JP2017088800A - 蛍光体およびその製造方法 - Google Patents

蛍光体およびその製造方法 Download PDF

Info

Publication number
JP2017088800A
JP2017088800A JP2015223710A JP2015223710A JP2017088800A JP 2017088800 A JP2017088800 A JP 2017088800A JP 2015223710 A JP2015223710 A JP 2015223710A JP 2015223710 A JP2015223710 A JP 2015223710A JP 2017088800 A JP2017088800 A JP 2017088800A
Authority
JP
Japan
Prior art keywords
phosphor
nitride
silicon
average particle
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015223710A
Other languages
English (en)
Inventor
拓哉 北畠
Takuya Kitahata
拓哉 北畠
房樹 藤林
Fusaki Fujibayashi
房樹 藤林
裕子 遠藤
Hiroko Endo
裕子 遠藤
雅英 山田
Masahide Yamada
雅英 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2015223710A priority Critical patent/JP2017088800A/ja
Priority to EP16198124.6A priority patent/EP3168279A1/en
Priority to KR1020160151199A priority patent/KR102649564B1/ko
Priority to US15/353,062 priority patent/US10100249B2/en
Priority to CN201611009941.7A priority patent/CN107022352A/zh
Publication of JP2017088800A publication Critical patent/JP2017088800A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0602Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with two or more other elements chosen from metals, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Abstract

【課題】発光特性の優れた小粒径の、アルカリ土類金属元素、ケイ素および賦活剤元素を含有する窒化物を含む蛍光体およびその製造方法を提供する。
【解決手段】
蛍光体は、体積平均粒径が50nm以上400nm以下であり、励起波長450nmにおける内部量子効率が60%以上である。蛍光体の製造方法は、窒化ケイ素粒子と窒化ケイ素粒子の表面に堆積されたアルカリ土類金属元素を含有する化合物と賦活剤元素を含有する化合物とを含み、体積平均粒径が250nm以下である蛍光体前駆体粒子を準備する前駆体準備工程と、蛍光体前駆体粒子を焼成する焼成工程とを含む。
【選択図】図1

Description

本発明は、蛍光体およびその製造方法に関する。
近年、LED照明やディスプレイ等の発光装置において、光変換を担う蛍光体が装置に組み込まれている。
例えば、LED照明として、励起光源として有望と考えられている、青色光または近紫外光を放出するInGaN系半導体チップ上に、シリコン樹脂等の中に蛍光体を分散したものを滴下して、チップを蛍光体で被覆するものが開発されている。この場合、InGaN系半導体チップが放出する光と、このチップが放出する光によって励起される蛍光体が発する光とで色味を調整する。
このような発光装置では、蛍光体の発光特性が、装置の特性において、非常に重要な役割を担っている。光変換を担う蛍光体の発光特性向上が、発光装置の特性を向上させる上で非常に重要である。現在、このような発光装置には、黄色発光を示すYAl12:Ce、赤色発光を示すCaAlSiN:Euといった可視光励起型の蛍光体が主に使用されている。これらの蛍光体では、数μmから数十μmの粒径においてもっとも発光特性がよいとされている。このため、平均粒径が上記の値を持つような蛍光体粒子が使用されている。平均粒径が1μm未満の微粒子蛍光体は、結晶性が乏しく、欠陥が多く、賦活元素の分散が十分でないため、輝度が大幅に低減したものとなり、一般に、LED/蛍光体を使用した照明やディスプレイ等の発光装置に不向きである。
その一方で、発光効率の高い1μm未満の微粒子蛍光体は多くの用途で必要性が高い。
例えば、古くから使用されていた蛍光ランプにおいて、1μm未満の微粒子蛍光体は十μm程度の蛍光体より、その塗布性能に優れ、塗布量が少なくてすむ傾向があった。ここ十数年で立ち上がってきたLED照明パッケージにおいても同様であり、1μm未満の微粒子蛍光体は十μm程度の蛍光体より分散性に優れ搭載量が少なく、かつ、光分散性が向上するといった大きな長所を有している。
可視光で励起される1μm未満の微粒子蛍光体も同様に多くの用途で必要性が高い。この場合の可視光励起蛍光体は、Eu2+やCe3+等の賦活イオンで結晶場分裂が十分大きくなり、nephelauxetic効果が十分大きい窒素アニオンの蛍光体である必要がある。従って、前記の効果を十分高めて1μm未満の酸窒化物微粒子蛍光体又は1μm未満の窒化物微粒子蛍光体の発光効率をLED用蛍光体と同等レベルに引き上げることが課題となる。
粒径の小さいアルカリ土類金属元素およびケイ素含有の窒化物蛍光体や酸窒化物蛍光体を形成するため、以下の方法が試みられている。
例えば、特許文献1では、先ず、平均粒径がそれぞれ50nm以下の蛍光体原料粉末の混合物からなる蛍光体前駆体粉末を用意する。蛍光体原料粉末として、例えば、窒化ケイ素粉末が用いられる。この蛍光体前駆体粉末に溶媒を加えてスラリーを形成する。その後、このスラリーに有機バインダを添加する。その後、有機バインダが添加されたスラリーを噴霧乾燥法により乾燥して粒径2μm以下の顆粒を形成する。このようにして形成された顆粒を焼成することにより、目的とする蛍光体を得る。特許文献1に開示された方法では、噴霧乾燥法により形成される蛍光体前駆体粉末の粒径2μm以下の顆粒を焼成すると、前駆体粉末が焼結した状態になる。このため、粒径の小さい蛍光体粒子を合成することは困難である。また、粒径2μm以下の顆粒とするために有機バインダを使用しているため、焼成によっても除去しきれない炭素が蛍光体の発光特性を阻害する恐れがある。また、Eu等の賦活元素の化合物と、賦活元素が置換されるサイトを提供するアルカリ土類金属元素の化合物とが別々に原料として用意されているため、焼成によりEuがアルカリ土類金属元素のサイト中に十分に分散することが困難である。これらの結果、得られる蛍光体の発光効率が低くなる。
特許文献2では、蛍光体原料からなる前駆体粒子の混合物を形成する。前駆体粒子の少なくとも1つは、平均1次粒子サイズが100nmより小さい。平均1次粒子サイズが100nmより小さい前駆体粒子として、例えば、窒化ケイ素粒子が用いられる。その後、この混合物を焼成して、固相反応により、目的とする蛍光体を得る。特許文献2に開示された方法では、前駆体粒子の混合物を焼成して得られた蛍光体は、シリコン窒化物粒子やシリコンオキシ窒化物粒子の堆積物である。このため、1次粒子同士の固着などにより、粒径の小さい蛍光体粒子を合成することは困難である。また、特許文献1の場合と同様、賦活元素の化合物とアルカリ土類金属元素の化合物とが別々に用意されているため、粒子がサブミクロンに達するまでの間に十分なEuの分散がおこっていないため発光効率が低くなる。
特開2007−314726号公報 特表2011−515536号公報
上述したように、蛍光体量を低減した高性能発光装置の用途などに使用される蛍光体に求められる1μm未満の微粒子蛍光体の発光効率は、従来法で形成した場合に数μ〜十数μmの粒径で達成するレベルに到達していない。
このため、本発明は、上述した問題点に鑑みてなされたものであり、蛍光体単独での発光効率が高く、かつ、1μm未満の平均粒径を有する、アルカリ土類金属元素とケイ素とを含有する窒化物を含む蛍光体およびその製造方法を提供することを目的とする。
本発明者は、上述した目的を達成するために鋭意検討し、窒化ケイ素微粒子の表面に、アルカリ土類金属元素と賦活元素を湿式化学法によって微細に堆積させた微粒子状の蛍光体前駆体粒子から、発光特性の優れた小粒径の、アルカリ土類金属元素とケイ素とを含有する窒化物を含む蛍光体が得られるという知見を得るに至った。
本発明は、この知見に基づいてなされたものであり、以下の構成を有する。
(構成1)
アルカリ土類金属元素、ケイ素および賦活剤元素を含有する窒化物を含む蛍光体であって、
体積平均粒径が50nm以上400nm以下であり、励起波長450nmにおける内部量子効率が60%以上である蛍光体。
(構成2)
当該蛍光体は、組成式MSiで表わされ、
前記窒化物は、SrSiと同じ結晶構造を有し、
前記Mは、(1)Ca、Sr、BaおよびMgからなる群から少なくともSrを含んで選択される1種類以上のアルカリ土類金属元素と(2)EuおよびCeからなる群から少なくともEuを含んで選択される1種類以上の賦活剤元素と、を有し、
(a)前記Srは、Mの合計に対して、15モル%以上99モル%以下含まれ、(b)前記賦活剤元素は、Mの合計に対して、1モル%以上20モル%以下含まれる構成1に記載の蛍光体。
(構成3)
体積平均粒度分布指標が1.20以上1.35以下である構成1または2に記載の蛍光体。
(構成4)
前記窒化物と異なる結晶構造を有するケイ素含有化合物を含み、
前記窒化物は、前記窒化物と前記ケイ素含有化合物との合計に対して、50質量%以上含まれる構成2または3に記載の蛍光体。
(構成5)
アルカリ土類金属元素、ケイ素および賦活剤元素を含有する窒化物を含む蛍光体の製造方法であって、
窒化ケイ素粒子と、前記窒化ケイ素粒子の表面に堆積された、(1)アルカリ土類金属元素を含有する化合物と(2)賦活剤元素を含有する化合物と、を含む蛍光体前駆体粒子を準備する前駆体準備工程と、
前記蛍光体前駆体粒子を焼成する焼成工程と
を含み、
前記蛍光体前駆体粒子の体積平均粒径が250nm以下である蛍光体の製造方法。
(構成6)
前記前駆体準備工程は、(I)窒化ケイ素粒子と(II)アルカリ土類金属元素を含有する物質と(III)賦活剤元素を含有する物質と、を含む懸濁液に、湿式化学法を適用して、前記窒化ケイ素粒子の表面に、前記アルカリ土類金属元素を含有する化合物および前記賦活剤元素を含有する化合物が混ざり合って堆積された蛍光体前駆体粒子を形成する前駆体形成工程を含む構成5に記載の蛍光体の製造方法。
(構成7)
前記蛍光体前駆体粒子は、(A)窒化ケイ素粒子と、(B)前記窒化ケイ素粒子の表面に堆積された、(B−1)Ca、Sr、BaおよびMgからなる群から少なくともSrを含んで選択される1種類以上の前記アルカリ土類金属元素を含有する化合物ならびに(B−2)EuおよびCeからなる群から少なくともEuを含んで選択される1種類以上の前記賦活剤元素を含有する化合物とを含み、
前記蛍光体前駆体粒子中、アルカリ土類金属元素および賦活剤元素の合計とケイ素のモル比が1:1から1:1.6の範囲であり、
前記蛍光体前駆体粒子中、(a)前記Srは、アルカリ土類金属元素および賦活剤元素の合計に対して、15モル%以上99モル%以下含まれ、(b)前記賦活剤元素は、アルカリ土類金属元素および賦活剤元素の合計に対して、1モル%以上20モル%以下含まれる構成5に記載の蛍光体の製造方法。
(構成8)
前記前駆体準備工程は、
(I)窒化ケイ素粒子と(II)Ca、Sr、BaおよびMgからなる群から少なくともSrを含んで選択される1種類以上のアルカリ土類金属元素を含む物質と(III)EuおよびCeからなる群から少なくともEuを含んで選択される1種類以上の賦活剤元素を含む物質とを含む懸濁液を形成する懸濁液形成工程と、
前記懸濁液に湿式化学法を適用して、(1)前記アルカリ土類金属元素を含有する化合物と(2)前記賦活剤元素を含有する化合物と、を析出させ、前記窒化ケイ素粒子の表面に、前記アルカリ土類金属元素を含有する化合物および前記賦活剤元素を含有する化合物が混ざり合って堆積された蛍光体前駆体粒子を形成する前駆体形成工程とを含み、
前記懸濁液中、アルカリ土類金属元素および賦活剤元素の合計とケイ素のモル比が1:1から1:1.6の範囲であり、
前記懸濁液中、(a)前記Srは、アルカリ土類金属元素および賦活剤元素の合計に対して、15モル%以上99モル%以下含まれ、(b)前記賦活剤元素は、アルカリ土類金属元素および賦活剤元素の合計に対して、1モル%以上20モル%以下含まれる構成7に記載の蛍光体の製造方法。
(構成9)
前記湿式化学法は、共沈法およびクエン酸塩法の少なくとも一つである構成6または8に記載の蛍光体の製造方法。
(構成10)
前記湿式化学法は共沈法である構成9に記載の蛍光体の製造方法。
(構成11)
前記アルカリ土類金属元素を含有する化合物および前記賦活剤元素を含有する化合物は、それぞれ、炭酸塩、炭酸水素塩、リン酸塩、カルボン酸塩、シュウ酸塩、硫酸塩、有機金属化合物および水酸化物からなる群から選択される1種類以上の化合物を含む構成5から10のいずれか1項に記載の蛍光体の製造方法。
(構成12)
前記アルカリ土類金属元素を含有する化合物および前記賦活剤元素を含有する化合物は、それぞれ、炭酸塩および水酸化物からなる群から選択される1種類以上の化合物を含む構成11に記載の蛍光体の製造方法。
(構成13)
前記窒化ケイ素粒子は150nm以下の体積平均粒径を有する構成5から12のいずれか1項に記載の蛍光体の製造方法。
(構成14)
前記窒化ケイ素粒子は非晶質である構成5から13のいずれか1項に記載の蛍光体の製造方法。
(構成15)
前記焼成工程は、少なくとも水素と窒素とを含む混合ガス雰囲気または少なくともアンモニアと窒素とを含む混合ガス雰囲気の下、1150℃以上1650℃以下の温度で行う構成5から14のいずれか1項に記載の蛍光体の製造方法。
上述したように、本発明に係るアルカリ土類金属元素、ケイ素および賦活剤元素を含有する窒化物を含む蛍光体によれば、体積平均粒径が50nm以上400nm以下であり、励起波長450nmにおける内部量子効率が60%以上である。このため、発光特性の優れた小粒径の、アルカリ土類金属元素、ケイ素、および賦活剤元素を含有する窒化物を含む蛍光体を得ることができる。
また、本発明に係るアルカリ土類金属元素、ケイ素および賦活剤元素を含有する窒化物を含む蛍光体の製造方法によれば、窒化ケイ素粒子とその表面に堆積されたアルカリ土類金属元素を含有する化合物と賦活剤元素を含有する化合物とを含む体積平均粒径が250nm以下である蛍光体前駆体粒子を準備し、その蛍光体前駆体粒子を焼成する。蛍光体前駆体粒子は、窒化ケイ素粒子の表面に、アルカリ土類金属元素を含有する化合物および賦活剤元素を含有する化合物が堆積している状態である。このため、焼成時に、ケイ素イオンとアルカリ土類金属イオンおよび賦活剤元素のイオンとのカチオン交換が容易に起こる。従って、目的組成の窒化物の合成反応が、わずかな粒成長だけで成し遂げられる。よって、発光特性の優れた小粒径の、アルカリ土類金属元素、ケイ素および賦活剤元素を含有する窒化物を含む蛍光体を製造することができる。
蛍光体前駆体粒子を走査電子顕微鏡(SEM)により観察して得られた画像を示す。 実施例1の蛍光体の励起発光スペクトルを示す。 実施例1の蛍光体のX線回折スペクトルを示す。 蛍光体の体積平均粒径と励起波長450nmにおける内部量子効率との関係を示すグラフである。 蛍光体のSr含有量と励起波長450nmにおける内部量子効率との関係を示すグラフである。 蛍光体のEu含有量と励起波長450nmにおける内部量子効率との関係を示すグラフである。 窒化ケイ素粒子の体積平均粒径と蛍光体の体積平均粒径との関係を示すグラフである。 窒化ケイ素粒子の体積平均粒径と蛍光体の体積平均粒度分布指標との関係を示すグラフである。 蛍光体前駆体粒子の体積平均粒径と蛍光体の体積平均粒径との関係を示すグラフである。 蛍光体前駆体粒子の体積平均粒径と蛍光体の体積平均粒度分布指標との関係を示すグラフである。 焼成温度と蛍光体の励起波長450nmにおける内部量子効率との関係を示すグラフである。 焼成温度と蛍光体の体積平均粒径との関係を示すグラフである。 焼成温度と蛍光体の体積平均粒度分布指標との関係を示すグラフである。
以下、本発明の実施の形態について説明する。
A.本発明の対象となる蛍光体
本発明によって得られる蛍光体は、アルカリ土類金属元素、ケイ素および賦活剤として機能する元素(以下、賦活剤元素という)を含有する窒化物を含むものである。ここで、賦活剤元素とは、蛍光体中において、発光中心(カラーセンター)として機能する元素である。窒化物の他に、蛍光体の発光特性に悪影響を及ぼさない範囲で不純物を含んでいてもよい。
窒化物に含有され得るアルカリ土類金属元素として、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、マグネシウム(Mg)が挙げられる。
窒化物は、蛍光体の発光特性を向上させるために、賦活剤元素を含有する。賦活剤元素として、例えば、ユウロピウム(Eu)、セリウム(Ce)、マンガン(Mn)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)およびイッテルビウム(Yb)が挙げられる。
本発明の蛍光体に含まれる得る窒化物として、例えば、MSi系窒化物(Mは、アルカリ土類金属元素、または、アルカリ土類金属元素および賦活剤元素)が挙げられる。
B.蛍光体の製造方法
上述した本発明の対象となる蛍光体であるアルカリ土類金属元素とケイ素とを含有する窒化物を含む蛍光体は、蛍光体前駆体粒子を準備する前駆体準備工程と、蛍光体前駆体粒子を焼成する焼成工程とにより製造される。
以下、各工程を詳細に説明する。
1.前駆体準備工程
原料として、窒化ケイ素粒子と、アルカリ土類金属元素を含有する物質とを用いる。また、蛍光体の発光特性を向上させるために、賦活剤元素を含有する物質を用いる。
原料として用いる窒化ケイ素粒子は、非晶質であることが好ましい。非晶質の窒化ケイ素粒子を原料として用いる場合、焼成時に、窒化ケイ素粒子の表面に堆積しているアルカリ土類金属元素を含有する化合物や賦活剤元素を含有する化合物との間で、ケイ素イオンとアルカリ土類金属イオンや賦活剤元素のイオンとのカチオン交換が起こりやすい。
また、原料として用いる窒化ケイ素粒子は、体積平均粒径が150nm以下、より具体的には120nm以下であることが好ましい。体積平均粒径が150nm以下の窒化ケイ素粒子を原料として用いる場合、粒径の小さい蛍光体前駆体粒子が得られ、その結果、粒径の小さい蛍光体が得られる。また、体積平均粒径が150nm以下の窒化ケイ素粒子を原料として用いる場合、粒度分布を制御することができ、粒径の揃った蛍光体が得られる。
原料として用いるアルカリ土類金属元素を含有する物質に関して、Caを含有する物質として、例えば、酸化カルシウム、水酸化カルシウム、炭酸カルシウム、硝酸カルシウム4水和物、硫酸カルシウム2水和物、シュウ酸カルシウム1水和物、酢酸カルシウム1水和物、塩化カルシウム、フッ化カルシウム、窒化カルシウム、カルシウムイミン、カルシウムアミドが挙げられる。中でも、硝酸カルシウム4水和物、塩化カルシウムが好ましい。Srを含有する物質として、例えば、酸化ストロンチウム、水酸化ストロンチウム8水和物、炭酸ストロンチウム、硝酸ストロンチウム、硫酸ストロンチウム、シュウ酸ストロンチウム1水和物、酢酸ストロンチウム0.5水和物、塩化ストロンチウム、フッ化ストロンチウム、窒化ストロンチウム、ストロンチウムイミン、ストロンチウムアミドが挙げられる。中でも、硝酸ストロンチウム、塩化ストロンチウムが好ましい。Baを含有する物質として、例えば、酸化バリウム、水酸化バリウム8水和物、炭酸バリウム、硝酸バリウム、硫酸バリウム、シュウ酸バリウム、酢酸バリウム、塩化バリウム、フッ化バリウム、窒化バリウム、バリウムイミン、バリウムアミドが挙げられる。中でも、硝酸バリウム、塩化バリウムが好ましい。Mgを含有する物質として、例えば、酸化マグネシウム、水酸化マグネシウム、塩基性炭酸マグネシウム、硝酸マグネシウム6水和物、硫酸マグネシウム、シュウ酸マグネシウム2水和物、酢酸マグネシウム4水和物、塩化マグネシウム、フッ化マグネシウム、窒化マグネシウム、マグネシウムイミン、マグネシウムアミドが挙げられる。中でも、硝酸マグネシウム、塩化マグネシウムが好ましい。
原料として用いる賦活剤元素を含有する物質に関して、Euを含有する物質として、例えば、酸化ユウロピウム、硫酸ユウロピウム、シュウ酸ユウロピウム10水和物、塩化ユウロピウム(II)、塩化ユウロピウム(III)、フッ化ユウロピウム(II)、フッ化ユウロピウム(III)、硝酸ユウロピウム6水和物、窒化ユウロピウム、ユウロピウムイミン、ユウロピウムアミドが挙げられる。中でも、硝酸ユウロピウム6水和物、酸化ユウロピウム、塩化ユウロピウム(II)が好ましい。その他の賦活元素Ce、Mn、Pr、Nd、Sm、Tb、Dy、Ho、Er、TmおよびYbを含有する物質としては、上記Euを含有する物質の具体例として挙げた各化合物において、EuをそれぞれCe、Mn、Pr、Nd、Sm、Tb、Dy、Ho、Er、Tm及びYbに置き換えた化合物が挙げられる。
前駆体準備工程では、窒化ケイ素粒子と、この窒化ケイ素粒子の表面に堆積されたアルカリ土類金属元素を含有する化合物と、この窒化ケイ素粒子の表面に堆積された賦活剤元素を含有する化合物とを含み、体積平均粒径が250nm以下、より具体的には200nm以下である蛍光体前駆体粒子を準備する。
例えば、MSi系窒化物(Mは、Ca、Sr、BaおよびMgからなる群から少なくともSrを含んで選択される1種類以上のアルカリ土類金属元素とEuおよびCeからなる群から少なくともEuを含んで選択される1種類以上の賦活剤元素とを有し、元素Mの合計に対して、15モル%以上99モル%以下、より具体的には20モル%以上97.5モル%以下のSrと1モル%以上20モル%以下、より具体的には2.5モル%以上15モル%以下の賦活剤元素とを有する)を得ることを目的とする場合、前駆体準備工程では、窒化ケイ素粒子と前記窒化ケイ素粒子の表面に堆積されたCa、Sr、BaおよびMgからなる群から少なくともSrを含んで選択される1種類以上のアルカリ土類金属元素を含有する化合物ならびにEuおよびCeからなる群から少なくともEuを含んで選択される1種類以上の賦活剤元素を含有する化合物とを含み、体積平均粒径が250nm以下、より具体的には200nm以下である蛍光体前駆体粒子を準備する。この蛍光体前駆体粒子は、窒化ケイ素粒子と、アルカリ土類金属元素を含有する化合物と、賦活剤元素を含有する化合物とを、アルカリ土類金属元素および賦活剤元素の合計とケイ素のモル比が1:1から1:1.6の範囲、より具体的には1:1.1から1:1.5の範囲で含む。また、この蛍光体前駆体粒子は、アルカリ土類金属元素および賦活剤元素の合計に対して、15モル%以上99モル%以下、より具体的には20モル%以上97.5モル%以下のSrと1モル%以上20モル%以下、より具体的には2.5モル%以上15モル%以下の賦活剤元素とを有する。
前駆体準備工程は、懸濁液形成工程と、前駆体形成工程とを含む。
[懸濁液形成工程]
目的組成のアルカリ土類金属元素とケイ素とを含有する窒化物を得るべく、原料として、窒化ケイ素粒子と、アルカリ土類金属元素を含有する物質と、賦活剤元素を含有する物質とを所定の割合で含む懸濁液を形成する。
例えば、上述したMSi系窒化物を得ることを目的とする場合、原料として、窒化ケイ素粒子と、アルカリ土類金属元素を含有する物質と、賦活剤元素を含有する物質とを、アルカリ土類金属元素および賦活剤元素の合計とケイ素のモル比が1:1から1:1.6の範囲、より具体的には1:1.1から1:1.5の範囲で含む懸濁液を形成する。この範囲以外では蛍光体の収率が低下することから、コスト上昇の原因となる。また、この懸濁液は、元素Mの合計に対して、15モル%以上99モル%以下、より具体的には20モル%以上97.5モル%以下のSrと1モル%以上20モル%以下、より具体的には2.5モル%以上15モル%以下の賦活剤元素とを有する。
懸濁液は、原料を溶媒に投入し、撹拌することによって形成する。懸濁液を形成するために用いる溶媒として、例えば、水が挙げられる。水とエチレングリコール、プロピレングリコール、テトラメチレングリコール、ヘプタメチレングリコール、ヘキサメチレングリコール、グリセリン、ソルビトールからなる群から選択される1種類以上の多価アルコールとの混合溶媒を用いることもできる。
[前駆体形成工程]
得られた懸濁液に湿式化学法を適用して、窒化ケイ素粒子の表面に、アルカリ土類金属元素を含有する化合物および賦活剤元素を含有する化合物が混ざり合って堆積された、体積平均粒径が250nm以下、より具体的には200nm以下である蛍光体前駆体粒子を形成する。
例えば、上述したMSi系窒化物を得ることを目的とする場合、得られた懸濁液に湿式化学法を適用して、アルカリ土類金属元素を含有する化合物と賦活剤元素を含有する化合物とを析出させ、窒化ケイ素粒子の表面に、アルカリ土類金属元素を含有する化合物および賦活剤元素を含有する化合物が混ざり合って堆積された、体積平均粒径が250nm以下、より具体的には200nm以下である蛍光体前駆体粒子を形成する。この蛍光体前駆体粒子は、窒化ケイ素粒子と、アルカリ土類金属元素を含有する化合物と、賦活剤元素を含有する化合物とを、アルカリ土類金属元素および賦活剤元素の合計とケイ素のモル比が1:1から1:1.6の範囲、より具体的には1:1.1から1:1.5の範囲で含む。この範囲以外では蛍光体の収率が低下することから、コスト上昇の原因となる。また、この蛍光体前駆体粒子は、元素Mの合計に対して、15モル%以上99モル%以下、より具体的には20モル%以上97.5モル%以下のSrと1モル%以上20モル%以下、より具体的には2.5モル%以上15モル%以下の賦活剤元素とを有する。
蛍光体前駆体粒子の体積平均粒径が250nm以下である場合、粒径の小さい蛍光体が得られる。また、蛍光体前駆体粒子の体積平均粒径が250nm以下である場合、粒度分布を制御することができ、粒径の揃った蛍光体が得られる。
懸濁液に湿式化学法を適用することにより、窒化ケイ素粒子の表面に、アルカリ土類金属元素を含有する化合物および賦活剤元素を含有する化合物が混ざり合った状態で堆積する。このため、焼成時に、ケイ素イオンとアルカリ土類金属イオンや賦活剤元素のイオンとのカチオン交換が容易に起こる。従って、目的組成の窒化物の合成反応が、わずかな粒成長だけで成し遂げられる。
湿式化学法は、窒化ケイ素粒子の表面に、アルカリ土類金属元素を含有する化合物および賦活剤元素を含有する化合物が混ざり合った状態で堆積できる方法であれば、どのような方法であってもよい。好ましくは、共沈法およびクエン酸塩法の少なくとも一方である。湿式化学法として、共沈法のみを用いる場合であってもよいし、クエン酸塩法のみを含む場合であってもよい。また、共沈法およびクエン酸塩法の両方を用いる場合であってもよい。湿式化学法として、共沈法やクエン酸塩法を用いる場合、窒化ケイ素粒子の表面に、アルカリ土類金属元素を含有する化合物や賦活剤元素を含有する化合物を容易に析出させ、窒化ケイ素粒子を容易に包摂して接触させることができる。このため、焼成時に、ケイ素イオンとアルカリ土類金属イオンや賦活剤元素のイオンとのカチオン交換が容易に起こる。従って、目的組成の窒化物の合成反応が、わずかな粒成長だけで成し遂げられる。
共沈法は、懸濁液に共沈剤を加えることにより行われる。懸濁液に加える共沈剤として、例えば、炭酸水素アンモニウム水溶液、炭酸アンモニウム水溶液、尿素水溶液、アセトアミド水溶液、チオ尿素水溶液、チオアセトアミド水溶液が挙げられる。中でも、炭酸水素アンモニウム水溶液、炭酸アンモニウム水溶液が好ましい。
クエン酸塩法は、懸濁液にクエン酸を加えることにより行われる。
窒化ケイ素粒子の表面に堆積されるアルカリ土類金属元素を含有する化合物や賦活剤元素を含有する化合物は、それぞれ、炭酸塩、炭酸水素塩、リン酸塩、カルボン酸塩、シュウ酸塩、硫酸塩、有機金属化合物および水酸化物からなる群から選択される1種類以上の化合物であれば、どのような化合物あってもよい。好ましくは、炭酸塩および水酸化物からなる群から選択される1種類以上の化合物である。炭酸塩や水酸化物は、共沈法やクエン酸塩法によって、容易に析出させることができる。
懸濁液中に含まれている蛍光体前駆体粒子は、例えば、遠心分離を用いて回収する。
2.焼成工程
得られた蛍光体前駆体粒子を焼成する。焼成は、目的組成のアルカリ土類金属元素、ケイ素および賦活剤元素を含有する窒化物を含む蛍光体が、発光特性の優れた小粒径の蛍光体として得られる焼成条件で行う。
例えば、上述したMSi系窒化物を得ることを目的とする場合、得られた蛍光体前駆体粒子を、水素と窒素との混合ガス雰囲気またはアンモニアと窒素との混合ガス雰囲気の下、1150℃以上1650℃以下、より具体的には1200℃以上1600℃以下の温度で焼成する。水素と窒素との混合ガス雰囲気またはアンモニアと窒素との混合ガス雰囲気の下で焼成することにより、目的組成のMSi系窒化物を主成分として含む蛍光体が得られる。目的組成のMSi系窒化物を主成分として含むことにより、発光特性の優れた蛍光体が得られる。また、1150℃以上の温度で焼成することにより、目的組成のMSi系窒化物の焼成不足を防ぐことができ、さらに、目的組成のMSi系窒化物以外の不純物の生成を防止することができる。焼成不足や不純物の生成を防止することができるため、発光特性の優れた蛍光体が得られる。また、1650℃以下の温度で焼成することにより、粒成長の進みすぎを防止することができ、さらに、目的組成のMSi系窒化物の溶融を防止することができる。粒成長の進みすぎを防止することができるため、小粒径の蛍光体が得られる。さらに、目的組成のMSi系窒化物の溶融を防止することができるため、目的組成のMSi系窒化物を含む蛍光体が製造しやすい。
焼成は、例えば、以下の手順で行う。先ず、得られた蛍光体前駆体粒子を反応性の低い材料からなる耐熱容器中に充填する。耐熱容器として、例えば、るつぼ、トレイが挙げられる。耐熱容器の材質として、例えば、アルミナ、窒化ホウ素、窒化珪素、炭化珪素、マグネシウム、ムライト等のセラミックス、白金、モリブデン、タングステン、タンタル、ニオブ、イリジウム、ロジウム等の金属またはそれらを主成分とする合金、カーボン(グラファイト)が挙げられる。好ましくは、窒化ホウ素製、アルミナ製、窒化珪素製、炭化珪素製、白金製、モリブデン製、タングステン製、タンタル製の耐熱容器が挙げられる。
その後、蛍光体前駆体粒子が充填された耐熱容器を、焼成装置内に入れる。焼成装置として、例えば、メタル炉、カーボン炉が挙げられる。
その後、耐熱容器が入れられた焼成装置内を、真空等の減圧状態にする。その後、焼成装置内を仮焼温度まで昇温する。その後、目的組成のアルカリ土類金属元素、ケイ素および賦活剤元素を含有する窒化物を含む蛍光体が、発光特性の優れた小粒径の蛍光体として得られるように、所定のガスを焼成装置内に導入し、焼成装置内の圧力を大気圧程度まで戻す。例えば、上述したMSi系窒化物を得ることを目的とする場合、水素と窒素との混合ガスまたはアンモニアと窒素との混合ガスを焼成装置内に導入する。その後、目的組成のアルカリ土類金属元素、ケイ素および賦活剤元素を含有する窒化物を含む蛍光体が、発光特性の優れた小粒径の蛍光体として得られるように、焼成装置内を所定の焼成温度まで昇温し、所定の時間保持する。例えば、上述したMSi系窒化物を得ることを目的とする場合、1150℃以上1650℃以下、より具体的には1200℃以上1600℃以下の焼成温度まで昇温する。
C.蛍光体
上述した製造方法により得られる、アルカリ土類金属元素、ケイ素および賦活剤元素を含有する窒化物を含む蛍光体は、体積平均粒径が50nm以上400nm以下、より具体的には100nm以上300nm以下であり、励起波長450nmにおける内部量子効率が60%以上、より具体的には70%以上である。このため、この蛍光体は、発光特性に優れており、小粒径である。
例えば、上述したMSi系窒化物を得ることを目的として上述した製造方法により得られる、アルカリ土類金属元素と賦活剤元素とケイ素とを含有する窒化物を含む蛍光体は、組成式MSi(Mは、Ca、Sr、BaおよびMgからなる群から少なくともSrを含んで選択される1種類以上のアルカリ土類金属元素とEuおよびCeからなる群から少なくともEuを含んで選択される1種類以上の賦活剤元素とを有し、元素Mの合計に対して、15モル%以上99モル%以下、より具体的には20モル%以上97.5モル%以下のSrと1モル%以上20モル%以下、より具体的には2.5モル%以上15モル%以下の賦活剤元素とを有する)で表わされ、窒化物は、SrSiと同じ結晶構造を有する。この蛍光体は、体積平均粒径が50nm以上400nm以下、より具体的には100nm以上300nm以下であり、励起波長450nmにおける内部量子効率が60%以上、より具体的には70%以上である。このため、この蛍光体は、発光特性に優れており、小粒径である。また、この蛍光体は、元素Mの合計に対して、15モル%以上のSrを有しているため、目的組成のMSi系窒化物の融点の低下を防止することができる。このため、目的組成のMSi系窒化物を含む蛍光体が製造しやすい。また、この蛍光体は、元素Mの合計に対して、99モル%以下のSrを有しているため、賦活剤元素の含有量低下を防止することができる。このため、発光特性の優れた蛍光体が得られる。また、この蛍光体は、元素Mの合計に対して、1モル%以上の賦活剤元素を有しているため、賦活剤元素の含有量を確保することができる。このため、発光特性の優れた蛍光体が得られる。また、この蛍光体は、元素Mの合計に対して、20モル%以下の賦活剤元素を有しているため、濃度消光の発生を防止することができる。このため、発光特性の優れた蛍光体が得られる。
また、上述した製造方法により得られる蛍光体は、体積平均粒度分布指標が1.20以上1.35以下、より具体的には1.21以上1.31以下であることが好ましい。体積平均粒度分布指標が1.20以上1.35以下である場合、得られる蛍光体は粒径の揃ったものである。
また、上述した製造方法により得られる蛍光体は、目的組成の窒化物と異なる結晶構造を有するケイ素含有化合物を含む場合には、目的組成の窒化物を、窒化物とケイ素含有化合物との合計に対して、50質量%以上、より具体的には70質量%以上含むことが好ましい。目的組成の窒化物を50質量%以上含むことにより、目的組成のMSi系窒化物が主成分となる。このため、発光特性の優れた蛍光体が得られる。
D.蛍光体の用途
本発明によって得られる蛍光体は、LED照明やディスプレイ等の光変換装置に用いることができる。また、粒子径が400nm以下と微細であることから従来からある顔料の代替としても用いることができる。
以下、実施例に基づいて本発明をより具体的に説明する。
実施例および比較例における種々の測定、分析は以下のように行った。
<粒度分布測定>
実施例および比較例において、ELS−Z1000ZS(大塚電子製)を用いて、粒子の粒度分布を測定した。測定には、試料をエタノールまたは水に分散させ、超音波により30秒以上分散させた測定用サンプルを用いた。測定された粒子の粒度分布を基にして、分割された粒度範囲に含まれる粒子が占める体積を小径側から累積していき、累積16%となる粒径をD16、累積50%となる粒径をD50、累積84%となる粒径をD84と規定した。このとき、D50を体積平均粒径と定義し、D84/D16を体積平均粒度分布指標PSDと定義する。
また、測定された粒子の粒度分布を基にして、分割された粒度範囲に含まれる粒子個数を小径側から累積していき、累積50%となる粒径を数平均粒径と定義する。
<励起発光スペクトル測定>
実施例において、蛍光分光光度計F−7000(日立ハイテクノロジーズ製)を用いて、励起発光スペクトルを測定した。
<内部量子効率測定>
実施例および比較例において、絶対PL量子収率測定装置(浜松フォトニクス製)を用いて、内部量子効率を測定した。測定には、0.1gの試料を用いた。測定は励起波長450nmで行った。
<走査電子顕微鏡観察>
実施例において、走査電子顕微鏡(SEM)SU8020(日立ハイテクノロジーズ製)を用いて、粒子の観察を行った。
<金属元素分析>
実施例および比較例において、ICP−MS(アジレントテクノロジー製)およびICP−AES(島津製作所製)を用いて、金属元素分析を行った。金属元素分析には、試料を融剤(ホウ砂:炭酸ソーダ=1:1)を用いてアルカリ融解した後、塩酸を添加して定容した測定用サンプルを用いた。ユウロピウムの分析はICP−MS(アジレントテクノロジー製)で行い、それ以外の金属元素の分析はICP−AES(島津製作所製)で行った。
<粉末X線回折>
実施例および比較例において、X線回折装置スマートラボ(リガク製)を用いて、粉末X線回折を行った。粉末X線回折において、CuKαを線源として用いた。粉末X線回折によって得られたX線回折スペクトルを解析することにより、試料中に形成されている無機化合物の定性分析と定量分析とを行った。
表1は以下に示す実施例および比較例の前駆体準備工程および焼成工程における種々の製造条件を示す。また、表2は得られた前駆体および焼成品の特性を示す。
Figure 2017088800
Figure 2017088800
実施例1.
[前駆体準備工程]
(懸濁液形成工程)
原料として、体積平均粒径D50が50nmの非晶質の窒化ケイ素粒子(シグマアルドリッチ製)と、硝酸ストロンチウム(キシダ化学製)と、硝酸ユウロピウム6水和物(キシダ化学製)とを用いた。
組成式Eu0.2Sr1.8Siで表わされる窒化物を得るべく、窒化ケイ素粒子3.354g、硝酸ストロンチウム11.93g、硝酸ユウロピウム6水和物3.119gを、それぞれ秤量した。このように秤量すると、後述する懸濁液および蛍光体前駆体粒子には、SrおよびEuの合計とケイ素とのモル比が1:1.3で含まれ、また、SrおよびEuの合計に対して、90モル%のSrと10モル%のEuとが含まれる。秤量した原料を水150gへ投入し、撹拌することによって懸濁液を形成した。
(前駆体形成工程)
炭酸水素アンモニウム(キシダ化学製)を水200mlに溶解することにより、共沈剤を形成した。
次に、上述のようにして得られた懸濁液を撹拌混合しながら、共沈剤を2時間かけて滴下した。共沈剤の滴下後、1時間撹拌混合を続けた。このようにして、ストロンチウムイオンとユウロピウムイオンとをそれぞれ炭酸塩と水酸化物として析出させ、窒化ケイ素粒子の表面に、ストロンチウムの炭酸塩およびユウロピウムの水酸化物が均一に混ざり合って堆積された蛍光体前駆体粒子を形成した。
その後、蛍光体前駆体粒子が含まれている懸濁液を100℃に設定された乾燥器に入れ、水を蒸発させることによって、蛍光体前駆体粒子を回収した。
[焼成工程]
得られた蛍光体前駆体粒子を、以下の手順で焼成した。先ず、得られた蛍光体前駆体粒子を窒化ホウ素製のるつぼに充填した。その後、蛍光体前駆体粒子が充填されたるつぼを、メタル炉である真空雰囲気炉(ネムス製)内に入れた。るつぼを炉内に入れた後、先ず、拡散ポンプにより炉内を真空とした。その後、炉内を室温から1100℃まで毎時300℃の速度で昇温した。その後、炉内温度を1100℃に保持したまま、水素4体積%、窒素96体積%の混合ガスを炉内に導入して、炉内圧力を大気圧程度まで戻した。その後、炉内を毎時300℃の速度で1550℃まで昇温し、炉内温度を1550℃に5時間保持して、蛍光体前駆体粒子を焼成して、焼成品を得た。
[蛍光体前駆体粒子の特性]
得られた蛍光体前駆体粒子を走査電子顕微鏡を用いて観察した。図1は蛍光体前駆体粒子を走査電子顕微鏡(SEM)により観察して得られた画像を示す。図1には、粒径100nm程度の粒子が多数見られる。このことから、窒化ケイ素粒子の表面に、ストロンチウムの炭酸塩およびユウロピウムの水酸化物が堆積していることが確認できた。
また、得られた蛍光体前駆体粒子の粒度分布を測定した。粒度分布の測定結果から、蛍光体前駆体粒子の体積平均粒径D50は122nmであった。
[蛍光体の特性]
得られた焼成品の励起発光スペクトルを測定した。図2は実施例1の焼成品の励起発光スペクトルを示す。図2の横軸は波長であり、縦軸は強度である。励起発光スペクトルから、200nm以上の紫外光から550nm以下の可視光までの広い波長範囲の光によって励起され、発光ピーク波長が660nmであることが分かった。このことから、得られた焼成品は可視光で励起され、赤色発光を示す蛍光体であることが確認できた。
また、得られた焼成品の粉末X線回折を行った。図3中のaは実施例1の焼成品のX線回折スペクトルを示す。図3の横軸は入射X線方向と回折X線方向とのなす角度であり、縦軸は強度である。このX線回折スペクトルをリートベルト法で解析したところ、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が80質量%生成し、ケイ素含有化合物が20質量%生成していることが分かった。なお、図3中のbは計算によって得られるSrSi結晶のX線回折スペクトルを示す。
また、得られた焼成品の金属元素分析を行った。金属元素分析の測定結果から、得られた焼成品には、SrとEuとがSr:Eu=0.9:0.1のモル比で含まれていることが分かった。
また、得られた焼成品の粒度分布を測定した。粒度分布の測定結果から、焼成品の体積平均粒径D50は160nmであり、体積平均粒度分布指標PSDは1.24であった。
また、得られた焼成品の励起波長450nmにおける内部量子効率を測定した。測定結果から、焼成品の励起波長450nmにおける内部量子効率は73%であった。
以上のことから、実施例1により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.2Sr1.8Siで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、90モル%のSrと10モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が160nmであり、体積平均粒度分布指標PSDが1.24である。また、この蛍光体は、励起波長450nmにおける内部量子効率が73%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、80質量%の窒化物を含む。
実施例2.
原料として、体積平均粒径D50が50nmの非晶質の窒化ケイ素粒子(シグマアルドリッチ製)と、硝酸ストロンチウム(キシダ化学製)と、硝酸カルシウム4水和物(キシダ化学製)と、硝酸ユウロピウム6水和物(キシダ化学製)とを用いた。組成式Eu0.2Sr0.9Ca0.9Siで表わされる窒化物を得るべく、窒化ケイ素粒子3.354g、硝酸ストロンチウム5.965g、硝酸カルシウム4水和物6.656g、硝酸ユウロピウム6水和物3.199gを、それぞれ秤量した。このように秤量すると、懸濁液および蛍光体前駆体粒子には、Sr、CaおよびEuの合計とケイ素とのモル比が1:1.3で含まれ、また、Sr、CaおよびEuの合計に対して、45モル%のSrと10モル%のEuとが含まれる。
それ以外は、実施例1と同様の方法により、蛍光体前駆体粒子および焼成品を得た。
得られた蛍光体前駆体粒子の粒度分布を測定したところ、蛍光体前駆体粒子の体積平均粒径D50は127nmであった。
また、得られた焼成品の励起発光スペクトルを測定したところ、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が668nmであることが分かった。このことから、得られた焼成品は可視光で励起され、赤色発光を示す蛍光体であることが確認できた。
また、得られた焼成品の粉末X線回折を行ったところ、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が85質量%生成し、ケイ素含有化合物が15質量%生成していることが分かった。
また、得られた焼成品の元素分析を行ったところ、得られた焼成品には、SrとCaとEuとがSr:Ca:Eu=0.45:0.45:0.1のモル比で含まれていることが分かった。
また、得られた焼成品の粒度分布を測定したところ、焼成品の体積平均粒径D50は135nmであり、体積平均粒度分布指標PSDは1.25であった。
また、得られた焼成品の励起波長450nmにおける内部量子効率を測定したところ、焼成品の励起波長450nmにおける内部量子効率は81%であった。
以上のことから、実施例2により得られた蛍光体は、SrとCaとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.2Sr0.9Ca0.9Siで表わされる。この組成式より、この蛍光体は、Sr、CaおよびEuの合計に対して、45モル%のSrと10モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が127nmであり、体積平均粒度分布指標PSDが1.25である。また、この蛍光体は、励起波長450nmにおける内部量子効率が81%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、85質量%の窒化物を含む。
実施例3.
実施例1と同様の方法により、蛍光体前駆体粒子を得た。また、蛍光体前駆体粒子を、アンモニア4体積%、窒素96体積%の混合ガス雰囲気の下で焼成した以外は、実施例1と同様の方法により焼成し、焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた焼成品は、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が659nmであることが分かった。このことから、得られた焼成品は可視光で励起され、赤色発光を示す蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が90質量%生成し、ケイ素含有化合物が10質量%生成していることが分かった。また、得られた焼成品には、SrとEuとがSr:Eu=0.9:0.1のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は155nmであり、体積平均粒度分布指標PSDは1.27であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は83%であった。
以上のことから、実施例3により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.2Sr1.8SiNで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、90モル%のSrと10モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が155nmであり、体積平均粒度分布指標PSDが1.27である。また、この蛍光体は、励起波長450nmにおける内部量子効率が83%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、90質量%の窒化物を含む。
実施例4.
実施例1と同様の方法により、蛍光体前駆体粒子を得た。また、蛍光体前駆体粒子を、1250℃で焼成した以外は、実施例1と同様の方法により焼成し、焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた焼成品は、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が658nmであることが分かった。このことから、得られた焼成品は可視光で励起され、赤色発光を示す蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が84質量%生成し、ケイ素含有化合物が16質量%生成していることが分かった。また、得られた焼成品には、SrとEuとがSr:Eu=0.9:0.1のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は156nmであり、体積平均粒度分布指標PSDは1.26であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は72%であった。
以上のことから、実施例4により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.2Sr1.8Siで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、90モル%のSrと10モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が156nmであり、体積平均粒度分布指標PSDが1.26である。また、この蛍光体は、励起波長450nmにおける内部量子効率が72%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、84質量%の窒化物を含む。
実施例5.
実施例1と同様の方法により、蛍光体前駆体粒子を得た。また、蛍光体前駆体粒子を、1625℃で焼成した以外は、実施例1と同様の方法により焼成し、焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた焼成品は、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が651nmであることが分かった。このことから、得られた焼成品は可視光で励起され、赤色発光を示す蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が85質量%生成し、ケイ素含有化合物が15質量%生成していることが分かった。また、得られた焼成品には、SrとEuとがSr:Eu=0.9:0.1のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は170nmであり、体積平均粒度分布指標PSDは1.23であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は80%であった。
以上のことから、実施例5により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.2Sr1.8Siで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、90モル%のSrと10モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が170nmであり、体積平均粒度分布指標PSDが1.23である。また、この蛍光体は、励起波長450nmにおける内部量子効率が80%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、85質量%の窒化物を含む。
実施例6.
組成式Eu0.2Sr1.4Ca0.4Siで表わされる窒化物を得るべく、窒化ケイ素粒子3.354g、硝酸ストロンチウム8.791g、硝酸カルシウム4水和物3.503g、硝酸ユウロピウム6水和物3.199gを、それぞれ秤量した以外は、実施例2と同様の方法により、蛍光体前駆体粒子および焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた蛍光体前駆体粒子の体積平均粒径D50は116nmであった。また、得られた焼成品は、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が662nmであることが分かった。このことから、得られた焼成品は可視光で励起され、赤色発光を示す蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が87質量%生成し、ケイ素含有化合物が13質量%生成していることが分かった。また、得られた焼成品には、SrとCaとEuとがSr:Ca:Eu=0.7:0.2:0.1のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は155nmであり、体積平均粒度分布指標PSDは1.28であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は79%であった。
以上のことから、実施例6により得られた蛍光体は、SrとCaとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.2Sr1.4Ca0.4Siで表わされる。この組成式より、この蛍光体は、Sr、CaおよびEuの合計に対して、70モル%のSrと10モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が155nmであり、体積平均粒度分布指標PSDが1.28である。また、この蛍光体は、励起波長450nmにおける内部量子効率が79%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、87質量%の窒化物を含む。
実施例7.
組成式Eu0.2Sr0.4Ca1.4Siで表わされる窒化物を得るべく、窒化ケイ素粒子3.354g、硝酸ストロンチウム2.512g、硝酸カルシウム4水和物10.510g、硝酸ユウロピウム6水和物3.199gを、それぞれ秤量した以外は、実施例2と同様の方法により、蛍光体前駆体粒子および焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた蛍光体前駆体粒子の体積平均粒径D50は149nmであった。また、得られた焼成品は、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が649nmであることが分かった。このことから、得られた焼成品は可視光で励起される蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が85質量%生成し、ケイ素含有化合物が15質量%生成していることが分かった。また、得られた焼成品には、SrとCaとEuとがSr:Ca:Eu=0.2:0.7:0.1のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は149nmであり、体積平均粒度分布指標PSDは1.23であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は77%であった。
以上のことから、実施例7により得られた蛍光体は、SrとCaとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.2Sr0.4Ca1.4Siで表わされる。この組成式より、この蛍光体は、Sr、CaおよびEuの合計に対して、20モル%のSrと10モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が149nmであり、体積平均粒度分布指標PSDが1.23である。また、この蛍光体は、励起波長450nmにおける内部量子効率が77%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、85質量%の窒化物を含む。
実施例8.
組成式Eu0.3Sr1.7Siで表わされる窒化物を得るべく、窒化ケイ素粒子3.354g、硝酸ストロンチウム8.359g、硝酸ユウロピウム6水和物9.597gを、それぞれ秤量した以外は、実施例1と同様の方法により、蛍光体前駆体粒子および焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた蛍光体前駆体粒子の体積平均粒径D50は125nmであった。また、得られた焼成品は、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が661nmであることが分かった。このことから、得られた焼成品は可視光で励起され、赤色発光を示す蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が81質量%生成し、ケイ素含有化合物が19質量%生成していることが分かった。また、得られた焼成品には、SrとEuとがSr:Eu=0.85:0.15のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は163nmであり、体積平均粒度分布指標PSDは1.30であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は75%であった。
以上のことから、実施例8により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.3Sr1.7Siで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、85モル%のSrと15モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が163nmであり、体積平均粒度分布指標PSDが1.30である。また、この蛍光体は、励起波長450nmにおける内部量子効率が75%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、81質量%の窒化物を含む。
実施例9.
組成式Eu0.05Sr1.95Siで表わされる窒化物を得るべく、窒化ケイ素粒子3.354g、硝酸ストロンチウム12.92g、硝酸ユウロピウム6水和物1.418gを、それぞれ秤量した以外は、実施例1と同様の方法により、蛍光体前駆体粒子および焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた蛍光体前駆体粒子の体積平均粒径D50は128nmであった。また、得られた焼成品は、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が650nmであることが分かった。このことから、得られた焼成品は可視光で励起され、赤色発光を示す蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が80質量%生成し、ケイ素含有化合物が20質量%生成していることが分かった。また、得られた焼成品には、SrとEuとがSr:Eu=0.975:0.025のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は155nmであり、体積平均粒度分布指標PSDは1.29であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は74%であった。
以上のことから、実施例9により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.05Sr1.95Siで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、97.5モル%のSrと2.5モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が155nmであり、体積平均粒度分布指標PSDが1.29である。また、この蛍光体は、励起波長450nmにおける内部量子効率が74%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、80質量%の窒化物を含む。
実施例10.
原料として、数平均粒径500nmの結晶性窒化ケイ素(高純度化学製)を微粉砕機(アシザワ・ファインテック社製LMZ015)により粉砕して得られた、体積平均粒径D50が110nmの窒化ケイ素粒子を使用した以外は、実施例1と同様の方法により、蛍光体前駆体粒子および焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた蛍光体前駆体粒子の体積平均粒径D50は196nmであった。また、得られた焼成品は、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が661nmであることが分かった。このことから、得られた焼成品は可視光で励起され、赤色発光を示す蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が64質量%生成し、ケイ素含有化合物が16質量%生成していることが分かった。また、得られた焼成品には、SrとEuとがSr:Eu=0.9:0.1のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は298nmであり、体積平均粒度分布指標PSDは1.23であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は79%であった。
以上のことから、実施例10により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.2Sr1.8Siで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、90モル%のSrと10モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が298nmであり、体積平均粒度分布指標PSDが1.23である。また、この蛍光体は、励起波長450nmにおける内部量子効率が79%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、84質量%の窒化物を含む。
実施例11.
原料として、体積平均粒径D50が25nmの非晶質の窒化ケイ素粒子(HEFEI KAIER NANOMETER ENERGY & TECHNOLOGY CO., LTD製)を使用した以外は、実施例1と同様の方法により、蛍光体前駆体粒子および焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた蛍光体前駆体粒子の体積平均粒径D50は56nmであった。また、得られた焼成品は、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が659nmであることが分かった。このことから、得られた焼成品は可視光で励起され、赤色発光を示す蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が87質量%生成し、ケイ素含有化合物が13質量%生成していることが分かった。また、得られた焼成品には、SrとEuとがSr:Eu=0.9:0.1のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は108nmであり、体積平均粒度分布指標PSDは1.25であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は73%であった。
以上のことから、実施例11により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.2Sr1.8Siで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、90モル%のSrと10モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が113nmであり、体積平均粒度分布指標PSDが1.30である。また、この蛍光体は、励起波長450nmにおける内部量子効率が73%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、84質量%の窒化物を含む。
実施例12.
組成式Eu0.2Sr1.8Siで表わされる窒化物を得るべく、窒化ケイ素粒子3.354g、硝酸ストロンチウム14.10g、硝酸ユウロピウム6水和物3.781gを、それぞれ秤量した。このように秤量すると、懸濁液および蛍光体前駆体粒子には、SrおよびEuの合計とケイ素とのモル比が1:1.1で含まれる。
それ以外は、実施例1と同様の方法により、蛍光体前駆体粒子および焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた蛍光体前駆体粒子の体積平均粒径D50は125nmであった。また、得られた焼成品は、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が660nmであることが分かった。このことから、得られた焼成品は可視光で励起され、赤色発光を示す蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が82質量%生成し、ケイ素含有化合物が18質量%生成していることが分かった。また、得られた焼成品には、SrとEuとがSr:Eu=0.9:0.1のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は162nmであり、体積平均粒度分布指標PSDは1.25であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は72%であった。
以上のことから、実施例12により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.2Sr1.8Siで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、90モル%のSrと10モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が162nmであり、体積平均粒度分布指標PSDが1.25である。また、この蛍光体は、励起波長450nmにおける内部量子効率が72%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、82質量%の窒化物を含む。
実施例13.
組成式Eu0.2Sr1.8Siで表わされる窒化物を得るべく、窒化ケイ素粒子3.354g、硝酸ストロンチウム10.34g、硝酸ユウロピウム6水和物2.772gを、それぞれ秤量した。このように秤量すると、懸濁液および蛍光体前駆体粒子には、SrおよびEuの合計とケイ素とのモル比が1:1.5で含まれる。
それ以外は、実施例1と同様の方法により、蛍光体前駆体粒子および焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた蛍光体前駆体粒子の体積平均粒径D50は115nmであった。また、得られた焼成品は、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が660nmであることが分かった。このことから、得られた焼成品は可視光で励起され、赤色発光を示す蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が78質量%生成し、ケイ素含有化合物が22質量%生成していることが分かった。また、得られた焼成品には、SrとEuとがSr:Eu=0.9:0.1のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は143nmであり、体積平均粒度分布指標PSDは1.22であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は74%であった。
以上のことから、実施例13により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.2Sr1.8Siで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、90モル%のSrと10モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が143nmであり、体積平均粒度分布指標PSDが1.22である。また、この蛍光体は、励起波長450nmにおける内部量子効率が74%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、78質量%の窒化物を含む。
比較例1.
原料として、体積平均粒径D50が195nmの結晶質の窒化ケイ素粒子(宇部興産製)を使用した以外は、実施例1と同様の方法により、蛍光体前駆体粒子および焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた蛍光体前駆体粒子の体積平均粒径D50は305nmであった。また、得られた焼成品は、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が661nmであることが分かった。このことから、得られた焼成品は可視光で励起される蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が80質量%生成し、ケイ素含有化合物が20質量%生成していることが分かった。また、得られた焼成品には、SrとEuとがSr:Eu=0.9:0.1のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は465nmであり、体積平均粒度分布指標PSDは1.43であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は76%であった。
以上のことから、比較例1により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.2Sr1.8Siで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、90モル%のSrと10モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が465nmであり、体積平均粒度分布指標PSDが1.43である。また、この蛍光体は、励起波長450nmにおける内部量子効率が76%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、80質量%の窒化物を含む。
比較例2.
実施例1と同様の方法により、蛍光体前駆体粒子を得た。また、蛍光体前駆体粒子を、窒素100体積%のガス雰囲気の下で焼成した以外は、実施例1と同様の方法により焼成し、焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた焼成品は、200nm以上500nm以下の波長範囲の光によって励起され、発光ピーク波長が557nmであることが分かった。このことから、得られた焼成品は可視光で励起され、黄緑色発光を示す蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が14質量%生成し、ケイ素含有化合物が86質量%生成していることが分かった。また、得られた焼成品には、SrとEuとがSr:Eu=0.9:0.1のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は177nmであり、体積平均粒度分布指標PSDは1.31であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は50%であった。
以上のことから、比較例2により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.2Sr1.8Siで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、90モル%のSrと10モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が177nmであり、体積平均粒度分布指標PSDが1.31である。また、この蛍光体は、励起波長450nmにおける内部量子効率が50%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、14質量%の窒化物を含む。
比較例3.
実施例1と同様の方法により、蛍光体前駆体粒子を得た。また、蛍光体前駆体粒子を、1100℃で焼成した以外は、実施例1と同様の方法により焼成し、焼成品を得た。
得られた焼成品の励起発光スペクトルを測定したところ、焼成品は発光しなかった。これは、焼成不足のためである。従って、比較例3では、蛍光体は得られなかった。
比較例4.
実施例1と同様の方法により、蛍光体前駆体粒子を得た。また、蛍光体前駆体粒子を、1700℃で焼成した以外は、実施例1と同様の方法により焼成し、焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた焼成品は、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が661nmであることが分かった。このことから、得られた焼成品は可視光で励起され、赤色発光を示す蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が94質量%生成し、ケイ素含有化合物が6質量%生成していることが分かった。また、得られた焼成品には、SrとEuとがSr:Eu=0.9:0.1のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は10320nmであり、体積平均粒度分布指標PSDは1.45であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は81%であった。
以上のことから、比較例4により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.2Sr1.8Siで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、90モル%のSrと10モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が10320nmであり、体積平均粒度分布指標PSDが1.45である。また、この蛍光体は、励起波長450nmにおける内部量子効率が81%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、94質量%の窒化物を含む。
比較例5.
実施例2と同様の方法により、蛍光体前駆体粒子を得た。また、蛍光体前駆体粒子を、1700℃で焼成した以外は、実施例1と同様の方法により焼成した。
比較例5では、焼成中に溶融したため、蛍光体は得られなかった。これは、蛍光体前駆体粒子に含有されているカルシウムの量が多く、焼成中に合成される窒化物の融点が下がったためである。
比較例6.
組成式Eu0.2Sr0.2Ca1.6Siで表わされる窒化物を得るべく、窒化ケイ素粒子3.354g、硝酸ストロンチウム1.256g、硝酸カルシウム4水和物11.91g、硝酸ユウロピウム6水和物3.199gを、それぞれ秤量した以外は、実施例2と同様の方法により、蛍光体前駆体粒子を得た。また、蛍光体前駆体粒子を、実施例1と同様の方法により焼成した。
比較例6では、焼成中に溶融したため、蛍光体は得られなかった。これは、蛍光体前駆体粒子に含有されているカルシウムの量が多く、焼成中に合成される窒化物の融点が下がったためである。
比較例7.
組成式Eu0.01Sr1.99Siで表わされる窒化物を得るべく、窒化ケイ素粒子3.354g、硝酸ストロンチウム13.53、硝酸ユウロピウム6水和物0.3199gを、それぞれ秤量した以外は、実施例1と同様の方法により、蛍光体前駆体粒子および焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた蛍光体前駆体粒子の体積平均粒径D50は122nmであった。また、得られた焼成品は、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が660nmであることが分かった。このことから、得られた焼成品は可視光で励起され、赤色発光を示す蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が82質量%生成し、ケイ素含有化合物が18質量%生成していることが分かった。また、得られた焼成品には、SrとEuとがSr:Eu=0.995:0.005のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は180nmであり、体積平均粒度分布指標PSDは1.31であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は45%であった。
以上のことから、比較例7により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.01Sr1.99Siで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、99.5モル%のSrと0.5モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が180nmであり、体積平均粒度分布指標PSDが1.31である。また、この蛍光体は、励起波長450nmにおける内部量子効率が45%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、82質量%の窒化物を含む。
比較例8.
組成式Eu0.5Sr1.5Siで表わされる窒化物を得るべく、窒化ケイ素粒子3.354g、硝酸ストロンチウム4.781g、硝酸ユウロピウム6水和物15.995gを、それぞれ秤量した以外は、実施例1と同様の方法により、蛍光体前駆体粒子および焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた蛍光体前駆体粒子の体積平均粒径D50は131nmであった。また、得られた焼成品は、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が661nmであることが分かった。このことから、得られた焼成品は可視光で励起され、赤色発光を示す蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が85質量%生成し、ケイ素含有化合物が15質量%生成していることが分かった。また、得られた焼成品には、SrとEuとがSr:Eu=0.75:0.25のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は175nmであり、体積平均粒度分布指標PSDは1.30であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は39%であった。
以上のことから、比較例8により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.5Sr1.5Siで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、75モル%のSrと25モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が175nmであり、体積平均粒度分布指標PSDが1.30である。また、この蛍光体は、励起波長450nmにおける内部量子効率が39%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、85質量%の窒化物を含む。
比較例9.
比較例4で得られた窒化物蛍光体をビーズミルで粉砕し、分級することにより、サブミクロンサイズの窒化物蛍光体を得た。
実施例1と同様に種々の測定、分析を行ったところ、粉砕後の窒化物蛍光体は、200nm以上550nm以下の波長範囲の光によって励起され、発光ピーク波長が658nmであることが分かった。また、粉砕後の窒化物蛍光体は、窒化物の結晶の一部およびケイ素含有化合物の結晶の一部が粉砕によって非晶質化していることが分かった。このため、表2において、比較例9のケイ素含有化合物の含有量の欄は明記していない。また、粉砕後の窒化物蛍光体の体積平均粒径D50は285nmであり、体積平均粒度分布指標PSDは1.32であった。また、粉砕後の市販の窒化物蛍光体の励起波長450nmにおける内部量子効率は36%であった。
比較例10.
組成式Eu0.2Sr1.8Siで表わされる窒化物を得るべく、窒化ケイ素粒子3.354g、硝酸ストロンチウム16.33g、硝酸ユウロピウム6水和物4.378gを、それぞれ秤量した。このように秤量すると、懸濁液および蛍光体前駆体粒子には、SrおよびEuの合計とケイ素とのモル比が1:0.95で含まれる。
それ以外は、実施例1と同様の方法により、蛍光体前駆体粒子および焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた蛍光体前駆体粒子の体積平均粒径D50は135nmであった。また、得られた焼成品は、200nm以上500nm以下の波長範囲の光によって励起され、発光ピーク波長が555nmであることが分かった。このことから、得られた焼成品は可視光で励起され、黄緑色発光を示す蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiOと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が40質量%生成し、ケイ素含有化合物が60質量%生成していることが分かった。また、得られた焼成品には、SrとEuとがSr:Eu=0.9:0.1のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は205nmであり、体積平均粒度分布指標PSDは1.43であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は53%であった。
以上のことから、比較例10により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.2Sr1.8Siで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、90モル%のSrと10モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が205nmであり、体積平均粒度分布指標PSDが1.43である。また、この蛍光体は、励起波長450nmにおける内部量子効率が53%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、40質量%の窒化物を含む。
比較例11.
組成式Eu0.2Sr1.8Siで表わされる窒化物を得るべく、窒化ケイ素粒子3.354g、硝酸ストロンチウム9.40g、硝酸ユウロピウム6水和物2.520gを、それぞれ秤量した。このように秤量すると、懸濁液および蛍光体前駆体粒子には、SrおよびEuの合計とケイ素とのモル比が1:1.65で含まれる。
それ以外は、実施例1と同様の方法により、蛍光体前駆体粒子および焼成品を得た。
実施例1と同様に種々の測定、分析を行ったところ、得られた蛍光体前駆体粒子の体積平均粒径D50は105nmであった。また、得られた焼成品は、200nm以上500nm以下の波長範囲の光によって励起され、発光ピーク波長が550nmであることが分かった。このことから、得られた焼成品は可視光で励起され、黄緑色発光を示す蛍光体であることが確認できた。また、得られた焼成品には、SrSiと同じ結晶構造を有する窒化物とSrSiと同じ結晶構造を有するケイ素含有化合物とが生成していることが分かった。また、窒化物とケイ素含有化合物との合計に対して、窒化物が42質量%生成し、ケイ素含有化合物が58質量%生成していることが分かった。また、得られた焼成品には、SrとEuとがSr:Eu=0.9:0.1のモル比で含まれていることが分かった。また、得られた焼成品の体積平均粒径D50は695nmであり、体積平均粒度分布指標PSDは1.58であった。また、得られた焼成品の励起波長450nmにおける内部量子効率は58%であった。
以上のことから、比較例11により得られた蛍光体は、SrとEuとSiとを含有する窒化物を含むものである。また、この蛍光体は、組成式Eu0.2Sr1.8Siで表わされる。この組成式より、この蛍光体は、SrおよびEuの合計に対して、90モル%のSrと10モル%のEuとを有する。また、この窒化物は、SrSiと同じ結晶構造を有する。また、この蛍光体は、体積平均粒径D50が695nmであり、体積平均粒度分布指標PSDが1.58である。また、この蛍光体は、励起波長450nmにおける内部量子効率が58%である。また、この蛍光体は、窒化物とケイ素含有化合物との合計に対して、42質量%の窒化物を含む。
実施例と比較例の対比検討.
図4は蛍光体の体積平均粒径D50と励起波長450nmにおける内部量子効率との関係を示すグラフである。図4の横軸は蛍光体の体積平均粒径D50であり、縦軸は蛍光体の励起波長450nmにおける内部量子効率である。図4中、ダイヤモンド形状の点は実施例1−13を示し、四角形状の点a,bは比較例4,9を示す。
図4および表2に示されるように、実施例1−13の蛍光体は、体積平均粒径D50が50nm以上400nm以下、より具体的には、100nm以上300nm以下であり、かつ、励起波長450nmにおける内部量子効率が60%以上、より具体的には、70%以上である。このため、実施例1−13から発光特性の優れた小粒径の蛍光体を得ることができた。特に、実施例2,3,5では、励起波長450nmにおける内部量子効率が80%以上であり、発光特性の極めて優れた小粒径の蛍光体を得ることができた。
一方、比較例4の蛍光体は、励起波長450nmにおける内部量子効率が81%と高いが、体積平均粒径D50が10320nmと大きい。比較例4の蛍光体を粉砕することにより得られた比較例9の蛍光体では、体積平均粒径D50を285nmまで小さくすることができたが、励起波長450nmにおける内部量子効率が36%に低下した。
また、実施例1−13の蛍光体は、体積平均粒度分布指標PSDが1.20以上1.35以下、より具体的には、1.21nm以上1.31以下である。このため、実施例1−13から粒径の揃った蛍光体を得ることができた。
図5は蛍光体のSr含有量と励起波長450nmにおける内部量子効率との関係を示すグラフである。図5の横軸は蛍光体のSr含有量であり、縦軸は蛍光体の励起波長450nmにおける内部量子効率である。図5中、ダイヤモンド形状の点は実施例1−13を示し、四角形状の点a,bは比較例6,7を示す。
図5および表1に示されるように、比較例6では、Ca含有量が多く、アルカリ土類金属元素(Sr,Ca)とEuとの合計に対して、15モル%よりも少ないSrを有する。このため、焼成中に合成される窒化物の融点が下がり、蛍光体が得られなかった。焼成温度を下げると、合成反応が進行し難くなって、ケイ素含有化合物等の不純物が多くなるため、励起波長450nmにおける内部量子効率が低下すると考えられる。また、比較例7の蛍光体は、Sr含有量が99モル%より多い。このため、Euの含有量が少なくなり、励起波長450nmにおける内部量子効率が低下する。
従って、Sr含有量は、好ましくは、15モル%以上99モル%以下である。また、励起波長450nmにおける内部量子効率が60%以上である実施例1−13の蛍光体は、アルカリ土類金属元素(Sr,Ca)とEuとの合計に対して、20モル%以上97.5モル%以下のSrを有する。このため、Sr含有量は、さらに好ましくは、20モル%以上97.5モル%以下である。
図6は蛍光体のEu含有量と励起波長450nmにおける内部量子効率との関係を示すグラフである。図6の横軸は蛍光体のEu含有量であり、縦軸は蛍光体の励起波長450nmにおける内部量子効率である。図6中、ダイヤモンド形状の点は実施例1−13を示し、四角形状の点a,bは比較例7,8を示す。
図7および表1に示されるように、比較例7の蛍光体は、アルカリ土類金属元素(Sr,Ca)とEuとの合計に対して、1モル%よりも少ないEuを有する。このため、Euの含有量が少なく、励起波長450nmにおける内部量子効率が低下する。また、比較例8の蛍光体は、Eu含有量が20モル%より多い。このため、濃度消光が発生し、励起波長450nmにおける内部量子効率が低下する。
従って、Eu含有量は、好ましくは、1モル%以上20モル%以下である。また、励起波長450nmにおける内部量子効率が60%以上である実施例1−13の蛍光体は、アルカリ土類金属元素(Sr,Ca)とEuとの合計に対して、2.5モル%以上15モル%以下のEuを有する。このため、Eu含有量は、さらに好ましくは、2.5モル%以上15モル%以下である。
図7は窒化ケイ素粒子の体積平均粒径D50と蛍光体の体積平均粒径D50との関係を示すグラフである。図7の横軸は窒化ケイ素粒子の体積平均粒径D50であり、縦軸は蛍光体の体積平均粒径D50である。図8は窒化ケイ素粒子の体積平均粒径D50と蛍光体の体積平均粒度分布指標PSDとの関係を示すグラフである。図8の横軸は窒化ケイ素粒子の体積平均粒径D50であり、縦軸は蛍光体の体積平均粒度分布指標PSDである。図7,8中、ダイヤモンド形状のプロットは実施例1−13を示し、四角形状のプロットaは比較例1を示す。
図7および表2に示されるように、比較例1では、窒化ケイ素粒子の体積平均粒径D50が150nmより大きい。このため、蛍光体前駆体粒子の体積平均粒径D50も大きくなった。その結果、蛍光体の体積平均粒径D50が400nmより大きくなり、所望の粒径の蛍光体を得ることができなかった。また、図8および表2に示されるように、粒度分布を制御することができず、蛍光体の体積平均粒度分布指標PSDが1.35より大きくなり、所望の粒度分布の蛍光体を得ることができなかった。
従って、窒化ケイ素粒子の体積平均粒径D50は、好ましくは、150nm以下である。また、体積平均粒径D50が50nm以上400nm以下であり、体積平均粒度分布指標PSDが1.20以上1.35以下である蛍光体が得られる実施例1−13では、窒化ケイ素粒子の体積平均粒径D50が120nm以下である。このため、窒化ケイ素粒子の体積平均粒径D50は、さらに好ましくは、120nm以下である。
図9は蛍光体前駆体粒子の体積平均粒径D50と蛍光体の体積平均粒径D50との関係を示すグラフである。図9の横軸は蛍光体前駆体粒子の体積平均粒径D50であり、縦軸は蛍光体の体積平均粒径D50である。図10は蛍光体前駆体粒子の体積平均粒径D50と蛍光体の体積平均粒度分布指標PSDとの関係を示すグラフである。図10の横軸は蛍光体前駆体粒子の体積平均粒径D50であり、縦軸は蛍光体の体積平均粒度分布指標PSDである。図9,10中、ダイヤモンド形状のプロットは実施例1−13を示し、四角形状のプロットaは比較例1を示す。
図9および表2に示されるように、比較例1では、蛍光体前駆体粒子の体積平均粒径D50が250nmより大きい。このため、蛍光体の体積平均粒径D50が400nmより大きくなり、所望の粒径の蛍光体を得ることができなかった。また、図10および表2に示されるように、粒度分布を制御することができず、蛍光体の体積平均粒度分布指標PSDが1.35より大きくなり、所望の粒度分布の蛍光体を得ることができなかった。
従って、蛍光体前駆体粒子の体積平均粒径D50は、好ましくは、250nm以下である。また、体積平均粒径D50が50nm以上400nm以下であり、体積平均粒度分布指標PSDが1.20以上1.35以下である蛍光体が得られる実施例1−13では、蛍光体前駆体粒子の体積平均粒径D50が200nm以下である。このため、蛍光体前駆体粒子の体積平均粒径D50は、さらに好ましくは、200nm以下である。
図11は焼成温度と蛍光体の励起波長450nmにおける内部量子効率との関係を示すグラフである。図11の横軸は焼成温度であり、縦軸は蛍光体の励起波長450nmにおける内部量子効率である。図11中、ダイヤモンド形状の点は実施例1−1113を示し、四角形状の点a−cは比較例3−5を示す。
図12は焼成温度と蛍光体の体積平均粒径D50との関係を示すグラフである。図12の横軸は焼成温度であり、縦軸は蛍光体の体積平均粒径D50である。図13は焼成温度と蛍光体の体積平均粒度分布指標PSDとの関係を示すグラフである。図13の横軸は焼成温度であり、縦軸は蛍光体の体積平均粒度分布指標PSDである。図12,13中、ダイヤモンド形状のプロットは実施例1−13を示し、四角形状のプロットbは比較例4を示す。
図11および表1に示されるように、比較例3では、焼成温度が1150℃より低い。このため、合成反応が進行せず、焼成不足のため、蛍光体は得られなかった。また、焼成温度が低いと、合成反応が進行し難くなって、ケイ素含有化合物等の不純物が多くなるため、励起波長450nmにおける内部量子効率が低下すると考えられる。また、図11および表1に示されるように、比較例4では、焼成温度が1650℃より高い。このため、図12および表2に示されるように、粒成長が進みすぎて、蛍光体の体積平均粒径D50が400nmより大きくなり、所望の粒径の蛍光体を得ることができなかった。また、図13および表2に示されるように、粒度分布を制御することができず、蛍光体の体積平均粒度分布指標PSDが1.35より大きくなり、所望の粒度分布の蛍光体を得ることができなかった。また、図11および表1に示されるように、比較例5では、焼成温度が1650℃より高い。比較例5のように、アルカリ土類金属元素(Sr,Ca)とEuとの含有割合によっては、焼成中に合成される窒化物の融点が下がるため、焼成温度が高いと、焼成中に溶融して、蛍光体が得られなくなる。
従って、焼成温度は、好ましくは1150℃以上1650℃以下である。また、体積平均粒径D50が50nm以上400nm以下であり、体積平均粒度分布指標PSDが1.20以上1.35以下である蛍光体が得られる実施例1−13では、焼成温度が1200℃以上1600℃以下である。このため、焼成温度は、さらに好ましくは、1200℃以上1600℃以下である。
表1に示されるように、実施例1−13では、蛍光体前駆体粒子を、水素と窒素との混合ガス雰囲気またはアンモニアと窒素との混合ガス雰囲気の下で焼成した。その場合、窒化物を主成分として含む蛍光体が得られた。具体的には、実施例1−13の蛍光体には、窒化物とケイ素含有化合物との合計に対して、窒化物が50質量%以上、さらに具体的には、70質量%以上含まれる。窒化物を主成分として含むことにより、励起波長450nmにおける内部量子効率の高い蛍光体が得られた。
一方、比較例2では、蛍光体前駆体粒子を、窒素100体積%のガス雰囲気の下で焼成した。その場合、窒化物の合成反応が進行せず、SrSiOと同じ結晶構造を有するケイ素含有化合物が主成分として生成した。
従って、焼成は、水素と窒素との混合ガス雰囲気またはアンモニアと窒素との混合ガス雰囲気の下で行うことが好ましい。
比較例10では、アルカリ土類金属元素および賦活剤元素の合計とケイ素のモル比が1:0.95となるように原料を混合し、比較例11では、アルカリ土類金属元素および賦活剤元素の合計とケイ素のモル比が1:1.65となるように原料を混合した。その場合、窒化物の合成反応が進行せず、比較例10では、SrSiOと同じ結晶構造を有するケイ素含有化合物が主成分として生成し、比較例11では、SrSiと同じ結晶構造を有するケイ素含有化合物が主成分として生成した。
従って、アルカリ土類金属元素および賦活剤元素の合計とケイ素のモル比が1:1から1:1.6の範囲となるように原料を混合するのが好ましい。また、窒化物とケイ素含有化合物との合計に対して、窒化物が50質量%以上含まれる実施例1−13の蛍光体では、アルカリ土類金属元素および賦活剤元素の合計とケイ素のモル比が1:1.1から1:1.5の範囲となるように原料を混合した。このため、アルカリ土類金属元素および賦活剤元素の合計とケイ素のモル比が1:1.1から1:1.5の範囲となるように原料を混合するのがさらに好ましい。
なお、上述した実施例では、アルカリ土類金属元素として、Srのみを用いる場合の他に、SrおよびCaの組み合わせを用いる場合についてのみ説明したが、CaのかわりにBaおよびMgの少なくとも一方を用いる場合やCaとともにBaおよびMgの少なくとも一方を用いる場合でも、本発明を適用できる。
また、上述した実施例では、賦活剤元素として、Euのみを用いる場合について説明したが、EuとともにCeを用いる場合でも、本発明を適用できる。
また、上述した実施例では、湿式化学法として、共沈法を用いる場合についてのみ説明したが、クエン酸塩法を用いる場合でも、本発明を適用できる。
また、上述した実施例では、窒化ケイ素粒子の表面に、アルカリ土類元素の炭酸塩および賦活剤元素の水酸化物が堆積する場合について説明したが、炭酸塩や水酸化物以外の炭酸水素塩、リン酸塩、カルボン酸塩、シュウ酸塩、硫酸塩または有機金属化合物が堆積する場合でも、本発明を適用できる。
以上のように、本発明を実施の形態および実施例に基づいて詳細に説明したが、これは本発明を具体的に説明するためのものであり、本発明はこれに限定されない。該当分野における通常の知識を有する者であれば、本発明の技術的思想内にての変形や改良が可能であることは明白である。本発明の単純な変形乃至変更はいずれも本発明の領域に属するものであり、本発明の具体的な保護範囲は他の実施態様も含む。

Claims (15)

  1. アルカリ土類金属元素、ケイ素および賦活剤元素を含有する窒化物を含む蛍光体であって、
    体積平均粒径が50nm以上400nm以下であり、励起波長450nmにおける内部量子効率が60%以上である蛍光体。
  2. 当該蛍光体は、組成式MSiで表わされ、
    前記窒化物は、SrSiと同じ結晶構造を有し、
    前記Mは、(1)Ca、Sr、BaおよびMgからなる群から少なくともSrを含んで選択される1種類以上のアルカリ土類金属元素と(2)EuおよびCeからなる群から少なくともEuを含んで選択される1種類以上の賦活剤元素と、を有し、
    (a)前記Srは、Mの合計に対して、15モル%以上99モル%以下含まれ、(b)前記賦活剤元素は、Mの合計に対して、1モル%以上20モル%以下含まれる請求項1に記載の蛍光体。
  3. 体積平均粒度分布指標が1.20以上1.35以下である請求項1または2に記載の蛍光体。
  4. 前記窒化物と異なる結晶構造を有するケイ素含有化合物を含み、
    前記窒化物は、前記窒化物と前記ケイ素含有化合物との合計に対して、50質量%以上含まれる請求項2または3に記載の蛍光体。
  5. アルカリ土類金属元素、ケイ素および賦活剤元素を含有する窒化物を含む蛍光体の製造方法であって、
    窒化ケイ素粒子と、前記窒化ケイ素粒子の表面に堆積された、(1)アルカリ土類金属元素を含有する化合物と(2)賦活剤元素を含有する化合物と、を含む蛍光体前駆体粒子を準備する前駆体準備工程と、
    前記蛍光体前駆体粒子を焼成する焼成工程と
    を含み、
    前記蛍光体前駆体粒子の体積平均粒径が250nm以下である蛍光体の製造方法。
  6. 前記前駆体準備工程は、(I)窒化ケイ素粒子と(II)アルカリ土類金属元素を含有する物質と(III)賦活剤元素を含有する物質と、を含む懸濁液に、湿式化学法を適用して、前記窒化ケイ素粒子の表面に、前記アルカリ土類金属元素を含有する化合物および前記賦活剤元素を含有する化合物が混ざり合って堆積された蛍光体前駆体粒子を形成する前駆体形成工程を含む請求項5に記載の蛍光体の製造方法。
  7. 前記蛍光体前駆体粒子は、(A)窒化ケイ素粒子と、(B)前記窒化ケイ素粒子の表面に堆積された、(B−1)Ca、Sr、BaおよびMgからなる群から少なくともSrを含んで選択される1種類以上の前記アルカリ土類金属元素を含有する化合物ならびに(B−2)EuおよびCeからなる群から少なくともEuを含んで選択される1種類以上の前記賦活剤元素を含有する化合物とを含み、
    前記蛍光体前駆体粒子中、アルカリ土類金属元素および賦活剤元素の合計とケイ素のモル比が1:1から1:1.6の範囲であり、
    前記蛍光体前駆体粒子中、(a)前記Srは、アルカリ土類金属元素および賦活剤元素の合計に対して、15モル%以上99モル%以下含まれ、(b)前記賦活剤元素は、アルカリ土類金属元素および賦活剤元素の合計に対して、1モル%以上20モル%以下含まれる請求項5に記載の蛍光体の製造方法。
  8. 前記前駆体準備工程は、
    (I)窒化ケイ素粒子と(II)Ca、Sr、BaおよびMgからなる群から少なくともSrを含んで選択される1種類以上のアルカリ土類金属元素を含む物質と(III)EuおよびCeからなる群から少なくともEuを含んで選択される1種類以上の賦活剤元素を含む物質とを含む懸濁液を形成する懸濁液形成工程と、
    前記懸濁液に湿式化学法を適用して、(1)前記アルカリ土類金属元素を含有する化合物と(2)前記賦活剤元素を含有する化合物と、を析出させ、前記窒化ケイ素粒子の表面に、前記アルカリ土類金属元素を含有する化合物および前記賦活剤元素を含有する化合物が混ざり合って堆積された蛍光体前駆体粒子を形成する前駆体形成工程とを含み、
    前記懸濁液中、アルカリ土類金属元素および賦活剤元素の合計とケイ素のモル比が1:1から1:1.6の範囲であり、
    前記懸濁液中、(a)前記Srは、アルカリ土類金属元素および賦活剤元素の合計に対して、15モル%以上99モル%以下含まれ、(b)前記賦活剤元素は、アルカリ土類金属元素および賦活剤元素の合計に対して、1モル%以上20モル%以下含まれる請求項7に記載の蛍光体の製造方法。
  9. 前記湿式化学法は、共沈法およびクエン酸塩法の少なくとも一つである請求項6または8に記載の蛍光体の製造方法。
  10. 前記湿式化学法は共沈法である請求項9に記載の蛍光体の製造方法。
  11. 前記アルカリ土類金属元素を含有する化合物および前記賦活剤元素を含有する化合物は、それぞれ、炭酸塩、炭酸水素塩、リン酸塩、カルボン酸塩、シュウ酸塩、硫酸塩、有機金属化合物および水酸化物からなる群から選択される1種類以上の化合物を含む請求項5から10のいずれか1項に記載の蛍光体の製造方法。
  12. 前記アルカリ土類金属元素を含有する化合物および前記賦活剤元素を含有する化合物は、それぞれ、炭酸塩および水酸化物からなる群から選択される1種類以上の化合物を含む請求項11に記載の蛍光体の製造方法。
  13. 前記窒化ケイ素粒子は150nm以下の体積平均粒径を有する請求項5から12のいずれか1項に記載の蛍光体の製造方法。
  14. 前記窒化ケイ素粒子は非晶質である請求項5から13のいずれか1項に記載の蛍光体の製造方法。
  15. 前記焼成工程は、少なくとも水素と窒素とを含む混合ガス雰囲気または少なくともアンモニアと窒素とを含む混合ガス雰囲気の下、1150℃以上1650℃以下の温度で行う請求項5から14のいずれか1項に記載の蛍光体の製造方法。
JP2015223710A 2015-11-16 2015-11-16 蛍光体およびその製造方法 Pending JP2017088800A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015223710A JP2017088800A (ja) 2015-11-16 2015-11-16 蛍光体およびその製造方法
EP16198124.6A EP3168279A1 (en) 2015-11-16 2016-11-10 Phosphor and method for manufacturing the same
KR1020160151199A KR102649564B1 (ko) 2015-11-16 2016-11-14 형광체 및 그 제조 방법
US15/353,062 US10100249B2 (en) 2015-11-16 2016-11-16 Phosphor and method for manufacturing the same
CN201611009941.7A CN107022352A (zh) 2015-11-16 2016-11-16 荧光体和其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015223710A JP2017088800A (ja) 2015-11-16 2015-11-16 蛍光体およびその製造方法

Publications (1)

Publication Number Publication Date
JP2017088800A true JP2017088800A (ja) 2017-05-25

Family

ID=57288186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015223710A Pending JP2017088800A (ja) 2015-11-16 2015-11-16 蛍光体およびその製造方法

Country Status (5)

Country Link
US (1) US10100249B2 (ja)
EP (1) EP3168279A1 (ja)
JP (1) JP2017088800A (ja)
KR (1) KR102649564B1 (ja)
CN (1) CN107022352A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190589A1 (ja) * 2022-03-28 2023-10-05 三井金属鉱業株式会社 蛍光体粉末、蛍光体含有組成物、発光素子、及び発光装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116064033A (zh) * 2023-02-13 2023-05-05 南京农业大学 一种无团聚氮化物红色荧光粉及其制备方法
CN116694322B (zh) * 2023-04-25 2024-03-12 英特美光电(苏州)有限公司 一种红色荧光粉及其制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1104799A1 (en) 1999-11-30 2001-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Red emitting luminescent material
JP4221950B2 (ja) * 2002-05-23 2009-02-12 日亜化学工業株式会社 蛍光体
EP1433831B1 (en) 2002-03-22 2018-06-06 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device
US6717353B1 (en) * 2002-10-14 2004-04-06 Lumileds Lighting U.S., Llc Phosphor converted light emitting device
JP4645071B2 (ja) * 2003-06-20 2011-03-09 日亜化学工業株式会社 パッケージ成型体およびそれを用いた半導体装置
JP2006213910A (ja) * 2005-01-06 2006-08-17 Matsushita Electric Ind Co Ltd 酸窒化物蛍光体及び発光装置
JP5245222B2 (ja) 2005-08-10 2013-07-24 三菱化学株式会社 蛍光体及びそれを用いた発光装置
TWI403570B (zh) 2005-08-10 2013-08-01 Mitsubishi Chem Corp 螢光體與其製造方法,含螢光體組成物,發光裝置及其用途
JP4860354B2 (ja) 2006-05-29 2012-01-25 シャープ株式会社 蛍光体の製造方法、蛍光体および発光装置
KR20100128336A (ko) 2008-03-21 2010-12-07 나노그램 코포레이션 금속 규소 질화물 또는 금속 규소 산질화물 서브미크론 인광체 입자 및 이들 인광체의 합성 방법
DE102008058295A1 (de) 2008-11-20 2010-05-27 Osram Gesellschaft mit beschränkter Haftung Rot emittierender Leuchtstoff aus der Klasse der Nitridosilikate und Lichtquelle mit derartigem Leuchtstoff sowie Verfahren zur Herstellung des Leuchtstoffs
JP5695968B2 (ja) 2010-12-28 2015-04-08 デクセリアルズ株式会社 赤色蛍光体、赤色蛍光体の製造方法、白色光源、照明装置、および液晶表示装置
JP5753438B2 (ja) 2011-05-14 2015-07-22 デクセリアルズ株式会社 赤色蛍光体、赤色蛍光体の製造方法、白色光源、照明装置、および液晶表示装置
JP2012153873A (ja) 2011-01-04 2012-08-16 Sony Chemical & Information Device Corp 赤色蛍光体、赤色蛍光体の製造方法、白色光源、照明装置、および液晶表示装置
US8808578B2 (en) 2010-12-28 2014-08-19 Dexerials Corporation Red phosphor, method for producing red phosphor, white light source, illuminating device, and liquid crystal display device
KR101334056B1 (ko) 2012-03-27 2013-12-31 한국에너지기술연구원 공침법을 이용한 광 변환용 나노 형광분말의 제조방법 및 이에 의해 제조된 광 변환용 나노 형광분말
CN105143399B (zh) 2013-03-21 2017-02-15 宇部兴产株式会社 氧氮化物荧光体粉末及其制造方法
US10000697B2 (en) 2013-03-22 2018-06-19 Merck Patent Gmbh Magnesium alumosilicate-based phosphor
JP2015000953A (ja) 2013-06-17 2015-01-05 三菱化学株式会社 酸窒化物系蛍光体およびこれを用いた発光装置
JP6070536B2 (ja) 2013-12-26 2017-02-01 住友金属鉱山株式会社 シリケート蛍光体粒子の製造方法
JP6354325B2 (ja) 2014-05-21 2018-07-11 宇部興産株式会社 窒化物蛍光体粉末の製造方法、および顔料の製造方法
CN105273713A (zh) * 2014-07-18 2016-01-27 三星电子株式会社 磷光体及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190589A1 (ja) * 2022-03-28 2023-10-05 三井金属鉱業株式会社 蛍光体粉末、蛍光体含有組成物、発光素子、及び発光装置

Also Published As

Publication number Publication date
KR102649564B1 (ko) 2024-03-19
CN107022352A (zh) 2017-08-08
US10100249B2 (en) 2018-10-16
EP3168279A1 (en) 2017-05-17
US20170137708A1 (en) 2017-05-18
KR20170057149A (ko) 2017-05-24

Similar Documents

Publication Publication Date Title
US20110305005A1 (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
JP5578739B2 (ja) アルカリ土類金属シリケート蛍光体及びその製造方法
KR20110131117A (ko) 알루민산염 형광체, 그 제조 방법 및 발광 소자
KR20150126840A (ko) 질화물 형광체의 제조방법 및 질화물 형광체용 질화규소 분말, 및 질화물 형광체
WO2012050051A1 (ja) マンガン賦活ゲルマン酸塩蛍光体の製造方法
KR102649564B1 (ko) 형광체 및 그 제조 방법
JP6143949B2 (ja) 粉末状の前駆材料を製造する方法、粉末状の前駆材料およびその使用方法
JP6239456B2 (ja) 蛍光体およびその製造方法
WO2010119799A1 (ja) 赤色蛍光体、その製造方法及び発光素子
JP5849961B2 (ja) 共沈原料を用いた窒化物蛍光体の製造方法、窒化物蛍光体、及びその原料
JP2014506266A (ja) コアシェルアルミン酸塩を含む組成物、この組成物から得られる蛍りん光体、及び製造方法
TWI448535B (zh) Eu method for the production of metalloid phosphite phosphors
US9856418B2 (en) Semiconductor package with improved signal stability and method of manufacturing the same
JP2002047010A (ja) バリウム系複合金属酸化物粉末の製造方法
JP6099002B2 (ja) ケイ酸塩系青色蛍光体の製造方法
EP3243889A1 (en) Fluorescent material, light-emitting device, and method for producing fluorescent material
KR101264309B1 (ko) 산질화물 형광체 및 그 제조방법
JP2013159718A (ja) マンガン賦活ゲルマン酸塩蛍光体、その製造方法及び発光素子
JP2008063574A (ja) ユーロピウム賦活酸化イットリウム及びその製造方法
WO2012066993A1 (ja) マンガン賦活ゲルマン酸塩蛍光体、その製造方法及び発光素子
KR20090044800A (ko) 인산계 나노 형광체 및 나노 형광체 제조 방법
JP2021059647A (ja) 蛍光体及びこれを用いた発光装置