WO2011129397A1 - ケイ酸塩系青色発光蛍光体及びその製造方法 - Google Patents

ケイ酸塩系青色発光蛍光体及びその製造方法 Download PDF

Info

Publication number
WO2011129397A1
WO2011129397A1 PCT/JP2011/059272 JP2011059272W WO2011129397A1 WO 2011129397 A1 WO2011129397 A1 WO 2011129397A1 JP 2011059272 W JP2011059272 W JP 2011059272W WO 2011129397 A1 WO2011129397 A1 WO 2011129397A1
Authority
WO
WIPO (PCT)
Prior art keywords
blue light
emitting phosphor
silicate
range
powder
Prior art date
Application number
PCT/JP2011/059272
Other languages
English (en)
French (fr)
Inventor
稲垣 徹
正人 山内
誠司 野口
福田 晃一
植木 明
Original Assignee
宇部マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部マテリアルズ株式会社 filed Critical 宇部マテリアルズ株式会社
Priority to US13/641,314 priority Critical patent/US8883309B2/en
Priority to JP2012510686A priority patent/JP5770165B2/ja
Publication of WO2011129397A1 publication Critical patent/WO2011129397A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a silicate-based blue light-emitting phosphor particularly useful as a blue light-emitting source of a fluorescent lamp, and a method advantageous for producing the silicate-based blue light-emitting phosphor.
  • a blue light source is (Ba, Eu) O ⁇ MgO ⁇ 5Al.
  • An aluminate-based BAM blue light-emitting phosphor represented by the general formula of 2 O 3 is widely used.
  • the BAM blue light-emitting phosphor has a problem that the emission intensity decreases with time.
  • 3 (Me, Eu) O.aMgO.bSiO 2 (where Me is one or more alkalis selected from the group consisting of Ca, Sr and Ba) Silicate-based blue-emitting phosphors represented by the general formula of earth metals, a is a number in the range of 0.9 to 1.1, and b is a number in the range of 1.8 to 2.2 It has been.
  • the silicate blue light-emitting phosphor is generally considered to have lower emission intensity than the aluminate-based BAM blue light-emitting phosphor.
  • Patent Document 1 a silicate system in which elements such as Cu, Ga, Ge, As, Ag, Cd, In, Sn, Sb, Au, Hg, Tl, Pb, and Bi are contained as additive elements in the matrix.
  • the blue light-emitting phosphor has higher emission intensity when excited with vacuum ultraviolet light having a wavelength of 147 nm.
  • a SrCO 3 to MeO source, the MgCO 3 to MgO source, SiO 2 in SiO 2 source, a Eu 2 O 3 in EuO source, and the melt aid (flux) Silicate blue light-emitting phosphors are manufactured by firing a powder mixture using NH 4 Br.
  • Patent Document 2 a silicate blue light-emitting phosphor in which a part of Mg is substituted with a metal selected from the group consisting of Group 5 and Group 6 elements, vacuum ultraviolet rays having a wavelength of 146 nm are applied for 1 hour and 24 hours. There is a description that the emission intensity when irradiated is improved.
  • a powder mixture using barium carbonate and strontium carbonate as the MeO source, basic magnesium carbonate as the MgO source, silicon dioxide as the SiO 2 source, and europium oxide as the EuO source is fired. By doing so, a silicate-based blue-emitting phosphor is manufactured.
  • an object of the present invention is to provide a silicate-based blue light-emitting phosphor having improved blue light emission intensity when excited with ultraviolet light having a wavelength of 254 nm, and a method for producing the same.
  • the present inventor baked a powder mixture containing MeO source powder, EuO source powder, MgO source powder, and SiO 2 source powder to produce a silicate-based blue light-emitting phosphor.
  • a high-purity and fine magnesium oxide powder obtained by the method of oxidizing metal magnesium vapor by contacting with the powder, or using a high-purity and fine basic magnesium carbonate powder as the MgO source, further powder
  • a chlorine compound as a flux
  • the present invention oxidizes metallic magnesium vapor by contacting metallic magnesium vapor with oxygen having a purity of 99.9% by mass or more and a BET specific surface area in the range of 3 to 60 m 2 / g.
  • a silicate-based blue represented by a composition formula of the following formula (I), wherein a powder mixture containing magnesium oxide powder, MeO source powder, EuO source powder and SiO 2 source powder obtained by the method is fired It exists in the manufacturing method of a light emission fluorescent substance.
  • Me is Sr, or a mixture of one or both of Ca and Ba and Sr
  • x is a number in the range of 0.001 to 0.110
  • a is 0.9 to 1.1.
  • Number of ranges, b is a number in the range of 1.8 to 2.2.
  • the preferable aspect of the manufacturing method of the said invention is as follows.
  • the powder mixture contains a chlorine compound such that when the amount of magnesium in the powder mixture is 1 mol, the amount is in the range of 0.02 to 0.5 mol in terms of chlorine.
  • the powder mixture contains strontium chloride so that the amount of magnesium in the powder mixture is 1 mol, and the amount is in the range of 0.02 to 0.5 mol in terms of chlorine.
  • the present invention further relates to a silicate blue light-emitting phosphor represented by a composition formula of the following formula (I), 3 (Me 1-x , Eu x ) O ⁇ aMgO ⁇ bSiO 2 (I) (Wherein Me is Sr, or a mixture of one or both of Ca and Ba and Sr, x is a number in the range of 0.001 to 0.110, and a is 0.9 to 1.1.
  • a silicate blue light-emitting phosphor represented by a composition formula of the following formula (I), 3 (Me 1-x , Eu x ) O ⁇ aMgO ⁇ bSiO 2 (I) (Wherein Me is Sr, or a mixture of one or both of Ca and Ba and Sr, x is a number in the range of 0.001 to 0.110, and a is 0.9 to 1.1.
  • the maximum emission intensity of visible light in the wavelength range of 430 to 490 nm that is emitted when excited by ultraviolet light having a wavelength of 254 nm is expressed by the composition formula of (Ba 0.976 , Eu 0.024 ) O ⁇ MgO ⁇ 5Al 2 O 3.
  • the blue light-emitting phosphor having an average particle diameter of 6.5 ⁇ m is excited by ultraviolet light having a wavelength of 254 nm, it is 1.1 times or more than the maximum emission intensity of visible light in the wavelength range of 430 to 490 nm.
  • Preferred embodiments of the silicate blue light-emitting phosphor of the present invention are as follows. (1) Me in the formula (I) is Sr. (2) The average particle size is in the range of 1.0 to 20 ⁇ m. (3) Obtained by the production method of the present invention.
  • a silicate-based blue light-emitting phosphor in which the emission intensity of blue light when excited with ultraviolet light having a wavelength of 254 nm is remarkably improved can be advantageously produced industrially.
  • the silicate blue light-emitting phosphor of the present invention has a high emission intensity of blue light when excited with ultraviolet light having a wavelength of 254 nm, it can be advantageously used as a blue light emission source of a fluorescent lamp.
  • the silicate blue light-emitting phosphor obtained by the production method of the present invention is represented by the composition formula of the following formula (I). 3 (Me 1-x , Eu x ) O ⁇ aMgO ⁇ bSiO 2 (I)
  • Me is Sr or a mixture of one or both of Ca and Ba and Sr
  • x is a number in the range of 0.001 to 0.110
  • a is in the range of 0.9 to 1.1.
  • b is a number in the range of 1.8 to 2.2.
  • Me is preferably Sr or a mixture of Ba and Sr, and particularly preferably Sr.
  • the mixture of Ba and Sr preferably has a Sr content in the range of 3 to 6 moles when the Ba content is 1 mole.
  • X is preferably a number in the range of 0.010 to 0.070.
  • a is preferably a number in the range of 0.97 to 1.03.
  • b is preferably a number in the range of 1.97 to 2.03.
  • the method for producing the silicate blue light-emitting phosphor of the present invention includes a method using magnesium oxide powder as the MgO source powder of the silicate blue light-emitting phosphor and a method using basic magnesium carbonate powder. First, a method of using magnesium oxide powder as the MgO source powder will be described.
  • Magnesium oxide powder used as the MgO source powder has a purity of 99.9% by mass or more and a BET specific surface area in the range of 3 to 60 m 2 / g. It is a magnesium oxide powder obtained by the method of oxidizing (gas phase method). That is, it is a fine magnesium oxide powder having a high purity and a BET diameter determined by the following calculation formula in the range of 0.028 to 0.56 ⁇ m.
  • the BET specific surface area of the magnesium oxide powder is preferably in the range of 5 to 45 m 2 / g, and particularly preferably in the range of 5 to 20 m 2 / g.
  • BET diameter ( ⁇ m) 6 / [BET specific surface area (m 2 /g) ⁇ 3.58 (g / cm 3 )]
  • 6 is the surface shape factor
  • 3.58 g / cm 3 is the true density of the magnesium oxide powder.
  • Magnesium oxide powder obtained by the gas phase method has a cubic primary particle shape and is difficult to form aggregated particles. For this reason, by using the magnesium oxide powder obtained by the vapor phase method as the MgO source powder, it is possible to obtain a powder mixture having a highly uniform composition in which the magnesium oxide powder is uniformly dispersed. By baking a high powder mixture, a silicate-based blue light-emitting phosphor having a uniform composition and high emission intensity can be obtained.
  • the raw material powder other than the MgO source powder may be oxide powders, hydroxides, halides, carbonates, nitrates, oxalates, etc.
  • generates an oxide by heating of this may be sufficient.
  • These raw material powders preferably have a purity of 99% by mass or more, and more preferably 99.9% by mass or more.
  • the average particle diameter is preferably in the range of 0.1 to 50 ⁇ m. In the present specification, the average particle diameter is a value measured by a laser diffraction scattering method.
  • elements such as W, Pb, and P may be added in order to further increase the maximum emission intensity of the resulting silicate blue light-emitting phosphor.
  • the amount of these elements added is preferably in the range of 0.01 to 0.2 moles when the amount of magnesium in the MgO source is 1 mole.
  • the powder mixture is preferably fired after it is made into a granular material having an average particle size in the range of 10 to 80 ⁇ m.
  • the granular material of the powder mixture can be produced by a method in which each raw material powder is mixed in water to form a slurry of the powder mixture, and then the slurry is spray-dried.
  • the flux is preferably a chlorine compound.
  • the addition amount of the chlorine compound is preferably in the range of 0.02 to 0.5 mol, preferably 0.1 to 0.5 mol in terms of chlorine when the amount of magnesium in the powder mixture is 1 mol. Is more preferably in the range of 0.2 to 0.5 mol.
  • the chlorine compound is preferably a chloride of metals (Me, Eu, Mg) constituting the silicate blue light-emitting phosphor.
  • Examples of the chlorine compound include strontium chloride, magnesium chloride, and europium chloride.
  • the chlorine compound is preferably strontium chloride.
  • Calcination of the powder mixture is preferably performed in a reducing gas atmosphere.
  • the reducing gas include a mixed gas of 0.5 to 5.0% by volume of hydrogen gas and 99.5 to 95.0% by volume of inert gas.
  • the inert gas include argon gas and nitrogen gas.
  • the calcination temperature is generally in the range of 900 to 1300 ° C., preferably in the range of 1050 to 1250 ° C., particularly preferably in the range of 1100 to 1230 ° C.
  • the firing time is generally in the range of 0.5 to 100 hours.
  • the powder mixture is subjected to 0.5 to 0.5 ° C. in an air atmosphere at a temperature of 600 to 850 ° C. before firing in a reducing gas atmosphere. It is preferable to calcine for 100 hours.
  • the silicate blue light-emitting phosphor obtained by firing may be subjected to classification treatment, acid cleaning treatment with a mineral acid such as hydrochloric acid or nitric acid, and baking treatment as necessary.
  • the basic magnesium carbonate powder used as the MgO source powder has a purity of 99% by mass or more and an average particle size in the range of 1 to 20 ⁇ m.
  • a chlorine compound is used for the flux
  • a chlorine compound is used for the powder mixture of the raw material powder
  • the amount of magnesium is 0.2 in terms of chlorine when the amount of magnesium is 1 mol. It is preferable to add in an amount in the range of ⁇ 0.5 mol.
  • Other points are the same as in the case of using magnesium oxide powder as the MgO source powder.
  • a silicate-based blue light-emitting phosphor having a larger emission intensity when excited with ultraviolet light having a wavelength of 254 nm than an aluminate BAM blue light-emitting phosphor, particularly an ultraviolet light having a wavelength of 254 nm.
  • the maximum emission intensity of visible light in the wavelength range of 430 to 490 nm, which is emitted when excited with, is an average particle diameter represented by the composition formula of (Ba 0.976 , Eu 0.024 ) O.MgO.5Al 2 O 3.
  • a novel silicic acid that is 1.1 times or more the maximum emission intensity of visible light in the wavelength range of 430 to 490 nm, which is emitted when a 6.5 ⁇ m BAM blue-emitting phosphor is excited with ultraviolet light having a wavelength of 254 nm
  • a salt-based blue-emitting phosphor can be obtained.
  • the magnification of the maximum emission intensity of this silicate blue light-emitting phosphor with respect to the BAM blue light-emitting phosphor is preferably 1.3 times or more, usually 2.0 times or less, particularly 1.8 times or less.
  • the maximum emission intensity means the height of the highest emission peak among the emission peaks of visible light in the wavelength range of 430 to 490 nm.
  • the silicate blue light-emitting phosphor preferably has an average particle size (value measured by a laser diffraction scattering method) in the range of 1.0 to 20 ⁇ m.
  • the maximum light emission intensity is (Ba 0.976 , Eu 0.024 ) O ⁇ MgO ⁇ 5Al 2 O 3 , which is an aluminate-based BAM having an average particle diameter of 6.5 ⁇ m. This is the magnification with respect to the maximum emission intensity of visible light in the wavelength range of 430 to 490 nm, which is emitted when the blue light emitting phosphor is excited with ultraviolet light having a wavelength of 254 nm.
  • SrCO 3 SrCl 2 : MgO: SiO 2 : Eu 2 O 3 )
  • Each raw material powder weighed was put into a ball mill together with pure water, and wet mixed for 24 hours to obtain a powder mixture slurry.
  • the obtained slurry was spray-dried with a spray dryer to obtain a powder mixture granule having an average particle size of 40 ⁇ m.
  • the obtained powder mixture granule was put in an alumina crucible, calcined at a temperature of 800 ° C. for 3 hours in an air atmosphere, then allowed to cool to room temperature, and then reduced by 2 vol% hydrogen-98 vol% argon. Calcination was carried out at 1200 ° C.
  • silicate blue light-emitting phosphor having a composition formula of 3 (Sr 2.995 , Eu 0.005 ) O.MgO.SiO 2 .
  • the obtained silicate blue light-emitting phosphor was sieved with a sieve made of polyamide having an opening of 20 ⁇ m in a wet manner to remove coarse particles and then dried.
  • the average particle diameter of the silicate blue light-emitting phosphor after removing the coarse particles was 7 ⁇ m.
  • silicate blue light-emitting phosphor When the obtained silicate blue light-emitting phosphor was formed in a layered form and this silicate blue light-emitting phosphor was irradiated with ultraviolet light having a wavelength of 254 nm, it showed blue light emission with a maximum peak wavelength of 460 nm. The maximum emission intensity obtained from the maximum peak was 1.35 times.
  • Example 2 A silicate blue light-emitting phosphor was obtained in the same manner as in Example 1 except that the firing temperature of the powder mixture granule in a reducing gas atmosphere was 1100 ° C. The obtained silicate blue light-emitting phosphor had an average particle size of 4 ⁇ m. When this silicate blue light-emitting phosphor was irradiated with ultraviolet light having a wavelength of 254 nm in the same manner as in Example 1, it showed blue light emission having a maximum emission peak wavelength of 460 nm, and the maximum emission intensity obtained from the maximum peak. Was 1.32 times.
  • Example 3 A silicate blue light-emitting phosphor was obtained in the same manner as in Example 1 except that the firing temperature of the powder mixture granule in a reducing gas atmosphere was 1220 ° C. The obtained silicate blue light-emitting phosphor had an average particle size of 9 ⁇ m. When this silicate blue light-emitting phosphor was irradiated with ultraviolet light having a wavelength of 254 nm in the same manner as in Example 1, it showed blue light emission having a maximum emission peak wavelength of 460 nm, and the maximum emission intensity obtained from the maximum peak. Was 1.34 times.
  • the obtained silicate blue light-emitting phosphor had an average particle size of 9 ⁇ m.
  • this silicate blue light-emitting phosphor was irradiated with ultraviolet light having a wavelength of 254 nm in the same manner as in Example 1, it showed blue light emission having a maximum emission peak wavelength of 460 nm, and the maximum emission intensity obtained from the maximum peak. was 1.15 times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

【課題】蛍光灯などの波長254nmの紫外線により蛍光体を励起させて可視光を発光させる発光装置の青色発光源として有用なケイ酸塩系青色発光蛍光体を提供する。 【解決手段】純度が99.9質量%以上であって、BET比表面積が3~60m2/gの範囲にある、金属マグネシウム蒸気と酸素とを接触させて、金属マグネシウム蒸気を酸化させる方法により得られた酸化マグネシウム粉末、MeO源粉末、EuO源粉末及びSiO2源粉末を含む粉末混合物を焼成するケイ酸塩系青色発光蛍光体の製造方法。

Description

ケイ酸塩系青色発光蛍光体及びその製造方法
 本発明は、特に蛍光灯の青色発光源として有用なケイ酸塩系青色発光蛍光体と、そのケイ酸塩系青色発光蛍光体を製造するのに有利な方法に関する。
 蛍光灯などの水銀蒸気の放電により生成する紫外線(波長:254nm)により蛍光体を励起させて可視光を発光させる発光装置において、青色光の発光源には(Ba,Eu)O・MgO・5Al23の一般式で表されるアルミン酸塩系のBAM青色発光蛍光体が広く利用されている。しかし、BAM青色発光蛍光体は、経時的な発光強度の低下が大きいという問題がある。
 一方、経時的な発光強度の低下が小さい青色発光蛍光体として、3(Me,Eu)O・aMgO・bSiO2(但し、Meは、Ca、Sr及びBaからなる群より選ばれる一種以上のアルカリ土類金属、aは0.9~1.1の範囲の数、bは1.8~2.2の範囲の数)の一般式で表されるケイ酸塩系の青色発光蛍光体が知られている。しかしながら、ケイ酸塩系青色発光蛍光体は一般に発光強度がアルミン酸塩系のBAM青色発光蛍光体よりも低いとされている。
 特許文献1には、母体中にCu、Ga、Ge、As、Ag、Cd、In、Sn、Sb、Au、Hg、Tl、Pb、Biなどの元素を添加元素として含有させたケイ酸塩系青色発光蛍光体は、波長147nmの真空紫外線で励起させたときの発光強度が高くなる旨の記載がある。なお、この特許文献1の実施例では、MeO源にSrCO3を、MgO源にMgCO3を、SiO2源にSiO2を、EuO源にEu23を、そして熔融助剤(フラックス)にNH4Brを用いた粉末混合物を焼成することによってケイ酸塩系青色発光蛍光体を製造している。
 特許文献2には、Mgの一部を、5族及び6族の元素からなる群より選ばれる金属に置換したケイ酸塩系青色発光蛍光体は、波長146nmの真空紫外線を1時間及び24時間照射したときの発光強度が向上する旨の記載がある。なお、この特許文献2の実施例では、MeO源に炭酸バリウムと炭酸ストロンチウムを、MgO源に塩基性炭酸マグネシウムを、SiO2源に二酸化ケイ素を、EuO源に酸化ユウロピウムを用いた粉末混合物を焼成することによってケイ酸塩系青色発光蛍光体を製造している。
特開2006-70187号公報 特開2007-314644号公報
 上述の通り、ケイ酸塩系青色発光蛍光体の発光強度の向上を目的として種々の検討がなされているが、本発明者の検討によると、これまでに知られているケイ酸塩系青色発光蛍光体は、特に波長254nmの紫外線で励起させたときの発光強度が、BAM青色発光蛍光体と比較すると、充分に高いレベルにあるとは言えない。
 従って、本発明の目的は、波長254nmの紫外線で励起させたときの青色光の発光強度が向上したケイ酸塩系青色発光蛍光体及びその製造方法を提供することにある。
 本発明者は、MeO源粉末、EuO源粉末、MgO源粉末及びSiO2源粉末を含む粉末混合物を焼成してケイ酸塩系青色発光蛍光体を製造するに際して、MgO源に金属マグネシウム蒸気と酸素とを接触させて、金属マグネシウム蒸気を酸化させる方法により得られた、高純度で微細な酸化マグネシウム粉末を用いるか、あるいはMgO源に高純度で微細な塩基性炭酸マグネシウム粉末を用いて、更に粉末混合物にフラックスとして塩素化合物を所定の量にて添加することによって、得られるケイ酸塩系青色発光蛍光体の波長254nmの紫外線で励起させたときの発光強度が向上すること、特にはアルミン酸塩系のBAM青色発光蛍光体よりも波長254nmの紫外線で励起させたときの発光強度が1.1倍以上である新規なケイ酸塩系青色発光蛍光体を得ることが可能となることを見出して本発明を完成させた。
 従って、本発明は、純度が99.9質量%以上であって、BET比表面積が3~60m2/gの範囲にある、金属マグネシウム蒸気と酸素とを接触させて、金属マグネシウム蒸気を酸化させる方法により得られた酸化マグネシウム粉末、MeO源粉末、EuO源粉末及びSiO2源粉末を含む粉末混合物を焼成することを特徴とする下記式(I)の組成式で表されるケイ酸塩系青色発光蛍光体の製造方法にある。
  3(Me1-x,Eux)O・aMgO・bSiO2  ・・・(I)
 (但し、式中、MeはSr、もしくはCa及びBaのうちの一方又は両方とSrとの混合物、xは0.001~0.110の範囲の数、aは0.9~1.1の範囲の数、bは1.8~2.2の範囲の数である。)
 上記本発明の製造方法の好ましい態様は、次の通りである。
(1)粉末混合物が、粉末混合物中のマグネシウム量を1モルとしたときに、塩素量に換算して0.02~0.5モルの範囲の量となるように塩素化合物を含有する。
(2)粉末混合物が、粉末混合物中のマグネシウム量を1モルとしたときに、塩素量に換算して0.02~0.5モルの範囲の量となるように塩化ストロンチウムを含有する。
 本発明は更に、下記式(I)の組成式で表されるケイ酸塩系青色発光蛍光体であって、
  3(Me1-x,Eux)O・aMgO・bSiO2  ・・・(I)
 (但し、式中、MeはSr、もしくはCa及びBaのうちの一方又は両方とSrとの混合物、xは0.001~0.110の範囲の数、aは0.9~1.1の範囲の数、bは1.8~2.2の範囲の数である)
 波長254nmの紫外線で励起させたときに発光する430~490nmの波長範囲にある可視光の最大発光強度が、(Ba0.976,Eu0.024)O・MgO・5Al23の組成式で表される平均粒子径が6.5μmの青色発光蛍光体を波長254nmの紫外線で励起させたときに発光する430~490nmの波長範囲にある可視光の最大発光強度に対して1.1倍以上であるケイ酸塩系青色発光蛍光体にもある。
 上記本発明のケイ酸塩系青色発光蛍光体の好ましい態様は、次の通りである。
(1)前記式(I)中のMeがSrである。
(2)平均粒子径が1.0~20μmの範囲にある。
(3)上記本発明の製造方法により得られたものである。
 本発明の製造方法を利用することによって、波長254nmの紫外線で励起させたときの青色光の発光強度が顕著に向上したケイ酸塩系青色発光蛍光体を工業的に有利に製造することができる。
 本発明のケイ酸塩系青色発光蛍光体は、波長254nmの紫外線で励起させたときの青色光の発光強度が高いので、蛍光灯の青色光の発光源として有利に使用することができる。
 本発明の製造方法により得られるケイ酸塩系青色発光蛍光体は、下記式(I)の組成式で表される。
  3(Me1-x,Eux)O・aMgO・bSiO2  ・・・(I)
 但し、式中、MeはSr、もしくはCa及びBaのうちの一方又は両方とSrとの混合物、xは0.001~0.110の範囲の数、aは0.9~1.1の範囲の数、bは1.8~2.2の範囲の数である。
 Meは、Srであるか、BaとSrの混合物であることが好ましく、Srであることが特に好ましい。BaとSrの混合物はBaの含有量を1モルとしたときにSrの含有量が3~6モルの範囲にあることが好ましい。
 xは、0.010~0.070の範囲の数であることが好ましい。aは0.97~1.03の範囲の数であることが好ましい。bは1.97~2.03の範囲の数であることが好ましい。
 本発明のケイ酸塩系青色発光蛍光体の製造方法には、ケイ酸塩系青色発光蛍光体のMgO源粉末に酸化マグネシウム粉末を用いる方法と、塩基性炭酸マグネシウム粉末を用いる方法とがある。先ず、MgO源粉末に酸化マグネシウム粉末を用いる方法について説明する。
 MgO源粉末として用いる酸化マグネシウム粉末は、純度が99.9質量%以上で、BET比表面積が3~60m2/gの範囲にある、金属マグネシウム蒸気と酸素とを接触させて、金属マグネシウム蒸気を酸化させる方法(気相法)で得られた酸化マグネシウム粉末である。すなわち高純度で、かつ下記の計算式により求められるBET径が0.028~0.56μmの範囲にある微細な酸化マグネシウム粉末である。酸化マグネシウム粉末のBET比表面積は、5~45m2/gの範囲にあることが好ましく、5~20m2/gの範囲にあることが特に好ましい。
 BET径(μm)=6/[BET比表面積(m2/g)×3.58(g/cm3)]
 上記計算式において、6は表面形状係数であり、3.58g/cm3は酸化マグネシウム粉末の真密度である。
 気相法により得られた酸化マグネシウム粉末は、一次粒子の形状が立方体状で、凝集粒子を形成しにくい。このため、MgO源粉末に気相法により得られた酸化マグネシウム粉末を用いることによって、均一に酸化マグネシウム粉末が分散した組成の均一性が高い粉末混合物とすることができ、その組成の均一性が高い粉末混合物を焼成することによって、組成が均一で発光強度の高いケイ酸塩系青色発光蛍光体を得ることができる。
 MgO源粉末以外の原料粉末、すなわちMeO源粉末、EuO源粉末及びSiO2源粉末は、酸化物の粉末であってもよいし、水酸化物、ハロゲン化物、炭酸塩、硝酸塩及びシュウ酸塩などの加熱により酸化物を生成する化合物の粉末であってもよい。これらの原料粉末は、純度が99質量%以上であることが好ましく、99.9質量%以上であることがより好ましい。また、平均粒子径は、0.1~50μmの範囲にあることが好ましい。なお、本明細書において、平均粒子径はレーザー回折散乱法により測定した値である。
 粉末混合物には、得られるケイ酸塩系青色発光蛍光体の最大発光強度を更に高めるために、W、Pb、Pなどの元素を添加していてもよい。これらの元素の添加量は、MgO源中のマグネシウム量を1モルとしたときに0.01~0.2モルの範囲の量にあることが好ましい。
 粉末混合物は、平均粒子径が10~80μmの範囲にある粒状体とした後、焼成することが好ましい。粉末混合物の粒状体は、各原料粉末を水中で混合して、粉末混合物のスラリーとした後、スラリーを噴霧乾燥する方法を用いて製造することができる。
 粉末混合物は、フラックスが添加されていることが好ましい。フラックスは塩素化合物であることが好ましい。塩素化合物の添加量は粉末混合物中のマグネシウム量を1モルとしたときに、塩素量に換算して0.02~0.5モルの範囲にあることが好ましく、0.1~0.5モルの範囲にあることがより好ましく、0.2~0.5モルの範囲にあることが特に好ましい。
 塩素化合物は、ケイ酸塩系青色発光蛍光体を構成する金属(Me、Eu、Mg)の塩化物であることが好ましい。塩素化合物の例としては、塩化ストロンチウム、塩化マグネシウム、塩化ユウロピウムを挙げることができる。塩素化合物は塩化ストロンチウムであることが好ましい。
 粉末混合物の焼成は、還元性ガス雰囲気下にて行なうことが好ましい。還元性ガスの例としては、0.5~5.0体積%の水素ガスと99.5~95.0体積%の不活性ガスの混合ガスを挙げることができる。不活性ガスの例としては、アルゴンガス及び窒素ガスを挙げることができる。焼成温度は、一般に900~1300℃の範囲、好ましくは1050~1250℃の範囲、特に好ましくは1100~1230℃の範囲である。焼成時間は、一般に0.5~100時間の範囲である。
 原料粉末に加熱により酸化物を生成する化合物の粉末を用いる場合には、還元性ガス雰囲気下で焼成する前に、粉末混合物を大気雰囲気下にて、600~850℃の温度で0.5~100時間仮焼することが好ましい。
 焼成により得られたケイ酸塩系青色発光蛍光体は、必要に応じて分級処理、塩酸や硝酸などの鉱酸による酸洗浄処理、ベーキング処理を行なってもよい。
 次に、MgO源粉末に塩基性炭酸マグネシウム粉末を用いる方法について説明する。
 MgO源粉末として用いる塩基性炭酸マグネシウム粉末は、純度が99質量%以上であって、平均粒子径が1~20μmの範囲にある。MgO源粉末に塩基性炭酸マグネシウム粉末を用いる場合にはフラックスに塩素化合物を用い、原料粉末の粉末混合物に塩素化合物を、マグネシウム量を1モルとしたときに、塩素量に換算して0.2~0.5モルの範囲となる量にて添加することが好ましい。これ以外の点は、MgO源粉末に酸化マグネシウム粉末を用いる場合と同様である。
 上記の製造方法を用いることによって、アルミン酸塩のBAM青色発光蛍光体よりも波長254nmの紫外線で励起させたときに発光強度が大きいケイ酸塩系青色発光蛍光体、特には、波長254nmの紫外線で励起させたときに発光する430~490nmの波長範囲にある可視光の最大発光強度が、(Ba0.976,Eu0.024)O・MgO・5Al23の組成式で表される平均粒子径が6.5μmのBAM青色発光蛍光体を波長254nmの紫外線で励起させたときに発光する430~490nmの波長範囲にある可視光の最大発光強度に対して1.1倍以上である新規なケイ酸塩系青色発光蛍光体を得ることが可能となる。このケイ酸塩系青色発光蛍光体のBAM青色発光蛍光体に対する最大発光強度の倍率は、好ましくは1.3倍以上であり、通常は2.0倍以下、特には1.8倍以下である。なお、本明細書において、最大発光強度は、430~490nmの波長範囲にある可視光の発光ピークのうちで最も高い発光ピークの高さを意味する。
 上記ケイ酸塩系青色発光蛍光体は、平均粒子径(レーザー回折散乱法により測定した値)が1.0~20μmの範囲にあることが好ましい。
 以下、本発明を実施例と比較例により説明する。なお、実施例及び比較例において、最大発光強度は、(Ba0.976,Eu0.024)O・MgO・5Al23の組成式で表される平均粒子径が6.5μmのアルミン酸塩系のBAM青色発光蛍光体を波長254nmの紫外線で励起させたときに発光する430~490nmの波長範囲にある可視光の最大発光強度に対する倍率である。
[実施例1]
 炭酸ストロンチウム粉末[SrCO3:純度99.99質量%、平均粒子径2.73μm]、塩化ストロンチウム粉末[SrCl2:純度99.99質量%]、酸化マグネシウム粉末[MgO:気相法により製造したもの、純度99.98質量%以上、BET比表面積8m2/g(BET径0.20μm)]、酸化ケイ素粉末[SiO2:純度99.9質量%、平均粒子径3.87μm]、酸化ユウロピウム粉末[Eu23:純度99.9質量%、平均粒子径2.71μm]の各原料粉末を、モル比で2.860:0.125:1.000:2.000:0.0150(=SrCO3:SrCl2:MgO:SiO2:Eu23)の割合となるように秤量した。
 秤量した各原料粉末を純水と共にボールミルに投入し、24時間湿式混合して、粉末混合物のスラリーを得た。得られたスラリーをスプレードライヤーにより噴霧乾燥して、平均粒子径が40μmの粉末混合物粒状体を得た。得られた粉末混合物粒状体をアルミナ坩堝に入れて、大気雰囲気下にて800℃の温度で3時間仮焼し、次いで、室温まで放冷した後、2体積%水素-98体積%アルゴンの還元性ガス雰囲気下にて1200℃の温度で3時間焼成して、組成式が3(Sr2.995,Eu0.005)O・MgO・SiO2で表されるケイ酸塩系青色発光蛍光体を得た。得られたケイ酸塩系青色発光蛍光体を、目開き20μmのポリアミド製篩にて湿式で篩分けし、粗大粒子を除去した後、乾燥した。粗大粒子を除去した後のケイ酸塩系青色発光蛍光体の平均粒子径は7μmであった。
 得られたケイ酸塩系青色発光蛍光体を層状に形成して、このケイ酸塩系青色発光蛍光体に波長254nmの紫外線を照射したところ、最大ピークの波長が460nmの青色光の発光を示し、その最大ピークから求めた最大発光強度は1.35倍であった。
[実施例2]
 粉末混合物粒状体の還元性ガス雰囲気下での焼成温度を1100℃としたこと以外は、実施例1と同様にしてケイ酸塩系青色発光蛍光体を得た。得られたケイ酸塩系青色発光蛍光体は平均粒子径が4μmであった。このケイ酸塩系青色発光蛍光体に実施例1と同様にして波長254nmの紫外線を照射したところ、最大発光ピークの波長が460nmの青色光の発光を示し、その最大ピークから求めた最大発光強度は1.32倍であった。
[実施例3]
 粉末混合物粒状体の還元性ガス雰囲気下での焼成温度を1220℃としたこと以外は、実施例1と同様にしてケイ酸塩系青色発光蛍光体を得た。得られたケイ酸塩系青色発光蛍光体は平均粒子径が9μmであった。このケイ酸塩系青色発光蛍光体に実施例1と同様にして波長254nmの紫外線を照射したところ、最大発光ピークの波長が460nmの青色光の発光を示し、その最大ピークから求めた最大発光強度は1.34倍であった。
[実施例4]
 酸化マグネシウム粉末の代わりに、塩基性炭酸マグネシウム[4MgCO3・Mg(OH)2・4H2O:アルドリッチ社製、純度:99質量%、平均粒子径:13.5μm]を用いて、炭酸ストロンチウム粉末、塩化ストロンチウム粉末、塩基性炭酸マグネシウム粉末、酸化ケイ素粉末及び酸化ユウロピウム粉末の各原料粉末を、モル比で2.860:0.125:1.00:0.20:0.0150(=SrCO3:SrCl2:4MgCO3・Mg(OH)2・4H2O:SiO2:Eu23)としたこと以外は、実施例1と同様にしてケイ酸塩系青色発光蛍光体を得た。得られたケイ酸塩系青色発光蛍光体は平均粒子径が9μmであった。このケイ酸塩系青色発光蛍光体に実施例1と同様にして波長254nmの紫外線を照射したところ、最大発光ピークの波長が460nmの青色光の発光を示し、その最大ピークから求めた最大発光強度は1.15倍であった。
[比較例1]
 炭酸ストロンチウム粉末、塩基性炭酸マグネシウム粉末、酸化ケイ素粉末及び酸化ユウロピウム粉末の各粉末の混合量を、モル比で2.985:1.00:2.00:0.015(=SrCO3:MgO:SiO2:Eu23)とし、塩化ストロンチウム粉末を使用しなかったこと以外は実施例4と同様にして、ケイ酸塩系青色発光蛍光体を得た。得られたケイ酸塩系青色発光蛍光体は平均粒子径が8μmであった。このケイ酸塩系青色発光蛍光体に実施例1と同様にして波長254nmの紫外線を照射したところ、最大発光ピークの波長が460nmの青色光の発光を示したが、その最大ピークから求めた最大発光強度は0.9倍であり、基準のBAM青色発光蛍光体よりも低い値であった。

Claims (7)

  1.  純度が99.9質量%以上であって、BET比表面積が3~60m2/gの範囲にある、金属マグネシウム蒸気と酸素とを接触させて、金属マグネシウム蒸気を酸化させる方法により得られた酸化マグネシウム粉末、MeO源粉末、EuO源粉末及びSiO2源粉末を含む粉末混合物を焼成することを特徴とする下記式(I)の組成式で表されるケイ酸塩系青色発光蛍光体の製造方法:
      3(Me1-x,Eux)O・aMgO・bSiO2  ・・・(I)
     (但し、式中、MeはSr、もしくはCa及びBaのうちの一方又は両方とSrとの混合物、xは0.001~0.110の範囲の数、aは0.9~1.1の範囲の数、bは1.8~2.2の範囲の数である。)。
  2.  粉末混合物が、粉末混合物中のマグネシウム量を1モルとしたときに、塩素量に換算して0.02~0.5モルの範囲の量となるように塩素化合物を含有する請求項1に記載のケイ酸塩系青色発光蛍光体の製造方法。
  3.  粉末混合物が、粉末混合物中のマグネシウム量を1モルとしたときに、塩素量に換算して0.02~0.5モルの範囲の量となるように塩化ストロンチウムを含有する請求項1に記載のケイ酸塩系青色発光蛍光体の製造方法。
  4.  下記式(I)の組成式で表されるケイ酸塩系青色発光蛍光体であって、
      3(Me1-x,Eux)O・aMgO・bSiO2  ・・・(I)
     (但し、式中、MeはSr、もしくはCa及びBaのうちの一方又は両方とSrとの混合物、xは0.001~0.110の範囲の数、aは0.9~1.1の範囲の数、bは1.8~2.2の範囲の数である)
     波長254nmの紫外線で励起させたときに発光する430~490nmの波長範囲にある可視光の最大発光強度が、(Ba0.976,Eu0.024)O・MgO・5Al23の組成式で表される平均粒子径が6.5μmの青色発光蛍光体を波長254nmの紫外線で励起させたときに発光する430~490nmの波長範囲にある可視光の最大発光強度に対して1.1倍以上であるケイ酸塩系青色発光蛍光体。
  5.  前記式(I)中のMeがSrである請求項4に記載のケイ酸塩系青色発光蛍光体。
  6.  平均粒子径が1.0~20μmの範囲にある請求項4に記載のケイ酸塩系青色発光蛍光体。
  7.  請求項1乃至3に記載の製造方法により得られたものである請求項4に記載のケイ酸塩系青色発光蛍光体。
PCT/JP2011/059272 2010-04-14 2011-04-14 ケイ酸塩系青色発光蛍光体及びその製造方法 WO2011129397A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/641,314 US8883309B2 (en) 2010-04-14 2011-04-14 Silicate-based blue light-emitting phosphor and method for producing same
JP2012510686A JP5770165B2 (ja) 2010-04-14 2011-04-14 ケイ酸塩系青色発光蛍光体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010093117 2010-04-14
JP2010-093117 2010-04-14

Publications (1)

Publication Number Publication Date
WO2011129397A1 true WO2011129397A1 (ja) 2011-10-20

Family

ID=44798766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059272 WO2011129397A1 (ja) 2010-04-14 2011-04-14 ケイ酸塩系青色発光蛍光体及びその製造方法

Country Status (4)

Country Link
US (1) US8883309B2 (ja)
JP (2) JP5770165B2 (ja)
TW (1) TWI518167B (ja)
WO (1) WO2011129397A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033122A1 (ja) * 2010-09-07 2012-03-15 宇部マテリアルズ株式会社 青色発光蛍光体及び該青色発光蛍光体を用いた発光装置
CN110041932A (zh) * 2019-05-07 2019-07-23 中国计量大学 一种植物生长led灯用荧光粉及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101722A (ja) * 1993-10-05 1995-04-18 Ube Ind Ltd 高純度マグネシア微粉末の製造方法
JP2003132803A (ja) * 2001-10-30 2003-05-09 Hitachi Ltd 発光装置及びこれを用いた表示装置
JP2004176010A (ja) * 2002-11-29 2004-06-24 Hitachi Ltd 発光装置およびこれを用いた表示装置
JP2005060670A (ja) * 2003-07-31 2005-03-10 Sumitomo Chemical Co Ltd ケイ酸塩蛍光体
WO2007091603A1 (ja) * 2006-02-07 2007-08-16 Matsushita Electric Industrial Co., Ltd. 蛍光体、発光装置およびプラズマディスプレイパネル
WO2007135926A1 (ja) * 2006-05-18 2007-11-29 Panasonic Corporation 珪酸塩青色蛍光体の製造方法および珪酸塩青色蛍光体ならびに発光装置
WO2007139014A1 (ja) * 2006-05-26 2007-12-06 Panasonic Corporation 蛍光体および発光装置
JP2008031422A (ja) * 2006-06-29 2008-02-14 National Institute Of Advanced Industrial & Technology 蛍光体
JP2009256596A (ja) * 2008-03-19 2009-11-05 Sumitomo Chemical Co Ltd 蛍光体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174291A (ja) * 1985-01-29 1986-08-05 Sony Corp 青色発光螢光体
TWI290329B (en) 2001-10-30 2007-11-21 Hitachi Ltd Plasma display device, luminescent device and image and information display system using the same
JP2006312654A (ja) * 2005-04-07 2006-11-16 Sumitomo Chemical Co Ltd 蛍光体
US20090315448A1 (en) * 2005-04-07 2009-12-24 Sumitomo Chemical Company, Limited Phosphor, phosphor paste and light emitting device
KR100990699B1 (ko) * 2006-02-09 2010-10-29 우베 고산 가부시키가이샤 청색 발광 형광체의 제조 방법
JP2008163135A (ja) * 2006-12-27 2008-07-17 Sumitomo Chemical Co Ltd 蛍光体の製造方法
JP2010006850A (ja) * 2008-06-24 2010-01-14 Kyocera Corp 波長変換器および発光装置ならびに照明装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101722A (ja) * 1993-10-05 1995-04-18 Ube Ind Ltd 高純度マグネシア微粉末の製造方法
JP2003132803A (ja) * 2001-10-30 2003-05-09 Hitachi Ltd 発光装置及びこれを用いた表示装置
JP2004176010A (ja) * 2002-11-29 2004-06-24 Hitachi Ltd 発光装置およびこれを用いた表示装置
JP2005060670A (ja) * 2003-07-31 2005-03-10 Sumitomo Chemical Co Ltd ケイ酸塩蛍光体
WO2007091603A1 (ja) * 2006-02-07 2007-08-16 Matsushita Electric Industrial Co., Ltd. 蛍光体、発光装置およびプラズマディスプレイパネル
WO2007135926A1 (ja) * 2006-05-18 2007-11-29 Panasonic Corporation 珪酸塩青色蛍光体の製造方法および珪酸塩青色蛍光体ならびに発光装置
WO2007139014A1 (ja) * 2006-05-26 2007-12-06 Panasonic Corporation 蛍光体および発光装置
JP2008031422A (ja) * 2006-06-29 2008-02-14 National Institute Of Advanced Industrial & Technology 蛍光体
JP2009256596A (ja) * 2008-03-19 2009-11-05 Sumitomo Chemical Co Ltd 蛍光体

Also Published As

Publication number Publication date
JP5770165B2 (ja) 2015-08-26
JPWO2011129397A1 (ja) 2013-07-18
JP6099002B2 (ja) 2017-03-22
TWI518167B (zh) 2016-01-21
TW201202393A (en) 2012-01-16
JP2015206052A (ja) 2015-11-19
US8883309B2 (en) 2014-11-11
US20130244033A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP5234781B2 (ja) 蛍光体とその製造方法および発光器具
JP5578739B2 (ja) アルカリ土類金属シリケート蛍光体及びその製造方法
JP2014148677A (ja) NANO−YAG:Ce蛍光体組成物およびその調製方法
JP2005255895A5 (ja)
JP5710089B2 (ja) 緑色発光酸窒化物蛍光体、及びそれを用いた発光素子
JP6890299B2 (ja) ガーネット珪酸塩、ガーネット珪酸塩蛍光体、並びにガーネット珪酸塩蛍光体を用いた波長変換体及び発光装置
JP2016216711A (ja) 蛍光体、その製造方法、照明器具および画像表示装置
JP6099002B2 (ja) ケイ酸塩系青色蛍光体の製造方法
JP2010265448A (ja) 赤色蛍光体及びその製造方法
JP5071709B2 (ja) 蛍光体と発光器具
JP5187817B2 (ja) 蛍光体と発光器具
JP2017088800A (ja) 蛍光体およびその製造方法
JP5775742B2 (ja) 青色発光蛍光体の製造方法
JP6729393B2 (ja) 蛍光体及び発光装置並びに蛍光体の製造方法
WO2018147185A1 (ja) 蛍光体粉末及び発光装置並びに蛍光体粉末の製造方法
WO2014006755A1 (ja) シリケート蛍光体およびその製造方法
JP4861722B2 (ja) 青色発光蛍光体粉末及びその製造方法
JP5512871B1 (ja) 青色発光シリケート蛍光体及びその製造方法
JP4533781B2 (ja) 蛍光体粉末の製造方法
JP4023222B2 (ja) ケイ酸塩蛍光体の製造方法
JP2012087232A (ja) カルシウム原料としてバーテライト型炭酸カルシウムを使用した蛍光体
JP6763387B2 (ja) 蛍光体及びその製造方法並びに発光装置
WO2015111626A1 (ja) 蛍光体及び発光装置
JP2019044159A (ja) アルミン酸塩蛍光体及び発光装置
KR20160055216A (ko) 규산염 형광체의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012510686

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13641314

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11768918

Country of ref document: EP

Kind code of ref document: A1