WO2014021006A1 - アルカリ土類金属シリケート蛍光体及びその製造方法 - Google Patents

アルカリ土類金属シリケート蛍光体及びその製造方法 Download PDF

Info

Publication number
WO2014021006A1
WO2014021006A1 PCT/JP2013/066588 JP2013066588W WO2014021006A1 WO 2014021006 A1 WO2014021006 A1 WO 2014021006A1 JP 2013066588 W JP2013066588 W JP 2013066588W WO 2014021006 A1 WO2014021006 A1 WO 2014021006A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
alkaline earth
earth metal
metal silicate
silicate phosphor
Prior art date
Application number
PCT/JP2013/066588
Other languages
English (en)
French (fr)
Inventor
小向 哲史
横山 潤
垣花 眞人
手束 聡子
英樹 加藤
Original Assignee
住友金属鉱山株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社, 国立大学法人東北大学 filed Critical 住友金属鉱山株式会社
Priority to EP13825735.7A priority Critical patent/EP2881447B1/en
Priority to US14/416,410 priority patent/US9938459B2/en
Publication of WO2014021006A1 publication Critical patent/WO2014021006A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates

Definitions

  • the present invention relates to an alkaline earth metal silicate phosphor and a method for producing the same, and more specifically, an alkaline earth suitable as a red phosphor that emits high-intensity fluorescence with near-ultraviolet to blue light used in lighting, displays, and the like.
  • the present invention relates to a metal silicate phosphor and a method for producing the same.
  • a white LED is a device that generates white light by mixing light emitted from a near-ultraviolet or blue LED and a phosphor, and has been actively developed and researched as an LCD backlight light source for small portable devices. As an application, the development of lighting applications is progressing.
  • pseudo white which is a combination of a blue LED and YAG: Ce 3+ .
  • the white light obtained by this combination has a small redness component, there is a problem that the color rendering property is low when used as illumination.
  • a white LED using a blue LED, a green or yellow phosphor, and a red phosphor has been proposed.
  • a white LED having higher color rendering a white LED of a combination of a near ultraviolet to purple LED and a blue, green, and red phosphor has been proposed.
  • red phosphors used in these white LEDs include nitride phosphors such as CaAlSiN 3 : Eu, (Sr, Ca) AlSiN 3 (see, for example, Patent Documents 1 and 2), CaS: Eu, Sulfide phosphors such as SrS: Eu and (Ca, Sr) S: Eu have been proposed (see, for example, Patent Document 3).
  • the nitride phosphor has high characteristics, it requires a manufacturing process of annealing in a nitrogen-pressurized atmosphere at a high temperature close to 2000 ° C., which is difficult to manufacture and requires special equipment.
  • the sulfide phosphor is relatively easy to manufacture, there is a problem that wiring materials such as Ag and Cu are corroded by odor and sulfur generated by decomposition.
  • the excitation spectrum of these nitride phosphors and sulfide phosphors extends to the long wavelength side, and when mixed with yellow to green phosphors to produce a white LED, the light emitted from the green to yellow phosphors.
  • so-called multistage excitation is likely to occur by reabsorbing the light.
  • red phosphor is mixed with a green or yellow phosphor and excited by blue, the color tends to vary or the luminous efficiency of the white LED tends to decrease.
  • a structure in which fluorescent layers are stacked or separated has been proposed, but there is a problem in that the white LED manufacturing process becomes complicated.
  • alkaline earth metal silicate phosphors activated with europium (Eu) are known.
  • Eu europium
  • (Sr, Ba) 2 SiO 4 : Eu is It is famous.
  • Such alkaline earth metal silicate phosphors are relatively easy to manufacture, do not require special manufacturing equipment, and have the feature that the emission wavelength can be adjusted by the Ba / Sr ratio. It is used.
  • patent literature 4 (Sr x, Ba y, Ca z, Eu w) 2 SiO 4: phosphor with Eu having a composition is disclosed to be a long wavelength emission at 600nm or by blue excitation.
  • the amount of the crystal growth agent added is limited to 0.01% by weight or more and 0.3% by weight or less of the entire raw material powder. In such a case, sufficient crystal growth does not occur and practically sufficient luminance is not obtained, and the obtained phosphor has an irregular shape, and the phosphor in the resin in manufacturing the white LED element When mixing, there is a problem that unevenness and unevenness are likely to occur.
  • An object of the present invention is to provide an alkaline earth metal silicate phosphor having high particles, high luminance and excellent color rendering, and a method for producing the same.
  • an alkaline earth metal silicate phosphor having a predetermined composition which is obtained by performing a baking treatment in the presence of a flux containing at least barium chloride (BaCl 2 ), has an emission peak wavelength of 600 nm.
  • the present invention has been completed by finding that the particles have high circularity suitable for white LEDs and have higher fluorescence brightness than conventional phosphors.
  • the alkaline earth metal silicate phosphor according to the present invention is a particle represented by the following composition formula (1), having a light emission peak wavelength at 600 nm or more and a circularity of 85% or more.
  • barium (Ba) which is a constituent component of the alkaline earth metal silicate phosphor is characterized in that at least a part thereof is derived from a flux containing barium chloride mixed during firing.
  • the relationship between the emission peak intensity (I max ) when excited at a wavelength at which the maximum excitation intensity is obtained and the emission peak intensity (I ex550nm ) at an excitation wavelength of 550 nm is (I ex550nm ) / (I max ) ⁇ 0.25. It is characterized by satisfying.
  • the gel body generation step for generating the gel body and the gel body obtained in the gel body generation step are dried.
  • the gel body generation step it is preferable to mix and stir at a liquid temperature of 20 ° C. to 100 ° C. to generate a gel body.
  • a phosphor having an emission peak wavelength of 600 nm or more, a high degree of circularity and excellent dispersibility, and having a higher luminance and color rendering than a conventional phosphor, As red fluorescent substance, it can utilize suitably for manufacture of white LED.
  • FIG. 1 is a diagram showing excitation emission spectra of CaAlSiN 3 : Eu and (Sr, Ca) AlSiN 3 : Eu that have been conventionally used as red phosphors.
  • FIG. 2 is a graph showing the emission spectra of the phosphors produced in Examples 1 to 3.
  • FIG. 3 is an electron microscope (SEM) image of the phosphor particles produced in Example 1.
  • FIG. 4 is a diagram showing emission spectra of the phosphors produced in Comparative Example 1, Comparative Example 2, and Comparative Example 4.
  • FIG. 5 is an electron microscope (SEM) image of the phosphor particles produced in Comparative Example 4.
  • the alkaline earth metal silicate phosphor and the method for producing the same according to the present invention (hereinafter referred to as “the present embodiment”) will be described in detail in the following order. Note that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present invention.
  • 1. Alkaline earth metal silicate phosphor 2.
  • Alkaline earth metal silicate phosphor is a composite oxide to which rare earth europium (Eu) is added as an activator, and is represented by the following composition formula (1), and has an emission peak at 600 nm or more. It is a particle having a wavelength and a circularity of 85% or more.
  • Composition formula (1) ( Sr a Ca b Ba c Eu d) 2 Si e O f
  • the mixing ratio of strontium (Sr) and calcium (Ca), which are alkaline earth metals, is 0.4 (a) and (b), respectively.
  • the ratio (a, b) of these alkaline earth metals is more than 0.4 and less than 0.6, the ratio of the crystal phase that emits light of 600 nm or more is relatively high, and the ratio is 600 nm or more.
  • a phosphor having an emission peak wavelength is obtained.
  • the mixing ratio of barium (Ba), which is an alkaline earth metal, is 0.01 ⁇ c ⁇ 0.05 in terms of the number of atoms (c).
  • Ba which is an alkaline earth metal, is contained at a ratio of 0.01 ⁇ c ⁇ 0.05, whereby the peak intensity of the emission peak of 600 nm or more can be increased, and light emission It becomes a phosphor with extremely high luminance.
  • Ba which is a constituent component of the alkaline earth metal silicate phosphor, is derived from a flux containing barium chloride (BaCl 2 ) mixed at the time of firing the phosphor.
  • BaCl 2 barium chloride
  • Eu europium
  • a phosphor that emits light at a wavelength of 600 nm or more and does not cause concentration quenching can be obtained.
  • the mixing ratio of silicon (Si) is 0.7 ⁇ e ⁇ 1.3 in terms of the number of atoms (e). If the mixing ratio of silicon is less than 0.7, SrO, CaO, Sr 3 SiO 5 , Ca 3 SiO 5 , or a solid solution phase thereof is generated, crystallinity is deteriorated, and light emission luminance is lowered, which is not preferable. On the other hand, even when the mixing ratio of silicon exceeds 1.3, SrSiO 3 , CaSiO 3 , or a solid solution phase thereof is generated, crystallinity is deteriorated, and light emission luminance is lowered, which is not preferable.
  • the mixing ratio of oxygen (O) is 3.0 ⁇ f ⁇ 5.0 in terms of the number of atoms (f).
  • the mixing ratio of oxygen is less than 3.0, it is considered that the amount of substitution of O by oxygen vacancies, Cl or the like is excessive, and the light emission characteristics are significantly deteriorated.
  • the mixing ratio of oxygen exceeds 5.0, it is considered that there are too many unreduced Eu 2 O 3 and surface adsorbing components, and similarly, the light emission characteristics are significantly deteriorated. Therefore, in the alkaline earth metal silicate phosphor according to the present embodiment, the oxygen ratio (f) is 3.0 ⁇ f ⁇ 5.0.
  • the bond ratio between the constituent elements and oxygen described above is generally 1: 1 (SrO, CaO, BaO, EuO) with Sr, Ca, Ba, and 1: 2 (SiO 2 ) with Si.
  • the oxygen amount range is uniquely 3.4 ⁇ f ⁇ . 4.6.
  • the value of f ⁇ 3.4 is taken due to the presence of oxygen vacancies in the crystal, for example, the doping of Cl as a flux component (substitution of O sites), for example, Eu 2 O 3 used as a europium compound is partially unreduced Or f> 4.6 due to the presence of surface adsorbing components.
  • the alkali metal silicate phosphor having the above composition particles having an emission peak wavelength of 600 nm or more and having a high circularity, the emission luminance is very large compared to conventional phosphors, It can be suitably used as a red phosphor.
  • such a phosphor has a high absorptivity with respect to excitation light and becomes a phosphor having excellent light emission characteristics.
  • the degree of circularity is the ratio of the equivalent circular area diameter to the equivalent elliptical diameter in the projected image of the particle, and the circularity in a completely dispersed sphere is 100%.
  • the alkali metal silicate phosphor described above is a particle having a circularity of 85% or more and a high circularity, and also in this respect, for example, in the production of a white LED, it has a high dispersibility together with yellow and green phosphors. Thus, a white LED having excellent light emission characteristics can be manufactured.
  • CaAlSiN 3 Eu (hereinafter also referred to as “CASN”) and (Sr, Ca) AlSiN 3 : Eu (hereinafter also referred to as “SCASN”), which have been conventionally used as red phosphors. ))
  • the excitation intensity corresponds to the emission intensity when excited at each wavelength.
  • the excitation spectrum of both CASN and SCASN extends to the long wavelength side of the green to yellow region.
  • the emission intensity (I ex550nm ) at 550 nm excitation is 400 nm excitation (maximum excitation intensity).
  • these red phosphors are excited by reabsorbing the light emitted by the green to yellow phosphors to emit red light. Is shown. That is, it shows that multistage excitation is likely to occur.
  • a white LED is produced using such a red phosphor, the color tends to vary and the light emission efficiency tends to decrease.
  • the alkaline earth metal silicate phosphor according to the present embodiment satisfies the relationship of (I ex 550 nm ) / (I max ) ⁇ 0.25 as described above.
  • this alkaline earth metal silicate phosphor having such an excitation spectrum shape, multi-stage excitation is suppressed even when used in a mixture with a green or yellow phosphor.
  • the color of a white LED It is possible to suppress a shift in taste, variation, efficiency reduction and color misregistration due to multistage excitation, and a phosphor with extremely high color purity and excellent color rendering.
  • a drying step, a temporary baking step of temporarily baking the dried product, and a baking step of reducing baking by mixing the temporary baking powder with the flux will be described in detail.
  • the raw material metal by mixing the raw material metal with the water-soluble silicon compound to form a gel body, the raw material can be uniformly dispersed, and a phosphor in which the constituent components of the raw material metal are uniformly distributed is obtained. Thus, a phosphor with even higher emission luminance can be obtained.
  • an aqueous solution is prepared by mixing a raw material metal salt weighed at a predetermined ratio and an Eu compound added as an activator.
  • the raw material metal salt at least a calcium (Ca) salt, a strontium (Sr) salt, and a europium (Eu) compound are used.
  • a calcium (Ca) salt, a strontium (Sr) salt, and a europium (Eu) compound are used.
  • the calcium salt and strontium salt for example, carbonate, acetate, nitrate, chloride salt and the like can be used, and among them, carbonate and acetate are preferable.
  • a europium compound added as an activator an oxide, acetate, nitrate, etc. can be used, and europium can also be used independently.
  • barium (Ba), which is a constituent component of the phosphor, is doped by substituting Sr and Ca during reduction firing using a flux containing at least barium chloride (BaCl 2 ) in a later-described firing step.
  • carbonate may be added together with the calcium salt and strontium salt described above.
  • a rare earth element other than Eu can be added.
  • various oxides, chlorides, nitrates, carbonates, acetates, and the like can be used.
  • the above-mentioned raw material metal salt and europium compound are prepared by first adding at least a calcium salt and a strontium salt and an europium compound as an activator to water and stirring to prepare an aqueous solution (aqueous dispersion) in which these raw materials are dispersed.
  • aqueous dispersion aqueous dispersion
  • raw materials can also be dissolved into an aqueous solution using an organic acid such as citric acid, a thermal decomposition treatment or the like for removing organic components in the obtained gel body is required.
  • an aqueous dispersion in which the above-described raw material metal salt is dispersed is prepared and a water-soluble silicon compound (WSS) is prepared.
  • the water-soluble silicon compound is prepared by, for example, adding tetraethoxysilane (TEOS) and dihydric alcohol as raw materials so as to have a molar ratio of 1: 3 or more, and mixing at 80 ° C. for 1 hour.
  • TEOS tetraethoxysilane
  • dihydric alcohol as raw materials so as to have a molar ratio of 1: 3 or more, and mixing at 80 ° C. for 1 hour.
  • the water-soluble silicon compound thus prepared By using the water-soluble silicon compound thus prepared, it can be easily mixed with an aqueous dispersion in which a raw metal salt is dissolved. And, by forming a phosphor precursor (dried gel) by wet synthesis using such an aqueous solution, a phosphor precursor in which raw materials are uniformly dispersed can be obtained. Since certain Eu can be added uniformly, a high-luminance phosphor can be effectively produced.
  • dihydric alcohol for example, propylene glycol can be used, and as the acid used as the catalyst, hydrochloric acid or lactic acid can be used.
  • TEOS and propylene glycol become water-soluble by adding them so that the molar ratio is 1: 3 or more.
  • a gel body is prepared by mixing an aqueous dispersion in which the raw material metals prepared as described above are dispersed and a water-soluble silicon compound so as to obtain a desired composition ratio.
  • an aqueous dispersion composed of the raw material metal salt and Eu compound weighed to obtain a desired raw material blending ratio, It is preferable to weigh and mix the functional silicon compound.
  • Ba in the alkaline earth metal silicate phosphor is constituted by doping Ba contained in the flux added in the firing step described later, with a part of Sr and Ca being substituted. Therefore, in the firing step described later, it is preferable to add and mix the flux so that Ba derived from the flux is contained in a desired composition ratio. Moreover, since the content ratio of Sr and Ca slightly decreases by substituting Ba derived from the flux, the initial raw material blending ratio is set so that a phosphor having a desired composition formula is obtained. It is preferable to weigh and mix the raw materials.
  • a water-soluble silicon compound is added to an aqueous solution in which an alkaline earth metal is dissolved, mixed and stirred to be gelled.
  • the time required for gelation varies depending on the type of alkaline earth metal element and the amount of water in the aqueous solution.
  • propylene glycol which is a dihydric alcohol, may be added to the water-soluble silicon compound used in an amount corresponding to 6 to 12 times the total number of moles of metal elements. Good.
  • the gelation temperature is preferably 20 ° C. to 100 ° C., more preferably 20 ° C. to 80 ° C. If the temperature is less than 20 ° C, the gelation time becomes long, and if it exceeds 100 ° C, water boils and uniform gelation becomes difficult. Therefore, by mixing and stirring at a liquid temperature of 20 ° C. to 100 ° C., a gel body in which raw materials are dispersed uniformly can be generated efficiently.
  • the drying step the gel body obtained in the gel body generation step is put into, for example, a hot air dryer and dried.
  • the gel body obtained in the gel body generation step contains, in addition to moisture, a part of a dihydric alcohol such as ethanol or propylene glycol derived from a water-soluble silicon compound (WSS) as a solvent component. Therefore, in this drying step, the obtained gel body is dried to remove the solvent component contained in the gel body, thereby generating a phosphor precursor that is a dried product of the gel body.
  • a dihydric alcohol such as ethanol or propylene glycol derived from a water-soluble silicon compound (WSS)
  • the drying temperature in the drying step is not particularly limited, but it is preferable to dry at about 80 to 100 ° C. Also, the drying time is not particularly limited, and can be about 5 to 10 hours.
  • the phosphor precursor which is a dried gel body obtained in the drying step, is pre-baked under predetermined baking conditions to obtain a pre-baked powder.
  • WSS-derived dihydric alcohol and the like remaining through the drying step described above are decomposed and removed, and carbonates in the dried product are decomposed to grow base crystals.
  • the pre-baking treatment condition is preferably a temperature condition of 600 ° C. to 1400 ° C. in an air atmosphere.
  • the pre-baking temperature is less than 600 ° C., decomposition of a dihydric alcohol such as propylene glycol or carbonate, and growth of a base crystal may be insufficient.
  • it exceeds 1400 ° C. it is not preferable because it is completely sintered or a by-product is generated.
  • Firing step> In the firing step, the temporarily fired powder obtained in the temporary firing step is reduced and fired under predetermined firing conditions in a reducing atmosphere. In this firing step, the base crystal is grown and the activator Eu is doped from trivalent to divalent.
  • the firing is characterized by reducing firing in the presence of a flux containing at least barium chloride (BaCl 2 ).
  • the phosphor particles obtained by reduction firing in the presence of the flux in this way are close to monodisperse of several tens of ⁇ m and become highly circular particles, for example, together with green and yellow phosphors in the manufacture of white LEDs.
  • the particle diameter of the phosphor particles can be changed in the range of several ⁇ m to 50 ⁇ m depending on the flux type, the amount added, and the firing temperature.
  • a phosphor having higher luminance than that of the conventional phosphor can be obtained.
  • the mechanism is not clear, it is considered that by using a flux containing BaCl 2 , Ba in the flux is doped as a constituent component of the phosphor, so that the emission luminance is improved. It is done.
  • the flux mixed with the calcined powder is a flux containing at least barium chloride (BaCl 2 ). That is, BaCl 2 alone or together with BaCl 2 , for example, chlorides such as NH 4 Cl, LiCl, NaCl, KCl, CsCl, CaCl 2 , SrCl 2 , YCl 3 , ZnCl 2 , MgCl 2 , RbCl and their water content Salts, fluorides such as LiF, NaF, KF, CsF, CaF 2 , BaF 2 , SrF 2 , AlF 3 , MgF 2 , YF 3 , K 3 PO 4 , K 2 HPO 4 , KH 2 PO 4 , Na 3 PO 4 , Na 2 HPO 4 , NaH 2 PO 4 , Li 3 PO 4 , Li 2 HPO 4 , LiH 2 PO 4 , (NH 4 ) 3 PO 4 , (NH 4 ) 2 HPO 4 , (
  • the temperature condition for the reduction firing is preferably 1000 ° C. to 1350 ° C., more preferably 1100 ° C. to 1300 ° C.
  • the reduction firing temperature is less than 1000 ° C.
  • the reduction firing treatment for the temporarily fired powder does not proceed effectively.
  • the reduction firing temperature exceeds 1350 ° C., the particle diameter becomes coarse, making it difficult to use as a phosphor such as LED, and a high-temperature phase is generated as an impurity phase or partial melting occurs. Therefore, it is not preferable.
  • the treatment time for reduction firing is preferably 0.5 to 12 hours, more preferably 1 to 6 hours. Note that this reduction firing treatment may be repeated several times.
  • phosphor particles having a desired composition By crushing the fired product obtained by reducing and calcining the calcined powder as described above, phosphor particles having a desired composition can be obtained. At this time, the fired product (phosphor particles) ) May remain on the surface of the flux mixed in the firing step. If flux remains on the surface of the phosphor particles, the fluorescence intensity may be lowered, which is not preferable. Therefore, it is preferable to remove the flux remaining on the particle surface by washing the fired product obtained as described above with water or the like before or after crushing. After the washing treatment is performed in this manner, it is substituted with ethanol and dried to obtain a phosphor. Further, annealing may be performed in an appropriate atmosphere or temperature for the purpose of improving surface luminance due to crushing or cleaning and further improving light emission luminance.
  • alkaline earth metal silicate phosphors have a problem with moisture resistance. Therefore, in order to improve the surface stability of the phosphor, it is preferable to perform a surface treatment that covers the surface of the obtained phosphor particles with a different substance.
  • the surface treatment material include organic compounds, inorganic compounds, glass materials, and the like. Among these, it is preferable to perform the surface treatment using silicon oxide which is an oxide.
  • composition formula (Sr a Ca b Ba c Eu d) 2 Si e O f a of the composition formula, b, c, d, e, and f is 0.4 ⁇ A ⁇ 0.6, 0.4 ⁇ b ⁇ 0.6, 0.01 ⁇ c ⁇ 0.05, 0.01 ⁇ d ⁇ 0.4, 0.7 ⁇ e ⁇ 1.3, 3.0
  • the alkaline earth metal silicate phosphor produced in this way has an emission peak wavelength of 600 nm or more, and can emit light with higher brightness than conventional phosphors. For this reason, it can be suitably used as a red phosphor. In addition, such a phosphor has a high absorptivity with respect to excitation light and becomes a phosphor having excellent light emission characteristics.
  • the alkaline earth metal silicate phosphor produced in this way due to the shape of the excitation spectrum, multistage excitation is unlikely to occur when mixed with a green or yellow phosphor, and the color of the white LED Therefore, it is possible to suppress an efficiency drop and a color shift due to multistage excitation, and it can be suitably used as a red phosphor for a white LED.
  • the alkaline earth metal silicate phosphor produced in this way is suitable for white LEDs from the viewpoint of specific gravity and shape. That is, (Ba, Sr) 2 SiO 4 : Eu, (Y, Gd) Al 5 O 12 : Ce, etc., which are general green and yellow phosphors used together with a red phosphor in the manufacture of a white LED, have a composition thereof. However, it has a specific gravity of about 4 to 5 g / cm 3 , its shape is about several to 30 ⁇ m, and its flatness is small and close to monodispersion.
  • the specific gravity of CASN which is a conventional red phosphor, is about 3.3 g / cm 3 depending on its composition, and is an aggregate of particles having a particle size of several ⁇ m or less. There is a large difference in specific gravity and shape with the yellow phosphor.
  • the specific gravity of the alkaline earth metal silicate phosphor according to the present embodiment is assumed to be around 4 g / cm 3 from the crystal data of SrCaSiO 4 , and the flatness ratio that has grown to several to several tens of ⁇ m by flux firing is small.
  • the particles can be close to monodisperse. This makes the difference in specific gravity and shape of the general green and yellow phosphors to be combined relatively small, and the small difference in specific gravity and shape is very effective when kneading uniformly with green and yellow phosphors. It becomes.
  • the phosphor layer is mixed with the phosphor emitting green to yellow light to form the phosphor layer and combined with the blue LED, so that the red component can be further reduced.
  • a white LED that can be effectively supplemented and is further excellent in color rendering can be obtained at low cost.
  • the structure of the white LED is not particularly limited.
  • a phosphor layer may be formed immediately above the blue LED and sealed with the blue LED, or a resin or rubber
  • a white LED device can also be obtained by forming a phosphor sheet by using a remote phosphor such as a remote phosphor.
  • (Ba, Sr) 2 SiO 4 : Eu, Y 3 Al 5 O 12 : Ce, Y 3 (Al, Ga) 5 O 12 : Ce, (Y, Gd) 3 Al 5 O 12 : Eu , Lu 3 Al 5 O 12 , or Ca- ⁇ sialon is preferable.
  • the phosphors produced in each example and comparative example were measured for emission spectrum at 455 nm excitation using a fluorescence spectrophotometer FP-6500 (manufactured by JASCO Corporation), and the emission peak wavelength was further measured. The excitation spectrum for was measured. The luminescence intensity was evaluated as a relative luminance normalized with the maximum luminance of YAG: Ce (manufactured by Phosfertech, QMK58 / F-U1) as a conventional yellow phosphor as 1.
  • the phosphor absorptivity efficiency of absorbing excitation light
  • the internal quantum efficiency indicates the efficiency of converting the absorbed excitation light into fluorescence
  • the external quantum efficiency indicates the efficiency of converting irradiated excitation light into fluorescence, and is calculated by multiplying the absorption rate by the internal quantum efficiency.
  • Example 1 ⁇ Fabrication of phosphor>
  • a phosphor was prepared by obtaining a precursor by a solution method using a water-soluble silicon compound (WSS) and firing the precursor.
  • WSS water-soluble silicon compound
  • the WSS used was a mixture of tetraethoxysilane (TEOS) and propylene glycol so as to have a molar ratio of 1: 4, and mixed at 80 ° C. for 1 hour. In addition, the mixture was further stirred for 1 hour. And pure water was added to this, and 2 mol / L WSS aqueous solution was obtained.
  • TEOS tetraethoxysilane
  • CaCO 3 manufactured by Wako Pure Chemical Industries, Ltd.
  • SrCO 3 manufactured by Kanto Chemical Co., Ltd.
  • Eu 2 O 3 3N, manufactured by High Purity Chemical Laboratory
  • composition formula Ca 0.925 Sr 0 .925 Eu 0.15 SiO 4
  • an aqueous WSS solution was added to the aqueous dispersion of the raw material, and the mixture was stirred at room temperature for 10 minutes. After confirming that the entire liquid became a uniform slurry, heating with a hot magnetic stirrer was started. The heating temperature was set so that the temperature of the mixed solution was 50 ° C. The whole gelled in about 20 minutes from the start of heating, and a uniform gel was obtained.
  • the obtained phosphor precursor which was a dried product, was put in an alumina container and subjected to a heat treatment for 3 hours at 1000 ° C. in an air atmosphere to pre-fire the phosphor precursor.
  • the finally obtained phosphor When the finally obtained phosphor was analyzed, it had a composition composed of Ca 0.918 Sr 0.867 Ba 0.074 Eu 0.141 SiO 4 . From this composition formula, it is presumed that Ba derived from BaCl 2 added as a flux replaced a part of Ca and Sr. Further, the shape was a monodisperse particle of 10 to 30 ⁇ m and a small flatness.
  • FIG. 2 shows an emission excitation spectrum of the obtained phosphor.
  • Table 1 shows the phosphor composition, emission peak wavelength and relative luminance with respect to YAG: Ce, absorption rate, external quantum efficiency, internal quantum efficiency, and emission peak intensity when excited at a wavelength at which the maximum excitation intensity is obtained.
  • the obtained phosphor has an emission peak wavelength of 614 nm, and the emission luminance is as high as 1.22 in terms of the YAG: Ce ratio, which is excellent as a red phosphor. It turns out that it can be used.
  • excitation spectrum when the excitation spectrum is seen, compared with the excitation spectrum (refer FIG. 1) of conventional CASN and SCASN, excitation intensity in the vicinity of 550 nm is low, and the ratio represented by (I ex 550 nm) / (I max ) It can be confirmed that it has an excitation spectrum shape that is very small as 0.17 and is not easily affected by multistage excitation.
  • FIG. 3 shows an electron microscope (SEM) image of the phosphor powder. From this SEM image, it can be seen that monodisperse and nearly spherical particles having a diameter of about 20 ⁇ m are obtained.
  • phosphors can be easily and inexpensively manufactured without the need for complicated manufacturing processes and the need for special manufacturing equipment, unlike conventional nitride phosphors. It was.
  • Example 2 ⁇ Fabrication of phosphor> A phosphor was fabricated in the same manner as in Example 1 except that the charged composition was (Ca 0.85 Sr 0.85 Eu 0.30 SiO 4 ). When the finally obtained phosphor was analyzed, it had a composition composed of Ca 0.830 Sr 0.816 Ba 0.077 Eu 0.277 Si 0.968 O 3.936 . From this composition formula, it is presumed that Ba derived from BaCl 2 added as a flux replaced a part of Ca and Sr.
  • FIG. 2 shows an emission excitation spectrum of the obtained phosphor.
  • Table 1 below shows the same evaluation results as in Example 1.
  • the obtained phosphor has an emission peak wavelength of 623 nm, and the emission luminance is very high at a YAG: Ce ratio of 1.16, which is excellent as a red phosphor. It turns out that it can be used.
  • excitation spectrum when the excitation spectrum is seen, compared with the excitation spectrum (refer FIG. 1) of conventional CASN and SCASN, excitation intensity in the vicinity of 550 nm is low, and the ratio represented by (I ex 550 nm) / (I max ) It can be confirmed that it has an excitation spectrum shape that is very small as 0.22 and is not easily affected by multistage excitation.
  • Example 3 ⁇ Fabrication of phosphor> A phosphor was produced in the same manner as in Example 1 except that the preparation composition was (Ca 0.975 Sr 0.975 Eu 0.05 SiO 4 ). When the finally obtained phosphor was analyzed, it had a composition composed of Ca 0.967 Sr 0.913 Ba 0.07 Eu 0.05 SiO 4 . From this composition formula, it is presumed that Ba derived from BaCl 2 added as a flux replaced a part of Ca and Sr.
  • FIG. 2 shows an emission excitation spectrum of the obtained phosphor.
  • Table 1 below shows the same evaluation results as in Example 1.
  • the obtained phosphor has an emission peak wavelength of 604 nm, and the emission luminance is as high as 1.21 in terms of the YAG: Ce ratio, which is excellent as a red phosphor. It turns out that it can be used.
  • excitation spectrum when the excitation spectrum is seen, compared with the excitation spectrum (refer FIG. 1) of conventional CASN and SCASN, excitation intensity in the vicinity of 550 nm is low, and the ratio represented by (I ex 550 nm) / (I max ) It can be confirmed that it has an excitation spectrum shape which is very small as 0.10 and is not easily affected by multistage excitation.
  • phosphor was obtained by performing the same operation as in Example 1 except that SrCl 2 was used as a flux and 20 wt% was added to and mixed with the weight of the temporarily fired powder.
  • the composition of the obtained phosphor was the composition (Ca 0.925 Sr 0.925 Eu 0.15 SiO 4 ) of the first raw material blending ratio.
  • FIG. 4 shows an emission excitation spectrum of the obtained phosphor in comparison with Example 1.
  • Table 1 below shows the same evaluation results as in the examples.
  • the emission peak wavelength was 615 nm longer than 600 nm, indicating that it can be used as a red phosphor.
  • the emission intensity was very low at 0.89 in the conventional YAG: Ce ratio.
  • FIG. 4 shows an emission excitation spectrum of the obtained phosphor in comparison with Example 1.
  • Table 1 below shows the same evaluation results as in the examples.
  • the emission peak wavelength is 607 nm, which is longer than 600 nm, and it was found that it can be used as a red phosphor.
  • the emission intensity was very low at 0.82 in the conventional YAG: Ce ratio.
  • Table 1 shows the same evaluation results as in the examples.
  • the emission peak wavelength was 615 nm longer than 600 nm, indicating that it can be used as a red phosphor.
  • the emission intensity was as extremely low as 0.40 in the conventional YAG: Ce ratio.
  • the obtained mixed raw material was housed in a container, and firstly subjected to reduction firing at 1200 ° C. for 4 hours in a reducing atmosphere of N 2 —H 2 to obtain a primary fired product.
  • This is pulverized and accommodated again in a crucible, placed in a furnace and the inside of the furnace is evacuated, and then subjected to secondary firing at 1200 ° C. for 4 hours in an atmosphere of N 2 -5% H 2.
  • a secondary fired product was obtained.
  • the obtained secondary fired product was pulverized in water, sieved, and dehydrated by suction filtration. Finally, it was dried at 150 ° C. in a dryer, and a phosphor was obtained through a sieve.
  • the obtained phosphor composition was the composition (Ca 0.925 Sr 0.925 Eu 0.15 SiO 4 ) of the first raw material blending ratio.
  • FIG. 4 shows an emission excitation spectrum of the obtained phosphor in comparison with Example 1.
  • Table 1 below shows the same evaluation results as in the examples.
  • the emission peak wavelength is 617 nm on the longer wavelength side than 600 nm, and it was found that it can be used as a red phosphor.
  • the emission intensity was as extremely low as 0.36 in the conventional YAG: Ce ratio.
  • FIG. 5 shows an electron microscope (SEM) image of the phosphor powder.
  • the obtained powder was aggregated particles of about 2 to 3 ⁇ m as shown in FIG. Also from this SEM image, it can be seen that the particles are extremely low in circularity.

Abstract

 賦活剤としてEuを添加したアルカリ土類金属シリケート蛍光体において、600nm以上の発光ピーク波長を有し、しかも高輝度であって演色性に優れたアルカリ土類金属シリケート蛍光体及びその製造方法を提供することを目的とする。本発明に係るアルカリ土類金属シリケート蛍光体は、下記組成式(1)で表され、600nm以上に発光ピーク波長を有し、円形度が85%以上であることを特徴とする。 組成式(1):(SrCaBaEuSi (1) (但し、式中のa、b、c、d、e、及びfは、0.4<a<0.6、0.4<b<0.6、0.01<c<0.05、0.01≦d<0.4、0.7≦e≦1.3、3.0≦f≦5.0であり、且つa+b+c+d=1を満たす。)

Description

アルカリ土類金属シリケート蛍光体及びその製造方法
 本発明は、アルカリ土類金属シリケート蛍光体及びその製造方法に関し、より詳しくは、照明やディスプレイ等に用いられる近紫外から青色の光で高輝度の蛍光を発する赤色蛍光体として好適なアルカリ土類金属シリケート蛍光体及びその製造方法に関する。
 本出願は、日本国において2012年7月30日に出願された日本特許出願番号特願2012-168795、及び、2012年11月28日に出願された日本特許出願番号特願2012-259996を基礎として優先権を主張するものであり、これらの出願を参照することにより、本出願に援用される。
 白色LEDは、近紫外若しくは青色LEDと蛍光体の発光を混合して白色光を発生させるもので、従来、小型携帯機器のLCDバックライト光源等として活発に開発研究がなされてきたが、次世代の応用として照明用途への展開が進んでいる。
 バックライト用途等では、青色LEDとYAG:Ce3+を組み合わせたいわゆる擬似白色が広く使われてきた。しかしながら、この組み合わせで得られる白色光は、赤み成分が少ないために、照明として用いる場合には演色性が低いという問題がある。この点を改善するため、青色LEDと緑色又は黄色蛍光体と、赤色蛍光体を用いた白色LEDが提案されている。また、さらに高演色な白色LEDとして、近紫外~紫色LEDと、青色、緑色、赤色蛍光体を組み合わせた方式の白色LEDも提案されている。
 それらの白色LEDに用いられている赤色蛍光体としては、例えばCaAlSiN:Eu、(Sr,Ca)AlSiN等の窒化物蛍光体(例えば、特許文献1、2参照)や、CaS:Eu、SrS:Eu、(Ca,Sr)S:Eu等の硫化物蛍光体(例えば、特許文献3参照)が提案されている。
 しかしながら、窒化物蛍光体は、高特性ではあるものの、2000℃近い高温の窒素加圧雰囲気下でアニールするという製造工程が必要となり、製造が難しい上に特殊な設備が必要となる。また、硫化物蛍光体は、製造は比較的容易であるものの、臭気や分解発生する硫黄によってAgやCu等の配線材料が腐食するという問題がある。
 また、これらの窒化物蛍光体、硫化物蛍光体の励起スペクトルは、長波長側まで延びており、黄色~緑色蛍光体と混ぜて白色LEDを作製したときには、緑色~黄色蛍光体から発光した光を再吸収して発光する、いわゆる多段励起が発生し易いという問題もある。このような赤色蛍光体を用いて緑色や黄色の蛍光体と混合して青色励起した場合、色味にバラつきが生じたり、白色LEDの発光効率の低下が生じやすくなる。このような多段励起の影響を減じるために、蛍光層を積層したり分離したりする構造も提案されているが、白色LED製造工程が煩雑になるといった点で問題がある。
 窒化物蛍光体や硫化物蛍光体以外の蛍光体の一つとして、ユーロピウム(Eu)を賦活したアルカリ土類金属シリケート蛍光体が知られており、例えば(Sr,Ba)SiO:Euが有名である。このようなアルカリ土類金属シリケート蛍光体は、その製造が比較的容易であり、また特殊な製造設備も必要せず、Ba/Sr比率により発光波長の調整が可能であるという特色があるため広く用いられている。
 しかしながら、このようなアルカリ土類金属シリケート蛍光体において、発光ピーク波長が600nmを超えるものは知られておらず、従来のアルカリ土類金属シリケート蛍光体では赤色蛍光体として使用するには波長が短い(例えば、非特許文献2参照。)。
 また、特許文献4には(Sr,Ba,Ca,EuSiO:Euなる組成を持つ蛍光体が、青色励起により600nm以上で長波長発光することが開示されている。しかしながら、吸湿性の増加を防止するために、結晶成長剤の添加量は原料粉末全体の0.01重量%以上0.3重量%以下に制限するとしている。このような場合、十分な結晶成長が起こらず、実用的に十分な輝度が得られないだけでなく、得られた蛍光体は異形状になり、白色LED素子を製造するにあたって樹脂中に蛍光体を混ぜる際に、不均一さやムラが発生しやすいという問題がある。
特開2000-244021号公報 特開2006-008721号公報 特開昭56-82876号公報 特開2008-24791号公報
白色LED照明技術のすべて 工業調査会 p107 T.L.Barry J.Electrochem.Soc. 115(1968)1181-1184
 そこで、本発明は、このような実情に鑑みて提案されたものであり、賦活剤としてEuを添加したアルカリ土類金属シリケート蛍光体において、600nm以上の発光ピーク波長を有し、かつ円形度の高い粒子であり、しかも高輝度であって演色性に優れたアルカリ土類金属シリケート蛍光体及びその製造方法を提供することを目的とする。
 本件発明者らは、上述した課題を解決すべく鋭意検討を重ねた。その結果、所定の組成からなるアルカリ土類金属シリケート蛍光体であって、少なくとも塩化バリウム(BaCl)を含むフラックスの存在下で焼成処理を行って得られる蛍光体は、その発光ピーク波長が600nmを超えるとともに、白色LEDに好適な円形度の高い粒子であって、従来の蛍光体に比して蛍光輝度が大きくなることを見出し、本発明を完成させた。
 すなわち、本発明に係るアルカリ土類金属シリケート蛍光体は、下記組成式(1)で表され、600nm以上に発光ピーク波長を有し、円形度が85%以上の粒子であることを特徴とする。
組成式(1):(SrCaBaEuSi
(但し、式(1)中のa、b、c、d、e、及びfは、0.4<a<0.6、0.4<b<0.6、0.01<c<0.05、0.01≦d<0.4、0.7≦e≦1.3、3.0≦f≦5.0であり、且つa+b+c+d=1を満たす。)
 ここで、当該アルカリ土類金属シリケート蛍光体の構成成分であるバリウム(Ba)は、その少なくとも一部が、焼成時に混合する塩化バリウムを含むフラックスに由来することを特徴とする。
 また、最大励起強度が得られる波長で励起したときの発光ピーク強度(Imax)と励起波長550nmにおける発光ピーク強度(Iex550nm)が、(Iex550nm)/(Imax)<0.25の関係を満たすことを特徴とする。
 また、本発明に係るアルカリ土類金属シリケート蛍光体の製造方法は、組成式(1):(SrCaBaEuSi(但し、式(1)中のa、b、c、d、e、及びfは、0.4<a<0.6、0.4<b<0.6、0.01<c<0.05、0.01≦d<0.4、0.7≦e≦1.3、3.0≦f≦5.0であり、且つa+b+c+d=1を満たす。)で表され、600nm以上に発光ピーク波長を有し、円形度が85%以上の粒子であることを特徴とするアルカリ土類金属シリケート蛍光体の製造方法であって、アルカリ土類金属とユーロピウム化合物との水溶液と、水溶性ケイ素化合物の水溶液とを混合して攪拌し、ゲル体を生成するゲル体生成工程と、上記ゲル体生成工程にて得られたゲル体を乾燥させる乾燥工程と、上記乾燥工程にて得られた乾燥物を、大気雰囲気中で600℃~1400℃の温度条件で仮焼成する仮焼成工程と、上記仮焼成工程にて得られた仮焼成粉を、少なくとも塩化バリウムを含むフラックスと混合し、還元雰囲気下で1000℃~1350℃の温度条件で焼成する焼成工程とを有することを特徴とする。
 ここで、上記ゲル体生成工程では、20℃~100℃の液温で混合攪拌してゲル体を生成することが好ましい。
 また、上記焼成工程にて得られた焼成物から残留フラックスを除去することが好ましい。
 本発明によれば、600nm以上の発光ピーク波長を有し、円形度が高い粒子であって分散性に優れ、しかも従来の蛍光体よりも高輝度であって演色性に優れた蛍光体となり、赤色蛍光体として、白色LEDの製造に好適に利用することができる。
図1は、従来赤色蛍光体として用いられてきたCaAlSiN:Euと(Sr,Ca)AlSiN:Euの励起発光スペクトルを示す図である。 図2は、実施例1~実施例3にて作製した蛍光体の発光スペクトルを示す図である。 図3は、実施例1にて作製した蛍光体粒子の電子顕微鏡(SEM)像である。 図4は、比較例1、比較例2、及び比較例4にて作製した蛍光体の発光スペクトルを示す図である。 図5は、比較例4にて作製した蛍光体粒子の電子顕微鏡(SEM)像である。
 以下、本発明に係るアルカリ土類金属シリケート蛍光体及びその製造方法についての具体的な実施の形態(以下、「本実施の形態」という。)について、以下の順序で詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 1.アルカリ土類金属シリケート蛍光体
 2.アルカリ土類金属シリケート蛍光体の製造方法
  2-1.ゲル体生成工程
  2-2.乾燥工程
  2-3.仮焼成工程
  2-4.焼成工程
 3.実施例
 ≪1.アルカリ土類金属シリケート蛍光体≫
 本実施の形態に係るアルカリ土類金属シリケート蛍光体は、賦活剤として希土類のユーロピウム(Eu)が添加された複合酸化物であって、下記組成式(1)で表され、600nm以上に発光ピーク波長を有し、円形度が85%以上の粒子であることを特徴とする。
 組成式(1):(SrCaBaEuSi
ここで、上記式中のa、b、c、d、e、及びfは、0.4<a<0.6、0.4<b<0.6、0.01<c<0.05、0.01≦d<0.4、0.7≦e≦1.3、3.0≦f≦5.0であり、且つa+b+c+d=1を満たすものである。
 具体的に、このアルカリ土類金属シリケート蛍光体において、アルカリ土類金属であるストロンチウム(Sr)及びカルシウム(Ca)の混合割合は、それぞれ、原子数(a)及び(b)で、0.4<a<0.6、0.4<b<0.6とする。これらのアルカリ土類金属の割合(a,b)が0.4を超えて、0.6未満であることにより、600nm以上の発光を示す結晶相を割合が相対的に多くなり、600nm以上に発光ピーク波長を有する蛍光体となる。
 また、このアルカリ土類金属シリケート蛍光体において、アルカリ土類金属であるバリウム(Ba)の混合割合は、原子数(c)で0.01<c<0.05とする。上述したSr、Caに加えて、アルカリ土類金属であるBaを、0.01<c<0.05の割合で含有させることにより、600nm以上の発光ピークのピーク強度を高めることができ、発光輝度が極めて大きい蛍光体となる。
 このアルカリ土類金属シリケート蛍光体の構成成分であるBaは、その少なくとも一部が、蛍光体製造の焼成時に混合する塩化バリウム(BaCl)を含むフラックスに由来するものである。詳しくは下記の製造方法の説明において詳述するが、焼成時に少なくともBaClを含むフラックスを使用することによって、そのBaを構成成分としてドープすることができ、これによって、得られる蛍光体の発光輝度を高めることができる。
 また、賦活剤として添加するユーロピウム(Eu)は、その原子数(d)で0.01≦d<0.4の割合となるようにする。賦活剤としてのEuを、0.01≦d<0.4の割合で含有させることによって、600nm以上の波長で発光し、濃度消光を生じさせない蛍光体とすることができる。
 また、このアルカリ土類金属シリケート蛍光体において、ケイ素(Si)の混合割合は、その原子数(e)で0.7≦e≦1.3とする。ケイ素の混合割合が0.7未満では、SrO、CaO、SrSiOやCaSiO、又はその固溶体相が生成し結晶性が悪くなり、発光輝度が低下するため好ましくない。一方で、ケイ素の混合割合が1.3を超える場合においても、SrSiOやCaSiO、又はその固溶体相が生成し結晶性が悪くなり、発光輝度が低下するため好ましくない。
 また、アルカリ土類金属シリケート蛍光体において、酸素(O)の混合割合は、その原子数(f)で3.0≦f≦5.0とする。酸素の混合割合が3.0未満では、酸素欠陥やCl等によるOの置換量が多くなりすぎていることが考えられ、発光特性が著しく悪化する。一方で、酸素の混合割合が5.0を超える場合では、未還元のEuや表面吸着成分が多すぎることが考えられ、同様に発光特性が著しく悪化する。したがって、本実施の形態に係るアルカリ土類金属シリケート蛍光体においては、酸素の割合(f)として、3.0≦f≦5.0とする。
 なお、上述した構成元素と酸素との結合比は、一般的に、Sr、Ca、Baとでは1:1(SrO、CaO、BaO、EuO)であり、Siとでは1:2(SiO)である考えられ、この場合、e=0.7のときf=3.4、e=1.3のときにf=4.6となり、酸素量範囲は一義的には3.4≦f≦4.6となる。ところが、結晶中の酸素欠陥の存在や、例えばフラックス成分のClのドープ(Oサイトの置換)によりf<3.4の値をとったり、例えばユーロピウム化合物として用いたEuが一部未還元で残存したり、表面吸着成分の存在等によりf>4.6の値をとり得る。
 以上のような組成を有するアルカリ金属シリケート蛍光体によれば、600nm以上に発光ピーク波長を有し、また円形度が高い粒子となり、従来の蛍光体に比して発光輝度が非常に大きくなり、赤色蛍光体として好適に用いることができる。また、このような蛍光体では、励起光に対する吸収率が高く、発光特性に優れた蛍光体となる。
 ここで、円形度とは、粒子の投影図において、周囲長円相当径に対する円面積相当径の割合であり、単分散している完全な球体においての円形度は100%となる。蛍光体は、球状性が高いほど、発光強度や分散性の面で有利となる。上述したアルカリ金属シリケート蛍光体では、その円形度が85%以上であって円形度の高い粒子であり、この点においても、例えば白色LEDの製造に際して黄色や緑色蛍光体等と共に高い分散性で以って樹脂に練り込むことができ、発光特性に優れた白色LEDを製造することができる。
 また、このアルカリ土類金属シリケート蛍光体では、最大励起強度が得られる波長で励起したときの発光ピーク強度をImaxとし、励起波長550nmにおける発光ピーク強度をIex550nmとしたとき、(Iex550nm)/(Imax)<0.25の関係を満たす。
 ここで図1に、従来、赤色蛍光体として用いられてきたCaAlSiN:Eu(以下、「CASN」とも表記する。)と(Sr,Ca)AlSiN:Eu(以下、「SCASN」とも表記する。)の励起発光スペクトルを示す(非特許文献1参照)。なお、励起強度は、それぞれの波長で励起したときの発光強度に相当する。この図1に示されるように、CASN、SCASNともに、緑~黄色の領域の長波長側まで励起スペクトルが伸びており、例えば550nm励起での発光強度(Iex550nm)は、400nm励起(最大励起強度が得られる波長)での発光強度(Imax)の50%より大きくなっている((Iex550nm)/(Imax)>0.5)。このことは、例えば緑色から黄色蛍光体と混ぜて白色LEDを製造したとき、これらの赤色蛍光体は、その緑色~黄色蛍光体が発光した光を再吸収することで励起して赤色発光することを示している。すなわち、多段励起が発生し易いことを示している。このような赤色蛍光体を用いて白色LEDを作成すると、色味にバラつきが生じたり、発光効率の低下が生じやすくなる。
 これに対して、本実施の形態に係るアルカリ土類金属シリケート蛍光体では、上述のように、(Iex550nm)/(Imax)<0.25の関係を満たす。このアルカリ土類金属シリケート蛍光体では、このような励起スペクトル形状を有していることで、緑色や黄色の蛍光体と混合して使用した場合においても多段励起が抑制され、例えば白色LEDの色味のズレやバラつき、多段励起による効率低下や色ずれを抑制することができ、極めて色純度が高く演色性に優れた蛍光体となる。
 ≪2.アルカリ土類金属シリケート蛍光体の製造方法≫
 次に、上述した特徴的な組成からなるアルカリ土類金属シリケート蛍光体の製造方法について説明する。
 本実施の形態に係るアルカリ土類金属シリケート蛍光体の製造方法は、原料金属の水溶液と水溶性ケイ素化合物の水溶液とを混合攪拌してゲル体を得るゲル体生成工程と、ゲル体を乾燥させる乾燥工程と、乾燥物を仮焼成する仮焼成工程と、仮焼成粉をフラックスと混合させて還元焼成する焼成工程とを有する。以下、工程毎に詳述する。
  <2-1.ゲル体生成工程>
 ゲル体生成工程では、所定の割合で秤量した原料金属の塩と、賦活剤としてのユーロピウム(Eu)の化合物とを溶解して水溶液とし、得られた水溶液に所定量の水溶性ケイ素化合物の水溶液を加えて攪拌してゲル体を得る。
 このように、原料金属を水溶性ケイ素化合物と混合してゲル体を生成させることによって、原料を均一に分散させることができ、それら原料金属からなる構成成分が均一に分布した蛍光体を得ることができ、より一層に発光輝度が大きな蛍光体となる。
 具体的に、先ず、所定の割合で秤量した原料金属塩と賦活剤として添加するEu化合物とを混合して水溶液を作製する。
 原料金属塩としては、少なくとも、カルシウム(Ca)塩とストロンチウム(Sr)塩とユーロピウム(Eu)化合物を用いる。カルシウム塩とストロンチウム塩としては、例えば、炭酸塩、酢酸塩、硝酸塩、塩化物塩等を用いることができるが、その中でも炭酸塩と酢酸塩を用いることが好ましい。また、賦活剤として添加するユーロピウム化合物としては、酸化物、酢酸塩、硝酸塩等を用いることができ、またユーロピウム単独で用いることもできる。
 また、蛍光体の構成成分であるバリウム(Ba)は、後述する焼成工程において少なくとも塩化バリウム(BaCl)を含むフラックスを用いて還元焼成中にSrやCaと置換させてドープすることに加えて、このゲル体生成工程において上述したカルシウム塩やストロンチウム塩等と共に、例えば炭酸塩等の形態で添加してもよい。
 なお、特性向上の目的で、Eu以外の希土類元素を微量添加することができる。その場合、酸化物、塩化物、硝酸塩、炭酸塩、酢酸塩等の種々のものを使用することができる。
 上述した原料金属塩とユーロピウム化合物は、先ず、少なくともカルシウム塩及びストロンチウム塩と、賦活剤であるユーロピウム化合物とを水に加えて攪拌し、これら原料を分散させた水溶液(水分散液)を作製する。なお、クエン酸等の有機酸を用いて原料を溶解して水溶液とすることもできるが、得られたゲル体中の有機成分を除去するための熱分解処理等が必要となる。
 一方、ゲル体生成工程では、上述した原料金属塩を分散させた水分散液を準備するとともに、水溶性ケイ素化合物(WSS)を準備する。水溶性ケイ素化合物は、例えば、原料としてテトラエトキシシラン(TEOS)と2価アルコールとを、モル比で1:3以上となるようにそれぞれ加えて80℃で1時間混合し、その混合液に触媒としての酸を少量(混合液の0.2%程度)加えて1時間攪拌することによって作製することができる。
 このようにして作製された水溶性ケイ素化合物を用いることによって、簡便に原料金属塩を溶解させた水分散液と混合させることができる。そして、このような水溶液を用いた湿式合成により蛍光体前駆体(ゲル体の乾燥物)を形成することによって、原料を均一に分散させた蛍光体前駆体を得ることができ、特に賦活剤であるEuを均一に添加させることができるので、高輝度な蛍光体を効果的に作製することができる。
 2価アルコールとしては、例えばプロピレングリコールを用いることができ、また触媒として用いる酸としては、塩酸又は乳酸を用いることができる。
 また、水溶性ケイ素化合物においては、例えばTEOSとプロピレングリコールとがモル比1:3以上となるように添加することによって水溶性になるが、モル比1:4未満ではゲル化し易くなるので長期保存を行う場合には、TEOSとプロピレングリコールとをモル比1:4以上となるように混合させることが好ましい。
 ゲル体生成工程では、上述のようにそれぞれ作製した原料金属を分散させた水分散液と水溶性ケイ素化合物とを、所望とする組成比となるように混合し、ゲル体を作製する。
 本実施の形態においては、作製するアルカリ土類金属シリケート蛍光体が、組成式(11):(SrCaBaEuSi(但し、式(1)中のa、b、c、d、e、及びfは、0.4<a<0.6、0.4<b<0.6、0.01<c<0.05、0.01≦d<0.4、0.7≦e≦1.3、3.0≦f≦5.0であり、且つa+b+c+d=1)である。供給する原料中の原子比と得られる蛍光体の原子組成比とは略一致することから、所望とする原料配合比率となるように秤量した原料金属塩及びEu化合物からなる水分散液と、水溶性ケイ素化合物とをそれぞれ秤量して混合することが好ましい。
 なお、アルカリ土類金属シリケート蛍光体におけるBaは、後述する焼成工程において添加するフラックスに含まれたBaが、一部のSrやCaと置換してドープされることによって構成される。したがって、後述する焼成工程では、フラックスに由来するBaが所望とする組成比で含有されるようにフラックスを添加して混合することが好ましい。また、そのフラックスに由来するBaが置換することによって、SrやCaの含有割合が僅かに減少することから、所望とする組成式の蛍光体となるように、最初の原料配合比率を設定して原料を秤量混合することが好ましい。
 ゲル体の生成においては、アルカリ土類金属を溶解させた水溶液に水溶性ケイ素化合物を添加して混合して攪拌することによってゲル化させる。ゲル化に要する時間は、アルカリ土類金属元素の種類や水溶液の水分量によって変化する。また、ゲル化をより効率的に進行させるために、使用する水溶性ケイ素化合物において、2価アルコールであるプロピレングリコールを金属元素の総モル数の6倍~12倍に相当する量添加してもよい。
 また、ゲル化温度としては、その液温を20℃~100℃とすることが好ましく、20℃~80℃とすることがより好ましい。温度が20℃未満ではゲル化時間が長くなり、100℃を超えると水が沸騰して均一なゲル化が難しくなる。したがって、液温を20℃~100℃として混合攪拌することによって、効率的に且つ原料が均一に分散したゲル体を生成させることができる。
  <2-2.乾燥工程>
 乾燥工程では、ゲル体生成工程にて得られたゲル体を、例えば熱風乾燥機等に投入して乾燥させる。
 ゲル体生成工程にて得られたゲル体には、溶媒成分として、水分のほか、水溶性ケイ素化合物(WSS)に由来するエタノールやプロピレングリコール等の2価アルコールの一部が含まれている。そのため、この乾燥工程では、得られたゲル体を乾燥させることによって、そのゲル体中に含まれる溶媒成分を除去し、ゲル体の乾燥物である蛍光体前駆体を生成する。
 乾燥工程における乾燥温度としては、特に限定されないが、80℃~100℃程度で乾燥させることが好ましい。また、乾燥時間についても、特に限定されるものではなく、5時間~10時間程度とすることができる。
  <2-3.仮焼成工程>
 仮焼成工程では、乾燥工程にて得られたゲル体の乾燥物である蛍光体前駆体を所定の焼成条件で仮焼成して仮焼成粉を得る。この仮焼成工程では、上述した乾燥工程を経て残留しているWSS由来の2価アルコール等を分解除去するとともに、乾燥物中の炭酸塩を分解して母体結晶を成長させる。
 仮焼成の処理条件としては、大気雰囲気中で600℃~1400℃の温度条件とすることが好ましい。仮焼成の温度が600℃未満では、プロピレングリコール等の2価アルコールや炭酸塩の分解、母体結晶の成長が不十分となることがある。一方で、1400℃を超えると、完全に焼結したり、副生成物が生成したりするため好ましくない。
  <2-4.焼成工程>
 焼成工程では、仮焼成工程にて得られた仮焼成粉を、還元雰囲気下で所定の焼成条件で還元焼成する。この焼成工程では、母体結晶を成長させるとともに、賦活剤であるEuを3価から2価にしてドープする。
 そして、この焼成工程では、仮焼成粉をフラックスと共に混合して焼成することが重要となり、特に、少なくとも塩化バリウム(BaCl)を含むフラックスの存在下で還元焼成することを特徴とする。
 仮焼成粉をフラックスと混合して還元焼成することによって、そのフラックスの存在により結晶成長を促進させることができる。また、このようにしてフラックスの存在下で還元焼成して得られる蛍光体粒子は、数十μmの単分散に近く、円形度の高い粒子となり、例えば白色LEDの製造において緑色や黄色蛍光体と共に樹脂に練る込む際に良好に分散するようになり、練り込み性を向上させることができる。なお、蛍光体粒子の粒子径は、フラックス種やその添加量、また焼成温度によって、数μm~50μmの範囲で変えることができる。
 そして特に、フラックスとして、少なくともBaClを含むものを用いることによって、従来の蛍光体に比して、より高輝度な蛍光体を得ることができる。このことに関して、そのメカニズムは定かではないが、BaClを含むフラックスを用いることによって、そのフラックスにおけるBaが蛍光体の構成成分としてドープされるようになるために、発光輝度が向上するものと考えられる。
 仮焼成粉と混合させるフラックスとしては、上述のように、少なくとも塩化バリウム(BaCl)を含むフラックスとする。すなわち、BaCl単独で、若しくは、BaClと共に、例えばNHCl、LiCl、NaCl、KCl、CsCl、CaCl、SrCl、YCl、ZnCl、MgCl、RbCl等の塩化物及びこれらの含水塩、LiF、NaF、KF、CsF、CaF、BaF、SrF、AlF、MgF、YF等のフッ化物、KPO、KHPO、KHPO、NaPO、NaHPO、NaHPO、LiPO、LiHPO、LiHPO、(NHPO、(NHHPO、(NH)HPO等のリン酸塩等の化合物を1種以上含むフラックスを用いることができる。その中でも、BaClと共に、SrCl、CaClの何れかを含むフラックスを用いることが好ましい。
 還元焼成するに際して、その還元雰囲気としては、水素ガスと不活性ガスである窒素ガスやアルゴンガスとの混合ガス等を用いることが好ましい。
 また、還元焼成の温度条件としては、1000℃~1350℃とすることが好ましく、1100℃~1300℃とすることがより好ましい。還元焼成温度が1000℃未満では、仮焼成粉に対する還元焼成処理が効果的に進行しない。一方で、還元焼成温度が1350℃を超えると、粒子径が粗大化してLED等の蛍光体として利用しにくくなり、また高温相が不純物相として生成したり、部分的な溶融が起ったりするため好ましくない。
 また、還元焼成の処理時間としては、0.5時間~12時間とすることが好ましく、1時間~6時間とすることがより好ましい。なお、この還元焼成処理は、数回に亘って繰り返し行ってもよい。
 以上のようにして仮焼成粉を還元焼成することによって得られた焼成物を解砕することで、所望とする組成の蛍光体粒子を得ることができるが、このとき、焼成物(蛍光体粒子)の表面に、焼成工程にて混合させたフラックスが残留していることがある。蛍光体粒子の表面にフラックスが残留すると、蛍光強度の低下をもたらすことがあり、好ましくない。そのため、上述のようにして得られた焼成物を、解砕前又は解砕後に、水等によって洗浄して、粒子表面に残留したフラックスを除去することが好ましい。このようにして洗浄処理を行った後、エタノール等で置換して乾燥し、蛍光体を得る。さらに、解砕や洗浄による表面ダメージを回復させて発光輝度をより向上させることを目的として、適当な雰囲気や温度でアニールするようにしてもよい。
 なお、一般的に、アルカリ土類金属シリケート蛍光体は耐湿性に問題がある。そのため、蛍光体の表面安定性を向上させるために、得られた蛍光体粒子の表面を異なる物質で被覆する表面処理を行うことが好ましい。例えば、表面処理の材料としては、有機化合物、無機化合物、ガラス材料等を挙げることができるが、その中でも酸化物である酸化珪素を用いて表面処理を行うことが好ましい。
 以上詳述した製造方法により、組成式(SrCaBaEuSiで表され、組成式中のa、b、c、d、e、及びfが、0.4<a<0.6、0.4<b<0.6、0.01<c<0.05、0.01≦d<0.4、0.7≦e≦1.3、3.0≦f≦5.0であり、且つa+b+c+d=1を満たすアルカリ土類金属シリケート蛍光体を製造することができる。
 そして、このようにして製造されたアルカリ土類金属シリケート蛍光体では、600nm以上の発光ピーク波長を有し、しかも従来の蛍光体よりも高輝度に発光することができる。このため、赤色蛍光体として好適に用いることができる。また、このような蛍光体では、励起光に対する吸収率が高く、発光特性に優れた蛍光体となる。
 また、このようにして製造されたアルカリ土類金属シリケート蛍光体では、その励起スペクトル形状から、緑色や黄色の蛍光体と混合して使用する場合等において多段励起が起こり難く、白色LEDの色味のズレやバラつき、多段励起による効率低下や色ずれを抑制することができ、白色LED用の赤色蛍光体として好適に使用することができる。
 さらに、上述した製造方法から分かるように、従来の窒化物蛍光体や硫化物蛍光体のように複雑な製造工程を経ることなく、また特殊な製造設備を用いることなく、安価に且つ容易に製造することができる。
 またさらに、上述したように、フラックスを使用して粒成長させていることにより、単分散に近く、円形度の高い粒子を得ることができる。具体的には、その円形度が85%以上の粒子を得ることができる。そのため、例えば白色LEDを製造するにあたり、黄色や緑色蛍光体等と共に樹脂に練り込むに際して、優れた分散性を発揮する。
 また、このようにして製造されたアルカリ土類金属シリケート蛍光体は、比重と形状という観点からも白色LED用として好適である。すなわち、白色LEDの製造において赤色蛍光体と共に用いる一般的な緑色や黄色蛍光体である(Ba、Sr)SiO:Euや(Y,Gd)Al12:Ce等は、その組成にもよるが4~5g/cm前後の比重を有し、その形状は数~30μm程度で、扁平率が小さく単分散に近い。これに対して、従来の赤色蛍光体であるCASNの比重は、その組成にもよるが3.3g/cm前後であり、粒子径も数μm以下の粒子の凝集体であり、組み合わせる緑色や黄色蛍光体との比重や形状の差が大きい。
 一方で、本実施の形態に係るアルカリ土類金属シリケート蛍光体の比重は、SrCaSiOの結晶データから4g/cm前後と想定され、フラックス焼成により数~数十μmに成長した扁平率が小さく単分散に近い粒子とすることができる。これにより、組み合わせる一般的な緑色や黄色蛍光体との比重や形状の差が比較的小さくなり、比重や形状の差が小さいことは、緑色や黄色蛍光体と均一に練り込む際に非常に有効となる。
 このように、本実施の形態に係るアルカリ土類金属シリケート蛍光体を用いることによって、緑色~黄色発光する蛍光体と混合して蛍光層を形成して青色LEDと組み合わせることで、赤色成分をより効果的に補うことができ、より一層に演色性に優れた白色LEDを安価に得ることができる。
 ここで、白色LEDの作製において、その構造は特に限定されるものではなく、例えば蛍光体層を青色LEDの直上に形成して青色LEDと共に封止した構造とすることもできるし、樹脂やゴム等により蛍光体シートを形成して青色LEDと離して置く、いわゆるリモートフォスファーのような使い方をして白色LEDデバイスとすることもできる。
 なお、緑色~黄色蛍光体としては、SrAl:Eu、CaScSi12:Ce、CaSc:Ce、(Ba,Sr)SiO:Eu、BaSi12:Eu、β-サイアロン、YAl12:Ce、Y(Al,Ga)12:Ce、(Y,Gd)Al12:Eu、LuAl12、Ca-αサイアロン等、種々のものが挙げられる。その中でも、特に、(Ba,Sr)SiO:Eu、YAl12:Ce、Y(Al,Ga)12:Ce、(Y,Gd)Al12:Eu、LuAl12、Ca-αサイアロンの何れかであることが好ましい。
 ≪3.実施例≫
 以下に、本発明を適用した実施例により詳しく説明する。なお、本発明は下記の実施例に限定されるものではない。
 本実施例では、各実施例及び比較例にて作製した蛍光体を、蛍光分光光度計FP-6500(日本分光株式会社製)を用いて455nm励起での発光スペクトル測定を行い、さらに発光ピーク波長に対する励起スペクトルを測定した。発光強度は、従来の黄色蛍光体であるYAG:Ce(フォスファーテック社製、QMK58/F-U1)の最高輝度を1として規格化した相対輝度として評価した。
 また、蛍光体の発光効率に関して、励起光455nmにおける蛍光体の吸収率(励起光を吸収する効率)、内部量子効率及び外部量子効率を、積分球を用いて測定した。なお、内部量子効率は、吸収した励起光を蛍光に変換する効率を示すものである。一方、外部量子効率は、照射した励起光を蛍光に変換する効率を示すものであり、吸収率に内部量子効率を乗ずることで算出される。
 さらに、ジャスコインタナショナル社製の真空分散型画像解析粒度分布計(VD-400nano)を用いて、得られた蛍光体粒子の円形度を評価した。
 [実施例1]
 <蛍光体の作製>
 実施例1では、以下に示すように、水溶性ケイ素化合物(WSS)を用いた溶液法により前駆体を得て、その前駆体を焼成することによって蛍光体を作製した。なお、使用したWSSは、テトラエトキシシラン(TEOS)とプロピレングリコールとをモル比1:4になるように秤量し、80℃で1時間混合して得られた混合液に、酸として乳酸を微量加えてさらに1時間攪拌して作製した。そして、これに純水を添加して2mol/LのWSS水溶液を得た。
 (ゲル体生成工程)
 原料として、CaCO(和光純薬株式会社製)、SrCO(関東化学株式会社製)、Eu(3N、高純度化学研究所製)を、組成式で(Ca0.925Sr0.925Eu0.15SiO)となるように秤量し、その合計重量の3.5倍重量の水に添加して、室温下で30分撹拌することによって水分散液とした。続いて、濃度2モル/LのWSS水溶液を所定量秤量した。次いで、その原料の水分散液にWSS水溶液を添加し、10分間室温下で撹拌し、液全体が均一なスラリー状になったことを確認した後、ホットマグネチックスターラーによる加温を開始した。加熱温度は、混合液温度が50℃になるように設定した。加温開始から約20分で全体がゲル化し、均一なゲル体が得られた。
 (乾燥工程)
 次に、得られたゲル体を、100℃に設定した熱風乾燥機に入れて6時間乾燥させた。乾燥後、取り出して乳鉢で軽く解砕を行い、乾燥物である蛍光体前駆体を得た。
 (仮焼成工程)
 次に、得られた乾燥物である蛍光体前駆体を、アルミナ製の容器に入れ、大気雰囲気中で1000℃の温度条件で3時間の熱処理を行い、蛍光体前駆体を仮焼成した。
 (焼成工程)
 次に、得られた仮焼成粉に、フラックスとしてBaClを、仮焼成粉重量に対して20wt%添加して混合した。そして、その混合粉をカーボン製ボートに入れ、電気管状炉(山田電機株式会社製 TSR-630)を用いて、Ar-4%H雰囲気中、1200℃の温度条件で4時間の還元焼成を行って焼成物を得た。
 (残留フラックス除去工程)
 なお、得られた焼成物をメノウ乳鉢で解砕し、純水を用いて表面に残留したフラックス成分を洗浄し、その後エタノールで置換して温風乾燥して蛍光体を得た。
 最終的に得られた蛍光体を分析したところ、Ca0.918Sr0.867Ba0.074Eu0.141SiOからなる組成を有していた。この組成式から、フラックスとして添加したBaClに由来するBaが、Ca及びSrの一部を置換したと推測される。また、その形状は、10~30μmの単分散であって且つ扁平率の小さな粒子であった。
 <発光励起スペクトルの評価>
 図2に、得られた蛍光体の発光励起スペクトルを示す。また、下記表1に、蛍光体の組成、発光ピーク波長とYAG:Ceに対する相対輝度、吸収率、外部量子効率、内部量子効率、並びに最大励起強度が得られる波長で励起したときの発光ピーク強度(Imax)と励起波長550nmにおける発光ピーク強度(Iex550nm)の比(Iex550nm)/(Imax)を示す。
 図2及び表1に示すように、得られた蛍光体の発光ピーク波長は614nmであり、しかも発光輝度もYAG:Ce比で1.22と非常に高輝度であり、赤色蛍光体として良好に使用できることが分かった。また、その励起スペクトルを見ると、従来のCASNやSCASNの励起スペクトル(図1参照)に比べて、550nm付近での励起強度が低く、(Iex550nm)/(Imax)で表される比が0.17と非常に小さく、多段励起の影響が出にくい励起スペクトル形状を有していることが確認できる。
 <粒子形状の評価>
 また、得られた蛍光体の粒度分布測定の結果から、円形度は85.9%であった。また、図3に、その蛍光体粉末の電子顕微鏡(SEM)像を示す。このSEM像からも、直径20μm程度で、単分散かつ球状に近い粒子が得られていることが分かる。
 なお、上述したように、従来の窒化物蛍光体等のように、複雑な製造工程を有さず、また特殊な製造設備を必要とせずに、安価に且つ容易に蛍光体を製造できることが分かった。
 [実施例2]
 <蛍光体の作製>
 仕込み組成を(Ca0.85Sr0.85Eu0.30SiO)としたこと以外は、実施例1と同様にして蛍光体を作製した。最終的に得られた蛍光体を分析したところ、Ca0.830Sr0.816Ba0.077Eu0.277Si0.9683.936からなる組成を有していた。この組成式から、フラックスとして添加したBaClに由来するBaが、Ca及びSrの一部を置換したと推測される。
 <発光励起スペクトルの評価>
 図2に、得られた蛍光体の発光励起スペクトルを示す。また、下記表1に、実施例1と同様の評価結果を示す。
 図2及び表1に示すように、得られた蛍光体の発光ピーク波長は623nmであり、しかも発光輝度もYAG:Ce比で1.16と非常に高輝度であり、赤色蛍光体として良好に使用できることが分かった。また、その励起スペクトルを見ると、従来のCASNやSCASNの励起スペクトル(図1参照)に比べて、550nm付近での励起強度が低く、(Iex550nm)/(Imax)で表される比が0.22と非常に小さく、多段励起の影響が出にくい励起スペクトル形状を有していることが確認できる。
 <粒子形状の評価>
 また、得られた蛍光体の粒度分布測定の結果から、円形度は88.9%であった。また、電子顕微鏡による観察の結果、図3と同様に、直径20μm程度で単分散かつ球状に近い粒子が得られていることが分かった。
 [実施例3]
 <蛍光体の作製>
 仕込み組成を(Ca0.975Sr0.975Eu0.05SiO)としたこと以外は、実施例1と同様にして蛍光体を作製した。最終的に得られた蛍光体を分析したところ、Ca0.967Sr0.913Ba0.07Eu0.05SiOからなる組成を有していた。この組成式から、フラックスとして添加したBaClに由来するBaが、Ca及びSrの一部を置換したと推測される。
 <発光励起スペクトルの評価>
 図2に、得られた蛍光体の発光励起スペクトルを示す。また、下記表1に、実施例1と同様の評価結果を示す。
 図2及び表1に示すように、得られた蛍光体の発光ピーク波長は604nmであり、しかも発光輝度もYAG:Ce比で1.21と非常に高輝度であり、赤色蛍光体として良好に使用できることが分かった。また、その励起スペクトルを見ると、従来のCASNやSCASNの励起スペクトル(図1参照)に比べて、550nm付近での励起強度が低く、(Iex550nm)/(Imax)で表される比が0.10と非常に小さく、多段励起の影響が出にくい励起スペクトル形状を有していることが確認できる。
 <粒子形状の評価>
 また、得られた蛍光体の粒度分布測定の結果から、円形度は87.8%であった。また、電子顕微鏡による観察の結果、図3と同様に、直径20μm程度で単分散かつ球状に近い粒子が得られていることが分かった。
 [比較例1]
 <蛍光体の作製>
 焼成工程において、フラックスとしてSrClを用い、仮焼成粉重量に対し20wt%添加して混合したこと以外は、実施例1と同様の操作を行って蛍光体を得た。得られた蛍光体の組成は、最初の原料配合比率の組成(Ca0.925Sr0.925Eu0.15SiO)であった。
 <発光励起スペクトルの評価>
 図4に、得られた蛍光体の発光励起スペクトルを実施例1と比較して示す。また、下記表1に、実施例と同様の評価結果を示す。
 図4及び表1に示すように、発光ピーク波長は、600nmより長波長側の615nmとなり、赤色蛍光体として使用できることが分かった。しかしながら、その発光強度は、従来のYAG:Ce比で0.89と非常に低かった。
 <蛍光体の発光効率評価>
 また、得られた蛍光体の吸収率は、86.8%と高かったものの、内部量子効率及び外部量子効率は、実施例と比べて低いものであった。
 <粒子形状の評価>
 また、得られた蛍光体の粒度分布測定の結果から、円形度は89.3%であった。なお、蛍光体粉末のSEM像としては、図3に示した実施例1の形状とほぼ同様のものであり、直径20μm程度で単分散かつ球状に近い粒子が得られていることが確認された。
 [比較例2]
 <蛍光体の作製>
 仕込み組成を(Ca0.875Sr0.875Ba0.10Eu0.15SiO)としたこと以外は、実施例1と同様の操作を行って蛍光体を得た。最終的に得られた蛍光体を分析したところ、Ca0.878Sr0.827Ba0.155Eu0.14SiOからなる組成を有していた。この組成式から、フラックスとして添加したBaClに由来するBaが、Ca及びSrの一部を置換したと推測される。
 <発光励起スペクトルの評価>
 図4に、得られた蛍光体の発光励起スペクトルを実施例1と比較して示す。また、下記表1に、実施例と同様の評価結果を示す。
 図4及び表1に示すように、発光ピーク波長は、600nmより長波長側の607nmであり、赤色蛍光体として使用できることが分かった。しかしながら、その発光強度は、従来のYAG:Ce比で0.82と非常に低かった。
 <蛍光体の発光効率評価>
 また、得られた蛍光体の吸収率は、82.7%と実施例と比べて若干低く、また内部量子効率及び外部量子効率も、実施例と比べて非常に低かった。
 <粒子形状の評価>
 また、得られた蛍光体の粒度分布測定の結果から、円形度は89.3%であった。なお、蛍光体粉末のSEM像としては、図3に示した実施例1の形状とほぼ同様のものであり、直径20μm程度で単分散かつ球状に近い粒子が得られていることが確認された。
 [比較例3]
 <蛍光体の作製>
 焼成工程において、フラックスを用いず、1400℃の温度条件で2時間の還元焼成を行ったこと以外は、実施例1と同様の操作を行って蛍光体を得た。なお、フラックスを用いなかったため、残留フラックスの除去処理は行わなかった。得られた蛍光体の組成は、最初の原料配合比率の組成(Ca0.925Sr0.925Eu0.15SiO)であった。
 <発光励起スペクトルの評価>
 下記表1に、実施例と同様の評価結果を示す。
 表1に示すように、発光ピーク波長は、600nmより長波長側の615nmとなり、赤色蛍光体として使用できることが分かった。しかしながら、その発光強度は、従来のYAG:Ce比で0.40と極めて低いものであった。
 <蛍光体の発光効率評価>
 また、得られた蛍光体の吸収率は、69.3%と実施例と比べて低く、また内部量子効率及び外部量子効率も、実施例と比べて非常に低く、効率性の劣るものであった。
 <粒子形状の評価>
 また、得られた粉末は結晶成長剤であるフラックスを使用していなかったことから、2~3μm程度の凝集粒子であり、円形度は極めて低いことが明白であった。
 [比較例4]
 <蛍光体の作製>
 特許文献4(特開2008-24791号公報)に開示されている方法に準じて、(Ca0.925Sr0.925Eu0.15SiO)で表される組成の蛍光体を作製した。
 先ず、原料として、CaCO(和光純薬株式会社製)、SrCO(関東化学株式会社製)、Eu(3N、高純度化学研究所製)、SiO(アドマファインSO-E1、アドマテックス社製)を用い、組成式で(Ca0.925Sr0.925Eu0.15SiO)となるように秤量した。さらに、原料粉末の3wt%のNHClを添加し、ボールミルで均一に混合した。
 得られた混合原料を容器に収容し、先ず、N-Hの還元性雰囲気下で1200℃、4時間の還元焼成を行って一次焼成品を得た。これを粉砕して再びルツボに収容し、炉内に配置して炉内を真空置換し、次に、N-5%Hの雰囲気下で1200℃、4時間の二次焼成を行って二次焼成品を得た。得られた二次焼成品を水中で粉砕し、篩い後、吸引ろ過により脱水した。最後に、乾燥機中150℃で乾燥して、さらに篩いを通して蛍光体を得た。得られた蛍光体組成は、最初の原料配合比率の組成(Ca0.925Sr0.925Eu0.15SiO)であった。
 <発光励起スペクトルの評価>
 図4に、得られた蛍光体の発光励起スペクトルを実施例1と比較して示す。また、下記表1に実施例と同様の評価結果を示す。
 図4及び表1に示すように、発光ピーク波長は、600nmより長波長側の617nmであり、赤色蛍光体として使用できることが分かった。しかしながら、その発光強度は、従来のYAG:Ce比で0.36と極めて低いものであった。
 <蛍光体の発光効率評価>
 また、得られた蛍光体の吸収率は、72.5%と実施例と比べて低く、また内部量子効率及び外部量子効率も、実施例と比べて非常に低く、効率性の劣るものであった。
 <粒子形状の評価>
 また、図5に、その蛍光体粉末の電子顕微鏡(SEM)像を示す。得られた粉末は、図5に示すように2~3μm程度の凝集粒子であった。また、このSEM像からも、円形度の極めて低い粒子であることが分かる。
Figure JPOXMLDOC01-appb-T000001

Claims (6)

  1.  下記組成式(1)で表され、600nm以上に発光ピーク波長を有し、円形度が85%以上であることを特徴とするアルカリ土類金属シリケート蛍光体。
    組成式(1):(SrCaBaEuSi
    (但し、式中のa、b、c、d、e、及びfは、0.4<a<0.6、0.4<b<0.6、0.01<c<0.05、0.01≦d<0.4、0.7≦e≦1.3、3.0≦f≦5.0であり、且つa+b+c+d=1を満たす。)
  2.  当該アルカリ土類金属シリケート蛍光体の構成成分であるバリウム(Ba)は、その少なくとも一部が、焼成時に混合する塩化バリウムを含むフラックスに由来することを特徴とする請求項1記載のアルカリ土類金属シリケート蛍光体。
  3.  最大励起強度が得られる波長で励起したときの発光ピーク強度(Imax)と励起波長550nmにおける発光ピーク強度(Iex550nm)が、(Iex550nm)/(Imax)<0.25の関係を満たすことを特徴とする請求項1又は2記載のアルカリ土類金属シリケート蛍光体。
  4.  組成式(1):(SrCaBaEuSi(但し、式中のa、b、c、d、e、及びfは、0.4<a<0.6、0.4<b<0.6、0.01<c<0.05、0.01≦d<0.4、0.7≦e≦1.3、3.0≦f≦5.0であり、且つa+b+c+d=1を満たす。)で表され、600nm以上に発光ピーク波長を有し、円形度が85%以上であることを特徴とするアルカリ土類金属シリケート蛍光体の製造方法であって、
     アルカリ土類金属とユーロピウム化合物との水溶液と、水溶性ケイ素化合物の水溶液とを混合して攪拌し、ゲル体を生成するゲル体生成工程と、
     上記ゲル体生成工程にて得られたゲル体を乾燥させる乾燥工程と、
     上記乾燥工程にて得られた乾燥物を、大気雰囲気中で600℃~1400℃の温度条件で仮焼成する仮焼成工程と、
     上記仮焼成工程にて得られた仮焼成粉を、少なくとも塩化バリウムを含むフラックスと混合し、還元雰囲気下で1000℃~1350℃の温度条件で焼成する焼成工程と
     を有することを特徴とするアルカリ土類金属シリケート蛍光体の製造方法。
  5.  上記ゲル体生成工程では、20℃~100℃の液温で混合攪拌してゲル体を生成することを特徴とする請求項4記載のアルカリ土類金属シリケート蛍光体の製造方法。
  6.  上記焼成工程にて得られた焼成物から残留フラックスを除去することを特徴とする請求項4又は5記載のアルカリ土類金属シリケート蛍光体の製造方法。
PCT/JP2013/066588 2012-07-30 2013-06-17 アルカリ土類金属シリケート蛍光体及びその製造方法 WO2014021006A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13825735.7A EP2881447B1 (en) 2012-07-30 2013-06-17 Alkaline earth metal silicate phosphor and method for producing same
US14/416,410 US9938459B2 (en) 2012-07-30 2013-06-17 Alkaline earth metal silicate phosphor and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-168795 2012-07-30
JP2012168795 2012-07-30
JP2012-259996 2012-11-28
JP2012259996A JP5578739B2 (ja) 2012-07-30 2012-11-28 アルカリ土類金属シリケート蛍光体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2014021006A1 true WO2014021006A1 (ja) 2014-02-06

Family

ID=50027696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066588 WO2014021006A1 (ja) 2012-07-30 2013-06-17 アルカリ土類金属シリケート蛍光体及びその製造方法

Country Status (5)

Country Link
US (1) US9938459B2 (ja)
EP (1) EP2881447B1 (ja)
JP (1) JP5578739B2 (ja)
TW (1) TW201404868A (ja)
WO (1) WO2014021006A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129252A1 (ja) * 2015-02-09 2016-08-18 パナソニックIpマネジメント株式会社 蛍光体、波長変換部材及び光起電力デバイス
JP2018109075A (ja) * 2016-12-28 2018-07-12 デンカ株式会社 緑色蛍光体、その製造方法、発光素子及び発光装置
WO2021054336A1 (ja) * 2019-09-17 2021-03-25 Zigenライティングソリューション株式会社 発光装置、及び照明装置
EP3282317B1 (en) * 2015-04-09 2021-08-04 Appotronics Corporation Limited Light-emitting device and projection system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6927857B2 (ja) * 2017-11-13 2021-09-01 日本アエロジル株式会社 ケイ酸塩蛍光体の製造方法
JP2019186537A (ja) * 2018-03-30 2019-10-24 日亜化学工業株式会社 波長変換部材及び発光装置
DE102018126355B4 (de) * 2018-10-23 2021-06-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Lichtemittierendes bauelement und verwendung eines lichtemittierenden bauelements zur minimierung von stokesverlusten durch photonmultiplikationsprozesse für ir-anwendungen
JP2023138393A (ja) * 2022-03-17 2023-10-02 エボニック オペレーションズ ゲーエムベーハー アップコンバージョン蛍リン光体の調製方法
JP2023138394A (ja) * 2022-03-17 2023-10-02 エボニック オペレーションズ ゲーエムベーハー フラックス処理アップコンバージョン蛍リン光体の調製方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682876A (en) 1979-12-12 1981-07-06 Hitachi Ltd Fluorescent substance and its preparation
JP2000244021A (ja) 1999-02-18 2000-09-08 Agilent Technol Inc 赤の不足を補償する蛍光体を使用したled
WO2003021691A1 (en) * 2001-09-03 2003-03-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting device
JP2005187797A (ja) * 2003-12-05 2005-07-14 Toshiba Corp 蛍光体およびこれを用いた発光装置
JP2006008721A (ja) 2003-11-26 2006-01-12 National Institute For Materials Science 蛍光体と蛍光体を用いた発光器具
JP2008024791A (ja) 2006-07-19 2008-02-07 Toshiba Corp 蛍光体、蛍光体の製造方法および発光装置
JP2009173905A (ja) * 2007-12-28 2009-08-06 Mitsubishi Chemicals Corp 蛍光体、蛍光体の製造方法、蛍光体含有組成物および発光装置
JP2012136594A (ja) * 2010-12-24 2012-07-19 Sumitomo Metal Mining Co Ltd アルカリ土類金属シリケート蛍光体の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT410266B (de) * 2000-12-28 2003-03-25 Tridonic Optoelectronics Gmbh Lichtquelle mit einem lichtemittierenden element
US7311858B2 (en) * 2004-08-04 2007-12-25 Intematix Corporation Silicate-based yellow-green phosphors
CN102575159B (zh) * 2009-10-13 2015-05-27 默克专利有限公司 含有铕掺杂的原硅酸盐的磷光体混合物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682876A (en) 1979-12-12 1981-07-06 Hitachi Ltd Fluorescent substance and its preparation
JP2000244021A (ja) 1999-02-18 2000-09-08 Agilent Technol Inc 赤の不足を補償する蛍光体を使用したled
WO2003021691A1 (en) * 2001-09-03 2003-03-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting device
JP2006008721A (ja) 2003-11-26 2006-01-12 National Institute For Materials Science 蛍光体と蛍光体を用いた発光器具
JP2005187797A (ja) * 2003-12-05 2005-07-14 Toshiba Corp 蛍光体およびこれを用いた発光装置
JP2008024791A (ja) 2006-07-19 2008-02-07 Toshiba Corp 蛍光体、蛍光体の製造方法および発光装置
JP2009173905A (ja) * 2007-12-28 2009-08-06 Mitsubishi Chemicals Corp 蛍光体、蛍光体の製造方法、蛍光体含有組成物および発光装置
JP2012136594A (ja) * 2010-12-24 2012-07-19 Sumitomo Metal Mining Co Ltd アルカリ土類金属シリケート蛍光体の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Hakusyoku LED Syomei-gijutsu No Subete (Light emitting diode)", KOGYO CHOSAKAI PUBLISHING CO., LTD., pages: 107
See also references of EP2881447A4
T. L. BARRY, J. ELECTROCHEM. SOC., vol. 115, 1968, pages 1181 - 1184

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129252A1 (ja) * 2015-02-09 2016-08-18 パナソニックIpマネジメント株式会社 蛍光体、波長変換部材及び光起電力デバイス
JPWO2016129252A1 (ja) * 2015-02-09 2017-11-16 パナソニックIpマネジメント株式会社 蛍光体、波長変換部材及び光起電力デバイス
EP3282317B1 (en) * 2015-04-09 2021-08-04 Appotronics Corporation Limited Light-emitting device and projection system
JP2018109075A (ja) * 2016-12-28 2018-07-12 デンカ株式会社 緑色蛍光体、その製造方法、発光素子及び発光装置
WO2021054336A1 (ja) * 2019-09-17 2021-03-25 Zigenライティングソリューション株式会社 発光装置、及び照明装置
JP2021052175A (ja) * 2019-09-17 2021-04-01 Zigenライティングソリューション株式会社 発光装置、及び照明装置

Also Published As

Publication number Publication date
JP2014043539A (ja) 2014-03-13
EP2881447B1 (en) 2017-11-15
TW201404868A (zh) 2014-02-01
EP2881447A4 (en) 2016-03-30
EP2881447A1 (en) 2015-06-10
US20150203749A1 (en) 2015-07-23
US9938459B2 (en) 2018-04-10
JP5578739B2 (ja) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5578739B2 (ja) アルカリ土類金属シリケート蛍光体及びその製造方法
JP5706441B2 (ja) 放射線負荷に対する安定性及び大気湿度に対する耐性が改善されたストロンチウムオキシオルトシリケート蛍光体
WO2016063965A1 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2016216711A (ja) 蛍光体、その製造方法、照明器具および画像表示装置
JPWO2016186058A1 (ja) 発光器具および画像表示装置
WO2016076380A1 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP5775742B2 (ja) 青色発光蛍光体の製造方法
JP6729393B2 (ja) 蛍光体及び発光装置並びに蛍光体の製造方法
WO2018147185A1 (ja) 蛍光体粉末及び発光装置並びに蛍光体粉末の製造方法
WO2014006755A1 (ja) シリケート蛍光体およびその製造方法
JP2017190434A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2014189592A (ja) 蛍光体及び、蛍光体含有組成物、発光装置、画像表示装置及び照明装置
JP2014167086A (ja) 珪酸塩系蛍光体及びその製造方法
JP7318924B2 (ja) 蛍光体及びこれを用いた発光装置
JP5066104B2 (ja) 青色蛍光体
WO2011129397A1 (ja) ケイ酸塩系青色発光蛍光体及びその製造方法
JP2016079213A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2016056246A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2016124929A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
WO2015111626A1 (ja) 蛍光体及び発光装置
WO2016072407A1 (ja) 蛍光体及び発光装置
JP2017088791A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
TW201716544A (zh) 螢光體及其製造方法以及發光裝置
JP2017048338A (ja) 蛍光体及びそれを用いた発光装置
JPWO2015037715A1 (ja) ケイ酸塩蛍光体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14416410

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013825735

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013825735

Country of ref document: EP