
  • a rare earth element-activated oxynitride phosphor capable of increasing the brightness of a white LED using a blue LED as a light source has been provided (for example, JP 2002-363554 A). )reference).
  • oxynitride phosphor represented by the general formula: Me x Si 12- (m + n) Al (m + n) O n N 16-n: Re1 indicated by y Re2 z
  • metal Me Me is a solid solution in the alpha-SiAlON is Ca
  • a part or all of Mg, Y, or one or more of the lanthanide metals excluding La and Ce are luminescent centers Re1 (Re1 is Ce, Pr, Eu, Tb, Yb or Er) 1 type or 2 types or more) or two types of lanthanide metals Re1 and Re2 as a coactivator (Re2 is Dy).
  • the phosphor composition that can be excited by near ultraviolet to blue light and emits warm color light, particularly red light (see, for example, JP-A-2005-48105 (Patent Document 2)).
  • the phosphor composition a ((1-x- y) MO ⁇ xEuO ⁇ yCe 2 O 3)) ⁇ bSi 3 N phosphor composition comprising mainly a composition represented by the composition formula of 4 ⁇ CALN
  • the phosphor composition is crystalline, and M in the composition formula is at least one alkaline earth metal element selected from Mg, Ca, Sr, and Ba, a in the composition formula, b, c, x, and y are 0.3 ⁇ a / (a + b) ⁇ 0.9, 0.2 ⁇ a / (a + c) ⁇ 0.8, and 0.3 ⁇ c / (b + c) ⁇ 0, respectively.
  • the phosphor composition satisfies the following relationships: 9, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2, 0.002 ⁇ x + y ⁇ 0.2.
  • the composition range of a, b, and c is not defined in the composition formula of this phosphor, the disclosure of the invention is not sufficiently made and the invention is not sufficiently specified.
  • the phosphor compositions of Examples 1 to 18 and Examples 20 to 25 and the present invention have different compositions because the ratio of N to M is different. Further, the phosphor composition of Example 19 and the present invention differ in composition because the ratio of Al to M is different.
  • Emission peak wavelength is in the range of 580 to 680 nm, has high emission intensity, and has a flat and highly efficient excitation for excitation light in a wide wavelength range from ultraviolet to visible light (wavelength 250 to 550 nm).
  • a phosphor having an excitation band characteristic of having a band has been provided (see, for example, JP-A-2006-63323 (Patent Document 3)).
  • the Bragg angle (2 ⁇ ) of the X-ray diffraction pattern is 36.5 ° to 37.5 °, and 41.
  • the phosphor includes a phase having a diffraction peak with a relative intensity of 10% or more as a main product phase in a range of 9 ° to 42.9 °.
  • this phosphor and the phosphor of the present invention have different compositions because the ratios of M and A, B, and N are different.
  • Phosphors with a broad and flat excitation band that have a broad peak in the emission spectrum in the green to yellow range and can use a wide range of light from near ultraviolet / ultraviolet to blue light as excitation light have been provided (for example, international publication number WO2006 / 093298 (patent document 4)).
  • the phosphor has the general formula, M m A a B b O o N n: is denoted by Z, M element is an element of Ca, Sr, etc.
  • a element is an element such as Al
  • B elements Is an element such as Si
  • O is oxygen
  • N is nitrogen
  • Z element is an element such as Eu
  • 4.0 ⁇ (a + b) / m ⁇ 7.0, a / m ⁇ 0 .5, b / a> 2.5, n> o, n 2 / 3m + a + 4 / 3b-2 / 3o, and when excited with light in the wavelength range of 300 nm to 500 nm, the peak wavelength in the emission spectrum is from 500 nm. It is a phosphor in the range of 650 nm.
  • this phosphor and the phosphor of the present invention have different compositions because the ratio of A to M or B to M and N to M is different.
  • a phosphor having a broad emission spectrum in the blue range (with a peak wavelength of 400 nm to 500 nm) and a wide and flat excitation band in the near ultraviolet / ultraviolet range has been provided (for example, International Publication No. WO2006 / No. 106883 (Patent Document 5)).
  • the phosphor has the general formula, M m A a B b O o N n: is denoted by Z, M element is an element of Ca, Sr, etc.
  • a element is an element such as Al
  • B elements Is an element such as Si
  • O is oxygen
  • N is nitrogen
  • Z element is an element such as Eu
  • 5.0 ⁇ (a + b) / m ⁇ 9.0, 0 ⁇ a / m ⁇ 2.0, 0 ⁇ o ⁇ n, n 2 / 3m + a + 4 / 3b ⁇ 2 / 3o
  • the peak wavelength in the emission spectrum is in the range of 400 nm to 500 nm. It is a certain phosphor.
  • composition formula of this phosphor is not disclosed sufficiently because the composition range of a, b, m, o, and n is not clearly shown.
  • the phosphor and the phosphor of the present invention have different compositions because the ratio of N to M is different.
  • this phosphor emits blue light, the emission color is different from the phosphor of the present invention.
  • This phosphor is A 2 Si 5-x Al x O x N 8-x (where A is one selected from Mg, Ca, Sr, or Ba, and x is 0.05 or more and 0.00. 8 is a phosphor having an active substance as a crystal and a metal element M (where M is an element such as Eu) as a solid solution.
  • this phosphor and the phosphor of the present invention have different compositions because the ratios of Si, Al, O, and N to A are different.
  • a green phosphor that has a higher green luminance than conventional rare earth activated sialon phosphors and is more durable than conventional oxynitride phosphors (for example, Japanese Patent Laid-Open No. 2005-255895 (Patent Document 7). )reference).
  • a metal element M (where M is one element selected from Mn, Ce, Eu) is dissolved in a nitride or oxynitride crystal having a ⁇ -type Si 3 N 4 crystal structure.
  • Fluorescence having a peak at a wavelength in the range of 500 nm to 600 nm by irradiating an excitation source, represented by Si 6-z Al z O z N 8-z (where 0 ⁇ z ⁇ 4.2) Is a phosphor that emits light.
  • this phosphor does not have elements such as Ca and Sr.
  • this phosphor and the phosphor of the present invention have different compositions.
  • this phosphor emits green light, the emission color is different from the phosphor of the present invention.
  • a ⁇ -type sialon phosphor capable of realizing a white light emitting diode using blue to ultraviolet light as a light source (see, for example, International Publication No. WO2006 / 121083 (Patent Document 8)).
  • This phosphor has a ⁇ -type sialon represented by Si 6-z Al z O z N 8-z (provided that 0.24 ⁇ z ⁇ 4.2) as a base material, and a ⁇ -type that forms a solid solution of Eu as an emission center Sialon phosphor.
  • this phosphor does not have elements such as Ca and Sr.
  • this phosphor and the phosphor of the present invention have different compositions. Furthermore, since this phosphor emits green light, the emission color is different from the phosphor of the present invention.
  • the present invention relates to a light source using a phosphor that emits yellow to red having a host lattice of (see, for example, International Publication No. WO2001 / 40403 (Patent Document 9)). However, this phosphor does not have an Al element. Further, this phosphor and the phosphor of the present invention have different compositions.
  • CaS: Eu and Ln 2 O 2 S: Eu are known as phosphors that emit light in the long-wavelength region of visible light such as red light, but the chemical stability is poor, and the temperature Under high conditions, the brightness is significantly reduced. Moreover, the light emission luminance of the phosphor was not satisfactory. In recent years, phosphors that have a good excitation band in the short-wavelength region from near ultraviolet to visible light, are capable of wavelength conversion from yellow to red light, and contain phosphors that are chemically stable and contain nitrogen. Has been developed.
  • Such a phosphor containing nitrogen includes, for example, Ca 2 Si 5 N 8 : Eu, and a light-emitting device equipped with this phosphor has been reported in order to improve color rendering (for example, JP, A 2007-142389 (Patent Document 10)).
  • the phosphor containing nitrogen described above has a problem that the luminance is greatly reduced when light is emitted under high temperature conditions.
  • the ratio of the emission of this phosphor and the color mixture of this phosphor with other light emission having a different hue will greatly shift at a high temperature. Causes uneven color.
  • the present invention has been made to solve such a conventional problem. That is, the main object of the present invention is a phosphor that has excellent temperature characteristics and is excited by light in a short wavelength region from near ultraviolet to visible light and can emit yellow to red light, a method for producing the same, and a method for producing the same. Another object is to provide a light emitting device using the above.
  • the present invention is a phosphor represented by the following general formula.
  • Eu is substituted for a part of M, and the total number of moles of M and Eu is 2 mol, and the same applies hereinafter unless otherwise specified.
  • the present invention is a phosphor activated by Eu, containing M, Al, Si, O and N, which are one or more group II elements selected from Ca, Sr, and Ba.
  • This phosphor has a Bragg angle of 24.5 ° to 24.5 ° when the intensity of a diffraction peak in the range of 17.9 ° to 18.5 ° in the X-ray diffraction pattern of CuK ⁇ rays is 100%.
  • the relative intensity of the diffraction peak in the range of 25.1 ° is 150% or more and 310% or less, and the relative intensity of the diffraction peak in the range of the Bragg angle is 34.8 ° or more and 35.4 ° or less.
  • a product phase mainly containing a phase of 320% or more and 550% or less is contained.
  • the phosphor preferably has a peak wavelength in the range of 570 nm to 670 nm in the emission spectrum when absorbing light in the short wavelength region from near ultraviolet to visible light. Further, this phosphor preferably contains 19.0 wt% or more and 29.5 wt% or less of Si. Further, this phosphor belongs to the orthorhombic system, and the lattice constant of the crystal lattice is 4.4 ⁇ 4 ⁇ a ⁇ 5.45, 7.0 ⁇ b ⁇ 8.0 ⁇ , 11.1 ⁇ ⁇ c ⁇ . It is preferably 12.1 mm.
  • the present invention provides a light emission comprising: an excitation light source that emits light having a peak wavelength in the short wavelength region from near ultraviolet to visible light; and the phosphor that emits fluorescence by absorbing part of the light from the excitation light source.
  • an excitation light source that emits light having a peak wavelength in the short wavelength region from near ultraviolet to visible light
  • the phosphor that emits fluorescence by absorbing part of the light from the excitation light source.
  • the phosphor of the present invention a method for producing the same, and a light emitting device using the same, the phosphor is excited by blue light in a short wavelength region from near ultraviolet to visible light and emits yellow to red light, and In addition, it is possible to obtain a phosphor with little decrease in luminance even under high temperature conditions. In addition, in a light emitting device using this phosphor, since the luminance of the phosphor is little decreased even at high temperatures, the deviation of the ratio in the color mixture between the phosphor and other light emission having a different hue is suppressed. Can do.
  • the measurement results of the X-ray diffraction patterns of the phosphors according to Examples 1 to 4 are shown.
  • the measurement result of the X-ray-diffraction pattern of the fluorescent substance which concerns on the comparative example 1 is shown.
  • the excitation spectrum of the fluorescent substance which concerns on Example 4 and Comparative Example 1 is shown.
  • the reflection spectrum of the fluorescent substance which concerns on Example 4 and Comparative Example 1 is shown.
  • the emission spectrum at the time of exciting the fluorescent substance which concerns on Example 4 and Comparative Example 1 at 460 nm is shown.
  • the temperature characteristic of the fluorescent substance which concerns on Example 4 and Comparative Example 1 is shown.
  • the measurement results of the X-ray diffraction patterns of the phosphors according to Examples 5 to 11 are shown.
  • FIG. 9 is a sectional view taken along line VIB-VIB ′ of FIG. 8.
  • 20 shows an emission spectrum of the light emitting device according to Example 18; 20 shows an emission spectrum of the light emitting device according to Example 19; The emission spectrum of the light-emitting device based on Example 20 is shown.
  • 24 shows an emission spectrum of the light emitting device according to Example 23. The emission spectrum of the light-emitting device based on Example 24 is shown.
  • 22 is a SEM photograph obtained by photographing the phosphor according to Example 25.
  • the emission spectrum of the fluorescent substance concerning Example 25 is shown.
  • the excitation spectrum of the fluorescent substance concerning Example 25 is shown.
  • the reflection spectrum of the fluorescent substance concerning Example 25 is shown.
  • the emission spectrum of the phosphor of the comparative example is shown.
  • the emission spectrum of the phosphor of the comparative example is shown.
  • the emission spectrum of the phosphor of the comparative example is shown.
  • the emission spectrum of the phosphor of the comparative example is shown.
  • 380 nm to 455 nm is blue purple
  • 455 nm to 485 nm is blue
  • 485 nm to 495 nm is blue green
  • 495 nm to 548 nm is green
  • 548 nm to 573 nm is yellow green
  • 573 nm to 584 nm is yellow
  • 584 nm to 610 nm is yellow red
  • 610 nm to 780 nm is red.
  • the phosphor according to the present embodiment is represented by the following general formula.
  • This phosphor has a property of having an emission peak wavelength at 570 nm to 670 nm when excited by a light source of 460 nm.
  • the phosphor according to the present embodiment contains one or more second group elements selected from Ca, Sr, and Ba, and Al, Si, O, and N, and is activated by Eu. It is a phosphor.
  • This phosphor contains a product phase having a crystal structure defined by an X-ray diffraction pattern described later.
  • the phosphor according to the present embodiment absorbs light in the short wavelength region from near ultraviolet to visible light and emits yellow to red light.
  • the short wavelength region from near ultraviolet to visible light is not particularly limited, but is preferably 250 nm to 520 nm.
  • FIG. 1 is a diagram showing an X-ray diffraction pattern by CuK ⁇ rays for phosphors of Examples 1 to 4 to be described later as an example of the phosphor according to the present embodiment.
  • the phosphor according to the present embodiment has a Bragg angle of 17.9 ° to 18.5 °, 24.5 ° to 25.
  • the intensity of a diffraction peak having a Bragg angle in the range of 17.9 ° to 18.5 ° is defined as 100%
  • the relative strength of is preferably 150% to 310%.
  • the relative intensity of the diffraction peak whose Bragg angle is in the range of 30.6 ° to 31.2 ° is preferably 190% to 460%.
  • the relative intensity of a diffraction peak having a Bragg angle in the range of 34.8 ° to 35.4 ° is preferably 320% to 550%.
  • the relative intensity of a diffraction peak having a Bragg angle in the range of 35.7 ° to 36.3 ° is preferably 270% to 570%.
  • the relative intensity of a diffraction peak having a Bragg angle in the range of 68.7 ° to 69.3 ° is preferably 160% to 320%.
  • the phosphor according to the present embodiment has a diffraction peak with a Bragg angle in the range of 17.9 ° to 18.5 °.
  • the intensity is 100%
  • the relative intensity of a diffraction peak having a Bragg angle in the range of 29.0 ° to 29.6 ° is preferably 90% to 240%.
  • the relative intensity of a diffraction peak having a Bragg angle in the range of 31.4 ° to 32.0 ° is preferably 310% to 910%.
  • the relative intensity of a diffraction peak having a Bragg angle in the range of 47.9 ° to 48.5 ° is preferably 140% to 290%.
  • XRD device MiniFlex, manufactured by Rigaku Corporation
  • X-ray tube CuK ⁇ Tube voltage: 30 kV
  • Tube current 15 mA
  • Scanning method 2 ⁇ / ⁇ Scan speed: 4 ° / min
  • Sampling interval 0.02 °
  • the phosphor according to the present embodiment shows a broad excitation spectrum that is efficiently excited over a wide wavelength range of 250 nm to 520 nm.
  • the phosphor according to the present embodiment has an intensity of 50% or more when excited with light having an excitation wavelength of 300 nm to 470 nm, assuming that the maximum emission intensity when excited with light in this wavelength region is 100%. Can emit light. Further, when excited with light having an excitation wavelength of 300 nm to 470 nm, it is more preferable to emit light with an intensity of 75% or more.
  • the phosphor according to the present embodiment has a peak wavelength in the wavelength region of 573 nm to 650 nm and emits yellow to red light.
  • the peak wavelength in the wavelength range of 584 nm to 630 nm, it is possible to obtain yellowish red to red light with high luminance.
  • the full width at half maximum of the emission spectrum of the phosphor according to the present embodiment can be set to 100 nm to 125 nm, preferably 107 nm to 117 nm. By having an emission spectrum with a wide half-value width in this way, a color in a wide wavelength range can be reproduced.
  • the Group 2 element M + Eu: Al + Si 2: 10.56 to 11.90.
  • Al: Si 1: 1.7 to 2.5.
  • the phosphor according to the present embodiment can emit yellow to red light with high luminance.
  • M which is one or more second group elements selected from Ca, Sr, and Ba
  • M which is one or more second group elements selected from Ca, Sr, and Ba
  • Sr may be partially or completely substituted with Ca and Ba.
  • the Ca concentration relative to Sr is preferably within 10%, more preferably within 5%.
  • the Ba concentration relative to Sr is preferably within 8%, more preferably within 4%.
  • the peak wavelength of the phosphor can be appropriately adjusted by adjusting the compounding ratio of Ca, Sr, and Ba for the Group 2 element M.
  • the phosphor according to the present embodiment uses Eu, which is a rare earth, as an activator.
  • concentration of the activator is preferably 0.001% to 20%, more preferably 8% to 12% with respect to the element M.
  • the activator is not limited to Eu, and a part of Eu may be Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc. Substitution with rare earth metals or alkaline earth metals is also possible. Thereby, the substituted element and Eu are co-activated, and the light emission characteristics can be adjusted, for example, by changing the color tone of the phosphor.
  • the phosphor according to the present embodiment includes 2 + 2% by weight to 29.0% by weight M + Eu and 13.0% by weight to 22.0% by weight. It is preferable to contain Al. Moreover, it is preferable to contain 19.0 weight% or more and 29.5 weight% or less of Si. Furthermore, it is preferable to contain 0.1 wt% or more and 9.0 wt% or less of O and 22.0 wt% or more and 30.0 wt% or less of N. By containing each element in such a weight%, high-intensity yellow to red light can be emitted.
  • the phosphor according to the present embodiment has 2 + 3% by weight to 31.0% by weight M + Eu and 10.0% by weight to 16.0% by weight.
  • the phosphor according to the present embodiment can adjust the color tone and luminance by changing the composition ratio of the elements of O and N. Furthermore, the emission spectrum and intensity can be finely adjusted by changing the composition ratio of the cation and the anion in (M + Al + Si) / (O + N). Therefore, the peak wavelength can be intentionally displaced by adjusting the composition ratio.
  • the phosphor according to the present embodiment contains at least one element selected from the group consisting of Li, Na, K, Rb, Cs, Mn, Re, Cu, Ag, and Au in the composition. You may do it. Furthermore, other elements may be mixed to such an extent that the characteristics of the phosphor are not impaired.
  • the phosphor according to the present embodiment can maintain a luminance of 88% or more under the condition of about 100 ° C., assuming that the emission luminance under the condition of about 25 ° C. is 100%.
  • a brightness of 62% or more can be maintained under the condition of about 200 ° C.
  • the phosphor according to the present embodiment has a unit cell of crystals belonging to the orthorhombic system when the crystal structure is analyzed from an X-ray diffraction pattern described later. Moreover, it is preferable that most of the phosphor has crystals. Specifically, at least 50% by weight or more, more preferably 80% by weight or more has crystals. This indicates the proportion of the crystalline phase having luminescent properties, and if it has a crystalline phase of 50% by weight or more, light emission that can withstand practical use can be obtained. Further, such powder is easy to manufacture and process. For example, since the glass body (amorphous) has a loose structure, the component ratio in the phosphor is not constant, and there is a risk of causing chromaticity unevenness. Therefore, in order to avoid this, it is necessary to control the reaction conditions in the production process to be strictly uniform.
  • the average particle diameter of the phosphor is preferably in the range of 1 ⁇ m to 100 ⁇ m, more preferably 2 ⁇ m to 50 ⁇ m. It is preferable that the phosphor having this average particle diameter value is contained with high frequency. Furthermore, the particle size distribution is preferably distributed in a narrow range because color unevenness can be suppressed.
  • the average particle size is F.D. S. S. S. No. (Fisher Sub Sieve Sizer's No). Specifically, in an environment with an air temperature of 25 ° C. and a humidity of 70%, a sample of 1 cm 3 minutes is measured, packed in a special tubular container, then dried air of a constant pressure is flown, and the specific surface area is read from the differential pressure and averaged. Convert to particle size.
  • This phosphor is weighed so as to use a simple substance of an element contained in the composition, an oxide, a carbonate or a nitride as a raw material, and each raw material to have a predetermined charged composition ratio.
  • the “charge composition ratio” indicates the molar ratio of each element in the raw material containing the constituent elements of the phosphor in the mixture of the respective raw materials.
  • M + Eu: Al: Si: N 1: 1 to 2: 3.375 to 4.5: 5.63 to 7.5.
  • M + Eu, Al, Si, and N are set to a predetermined charged composition ratio. Each raw material is weighed so as to satisfy this relationship. Further, an additive material such as a flux can be appropriately added to these raw materials. Further, if necessary, boron can be contained.
  • a mixer besides a ball mill which is usually used industrially, a grinder such as a vibration mill, a roll mill and a jet mill can be used.
  • a wet type separator such as a sedimentation tank, a hydrocyclone, and a centrifugal separator
  • a dry classifier such as a cyclone and an air separator. You can also This mixture is placed in a crucible made of a material such as SiC, quartz, alumina, boron nitride, or a plate-like boat and fired.
  • a tubular furnace, a small furnace, a high-frequency furnace, a metal furnace, or the like can be used. Further, the firing is preferably performed in a circulating reducing atmosphere. Specifically, firing is preferably performed in a nitrogen atmosphere, a mixed atmosphere of nitrogen and hydrogen, an ammonia atmosphere, or a mixed atmosphere thereof.
  • the firing temperature is preferably 1200 ° C to 2000 ° C, more preferably 1500 ° C to 1800 ° C.
  • the firing time is preferably 15 hours to 200 hours, more preferably 20 hours to 150 hours, and most preferably 40 hours to 150 hours.
  • the fired product is pulverized, dispersed, filtered, etc. to obtain the desired phosphor powder.
  • Solid-liquid separation can be performed by industrially used methods such as filtration, suction filtration, pressure filtration, centrifugation, and decantation. Drying can be achieved by industrially used apparatuses and methods such as a vacuum dryer, a hot air heating dryer, a conical dryer, and a rotary evaporator.
  • a specific phosphor material will be described.
  • the raw materials of Ca, Sr, and Ba constituting the element M with the charged composition ratio can use elements alone, as well as various salts such as metals, oxides, imides, amides, nitrides, carbonates, phosphates, and silicates. Etc. can be used. Specifically, SrCO 3 , Sr 3 N 2 , CaCO 3 or the like can be used. In addition, as the preparation composition ratio of Al and Si, compounds such as metals, oxides, imides, amides, nitrides, and various salts can be used in addition to the elements alone. Moreover, you may use what mixed element M, Si, and Al beforehand.
  • AlN, Al 2 O 3 , Si 3 N 4 , SiO 4 or the like can be used.
  • the purity of Si as a raw material is preferably 2N or more, but different elements such as Li, Na, K, B, and Cu may be contained.
  • compounds containing these elements can also be used.
  • Eu as the activator is preferably used alone, but halogen salts, oxides, carbonates, phosphates, silicates and the like can be used. Specifically, Eu 2 O 3 or the like can be used. When a part of Eu is replaced with another element, a compound containing other rare earth elements or the like can be mixed with a compound containing Eu. Furthermore, elements to be added as necessary are usually added as oxides or hydroxides, but are not limited thereto, and may be metals, nitrides, imides, amides, or other inorganic salts, , It may be contained in other raw materials in advance.
  • Each raw material has an average particle size of about 0.1 ⁇ m or more and 15 ⁇ m or less, more preferably about 0.1 ⁇ m to 10 ⁇ m. It is preferable from the viewpoint of diameter control and the like, and when the particle diameter is not less than the above range, it can be achieved by pulverizing in a glove box in an argon atmosphere or nitrogen atmosphere.
  • the excitation light source is preferably a light-emitting element that emits light in the short wavelength region from near ultraviolet to visible light.
  • the semiconductor light emitting element emits light of a bright color with a small size and high power efficiency.
  • a mercury lamp used for an existing fluorescent lamp can be appropriately used.
  • FIGS. 8 and 9 show the light-emitting device 60 according to the present embodiment.
  • FIG. 8 is a perspective view of the light-emitting device 60
  • FIG. 9 is a cross-sectional view of the light-emitting device 60 taken along the line IVB-IVB ′ of FIG. Shown respectively.
  • the light emitting device 60 is a side view type light emitting device which is a kind of surface mount type.
  • the light emitting device 60 has a concave portion 14 and the light emitting element 2 housed in the concave portion, and the concave portion 14 is filled with a resin containing the phosphor 3.
  • the recess 14 is a part of the package 17, that is, the package 17 includes the recess 14 and a support body 16 connected to the recess 14.
  • Positive and negative lead electrodes 15 are interposed between the concave portion 14 and the support 16 to constitute a mounting surface of the light emitting element 2 in the concave portion 14. Further, the lead electrode 15 is exposed on the outer surface side of the package 17 and is provided along this outer shape.
  • the light emitting element 2 is mounted on and electrically connected to the lead electrode 15 in the recess 14, and can emit light by receiving power supply from the outside via the lead electrode 15.
  • the drawing shows a general state in which the light emitting device 60 is mounted, that is, the light emitting device 60 is placed with the wide surface orthogonal to the surface on which the light emitting element 2 is placed as the bottom surface.
  • the light emitting device 60 can emit light from a direction substantially parallel to the mounting surface of the light emitting element, that is, a side surface adjacent to the mounting surface of the light emitting device.
  • the light emitting device 60 is filled with a translucent resin so as to cover the light emitting element 2 placed in the recess 14 of the package 17 configured as described above, and a sealing member 18 is formed.
  • the sealing member 18 contains the phosphor 3.
  • the light emitting element 2 can emit light from the ultraviolet region to the visible light region.
  • the peak wavelength of light emitted from the light emitting element 2 is preferably 240 nm to 520 nm, and more preferably 420 nm to 470 nm.
  • a nitride semiconductor element In X Al Y Ga 1-XY N, 0 ⁇ X, 0 ⁇ Y, X + Y ⁇ 1
  • a nitride semiconductor element In X Al Y Ga 1-XY N, 0 ⁇ X, 0 ⁇ Y, X + Y ⁇ 1
  • the phosphor 3 according to the present embodiment is blended so as to be partially unevenly distributed in the sealing member 18.
  • the wavelength of light from the light emitting element 2 can be efficiently converted, and a light emitting device having excellent light emission efficiency can be obtained.
  • the phosphor 3 in the sealing member 17 at a substantially uniform ratio, it is possible to obtain light without color unevenness.
  • the phosphor 3 may use two or more kinds of phosphors.
  • the color rendering property is achieved by using the light emitting element 2 that emits blue light, the phosphor that is excited by the light emitting element 2 and emits green light, and the phosphor that emits red light. Excellent white light can be obtained.
  • a phosphor such as Si 5 N 8 : Eu (0 ⁇ z ⁇ 1.0) can be used in combination with the phosphor according to the present embodiment.
  • phosphors that can be used in combination include phosphors emitting red light, such as (La, Y) 2 O 2 S: Eu, Eu-activated oxysulfide phosphors, (Ca, Sr) S: Eu.
  • Eu-activated sulfide phosphors such as (Y, Tb, Gd) 3 Al 5 O 12 : Ce-activated aluminate phosphors such as Ce, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, Mn activated halophosphate phosphors such as Eu and Mn, Lu 2 CaMg 2 (Si, Ge) 3 O 12 : Ce activated oxide phosphors such as Ce, Eu attached such as ⁇ -sialon An active oxynitride phosphor can be used.
  • the sealing member 18 is formed by being filled with a translucent resin so as to cover the light emitting element 2 placed in the recess of the light emitting device 60.
  • a translucent resin a silicone resin composition is preferably used, but an insulating resin composition such as an epoxy resin composition or an acrylic resin composition can also be used.
  • an additive member can be further contained as appropriate. For example, by including a light diffusing material, the directivity from the light emitting element can be relaxed and the viewing angle can be increased.
  • Examples 1 to 17 of the phosphor according to the present invention are shown below.
  • strontium carbonate (SrCO 3 ), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), and europium oxide (Eu 2 O 3 ) are commonly used as raw materials. Were weighed so as to have the following charged composition ratios to obtain phosphors.
  • these examples illustrate phosphors for embodying the technical idea of the present invention and methods for producing the same, and the phosphors according to the present invention and methods for producing the same are not specified as follows.
  • the charging composition ratio of the phosphor according to Example 1 is Sr 0.9 Eu 0.1 Al 2 Si 4 ON 7.33 .
  • Each raw material was weighed so as to be 0.1. Specifically, each raw material was weighed to the mass shown below. However, the purity of each phosphor material is assumed to be 100%.
  • the above chemical formula is a theoretically assumed reaction formula in which the elements contained in the raw material are reacted without being lost.
  • the phosphor according to the present embodiment has a composition different from the composition of the product shown in the above reaction formula because a part of the element is lost during firing. As will be described later, performs elemental analysis of the product after calcination, calculated composition was Sr 1.80 Eu 0.20 Al 4.15 Si 7.03 O 2.27 N 12.42.
  • the phosphors of Examples 2 to 4 were obtained by performing the same operations as in Example 1 except that the firing time was 40 hours, 60 hours, and 80 hours.
  • Table 1 shows the measured composition ratio, firing time, chromaticity coordinates of emission color, luminance, and peak wavelength of emission spectrum for the phosphors of Examples 1 to 4.
  • the luminance in Table 1 is relative luminance when the luminance of Ca 2 Si 5 N 8 : Eu in Comparative Example 1 described later is 100%.
  • the phosphors according to the following examples emit the phosphor using an excitation source having a peak wavelength at 460 nm.
  • FIG. 1 shows X-ray diffraction patterns of the phosphors of Examples 1 to 4.
  • the intensity of the diffraction peak of the phosphors of Examples 2 to 4 in the range of 31.4 ° to 32.0 ° is smaller than that of the phosphor of Example 1. This is because the intensity of a diffraction peak with a Bragg angle in the range of 17.9 ° to 18.5 ° is increased relative to a diffraction peak with a Bragg angle in the range of 31.4 ° to 32.0 °. It shows that.
  • Table 3 shows the temperature characteristics of the phosphors of Examples 1 to 4.
  • the luminance shown in the table indicates the relative luminance with respect to the luminance of the phosphor according to each example under the condition of about 25 ° C. as 100%.
  • the phosphors of Examples 1 to 4 maintain a luminance of 88% or more when light is emitted under the condition where the temperature is raised to about 100 ° C, and 62% when the temperature is raised to about 200 ° C. It can be seen that it has excellent luminance characteristics, maintaining a luminance of at least%.
  • Table 4 shows the results of elemental analysis of the phosphors of Examples 1 to 4. Elemental analysis values are given in weight percent. In addition, since this elemental analysis value is measured separately for each element, there is a slight measurement error. Accordingly, the value obtained by adding the weight% of all the elements constituting the phosphors of Examples 1 to 4 does not necessarily become 100% accurately.
  • Table 5 shows values obtained by calculating the lattice constants of the phosphors of Examples 2 to 4.
  • Table 6 shows the calculated chemical formulas of Examples 1 to 4.
  • the phosphors of Examples 1 to 4 all showed high luminance. Further, when excited with a blue light emitting element having a peak wavelength at 460 nm, red light having a peak wavelength at 601 nm to 609 nm was emitted. In addition, the composition ratio of the phosphor after firing varies depending on the firing time.
  • Comparative Example 1 Ca 2 Si 5 N 8 : Eu, which is a phosphor emitting yellow to red, was used as Comparative Example 1.
  • Comparative Example 1 is Ca 1.94 Si 5 N 8 : Eu 0.06 with an Eu concentration of 0.06.
  • Table 7 below shows the results of measuring the chromaticity coordinates of the emission color, the luminance, and the peak wavelength of the emission spectrum for the phosphor of Comparative Example 1.
  • FIG. 2 shows an X-ray diffraction pattern of the phosphor of Comparative Example 1.
  • the intensities of diffraction peaks within the range of each Bragg angle shown in Table 8 are shown.
  • the intensity of this diffraction peak indicates the relative intensity of other diffraction peaks, with the intensity of the diffraction peak having a Bragg angle in the range of 17.9 ° to 18.5 ° being 100%.
  • the intensity of the diffraction peak having a Bragg angle in the range of 24.5 ° to 25.1 ° in the phosphor of Comparative Example 1 is 40.1%.
  • the intensity of the diffraction peaks whose Bragg angles are in the range of 24.5 ° to 25.1 ° are all over 200%.
  • the phosphors of Examples 1 to 4 and Comparative Example 1 have different X-ray diffraction peaks.
  • Table 9 shows the temperature characteristics of Comparative Example 1. The luminance shown in the table indicates the relative luminance with respect to the luminance of the phosphor according to each example under the condition of about 25 ° C. as 100%.
  • the phosphor of Comparative Example 1 maintains a brightness of 87.5% when light is emitted under conditions where the temperature is raised to about 100 ° C. However, the luminance is reduced to 43.9% under the condition where the temperature is raised to about 200 ° C.
  • FIG. 3 shows excitation spectra of the phosphors of Example 4 and Comparative Example 1.
  • FIG. 4 shows the reflection spectra of the phosphors of Example 4 and Comparative Example 1.
  • FIG. 5 shows emission spectra when the phosphors of Example 4 and Comparative Example 1 are excited with light of 460 nm.
  • FIG. 6 shows the temperature characteristics of Example 4 and Comparative Example 1.
  • Examples 5 to 11 The phosphors of Examples 5 to 11 were obtained in the same manner as in Example 1 except that the raw materials were weighed so as to obtain a predetermined charged composition ratio.
  • Examples 5 to 11, Sr a Al b Si c O d N e: In Eu Sr + Eu: Al + Si 2: is obtained by changing the charging composition ratio in the range of 4.5-6.0.
  • Table 9 shows the measurement results of the charged composition ratio, the chromaticity coordinates of the emission color, the luminance, and the peak wavelength of the emission spectrum for the phosphors of Examples 5 to 11.
  • the luminance is a relative luminance when the luminance of the phosphor of Comparative Example 1 is 100%.
  • FIG. 7 shows X-ray diffraction patterns of the phosphors of Examples 5 to 11.
  • Example 12 The phosphors of Examples 12 to 17 were obtained by performing the same operations as in Example 1 except that the raw materials were weighed so that the Eu concentration relative to Sr was a predetermined concentration.
  • Table 12 shows measurement results of preparation composition ratio, Eu concentration, chromaticity coordinates of emission color, luminance, and peak wavelength of emission spectrum.
  • the luminance is shown as a relative luminance when the luminance of Example 15 is 100%.
  • Table 13 shows the intensity values of diffraction peaks within the range of each Bragg angle in the X-ray diffraction pattern.
  • the intensity of this diffraction peak indicates the relative intensity of other diffraction peaks, with the intensity of the diffraction peak having a Bragg angle in the range of 17.9 ° to 18.5 ° being 100%.
  • Table 14 shows the results of elemental analysis of the phosphors of Examples 12 to 17. This elemental analysis value is given in weight%. In addition, since this elemental analysis value is measured separately for each element, there is a slight measurement error. Therefore, the value obtained by adding the weight% of all the elements constituting the phosphors of Examples 12 to 17 does not necessarily become 100% accurately.
  • Table 15 shows the calculated chemical formulas of Examples 12 to 17.
  • the phosphors of Examples 12 to 17 emitted red light having a peak wavelength of 593 nm to 602 nm when excited by a blue light emitting element having a peak wavelength of 460 nm.
  • the peak wavelength can be made longer as the Eu concentration is increased.
  • Example 18 includes a chlorosilicate phosphor having the composition formula Ca 7.5 MgSi 4 O 16 Cl 1.8 : Eu 0.5 and the composition formula Sr 1.78 Al 5.73 Si 7.84 O of Example 4.
  • a white light emitting device was manufactured using a phosphor represented by 1.04 N 15.95 : Eu 0.22 .
  • Example 19 includes a YAG phosphor having the composition formula Y 2.96 (Al 0.8 Ga 0.2 ) 5 O 12 : Ce 0.04 and the composition formula Sr 1.78 Al 5.73 Si of Example 4.
  • a white light-emitting device was manufactured by using a phosphor represented by 7.84 O 1.04 N 15.95 : Eu 0.22 .
  • Example 20 includes a silicate phosphor having a composition formula (Sr 0.45 Ba 0.55 ) 1.93 SiO 4 : Eu 0.07 , and a composition formula Sr 1.78 Al 5.73 Si of Example 4 .
  • a white light emitting device was manufactured using a phosphor represented by 84 O 1.04 N 15.95 : Eu 0.22 .
  • a YAG phosphor having a composition formula of Y 2.96 (Al 0.8 Ga 0.2 ) 5 O 12 : Ce 0.04 and a composition formula of Ca 1.94 Si 5 N 8 in Comparative Example 2:
  • a white light emitting device was fabricated using Eu 0.06 nitride phosphor.
  • Table 16 shows the light emission characteristics of the light emitting devices of Examples 18 to 20 and Comparative Example 2.
  • FIG. 10 shows an emission spectrum of the light emitting device according to Example 18.
  • FIG. 11 shows an emission spectrum of the light emitting device according to Example 19.
  • FIG. 12 shows an emission spectrum of the light emitting device according to Example 20.
  • the white light emitting devices of Examples 18 to 20 all showed higher color rendering (Ra) than Comparative Example 2.
  • the phosphor of Example 4 is superior in temperature characteristics to the phosphor of Comparative Example 1, and therefore, even when the shipping device is used, the light emission of Examples 18 to 20 is achieved.
  • the device has a longer life than the light emitting device of Comparative Example 2 and has high reliability.
  • Example 21 and 22 The phosphors of Examples 21 and 22 were made of powders of SrCO 3 , AlN, Al 2 O 3 , Si 3 N 4 , and Eu 2 O 3 so as to have a predetermined charge composition ratio, and almost the same as in Example 1. The same operation was performed. However, the firing time was significantly reduced to 5 hours.
  • Table 17 shows the measurement results of the charged composition ratio, the chromaticity coordinates of the emission color, the luminance, and the peak wavelength of the emission spectrum for the phosphors of Examples 21 and 22.
  • the luminance is a relative luminance when the luminance of the phosphor of Comparative Example 1 is 100%.
  • Table 18 shows the intensity values of diffraction peaks within the range of each Bragg angle in the X-ray diffraction pattern.
  • the intensity of this diffraction peak indicates the relative intensity of other diffraction peaks, with the intensity of the diffraction peak having a Bragg angle in the range of 17.9 ° to 18.5 ° being 100%.
  • Table 19 shows the results of elemental analysis of the phosphors of Examples 21 and 22. This elemental analysis value is given in weight%. In addition, since this elemental analysis value is measured separately for each element, there is a slight measurement error. Therefore, the value obtained by adding the weight% of all the elements constituting the phosphors of Examples 21 and 22 may not necessarily be 100% accurately.
  • Table 20 shows the calculated chemical formulas of Examples 21 and 22.
  • the phosphors of Examples 21 and 22 can provide phosphors having characteristics equal to or higher than those of other Examples in a short time. While the phosphors of Examples 1 to 17 generated an optimum composition by scattering unnecessary elements by firing for a long time, the phosphors of Examples 21 and 22 were aimed directly at the optimum composition. I think it was possible to synthesize even in a short time.
  • Example 23 includes a chlorosilicate phosphor having the composition formula Ca 7.5 MgSi 4 O 16 Cl 1.8 : Eu 0.5 and the composition formula Sr 1.78 Al 4.09 Si 7.76 O of Example 22.
  • a white light emitting device was manufactured using a phosphor represented by 1.31 N 14.25 : Eu 0.22 .
  • the YAG phosphor having the composition formula Y 2.96 (Al 0.8 Ga 0.2 ) 5 O 12 : Ce 0.04 and the composition formula Sr 1.78 Al 4.09 Si in Example 22 were used.
  • a white light emitting device was manufactured using a phosphor represented by 7.76 O 1.31 N 14.25 : Eu 0.22 .
  • Table 21 shows the light emission characteristics of the light emitting devices of Examples 23 and 24.
  • FIG. 13 is a diagram showing an emission spectrum of the light emitting device according to Example 23.
  • FIG. 14 is a diagram showing an emission spectrum of the light emitting device according to Example 24.
  • FIG. 13 is a diagram showing an emission spectrum of the light emitting device according to Example 23.
  • the white light emitting devices of Examples 23 and 24 all showed higher color rendering (Ra) than the white light emitting device of Comparative Example 2.
  • Examples 25 and 26 The phosphors of Examples 25 and 26 were prepared by using SrCO 3 , AlN, Al 2 O 3 , Si 3 N 4 , and Eu 2 O 3 powders as raw materials and weighing the raw materials so as to obtain a predetermined charge composition ratio. Was obtained by carrying out the same operation as in Example 1. The firing time is 5 hours. Table 22 shows the results of measuring the charged composition ratio, the chromaticity coordinates of the emission color, the luminance, and the peak wavelength of the emission spectrum for the phosphors of Examples 25 and 26.
  • the luminance is a relative luminance when the luminance of the phosphor of Comparative Example 1 is 100%.
  • Table 23 shows the intensity values of diffraction peaks in the range of each Bragg angle in the X-ray diffraction pattern.
  • the intensity of this diffraction peak indicates the relative intensity of other diffraction peaks, with the intensity of the diffraction peak having a Bragg angle in the range of 17.9 ° to 18.5 ° being 100%.
  • Table 24 shows the results of elemental analysis of the phosphors of Examples 25 and 26. This elemental analysis value is given in weight%. In addition, since this elemental analysis value is obtained by measuring each element separately, a measurement error slightly occurs. Therefore, the value obtained by adding the weight% of all the elements constituting the phosphors of Examples 25 and 26 may not necessarily be 100% accurately.
  • Table 25 shows the calculated chemical formulas of Examples 25 and 26.
  • FIG. 15 is an SEM photograph obtained by photographing the phosphor according to Example 25.
  • FIG. 16 shows the emission spectrum of the phosphor according to Example 25.
  • FIG. 17 shows the excitation spectrum of the phosphor according to Example 25.
  • FIG. 18 shows the reflection spectrum of the phosphor according to Example 25. From the above results, the phosphors of Examples 25 and 26 showed higher luminance than Comparative Example 1.
  • Example 27 to 34 The phosphors of Examples 27 to 34 were obtained in the same manner as in Example 1 except that the raw materials were weighed so as to obtain a predetermined charged composition ratio.
  • the Eu concentration was changed in the charged composition ratio of (Sr, Eu) 2 Al 3 Si 7 O 1 N 13 .
  • This phosphor uses Sr 3 N 2 and Eu 2 O 3 as raw materials, and a part of Sr 3 N 2 is substituted with Eu 2 O 3 , so the composition ratio of the final product is the same as the charged composition ratio.
  • Table 26 shows the results obtained by measuring the charged composition ratio, the chromaticity coordinates of the emission color, the luminance, and the peak wavelength of the emission spectrum for the phosphors of Examples 27 to 34.
  • the luminance is a relative luminance when the luminance of the phosphor of Comparative Example 1 is 100%.
  • Table 27 shows the value of the intensity of the diffraction peak within the range of each Bragg angle in the X-ray diffraction pattern.
  • the intensity of this diffraction peak indicates the relative intensity of other diffraction peaks, with the intensity of the diffraction peak having a Bragg angle in the range of 17.9 ° to 18.5 ° being 100%.
  • Table 28 shows the results of elemental analysis of the phosphors of Examples 27 to 34. This elemental analysis value is given in weight%. In addition, since this elemental analysis value is measured separately for each element, there is a slight measurement error. Therefore, the value obtained by adding the weight% of all the elements constituting the phosphors of Examples 27 to 34 may not necessarily be 100% accurately.
  • Table 29 shows the calculated chemical formulas of Examples 27 to 34.
  • the phosphors of Examples 27 to 34 have high luminance when the Eu concentration is 1.5% to 15%. Further, the peak wavelength can be made longer as the Eu concentration is increased. When the Eu concentration with respect to Sr was 75%, the luminance was 37.5%. At this time, the intensity of the diffraction peak whose X-ray diffraction peak intensity is within the range of 24.5 ° to 25.1 ° is 135.4, and the Bragg angle is 34.8 ° to 35.4 °. The intensity of the diffraction peak within the range of 218.9 was 218.9. Further, when the entire Sr was replaced with Eu and the Eu concentration was 100%, the luminance was 15.6%.
  • the intensity of the diffraction peak in which the Bragg angle in the intensity of the X-ray diffraction peak is in the range of 24.5 ° to 25.1 ° is 118.4, and the Bragg angle is 34.8 ° to 35.4 °.
  • the intensity of the diffraction peak in the range of 200.7 was 200.7.
  • concentration quenching is unlikely to occur.
  • Example 35 to 38 In the phosphors of Examples 35 to 38, powders of SrCO 3 , AlN, Al 2 O 3 , Si 3 N 4 , and Eu 2 O 3 were used as raw materials so that a predetermined charge composition ratio was obtained. Was obtained by carrying out the same operation as in Example 1.
  • Table 30 shows the measurement results of the charged composition ratio, the chromaticity coordinates of the emission color, the luminance, and the peak wavelength of the emission spectrum for the phosphors of Examples 35 to 38.
  • the luminance is a relative luminance when the luminance of the phosphor of Comparative Example 1 is 100%.
  • Table 31 shows the values of the intensity of diffraction peaks in the range of each Bragg angle in the X-ray diffraction pattern.
  • the intensity of this diffraction peak indicates the relative intensity of other diffraction peaks, with the intensity of the diffraction peak having a Bragg angle in the range of 17.9 ° to 18.5 ° being 100%.
  • Table 32 shows the results of elemental analysis of the phosphors of Examples 35 to 38. This elemental analysis value is given in weight%. In addition, since this elemental analysis value is measured separately for each element, there is a slight measurement error. Accordingly, the value obtained by adding the weight% of all the elements constituting the phosphors of Examples 35 to 38 may not necessarily be 100% accurately.
  • Table 33 shows the calculated chemical formulas of Examples 35 to 38.
  • the peak wavelength can also be shifted to a range of 610 nm to 601 nm.
  • the intensity of the diffraction peak having a Bragg angle in the range of 34.8 ° to 35.4 ° in the intensity of the X-ray diffraction peak was 611.0.
  • the second group element M + Eu: Al + Si 2: 10.56 to 11.90 in molar ratio.
  • Example 39 to 43 The phosphors of Examples 39 to 43 were prepared by using SrCO 3 , AlN, Al 2 O 3 , Si 3 N 4 , and Eu 2 O 3 powders as raw materials and weighing the raw materials so as to obtain a predetermined charge composition ratio.
  • Table 34 shows the measurement results of the charged composition ratio, the chromaticity coordinates of the emission color, the luminance, and the peak wavelength of the emission spectrum of the phosphors of Examples 39 to 43.
  • the luminance is a relative luminance when the luminance of the phosphor of Comparative Example 1 is 100%.
  • Table 35 shows the intensity values of diffraction peaks within the range of each Bragg angle in the X-ray diffraction pattern.
  • the intensity of this diffraction peak indicates the relative intensity of other diffraction peaks, with the intensity of the diffraction peak having a Bragg angle in the range of 17.9 ° to 18.5 ° being 100%.
  • Table 36 shows the results of elemental analysis of the phosphors of Examples 39 to 43. This elemental analysis value is given in weight%. In addition, since this elemental analysis value is measured separately for each element, there is a slight measurement error. Accordingly, the value obtained by adding the weight% of all the elements constituting the phosphors of Examples 39 to 43 may not necessarily be 100% accurately.
  • Table 37 shows the calculated chemical formulas of Examples 39 to 43.
  • the phosphors of Examples 39 to 43 emitted red light having a peak wavelength of 608 nm to 621 nm when excited by a blue light emitting element having a peak wavelength of 460 nm.
  • the phosphors of Examples 41 and 42 showed high luminance.
  • Example 44 to 48 The phosphors of Examples 44 to 48 were prepared by using SrCO 3 , AlN, Al 2 O 3 , Si 3 N 4 , and Eu 2 O 3 powders as raw materials and weighing the raw materials so as to obtain a predetermined charged composition ratio.
  • Sr a Al b Si c O d N e: in Eu, Sr + Eu: Al 2: is obtained by changing the charging composition ratio of Al in the range of 2.4 to 3.9.
  • Table 38 shows the measurement results of the charged composition ratio, the chromaticity coordinates of the emission color, the luminance, and the peak wavelength of the emission spectrum of the phosphors of Examples 44 to 48.
  • the luminance is a relative luminance when the luminance of the phosphor of Comparative Example 1 is 100%.
  • Table 39 shows the values of the intensity of diffraction peaks in the range of each Bragg angle in the X-ray diffraction pattern.
  • the intensity of this diffraction peak indicates the relative intensity of other diffraction peaks, with the intensity of the diffraction peak having a Bragg angle in the range of 17.9 ° to 18.5 ° being 100%.
  • Table 40 shows the results of elemental analysis of the phosphors of Examples 44 to 48. This elemental analysis value is given in weight%. In addition, since this elemental analysis value is measured separately for each element, there is a slight measurement error. Accordingly, the value obtained by adding the weight% of all the elements constituting the phosphors of Examples 44 to 48 may not necessarily be 100% accurately.
  • Table 41 shows the calculated chemical formulas of Examples 44 to 48.
  • Example 49 to 54 In the phosphors of Examples 49 to 54, powders of SrCO 3 , AlN, Al 2 O 3 , Si 3 N 4 , and Eu 2 O 3 were used as raw materials so that a predetermined charge composition ratio was obtained. Was obtained by carrying out the same operation as in Example 1.
  • Table 42 shows the results obtained by measuring the charged composition ratio, the chromaticity coordinates of the emission color, the luminance, and the peak wavelength of the emission spectrum for the phosphors of Examples 49 to 54.
  • the luminance is a relative luminance when the luminance of the phosphor of Comparative Example 1 is 100%.
  • Table 43 shows the intensity values of diffraction peaks within the range of each Bragg angle in the X-ray diffraction pattern.
  • the intensity of this diffraction peak indicates the relative intensity of other diffraction peaks, with the intensity of the diffraction peak having a Bragg angle in the range of 17.9 ° to 18.5 ° being 100%.
  • Table 44 shows the results of elemental analysis of the phosphors of Examples 49 to 54. This elemental analysis value is given in weight%. In addition, since this elemental analysis value is measured separately for each element, there is a slight measurement error. Therefore, the value obtained by adding the weight% of all the elements constituting the phosphors of Examples 49 to 54 may not necessarily be exactly 100%.
  • Table 45 shows the calculated chemical formulas of Examples 49 to 54.
  • the phosphors of Examples 49 to 54 emitted red light having a peak wavelength of 608 nm to 621 nm when excited by a blue light emitting element having a peak wavelength of 460 nm.
  • the phosphors of Examples 51 to 54 have high luminance.
  • the phosphors of Examples 51 to 54 can have a peak wavelength of around 608 nm.
  • it is preferable that the second group element M + Eu: Si 2: 6.66 to 7.96.
  • Example 55 to 63 The phosphors of Examples 55 to 63 were prepared by using SrCO 3 , AlN, Al 2 O 3 , Si 3 N 4 , and Eu 2 O 3 powders as raw materials and weighing the raw materials so as to obtain a predetermined charged composition ratio.
  • Table 46 shows the measurement results of the charged composition ratio, the chromaticity coordinates of the emission color, the luminance, and the peak wavelength of the emission spectrum of the phosphors of Examples 55 to 63.
  • the luminance is a relative luminance when the luminance of the phosphor of Comparative Example 1 is 100%.
  • Table 47 shows the intensity values of diffraction peaks in the range of each Bragg angle in the X-ray diffraction pattern.
  • the intensity of this diffraction peak indicates the relative intensity of other diffraction peaks, with the intensity of the diffraction peak having a Bragg angle in the range of 17.9 ° to 18.5 ° being 100%.
  • Table 48 shows the results of elemental analysis of the phosphors of Examples 55 to 63. This elemental analysis value is given in weight%. In addition, since this elemental analysis value is measured separately for each element, there is a slight measurement error. Therefore, the value obtained by adding the weight% of all the elements constituting the phosphors of Examples 55 to 63 may not necessarily be 100% accurately.
  • Table 49 shows the calculated chemical formulas of Examples 55 to 63.
  • the phosphors of Examples 55 to 63 emitted red light having a peak wavelength near 609 nm when excited by a blue light emitting element having a peak wavelength at 460 nm. Further, the phosphors of Examples 55 to 62 showed high luminance.
  • the intensity of the diffraction peak having a Bragg angle in the range of 34.8 ° to 35.4 ° in the intensity of the X-ray diffraction peak was 929.3.
  • FIG. 19 shows an emission spectrum of the phosphor of the comparative example.
  • the phosphor is compared with a YAG phosphor of Y 2.96 (Al 0.8 , Ga 0.2 ) 5 O 12 : Ce 0.04 .
  • the phosphor had a very low luminance compared to the YAG phosphor, and an impractical result was obtained.
  • FIG. 20 shows an emission spectrum of the phosphor of the comparative example.
  • the phosphor is compared with a YAG phosphor of Y 2.96 (Al 0.8 , Ga 0.2 ) 5 O 12 : Ce 0.04 .
  • the phosphor had a very low luminance compared to the YAG phosphor, and an impractical result was obtained.
  • FIG. 21 shows an emission spectrum of the phosphor of the comparative example. The phosphor is compared with the YAG phosphor. As a result, the phosphor had a very low luminance compared to the YAG phosphor, and an impractical result was obtained.
  • the phosphor of the present invention and a light-emitting device using the phosphor are extremely excellent in light emission characteristics using a fluorescent display tube, display, PDP, CRT, FL, FED, projection tube, etc., particularly a blue light-emitting diode or an ultraviolet light-emitting diode as a light source. It can be suitably used for illumination light sources, backlight light sources, and the like that emit warm white light.

Abstract

[課題] 温度特性に優れており、かつ、近紫外から可視光の短波長領域の光によって励起され、黄~赤色光を放出可能な蛍光体及びその製造方法並びにこれを用いた発光装置を提供することにある。 [解決手段] Ca、Sr、Baから選択される1種以上の第二族元素であるM、Al、Si、O及びNを含有し、Euで付活された蛍光体であって、かつ、この蛍光体のCuKα線によるX線回折パターンは、ブラッグ角度が17.9°以上18.5°以下の範囲にある回折ピークの強度を100%としたとき、ブラッグ角度が24.5°~25.1°の範囲内にある回折ピークの相対強度は150%以上310%以内であり、ブラッグ角度が34.8°以上35.4°以下の範囲内にある回折ピークの相対強度が320%以上550%以内である。

Description

蛍光体及びその製造方法並びにこれを用いた発光装置
 本発明は、蛍光体及びその製造方法並びにこれを用いた発光装置に関し、とりわけ、酸素及び窒素を含有し、化学的に安定した蛍光体及びその製造方法並びにこれを用いた発光装置に関する。
 光源より放出される光と、これに励起されて光源の光と異なる色相の光を放出できる蛍光体とを組み合わせることで、光の混色の原理により多様な波長の光を放出可能な発光装置が開発されている。このような発光装置として、例えば、青色光を放出する半導体発光素子(LED)と、緑~黄色に発光するイットリウム・アルミニウム・ガーネット系蛍光体(YAl12:Ce)を用いた白色LED発光装置がある。この白色LED発光装置は、発光素子から放出される青色光の一部が波長変換された緑~黄色光と、変換されなかった青色光とが加色混合されて白色光が得られる。しかしながらこの方式では、可視光の長波長領域の発光が不足しているため、電球色のように赤みを帯びた白色光を得ることができず、演色性が低いという問題点があった。
 これに対して、青色光を放出する発光素子と、該発光素子の青色光により励起されて緑色、赤色に発光する蛍光体とを用いる発光装置は、光の3原色である青色、緑色、赤色の3原色が加色混合されて演色性の良い白色光を得ることができる。また、光の3原色を加色混合する方式には、近紫外領域の光を放出する発光素子を用いて、該発光素子から放出される近紫外領域の光によって青色、緑色、赤色発光の蛍光体を励起し、それぞれの蛍光体の発光によって白色光を得る方法もある。このような発光装置に用いることができる蛍光体として、近紫外から可視光の短波長領域の光を波長変換し、赤色光などの可視光の長波長領域の光を放出する蛍光体の開発が盛んに行われている。
 例えば、青色LEDを光源とする白色LEDの高輝度化を可能とする、希土類元素を付活させた酸窒化物蛍光体が提供されている(例えば、特開2002-363554号公報(特許文献1)参照)。酸窒化物蛍光体として、一般式:MeSi12-(m+n)Al(m+n)16-n:Re1Re2で示され、アルファサイアロンに固溶する金属Me(MeはCa、Mg、Y、又はLaとCeを除くランタニド金属の一種若しくは二種以上)の一部若しくは全てが、発光中心となるランタニド金属Re1(Re1は、Ce,Pr、Eu、Tb、Yb、又はErの一種若しくは二種以上)又は二種類のランタニド金属Re1及び共付活剤としてのRe2(Re2はDy)で置換される。金属Meが二価のとき、0.6<m<3.0、かつ、0≦n<1.5である。また、金属Meが三価のとき、0.9<m<4.5、かつ、0≦n<1.5である。
 この酸窒化物蛍光体とは、本願発明に係る蛍光体とは、Meに対するAl、Si、Nの比率が異なるため組成が異なる。
 また、近紫外~青色光で励起可能であり、温色系光、特に赤色系光を放つ蛍光体組成物が提供されている(例えば、特開2005-48105号公報(特許文献2)参照)。この蛍光体組成物は、a((1-x-y)MO・xEuO・yCe))・bSi・cAlNの組成式で表される組成物を主体として含む蛍光体組成物であって、蛍光体組成物が、結晶質からなり、組成式中のMが、Mg、Ca、Sr、およびBaから選ばれる少なくとも一つのアルカリ土類金属元素であり、組成式中のa、b、c、x、yがそれぞれ、0.3≦a/(a+b)≦0.9、0.2≦a/(a+c)≦0.8、0.3≦c/(b+c)≦0.9、0≦x≦0.2、0≦y≦0.2、0.002≦x+y≦0.2、の関係を満たす蛍光体組成物である。
 しかしながら、この蛍光体の組成式はa,b,cの組成範囲が規定されていないため、発明の開示が十分に成されておらず、発明が十分に特定されていない。一方、この特許文献の実施例に基づくと、実施例1~18、及び、実施例20~25の蛍光体組成物と、本願発明とは、Mに対するNの比率が異なるため組成が異なる。また実施例19の蛍光体組成物と、本願発明とは、Mに対するAlの比率が異なるため組成が異なる。
 発光のピーク波長が580~680nmの範囲にあり、高い発光強度を有するという発光特性を持ち、紫外~可視光(波長250~550nm)の広範囲な波長域の励起光に対し平坦で効率の高い励起帯を持つという励起帯特性を有する蛍光体が提供されている(例えば、特開2006-63323号公報(特許文献3)参照)。CoKα線による粉末X線回折パターンにおいて最も強度のある回折ピークの相対強度を100%としたとき、X線回折パターンのブラッグ角度(2θ)が、36.5°~37.5°、および41.9°~42.9°である範囲に相対強度10%以上の回折ピークを示す相を主とした生成相として含む蛍光体である。蛍光体の生成相は、組成式M:Zで表記され、M元素はCa,Sr、Mgなどの元素であり、A元素はAl等の元素であり、B元素はSi等の元素であり、Oは酸素であり、Nは窒素であり、Z元素は、Eu等の元素であり、n=2/3m+a+4/3b-2/3b-2/3o、m/(a+b)≧1/2、(o+n)/(a+b)>4/3、o≧0であり、m:a:b=1:1:1である蛍光体である。
 しかしながら、この蛍光体と本願発明の蛍光体とは、MとA、B、Nの比率が異なるため組成が異なる。
 緑色~黄色範囲に発光スペクトルのブロードなピークを持ち、近紫外・紫外光から青色光の広範囲な光を励起光として用いることのできる広く平坦な励起帯をもった蛍光体が提供されている(例えば、国際公開番号WO2006/093298号公報(特許文献4)参照)。この蛍光体は、一般式、M:Zで表記され、M元素はCa,Sr、Mgなどの元素であり、A元素はAl等の元素であり、B元素はSi等の元素であり、Oは酸素であり、Nは窒素であり、Z元素は、Eu等の元素であり、4.0<(a+b)/m<7.0、a/m≧0.5、b/a>2.5、n>o、n=2/3m+a+4/3b-2/3oであり、波長300nmから500nmの範囲の光で励起したとき、発光スペクトルにおけるピーク波長が500nmから650nmの範囲にある蛍光体である。
 しかしながら、この蛍光体の組成式はa,b,m、o,nの組成範囲が規定されていないため、発明の開示が十分に成されておらず、発明が十分に特定されていない。一方、実施例に基づくと、この蛍光体と本願発明の蛍光体とは、Mに対するA、若しくは、Mに対するB、Mに対するNの比率が異なるため組成が異なる。
 青色の範囲(ピーク波長が400nm~500nm)にブロードな発光スペクトルを持ち、また、近紫外・紫外の範囲に広く平坦な励起帯を持つ蛍光体が提供されている(例えば、国際公開番号WO2006/106883号公報(特許文献5)参照)。この蛍光体は、一般式、M:Zで表記され、M元素はCa,Sr、Mgなどの元素であり、A元素はAl等の元素であり、B元素はSi等の元素であり、Oは酸素であり、Nは窒素であり、Z元素は、Eu等の元素であり、5.0<(a+b)/m<9.0、0≦a/m≦2.0、0≦o<n、n=2/3m+a+4/3b-2/3oであり、波長250nmから430nmの範囲の光で励起したとき、発光スペクトルにおけるピーク波長が400nmから500nmの範囲にある蛍光体である。
 しかしながら、この蛍光体の組成式はa,b,m、o,nの組成範囲が明示されていないため、十分に開示がなされていない。一方、実施例に基づくと、この蛍光体と本願発明の蛍光体とは、Mに対するNの比率が異なるため組成が異なる。また、この蛍光体は青色に発光するため、本願発明の蛍光体とは発光色が異なる。
 高い輝度や橙色や赤色発光特性を有する蛍光体が提供されている(例えば、特開2006-89547号公報(特許文献6)参照)。この蛍光体は、ASi5-xAl8-x(ただし、Aは、Mg、Ca、Sr、またはBaから選ばれる1種であり、xが、0.05以上0.8以下の値)で示される結晶を活性物質とし、これに金属元素M(ただし、Mは、Eu等の元素)を固溶した蛍光体である。
 しかしながら、この蛍光体と本願発明の蛍光体とは、Aに対するSi、Al、O、Nの比率が異なるため組成が異なる。
 従来の希土類付活サイアロン蛍光体より緑色の輝度が高く、従来の酸窒化物蛍光体よりも耐久性に優れる緑色蛍光体が提供されている(例えば、特開2005-255895号公報(特許文献7)参照)。この蛍光体は、β型Si結晶構造を持つ窒化物または酸窒化物の結晶中に金属元素M(ただし、Mは、Mn、Ce、Euから選ばれる1種の元素)が固溶してなる、Si6-zAl8-z(ただし0<z<4.2)で表され、励起源を照射することにより波長500nmから600nmの範囲の波長にピークを持つ蛍光を発光することを特徴とする蛍光体である。
 しかしながら、この蛍光体は、Ca、Sr等の元素を有していない。また、この蛍光体と本願発明の蛍光体とは、組成が異なる。さらに、この蛍光体は緑色に発光するため、本願発明の蛍光体とは発光色が異なる。
 青色乃至紫外光を光源とする白色発光ダイオードを実現できる、β型サイアロン蛍光体が提供されている(例えば、国際公開番号WO2006/121083号公報(特許文献8)参照)。この蛍光体は、Si6-zAl8-z(ただし0.24≦z≦4.2)で示されるβ型サイアロンを母体材料とし、発光中心としてEuを固溶するβ型サイアロン蛍光体である。
 しかしながら、この蛍光体は、Ca、Sr等の元素を有していない。また、この蛍光体と本願発明の蛍光体とは、組成が異なる。さらに、この蛍光体は緑色に発光するため、本願発明の蛍光体とは発光色が異なる。
 一次光源の放射線を少なくとも部分的に変換する黄色から赤色を放射する蛍光体を用いる光源において、蛍光体がニトリドシリケートタイプMSi:Eu(ここで、MはCa、Sr、Ba、Znの群から選択される少なくとも1つのアルカリ土類金属であり、かつz=2/3x+4/3yであり、x=2及びy=5、又は、x=1及びy=7である。)のホスト格子を有する、黄色から赤色を放射する蛍光体を用いる光源に関する(例えば、国際公開番号WO2001/40403号公報(特許文献9)参照)。
 しかしながら、この蛍光体は、Alの元素を有していない。また、この蛍光体と本願発明の蛍光体とは、組成が異なる。
 さらに、赤色光などの可視光の長波長領域の光を放出する蛍光体として、例えば、CaS:Eu、LnS:Euが知られているが、化学的安定性が悪く、温度の高い条件では輝度が著しく低下する。また蛍光体の発光輝度も満足するものではなかった。近年では、近紫外から可視光の短波長領域に良好な励起帯を持ち、黄~赤色光に波長変換可能な蛍光体であって、かつ、化学的に安定している窒素を含有した蛍光体が開発されている。このような窒素を含有する蛍光体には、例えば、CaSi:Euがあり、演色性を向上させるためにこの蛍光体を搭載した発光装置が報告されている(例えば、特開2007-142389号公報(特許文献10)参照)。
 しかしながら、上記の窒素を含有する蛍光体では、温度の高い条件下で発光させると輝度が大きく低下する問題があった。また温度特性の悪い蛍光体は、発光装置に搭載した形態においては、高温下になると、この蛍光体の発光と、これと色相の異なる他の発光との混色における比率が大きくズレてしまうため、色むらの要因になる。
 本発明は、従来のこのような問題を解決するためになされたものである。すなわち、本発明の主な目的は、温度特性に優れており、かつ、近紫外から可視光の短波長領域の光によって励起され、黄~赤色光を放出可能な蛍光体及びその製造方法並びにこれを用いた発光装置を提供することにある。
 本発明は、以下の一般式で表される蛍光体である。
 MAlSi:Eu
 (Mは、Ca、Sr、Baから選択される1種以上の第二族元素であり、a=2、b=2.4~6.0、c=5.0~8.5、d=1.0~3.0、e=11.0~16.0である。)
 また、この蛍光体は、460nmの光源により励起されたとき、570nm~670nmに発光ピーク波長を有する性質を有する。
 ここで、EuはMの一部と置換され、MとEuとの合計モル数が2molという意味であり、特に断りのない限り、以下同様である。
 本発明は、Ca、Sr、Baから選択される1種以上の第二族元素であるM、Al、Si、O及びNを含有し、Euで付活された蛍光体である。この蛍光体は、CuKα線によるX線回折パターンにおいて、ブラッグ角度が17.9°以上18.5°以下の範囲にある回折ピークの強度を100%としたとき、ブラッグ角度が24.5°~25.1°の範囲内にある回折ピークの相対強度は150%以上310%以内であり、かつ、ブラッグ角度が34.8°以上35.4°以下の範囲内にある回折ピークの相対強度が320%以上550%以内である相を主とした生成相を含有する。
 また、この蛍光体は、近紫外から可視光の短波長領域の光を吸収した際の発光スペクトルが、570nmから670nmの範囲内にピーク波長を有することが好ましい。

 また、この蛍光体は、19.0重量%以上29.5重量%以下のSiを含有することが好ましい。
 また、この蛍光体は、斜方晶系に帰属し、かつ、結晶格子の格子定数が、4.4Å≦a≦5.4Å、7.0≦b≦8.0Å、11.1Å≦c≦12.1Åであることが好ましい。
 本発明は、近紫外から可視光の短波長領域内にピーク波長を有する光を放つ励起光源と、この励起光源からの光の一部を吸収して蛍光を発する前記蛍光体と、を有する発光装置である。
 本発明の蛍光体及びその製造方法並びにこれを用いた発光装置によれば、近紫外から可視光の短波長領域の青色光によって励起され、黄~赤色光を発光する蛍光体であって、かつ、温度の高い条件下においても輝度の低下が少ない蛍光体を得ることができる。また、この蛍光体を用いた発光装置においては、高温下においても、この蛍光体の輝度の低下が少ないため、この蛍光体と色相の異なる他の発光との混色における比率のズレを抑制することができる。
実施例1~4に係る蛍光体のX線回折パターンの測定結果を示す。 比較例1に係る蛍光体のX線回折パターンの測定結果を示す。 実施例4及び比較例1に係る蛍光体の励起スペクトルを示す。 実施例4及び比較例1に係る蛍光体の反射スペクトルを示す。 実施例4及び比較例1に係る蛍光体を460nmで励起した際の発光スペクトルを示す。 実施例4及び比較例1に係る蛍光体の温度特性を示す。 実施例5~11に係る蛍光体のX線回折パターンの測定結果を示す。 本実施の形態に係る発光装置の斜視図を示す。 図8のVIB-VIB’線における断面図を示す。 実施例18に係る発光装置の発光スペクトルを示す。 実施例19に係る発光装置の発光スペクトルを示す。 実施例20に係る発光装置の発光スペクトルを示す。 実施例23に係る発光装置の発光スペクトルを示す。 実施例24に係る発光装置の発光スペクトルを示す。 実施例25に係る蛍光体を撮影したSEM写真である。 実施例25に係る蛍光体の発光スペクトルを示す。 実施例25に係る蛍光体の励起スペクトルを示す。 実施例25に係る蛍光体の反射スペクトルを示す。 比較例の蛍光体の発光スペクトルを示す。 比較例の蛍光体の発光スペクトルを示す。 比較例の蛍光体の発光スペクトルを示す。
 以下、本発明の実施の形態を詳細に説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための、蛍光体及びその製造方法並びにこれを用いた発光装置を例示するものであって、本発明を以下のものに特定しない。
 なお色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。具体的には、380nm~455nmが青紫色、455nm~485nmが青色、485nm~495nmが青緑色、495nm~548nmが緑色、548nm~573nmが黄緑色、573nm~584nmが黄色、584nm~610nmが黄赤色、610nm~780nmが赤色である。
 本実施の形態に係る蛍光体は、以下の一般式で表される。
 MAlSi:Eu
 (Mは、Ca、Sr、Baから選択される1種以上の第二族元素であり、a=2、b=2.4~6.0、c=5.0~8.5、d=1.0~3.0、e=11.0~16.0である。)
 この蛍光体は、460nmの光源により励起されたとき、570nm~670nmに発光ピーク波長を有する性質を有する。
 本実施の形態に係る蛍光体は、Ca、Sr、Baから選択される1種以上の第二族元素であるM、及び、Al、Si、O、Nを含有し、Euで付活される蛍光体である。Alはアルミニウム、Siは珪素、Oは酸素、Nは窒素、Euはユーロピウムである。この蛍光体は、後述するX線回折パターンで規定される結晶構造を有した生成相を含有している。本実施の形態に係る蛍光体は、近紫外から可視光の短波長領域の光を吸収して、黄色~赤色に発光する。ここで、本明細書において近紫外から可視光の短波長領域とは、特に限定されないが250nm~520nmであることが好ましい。
 本実施の形態に係る蛍光体が示すX線回折パターンについて、図1を参照しながら説明する。図1は、本実施の形態に係る蛍光体の一例として後述する実施例1~4の蛍光体について、CuKα線によるX線回折パターンを示した図である。
 実施例1~4に係る各X線回折パターンに示されているように、本実施の形態に係る蛍光体は、ブラッグ角度が17.9°~18.5°、24.5°~25.1°、30.6°~31.2°、34.8°~35.4°、35.7°~36.3°、68.7°~69.3°の範囲内に回折ピークを有する。
 ここで、ブラッグ角度が17.9°~18.5°の範囲内にある回折ピークの強度を100%としたとき、ブラッグ角度が24.5°~25.1°の範囲内にある回折ピークの相対強度は150%~310%であることが好ましい。同様にブラッグ角度が30.6°~31.2°の範囲内にある回折ピークの相対強度は190%~460%であることが好ましい。同様にブラッグ角度が34.8°~35.4°の範囲内にある回折ピークの相対強度は320%~550%であることが好ましい。同様にブラッグ角度が35.7°~36.3°の範囲内にある回折ピークの相対強度が270%~570%であることが好ましい。同様にブラッグ角度が68.7°~69.3°の範囲内にある回折ピークの相対強度が160%~320%であることが好ましい。
 実施例1~4に係る各X線回折パターンに示されているように、本実施の形態に係る蛍光体は、ブラッグ角度が17.9°~18.5°の範囲内にある回折ピークの強度を100%としたとき、ブラッグ角度が29.0°~29.6°の範囲内にある回折ピークの相対強度は90%~240%が好ましい。同様にブラッグ角度が31.4°~32.0°の範囲内にある回折ピークの相対強度は310%~910%が好ましい。同様にブラッグ角度が47.9°~48.5°の範囲内にある回折ピークの相対強度は140%~290%が好ましい。
 ここで、本実施の形態に係る蛍光体のX線回折パターンの測定方法について説明する。XRD装置及びその測定条件を以下に示す。
 XRD装置:株式会社リガク製MiniFlex
 X線管球:CuKα
 管電圧:30kV
 管電流:15mA
 スキャン方法:2θ/θ
 スキャン速度:4°/min
 サンプリング間隔:0.02°
 また、Al/Si比の変更、他元素による固溶、加えて、X線が照射される試料面が平らでなかったときや、XRD装置の測定条件の違いにより回折ピークのブラッグ角度のズレが生じることもある。そのため、回折ピークのブラッグ角度の範囲が若干ズレることは許容されると考えられる。
 本実施の形態に係る蛍光体は、250nm~520nmの広波長域にわたり効率よく励起されるブロードな励起スペクトルを示す。本実施の形態に係る蛍光体は、この波長領域内の光で励起された時の最大発光強度を100%とすると、励起波長が300nm~470nmの光で励起された時は50%以上の強度で発光することができる。また、励起波長が300nm~470nmの光で励起された時は75%以上の強度で発光することがより好ましい。
 本実施の形態に係る蛍光体は、573nm~650nmの波長域にピーク波長を有し、黄色乃至赤色に発光する。特に584nm~630nmの波長域にピーク波長を設定することにより、高輝度な黄赤色乃至赤色の光を得ることができる。さらに、本実施の形態に係る蛍光体の発光スペクトルの半値幅は、100nm~125nmとすることができるが、好ましくは107nm~117nmである。このように半値幅の広い発光スペクトルを有することによって、広波長域の色を再現することができる。
 また、実施例1~17に基づくと、本実施の形態に係る蛍光体を構成する元素のモル比は、第二族元素M+Eu:Al:Si:N=1:1.1~4.3:2.6~4.9:4.7~8.9であることが好ましい。より好ましくは、第二族元素M+Eu:Al:Si:O:N=1:2~3:3.1~4.1:0.2~1.3:6.1~8.1である。さらに、第二族元素M+Eu:O=1:0.2~0.8であることがより好ましい。また、第二族元素M+Eu:N=1:6.7~8.0がより好ましく、最も好ましくは7.2~8.0である。このようなモル比で各元素を含有することにより、本実施の形態に係る蛍光体は高輝度な黄色~赤色光を放出することができる。
 また、実施例21~63に基づくと、本実施の形態に係る蛍光体を構成する元素のモル比は、第二族元素M+Eu:Al:Si:O:N=2:2.4~6.0:5.0~8.5:1.0~3.0:11.0~16.0である。実施例27~34に基づくと、Eu濃度は、第二族元素M+Eu:Eu=2:0.03~0.29であることが好ましい。実施例35~38に基づくと、第二族元素M+Eu:Al+Si=2:10.56~11.90であることが好ましい。実施例39~43に基づくと、Al:Si=1:1.7~2.5であることが好ましい。実施例44~48に基づくと、第二族元素M+Eu:Al=2:3.43~3.91であることが好ましい。実施例49~54に基づくと、第二族元素M+Eu:Si=2:6.66~7.96であることが好ましい。実施例55~63に基づくと、第二族元素M+Eu:O:N=2:1.10~2.00:11.38~13.11であることが好ましい。このようなモル比で各元素を含有することにより、本実施の形態に係る蛍光体は高輝度な黄色~赤色光を放出することができる。
 また、本実施の形態に係る蛍光体のCa、Sr、Baから選択される1種以上の第二族元素であるMは、Srであることが好ましい。またSrの一部または完全にCa、Baで置換してもよい。Srの一部をCaで置換する場合は、Srに対するCa濃度が10%以内であることが好ましく、より好ましくは5%以内である。また、Srの一部をBaで置換する場合は、Srに対するBa濃度が8%以内であることが好ましく、より好ましくは4%以内である。このように、第二族元素Mを、Ca、Sr、Baの配合比を調整することにより、蛍光体のピーク波長を適宜調整できる。
 また、本実施の形態に係る蛍光体は、希土類であるEuを付活剤として用いる。付活剤の濃度は、元素Mに対して、好ましくは0.001%~20%であり、より好ましくは8%~12%である。ただし、付活剤はEuのみに限定されず、Euの一部を、Sc、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等の希土類金属やアルカリ土類金属で置換してもよい。これにより、置換された元素とEuが共付活し、この蛍光体の発光色の色調を変化させるなど発光特性を調整できる。
 また、実施例1~17に基づくと、本実施の形態に係る蛍光体は、22.0重量%以上29.0重量%以下のM+Euと、13.0重量%以上22.0重量%以下のAlを含有していることが好ましい。また、19.0重量%以上29.5重量%以下のSiを含有していることが好ましい。さらに、0.1重量%以上9.0重量%以下のOと、22.0重量%以上30.0重量%以下のNとを含有することが好ましい。このような重量%でもって各元素を含有することにより、高輝度な黄色~赤色光を放出することができる。
 また、実施例21~63に基づくと、本実施の形態に係る蛍光体は、23.0重量%以上31.0重量%以下のM+Euと、10.0重量%以上16.0重量%以下のAlと、23.0重量%以上31.0重量%以下のSiと、2.5重量%以上8.0重量%以下のOと、22.0重量%以上28.0重量%以下のNとを含有することが好ましい。このような重量%でもって各元素を含有することにより、高輝度な黄色~赤色光を放出することができる。
 また、本実施の形態に係る蛍光体は、OとNとの元素の組成比を変化させることで、色調や輝度を調節することができる。さらに、(M+Al+Si)/(O+N)における陽イオンと陰イオンの組成比を変化させることでも、発光スペクトルや強度を微妙に調整できる。したがって、組成比を調節することで意図的にピーク波長を変位させることができる。
 また、本実施の形態に係る蛍光体は、その組成中にLi、Na、K、Rb、Cs、Mn、Re、Cu、Ag、Auからなる群より選択された少なくとも1種以上の元素を含有していてもよい。さらに、その他の元素についても蛍光体の特性を損なわない程度に混入されていてもよい。
 また、本実施の形態に係る蛍光体は、約25℃の条件下での発光輝度を100%としたとき、約100℃の条件下では88%以上の輝度を維持することができる。また、約200℃の条件下では、62%以上の輝度を維持することができる。
 また、本実施の形態に係る蛍光体は、後述するX線回折パターンから結晶構造を解析すると、斜方晶系に帰属する結晶の単位格子を有している。また、この蛍光体は、大部分が結晶を有することが好ましい。具体的には、少なくとも50重量%以上、より好ましくは80重量%以上が結晶を有している。これは、発光性を有する結晶相の割合を示し、50重量%以上、結晶相を有しておれば、実用に耐え得る発光が得られるため好ましい。また、このような粉体であれば、製造及び加工が容易である。例えばガラス体(非晶質)は構造がルーズなため、蛍光体中の成分比率が一定せず色度ムラを生じる恐れがある。したがって、これを回避するため生産工程における反応条件を厳密に一様になるよう制御する必要が生じる。
 また、本実施の形態に係る蛍光体を発光装置に搭載することを考慮すれば、この蛍光体の平均粒径は、1μm乃至100μmの範囲が好ましく、より好ましくは2μm乃至50μmである。この平均粒径値を有する蛍光体が、頻度高く含有されていることが好ましい。さらに、粒度分布においても狭い範囲に分布しているものが色ムラを抑制でき好ましい。なお、この平均粒径は、F.S.S.S.No(Fisher Sub Sieve Sizer's No)における空気透過法で得られる。具体的には、気温25℃、湿度70%の環境下において、1cm分の試料を計り取り、専用の管状容器にパッキングした後一定圧力の乾燥空気を流し、差圧から比表面積を読み取り平均粒径に換算する。
 (製造方法)
 以下に、本実施の形態に係る蛍光体の製造方法について説明する。この蛍光体は、その組成に含有される元素の単体や酸化物、炭酸塩あるいは窒化物などを原料とし、各原料を所定の仕込み組成比となるように秤量する。「仕込み組成比」とは、各原料の混合物において、蛍光体の構成元素を含む原料における各元素のモル比が示されている。
 実施例1~17に基づくと、本実施の形態に係る蛍光体の仕込み組成比は、M+Eu:Al:Si:N=1:1~3:3~4.875:5~8.13であり、好ましくはM+Eu:Al:Si:N=1:1~2:3.375~4.5:5.63~7.5である。また、実施例21~63に基づくと、以下の表に示すようにM+Eu、Al、Si、Nを所定の仕込み組成比とする。この関係を満たすように各原料を秤量する。また、これらの原料にフラックスなどの添加材料を適宜加えることができる。さらに必要に応じてホウ素を含有させることもできる。
 これらの原料は、混合機を用いて湿式又は乾式で均一になるように混合する。混合機は工業的に通常用いられているボールミルの他、振動ミル、ロールミル、ジェットミルなどの粉砕機を用いることができる。また、粉末の比表面積を一定範囲とするために、工業的に通常用いられている沈降槽、ハイドロサイクロン、遠心分離器などの湿式分離機、サイクロン、エアセパレータなどの乾式分級機を用いて分級することもできる。
 この混合物を、SiC、石英、アルミナ、窒化ホウ素等の材質からなる坩堝内や板状のボートに載置し、焼成する。焼成には、管状炉、小型炉、高周波炉、メタル炉などを使用することができる。
 また、焼成は、流通する還元雰囲気中にて行うことが好ましい。具体的には、窒素雰囲気、窒素及び水素の混合雰囲気、アンモニア雰囲気又は、それらの混合雰囲気中で焼成することが好ましい。
 焼成温度は好ましくは1200℃から2000℃であり、さらに好ましくは1500℃から1800℃である。また、焼成時間は好ましくは15時間から200時間であり、より好ましくは20時間から150時間であり、最も好ましくは40時間から150時間である。
 焼成後は、焼成されたものを粉砕、分散、濾過等して目的の蛍光体粉末を得る。固液分離は濾過、吸引濾過、加圧濾過、遠心分離、デカンテーションなどの工業的に通常用いられる方法により行うことができる。また乾燥は、真空乾燥機、熱風加熱乾燥機、コニカルドライヤー、ロータリーエバポレーターなどの工業的に通常用いられる装置や方法により達成できる。
 ここで、具体的な蛍光体原料について説明する。仕込み組成比の元素Mを構成するCa、Sr、Baの原料は、元素単独を使用できる他、金属、酸化物、イミド、アミド、窒化物、炭酸塩、リン酸塩、珪酸塩など各種の塩類などの化合物を使用することができる。具体的には、SrCO、Sr、CaCOなどを用いることができる。
 また、仕込み組成比のAl、Siは、元素単独の他、金属、酸化物、イミド、アミド、窒化物及び各種塩類などの化合物を用いることができる。また、あらかじめ元素M、Si、Alを混合したものを使用してもよい。具体的には、AlN、Al、Si、SiOなどを用いることができる。また、例えば、Siを含有した化合物において、原料のSiの純度は、2N以上のものが好ましいが、Li、Na、K、B、Cuなどの異なる元素が含有されていてもよい。さらに、Siの一部をAl、Ga、In、Ge、Sn、Ti、Zr、Hfで置換させるために、それらの元素を含有した化合物を使用することもできる。
 さらに、付活剤のEuは、好ましくは単独で使用されるが、ハロゲン塩、酸化物、炭酸塩、リン酸塩、珪酸塩などを使用することができる。具体的には、Euなどを用いることができる。また、Euの一部を他の元素で置換する場合は、Euを含有した化合物に、他の希土類元素などを含有した化合物を混合することができる。
 さらに必要に応じて加える元素は、通常、酸化物、若しくは水酸化物で加えられるが、これに限定されるものではなく、メタル、窒化物、イミド、アミド、若しくはその他の無機塩類でも良く、また、予め他の原料に含まれている状態でも良い。また、各々の原料は、平均粒径が約0.1μm以上15μm以下、より好ましくは約0.1μmから10μmの範囲であることが、他の原料との反応性、焼成時及び焼成後の粒径制御などの観点から好ましく、上記範囲以上の粒径を有する場合は、アルゴン雰囲気中若しくは窒素雰囲気中、グローブボックス内で粉砕を行うことで達成できる。
(発光装置)
 以下に、本実施の形態に係る蛍光体を搭載した発光装置の例を示す。発光装置には、例えば蛍光ランプ等の照明器具、ディスプレイやレーダ等の表示装置、液晶用バックライト等が挙げられる。また、励起光源としては近紫外から可視光の短波長領域の光を放つ発光素子が好ましい。特に半導体発光素子は、小型で電力効率が良く鮮やかな色の発光をする。他の励起光源として、既存の蛍光灯に使用される水銀灯等を適宜利用できる。
 発光素子を搭載した発光装置には、砲弾型や表面実装型など種々の形式がある。ここでは、表面実装型の発光装置を例示し、図8及び図9を参照して説明する。
 図8及び図9は、本実施の形態に係る発光装置60であって、図8は発光装置60の斜視図を、図9は図8のIVB-IVB’線における発光装置60の断面図をそれぞれ示す。発光装置60は、表面実装型の1種であるサイドビュー型の発光装置である。
 発光装置60は、凹部14と、この凹み内部に収納される発光素子2とを有し、さらに凹部14内は、蛍光体3を含有する樹脂によって充填されている。この凹部14はパッケージ17の一部であって、すなわちパッケージ17は、凹部14と、この凹部14に連結された支持体16とから構成される。凹部14と支持体16との双方の間には、正負のリード電極15が介在されて、凹部14における発光素子2の載置面を構成している。さらに、リード電極15は、パッケージ17の外面側に露出して、この外形に沿うように設けられている。発光素子2は、凹部14内のリード電極15上に搭載されて電気的に接続されており、このリード電極15を介して外部から電力の供給を受けて発光可能となる。図面は発光装置60を実装した一般的な状態であって、すなわち発光素子2が載置される面と直交する幅広な面を底面として載置されている。上記構造により発光素子の実装面と略平行な方向、すなわち発光装置の載置面と隣接した側面より発光可能な発光装置60とできる。
 また、本実施の形態に係る発光装置60は、以上のように構成されたパッケージ17の凹部14内に載置された発光素子2を被覆するように透光性樹脂が充填され、封止部材18が形成される。この封止部材18には蛍光体3が含有されている。
 以下に、本実施の形態に係る発光装置を構成する部材について説明する。
 (発光素子)
 発光素子2は、紫外線領域から可視光領域までの光を発することができる。発光素子2から発する光のピーク波長は、240nm乃至520nmが好ましく、420nm乃至470nmがさらに好ましい。この発光素子2は、例えば、窒化物半導体素子(InAlGa1-X-YN、0≦X、0≦Y、X+Y≦1)を用いることができる。窒化物半導体素子を用いることで機械的衝撃にも強い安定した発光装置を得ることができる。
 (蛍光体)
 本実施の形態に係る蛍光体3は、封止部材18中で部分的に偏在するよう配合されている。このように発光素子2に接近して載置することにより、発光素子2からの光を効率よく波長変換することができ、発光効率の優れた発光装置とできる。また、蛍光体3を封止部材17中にほぼ均一の割合で混合することによって、色ムラのない光を得るようにすることもできる。
 また、蛍光体3は2種以上の蛍光体を用いてもよい。例えば、本実施の形態に係る発光装置60において、青色光を放出する発光素子2と、これに励起されて緑色光を発する蛍光体と、赤色光を発する蛍光体を併用することで、演色性に優れた白色光を得ることができる。赤色光を発する蛍光体としては、(Ca1-xSr)AlBSiN3+y:Eu(0≦x≦1.0、0≦y≦0.5)または(Ca1-ZSrSi:Eu(0≦z≦1.0)等の蛍光体を、本実施の形態に係る蛍光体と併用して用いることができる。これらの赤色光を発する蛍光体を併用することで、三原色に相当する成分光の半値幅を広くできるため、より暖色系に富んだ白色光を得られる。
 その他、さらに併用できる蛍光体の一例として、赤色光を発する蛍光体としては、(La,Y)S:Eu等のEu付活酸硫化物蛍光体、(Ca,Sr)S:Eu等のEu付活硫化物蛍光体、(Y,Tb,Gd)Al12:Ce等のCe付活アルミン酸塩蛍光体、(Sr,Ca,Ba,Mg)10(POCl:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、LuCaMg(Si,Ge)12:Ce等のCe付活酸化物蛍光体、α型サイアロン等のEu付活酸窒化物蛍光体を用いることができる。
 また、緑色光を発する蛍光体としては、(Ca,Sr,Ba)SiO:Eu、CaScSi12:Ce等のケイ酸塩蛍光体、CaMgSi16Cl2-δ:Eu,Mn等のクロロシリケート蛍光体、(Ca,Sr,Ba)Si:Eu、(Ca,Sr,Ba)Si12:Eu、(Ca,Sr,Ba)Si:Eu、CaSc2O4:Ce、β型サイアロン等の酸窒化物蛍光体、Y(Al,Ga)12:Ce等のCe付活アルミン酸塩蛍光体、SrGa:Eu等のEu付活硫化物蛍光体、を用いることができる。
 また、青色光を発する蛍光体としては、(Sr,Ca,Ba)Al:Eu、(Sr,Ca,Ba)Al1425:Eu、(Ba,Sr,Ca)MgAl1017:Eu、BaMgAl1425:Eu,Tb,Sm等のEu付活アルミン酸塩蛍光体、(Ba,Sr,Ca)MgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、SrGa:Ce、CaGa:Ce等のCe付活チオガレート蛍光体、(Sr,Ca,Ba,Mg)10(POCl:Eu等のEu付活ハロリン酸塩蛍光体を用いることができる。
 (封止部材)
 封止部材18は、発光装置60の凹部内に載置された発光素子2を覆うように透光性樹脂で充填されて形成される。透光性樹脂は、シリコーン樹脂組成物を使用することが好ましいが、エポキシ樹脂組成物、アクリル樹脂組成物等の絶縁樹脂組成物を用いることもできる。また、封止部材18には蛍光体3が含有されているが、さらに適宜、添加部材を含有させることもできる。例えば光拡散材を含むことで、発光素子からの指向性を緩和させ、視野角を増大させることができる。
 以下に本発明に係る蛍光体の実施例1~17を示す。実施例1~17において、原料は、炭酸ストロンチウム(SrCO)、窒化アルミニウム(AlN)、窒化ケイ素(Si)、酸化ユーロピウム(Eu)を共通して使用し、これらの原料を以下の各仕込み組成比になるように秤量し、蛍光体をそれぞれ得た。ただし、これらの実施例は本発明の技術思想を具体化するための蛍光体及びその製造方法を例示するものであって、本発明に係る蛍光体及びその製造方法を下記のものに特定しない。
(実施例1~4)
 実施例1に係る蛍光体の仕込み組成比は、Sr0.9Eu0.1AlSiON7.33である。具体的には、SrCO、AlN、Si、Euの粉末を原料とし、モル比でSrCO:AlN:Si:Eu=0.9:2.0:1.33:0.1となるように各原料を秤量した。具体的には、各原料を以下に示す質量に計量した。ただし、各蛍光体原料の純度を100%と仮定している。
SrCO・・・・15.84g
AlN・・・・9.77g
Si・・・・22.29g
Eu・・・・2.10g
 上記のように秤量した原料をボールミルによって乾式で十分に混合した後、当該混合物を炉内に載置し、窒素及び水素混合の還元雰囲気中、約1600℃で約20時間の焼成を行った。これにより、仕込み組成比がSr0.9Eu0.1AlSiON7.33である蛍光体を得た。実施例1の蛍光体の生成における反応式の例を下記の化1に示す。
Figure JPOXMLDOC01-appb-C000001
 ただし、上記の化学式は、原料に含まれる元素が失われることなく反応したとする、理論上想定される反応式である。本実施の形態に係る蛍光体は、焼成する際に元素の一部が失われているため、上記の反応式に示された生成物の組成とは異なる組成を有している。後述するように、焼成後の生成物の元素分析を行い、算出した組成は、Sr1.80Eu0.20Al4.15Si7.032.2712.42であった。
 実施例2~4の蛍光体は、焼成時間を40時間、60時間、80時間とした他は、実施例1と同様の操作を行うことによって得た。
 表1に、実施例1~4の蛍光体について、仕込み組成比と、焼成時間、発光色の色度座標、輝度、発光スペクトルのピーク波長を測定した結果を示す。表1における輝度は、後述する比較例1のCaSi:Euの輝度を100%とした時の相対輝度である。
 特に断りのない限り、以下の実施例に係る蛍光体は、460nmにピーク波長を持つ励起源を用いて、蛍光体を発光させている。
Figure JPOXMLDOC01-appb-T000001
 図1に、実施例1~4の蛍光体のX線回折パターンを示す。
 このX線回折パターンにおいて、表2に示した各ブラッグ角度の範囲内にある回折ピークの強度の値を示す。この回折ピークの強度は、ブラッグ角度が17.9°~18.5°の範囲内にある回折ピークの強度を100%とし、その他の回折ピークの相対強度を示している。
Figure JPOXMLDOC01-appb-T000002
 この結果から、実施例1の蛍光体よりも実施例2~4の蛍光体は、ブラッグ角度が31.4°~32.0°の範囲内にある回折ピークの強度が減少している。これは、ブラッグ角度が17.9°~18.5°の範囲内にある回折ピークの強度が、ブラッグ角度が31.4°~32.0°の範囲にある回折ピークに対して増大していることを示している。
 表3に、実施例1~4の蛍光体の温度特性を示す。表に示す輝度は、約25℃の条件下における各実施例に係る蛍光体の輝度を100%とし、これに対する相対輝度を示している。
Figure JPOXMLDOC01-appb-T000003
 この結果から、実施例1~4の蛍光体は、約100℃まで昇温させた条件下で発光させた場合は88%以上の輝度を保ち、約200℃まで昇温させた条件下では62%以上の輝度を保っており、優れた温度特性を有していることがわかる。
 表4に、実施例1~4の蛍光体を元素分析した結果を示す。元素分析値は、重量%で示されている。また、この元素分析値は、各元素を別途に測定しており測定誤差がわずかに生じる。従って、実施例1~4の蛍光体を構成している全ての元素の重量%を足した値は必ずしも正確に100%にはならない。
Figure JPOXMLDOC01-appb-T000004
 表5に、実施例2~4の蛍光体の格子定数を算出した値を示す。
Figure JPOXMLDOC01-appb-T000005
 表6に、実施例1~4の算出化学式を示す。
Figure JPOXMLDOC01-appb-T000006
 この結果から、実施例1~4の蛍光体は、いずれも高い輝度を示した。また、460nmにピーク波長を持つ青色発光の発光素子で励起すると、601nm~609nmにピーク波長を持つ赤色に発光した。また、焼成時間が異なることにより焼成後の蛍光体の組成比も異なる。
(比較例1)
 黄色~赤色に発光する蛍光体である、CaSi:Euを比較例1とした。比較例1は、Eu濃度が0.06であるCa1.94Si:Eu0.06である。以下の表7に、比較例1の蛍光体について、発光色の色度座標、輝度、発光スペクトルのピーク波長を測定した結果を示す。
Figure JPOXMLDOC01-appb-T000007
 図2に、比較例1の蛍光体のX線回折パターンを示す。
 このX線回折パターンにおいて、表8に示した各ブラッグ角度の範囲内にある回折ピークについての強度を示す。この回折ピークの強度は、ブラッグ角度が17.9°~18.5°の範囲内にある回折ピークの強度を100%とし、その他の回折ピークの相対強度を示している。
Figure JPOXMLDOC01-appb-T000008
 この結果から、比較例1の蛍光体におけるブラッグ角度が24.5°~25.1°の範囲内にある回折ピークの強度は、40.1%である。これに対して、実施例1~4の蛍光体については、ブラッグ角度が24.5°~25.1°の範囲内にある回折ピークの強度がいずれも200%を超えている。このように、実施例1~4と比較例1の蛍光体は、X線回折ピークが異なっている。
 表9に、比較例1の温度特性を示す。表に示す輝度は、約25℃の条件下における各実施例に係る蛍光体の輝度を100%とし、これに対する相対輝度を示している。
Figure JPOXMLDOC01-appb-T000009
 比較例1の蛍光体は、約100℃まで昇温させた条件下で発光させた場合は87.5%の輝度を保っている。しかしながら、約200℃まで昇温させた条件下では43.9%まで輝度が低下する。
 図3に、実施例4及び比較例1の蛍光体の励起スペクトルを示す。図4に、実施例4及び比較例1の蛍光体の反射スペクトルを示す。図5に、実施例4及び比較例1の蛍光体を460nmの光で励起した際の発光スペクトルを示す。図6に、実施例4及び比較例1の温度特性を示す。
(実施例5~11)
 実施例5~11の蛍光体は、所定の仕込み組成比となるように、原料を秤量した他は、実施例1と同様の操作を行って得た。実施例5~11は、SrAlSi:EuにおいてSr+Eu:Al+Si=2:4.5~6.0の範囲で仕込み組成比を変更させたものである。
 表9は、実施例5~11の蛍光体について、仕込み組成比、発光色の色度座標、輝度、発光スペクトルのピーク波長を測定した結果を示す。また、輝度は、比較例1の蛍光体の輝度を100%とした時の相対輝度である。
Figure JPOXMLDOC01-appb-T000010
 図7に、実施例5~11の蛍光体のX線回折パターンを示す。
 このX線回折パターンにおいて、表11に示した各ブラッグ角度の範囲内にある回折ピークについての強度を示す。この回折ピークの強度は、ブラッグ角度が17.9°~18.5°の範囲内にある回折ピークの強度を100%とし、その他の回折ピークの相対強度を示している。
Figure JPOXMLDOC01-appb-T000011
 以上の結果から、実施例7に係る蛍光体は、高い輝度を得た。
(実施例12~17)
 実施例12~17の蛍光体は、Srに対するEu濃度が、所定の濃度になるよう原料を秤量した他は、実施例1と同様の操作を行って得た。
 表12は、仕込み組成比、Eu濃度、発光色の色度座標、輝度、発光スペクトルのピーク波長の測定結果を示す。ここで輝度は、実施例15の輝度を100%とした時の相対輝度で示している。
Figure JPOXMLDOC01-appb-T000012
 表13は、X線回折パターンにおける各ブラッグ角度の範囲内にある回折ピークの強度の値を示す。この回折ピークの強度は、ブラッグ角度が17.9°~18.5°の範囲内にある回折ピークの強度を100%とし、その他の回折ピークの相対強度を示している。
Figure JPOXMLDOC01-appb-T000013
 表14に、実施例12~17の蛍光体を元素分析した結果を示す。この元素分析値は、重量%で示されている。また、この元素分析値は、各元素を別途に測定しており測定誤差がわずかに生じる。従って、実施例12~17の蛍光体を構成している全ての元素の重量%を足した値は必ずしも正確に100%にはならない。
Figure JPOXMLDOC01-appb-T000014
 表15に、実施例12~17の算出化学式を示す。
Figure JPOXMLDOC01-appb-T000015
 この結果から、実施例12~17の蛍光体は、460nmにピーク波長を持つ青色発光の発光素子で励起すると、593nm~602nmにピーク波長を持つ赤色に発光した。Eu濃度が6%~12%までは、高輝度を維持しているが、14%を超えると濃度消光が生じ、発光輝度が低下すると思われる。また、Eu濃度を増加させるにつれてピーク波長を長波長にすることができる。
(実施例18~20、比較例2)
 実施例18は、組成式Ca7.5MgSi16Cl1.8:Eu0.5のクロロシリケート蛍光体と、実施例4の組成式Sr1.78Al5.73Si7.841.0415.95:Eu0.22で表される蛍光体と、を用いて白色発光の発光装置を製作した。
 実施例19は、組成式Y2.96(Al0.8Ga0.212:Ce0.04のYAG蛍光体と、実施例4の組成式Sr1.78Al5.73Si7.841.0415.95:Eu0.22で表される蛍光体と、を用いて白色発光の発光装置を製作した。
 実施例20は、組成式(Sr0.45Ba0.551.93SiO:Eu0.07のシリケート蛍光体と、実施例4の組成式Sr1.78Al5.73Si7.841.0415.95:Eu0.22で表される蛍光体と、を用いて白色発光の発光装置を製作した。
 比較例2として、組成式Y2.96(Al0.8Ga0.212:Ce0.04のYAG蛍光体と、比較例2の組成式Ca1.94Si:Eu0.06の窒化物蛍光体と、を用いて白色発光の発光装置を製作した。
 表16は、実施例18~20、及び、比較例2の発光装置の発光特性を示す。
 また、図10は、実施例18に係る発光装置の発光スペクトルを示す。図11は、実施例19に係る発光装置の発光スペクトルを示す。図12は、実施例20に係る発光装置の発光スペクトルを示す。
Figure JPOXMLDOC01-appb-T000016
 この結果から、実施例18~20の白色発光の発光装置は、比較例2と比較して、いずれも高い演色性(Ra)を示した。また、上述したように、実施例4の蛍光体は、比較例1の蛍光体と比較して、温度特性に優れていることから、発送装置とした場合においても、実施例18~20の発光装置は、比較例2の発光装置と比べて長寿命であり、高い信頼性を有するものである。
 (実施例21、22)
 実施例21、22の蛍光体は、所定の仕込み組成比となるように、SrCO、AlN、Al、Si、Euの粉末を原料とし、実施例1とほぼ同様の操作を行って得た。ただし、焼成時間は大幅に短縮し5時間とした。実施例21、22は、SrAlSi:Euにおいて、Al:O:N=2:0.4:5.87、及び、Al:O:N=1.25:0.35:5.15の範囲でAl、OとNの仕込み組成比を変更させたものである。
 表17に、実施例21、22の蛍光体について、仕込み組成比、発光色の色度座標、輝度、発光スペクトルのピーク波長を測定した結果を示す。また、輝度は、比較例1の蛍光体の輝度を100%とした時の相対輝度である。
Figure JPOXMLDOC01-appb-T000017
 表18は、X線回折パターンにおける各ブラッグ角度の範囲内にある回折ピークの強度の値を示す。この回折ピークの強度は、ブラッグ角度が17.9°~18.5°の範囲内にある回折ピークの強度を100%とし、その他の回折ピークの相対強度を示している。
Figure JPOXMLDOC01-appb-T000018
 表19に、実施例21、22の蛍光体を元素分析した結果を示す。この元素分析値は、重量%で示されている。また、この元素分析値は、各元素を別途に測定しており測定誤差がわずかに生じる。従って、実施例21、22の蛍光体を構成している全ての元素の重量%を足した値は必ずしも正確に100%にはならないこともある。
Figure JPOXMLDOC01-appb-T000019
 表20に、実施例21、22の算出化学式を示す。
Figure JPOXMLDOC01-appb-T000020
 この結果から、実施例21、22の蛍光体は、短時間で他の実施例と比べて同等以上の特性を持つ蛍光体を提供することができる。実施例1~17の蛍光体が、長時間焼成によって不要な元素が飛散し、最適な組成を生成していたのに対し、実施例21、22の蛍光体は、直接最適組成を狙うことで、短時間でも合成ができたと考える。実施例21及び22のモル比は、第二族元素M+Eu:Al:Si:O:N=2:4.0~5.8:7.3~7.8:1.3~1.4:14.0~15.7である。
 また、実施例22の蛍光体のXRDデータの解析結果より、実施例22の蛍光体は斜方晶系に帰属し、a=11.647Å、b=21.462Å、c=4.975Åであった。
(実施例23、24)
 実施例23は、組成式Ca7.5MgSi16Cl1.8:Eu0.5のクロロシリケート蛍光体と、実施例22の組成式Sr1.78Al4.09Si7.761.3114.25:Eu0.22で表される蛍光体と、を用いて白色発光の発光装置を製作した。
 実施例24は、組成式Y2.96(Al0.8Ga0.212:Ce0.04のYAG蛍光体と、実施例22の組成式Sr1.78Al4.09Si7.761.3114.25:Eu0.22で表される蛍光体と、を用いて白色発光の発光装置を製作した。
 表21は、実施例23、24の発光装置の発光特性を示す。
 また、図13は、実施例23に係る発光装置の発光スペクトルを示す図である。図14は、実施例24に係る発光装置の発光スペクトルを示す図である。
Figure JPOXMLDOC01-appb-T000021
 この結果から、実施例23、24の白色発光の発光装置は、比較例2の白色発光の発光装置と比較して、いずれも高い演色性(Ra)を示した。
(実施例25、26)
 実施例25、26の蛍光体は、所定の仕込み組成比となるように、SrCO、AlN、Al、Si、Euの粉末を原料とし、原料を秤量した他は、実施例1と同様の操作を行って得た。焼成時間は5時間である。
 表22に、実施例25、26の蛍光体について、仕込み組成比、発光色の色度座標、輝度、発光スペクトルのピーク波長を測定した結果を示す。また、輝度は、比較例1の蛍光体の輝度を100%とした時の相対輝度である。
Figure JPOXMLDOC01-appb-T000022
 表23は、X線回折パターンにおける各ブラッグ角度の範囲内にある回折ピークの強度の値を示す。この回折ピークの強度は、ブラッグ角度が17.9°~18.5°の範囲内にある回折ピークの強度を100%とし、その他の回折ピークの相対強度を示している。
Figure JPOXMLDOC01-appb-T000023
 表24に、実施例25、26の蛍光体を元素分析した結果を示す。この元素分析値は、重量%で示されている。また、この元素分析値は、各元素を別途に測定しており測定誤差がわずかに生じる。従って、実施例25、26の蛍光体を構成している全ての元素の重量%を足した値は必ずしも正確に100%にはならないこともある。
Figure JPOXMLDOC01-appb-T000024
 表25に、実施例25、26の算出化学式を示す。
Figure JPOXMLDOC01-appb-T000025
 図15は、実施例25に係る蛍光体を撮影したSEM写真である。図16は、実施例25に係る蛍光体の発光スペクトルを示す。図17は、実施例25に係る蛍光体の励起スペクトルを示す。図18は、実施例25に係る蛍光体の反射スペクトルを示す。
 以上の結果から、実施例25、26の蛍光体は、比較例1と比較して、高い輝度を示した。モル比は、第二族元素M+Eu:Al:Si:O:N=2:2.7~3.2:5.9~6.4:1.1~1.3:10.8~12.1であった。
(実施例27~34)
 実施例27~34の蛍光体は、所定の仕込み組成比となるように、原料を秤量した他は、実施例1と同様の操作を行って得た。実施例27~34は、(Sr,Eu)AlSi13の仕込み組成比においてEu濃度を変更させたものである。この蛍光体は、原料にSr及びEuを用いており、Srの一部がEuで置換されるため、最終生成物の組成比は仕込み組成比と異なる値となる。
 表26に、実施例27~34の蛍光体について、仕込み組成比、発光色の色度座標、輝度、発光スペクトルのピーク波長を測定した結果を示す。また、輝度は、比較例1の蛍光体の輝度を100%とした時の相対輝度である。
Figure JPOXMLDOC01-appb-T000026
 表27は、X線回折パターンにおける各ブラッグ角度の範囲内にある回折ピークの強度の値を示す。この回折ピークの強度は、ブラッグ角度が17.9°~18.5°の範囲内にある回折ピークの強度を100%とし、その他の回折ピークの相対強度を示している。
Figure JPOXMLDOC01-appb-T000027
 表28に、実施例27~34の蛍光体を元素分析した結果を示す。この元素分析値は、重量%で示されている。また、この元素分析値は、各元素を別途に測定しており測定誤差がわずかに生じる。従って、実施例27~34の蛍光体を構成している全ての元素の重量%を足した値は必ずしも正確に100%にはならないこともある。
Figure JPOXMLDOC01-appb-T000028
 表29に、実施例27~34の算出化学式を示す。
Figure JPOXMLDOC01-appb-T000029
 この結果から、実施例27~34の蛍光体は、Eu濃度が1.5%~15%で高い輝度を有する。また、Eu濃度を増加させるにつれてピーク波長を長波長にすることができる。
 なお、Srに対するEu濃度を75%とした場合、輝度は37.5%であった。このとき、X線回折ピークの強度におけるブラッグ角度が24.5°~25.1°の範囲内にある回折ピークの強度は135.4であり、ブラッグ角度が34.8°~35.4°の範囲内にある回折ピークの強度は218.9であった。また、Srの全部をEuで置換した、Eu濃度が100%であった場合、輝度は15.6%であった。このとき、X線回折ピークの強度におけるブラッグ角度が24.5°~25.1°の範囲内にある回折ピークの強度は118.4であり、ブラッグ角度が34.8°~35.4°の範囲内にある回折ピークの強度は200.7であった。また、他の蛍光体に比べ、大幅なEu置換が可能である。さらに、濃度消光が起こりにくい。Eu濃度は、第二族元素M+Eu:Eu=2:0.03~0.29であることが好ましい。
(実施例35~38)
 実施例35~38の蛍光体は、所定の仕込み組成比となるように、SrCO、AlN、Al、Si、Euの粉末を原料とし、原料を秤量した他は、実施例1と同様の操作を行って得た。実施例35~38は、SrAlSi:EuにおいてSr+Eu:Al+Si=2:9~13の範囲で仕込み組成比を変更させたものである。ただし、OとNの仕込み組成比をO:N=1:13に維持している。
 表30に、実施例35~38の蛍光体について、仕込み組成比、発光色の色度座標、輝度、発光スペクトルのピーク波長を測定した結果を示す。また、輝度は、比較例1の蛍光体の輝度を100%とした時の相対輝度である。
Figure JPOXMLDOC01-appb-T000030
 表31は、X線回折パターンにおける各ブラッグ角度の範囲内にある回折ピークの強度の値を示す。この回折ピークの強度は、ブラッグ角度が17.9°~18.5°の範囲内にある回折ピークの強度を100%とし、その他の回折ピークの相対強度を示している。
Figure JPOXMLDOC01-appb-T000031
 表32に、実施例35~38の蛍光体を元素分析した結果を示す。この元素分析値は、重量%で示されている。また、この元素分析値は、各元素を別途に測定しており測定誤差がわずかに生じる。従って、実施例35~38の蛍光体を構成している全ての元素の重量%を足した値は必ずしも正確に100%にはならないこともある。
Figure JPOXMLDOC01-appb-T000032
 表33に、実施例35~38の算出化学式を示す。
Figure JPOXMLDOC01-appb-T000033
 この結果から、実施例35~38の蛍光体は、Sr+Eu:Al+Si=2:11~12にすることで高い輝度を示す蛍光体を提供することができる。また、ピーク波長も610nm~601nmの範囲にシフトさせることもできる。
 なお、Sr+Eu:Al+Si=2:7とした場合、輝度は14.9%であった。このとき、X線回折ピークの強度におけるブラッグ角度が34.8°~35.4°の範囲内にある回折ピークの強度は611.0であった。モル比において第二族元素M+Eu:Al+Si=2:10.56~11.90であることが好ましい。
(実施例39~43)
 実施例39~43の蛍光体は、所定の仕込み組成比となるように、SrCO、AlN、Al、Si、Euの粉末を原料とし、原料を秤量した他は、実施例1と同様の操作を行って得た。実施例39~43は、SrAlSi:Euにおいて、Al:Si=2.4:7.6~3.9:6.1の範囲で仕込み組成比を変更させたものである。ただし、OとNの仕込み組成比をO:N=1:13に維持している。
 表34に、実施例39~43の蛍光体について、仕込み組成比、発光色の色度座標、輝度、発光スペクトルのピーク波長を測定した結果を示す。また、輝度は、比較例1の蛍光体の輝度を100%とした時の相対輝度である。
Figure JPOXMLDOC01-appb-T000034
 表35は、X線回折パターンにおける各ブラッグ角度の範囲内にある回折ピークの強度の値を示す。この回折ピークの強度は、ブラッグ角度が17.9°~18.5°の範囲内にある回折ピークの強度を100%とし、その他の回折ピークの相対強度を示している。
Figure JPOXMLDOC01-appb-T000035
 表36に、実施例39~43の蛍光体を元素分析した結果を示す。この元素分析値は、重量%で示されている。また、この元素分析値は、各元素を別途に測定しており測定誤差がわずかに生じる。従って、実施例39~43の蛍光体を構成している全ての元素の重量%を足した値は必ずしも正確に100%にはならないこともある。
Figure JPOXMLDOC01-appb-T000036
 表37に、実施例39~43の算出化学式を示す。
Figure JPOXMLDOC01-appb-T000037
 この結果から、実施例39~43の蛍光体は、460nmにピーク波長を持つ青色発光の発光素子で励起すると、608nm~621nmにピーク波長を持つ赤色に発光した。また、実施例41、42の蛍光体は、高い輝度を示した。モル比において、Al:Si=1:1.7~2.5であることが好ましい。
(実施例44~48)
 実施例44~48の蛍光体は、所定の仕込み組成比となるように、SrCO、AlN、Al、Si、Euの粉末を原料とし、原料を秤量した他は、実施例1と同様の操作を行って得た。実施例44~48は、SrAlSi:Euにおいて、Sr+Eu:Al=2:2.4~3.9の範囲でAlの仕込み組成比を変更させたものである。ただし、OとNの仕込み組成比をO:N=1:13に維持している。
 表38に、実施例44~48の蛍光体について、仕込み組成比、発光色の色度座標、輝度、発光スペクトルのピーク波長を測定した結果を示す。また、輝度は、比較例1の蛍光体の輝度を100%とした時の相対輝度である。
Figure JPOXMLDOC01-appb-T000038
 表39は、X線回折パターンにおける各ブラッグ角度の範囲内にある回折ピークの強度の値を示す。この回折ピークの強度は、ブラッグ角度が17.9°~18.5°の範囲内にある回折ピークの強度を100%とし、その他の回折ピークの相対強度を示している。
Figure JPOXMLDOC01-appb-T000039
 表40に、実施例44~48の蛍光体を元素分析した結果を示す。この元素分析値は、重量%で示されている。また、この元素分析値は、各元素を別途に測定しており測定誤差がわずかに生じる。従って、実施例44~48の蛍光体を構成している全ての元素の重量%を足した値は必ずしも正確に100%にはならないこともある。
Figure JPOXMLDOC01-appb-T000040
 表41に、実施例44~48の算出化学式を示す。
Figure JPOXMLDOC01-appb-T000041
 この結果から、実施例44~48の蛍光体は、460nmにピーク波長を持つ青色発光の発光素子で励起すると、601nm~621nmにピーク波長を持つ赤色に発光した。また、Al量を多くするにつれてピーク波長を短波長側にシフトさせることができる。モル比において、第二族元素M+Eu:Al=2:3.43~3.91であることが好ましい。
(実施例49~54)
 実施例49~54の蛍光体は、所定の仕込み組成比となるように、SrCO、AlN、Al、Si、Euの粉末を原料とし、原料を秤量した他は、実施例1と同様の操作を行って得た。実施例49~54は、SrAlSi:Euにおいて、Sr+Eu:Si=2:6.1~7.9の範囲でSiの仕込み組成比を変更させたものである。ただし、OとNの仕込み組成比をO:N=1:13に維持している。
 表42に、実施例49~54の蛍光体について、仕込み組成比、発光色の色度座標、輝度、発光スペクトルのピーク波長を測定した結果を示す。また、輝度は、比較例1の蛍光体の輝度を100%とした時の相対輝度である。
Figure JPOXMLDOC01-appb-T000042
 表43は、X線回折パターンにおける各ブラッグ角度の範囲内にある回折ピークの強度の値を示す。この回折ピークの強度は、ブラッグ角度が17.9°~18.5°の範囲内にある回折ピークの強度を100%とし、その他の回折ピークの相対強度を示している。
Figure JPOXMLDOC01-appb-T000043
 表44に、実施例49~54の蛍光体を元素分析した結果を示す。この元素分析値は、重量%で示されている。また、この元素分析値は、各元素を別途に測定しており測定誤差がわずかに生じる。従って、実施例49~54の蛍光体を構成している全ての元素の重量%を足した値は必ずしも正確に100%にはならないこともある。
Figure JPOXMLDOC01-appb-T000044
 表45に、実施例49~54の算出化学式を示す。
Figure JPOXMLDOC01-appb-T000045
 この結果から、実施例49~54の蛍光体は、460nmにピーク波長を持つ青色発光の発光素子で励起すると、608nm~621nmにピーク波長を持つ赤色に発光した。また、実施例51~54の蛍光体は、高い輝度を有する。また実施例51~54の蛍光体は、ピーク波長を608nm付近とすることもできる。モル比において、第二族元素M+Eu:Si=2:6.66~7.96であることが好ましい。
(実施例55~63)
 実施例55~63の蛍光体は、所定の仕込み組成比となるように、SrCO、AlN、Al、Si、Euの粉末を原料とし、原料を秤量した他は、実施例1と同様の操作を行って得た。実施例55~63は、SrAlSi:Euにおいて、O:N=0.053~0.257:1の範囲でOとNの仕込み組成比を変更させたものである。
 表46に、実施例55~63の蛍光体について、仕込み組成比、発光色の色度座標、輝度、発光スペクトルのピーク波長を測定した結果を示す。また、輝度は、比較例1の蛍光体の輝度を100%とした時の相対輝度である。
Figure JPOXMLDOC01-appb-T000046
 表47は、X線回折パターンにおける各ブラッグ角度の範囲内にある回折ピークの強度の値を示す。この回折ピークの強度は、ブラッグ角度が17.9°~18.5°の範囲内にある回折ピークの強度を100%とし、その他の回折ピークの相対強度を示している。
Figure JPOXMLDOC01-appb-T000047
 表48に、実施例55~63の蛍光体を元素分析した結果を示す。この元素分析値は、重量%で示されている。また、この元素分析値は、各元素を別途に測定しており測定誤差がわずかに生じる。従って、実施例55~63の蛍光体を構成している全ての元素の重量%を足した値は必ずしも正確に100%にはならないこともある。
Figure JPOXMLDOC01-appb-T000048
 表49に、実施例55~63の算出化学式を示す。
Figure JPOXMLDOC01-appb-T000049
 この結果から、実施例55~63の蛍光体は、460nmにピーク波長を持つ青色発光の発光素子で励起すると、609nm付近にピーク波長を持つ赤色に発光した。また、実施例55~62の蛍光体は、高い輝度を示した。
 なお、組成式Sr1.81Al3.11Si7.040.9412.70:Eu0.19の蛍光体とした場合、輝度は3.1%でほとんど発光しなかった。このとき、X線回折ピークの強度におけるブラッグ角度が34.8°~35.4°の範囲内にある回折ピークの強度は929.3であった。また、組成式Sr1.81Al2.99Si6.584.079.42:Eu0.19の蛍光体とした場合、輝度は25.9%でほとんど発光しなかった。このとき、X線回折ピークの強度におけるブラッグ角度が34.8°~35.4°の範囲内にある回折ピークの強度は296.6であった。モル比において、第二族元素M+Eu:O:N=2:1.10~2.00:11.38~13.11であることが好ましい。
 (比較例)
 特許文献1の記載に基づいてCa0.625Al1.475Si10.5250.07515.925:Eu0.075の製造を行った。表50は、Ca0.625Al1.475Si10.5250.07515.925:Eu0.075の発光特性を示す。図19は、比較例の蛍光体の発光スペクトルを示す。当該蛍光体は、Y2.96(Al0.8,Ga0.212:Ce0.04のYAG蛍光体と比較している。この結果、当該蛍光体はYAG蛍光体と比べて非常に輝度が低く実用的でない結果を得た。
Figure JPOXMLDOC01-appb-T000050
 特許文献2の記載に基づいてSr1.96AlSi:Eu0.04の製造を行った。表51は、Sr1.96AlSi:Eu0.04の発光特性を示す。図20は、比較例の蛍光体の発光スペクトルを示す。当該蛍光体は、Y2.96(Al0.8,Ga0.212:Ce0.04のYAG蛍光体と比較している。この結果、当該蛍光体はYAG蛍光体と比べて非常に輝度が低く実用的でない結果を得た。
Figure JPOXMLDOC01-appb-T000051
 特許文献4の記載に基づいてSr1.94AlSi12.6:Eu0.06、Sr1.90AlSi14:Eu0.10、Sr1.80AlSi1015.34:Eu0.20の製造を行った。表52は、上記蛍光体の発光特性を示す。図21は、比較例の蛍光体の発光スペクトルを示す。当該蛍光体は、YAG蛍光体と比較している。この結果、当該蛍光体はYAG蛍光体と比べて非常に輝度が低く実用的でない結果を得た。
Figure JPOXMLDOC01-appb-T000052
 本発明の蛍光体及びこれを用いた発光装置は、蛍光表示管、ディスプレイ、PDP、CRT、FL、FEDおよび投射管等、特に青色発光ダイオード又は紫外線発光ダイオードを光源とする発光特性に極めて優れた暖色系の白色光を発する照明用光源、バックライト光源等に好適に利用できる。
  2 発光素子
  3 蛍光体
 14 凹部
 15 リード電極
 16 支持体
 17 パッケージ
 18 封止部材
 60 発光装置

Claims (6)

  1.  以下の一般式で表され、460nmの光源により励起され、570nm~670nmに発光ピーク波長を有する蛍光体。
     MAlSi:Eu
     (Mは、Ca、Sr、Baから選択される1種以上の第二族元素であり、a=2、b=2.4~6.0、c=5.0~8.5、d=1.0~3.0、e=11.0~16.0である。)
  2.  Ca、Sr、Baから選択される1種以上の第二族元素であるM、及び、Al、Si、O、Nを含有し、Euで付活された蛍光体であって、
    CuKα線によるX線回折パターンにおいて、ブラッグ角度が17.9°以上18.5°以下の範囲にある回折ピークの強度を100%としたとき、ブラッグ角度が24.5°~25.1°の範囲内にある回折ピークの相対強度は150%以上310%以内であり、かつ、ブラッグ角度が34.8°以上35.4°以下の範囲内にある回折ピークの相対強度が320%以上550%以内である相を主とした生成相を含有することを特徴とする蛍光体。
  3.  前記蛍光体は、近紫外から可視光の短波長領域の光を吸収した際の発光スペクトルが、570nmから670nmの範囲内にピーク波長を有することを特徴とする請求項1又は2に記載の蛍光体。
  4.  前記蛍光体は、19.0重量%以上29.5重量%以下のSiを含有することを特徴とする請求項1又は2に記載の蛍光体。
  5.  前記生成相は斜方晶系に帰属し、かつ、結晶格子の格子定数が、4.4Å≦a≦5.4Å、7.0≦b≦8.0Å、11.1Å≦c≦12.1Åであることを特徴とする請求項1又は2に記載の蛍光体。
  6.  近紫外から可視光の短波長領域内にピーク波長を有する光を放つ励起光源と、前記励起光源からの光の一部を吸収して蛍光を発する蛍光体と、を有する発光装置であって、
    前記蛍光体は、請求項1又は2に記載の蛍光体を含有することを特徴とする発光装置。
PCT/JP2010/001349 2009-02-26 2010-02-26 蛍光体及びその製造方法並びにこれを用いた発光装置 WO2010098141A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011501526A JP5833918B2 (ja) 2009-02-26 2010-02-26 蛍光体及びその製造方法並びにこれを用いた発光装置
US13/203,444 US9708531B2 (en) 2009-02-26 2010-02-26 Fluorescent substance, method of manufacturing the fluorescent substance, and light emitting device using the fluorescent substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009043584 2009-02-26
JP2009-043584 2009-02-26

Publications (1)

Publication Number Publication Date
WO2010098141A1 true WO2010098141A1 (ja) 2010-09-02

Family

ID=42665354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001349 WO2010098141A1 (ja) 2009-02-26 2010-02-26 蛍光体及びその製造方法並びにこれを用いた発光装置

Country Status (3)

Country Link
US (1) US9708531B2 (ja)
JP (1) JP5833918B2 (ja)
WO (1) WO2010098141A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195688A (ja) * 2010-03-18 2011-10-06 Toshiba Corp 赤色蛍光体およびその製造方法、ならびに発光装置
WO2012036016A1 (ja) * 2010-09-17 2012-03-22 株式会社東芝 蛍光体および発光装置
WO2012105688A1 (ja) * 2011-02-06 2012-08-09 独立行政法人物質・材料研究機構 蛍光体、その製造方法及び発光装置
WO2012105687A1 (ja) * 2011-02-06 2012-08-09 独立行政法人物質・材料研究機構 蛍光体、その製造方法及び発光装置
WO2012105689A1 (ja) * 2011-02-06 2012-08-09 独立行政法人物質・材料研究機構 蛍光体、その製造方法及び発光装置
JP2012193305A (ja) * 2011-03-17 2012-10-11 Toshiba Corp 蛍光体およびその製造方法、ならびに発光装置
JP2013104040A (ja) * 2011-11-16 2013-05-30 Toshiba Corp 蛍光体、発光装置、および蛍光体の製造方法
JP2013119592A (ja) * 2011-12-07 2013-06-17 Toshiba Corp 蛍光体およびそれを用いた発光装置
WO2013137435A1 (ja) * 2012-03-16 2013-09-19 株式会社東芝 蛍光体、蛍光体の製造方法および発光装置
WO2013137434A1 (ja) * 2012-03-16 2013-09-19 株式会社東芝 蛍光体、蛍光体の製造方法および発光装置
WO2013137436A1 (ja) * 2012-03-16 2013-09-19 株式会社東芝 蛍光体、蛍光体の製造方法および発光装置
JP2015526532A (ja) * 2012-05-22 2015-09-10 コーニンクレッカ フィリップス エヌ ヴェ 固体照明のための新規狭帯域赤色発光蛍光体のような新規蛍光体
WO2016060136A1 (ja) * 2014-10-14 2016-04-21 大日本印刷株式会社 画像表示装置用モジュール及び画像表示装置
US9735323B2 (en) 2015-06-30 2017-08-15 Nichia Corporation Light emitting device having a triple phosphor fluorescent member
JP2017201012A (ja) * 2016-05-03 2017-11-09 ルミレッズ ホールディング ベーフェー 発光デバイス用の波長変換材料
JP6393006B1 (ja) * 2018-02-08 2018-09-19 日本碍子株式会社 半導体製造装置用ヒータ
US10214689B2 (en) 2016-12-15 2019-02-26 National Institute For Materials Science Fluorescent material and light emitting device
US10818827B2 (en) 2017-09-28 2020-10-27 Nichia Corporation Light-emitting device
CN112011332A (zh) * 2020-09-11 2020-12-01 有研稀土新材料股份有限公司 一种远红光荧光粉以及包含该荧光粉的发光装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101172143B1 (ko) * 2009-08-10 2012-08-07 엘지이노텍 주식회사 백색 발광다이오드 소자용 시온계 산화질화물 형광체, 그의 제조방법 및 그를 이용한 백색 led 소자
KR101163902B1 (ko) * 2010-08-10 2012-07-09 엘지이노텍 주식회사 발광 소자
US9909058B2 (en) 2009-09-02 2018-03-06 Lg Innotek Co., Ltd. Phosphor, phosphor manufacturing method, and white light emitting device
JP5557360B1 (ja) * 2012-12-14 2014-07-23 電気化学工業株式会社 蛍光体、その製造方法及び発光装置
CN102994079A (zh) * 2012-12-21 2013-03-27 北京有色金属研究总院 氮氧化物橙-红色荧光物质,包括其的发光膜或发光片及发光器件
JP2014224184A (ja) * 2013-05-15 2014-12-04 株式会社東芝 蛍光体および発光装置
DE102013113188A1 (de) * 2013-11-28 2015-05-28 Osram Gmbh Lumineszenzkonversionselement und optoelektronisches Halbleiterbauteil mit einem solchen Lumineszenzkonversionselement
WO2020003789A1 (ja) * 2018-06-29 2020-01-02 日亜化学工業株式会社 発光装置の製造方法および発光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302920A (ja) * 2004-04-09 2005-10-27 Shoei Chem Ind Co 発光装置
JP2006057018A (ja) * 2004-08-20 2006-03-02 Dowa Mining Co Ltd 蛍光体およびその製造方法、並びに当該蛍光体を用いた光源
JP2006063323A (ja) * 2004-07-28 2006-03-09 Dowa Mining Co Ltd 蛍光体およびその製造方法、並びに光源
JP2006070109A (ja) * 2004-08-31 2006-03-16 Dowa Mining Co Ltd 蛍光体及び光源
JP2007291352A (ja) * 2006-03-27 2007-11-08 Mitsubishi Chemicals Corp 蛍光体及びそれを使用した発光装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1104799A1 (en) 1999-11-30 2001-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Red emitting luminescent material
US6632379B2 (en) 2001-06-07 2003-10-14 National Institute For Materials Science Oxynitride phosphor activated by a rare earth element, and sialon type phosphor
JP3668770B2 (ja) 2001-06-07 2005-07-06 独立行政法人物質・材料研究機構 希土類元素を付活させた酸窒化物蛍光体
JP2005048105A (ja) 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd 蛍光体組成物およびそれを用いた発光装置
JP4511849B2 (ja) 2004-02-27 2010-07-28 Dowaエレクトロニクス株式会社 蛍光体およびその製造方法、光源、並びにled
JP3921545B2 (ja) 2004-03-12 2007-05-30 独立行政法人物質・材料研究機構 蛍光体とその製造方法
JP4581120B2 (ja) * 2004-04-26 2010-11-17 独立行政法人物質・材料研究機構 酸窒化物粉末およびその製造方法
JP4674348B2 (ja) 2004-09-22 2011-04-20 独立行政法人物質・材料研究機構 蛍光体とその製造方法および発光器具
JP5145934B2 (ja) 2005-03-04 2013-02-20 三菱化学株式会社 蛍光体およびその製造方法、並びに当該蛍光体を用いた発光装置
WO2006106883A1 (ja) 2005-03-31 2006-10-12 Dowa Electronics Materials Co., Ltd. 蛍光体、蛍光体シートおよびその製造方法、並びに当該蛍光体を用いた発光装置
US7443094B2 (en) 2005-03-31 2008-10-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
CN103254894A (zh) 2005-04-01 2013-08-21 三菱化学株式会社 无机功能材料原料用合金粉末及荧光体
CN101175834B (zh) 2005-05-12 2011-03-30 独立行政法人物质·材料研究机构 β型赛隆陶瓷荧光体
TW200721526A (en) 2005-11-16 2007-06-01 Iled Photoelectronics Inc LED structure with three wavelength
JP5367218B2 (ja) * 2006-11-24 2013-12-11 シャープ株式会社 蛍光体の製造方法および発光装置の製造方法
JP4869317B2 (ja) 2008-10-29 2012-02-08 株式会社東芝 赤色蛍光体およびそれを用いた発光装置
JP5549969B2 (ja) 2009-02-12 2014-07-16 独立行政法人物質・材料研究機構 窒化物系または酸窒化物系の蛍光体原料混合物及びEuを含むSr2Si5N8、CaAlSiN3又はSrAlSiN3蛍光体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302920A (ja) * 2004-04-09 2005-10-27 Shoei Chem Ind Co 発光装置
JP2006063323A (ja) * 2004-07-28 2006-03-09 Dowa Mining Co Ltd 蛍光体およびその製造方法、並びに光源
JP2006057018A (ja) * 2004-08-20 2006-03-02 Dowa Mining Co Ltd 蛍光体およびその製造方法、並びに当該蛍光体を用いた光源
JP2006070109A (ja) * 2004-08-31 2006-03-16 Dowa Mining Co Ltd 蛍光体及び光源
JP2007291352A (ja) * 2006-03-27 2007-11-08 Mitsubishi Chemicals Corp 蛍光体及びそれを使用した発光装置

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195688A (ja) * 2010-03-18 2011-10-06 Toshiba Corp 赤色蛍光体およびその製造方法、ならびに発光装置
JPWO2012036016A1 (ja) * 2010-09-17 2014-02-03 株式会社東芝 蛍光体および発光装置
WO2012036016A1 (ja) * 2010-09-17 2012-03-22 株式会社東芝 蛍光体および発光装置
US9624428B2 (en) 2011-02-06 2017-04-18 National Institute For Materials Science Phosphor, production method for the same, and light-emitting device
EP2671937A1 (en) * 2011-02-06 2013-12-11 National Institute for Materials Science Phosphor, production method for same, and light-emitting device
JP2012162633A (ja) * 2011-02-06 2012-08-30 National Institute For Materials Science 蛍光体、その製造方法及び発光装置
US9512358B2 (en) 2011-02-06 2016-12-06 National Institute For Materials Science Phosphor, production method for the same, and light-emitting device
US9512979B2 (en) 2011-02-06 2016-12-06 Denka Company Limited Phosphor, production method for the same, and light-emitting device
EP2671938A4 (en) * 2011-02-06 2014-10-29 Nat Inst For Materials Science PHOSPHORUS, METHOD FOR PRODUCING SAME, AND LIGHT EMITTING DEVICE
EP2671939A4 (en) * 2011-02-06 2014-10-29 Nat Inst For Materials Science PHOSPHORUS, METHOD FOR ITS MANUFACTURE AND LIGHT-EMITTING DEVICE
WO2012105689A1 (ja) * 2011-02-06 2012-08-09 独立行政法人物質・材料研究機構 蛍光体、その製造方法及び発光装置
WO2012105688A1 (ja) * 2011-02-06 2012-08-09 独立行政法人物質・材料研究機構 蛍光体、その製造方法及び発光装置
CN103347979A (zh) * 2011-02-06 2013-10-09 独立行政法人物质·材料研究机构 荧光体、其制备方法以及发光装置
CN103347980A (zh) * 2011-02-06 2013-10-09 独立行政法人物质·材料研究机构 荧光体、其制备方法以及发光装置
CN103380193A (zh) * 2011-02-06 2013-10-30 独立行政法人物质·材料研究机构 荧光体、其制备方法以及发光装置
EP2671938A1 (en) * 2011-02-06 2013-12-11 National Institute for Materials Science Phosphor, production method for same, and light-emitting device
EP2671937A4 (en) * 2011-02-06 2014-10-29 Nat Inst For Materials Science PHOSPHORUS, METHOD FOR PRODUCING SAME, AND LIGHT EMITTING DEVICE
EP2671939A1 (en) * 2011-02-06 2013-12-11 National Institute for Materials Science Phosphor, production method for same, and light-emitting device
WO2012105687A1 (ja) * 2011-02-06 2012-08-09 独立行政法人物質・材料研究機構 蛍光体、その製造方法及び発光装置
JP2012193305A (ja) * 2011-03-17 2012-10-11 Toshiba Corp 蛍光体およびその製造方法、ならびに発光装置
JP2013104040A (ja) * 2011-11-16 2013-05-30 Toshiba Corp 蛍光体、発光装置、および蛍光体の製造方法
JP2013119592A (ja) * 2011-12-07 2013-06-17 Toshiba Corp 蛍光体およびそれを用いた発光装置
WO2013137436A1 (ja) * 2012-03-16 2013-09-19 株式会社東芝 蛍光体、蛍光体の製造方法および発光装置
JPWO2013137434A1 (ja) * 2012-03-16 2015-08-03 株式会社東芝 蛍光体、蛍光体の製造方法および発光装置
US9487696B2 (en) 2012-03-16 2016-11-08 Kabushiki Kaisha Toshiba Phosphor of SiAlON crystal, method for producing phosphor and light emitting device
US9512359B2 (en) 2012-03-16 2016-12-06 Kabushiki Kaisha Toshiba Phosphor, method for producing phosphor and light emitting device
WO2013137435A1 (ja) * 2012-03-16 2013-09-19 株式会社東芝 蛍光体、蛍光体の製造方法および発光装置
WO2013137434A1 (ja) * 2012-03-16 2013-09-19 株式会社東芝 蛍光体、蛍光体の製造方法および発光装置
JP2015526532A (ja) * 2012-05-22 2015-09-10 コーニンクレッカ フィリップス エヌ ヴェ 固体照明のための新規狭帯域赤色発光蛍光体のような新規蛍光体
WO2016060136A1 (ja) * 2014-10-14 2016-04-21 大日本印刷株式会社 画像表示装置用モジュール及び画像表示装置
JP2016080802A (ja) * 2014-10-14 2016-05-16 大日本印刷株式会社 画像表示装置用モジュール及び画像表示装置
US10082618B2 (en) 2014-10-14 2018-09-25 Dai Nippon Printing Co., Ltd. Image display module with superior white point stability
US9735323B2 (en) 2015-06-30 2017-08-15 Nichia Corporation Light emitting device having a triple phosphor fluorescent member
KR20170124971A (ko) * 2016-05-03 2017-11-13 루미리즈 홀딩 비.브이. 발광 디바이스를 위한 파장 변환 재료
JP2017201012A (ja) * 2016-05-03 2017-11-09 ルミレッズ ホールディング ベーフェー 発光デバイス用の波長変換材料
JP7012455B2 (ja) 2016-05-03 2022-01-28 ルミレッズ ホールディング ベーフェー 発光デバイス用の波長変換材料
KR102422468B1 (ko) 2016-05-03 2022-07-20 루미리즈 홀딩 비.브이. 발광 디바이스를 위한 파장 변환 재료
US10214689B2 (en) 2016-12-15 2019-02-26 National Institute For Materials Science Fluorescent material and light emitting device
US10818827B2 (en) 2017-09-28 2020-10-27 Nichia Corporation Light-emitting device
US11605761B2 (en) 2017-09-28 2023-03-14 Nichia Corporation Light-emitting device
JP6393006B1 (ja) * 2018-02-08 2018-09-19 日本碍子株式会社 半導体製造装置用ヒータ
CN112011332A (zh) * 2020-09-11 2020-12-01 有研稀土新材料股份有限公司 一种远红光荧光粉以及包含该荧光粉的发光装置
CN112011332B (zh) * 2020-09-11 2022-05-06 有研稀土新材料股份有限公司 一种远红光荧光粉以及包含该荧光粉的发光装置

Also Published As

Publication number Publication date
US20110309399A1 (en) 2011-12-22
JP5833918B2 (ja) 2015-12-16
US9708531B2 (en) 2017-07-18
JPWO2010098141A1 (ja) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5833918B2 (ja) 蛍光体及びその製造方法並びにこれを用いた発光装置
US8513876B2 (en) Fluorescent substance, method for producing the same, and light-emitting device using the same
JP5092667B2 (ja) 発光装置
JP6528418B2 (ja) 蛍光体及びこれを用いた発光装置
JP6102763B2 (ja) 蛍光体及びそれを用いた発光装置並びに蛍光体の製造方法
JP6167913B2 (ja) 蛍光体及びそれを用いた発光装置
EP2732007A1 (en) Red-emitting nitride-based calcium-stabilized phosphors
WO2013147066A1 (ja) 酸窒化物蛍光体粉末
EP2614683A1 (en) Silicon carbidonitride based phosphors and lighting devices using the same
JP2011140664A (ja) 蛍光体の製造方法
US20140264170A1 (en) Oxynitride phosphor powder, silicon nitride powder for production of oxynitride phosphor powder, and production method of oxynitride phosphor powder
WO2020261691A1 (ja) 蛍光体、その製造方法および発光装置
JP6782427B2 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
WO2016076380A1 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP4706358B2 (ja) 青色発光蛍光体およびその製造方法、発光装置、照明装置、ディスプレイ用バックライト並びにディスプレイ
JP4951888B2 (ja) 蛍光体及びそれを用いた発光装置
JP5532769B2 (ja) 蛍光体及びそれを用いた発光装置並びに蛍光体の製造方法
JP5470911B2 (ja) Li含有α−サイアロン系酸窒化物蛍光体粉末およびその製造方法
JP6240962B2 (ja) 蛍光体及びその製造方法並びにこれを用いた発光装置
JP2010196049A (ja) 蛍光体及びその製造方法、蛍光体含有組成物、並びに、該蛍光体を用いた発光装置、画像表示装置及び照明装置
US9777215B2 (en) Oxynitride phosphor powder
JP6036055B2 (ja) 蛍光体及びこれを用いた発光装置
JP6867614B2 (ja) 蛍光体及び発光装置
JP6288343B2 (ja) 蛍光体及びそれを用いた発光装置
JP2016088970A (ja) 蛍光体、発光装置、照明装置及び画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011501526

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13203444

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746024

Country of ref document: EP

Kind code of ref document: A1