WO2016076380A1 - 蛍光体、発光装置、照明装置及び画像表示装置 - Google Patents

蛍光体、発光装置、照明装置及び画像表示装置 Download PDF

Info

Publication number
WO2016076380A1
WO2016076380A1 PCT/JP2015/081808 JP2015081808W WO2016076380A1 WO 2016076380 A1 WO2016076380 A1 WO 2016076380A1 JP 2015081808 W JP2015081808 W JP 2015081808W WO 2016076380 A1 WO2016076380 A1 WO 2016076380A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
emitting device
emission
light emitting
Prior art date
Application number
PCT/JP2015/081808
Other languages
English (en)
French (fr)
Inventor
文孝 吉村
山根 久典
Original Assignee
三菱化学株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社, 国立大学法人東北大学 filed Critical 三菱化学株式会社
Priority to JP2016559099A priority Critical patent/JPWO2016076380A1/ja
Publication of WO2016076380A1 publication Critical patent/WO2016076380A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a phosphor, a light emitting device, a lighting device, and an image display device.
  • the LED used here is a white light emitting LED in which a phosphor is arranged on an LED chip that emits light of blue or near ultraviolet wavelength.
  • a LED using a nitride phosphor that emits red light using blue light from the blue LED chip as an excitation light and a phosphor that emits green light on a blue LED chip has recently been used. It has been.
  • green has a particularly high visual sensitivity to human eyes and contributes greatly to the overall brightness of the display.
  • a green phosphor that is particularly important and excellent in light emission characteristics is desired.
  • a phosphor that emits green light for example, as a broadband phosphor, a composite oxynitride represented by a composition formula of Ba 3 Si 6 O 12 N 2 : Eu, Ce has been developed (Patent Document 1). .
  • the present invention provides a new phosphor that has a narrow emission spectrum half-width, has a crystal structure different from that of conventional phosphors, and is effectively used for LED applications.
  • the present inventors diligently studied new phosphors, and as a result, came up with a new phosphor that has a crystal structure different from that of conventional phosphors and is effectively used for LED applications. Was completed.
  • the present invention is as follows.
  • M element represents one or more elements selected from activators
  • the A element represents one or more elements selected from alkaline earth metal elements.
  • ⁇ 4> The phosphor according to any one of ⁇ 1> to ⁇ 3>, wherein the M element contains Eu.
  • ⁇ 6> A first light emitter, and a second light emitter that emits visible light when irradiated with light from the first light emitter, wherein the second light emitter is any one of ⁇ 1> to ⁇ 5>
  • a light emitting device comprising the phosphor described above.
  • An illuminating device comprising the light emitting device according to ⁇ 6> as a light source.
  • ⁇ 8> An image display device comprising the light-emitting device according to ⁇ 6> as a light source.
  • the novel phosphor of the present invention has a narrow emission spectrum half-width, has a crystal structure different from that of conventional phosphors, and is effectively used for LED applications. Therefore, the light emitting device using the novel phosphor of the present invention is excellent in color rendering. Furthermore, the illumination device and the image display device including the light emitting device of the present invention are of high quality.
  • FIG. 2 is a diagram showing a powder X-ray diffraction (XRD) pattern of the phosphor obtained in Example 1.
  • FIG. It is an image by the scanning electron microscope of the fluorescent substance obtained in Example 1 (drawing substitute photograph).
  • FIG. 3 is a diagram showing an EPMA measurement result of the phosphor obtained in Example 1. Note that the peak of C is attributed to the coating. It is a figure which shows the XRD pattern obtained by simulation in the fluorescent substance obtained in Example 1, and the powder X-ray-diffraction pattern by the transmission method.
  • FIG. 3 is a diagram showing excitation / emission spectra of the phosphor obtained in Example 1. The broken line represents the excitation spectrum, and the solid line represents the emission spectrum.
  • FIG. 4 is a graph showing emission spectra of the phosphors obtained in Examples 2 to 4.
  • 6 is a diagram showing an XRD pattern of a phosphor obtained in Example 5.
  • FIG. 6 is a graph showing an emission spectrum of the phosphor obtained in Example 5.
  • FIG. 6 is a diagram showing an XRD pattern of a phosphor obtained in Example 7.
  • FIG. 7 shows the emission spectrum of the fluorescent substance obtained in Example 7, 8.
  • FIG. 10 is an emission spectrum diagram calculated by simulation with the light emitting device of Example 11.
  • FIG. 10 is an emission spectrum diagram calculated by simulation with the light emitting device of Example 12. It is the light emission spectrum figure computed by simulation with the light-emitting device of Example 13. It is the chromaticity range computed by simulation with the light-emitting device of Example 13. It is the light emission spectrum figure calculated by simulation with the light-emitting device of Example 14. It is the chromaticity range computed by simulation with the light-emitting device of Example 14.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • each composition formula is delimited by a punctuation mark (,).
  • commas when a plurality of elements are listed separated by commas (,), one or two or more of the listed elements may be included in any combination and composition.
  • composition formula “(Ca, Sr, Ba) Al 2 O 4 : Eu” has “CaAl 2 O 4 : Eu”, “SrAl 2 O 4 : Eu”, and “BaAl 2 O 4 : Eu”. “Ca 1-x Sr x Al 2 O 4 : Eu”, “Sr 1-x Ba x Al 2 O 4 : Eu”, “Ca 1-x Ba x Al 2 O 4 : Eu”, “Ca 1-x-y Sr x Ba y Al 2 O 4: Eu " (. in the formula, 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ a x + y ⁇ 1) all the comprehensive It shall be shown in the formula, 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ a x + y ⁇ 1) all the comprehensive It shall be shown in
  • the present invention includes the phosphor according to the first embodiment, the light emitting device according to the second embodiment, the illumination device according to the third embodiment, and the image display device according to the fourth embodiment.
  • the phosphor according to the first embodiment of the present invention is a phosphor including a monoclinic crystal phase containing M element, A element, Al, Si, and N, each having a lattice constant of the crystal phase.
  • a axis is 7.7 mm ⁇ a ⁇ 8.51 mm
  • b axis is 8.64 mm ⁇ b ⁇ 9.55 mm
  • c axis is 8.53 mm ⁇ c ⁇ 9.43 mm
  • ⁇ angle is 97.6. It is a phosphor satisfying ° ⁇ ⁇ ⁇ 115.6 °.
  • M element represents 1 or more types of elements chosen from an activating element
  • a element represents 1 or more types of elements chosen from an alkaline-earth metal element.
  • M elements are europium (Eu), manganese (Mn), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium It represents one or more elements selected from the group consisting of (Er), thulium (Tm) and ytterbium (Yb).
  • M preferably contains at least Eu, and more preferably Eu.
  • Eu may be substituted with at least one element selected from the group consisting of Ce, Pr, Sm, Tb, and Yb, and Ce is more preferable in terms of emission quantum efficiency. That is, M is more preferably Eu and / or Ce, and more preferably Eu.
  • the ratio of Eu with respect to the entire activation element is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more.
  • the A element represents one or more elements selected from alkaline earth metal elements.
  • the alkaline earth metal element is preferably magnesium (Mg), calcium (Ca), strontium (Sr), or barium (Ba), more preferably Ca, Sr, or Ba, and Ca and / or Sr. Is more preferable, and Sr is particularly preferable.
  • These elements may be partially substituted with other divalent metals such as zinc (Zn).
  • These elements may be partially substituted with rare earth elements.
  • lanthanum (La), yttrium (Y) and lutetium (Lu) are preferable, lanthanum (La) and yttrium (Y) are more preferable, and lanthanum (La) is particularly preferable. .
  • Al represents aluminum.
  • Al is another trivalent element that is chemically similar, for example, boron (B), gallium (Ga), indium (In), scandium (Sc), yttrium (Y), lanthanum (La), gadolinium (Gd ), Lutetium (Lu) or the like.
  • Si represents silicon. Si may be partially substituted with other chemically similar tetravalent elements such as germanium (Ge), tin (Sn), titanium (Ti), zirconium (Zr), and hafnium (Hf). Good.
  • N represents a nitrogen element. N may be partially substituted with other elements such as oxygen (O), halogen atoms (fluorine (F), chlorine (Cl), bromine (Br), iodine (I)) and the like.
  • oxygen O
  • halogen atoms fluorine (F)
  • chlorine Cl
  • bromine Br
  • iodine I
  • oxygen when oxygen is mixed as an impurity in the raw material metal, it may be introduced during a manufacturing process such as a pulverization process or a nitriding process, and is inevitably mixed in the phosphor of this embodiment. It is.
  • halogen atoms when halogen atoms are included, it may be mixed as an impurity in the raw material metal or introduced during a manufacturing process such as a pulverization process or a nitriding process.
  • a phosphor May be included.
  • the phosphor according to the first embodiment of the present invention preferably has a composition whose crystal phase is represented by the following formula [1] among the above phosphors.
  • m represents the content of the activating element M, and the range is usually 0 ⁇ m ⁇ 0.2.
  • the lower limit is preferably 0.001, more preferably 0.02, and the upper limit is , Preferably 0.15, more preferably 0.1, particularly preferably 0.08.
  • a represents the content of the A element.
  • B represents the content of Al, the range is usually 0.8 ⁇ b ⁇ 1.2, the lower limit is preferably 0.9, and the upper limit is preferably 1.1.
  • c represents the content of Si, the range is usually 3.2 ⁇ c ⁇ 4.8, the lower limit is preferably 3.6, more preferably 3.8, and the upper limit is preferably Is 4.4, more preferably 4.2.
  • d represents the content of N, and the range thereof is usually 5.6 ⁇ d ⁇ 8.4, the lower limit is preferably 6, more preferably 6.3, and the upper limit is preferably 8. More preferably, it is 7.7.
  • Any content is in the above-described range, which is preferable in terms of good light emission characteristics of the obtained phosphor, particularly light emission luminance.
  • the crystal structure can be maintained by partially replacing Si—N in the crystal structure with Al—O. That is, it is considered that the crystal structure is maintained within the above range.
  • the emission color of the phosphor of this embodiment is excited by light in the near ultraviolet region to the blue region having a wavelength of 300 nm to 500 nm by adjusting the chemical composition and the like, and is blue, blue green, green, yellow green, yellow, orange , Red, etc., and a desired emission color can be obtained.
  • the phosphor of this embodiment preferably has the following characteristics when an emission spectrum is measured when excited with light having a wavelength of 350 nm or more and 460 nm or less (in particular, a wavelength of 400 nm or 450 nm).
  • the phosphor of this embodiment has a peak wavelength in the above-described emission spectrum of usually 500 nm or more, preferably 510 nm or more, more preferably 520 nm or more. Moreover, it is 560 nm or less normally, Preferably it is 550 nm or less, More preferably, it is 545 nm or less. It is preferable for it to be in the above-mentioned range since the obtained phosphor exhibits a good green color.
  • the half-value width of the emission peak in the above-described emission spectrum is usually 90 nm or less, preferably 80 nm or less, more preferably 70 nm or less, and usually 30 nm or more, more preferably 40 nm or more. That is, the “phosphor with a narrow half-value width” in this embodiment means a phosphor having a half-value width of an emission peak of 90 nm or less.
  • a GaN-based LED in order to excite the phosphor of this embodiment with light having a wavelength of 400 nm, for example, a GaN-based LED can be used.
  • the measurement of the emission spectrum of the phosphor of this embodiment and the calculation of the emission peak wavelength, peak relative intensity and peak half width are, for example, a 150 W xenon lamp as an excitation light source and a multichannel CCD detector as a spectrum measurement device. It can be performed using a fluorescence measuring apparatus (manufactured by JASCO Corporation) equipped with C7041 (manufactured by Hamamatsu Photonics).
  • the phosphor of this embodiment is also excellent in temperature characteristics. Specifically, the ratio of the emission peak intensity value in the emission spectrum at 200 ° C. to the emission peak intensity value in the emission spectrum at 25 ° C. when irradiated with light having a wavelength of 450 nm is usually 50%. Or more, preferably 60% or more, particularly preferably 70% or more. In addition, since the emission intensity of ordinary phosphors decreases with increasing temperature, it is unlikely that the ratio exceeds 100%, but it may exceed 100% for some reason. However, if it exceeds 100%, there is a tendency to cause a color shift due to a temperature change. Incidentally, when measuring the temperature characteristics, a conventional method may be followed, for example, a method described in JP-A-2008-138156.
  • the phosphor of this embodiment is usually excited to a wavelength range of 300 nm or more, preferably 350 nm or more, more preferably 400 nm or more, and usually 500 nm or less, preferably 480 nm or less, more preferably 460 nm or less, and particularly preferably 450 nm or less.
  • a peak That is, it is excited by light in the near ultraviolet to blue region.
  • the x value of the CIE chromaticity coordinates in the phosphor of this embodiment is usually 0.275 or more, preferably 0.300 or more, more preferably 0.320 or more, and further preferably 0.340 or more. It is 425 or less, preferably 0.400 or less, more preferably 0.380 or less, and still more preferably 0.360 or less.
  • the y value of the CIE chromaticity coordinates of the phosphor of the present embodiment is usually 0.550 or more, preferably 0.575 or more, and usually 0.675 or less, preferably 0.650 or less, more preferably 0. .625 or less.
  • a light emitting color having a good color rendering property preferably a light emission of white to bulb color
  • a blue LED and another yellow phosphor or red phosphor is used when used in combination with a blue LED and another yellow phosphor or red phosphor.
  • the external quantum efficiency ( ⁇ o ) in the phosphor of the present embodiment is usually 40% or more, preferably 45% or more, more preferably 50% or more, and particularly preferably 55% or more. Higher external quantum efficiency is preferable because light emission efficiency is higher.
  • the internal quantum efficiency ( ⁇ i ) in the phosphor of the present embodiment is usually 60% or more, preferably 65% or more, more preferably 70% or more, further preferably 75% or more, and particularly preferably 80% or more.
  • the internal quantum efficiency means the ratio of the number of emitted photons to the number of photons of excitation light absorbed by the phosphor. For this reason, the higher the internal quantum efficiency, the higher the light emission efficiency and the light emission intensity, which is preferable.
  • the lattice constant of the phosphor of this embodiment varies depending on the type of elements constituting the crystal, but the lattice constants a, b, and c are in the following ranges, respectively.
  • the a-axis is usually in the range of 7.7 mm to 8.51 mm, the lower limit is preferably 7.86 mm, more preferably 8.02 mm, and the upper limit is preferably 8.35 mm, more preferably 8.18cm.
  • the b-axis is usually in the range of 8.64 mm or more and 9.55 mm or less, the lower limit value is preferably 8.82 mm, more preferably 9 mm, and the upper limit value is preferably 9.37 mm, more preferably 9. 18 liters.
  • the c-axis is usually in the range of 8.53 mm or more and 9.43 mm or less, the lower limit value is preferably 8.71 mm, more preferably 8.89 mm, and the upper limit value is preferably 9.25 mm, more preferably 9.07 inches.
  • the ratio of the a-axis to the c-axis is preferably 0.85 or more, more preferably 0.88 or more, and preferably 0.96 or less, more preferably 0.92 or less.
  • the ⁇ angle is in the range of 97.6 ° to 115.6 °, the lower limit is preferably 99.6 °, more preferably 106.02 °, and the upper limit is preferably 113.6. °, more preferably 112.16 °.
  • the phosphor according to this embodiment is stably generated and the generation of the impurity phase is suppressed within the above range, so that the emission luminance of the obtained phosphor is good. is there.
  • the unit cell volume calculated from the lattice constant (V) is preferably, 522.9A 3 or more, more preferably 553.6A 3 or more, more preferably 612.0A 3 or more, , Preferably 707.4 mm 3 or less, more preferably 676.6 cm 3 or less, and still more preferably 645.9 cm 3 or less. If the unit cell volume is too large or the unit cell volume is too small, the skeletal structure becomes unstable and impurities of another structure are produced as a by-product, which tends to cause a decrease in emission intensity and color purity.
  • the space group in the phosphor of the present embodiment is not particularly limited as long as the average structure statistically considered within a range that can be distinguished by single crystal X-ray diffraction shows a repetition period of the above length, but “International It is preferable to belong to No. 4 (P2 1 ) based on “Tables for Crystallography (Third, Revised Edition), Volume A SPACE-GROUP SYMMETRY”.
  • the lattice constant and the space group can be obtained according to a conventional method.
  • the results of X-ray diffraction and neutron diffraction can be obtained by Rietveld analysis, and if it is a space group, it can be obtained by electron beam diffraction.
  • the crystal system in the phosphor according to this embodiment is monoclinic.
  • the phosphor of this embodiment has a peak in the following regions 1 to 5 in a powder X-ray diffraction pattern measured using CuK ⁇ rays (1.5418 ⁇ ). Note that the region 4 has at least two peaks. The region 5 also has at least two peaks, one of which has the highest peak intensity in the powder X-ray diffraction pattern. This is the strongest peak intensity: is defined as I max. Here, the peak intensity is a value obtained by performing background correction.
  • Region 1 14.73 ° ⁇ 2 ⁇ ⁇ 15.77 ° Region 2 19.37 ° ⁇ 2 ⁇ ⁇ 20.95 ° Region 3 26.00 ° ⁇ 2 ⁇ ⁇ 28.25 ° Region 4 28.26 ° ⁇ 2 ⁇ ⁇ 30.29 ° Region 5 30.30 ° ⁇ 2 ⁇ ⁇ 33.21 °
  • having a peak in the regions 1 to 5 means that the peak top is in the range of the regions 1 to 5.
  • the reason for specifying the regions 1 to 5 is merely the selection of peaks characteristic to the phosphor of the present embodiment. In the phosphor of this embodiment, depending on the crystal shape, it may be oriented at the time of measurement, and a peak that can be confirmed by an X-ray diffraction pattern and a peak that cannot be confirmed may occur.
  • the peaks appearing in the regions 1, 2, and 5 in this embodiment are peaks that can be confirmed characteristically even if they are oriented.
  • irregularities such as stacking irregularities that cause irregularities in the stacking period and order of layers in the crystal structure occur.
  • the structure may be included, and a locally disordered portion may be included.
  • the presence or absence of this stacking irregularity can be confirmed by the presence or absence of streaks in the X-ray diffraction pattern image or the TEM observation in the single crystal structure analysis.
  • an average structure statistically considered within a range that can be distinguished by X-ray diffraction shows periodic repetition.
  • the presence or absence of a local irregular structure in the structure is not particularly limited, but it is preferable to have an irregular structure locally in the structure and to perform averaging in the structure. This is because the compositional deviation caused by volatilization of the element generated during firing is relaxed and averaged by taking a disordered structure locally in the crystal structure, thereby increasing the phase purity of the phosphor of this embodiment. This is because by-product of this structure is also suppressed, so that the emission intensity is improved and the temperature characteristics are improved.
  • At least one of the peak intensity of the peak having the area 1 (I 1) is the ratio (I 1 / I max) with respect to the strongest peak intensity (I max), typically 0.10 or more, preferably 0.15 or more, further Preferably it is 0.20 or more, Most preferably, it is 0.25 or more.
  • At least one of the peak intensity of the peak having the area 2 (I 2) is the ratio (I 2 / I max) with respect to the strongest peak intensity (I max), typically 0.10 or more, preferably 0.15 or more, further Preferably it is 0.20 or more.
  • At least one peak intensity (I 3 ) of the peaks in the region 3 is a ratio (I 5 / I max ) to the strongest peak intensity (I max ), usually 0.05 or more, preferably 0.10 or more, The strength is preferably 0.20 or more, particularly preferably 0.30 or more.
  • at least two peak intensities (I 4a , I 4b ) are ratios (I 4a / I max ) and (I 4b / I max ) with respect to the strongest peak intensity (I max ).
  • the strength is 0.05 or more, preferably 0.10 or more, more preferably 0.15 or more, further preferably 0.20 or more, and further preferably 0.30 or more.
  • At least one peak intensity (I 5 ) is a ratio (I 5 / I max ) to the strongest peak intensity (I max ), Usually, it is 0.35 or more, preferably 0.40 or more, more preferably 0.45 or more.
  • at least one peak intensity (I 6 ) among the peaks in the region 6 (16.50 ° ⁇ 2 ⁇ ⁇ 19.00 °) is a ratio to the strongest peak intensity (I max ) ( I 6 / I max ), which is usually 0.30 or less, preferably 0.20 or less, more preferably 0.10 or less, and particularly preferably 0.05 or less.
  • the raw materials, the phosphor production method, and the like for obtaining the phosphor of this embodiment are as follows.
  • the method for producing the phosphor of the present embodiment is not particularly limited.
  • the raw material of the element M as an activation element hereinafter referred to as “M source” as appropriate
  • the raw material of the element A hereinafter referred to as “A source” as appropriate
  • a raw material of elemental Al hereinafter referred to as “Al source” as appropriate
  • Si source a raw material of elemental Si
  • the raw material of the element Eu may be referred to as “Eu source”
  • the raw material of the element Sm may be referred to as “Sm source”.
  • Phosphor raw materials that is, M source, A source, Al source and Si source
  • Phosphor raw materials include metals, alloys, and elements of M element, A element, Al and Si
  • Examples include imide compounds, oxynitrides, nitrides, oxides, hydroxides, carbonates, nitrates, sulfates, oxalates, carboxylates, and halides. From these compounds, the reactivity to the composite oxynitride and the low generation amount of NOx, SOx, etc. during firing may be selected as appropriate.
  • M source Of the M sources, specific examples of Eu sources include Eu 2 O 3 , Eu 2 (SO 4 ) 3 , Eu 2 (C 2 O 4 ) 3 ⁇ 10H 2 O, EuCl 2 , EuCl 3 , Eu (NO 3 ) 3 ⁇ 6H 2 O, EuN , EuNH and the like. Of these, Eu 2 O 3 , EuN and the like are preferable, and EuN is particularly preferable.
  • raw materials of other activating elements such as Sm source, Tm source, Yb source, etc., compounds in which Eu is replaced with Sm, Tm, Yb, etc. in the respective compounds listed as specific examples of Eu source Is mentioned.
  • a source examples of the Sr source include SrO, Sr (OH) 2 .8H 2 O, SrCO 3 , Sr (NO 3 ) 2 , SrSO 4 , Sr (C 2 O 4 ) ⁇ H 2 O, Sr (OCOCH 3 ) 2 ⁇ 0.5H 2 O, SrCl 2 , Sr 3 N 2 , SrNH and the like can be mentioned.
  • SrO, SrCO 3 , Sr 2 N, and Sr 3 N 2 are preferable, and Sr 2 N and Sr 3 N 2 are particularly preferable.
  • those having a small particle size from the viewpoint of reactivity and high purity from the viewpoint of light emission efficiency are preferable.
  • Specific examples of other alkaline earth metal element materials such as a Ba source, a Ca source, and a Mg source include Sr in, for example, Ba, Ca, Mg, etc. The compound replaced with is mentioned.
  • Al source Specific examples of the Al source include AlN, Al 2 O 3 , Al (OH) 3 , AlOOH, Al (NO 3 ) 3 and the like. Among these, AlN and Al 2 O 3 are preferable, and AlN is particularly preferable. Moreover, as AlN, the thing with a small particle size from a reactive point and a high purity from the point of luminous efficiency is preferable. Specific examples of other trivalent element materials include compounds in which Al is replaced with B, Ga, In, Sc, Y, La, Gd, Lu, etc. in each of the compounds listed as specific examples of the Al source. Can be mentioned.
  • the Al source may be single Al.
  • Si source As a specific example of the Si source, it is preferable to use SiO 2 or Si 3 N 4 . It is also possible to use a compound as a SiO 2. Specific examples of such a compound include SiO 2 , H 4 SiO 4 , Si (OCOCH 3 ) 4 and the like. Further, Si 3 N 4 is preferably one having a small particle diameter and high purity in terms of light emission efficiency from the viewpoint of reactivity. Furthermore, the thing with few content rates of the carbon element which is an impurity is preferable. Specific examples of other raw materials for tetravalent elements include compounds in which Si is replaced by Ge, Ti, Zr, Hf, etc. in the respective compounds listed as specific examples of the Si source. The Si source may be single Si.
  • each of the above-described M source, A source, Al source, and Si source may be used alone or in combination of two or more in any combination and ratio.
  • the mixing method is not particularly limited, and may be either a dry mixing method or a wet mixing method.
  • the dry mixing method include a ball mill.
  • a solvent or dispersion medium such as water is added to the above-described phosphor raw material, mixed using a mortar and pestle, and in a solution or slurry state, spray drying, heat drying, Alternatively, it is a method of drying by natural drying or the like.
  • the obtained mixture is filled in a heat-resistant container such as a crucible or a tray made of a material having low reactivity with each phosphor raw material.
  • a heat-resistant container such as a crucible or a tray made of a material having low reactivity with each phosphor raw material.
  • the material of the heat-resistant container used at the time of firing is not particularly limited as long as the effects of the present embodiment are not impaired, and examples thereof include a crucible such as boron nitride.
  • the firing temperature varies depending on other conditions such as pressure, the firing can be usually performed in a temperature range of 1800 ° C. or more and 2200 ° C. or less.
  • the maximum temperature reached in the firing step is usually 1800 ° C. or higher, preferably 1900 ° C. or higher, and usually 2200 ° C. or lower, preferably 2150 ° C. or lower, more preferably 2100 ° C. or lower. If the calcination temperature is too high, nitrogen will fly and tend to produce defects in the host crystal and color, while if it is too low, the progress of the solid phase reaction will tend to be slow, making it difficult to obtain the target phase as the main phase. .
  • the firing temperature or the like it is usually 0.2 MPa or more, preferably 0.4 MPa or more, and is usually 200 MPa or less, preferably 190 MPa or less.
  • 0.8 MPa or more is preferable, more preferably 10 MPa or more, further preferably 50 MPa or more, and further preferably 100 MPa or more, 150 MPa or more is particularly preferable.
  • it is preferably 190 MPa or less, more preferably 50 MPa or less, further preferably 10 MPa or less, and particularly preferably 1.0 MPa or less.
  • the highest temperature achieved during firing is usually 1800 ° C. or higher, preferably 1900 ° C. or higher, more preferably 2000 ° C. or higher, and usually 2200 ° C. or lower, preferably 2150 ° C. Hereinafter, more preferably 2100 ° C. or less.
  • the firing temperature is less than 1800 ° C., the solid phase reaction does not proceed, so that only the impurity phase or the unreacted phase appears, and it may be difficult to obtain the target phase as the main phase.
  • the heating rate in the firing step is usually 2 ° C./min or more, preferably 5 ° C./min or more, more preferably 10 ° C./min or more, and usually 30 ° C./min or less, preferably 25 ° C./min or less. It is. If the rate of temperature rise is below this range, the firing time may be long. In addition, if the rate of temperature rise exceeds this range, the firing device, container, etc. may be damaged.
  • the firing atmosphere in the firing step is arbitrary as long as the phosphor of this embodiment is obtained, but a nitrogen-containing atmosphere is preferable. Specific examples include a nitrogen atmosphere and a hydrogen-containing nitrogen atmosphere, and a nitrogen atmosphere is particularly preferable.
  • the oxygen content in the firing atmosphere is usually 10 ppm or less, preferably 5 ppm or less.
  • Calcination time varies depending on the temperature and pressure at the time of calcination, but is usually 10 minutes or more, preferably 30 minutes or more, and usually 72 hours or less, preferably 12 hours or less. If the firing time is too short, grain formation and grain growth cannot be promoted, so that a phosphor with good characteristics cannot be obtained. If the firing time is too long, volatilization of the constituent elements is promoted, so atomic deficiency As a result, defects may be induced in the crystal structure and a phosphor having good characteristics may not be obtained.
  • the firing conditions may be the same or different between the first firing and the second firing.
  • the highest temperature reached in the first baking step is preferably lower than the maximum temperature in the second baking step.
  • the obtained fired product is pulverized, pulverized, and / or classified into a powder having a predetermined size.
  • D 50 is less than about 30 [mu] m.
  • Specific examples of the treatment include a method of subjecting the synthesized product to sieve classification with an opening of about 45 ⁇ m, and passing the powder that has passed through the sieve to the next step, or the synthesized product to a general method such as a ball mill, a vibration mill, or a jet mill.
  • pulverizing to a predetermined particle size using a grinder is mentioned. In the latter method, excessive pulverization not only generates fine particles that easily scatter light, but also generates crystal defects on the particle surface, which may cause a decrease in luminous efficiency.
  • the phosphor of this embodiment may be formed by a so-called alloy method in which a constituent metal element is alloyed in advance and nitrided.
  • the phosphor according to the first embodiment of the present invention can be used by mixing with a liquid medium.
  • a liquid medium when the phosphor according to the first embodiment of the present invention is used for a light emitting device or the like, it is preferable to use the phosphor in a form dispersed in a liquid medium.
  • What dispersed the fluorescent substance which concerns on 1st embodiment of this invention in the liquid medium as one embodiment of this invention is suitably with "the fluorescent substance containing composition which concerns on one embodiment of this invention", etc. Shall be called.
  • the phosphor according to the first embodiment of the present invention to be contained in the phosphor-containing composition of the present embodiment may be only one type, or two or more types may be used in combination in any combination and ratio. Also good.
  • the phosphor-containing composition of the present embodiment may contain a phosphor other than the phosphor according to the first embodiment of the present invention as long as the effects of the present embodiment are not significantly impaired.
  • the liquid medium used in the phosphor-containing composition of the present embodiment is not particularly limited as long as the performance of the phosphor is not impaired within the intended range.
  • any inorganic material and any material can be used as long as it exhibits liquid properties under the desired use conditions, suitably disperses the phosphor according to the first embodiment of the present invention, and does not cause an undesirable reaction.
  • An organic material can be used, and examples thereof include a silicone resin, an epoxy resin, and a polyimide silicone resin.
  • the phosphor and the liquid medium content in the phosphor-containing composition of the present embodiment are arbitrary as long as the effects of the present embodiment are not significantly impaired, but for the liquid medium, the phosphor-containing composition of the present embodiment.
  • the total amount is usually 50% by weight or more, preferably 75% by weight or more, and usually 99% by weight or less, preferably 95% by weight or less.
  • the fluorescent substance containing composition of this embodiment may contain other components other than a fluorescent substance and a liquid medium, unless the effect of this embodiment is impaired remarkably.
  • 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and a ratio.
  • a second embodiment of the present invention is a light-emitting device including a first light emitter (excitation light source) and a second light emitter that emits visible light when irradiated with light from the first light emitter.
  • the second luminous body contains the phosphor according to the first embodiment of the present invention.
  • any one of the phosphors according to the first embodiment of the present invention may be used alone, or two or more thereof may be used in any combination and ratio.
  • the phosphor according to the first embodiment of the present invention for example, a phosphor that emits fluorescence in a blue or green region under irradiation of light from an excitation light source is used.
  • the blue to green phosphor in the first embodiment of the present invention preferably has a light emission peak in a wavelength range of 500 nm or more and 560 nm or less.
  • the excitation source one having an emission peak in a wavelength range of less than 420 nm may be used.
  • the phosphor according to the first embodiment of the present invention has a light emission peak in a wavelength range of 500 nm to 560 nm, and the first light emitter has a light emission peak in a wavelength range of 350 nm to 460 nm.
  • this embodiment is not limited thereto.
  • the light-emitting device of this embodiment can be set as follows, for example. That is, as the first phosphor, a phosphor having an emission peak in the wavelength range of 350 nm to 460 nm is used, and the first phosphor of the second phosphor has an emission peak in the wavelength range of 500 nm to 560 nm. A phosphor having an emission peak in the wavelength range of 580 nm to 680 nm as the second phosphor of the second phosphor using at least one phosphor (the phosphor according to the first embodiment of the present invention). An embodiment using (red phosphor) can be employed.
  • the following fluorescent substance is used suitably, for example.
  • the Mn-activated fluoride phosphor include, for example, K 2 (Si, Ti) F 6 : Mn, K 2 Si 1-x Na x Al x F 6 : Mn (0 ⁇ x ⁇ 1) (collectively KSF fluorescence) body),
  • sulfide phosphors include (Sr, Ca) S: Eu (CAS phosphor), La 2 O 2 S: Eu (LOS phosphor),
  • the garnet phosphor include (Y, Lu, Gd, Tb) 3 Mg 2 AlSi 2 O 12 : Ce,
  • nanoparticles include CdSe
  • Examples of the nitride or oxynitride phosphor include (Sr, Ca) AlSiN 3 : Eu (S / CASN phosphor), (CaAlSiN 3 ) 1-x ⁇ (SiO 2 N 2 ) x :
  • the red phosphor is preferably a KSF phosphor or an S / CASN phosphor.
  • a phosphor having a light emission peak in the range of 550 to 580 nm may be used.
  • the following phosphors are preferably used as the yellow phosphor.
  • Examples of the garnet phosphor include (Y, Gd, Lu, Tb, La) 3 (Al, Ga) 5 O 12 : (Ce, Eu, Nd),
  • Examples of the orthosilicate include (Ba, Sr, Ca, Mg) 2 SiO 4 : (Eu, Ce)
  • Examples of (acid) nitride phosphors include (Ba, Ca, Mg) Si 2 O 2 N 2 : Eu (SION phosphor), (Li, Ca) 2 (Si, Al) 12 (O, N 16 : (Ce, Eu) ( ⁇ -sialon phosphor), (Ca, Sr) AlSi 4 (O, N) 7 : (Ce, Eu) (1147 phosphor), (La, Ca, Y) 3 ( Al, Si) 6 N 11 : Ce (LSN phosphor) Etc.
  • the phosphor is preferably a garnet phosphor, and most preferably a YAG phosphor represented by Y 3 Al
  • the green phosphor may include a phosphor other than the phosphor according to the first embodiment of the present invention.
  • the following phosphors are preferably used.
  • the garnet phosphor include (Y, Gd, Lu, Tb, La) 3 (Al, Ga) 5 O 12 : (Ce, Eu, Nd), Ca 3 (Sc, Mg) 2 Si 3 O 12. : (Ce, Eu) (CSMS phosphor),
  • the silicate phosphor include (Ba, Sr, Ca, Mg) 3 SiO 10 : (Eu, Ce), (Ba, Sr, Ca, Mg) 2 SiO 4 : (Ce, Eu) (BSS phosphor).
  • oxide phosphor for example, (Ca, Sr, Ba, Mg) (Sc, Zn) 2 O 4 : (Ce, Eu) (CASO phosphor)
  • oxide phosphor for example, (Ca, Sr, Ba, Mg) (Sc, Zn) 2 O 4 : (Ce, Eu) (CASO phosphor)
  • (acid) nitride phosphors include (Ba, Sr, Ca, Mg) Si 2 O 2 N 2 : (Eu, Ce), Si 6-z Al z O z N 8-z : (Eu, Ce) ( ⁇ -sialon phosphor) (0 ⁇ z ⁇ 1), (Ba, Sr, Ca, Mg, La) 3 (Si, Al) 6 O 12 N 2 : (Eu, Ce) (BSON phosphor)
  • As the aluminate phosphor for example, (Ba, Sr, Ca, Mg) 2 Al 10 O 17 : (Eu, Mn)
  • the light emitting device of this embodiment has a first light emitter (excitation light source) and uses at least the phosphor according to the first embodiment of the present invention as the second light emitter,
  • the configuration is not limited, and a known device configuration can be arbitrarily employed.
  • Examples of the device configuration and the light emitting device include those described in Japanese Patent Application Laid-Open No. 2007-291352.
  • examples of the form of the light emitting device include a shell type, a cup type, a chip on board, a remote phosphor, and the like.
  • the use of the light-emitting device according to the second embodiment of the present invention is not particularly limited and can be used in various fields where a normal light-emitting device is used, but has a wide color reproduction range and color rendering properties. In particular, it is particularly preferably used as a light source for illumination devices and image display devices.
  • a third embodiment of the present invention is an illumination device including the light emitting device according to the second embodiment of the present invention as a light source.
  • the light-emitting device according to the second embodiment of the present invention is applied to a lighting device, the light-emitting device as described above may be appropriately incorporated into a known lighting device.
  • a surface emitting illumination device in which a large number of light emitting devices are arranged on the bottom surface of the holding case can be used.
  • the average color rendering index Ra of the emitted color is usually 60 or more, preferably 65 or more, more preferably 70 or more, and particularly preferably 75 or more.
  • the special color rendering index R9 of the emitted color is usually minus 10 or more, preferably minus 5 or more, more preferably 0 or more, particularly preferably 5 or more. .
  • the special color rendering index R9 is in the above range, an illumination device with good color rendering properties can be obtained.
  • an image display device comprising the light emitting device according to the second embodiment of the present invention as a light source.
  • the specific configuration of the image display device is not limited, but it is preferably used with a color filter.
  • the image display device is a color image display device using color liquid crystal display elements
  • the light emitting device is used as a backlight, a light shutter using liquid crystal, and a color filter having red, green, and blue pixels; By combining these, an image display device can be formed.
  • Luminescent characteristics The sample was packed in a copper sample holder, and the excitation emission spectrum and emission spectrum were measured using a fluorescence spectrophotometer FP-6500 (manufactured by JASCO). During the measurement, the slit width of the light-receiving side spectroscope was set to 1 nm and the measurement was performed. The emission peak wavelength (hereinafter sometimes referred to as “peak wavelength”) and the half width of the emission peak were read from the obtained emission spectrum.
  • peak wavelength The emission peak wavelength (hereinafter sometimes referred to as “peak wavelength”) and the half width of the emission peak were read from the obtained emission spectrum.
  • the chromaticity coordinates of the x, y color system (CIE 1931 color system) are obtained from the data in the wavelength region of 360 nm to 800 nm of the emission spectrum obtained by the above method, according to JIS Z8724.
  • the chromaticity coordinates CIEx and CIEy in the prescribed XYZ color system were calculated.
  • Crystal structure analysis X-ray diffraction data of single crystal particles was measured with a single crystal X-ray diffractometer (Rigaku, R-AXIS RAPID-II) equipped with an imaging plate and a graphite monochromator and using Mo K ⁇ as an X-ray source.
  • PROCESS-AUTO was used to collect data and refine the lattice constant
  • NUMABS was used to correct X-ray shape absorption.
  • the crystal structure parameters of the F 2 data were refined using SHELXL-97.
  • VESTA was used for drawing the crystal structure.
  • TOF-SIMS elemental analysis The crystals selected by SEM observation were subjected to time-of-flight secondary ion mass spectrometry (TOF-SIMS) under the following conditions to confirm the presence or absence of boron.
  • TOF-SIMS5 ION ⁇ ToF GmbH
  • phosphors were prepared as follows. . The raw materials were weighed with an electronic balance so as to have the weights shown in Table 1 below, placed in an alumina mortar, and ground and mixed until uniform. Further, 0.43 g of Mg 3 N 2 (manufactured by Shellac Co.) was added to this mixed powder, and further pulverized and mixed. These operations were performed in a glove box filled with Ar gas.
  • FIG. 1 shows an X-ray diffraction pattern obtained by conducting powder X-ray diffraction measurement on the phosphor of Example 1. It was confirmed that the XRD pattern of the phosphor of Example 1 was not a PDF but a novel phosphor.
  • Example 2 the result of SEM observation of the phosphor of Example 1 is shown in FIG.
  • elemental analysis EPMA measurement was performed in order to examine the constituent elements and their ratios.
  • the qualitative results of the composition analysis are shown in FIG. 3, and the quantitative results (average values) are shown in Table 2 below.
  • the Si / Al site was assumed to be a ratio of 0.8 / 0.2, and this atomic coordinate was used.
  • Eu is presumed to partially substitute Sr sites in the crystal structure.
  • Table 4 The numbers in parentheses represent standard deviations.
  • the X-ray diffraction pattern was simulated based on the coordinates obtained by structural analysis, and the chemical composition of the phosphor obtained in Example 1 was determined in view of the composition ratio calculated from the composition analysis result and the electron density. It was determined as Sr 0.97 Eu 0.03 AlSi 4 N 7 .
  • the initial value is the lattice constant obtained by structural analysis of the phosphor single crystal of Example 1, and the results of refinement of the lattice constant of the phosphor of Example 1 powdered from the XRD pattern of FIG. Table 5 shows. A value almost coincident with the lattice constant obtained by single crystal X-ray diffraction was obtained, and it was confirmed that there was little variation for each crystal.
  • the phosphor of Example 1 was packed in the capillary, and the measurement was performed by rotating the capillary during the measurement. From this measurement result, it was confirmed that the crystal structure determined by the single crystal structure analysis was the phosphor of Example 1. Further, when compared with the pattern of FIG. 4 measured by the reflection method, the peak intensity ratio partially changed, suggesting the influence of crystal-derived selective orientation.
  • the measurement results of the excitation / emission spectrum of the phosphor of Example 1 are shown in FIG.
  • the excitation spectrum is a measurement result when emission at 540 nm is monitored and the emission spectrum is excited at 450 nm.
  • the phosphor of Example 1 showed an emission spectrum having an emission peak wavelength of 541 nm and a half-value width of 66 nm, and was confirmed to emit green light. Further, an excitation spectrum having a peak at 460 nm and showing that excitation is possible in a wide wavelength range from 300 nm to 480 nm is shown.
  • the phosphor of Example 1 has better temperature characteristics than the phosphor obtained in Comparative Example 1, and has a higher luminance maintenance rate especially at high temperatures. Was confirmed. More specifically, as shown in Table 7, the phosphor of Example 1 is nearly 20 points in a temperature range reached when used in an LED, such as 200 ° C., as compared with the conventional phosphor. It has a very remarkable effect of improving temperature characteristics.
  • Examples 2 to 4 Synthesis was performed in the same manner as in Example 1, except that each weight of the raw material was changed as shown in Table 8 below and that the amount of Mg 3 N 2 was changed from 0.43 g to 0.22 g. Thus, the phosphors of Examples 2 to 4 were obtained.
  • the phosphors of Examples 2 to 4 were measured by XRD. Among these, the result of having measured by XRD about the fluorescent substance of Example 2 and 4 is shown in FIG. It was confirmed that the phosphors of Examples 2 to 4 had a phase having the same crystal structure as that of the phosphor of Example 1. Table 9 shows the results obtained by refining each lattice constant and unit cell volume for the phase having the same crystal structure as Example 1 from the powder XRD patterns of the phosphors of Examples 2 and 4.
  • Table 10 shows the peak intensity (I) of the strongest peak in regions 1 to 5 (excluding the strongest peak intensity (I max ) in region 3) in the XRD measurement for the phosphor of Example 4. It summarizes the ratio (I / I max) with respect to the strongest peak intensity (I max). In the region 4, the ratio of the two peak intensities I 4a and I 4b to the strongest peak intensity (I max ) is shown.
  • Table 11 shows the atomic ratio of Sr: Ca: Al: Si and the amount of substitution of Ca measured for the phosphors of Examples 2 to 4 by EPMA.
  • the phosphors of Examples 2 to 4 had the same crystal phase as the phosphor of Example 1. From this, it was confirmed that a phosphor having the same crystal structure as in Example 1 and having a portion of Sr in the structure replaced with Ca was obtained. Further, emission spectra were measured when the phosphors of Examples 2 to 4 were excited with 400 nm light. The emission spectra of the phosphors of Examples 2 to 4 are summarized in FIG. 8, and the emission peak wavelength, half width and chromaticity are summarized in Table 12. As shown in Table 12, it can be seen that the emission color can be adjusted by replacing a part of Sr with Ca.
  • Example 5 In Example 1, the raw material and each weight of the raw material were changed as shown in Table 13 below, “Maintained at 2080 ° C.” was changed to “Maintain at 2000 ° C.”, and the amount of Mg 3 N 2 added was 0
  • the phosphors of Examples 5 and 6 were obtained by synthesizing in the same manner as in Example 1 except that .43 g was changed to 0.22 g.
  • the phosphors of Examples 5 and 6 were measured by XRD. Among these, the result of having measured by XRD about the fluorescent substance of Example 5 is shown in FIG. It was confirmed that the phosphor of Example 5 had a phase having the same crystal structure as that of the phosphor of Example 1. Table 14 shows the results of refining each lattice constant and unit cell volume for the phase having the same crystal structure as in Example 1 from the powder XRD pattern of the phosphor of Example 5.
  • Table 15 shows the peak intensity (I) of the strongest peak in the regions 1 to 5 (excluding the strongest peak intensity (I max ) in the region 3) in the XRD measurement for the phosphor of Example 5. It summarizes the ratio (I / I max) with respect to the strongest peak intensity (I max). In the region 4, the ratio of the two peak intensities I 4a and I 4b to the strongest peak intensity (I max ) is shown.
  • Table 16 shows Sr: Ba: Al: Si atomic ratios and substitution amounts of Ba, which were obtained by measuring the phosphors of Examples 5 and 6 by EDX.
  • the phosphors of Examples 5 and 6 had the same crystal phase as that of Example 1. From this, it was confirmed that a phosphor having the same crystal structure as the phosphor of Example 1 and having a portion of Sr in the structure replaced with Ba was obtained. Further, emission spectra were measured when the phosphors of Examples 5 and 6 were excited with 400 nm light. The emission spectrum of the phosphor of Example 5 is shown in FIG. 10, and the emission peak wavelength, half width and chromaticity are summarized in Table 17. As shown in Table 17, it can be seen that the emission color can be adjusted by substituting part Ba of Sr.
  • Example 7 and 8 In Example 1, the raw materials and the respective weights of the raw materials were changed as shown in Table 18 below, “maintained at 2080 ° C.” was changed to “maintain at 2000 ° C.”, and the amount of Mg 3 N 2 added was 0.
  • the phosphors of Examples 7 and 8 were obtained by synthesis in the same manner as in Example 1 except that the amount was changed from 0.43 g to 0.22 g.
  • the phosphors of Examples 7 and 8 were measured by XRD. Among these, the result of having measured by XRD about the fluorescent substance of Example 7 is shown in FIG. It was confirmed that the phosphors of Examples 7 and 8 had a phase having the same crystal structure as that of the phosphor of Example 1. Table 19 shows the results obtained by refining each lattice constant and unit cell volume for the phase having the same crystal structure as Example 1 from the powder XRD pattern of the phosphor of Example 7.
  • Table 20 shows the peak intensity (I) of the strongest peak in the regions 1 to 5 (excluding the strongest peak intensity (I max ) in the region 3) in the XRD measurement of the phosphor of Example 7. It summarizes the ratio (I / I max) with respect to the strongest peak intensity (I max). In the region 4, the ratio of the two peak intensities I 4a and I 4b to the strongest peak intensity (I max ) is shown.
  • Table 21 shows the atomic ratio of Sr: La: Al: Si and the amount of substitution of La measured for the phosphors of Examples 7 and 8 by EPMA.
  • the phosphors of Examples 7 and 8 had the same crystal phase as that of Example 1. From this, it was confirmed that a phosphor having the same crystal structure as in Example 1 and in which a part of Sr in the structure was replaced with La could be obtained. Further, the emission spectra when the phosphors of Examples 7 and 8 were excited with 400 nm light were measured. The emission spectra of the phosphors of Examples 7 and 8 are summarized in FIG. 12, and the emission peak wavelength, half width, and chromaticity are summarized in Table 22. As shown in Table 22, it can be seen that the emission color can be adjusted by substituting part La of Sr.
  • a light emitting device was manufactured using the phosphor-containing composition prepared above.
  • the phosphor-containing composition obtained above was injected into a 5050 size (5 mm square) ceramic package mounted with a 35 mil square InGaN-based blue LED. Thereafter, the phosphor-containing composition was cured by holding the light emitting device at 100 ° C. for 1 hour and then at 150 ° C. for 5 hours to obtain a light emitting device. The durability of the obtained light emitting device was evaluated by the lighting test described below.
  • the light emitting device using the phosphor according to the first embodiment of the present invention has a very small ⁇ y. That is, the light emitting device using the phosphor according to the first embodiment of the present invention is excellent in durability.
  • an emission spectrum obtained by subtracting the spectrum of the excitation light source from the actual measurement data of the blue LED and the actual emission spectrum of the examples and the phosphors described above when excited at a wavelength of 450 nm was prepared.
  • the spectrum obtained by multiplying the light emitting device by an arbitrary ratio so as to indicate the color temperature of 3000K, 4000K, and 5000K is added, and the one spectrum calculated as a white spectrum Derived.
  • each optical characteristic evaluation item was as follows.
  • (I) The xy chromaticity coordinates on the CIE 1931 chromaticity diagram were calculated based on JIS Z8724: 1997 (title: color measurement method—light source color—).
  • (Ii) Based on the result of (i) above, after conversion to uv chromaticity coordinates on the CIE 1960 UCS chromaticity diagram, JIS Z8725: 1999 (title: measurement of light source distribution temperature and color temperature / correlated color temperature) Method) and the correlated color temperature (Kelvin) and Duv were calculated.
  • (Iii) The color rendering index (Ra, R1 to R15) was calculated from the white spectrum based on JIS Z8726: 1990 (title: color rendering property evaluation method of light source).
  • Example 10 The white LED spectrum of the light-emitting device of Example 10 was obtained by adjusting the emission spectrum intensity of each phosphor so as to exhibit a color temperature of 3000K.
  • the white LED spectrum of the light emitting device of Example 10 is shown in FIG. Ra showed 78.
  • the light emitting efficiency of the light emitting device of Example 10 when the absorption efficiency of the phosphor of Example 1 excited by excitation at 455 nm is 85%, the internal quantum efficiency is 89%, and D50 is 15.4 ⁇ m is 181.2. lm / W.
  • Table 24 The results of these simulations are summarized in Table 24.
  • Example 11 The white LED spectrum of the light emitting device of Example 11 was obtained by adjusting the emission spectrum intensity of each phosphor so as to exhibit a color temperature of 4000K. A white LED spectrum of the light emitting device of Example 11 is shown in FIG. Ra showed 76. The light emission efficiency of the light emitting device of Example 11 when the absorption efficiency of the phosphor of Example 1 excited by excitation at 455 nm is 85%, the internal quantum efficiency is 89%, and D50 is 15.4 ⁇ m is 192.6. lm / W. The results of these simulations are summarized in Table 24.
  • Example 12 The white LED spectrum of the light emitting device of Example 12 was obtained by adjusting the emission spectrum intensity of each phosphor so as to exhibit a color temperature of 5000K.
  • the white LED spectrum of the light emitting device of Example 12 is shown in FIG. Ra showed 75.
  • the light emission efficiency of the light emitting device of Example 12 when the absorption efficiency of the phosphor of Example 1 excited by 455 nm excitation is 85%, the internal quantum efficiency is 89%, and D50 is 15.4 ⁇ m is 196.1. lm / W.
  • Table 24 The results of these simulations are summarized in Table 24.
  • the light-emitting device using the phosphor according to the first embodiment of the present invention is suitable for an image display device, for example, because it has a wide chromaticity range.
  • Example 14 A white LED spectrum was simulated for a light emitting device in which the phosphor of Example 1 described above, the KSF phosphor BR301 / C (manufactured by Mitsubishi Chemical Corporation), and a blue LED (emission peak wavelength: 450 nm) were combined.
  • the derived white LED spectrum is shown in FIG.
  • the chromaticity range of the light-emitting device of Example 14 is shown in FIG.
  • the light emitting device using the phosphor according to the first embodiment of the present invention is suitable for an image display device or the like because of its wide chromaticity range.
  • the phosphor according to the first embodiment of the present invention not only provides a bright light-emitting device with good color reproducibility, but also in a region where the use temperature usually increases and the light emission intensity decreases. It is possible to provide a light emitting device with high emission intensity. That is, the light emitting device including the phosphor according to the first embodiment of the present invention, and the illumination device and the liquid crystal display device including the light emitting device are of high quality.

Abstract

発光スペクトルの半値幅が狭く、従来の蛍光体とは異なる結晶構造を有し、LED用途に有効に用いられる、新たな蛍光体の提供。 M元素、A元素、Al、Si、Nを含む単斜晶の結晶相を含む蛍光体であって、 該結晶相の格子定数が、各々、 a軸が、 7.7Å≦a≦8.51Å、 b軸が、8.64Å≦b≦9.55Å、 c軸が、8.53Å≦c≦9.43Å、 β角が、97.6°≦β≦115.6° を満たすことを特徴とする、蛍光体。 (但し、 M元素は、付活元素から選ばれる1種以上の元素を表し、 A元素は、アルカリ土類金属元素から選ばれる1種以上の元素を表す。)

Description

蛍光体、発光装置、照明装置及び画像表示装置
 本発明は、蛍光体、発光装置、照明装置、及び画像表示装置に関する。
 近年、省エネルギーの流れを受け、LEDを用いた照明やバックライトの需要が増加している。ここで用いられるLEDは、青または近紫外波長の光を発するLEDチップ上に、蛍光体を配置した白色発光LEDである。
 このようなタイプの白色発光LEDとしては、青色LEDチップ上に、青色LEDチップからの青色光を励起光として赤色に発光する窒化物蛍光体と緑色に発光する蛍光体を用いたものが近年用いられている。
 特に、ディスプレイ用途においては、これら青色、緑色及び赤色の3色の中で、緑色は人間の眼に対する視感度が特に高く、ディスプレイの全体の明るさに大きく寄与するため、他の2色に比べて、とりわけ重要であり、発光特性にすぐれた緑色蛍光体の開発が所望されている。
 緑色に発光する蛍光体として、例えば、広帯域蛍光体としては、BaSi12:Eu,Ceの組成式で表される複合酸窒化物などが開発されている(特許文献1)。
国際公開第2007/088966号パンフレット
 上記したように様々な蛍光体が開発されているが、例えば、ディスプレイ用途では、演色性の観点から等、発光スペクトルの半値幅が狭い蛍光体が所望されている。
 本発明は、上記課題に鑑みて、発光スペクトルの半値幅が狭く、従来の蛍光体とは異なる結晶構造を有し、LED用途に有効に用いられる新たな蛍光体を提供する。
 本発明者等は上記課題に鑑み、蛍光体の新規探索を鋭意検討したところ、従来の蛍光体とは異なる結晶構造を有し、LED用途に有効に用いられる新たな蛍光体に想到し本発明を完成させた。
 本発明は以下の通りである。
<1>
 M元素、A元素、Al、Si、Nを含む単斜晶の結晶相を含む蛍光体であって、
 該結晶相の格子定数が、各々、
 a軸が、 7.7Å≦a≦8.51Å、
 b軸が、8.64Å≦b≦9.55Å、
 c軸が、8.53Å≦c≦9.43Å、
 β角が、97.6°≦β≦115.6°
を満たすことを特徴とする、蛍光体。
(但し、
 M元素は、付活元素から選ばれる1種以上の元素を表し、
 A元素は、アルカリ土類金属元素から選ばれる1種以上の元素を表す。)
<2>
 前記結晶相が、下記式[1]で表される組成を有することを特徴とする、<1>に記載の蛍光体。
 MAlSi [1]
 (上記式[1]中、
 M元素は、付活元素から選ばれる1種以上の元素を表し、
 A元素は、アルカリ土類金属元素から選ばれる1種以上の元素を表し、
 m、a、b、c、dは、各々独立に、下記式を満たす値である。
    0<m≦0.2
    m+a=1
  0.8≦b≦1.2
  3.2≦c≦4.8
  5.6≦d≦8.4)
<3>
 A元素が、Ca及び/又はSrを含むことを特徴とする、<1>又は<2>に記載の蛍光体。
<4>
 M元素が、Euを含むことを特徴とする、<1>~<3>のいずれかに記載の蛍光体。
<5>
 350nm以上、460nm以下の波長を有する励起光を照射することにより、500nm以上、560nm以下の範囲に発光ピーク波長を有することを特徴とする、<1>~<4>のいずれかに記載の蛍光体。
<6>
 第1の発光体と、該第1の発光体からの光の照射によって可視光を発する第2の発光体とを備え、該第2の発光体が<1>~<5>のいずれかに記載の蛍光体を含むことを特徴とする発光装置。
<7>
 <6>に記載の発光装置を光源として備えることを特徴とする照明装置。
<8>
 <6>に記載の発光装置を光源として備えることを特徴とする画像表示装置。
 本発明の新規蛍光体は、発光スペクトルの半値幅が狭く、従来の蛍光体とは異なる結晶構造を有し、LED用途に有効に用いられる。
 その為、本発明の新規蛍光体を用いた発光装置は、演色性に優れる。更に、本発明の発光装置を含む、照明装置及び画像表示装置は、高品質である。
実施例1で得られた蛍光体の粉末X線回折(XRD)パターンを示す図である。 実施例1で得られた蛍光体の走査型電子顕微鏡による画像である(図面代用写真)。 実施例1で得られた蛍光体のEPMA測定結果を示す図である。尚、Cのピークはコーティングに起因するものである。 実施例1で得られた蛍光体におけるシミュレーションにより得られたXRDパターンと透過法による粉末X線回折パターンを示す図である。 実施例1で得られた蛍光体の励起・発光スペクトルを示す図である。破線は、励起スペクトルを表し、実線は、発光スペクトルを表す。 実施例1で得られた蛍光体及び比較例1の蛍光体の温度特性(25℃での発光ピーク強度を100%としたときの相対強度)を示す図である。 実施例2、4で得られた蛍光体のXRDパターンを示す図である。 実施例2~4で得られた蛍光体の発光スペクトルを示す図である。 実施例5で得られた蛍光体のXRDパターンを示す図である。 実施例5で得られた蛍光体の発光スペクトルを示す図である。 実施例7で得られた蛍光体のXRDパターンを示す図である。 実施例7、8で得られた蛍光体の発光スペクトルを示す図である。 実施例10の発光装置でシミュレーションにより算出した発光スペクトル図である。 実施例11の発光装置でシミュレーションにより算出した発光スペクトル図である。 実施例12の発光装置でシミュレーションにより算出した発光スペクトル図である。 実施例13の発光装置でシミュレーションにより算出した発光スペクトル図である。 実施例13の発光装置でシミュレーションにより算出した色度域である。 実施例14の発光装置でシミュレーションにより算出した発光スペクトル図である。 実施例14の発光装置でシミュレーションにより算出した色度域である。
 以下、本発明について実施形態や例示物を示して説明するが、本発明は以下の実施形態や例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変形して実施することができる。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。また、本明細書中の蛍光体の組成式において、各組成式の区切りは読点(、)で区切って表わす。また、カンマ(,)で区切って複数の元素を列記する場合には、列記された元素のうち一種又は二種以上を任意の組み合わせ及び組成で含有していてもよいことを示している。例えば、「(Ca,Sr,Ba)Al:Eu」という組成式は、「CaAl:Eu」と、「SrAl:Eu」と、「BaAl:Eu」と、「Ca1-xSrAl:Eu」と、「Sr1-xBaAl:Eu」と、「Ca1-xBaAl:Eu」と、「Ca1-x-ySrBaAl:Eu」(但し、式中、0<x<1、0<y<1、0<x+y<1である。)とを全て包括的に示しているものとする。
 本発明は、第一の実施態様である蛍光体、第二の実施態様である発光装置、第三の実施態様である照明装置、第四の実施態様である画像表示装置を含む。
<蛍光体について>
 本発明の第一の実施態様に係る蛍光体は、M元素、A元素、Al、Si、Nを含む単斜晶の結晶相を含む蛍光体であって、該結晶相の格子定数が、各々、a軸が、7.7Å≦a≦8.51Å、b軸が、8.64Å≦b≦9.55Å、c軸が、8.53Å≦c≦9.43Å、β角が、97.6°≦β≦115.6°を満たす蛍光体である。但し、M元素は、付活元素から選ばれる1種以上の元素を表し、A元素は、アルカリ土類金属元素から選ばれる1種以上の元素を表す。
 M元素は、ユーロピウム(Eu)、マンガン(Mn)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)及びイッテルビウム(Yb)からなる群から選ばれる1種以上の元素を表す。Mは、少なくともEuを含むことが好ましく、Euであることがより好ましい。
 さらに、Euは、その全部又は一部がCe、Pr、Sm、Tb及びYbよりなる群から選ばれる少なくとも1種の元素で置換されていてもよく、発光量子効率の点でCeがより好ましい。
 つまり、Mは、Eu及び/又はCeであることが更に好ましく、より好ましくはEuである。
 付活元素全体に対するEuの割合は、50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上が特に好ましい。
 A元素は、アルカリ土類金属元素から選ばれる1種以上の元素を表す。アルカリ土類金属元素としては、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)が好ましく、Ca、Sr、Baであることがさらに好ましく、Ca及び/又はSrであることがより好ましく、Srであることが特に好ましい。これらの元素は、その他の2価の金属、例えば、亜鉛(Zn)で一部置換されていてもよい。
 これらの元素は希土類元素で一部置換されていてもよい。置換する希土類元素としてはランタン(La)、イットリウム(Y)、ルテチウム(Lu)が好ましく、ランタン(La)、イットリウム(Y)、であることがより好ましく、ランタン(La)であることが特に好ましい。
 Alは、アルミニウムを表す。Alは、化学的に類似するその他の3価の元素、例えば、ホウ素(B)、ガリウム(Ga)、インジウム(In)、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、ガドリニウム(Gd)、ルテチウム(Lu)などで一部置換されていてもよい。
 Siは、ケイ素を表す。Siは、化学的に類似するその他の4価の元素、例えば、ゲルマニウム(Ge)、スズ(Sn)、チタニウム(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)などで一部置換されていてもよい。
 式(1)中、Nは、窒素元素を表す。Nは、一部その他の元素、例えば、酸素(O)、ハロゲン原子(フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I))等で置換されていてもよい。
 尚、酸素は、原料金属中の不純物として混入する場合、粉砕工程、窒化工程などの製造プロセス時に導入される場合などが考えられ、本実施態様の蛍光体においては不可避的に混入してしまうものである。
 また、ハロゲン原子が含まれる場合、原料金属中の不純物としての混入や、粉砕工程、窒化工程などの製造プロセス時に導入される場合などが考えられ、特に、フラックスとしてハロゲン化物を用いる場合、蛍光体中に含まれてしまう場合がある。
 本発明の第一の実施態様に係る蛍光体は、上記の蛍光体の中でも、その結晶相が下記式[1]で表される組成を有することが好ましい。
 MAlSi [1]
(上記式[1]中、
 M元素は、付活元素から選ばれる1種以上の元素を表し、
 A元素は、アルカリ土類金属元素から選ばれる1種以上の元素を表し、
 m、a、b、c、dは、各々独立に、下記式を満たす値である。
    0<m≦0.2
    m+a=1
  0.8≦b≦1.2
  3.2≦c≦4.8
  5.6≦d≦8.4)
 式[1]中のM元素、A元素、Al、Si、Nにおける態様及び好ましい態様は、既出の通りである。
 mは、付活元素Mの含有量を表し、その範囲は、通常0<m≦0.2であり、下限値は、好ましくは0.001、より好ましくは0.02、またその上限値は、好ましくは0.15、更に好ましくは0.1、特に好ましくは0.08である。
 aは、A元素の含有量を表す。
 mとaの相互の関係は、通常、
 m+a=1
 を満たす。
 bは、Alの含有量を表し、その範囲は、通常0.8≦b≦1.2であり、下限値は、好ましくは0.9、また上限値は、好ましくは1.1である。
 cは、Siの含有量を表し、その範囲は、通常3.2≦c≦4.8であり、下限値は、好ましくは3.6、より好ましくは3.8、また上限値は、好ましくは4.4、より好ましくは4.2である。
 dは、Nの含有量を表し、その範囲は、通常5.6≦d≦8.4であり、下限値は好ましくは6、より好ましくは6.3、また上限値は、好ましくは8、より好ましくは7.7である。
 いずれの含有量も、上記した範囲であると、得られる蛍光体の発光特性、特に発光輝度が良好である点で好ましい。
 本実施態様の蛍光体は、酸素が混入される場合であっても、結晶構造内のSi-Nが、Al-Oに一部置換されることによって、その結晶構造を維持することができる。即ち、上記範囲内であれば、結晶構造を保ったままであると考えられる。
<蛍光体の物性について>
[発光色]
 本実施態様の蛍光体の発光色は、化学組成等を調整することにより、波長300nm~500nmといった近紫外領域~青色領域の光で励起され、青色、青緑色、緑色、黄緑色、黄色、橙色、赤色等、所望の発光色とすることができる。
[発光スペクトル]
 本実施態様の蛍光体は、350nm以上、460nm以下の波長(特に、波長400nmもしくは450nm)の光で励起した場合における発光スペクトルを測定した場合に、以下の特性を有することが好ましい。
 本実施態様の蛍光体は、上述の発光スペクトルにおけるピーク波長が、通常500nm以上、好ましくは510nm以上、より好ましくは520nm以上である。また、通常560nm以下、好ましくは550nm以下、より好ましくは545nm以下である。
 上記範囲内であると、得られる蛍光体において、良好な緑色を呈するため、好ましい。
[発光スペクトルの半値幅]
 本実施態様の蛍光体は、上述の発光スペクトルにおける発光ピークの半値幅が、通常90nm以下、好ましくは80nm以下、より好ましくは70nm以下、また通常30nm以上、より好ましくは40nm以上である。
 即ち、本実施態様における「半値幅の狭い蛍光体」とは、発光ピークの半値幅が90nm以下である蛍光体を意味するものである。
 上記範囲内とすることで、液晶ディスプレイなどの画像表示装置に使用する場合には色純度を低下させずに画像表示装置の色再現範囲を広くすることができる。
 なお、本実施態様の蛍光体を波長400nmの光で励起するには、例えば、GaN系LEDを用いることができる。また、本実施態様の蛍光体の発光スペクトルの測定、並びにその発光ピーク波長、ピーク相対強度及びピーク半値幅の算出は、例えば、励起光源として150Wキセノンランプを、スペクトル測定装置としてマルチチャンネルCCD検出器C7041(浜松フォトニクス社製)を備える蛍光測定装置(日本分光社製)を用いて行うことができる。
[温度特性(発光強度維持率)]
 本実施態様の蛍光体は、温度特性にも優れる。具体的には、450nmの波長の光を照射した場合の、25℃での発光スペクトル図中の発光ピーク強度値に対する200℃での発光スペクトル図中の発光ピーク強度値の割合が、通常50%以上であり、好ましくは60%以上、特に好ましくは70%以上である。
 また、通常の蛍光体は温度上昇と共に発光強度が低下するので、該割合が100%を超えることは考えられにくいが、何らかの理由により100%を超えることがあってもよい。ただし100%を超えるようであれば、温度変化により色ずれを起こす傾向がある。
 尚、上記温度特性を測定する場合は、常法に従えばよく、例えば、特開2008-138156号公報に記載の方法などが挙げられる。
[励起波長]
 本実施態様の蛍光体は、通常300nm以上、好ましくは350nm以上、より好ましくは400nm以上、また、通常500nm以下、好ましくは480nm以下、より好ましくは460nm以下、特に好ましくは450nm以下の波長範囲に励起ピークを有する。即ち、近紫外から青色領域の光で励起される。
[CIE色度座標]
 本実施態様の蛍光体におけるCIE色度座標のx値は、通常0.275以上、好ましくは0.300以上、より好ましくは0.320以上、さらに好ましくは0.340以上であり、通常0.425以下、好ましくは0.400以下、より好ましくは0.380以下、さらに好ましくは0.360以下である。
 また、本実施態様の蛍光体のCIE色度座標のy値は、通常0.550以上、好ましくは0.575以上であり、通常0.675以下、好ましくは0.650以下、より好ましくは0.625以下である。
 CIE色度座標が上記の範囲にあることで、青色LEDおよび別の黄色蛍光体や赤色蛍光体組み合わせて使用する際に、演色性のよい発光色、好ましくは白色~電球色の発光を示す発光装置が得られる。
[量子効率]
 本実施形態の蛍光体における外部量子効率(η)は、通常40%以上、好ましくは45%以上、更に好ましくは50%以上、特に好ましくは55%以上である。外部量子効率は高いほど発光効率が高くなるため好ましい。
 本実施形態の蛍光体における内部量子効率(η)は、通常60%以上、好ましくは65%以上、さらに好ましくは70%以上、さらに好ましくは75%以上、特に好ましくは80%以上である。内部量子効率は、蛍光体が吸収した励起光の光子数に対する発光した光子数の比率を意味する。このため内部量子効率が高いほど発光効率や発光強度が高くなるため好ましい。
[格子定数]
 本実施態様の蛍光体の格子定数は、結晶を構成する元素の種類により変化するが、格子定数a、b、cについては、各々、下記の範囲である。
 a軸は、通常7.7Å以上、8.51Å以下の範囲であり、下限値は、好ましくは7.86Å、より好ましくは8.02Å、また上限値は、好ましくは8.35Å、より好ましくは8.18Åである。
 b軸は、通常8.64Å以上、9.55Å以下の範囲であり、下限値は、好ましくは8.82Å、より好ましくは9Å、また上限値は、好ましくは9.37Å、より好ましくは9.18Åである。
 c軸は、通常8.53Å以上、9.43Å以下の範囲であり、下限値は、好ましくは8.71Å、より好ましくは8.89Å、また上限値は、好ましくは9.25Å、より好ましくは9.07Åである。
 また、c軸に対するa軸の割合(a/c)は、好ましくは0.85以上、より好ましくは0.88以上、また好ましくは0.96以下、より好ましくは0.92以下である。
 β角は、97.6°以上、115.6°以下の範囲であり、下限値は、好ましくは99.6°、より好ましくは106.02°であり、上限値は、好ましくは113.6°、より好ましくは112.16°である。
 尚、いずれの場合も、上記範囲内であると、本実施態様に係る蛍光体が、安定的に生成され、不純物相の生成が抑制されている為、得られる蛍光体の発光輝度が良好である。
[単位格子体積]
 本実施態様の蛍光体における、格子定数から算出される単位格子体積(V)は、好ましくは、522.9Å以上、より好ましくは553.6Å以上、更に好ましくは612.0Å以上、また、好ましくは707.4Å以下、より好ましくは676.6Å以下、更に好ましくは645.9Å以下である。
 単位格子体積が大きすぎる、もしくは単位格子体積が小さすぎると骨格構造が不安定化して別の構造の不純物が副生するようになり、発光強度の低下や色純度の低下を招く傾向がある。
[結晶系と空間群]
 本実施態様の蛍光体における空間群は、単結晶X線回折にて区別しうる範囲において統計的に考えた平均構造が上記の長さの繰り返し周期を示していれば特に限定されないが、「International Tables for Crystallography(Third,revised edition),Volume A SPACE-GROUP SYMMETRY」に基づく4番(P2)に属するものであることが好ましい。
 ここで、格子定数及び空間群は常法に従って求めることできる。格子定数であれば、X線回折及び中性子線回折の結果をリートベルト(Rietveld)解析して求めることができ、空間群であれば、電子線回折により求めることができる。
 尚、本実施態様に係る蛍光体における結晶系は、単斜晶である。
[粉末X線回折(XRD)パターン]
 本実施態様の蛍光体は、CuKα線(1.5418Å)を用いて測定された粉末X線回折パターンにおいて下記に示す領域1~5にピークを有する。
 尚、領域4には少なくとも2つのピークを有する。また領域5にも少なくとも2つのピークを有し、そのうちの一つのピークは、粉末X線回折パターンにおいて最も高いピーク強度を有する。これを、最強ピーク強度:Imaxと定義する。ここで、ピーク強度はバックグラウンド補正を行って得た値である。
 領域1  14.73°≦2θ≦15.77°
 領域2  19.37°≦2θ≦20.95°
 領域3  26.00°≦2θ≦28.25°
 領域4  28.26°≦2θ≦30.29°
 領域5  30.30°≦2θ≦33.21°
 本実施態様において、領域1~5にピークを有するとは、ピークトップが、領域1~5の範囲内にあることを意味する。本実施態様において、領域1~5を特定することの理由は、本実施態様の蛍光体に特徴的なピークを選択したに過ぎない。尚、本実施態様の蛍光体では、結晶の形状によっては測定時に配向してしまい、X線回折パターンで確認できるピーク、確認できなくなってしまうピークが生じることがある。本実施態様における領域1、2、5に現れるピークは、配向しても特徴的に確認しうるピークである。
 本実施態様の蛍光体としては、X線回折や中性子線回折といった回折法により同定される結晶構造において、結晶構造内に層の積み重ねの周期と順序に不整が生じる積層不整が生じるなどの不規則構造を内包し、局所的に構造の乱れた部分を含んでいてもよい。
 この積層不整等の有無は単結晶構造解析において、X線回折パターン画像中におけるストリークの有無、もしくはTEM観察などにより確認することができる。このような局所的な不規則構造を有する場合、X線回折にて区別できる範囲内において統計的に考えた平均構造が周期的な繰り返しを示すこととなる。
 構造内の局所的な不規則構造の有無は特に限定はされないが、構造内で局所的に不規則構造を有し、構造内での平均化が行われることが好ましい。これは焼成時に生じる元素の揮発などによる組成ズレが、結晶構造内で局所的に不規則構造をとることで緩和、平均化されることにより、本実施態様の蛍光体の相純度が上がり、別の構造の副生も抑えられることから、発光強度が向上し、温度特性が良好になるためである。
 領域1に有するピークのうち少なくとも一つのピーク強度(I)は、最強ピーク強度(Imax)に対する比(I/Imax)で、通常0.10以上、好ましくは0.15以上、さらに好ましくは0.20以上、特に好ましくは0.25以上である。
 領域2に有するピークのうち少なくとも一つのピーク強度(I)は、最強ピーク強度(Imax)に対する比(I/Imax)で、通常0.10以上、好ましくは0.15以上、さらに好ましくは0.20以上である。
 領域3に有するピークのうち少なくとも一つのピーク強度(I)は、最強ピーク強度(Imax)に対する比(I/Imax)で、通常0.05以上、好ましくは0.10以上、さらに好ましくは0.20以上、特に好ましくは0.30以上の強度である。
 領域4に有するピークのうち少なくとも二つのピーク強度(I4a ,I4b)は、最強ピーク強度(Imax)に対する比(I4a/Imax),(I4b/Imax)で、いずれも、通常0.05以上、好ましくは0.10以上、さらに好ましくは0.15以上、さらに好ましくは0.20以上、さらに好ましくは0.30以上の強度である。
 領域5に有するピークであって、最強ピーク強度(Imax)を除いたうち、少なくとも一つのピーク強度(I)は、最強ピーク強度(Imax)に対する比(I/Imax)で、通常0.35以上、好ましくは0.40以上、さらに好ましくは0.45以上である。
 また本実施態様の蛍光体は、領域6(16.50°≦2θ≦19.00°)に有するピークのうち少なくとも一つのピーク強度(I)は、最強ピーク強度(Imax)に対する比(I/Imax)で、通常0.30以下、好ましくは0.20以下、さらに好ましくは0.10以下、特に好ましくは0.05以下である。
<蛍光体の製造方法>
 本実施態様の蛍光体を得るための、原料、蛍光体製造法等については以下の通りである。
 本実施態様の蛍光体の製造方法は特に制限されないが、例えば、付活元素である元素Mの原料(以下適宜「M源」という。)、元素Aの原料(以下適宜「A源」という。)、及び、元素Alの原料(以下適宜「Al源」という。)、元素Siの原料(以下適宜「Si源」という。)を混合し(混合工程)、得られた混合物を焼成する(焼成工程)ことにより製造することができる。
 また、以下では例えば、元素Euの原料を「Eu源」、元素Smの原料を「Sm源」などということがある。
[蛍光体原料]
 本実施態様の蛍光体の製造に使用される蛍光体原料(即ち、M源、A源、Al源及びSi源)としては、M元素、A元素、Al及びSiの各元素の金属、合金、イミド化合物、酸窒化物、窒化物、酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、カルボン酸塩、ハロゲン化物等が挙げられる。これらの化合物の中から、複合酸窒化物への反応性や、焼成時におけるNOx、SOx等の発生量の低さ等を考慮して、適宜選択すればよい。
(M源)
 M源のうち、Eu源の具体例としては、Eu、Eu(SO、Eu(C・10HO、EuCl、EuCl、Eu(NO・6HO、EuN、EuNH等が挙げられる。中でもEu、EuN等が好ましく、特に好ましくはEuNである。
 また、Sm源、Tm源、Yb源等のその他の付活元素の原料の具体例としては、Eu源の具体例として挙げた各化合物において、EuをそれぞれSm、Tm、Yb等に置き換えた化合物が挙げられる。
(A源)
 A源のうち、Sr源の具体例としては、SrO、Sr(OH)・8HO、SrCO、Sr(NO、SrSO、Sr(C)・HO、Sr(OCOCH・0.5HO、SrCl、Sr、SrNH等が挙げられる。中でも、SrO、SrCO、SrN、Srが好ましく、SrN、Srが特に好ましい。また、反応性の点から粒径が小さく、発光効率の点から純度の高いものが好ましい。
 また、Ba源、Ca源、Mg源などのその他のアルカリ土類金属元素の原料の具体例としては、上記Sr源の具体例として挙げた各化合物において、Srを例えば、Ba、Ca、Mg等に置き換えた化合物が挙げられる。
(Al源)
 Al源の具体例としては、AlN、Al、Al(OH)、AlOOH、Al(NO等が挙げられる。中でも、AlN、Alが好ましく、AlNが特に好ましい。また、AlNとして、反応性の点から、粒径が小さく、発光効率の点から純度の高いものが好ましい。
 その他の3価の元素の原料の具体例としては、上記Al源の具体例として挙げた各化合物において、AlをB、Ga、In、Sc、Y、La、Gd、Lu等に置き換えた化合物が挙げられる。なお、Al源は、単体のAlを用いてもよい。
(Si源)
 Si源の具体例としては、SiO又はSiを用いるのが好ましい。また、SiOとなる化合物を用いることもできる。このような化合物としては、具体的には、SiO、HSiO、Si(OCOCH等が挙げられる。また、Siとして反応性の点から、粒径が小さく、発光効率の点から純度の高いものが好ましい。さらに、不純物である炭素元素の含有割合が少ないものの方が好ましい。
 その他の4価の元素の原料の具体例としては、上記Si源の具体例として挙げた各化合物において、SiをそれぞれGe、Ti、Zr、Hf等に置き換えた化合物が挙げられる。なお、Si源は、単体のSiを用いてもよい。
 なお、上述したM源、A源、Al源及びSi源は、それぞれ、一種のみを用いてもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
[混合工程]
 目的組成が得られるように蛍光体原料を秤量し、ボールミル等を用いて十分混合したのち、ルツボに充填し、所定温度、雰囲気下で焼成し、焼成物を粉砕、洗浄することにより、本実施態様の蛍光体を得ることができる。
 上記混合手法としては、特に限定はされず、乾式混合法や湿式混合法のいずれであってもよい。
 乾式混合法としては、例えば、ボールミルなどが挙げられる。
 湿式混合法としては、例えば、前述の蛍光体原料に水等の溶媒又は分散媒を加え、乳鉢と乳棒、を用いて混合し、溶液又はスラリーの状態とした上で、噴霧乾燥、加熱乾燥、又は自然乾燥等により乾燥させる方法である。
[焼成工程]
 得られた混合物を、各蛍光体原料と反応性の低い材料からなるルツボ又はトレイ等の耐熱容器中に充填する。このような焼成時に用いる耐熱容器の材質としては、本実施態様の効果を損なわない限り特に制限はないが、例えば、窒化ホウ素などの坩堝が挙げられる。
 焼成温度は、圧力など、その他の条件によっても異なるが、通常1800℃以上、2200℃以下の温度範囲で焼成を行なうことができる。焼成工程における最高到達温度としては、通常1800℃以上、好ましくは1900℃以上、また、通常2200℃以下、好ましくは2150℃以下、より好ましくは2100℃以下である。
 焼成温度が高すぎると窒素が飛んで母体結晶に欠陥を生成し着色する傾向にあり、低すぎると固相反応の進行が遅くなる傾向にあり、目的相を主相として得にくくなる場合がある。
 焼成温度等によっても異なるが、通常0.2MPa以上、好ましくは0.4MPa以上であり、また、通常200MPa以下、好ましくは190MPa以下である。構成している元素、特にアルカリ土類金属元素の揮発を抑え、欠陥が生じるのを抑える場合は0.8MPa以上が好ましく、さらに10MPa以上が好ましく、さらに50MPa以上が好ましく、さらに100MPa以上が好ましく、特に150MPa以上が好ましい。また、吸収効率の高い蛍光体を得たい場合は190MPa以下が好ましく、さらに50MPa以下が好ましく、さらに10MPa以下が好ましく、特に1.0MPa以下が好ましい。
 焼成工程における圧力が10MPa以下で焼成する場合は焼成時の最高到達温度は、通常1800℃以上、好ましくは1900℃以上、より好ましく2000℃以上であり、また、通常2200℃以下、好ましくは2150℃以下、より好ましくは2100℃以下である。
 焼成温度が1800℃未満であると固相反応が進まないため不純物相もしくは未反応相のみが出現し、目的相を主相として得にくくなる場合がある。
 また、ごくわずかに目的の結晶相が得られたとしても、結晶内では発光中心となる元素、特にEu元素の拡散がされず量子効率を低下させる可能性がある。また、焼成温度が高すぎると目的の蛍光体結晶を構成する元素が揮発しやすくなり、格子欠陥を形成、もしくは分解し別の相が不純物として生じてしまう可能性が高い。
 焼成工程における昇温速度は、通常2℃/分以上、好ましくは5℃/分以上、より好ましくは10℃/分以上であり、また、通常30℃/分以下、好ましくは25℃/分以下である。昇温速度がこの範囲を下回ると、焼成時間が長くなる可能性がある。また、昇温速度がこの範囲を上回ると、焼成装置、容器等が破損する場合がある。
 焼成工程における焼成雰囲気は、本実施態様の蛍光体が得られる限り任意であるが、窒素含有雰囲気とすることが好ましい。具体的には、窒素雰囲気、水素含有窒素雰囲気等が挙げられ、中でも窒素雰囲気が好ましい。なお、焼成雰囲気の酸素含有量は、通常10ppm以下、好ましくは5ppm以下にするとよい。
 焼成時間は、焼成時の温度や圧力等によっても異なるが、通常10分間以上、好ましくは30分間以上、また、通常72時間以下、好ましくは12時間以下である。焼成時間が短すぎると粒生成と粒成長を促すことができないため、特性のよい蛍光体を得ることができず、焼成時間が長すぎると構成している元素の揮発が促されるため、原子欠損により結晶構造内に欠陥が誘発され特性のよい蛍光体を得ることができない場合がある。
 なお、焼成工程は、必要に応じて、複数回繰り返し行なってもよい。その際は、一回目の焼成と、二回目の焼成とで、焼成条件を同一にしてもよいし、異なるものにしてもよい。
 蛍光体生成時に原子が均一に拡散し、内部量子効率の高い蛍光体を焼成する場合や数μmの大きな粒子を得る場合は、繰り返し焼成が有効となる。この場合の第一の焼成工程の最高到達温度は第二の焼成工程での最高温度よりも低いことが好ましい。
[後処理工程]
 得られた焼成物を解砕、粉砕及び/又は分級操作を組み合わせて所定のサイズの粉末にする。ここでは、D50が約30μm以下になるように処理するとよい。
 具体的な処理の例としては、合成物を目開き45μm程度の篩分級処理し、篩を通過した粉末を次工程に回す方法、或いは合成物をボールミルや振動ミル、ジェットミル等の一般的な粉砕機を使用して所定の粒度に粉砕する方法が挙げられる。後者の方法において、過度の粉砕は、光を散乱しやすい微粒子を生成するだけでなく、粒子表面に結晶欠陥を生成し、発光効率の低下を引き起こす可能性がある。
 また、必要に応じて、蛍光体(焼成物)を洗浄する工程を設けてもよい。洗浄工程後は、蛍光体を付着水分がなくなるまで乾燥させて、使用に供する。さらに、必要に応じて、凝集をほぐすために分散・分級処理を行ってもよい。
 尚、本実施態様の蛍光体は、あらかじめ構成金属元素を合金化して、それを窒化して形成する、所謂、合金法で形成してもよい。
<蛍光体含有組成物>
 本発明の第一の実施態様に係る蛍光体は、液体媒体と混合して用いることもできる。特に、本発明の第一の実施態様に係る蛍光体を発光装置等の用途に使用する場合には、これを液体媒体中に分散させた形態で用いることが好ましい。本発明の第一の実施態様に係る蛍光体を液体媒体中に分散させたものを、本発明の一実施態様として、適宜、「本発明の一実施態様に係る蛍光体含有組成物」などと呼ぶものとする。
[蛍光体]
 本実施態様の蛍光体含有組成物に含有させる本発明の第一の実施態様に係る蛍光体の種類に制限は無く、上述したものから任意に選択することができる。また、本実施態様の蛍光体含有組成物に含有させる本発明の第一の実施態様に係る蛍光体は、1種のみであってもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。更に、本実施態様の蛍光体含有組成物には、本実施態様の効果を著しく損なわない限り、本発明の第一の実施態様に係る蛍光体以外の蛍光体を含有させてもよい。
[液体媒体]
 本実施態様の蛍光体含有組成物に使用される液体媒体としては、該蛍光体の性能を目的の範囲で損なわない限りにおいて特に限定されない。例えば、所望の使用条件下において液状の性質を示し、本発明の第一の実施態様に係る蛍光体を好適に分散させるとともに、好ましくない反応を生じないものであれば、任意の無機系材料及び/又は有機系材料が使用でき、例えば、シリコーン樹脂、エポキシ樹脂、ポリイミドシリコーン樹脂などが挙げられる。
[液体媒体及び蛍光体の含有率]
 本実施態様の蛍光体含有組成物中の蛍光体及び液体媒体の含有率は、本実施態様の効果を著しく損なわない限り任意であるが、液体媒体については、本実施態様の蛍光体含有組成物全体に対して、通常50重量%以上、好ましくは75重量%以上であり、通常99重量%以下、好ましくは95重量%以下である。
[その他の成分]
 なお、本実施態様の蛍光体含有組成物には、本実施態様の効果を著しく損なわない限り、蛍光体及び液体媒体以外に、その他の成分を含有させてもよい。また、その他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
<発光装置>
 本発明の第二の実施態様は、第1の発光体(励起光源)と、当該第1の発光体からの光の照射によって可視光を発する第2の発光体とを含む発光装置であって、該第2の発光体は本発明の第一の実施態様に係る蛍光体を含有する。ここで、本発明の第一の実施態様に係る蛍光体は、何れか1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 本発明の第一の実施態様に係る蛍光体としては、例えば、励起光源からの光の照射下において、青色ないし緑色領域の蛍光を発する蛍光体を使用する。具体的には、発光装置を構成する場合、本発明の第一の実施態様における青色ないし緑色蛍光体としては、500nm以上560nm以下の波長範囲に発光ピークを有するものが好ましい。
 尚、励起源については、420nm未満の波長範囲に発光ピークを有するものを用いてもよい。
 以下、本発明の第一の実施態様に係る蛍光体が、500nm以上560nm以下の波長範囲に発光ピークを有し、且つ第一の発光体が350nm以上460nm以下の波長範囲に発光ピークを有するものを用いる場合の、発光装置の態様について記載するが、本実施態様はこれらに限定されるものではない。
 上記の場合、本実施態様の発光装置は、例えば、次の態様とすることができる。
 即ち、第1の発光体として、350nm以上460nm以下の波長範囲に発光ピークを有するものを用い、第2の発光体の第1の蛍光体として、500nm以上560nm以下の波長範囲に発光ピークを有する少なくとも1種の蛍光体(本発明の第一の実施態様に係る蛍光体)を用い、第2の発光体の第2の蛍光体として、580nm以上680nm以下の波長範囲に発光ピークを有する蛍光体(赤色蛍光体)を用いる態様とすることができる。
(赤色蛍光体)
 上記の態様における赤色蛍光体としては、例えば、下記の蛍光体が好適に用いられる。
 Mn付活フッ化物蛍光体としては、例えば、K(Si,Ti)F:Mn、KSi1-xNaAl:Mn(0<x<1)(まとめてKSF蛍光体)、
 硫化物蛍光体としては、例えば、(Sr,Ca)S:Eu(CAS蛍光体)、LaS:Eu(LOS蛍光体)、
 ガーネット系蛍光体としては、例えば、(Y,Lu,Gd,Tb)MgAlSi12:Ce、
 ナノ粒子としては、例えば、CdSe、
 窒化物または酸窒化物蛍光体としては、例えば、(Sr,Ca)AlSiN:Eu(S/CASN蛍光体)、(CaAlSiN1-x・(SiO:Eu(CASON蛍光体)、(La,Ca)(Al,Si)11:Eu(LSN蛍光体)、(Ca,Sr,Ba)Si(N,O):Eu(258蛍光体)、(Sr,Ca)Al1+xSi4-x7-x:Eu(1147蛍光体)、M(Si,Al)12(O,N)16:Eu(Mは、Ca、Srなど)(αサイアロン蛍光体)、Li(Sr,Ba)Al:Eu(上記のxは、いずれも0<x<1)
などが挙げられる。
 赤色蛍光体としては上記の中でもKSF蛍光体やS/CASN蛍光体であることが好ましい。
(黄色蛍光体)
 上記の態様において、必要に応じて、550~580nmの範囲に発光ピークを有する蛍光体(黄色蛍光体)を用いてもよい。
 黄色蛍光体としては、例えば、下記の蛍光体が好適に用いられる。
 ガーネット系蛍光体としては、例えば、(Y,Gd,Lu,Tb,La)(Al,Ga)12:(Ce,Eu,Nd)、
 オルソシリケートとしては、例えば、(Ba,Sr,Ca,Mg)SiO:(Eu,Ce)、
 (酸)窒化物蛍光体としては、例えば、(Ba,Ca,Mg)Si:Eu(SION系蛍光体)、(Li,Ca)(Si,Al)12(O,N)16:(Ce,Eu)(α-サイアロン蛍光体)、(Ca,Sr)AlSi(O,N):(Ce,Eu)(1147蛍光体)、(La,Ca,Y)(Al,Si)11:Ce(LSN蛍光体)
などが挙げられる。
 尚、上記蛍光体においては、ガーネット系蛍光体が好ましく、中でも、YAl12:Ceで表されるYAG系蛍光体が最も好ましい。
(緑色蛍光体)
 上記の態様において緑色蛍光体としては、本発明の第一の実施態様に係る蛍光体以外の蛍光体を含んでいてもよく、例えば、下記の蛍光体が好適に用いられる。
 ガーネット系蛍光体としては、例えば、(Y,Gd,Lu,Tb,La)(Al,Ga)12:(Ce,Eu,Nd)、Ca(Sc,Mg)Si12:(Ce,Eu)(CSMS蛍光体)、
 シリケート系蛍光体としては、例えば、(Ba,Sr,Ca,Mg)SiO10:(Eu,Ce)、(Ba,Sr,Ca,Mg)SiO:(Ce,Eu)(BSS蛍光体)、
 酸化物蛍光体としては、例えば、(Ca,Sr,Ba,Mg)(Sc,Zn):(Ce,Eu)(CASO蛍光体)、
 (酸)窒化物蛍光体としては、例えば、(Ba,Sr,Ca,Mg)Si:(Eu,Ce)、Si6-zAl8-z:(Eu,Ce)(β-サイアロン蛍光体)(0<z≦1)、(Ba,Sr,Ca,Mg,La)(Si,Al)12:(Eu,Ce)(BSON蛍光体)、
 アルミネート蛍光体としては、例えば、(Ba,Sr,Ca,Mg)Al1017:(Eu,Mn)(GBAM系蛍光体)
などが挙げられる。
[発光装置の構成]
 本実施態様の発光装置は、第1の発光体(励起光源)を有し、且つ、第2の発光体として少なくとも本発明の第一の実施態様に係る蛍光体を使用している他は、その構成は制限されず、公知の装置構成を任意にとることが可能である。
 装置構成及び発光装置の実施形態としては、例えば、特開2007-291352号公報に記載のものが挙げられる。
 その他、発光装置の形態としては、砲弾型、カップ型、チップオンボード、リモートフォスファー等が挙げられる。
<発光装置の用途>
 本発明の第二の実施態様に係る発光装置の用途は特に制限されず、通常の発光装置が用いられる各種の分野に使用することが可能であるが、色再現範囲が広く、且つ、演色性も高いことから、中でも照明装置や画像表示装置の光源として、とりわけ好適に用いられる。
[照明装置]
 本発明の第三の実施態様は、本発明の第二の実施態様に係る発光装置を光源として備えることを特徴とする照明装置である。
 本発明の第二の実施態様に係る発光装置を照明装置に適用する場合には、前述のような発光装置を公知の照明装置に適宜組み込んで用いればよい。例えば、保持ケースの底面に多数の発光装置を並べた面発光照明装置等を挙げることができる。
 本発明の第三の実施態様に係る照明装置は、その発光色の平均演色評価数Raが通常60以上、好ましくは65以上、より好ましくは70以上、特に好ましくは75以上である。
 Raが上述の範囲内にあることで、演色性がよい発光装置が得られる。
 また、本発明の第三の実施態様に係る照明装置は、その発光色の特殊演色評価数R9が通常マイナス10以上、好ましくはマイナス5以上、さらに好ましくは0以上、特に好ましくは5以上である。
 特殊演色評価数R9が上述の範囲であることで、演色性のよい照明装置が得られる。
[画像表示装置]
 本発明の第四の実施態様は、本発明の第二の実施態様に係る発光装置を光源として備えることを特徴とする画像表示装置である。
 本発明の第二の実施態様に係る発光装置を画像表示装置の光源として用いる場合には、その画像表示装置の具体的構成に制限は無いが、カラーフィルターとともに用いることが好ましい。例えば、画像表示装置として、カラー液晶表示素子を利用したカラー画像表示装置とする場合は、上記発光装置をバックライトとし、液晶を利用した光シャッターと赤、緑、青の画素を有するカラーフィルターとを組み合わせることにより画像表示装置を形成することができる。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を逸脱しない限り、下記の実施例に限定されるものではない。
<測定方法>
[発光特性]
 試料を銅製試料ホルダーに詰め、蛍光分光光度計FP-6500(JASCO社製)を用いて励起発光スペクトルと発光スペクトルを測定した。なお、測定時には、受光側分光器のスリット幅を1nmに設定して測定を行った。また、発光ピーク波長(以下、「ピーク波長」と称することがある。)と発光ピークの半値幅は、得られた発光スペクトルから読み取った。
[色度座標]
 x、y表色系(CIE 1931表色系)の色度座標は、上述の方法で得られた発光スペクトルの360nm~800nmの波長領域のデータから、JIS Z8724に準じた方法で、JIS Z8701で規定されるXYZ表色系における色度座標CIExとCIEyとして算出した。
[EPMAによる元素分析]
 本発明の第一の実施態様で得られた蛍光体の組成を調べるために下記の元素分析を実施した。走査型電子顕微鏡(SEM)による観察にて結晶を数個選び出したのち、電子プローブマイクロアナライザー(波長分散型X線分析装置:EPMA)JXA-8200(JEOL社製)を用いて各元素の分析を実施した。
[EDXによる元素分析]
 得られた蛍光体の組成を調べるために下記の元素分析を実施した。構成される金属元素(Sr,Ca,La,Ba,Si,Al,Eu)の分析にはエネルギー分散型X線分光法を用いた。具体的にはSEM観察にて実施例の結晶を数個選び出し、堀場製作所製エネルギー分散型X線分析装置 EMAX ENERGY(EMAX x-act 検出器仕様)を用いて分析した。
[粉末X線回折測定]
 粉末X線回折は、粉末X線回折装置D2 PHASER(BRUKER社製)にて精密測定した。測定条件は以下の通りである。
  CuKα管球使用
  X線出力=30KV,10mA
  走査範囲 2θ=5°~80°
  読み込み幅=0.025°
[透過法による粉末X線回折]
 透過法による粉末X線回折は、イメージングプレートとギニエカメラを備えた粉末X線回折装置(HUBER社製)にて精密測定した。測定の際にはキャピラリーに試料を詰め、キャピラリーを回転させて測定を実施した。測定条件は以下の通りである。
CuKα管球使用
  X線出力=40KV,30mA
  走査範囲 2θ=4°~100°
  読み込み幅=0.005°
[結晶構造解析]
 単結晶粒子のX線回折データをイメージングプレートとグラファイトモノクロメータを備えMo KαをX線源とする単結晶X線回折装置(Rigaku,R-AXIS RAPID-II)で測定した。データの収集と格子定数の精密化にはPROCESS-AUTOを、X線形状吸収補正にはNUMABSを使用した。FのデータについてSHELXL-97を用いて結晶構造パラメータの精密化を行った。また、結晶構造の描画にはVESTAを用いた。
[TOF-SIMS元素分析]
 SEM観察にて選び出した結晶について、下記の条件で飛行時間型二次イオン質量分析(TOF-SIMS)を実施して、ホウ素の含有の有無を確認した。
(Machine)
 TOF.SIMS5(ION・ToF GmbH)
(Polarity mode)
 Positive,Negative
(Primary Ion)
 Species:Bi , Energy:25kV,Current: 1.25pA,Field of view:120×120μm
(Sputter Ion)
 Species: O + (Positive), Cs (Negative)Energy: 2kV
 Current:360.0nA(Positive),135.0nA(Negative) Crater Size:450×450μm
(Cycle time)
 80μs
(Scan)
 1024
<蛍光体の製造>
(実施例1)
 蛍光体原料として、Sr(セラック社製)EuN(セラック社製)、Si(宇部興産社製)、AlN(トクヤマ社製)を用いて、次のとおり蛍光体を調製した。
 上記原料を、下記表1に示す各重量となるように電子天秤で秤量し、アルミナ乳鉢に入れ、均一になるまで粉砕及び混合した。さらに、この混合粉末にMg(セラック社製)を0.43g加えて、さらに粉砕、混合を実施した。これらの操作は、Arガスで満たしたグローブボックス中で行った。
Figure JPOXMLDOC01-appb-T000001
 得られた原料混合粉末から約0.5gを秤量し、窒化ホウ素製坩堝にそのまま充填した。この坩堝を、真空加圧焼成炉(島津メクテム社製)内に置いた。次いで、8×10-3Pa以下まで減圧した後、室温から800℃まで真空加熱した。800℃に達したところで、その温度で維持して炉内圧力が0.85MPaになるまで窒素ガスを5分間導入した。窒素ガスの導入後、炉内圧力を0.85MPaに保持しながら、さらに、1600℃まで昇温し、1時間保持した。さらに、2050℃まで加熱し、2050℃に達したところで4時間維持した。焼成後1200℃まで冷却し、次いで放冷した。得られた生成物から緑色結晶のみを拾い出し実施例1の蛍光体を得た。
 実施例1の蛍光体について、粉末X線回折測定を行って得られたX線回折パターンを図1に示した。実施例1の蛍光体のXRDパターンは、PDFにはなく、新規の蛍光体であることが確認された。
 また、実施例1の蛍光体について、SEM観察をした結果を図2に示す。また、構成する元素とその比率を調べるため元素分析(EPMA測定)を実施した。組成分析の定性的結果を図3に、また定量結果(平均値)を下記表2に示した。
Figure JPOXMLDOC01-appb-T000002
 表2に示す通り、実施例1の蛍光体において、Mg及び酸素の混入は、検出限界以下であることが確認された。
 また実施例1の蛍光体についてTOF‐SIMS分析を行ったところ、ホウ素(B)の含有は確認されなかった。
 以上の結果をもとに、(Sr,Eu):Al:Si:Nの比率を1:1:4:7として単結晶構造解析を実施した。
 この得られた単結晶について単結晶構造解析を実施し、下記の通り格子定数、空間群、各原子の座標を決定した。
[結晶構造解析]
 実施例1の単結晶X線回折により得られた基本反射より、単純格子(P格子 a=8.1031(5)Å、b=9.0936(7)Å、c=8.9797(5)Å、β=111.6221(17)°)と指数づけできた。尚、括弧内の数字は標準偏差を表す。また、得られた基本反射の反射点について消滅則に基づき検討した結果、今回の結晶を用いて結晶構造モデルを得ることができた空間群はP2であった。
 これらの解析結果を表3に纏めた。
Figure JPOXMLDOC01-appb-T000003
 また、組成分析の結果より、Si/Alのサイトを0.8/0.2の割合と仮定し今回の原子座標とした。また、Euは結晶構造内においてSrサイトを一部置換しているものと推測される。得られた原子座標の結果を表4に示した。尚、括弧内の数字は標準偏差を表す。
Figure JPOXMLDOC01-appb-T000004
 さらに、構造解析して得られた座標を基にX線回折パターンをシミュレーションし、組成分析結果と電子密度から算出される組成割合を鑑みて、実施例1で得られた蛍光体の化学組成をSr0.97Eu0.03AlSiと決定した。
 実施例1の蛍光体の単結晶を構造解析することで得られた格子定数を初期値とし、図1のXRDパターンから粉末状にした実施例1の蛍光体の格子定数を精密化した結果を表5に示す。単結晶X線回折により得られた格子定数とほぼ一致する値が得られ、結晶ごとのバラつきは少ないことが確認された。
Figure JPOXMLDOC01-appb-T000005
 更に、実施例1の蛍光体について、透過法により測定した粉末X線回折パターンと単結晶構造解析により決定した結晶構造についてシミュレーションして得られたパターンを比較したものを図4に示した。
 測定の際、選択配向の影響を抑えるため、キャピラリーに実施例1の蛍光体を詰め、測定の際にはキャピラリーを回転させて測定を実施した。この測定結果より、単結晶構造解析で決定した結晶構造は、実施例1の蛍光体であることが確認できた。また、反射法で測定した図4のパターンと比較すると一部、ピークの強度比が変化しており、結晶由来の選択配向の影響が示唆された。
 実施例1の蛍光体の励起・発光スペクトルの測定結果を図5に示した。励起スペクトルは、540nmの発光をモニターし、発光スペクトルは450nmで励起したときの測定結果である。
 実施例1の蛍光体は、発光ピーク波長541nm、半値幅66nmの発光スペクトルを示し、緑色の発光を示すことが確認できた。また、460nmにピークを持ち300nmから480nmまでの幅広い波長範囲において励起可能であることを示す励起スペクトルを示した。
(比較例1)
 蛍光体原料として、Sr(セラック社製)、EuN(セラック社製)、Si(宇部興産社製)、AlN(トクヤマ社製)、Al(レアメタリック社製)を用いて、次のとおり蛍光体を調製した。
 上記原料を、表6に示す各仕込み組成と各重量となるように電子天秤で秤量し、アルミナ乳鉢に入れ、均一になるまで粉砕及び混合した。これらの操作は、N2ガスで満たしたグローブボックス中で行った。
Figure JPOXMLDOC01-appb-T000006
 得られた原料混合粉末から約1.5gを秤量し、窒化ホウ素製坩堝にそのまま充填した。この坩堝を、真空加圧焼成炉内に置いた。次いで、8×10-3Pa以下まで減圧した後、室温から800℃まで真空加熱した。800℃に達したところで、その温度で維持して炉内圧力が0.85MPaになるまで高純度窒素ガス(99.9995%)を5分間導入した。高純度窒素ガスの導入後、炉内圧力を0.85MPaに保持しながら、さらに、昇温速度20℃/分で1600℃まで昇温し、2時間保持した。さらに、1850℃まで加熱し、1850℃に達したところで6時間維持した。焼成後1200℃まで冷却し、次いで放冷した。その後、生成物を解砕し、(Sr0.97Eu0.03Si21Al35で表される比較例1の蛍光体を得た。
[温度特性の測定結果]
 実施例1で得られた蛍光体、並びに比較例1で得られた蛍光体に関する温度特性を測定した。450nmの波長の光を照射した場合の発光スペクトルにおいて、25℃での発光ピーク強度値に対する各温度における相対強度(%)を図6及び下記表7に示した。
Figure JPOXMLDOC01-appb-T000007
 図6及び表7に示すが如く、実施例1の蛍光体の方が、比較例1で得られた蛍光体よりも、温度特性がよく、特に高温にした時の輝度の維持率が高いことが確認された。
 より具体的には、表7に示すが如く、実施例1の蛍光体は、従来の蛍光体と比較して、200℃など、LEDで用いられた場合に達する温度域において、20ポイント近くも、温度特性が向上するという、極めて顕著な効果を有するものである。
[実施例2~4]
 実施例1において、原料の各重量を下記表8に示すように変更したこと及びMgの添加量を0.43gから0.22gに変更した他は、実施例1と同様にして合成して実施例2~4の蛍光体を得た。
Figure JPOXMLDOC01-appb-T000008
 実施例2~4の蛍光体をXRDで測定した。このうち実施例2および4の蛍光体についてXRDで測定した結果を図7に示す。実施例2~4の蛍光体は実施例1の蛍光体と同一の結晶構造を有する相が得られていることが確認できた。
 また実施例2、4の蛍光体の粉末XRDパターンより、実施例1と同一の結晶構造を有する相について各格子定数、単位格子体積を精密化した結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 また、表10に実施例4の蛍光体についてXRD測定での領域1~5における最も強いピークのピーク強度(I)(但し、領域3においては最強ピーク強度(Imax)を除く。)の、最強ピーク強度(Imax)に対する比(I/Imax)を纏めた。尚、領域4においては、二つのピーク強度I4aとI4bについて、それぞれ最強ピーク強度(Imax)に対する比を記載した。
Figure JPOXMLDOC01-appb-T000010
 さらに実施例2~4の蛍光体をEPMAで測定したSr:Ca:Al:Siの原子比及び、Caの置換量を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 表9~11に示すが如く、実施例2~4の蛍光体は実施例1の蛍光体と同一の結晶相が得られた。このことから、実施例1と同一の結晶構造を有し、構造内のSrの一部をCaに置き換えた蛍光体を得たことが確認された。
 更に実施例2~4の蛍光体を400nmの光で励起した時の発光スペクトルを測定した。実施例2~4の蛍光体の発光スペクトルを図8に、発光ピーク波長、半値幅、色度について表12に纏めた。表12に示すが如く、Srの一部をCaで置換することで発光色の調整が可能であることがわかる。
Figure JPOXMLDOC01-appb-T000012
[実施例5、6]
 実施例1において、原料および原料の各重量を下記表13に示すように変更したこと及び「2080℃で維持」を「2000℃で維持」に変更したこと、Mgの添加量を0.43gから0.22gに変更した他は、実施例1と同様にして合成して実施例5、6の蛍光体を得た。
Figure JPOXMLDOC01-appb-T000013
 実施例5および6の蛍光体をXRDで測定した。このうち実施例5の蛍光体についてXRDで測定した結果を図9に示す。実施例5の蛍光体は実施例1の蛍光体と同一の結晶構造を有する相が得られていることが確認できた。
 また実施例5の蛍光体の粉末XRDパターンより、実施例1と同一の結晶構造を有する相について各格子定数、単位格子体積を精密化した結果を表14に示す。
Figure JPOXMLDOC01-appb-T000014
 また、表15に実施例5の蛍光体についてXRD測定での領域1~5における最も強いピークのピーク強度(I)(但し、領域3においては最強ピーク強度(Imax)を除く。)の、最強ピーク強度(Imax)に対する比(I/Imax)を纏めた。尚、領域4においては、二つのピーク強度I4aとI4bについて、それぞれ最強ピーク強度(Imax)に対する比を記載した。
Figure JPOXMLDOC01-appb-T000015
 さらに実施例5、6の蛍光体をEDXで測定したSr:Ba:Al:Siの原子比及び、Baの置換量を表16に示す。
Figure JPOXMLDOC01-appb-T000016
 表14~16に示すが如く、実施例5および6の蛍光体は実施例1と同一の結晶相が得られた。このことから、実施例1の蛍光体と同一の結晶構造を有し、構造内のSrの一部をBaに置き換えた蛍光体を得たことが確認された。
 更に実施例5および6の蛍光体を400nmの光で励起した時の発光スペクトルを測定した。実施例5の蛍光体の発光スペクトルを図10に、発光ピーク波長、半値幅、色度について表17に纏めた。表17に示すが如く、Srの一部Baに置換することで発光色の調整が可能であることがわかる。
Figure JPOXMLDOC01-appb-T000017
[実施例7、8]
 実施例1において、原料および原料の各重量を下記表18に示すように変更したこと及び「2080℃で維持」を「2000℃で維持」に変更したこと、Mgの添加量を0.43gから0.22gに変更した他は、実施例1と同様にして合成して実施例7および8の蛍光体を得た。
Figure JPOXMLDOC01-appb-T000018
 実施例7および8の蛍光体をXRDで測定した。このうち実施例7の蛍光体についてXRDで測定した結果を図11に示す。実施例7および8の蛍光体は実施例1の蛍光体と同一の結晶構造を有する相が得られていることが確認できた。
 また実施例7の蛍光体の粉末XRDパターンより、実施例1と同一の結晶構造を有する相について各格子定数、単位格子体積を精密化した結果を表19に示す。
Figure JPOXMLDOC01-appb-T000019
 また、表20に実施例7の蛍光体についてXRD測定での領域1~5における最も強いピークのピーク強度(I)(但し、領域3においては最強ピーク強度(Imax)を除く。)の、最強ピーク強度(Imax)に対する比(I/Imax)を纏めた。尚、領域4においては、二つのピーク強度I4aとI4bについて、それぞれ最強ピーク強度(Imax)に対する比を記載した。
Figure JPOXMLDOC01-appb-T000020
 さらに実施例7および8の蛍光体をEPMAで測定したSr:La:Al:Siの原子比及び、Laの置換量を表21に示す。
Figure JPOXMLDOC01-appb-T000021
 表19~21に示すが如く、実施例7および8の蛍光体は実施例1と同一の結晶相が得られた。このことから、実施例1と同一の結晶構造を有し、構造内のSrの一部をLaに置き換えた蛍光体を得ることができたことが確認された。
 更に実施例7および8の蛍光体を400nmの光で励起した時の発光スペクトルを測定した。実施例7および8の蛍光体の発光スペクトルを図12に、発光ピーク波長、半値幅、色度について表22に纏めた。表22に示すが如く、Srの一部Laに置換することで発光色の調整が可能であることがわかる。
Figure JPOXMLDOC01-appb-T000022
<発光装置の製造>
[実施例9]
 先ず蛍光体含有組成物の調製を行った。
 ジメチル系シリコーン樹脂とフュームドシリカと実施例1で得た蛍光体とを、撹拌脱泡装置にて混合して、蛍光体含有組成物を調製した。なお、各部材の量比は後述の発光装置が示す発光スペクトルの色度がCIEy=0.100~0.150となるように調整した。
 次いで上記で調製した蛍光体含有組成物を用いて発光装置を製造した。
 手動ピペットを用いて、上述で得られた蛍光体含有組成物を35mil角InGaN系青色LEDを実装した5050サイズ(5mm角)セラミックスパッケージに注液した。その後、この発光装置を100℃で1時間保持し、次いで150℃で5時間保持することにより蛍光体含有組成物を硬化させて発光装置を得た。得られた発光装置について以下に記載の点灯試験により耐久性の評価を行った。
[点灯試験]
 発光装置に350mAの電流を通電し、積分球を備えた分光測定装置で発光スペクトルを測定した。
 次いで、85℃設定の恒温槽内で発光装置を駆動電流150mAで連続通電し、通電開始から20時間、100時間、500時間、1000時間の各時点において恒温槽から発光装置を取り出し、時刻0の場合と同様にして発光スペクトルを測定した。
 それぞれの経過時間後に得られた発光スペクトルより算出された色度座標yと時刻0の色度座標yとの差(Δy)で、実施例1の蛍光体の耐久性を評価した。
 この結果を表23に示した。
Figure JPOXMLDOC01-appb-T000023
 表23に示すが如く、本発明の第一の実施態様に係る蛍光体を用いた発光装置はΔyが非常に小さい。すなわち、本発明の第一の実施態様に係る蛍光体を用いた発光装置は耐久性に優れている。
<発光装置に関するシミュレーション>
 上述の実施例1の蛍光体とSCASN蛍光体BR102/Q(三菱化学社製)、および青色LED(発光ピーク波長451nm)とを組み合わせ、色温度3000K、4000K、5000Kの発光装置を作製したものとして白色LEDスペクトルをシミュレーションした。
 具体的には青色LEDの実測データと、実施例および上記の蛍光体の波長450nm励起における実測の発光スペクトルより励起光源のスペクトルを差し引いた発光スペクトルをそれぞれ用意した。青色LEDの強度と各蛍光体の発光ピーク強度について発光装置が色温度3000K、4000K、5000Kを示すよう任意の比で掛けたスペクトルを足し合わせ、一つの発光スペクトルとして計算されたものを白色スペクトルとして導出した。
 各光学特性評価項目の計算方法は、以下の通りとした。
(i)JIS Z8724:1997(標題:色の測定方法-光源色-)に基づき、CIE 1931色度図上のxy色度座標を計算した。
(ii)上記(i)の結果を基に、CIE 1960 UCS色度図上のuv色度座標に変換した後、JIS Z8725:1999(標題:光源の分布温度及び色温度・相関色温度の測定方法)に基づき相関色温度(ケルビン)およびとDuvを計算した。
(iii)JIS Z8726:1990(標題:光源の演色性評価方法)に基づき、白色スペクトルより、演色評価数(Ra, R1~R15)を計算した。
[実施例10]
 実施例10の発光装置の白色LEDスペクトルは色温度3000Kを示すよう各蛍光体の発光スペクトル強度を調整することにより得られたものである。実施例10の発光装置の白色LEDスペクトルを図13に示した。Raは78を示した。また、455nm励起で励起した実施例1の蛍光体の吸収効率を85%、内部量子効率を89%、D50を15.4μmと仮定したときの実施例10の発光装置の発光効率は181.2 lm/Wであった。
 これらシミュレーションした結果を表24にまとめた。
[実施例11]
 実施例11の発光装置の白色LEDスペクトルは色温度4000Kを示すよう各蛍光体の発光スペクトル強度を調整することにより得られたものである。実施例11の発光装置の白色LEDスペクトルを図14に示す。Raは76を示した。また、455nm励起で励起した実施例1の蛍光体の吸収効率を85%、内部量子効率を89%、D50を15.4μmと仮定したときの実施例11の発光装置の発光効率は192.6 lm/Wであった。
 これらシミュレーションした結果を表24にまとめた。
[実施例12]
 実施例12の発光装置の白色LEDスペクトルは色温度5000Kを示すよう各蛍光体の発光スペクトル強度を調整することにより得られたものである。実施例12の発光装置の白色LEDスペクトルを図15に示す。Raは75を示した。また、455nm励起で励起した実施例1の蛍光体の吸収効率を85%、内部量子効率を89%、D50を15.4μmと仮定したときの実施例12の発光装置の発光効率は196.1 lm/Wであった。
 これらシミュレーションした結果を表24にまとめた。
Figure JPOXMLDOC01-appb-T000024
 表24に示すが如く、本発明の蛍光体を含む発光装置は、演色性が高く、発光効率が高いことがシミュレーション結果により示された。
[実施例13]
 上述の実施例1の蛍光体とCASN蛍光体BR101/J(三菱化学社製)および、青色LED(発光ピーク波長450nm)とを組み合わせた発光装置を作製したものとして白色LEDスペクトルをシミュレーションした。導出したスペクトルを図16に示した。色度は CIEx=0.262 CIEy=0.219であった。また、実施例13の発光装置の色度域を図17に示した。
 図17に示すが如く、本発明の第一の実施態様に係る蛍光体を用いた発光装置は、色度域が広いため例えば画像表示装置などに好適である。
[実施例14]
 上述の実施例1の蛍光体と、KSF蛍光体BR301/C(三菱化学社製)および、青色LED(発光ピーク波長450nm)とを組み合わせた発光装置について白色LEDスペクトルをシミュレーションした。導出した白色LEDスペクトルを図18に示した。発光装置の色度はCIEx=0.260 CIEy=0.216であった。また、実施例14の発光装置の色度域を図19に示した。
 図19に示すが如く、本発明の第一の実施態様に係る蛍光体を用いた発光装置は、色度域が広いため例えば画像表示装置などに好適である。
 以上より、本発明の第一の実施態様に係る蛍光体は色再現性のよい鮮やかな発光装置を提供するだけでなく、通常では使用温度が高くなり発光強度が低下してしまう領域においてもより発光強度の高い発光装置を提供することが可能となる。
 即ち、本発明の第一の実施態様に係る蛍光体を含む発光装置、並びに該発光装置を含む照明装置及び液晶表示装置は、高品質である。
 本発明を詳細に、また特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2014年11月12日出願の日本特許出願(特願2014-230149)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (8)

  1.  M元素、A元素、Al、Si、Nを含む単斜晶の結晶相を含む蛍光体であって、
     該結晶相の格子定数が、各々、
     a軸が、 7.7Å≦a≦8.51Å、
     b軸が、8.64Å≦b≦9.55Å、
     c軸が、8.53Å≦c≦9.43Å、
     β角が、97.6°≦β≦115.6°
    を満たすことを特徴とする、蛍光体。
    (但し、
     M元素は、付活元素から選ばれる1種以上の元素を表し、
     A元素は、アルカリ土類金属元素から選ばれる1種以上の元素を表す。)
  2.  前記結晶相が、下記式[1]で表される組成を有することを特徴とする、請求項1に記載の蛍光体。
     MAlSi [1]
    (上記式[1]中、
     M元素は、付活元素から選ばれる1種以上の元素を表し、
     A元素は、アルカリ土類金属元素から選ばれる1種以上の元素を表し、
     m、a、b、c、dは、各々独立に、下記式を満たす値である。
        0<m≦0.2
        m+a=1
      0.8≦b≦1.2
      3.2≦c≦4.8
      5.6≦d≦8.4)
  3.  A元素が、Ca及び/又はSrを含むことを特徴とする、請求項1又は2に記載の蛍光体。
  4.  M元素が、Euを含むことを特徴とする、請求項1~3のいずれか一項に記載の蛍光体。
  5.  350nm以上、460nm以下の波長を有する励起光を照射することにより、500nm以上、560nm以下の範囲に発光ピーク波長を有することを特徴とする、請求項1~4のいずれか一項に記載の蛍光体。
  6.  第1の発光体と、該第1の発光体からの光の照射によって可視光を発する第2の発光体とを備え、該第2の発光体が請求項1~5のいずれか一項に記載の蛍光体を含むことを特徴とする発光装置。
  7.  請求項6に記載の発光装置を光源として備えることを特徴とする照明装置。
  8.  請求項6に記載の発光装置を光源として備えることを特徴とする画像表示装置。
PCT/JP2015/081808 2014-11-12 2015-11-12 蛍光体、発光装置、照明装置及び画像表示装置 WO2016076380A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016559099A JPWO2016076380A1 (ja) 2014-11-12 2015-11-12 蛍光体、発光装置、照明装置及び画像表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014230149 2014-11-12
JP2014-230149 2014-11-12

Publications (1)

Publication Number Publication Date
WO2016076380A1 true WO2016076380A1 (ja) 2016-05-19

Family

ID=55954457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081808 WO2016076380A1 (ja) 2014-11-12 2015-11-12 蛍光体、発光装置、照明装置及び画像表示装置

Country Status (3)

Country Link
JP (1) JPWO2016076380A1 (ja)
TW (1) TW201625774A (ja)
WO (1) WO2016076380A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10611960B2 (en) 2016-08-24 2020-04-07 Nichia Corporation Nitride fluorescent material and light emitting device
WO2020100574A1 (ja) * 2018-11-12 2020-05-22 デンカ株式会社 蛍光体を収容するパッケージおよび梱包箱
WO2023063251A1 (ja) * 2021-10-11 2023-04-20 三菱ケミカル株式会社 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯
DE102022116190A1 (de) 2022-06-29 2024-01-04 Ams-Osram International Gmbh Leuchtstoff, verfahren zu dessen herstellung und strahlungsemittierendes bauelement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336450A (ja) * 2004-04-27 2005-12-08 Matsushita Electric Ind Co Ltd 蛍光体組成物とその製造方法、並びにその蛍光体組成物を用いた発光装置
JP4228012B2 (ja) * 2006-12-20 2009-02-25 Necライティング株式会社 赤色発光窒化物蛍光体およびそれを用いた白色発光素子
JP2012046766A (ja) * 2005-05-24 2012-03-08 National Institute For Materials Science 蛍光体及びその利用
JP2012046625A (ja) * 2010-08-26 2012-03-08 Mitsubishi Chemicals Corp 蛍光体の製造方法
JP2012046626A (ja) * 2010-08-26 2012-03-08 Mitsubishi Chemicals Corp 蛍光体、およびそれを用いた発光装置
WO2012067130A1 (ja) * 2010-11-16 2012-05-24 電気化学工業株式会社 蛍光体、発光装置及びその用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336450A (ja) * 2004-04-27 2005-12-08 Matsushita Electric Ind Co Ltd 蛍光体組成物とその製造方法、並びにその蛍光体組成物を用いた発光装置
JP2012046766A (ja) * 2005-05-24 2012-03-08 National Institute For Materials Science 蛍光体及びその利用
JP4228012B2 (ja) * 2006-12-20 2009-02-25 Necライティング株式会社 赤色発光窒化物蛍光体およびそれを用いた白色発光素子
JP2012046625A (ja) * 2010-08-26 2012-03-08 Mitsubishi Chemicals Corp 蛍光体の製造方法
JP2012046626A (ja) * 2010-08-26 2012-03-08 Mitsubishi Chemicals Corp 蛍光体、およびそれを用いた発光装置
WO2012067130A1 (ja) * 2010-11-16 2012-05-24 電気化学工業株式会社 蛍光体、発光装置及びその用途

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10611960B2 (en) 2016-08-24 2020-04-07 Nichia Corporation Nitride fluorescent material and light emitting device
WO2020100574A1 (ja) * 2018-11-12 2020-05-22 デンカ株式会社 蛍光体を収容するパッケージおよび梱包箱
CN112969647A (zh) * 2018-11-12 2021-06-15 电化株式会社 收容荧光体的包装袋和包装箱
JPWO2020100574A1 (ja) * 2018-11-12 2021-09-30 デンカ株式会社 蛍光体を収容するパッケージおよび梱包箱
WO2023063251A1 (ja) * 2021-10-11 2023-04-20 三菱ケミカル株式会社 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯
DE102022116190A1 (de) 2022-06-29 2024-01-04 Ams-Osram International Gmbh Leuchtstoff, verfahren zu dessen herstellung und strahlungsemittierendes bauelement

Also Published As

Publication number Publication date
TW201625774A (zh) 2016-07-16
JPWO2016076380A1 (ja) 2017-09-14

Similar Documents

Publication Publication Date Title
JP6782427B2 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP6985704B2 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
WO2015002139A1 (ja) 蛍光体及び発光装置
WO2014021006A1 (ja) アルカリ土類金属シリケート蛍光体及びその製造方法
WO2016076380A1 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2010196049A (ja) 蛍光体及びその製造方法、蛍光体含有組成物、並びに、該蛍光体を用いた発光装置、画像表示装置及び照明装置
JP2023107773A (ja) 蛍光体、発光装置、画像表示装置及び照明装置
JP7155507B2 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2017190434A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2016088970A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2016191011A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2016124928A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2016056246A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2016094533A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP7318924B2 (ja) 蛍光体及びこれを用いた発光装置
JP2016124929A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP7310977B2 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2016079213A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP7144002B2 (ja) 蛍光体及びこれを用いた蛍光体組成物、並びにこれらを用いた発光装置、照明装置及び画像表示装置
JP2017088791A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2017206599A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2017043728A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2016199675A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2016056329A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2017008184A (ja) 蛍光体、発光装置、照明装置及び画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016559099

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858303

Country of ref document: EP

Kind code of ref document: A1