WO2013137434A1 - 蛍光体、蛍光体の製造方法および発光装置 - Google Patents

蛍光体、蛍光体の製造方法および発光装置 Download PDF

Info

Publication number
WO2013137434A1
WO2013137434A1 PCT/JP2013/057405 JP2013057405W WO2013137434A1 WO 2013137434 A1 WO2013137434 A1 WO 2013137434A1 JP 2013057405 W JP2013057405 W JP 2013057405W WO 2013137434 A1 WO2013137434 A1 WO 2013137434A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
light emitting
emitting device
powder
Prior art date
Application number
PCT/JP2013/057405
Other languages
English (en)
French (fr)
Inventor
大地 碓井
康博 白川
博文 竹村
石井 努
Original Assignee
株式会社東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝マテリアル株式会社 filed Critical 株式会社東芝
Priority to KR1020147007348A priority Critical patent/KR101593857B1/ko
Priority to CN201380003188.9A priority patent/CN103827260B/zh
Priority to EP13761307.1A priority patent/EP2743330A4/en
Priority to US14/344,087 priority patent/US9512359B2/en
Publication of WO2013137434A1 publication Critical patent/WO2013137434A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • Embodiments of the present invention relate to a phosphor that emits green light, a method for manufacturing the phosphor, and a light-emitting device.
  • the phosphor powder is used, for example, in a light-emitting device such as a light-emitting diode (LED).
  • the light emitting device includes, for example, a semiconductor light emitting element that is arranged on a substrate and emits light of a predetermined color, and a phosphor that emits visible light when excited by light such as ultraviolet light and blue light emitted from the semiconductor light emitting element.
  • the semiconductor light emitting element of the light emitting device for example, GaN, InGaN, AlGaN, InGaAlP or the like is used.
  • the phosphor of the phosphor powder include a blue phosphor, a green phosphor, and a yellow phosphor that are excited by light emitted from the semiconductor light emitting element and emit blue light, green light, yellow light, and red light, respectively.
  • a phosphor, a red phosphor or the like is used.
  • the light emitting device can adjust the color of the emitted light by including various phosphor powders such as a green phosphor in the sealing resin. That is, by using a combination of a semiconductor light emitting element and a phosphor powder that absorbs light emitted from the semiconductor light emitting element and emits light in a predetermined wavelength region, the light emitted from the semiconductor light emitting element and the phosphor powder are used. It becomes possible to emit light in the visible light region and white light by the action of the light emitted from.
  • a phosphor a phosphor having a europium activated sialon (Si—Al—O—N) structure containing strontium (Sr sialon phosphor) is known.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a phosphor having a Sr sialon structure with high luminous efficiency, a method for producing the phosphor, and a light emitting device.
  • the luminance of the light emitting device using the Sr sialon phosphor is high if the shape of the particles of the Sr sialon phosphor having a specific composition is made more spherical. It was completed by finding out.
  • Wadell's sphericity ( ⁇ ) is known as an index for determining whether or not the particle shape is close to a sphere.
  • Sr sialon phosphors usually belong to a low symmetry crystal system called orthorhombic system.
  • the shape of the particles of the Sr sialon phosphor generally has a particle shape different from a spherical shape, such as a plate shape or a column shape.
  • the particle shape was 0.6 or less when evaluated by Wadell's sphericity ( ⁇ ), and was a shape far from the sphere.
  • a light emitting device comprising a combination of a semiconductor light emitting element and a phosphor
  • light emitted from the phosphor that has emitted light after the light emitted from the semiconductor light emitting element is reflected on the phosphor surface or absorbed by the phosphor.
  • Is reflected on the surface of another phosphor and light is extracted to the outside while repeating multiple reflections.
  • light energy loss occurs.
  • a spherical particle having a small surface area would be suitable as the particle shape of the phosphor.
  • the present inventors sought to spheroidize the particle shape of the Sr sialon phosphor. As a result, it has been found that the sphericity of the phosphor particles can be improved if the process conditions for producing the phosphor are specified conditions. Then, it has been found that the luminance level is greatly improved according to the light emitting device using the phosphor having improved sphericity.
  • the phosphor of the embodiment solves the above-described problems, and the following general formula (1) [Chemical 1] General formula: (Sr 1-x , Eu x ) ⁇ Si ⁇ Al ⁇ O ⁇ N ⁇ (1) (Wherein x is 0 ⁇ x ⁇ 1, ⁇ is 0 ⁇ ⁇ 4, and ⁇ , ⁇ , ⁇ and ⁇ are values converted when ⁇ is 3, 9 ⁇ ⁇ 15, 1 ⁇ ⁇ ⁇ 5, 0.5 ⁇ ⁇ ⁇ 3, 10 ⁇ ⁇ ⁇ 30)
  • a phosphor comprising a europium-activated sialon crystal having a basic composition represented by: wherein the phosphor has a particle sphericity of 0.65 or more and is excited by ultraviolet light, violet light or blue light. It is characterized by emitting green light.
  • the manufacturing method of the fluorescent substance of embodiment is a manufacturing method of the fluorescent substance which manufactures the said fluorescent substance, Comprising:
  • the fluorescent substance raw material mixture which is a raw material of fluorescent substance is 0.
  • small particle parts which are the parts accumulated in order from the particles having the smallest particle diameter, are classified.
  • a classification step of removing the phosphor powder within a range of 20% by mass or less.
  • the light-emitting device of the embodiment solves the above-described problem.
  • a substrate, a semiconductor light-emitting element that is disposed on the substrate and emits ultraviolet light, violet light, or blue light, and the semiconductor light-emitting element A phosphor that is formed so as to cover a light emitting surface and includes a phosphor that emits visible light when excited by light emitted from the semiconductor light emitting element, and the phosphor is any one of claims 1 to 5.
  • the phosphor described in the item is included.
  • the Sr sialon structure phosphor and the light emitting device of the present invention have high luminous efficiency.
  • the method for producing a phosphor of the present invention can efficiently produce a phosphor having a Sr sialon structure and a light emitting device with high luminous efficiency.
  • the phosphor, the method for producing the phosphor, and the light emitting device of the embodiment will be described.
  • the phosphor of the embodiment is a green phosphor that emits green light when excited by ultraviolet light, violet light, or blue light.
  • the green phosphor of the present invention has the following general formula (1) [Chemical 2] General formula: (Sr 1-x , Eu x ) ⁇ Si ⁇ Al ⁇ O ⁇ N ⁇ (1) (Wherein x is 0 ⁇ x ⁇ 1, ⁇ is 0 ⁇ ⁇ 4, and ⁇ , ⁇ , ⁇ and ⁇ are values converted when ⁇ is 3, 9 ⁇ ⁇ 15, 1 ⁇ ⁇ ⁇ 5, 0.5 ⁇ ⁇ ⁇ 3, 10 ⁇ ⁇ ⁇ 30) It is the fluorescent substance which consists of a europium activated sialon crystal
  • the phosphor of the present invention emits green light when excited by ultraviolet light, violet light, or blue light.
  • the phosphor emitting green light is also referred to as “Sr sialon green phosphor”.
  • the phosphor of the present invention has a particle sphericity of 0.65 or more.
  • the europium activated sialon crystal having the basic composition represented by the general formula (1) is an orthorhombic single crystal.
  • the Sr sialon green phosphor a crystal composed of one europium activated sialon crystal having the basic composition represented by the general formula (1), or two or more of these europium activated sialon crystals are aggregated. This is an aggregate of crystal bodies.
  • the Sr sialon green phosphor takes the form of a single crystal powder.
  • the Sr sialon green phosphor powder has an average particle size of usually 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 80 ⁇ m, more preferably 8 ⁇ m to 80 ⁇ m, and more preferably 8 ⁇ m to 40 ⁇ m.
  • the average particle diameter is a value measured by the Coulter counter method, it means the median D 50 of the cumulative volume distribution.
  • the shape of the powder particles is usually different from a spherical shape such as a plate shape or a column shape.
  • the Sr sialon green phosphor is an aggregate of crystals obtained by aggregating two or more of the europium activated sialon crystals, the Sr sialon green phosphor is separated for each europium activated sialon crystal by crushing. It is possible.
  • x is a number that satisfies 0 ⁇ x ⁇ 1, preferably 0.025 ⁇ x ⁇ 0.5, and more preferably 0.25 ⁇ x ⁇ 0.5.
  • x is 0, the fired body obtained in the firing step does not become a phosphor, and when x is 1, the luminous efficiency of the Sr sialon green phosphor is lowered.
  • x is preferably a number satisfying 0.025 ⁇ x ⁇ 0.5, and more preferably a number satisfying 0.25 ⁇ x ⁇ 0.5, even if 0 ⁇ x ⁇ 1.
  • the total subscript (1-x) ⁇ of Sr is a number satisfying 0 ⁇ (1-x) ⁇ ⁇ 4.
  • the total subscript x ⁇ of Eu is a number satisfying 0 ⁇ x ⁇ ⁇ 4. That is, in the general formula (1), the total subscripts of Sr and Eu are numbers exceeding 0 and less than 4, respectively.
  • the total amount of Sr and Eu is represented by ⁇ .
  • the numerical values of ⁇ , ⁇ , ⁇ , and ⁇ when the total amount ⁇ is a constant value 3 the ratio of ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ in the general formula (1) becomes clear. ing.
  • ⁇ , ⁇ , ⁇ and ⁇ are numerical values converted when ⁇ is 3.
  • ⁇ , which is a subscript of Si is a number satisfying 9 ⁇ ⁇ 15 as a numerical value converted when ⁇ is 3.
  • ⁇ , which is a subscript of Al is a number satisfying 1 ⁇ ⁇ ⁇ 5 as a numerical value converted when ⁇ is 3.
  • ⁇ , which is a subscript of O is a number satisfying 0.5 ⁇ ⁇ ⁇ 3 when a value of ⁇ is 3.
  • ⁇ , which is a subscript of N is a number satisfying 10 ⁇ ⁇ ⁇ 30 when the numerical value converted when ⁇ is 3.
  • the composition of the phosphor obtained by firing is an orthorhombic system represented by the general formula (1).
  • the Sr sialon green phosphor may be different.
  • the Sr sialon green phosphor of the present invention has a sphericity of 0.65 or more.
  • the sphericity means Wadell's sphericity ( ⁇ ).
  • a sphericity of 0.65 or more is preferable because the luminance level of the Sr sialon green phosphor is high.
  • the Sr sialon green phosphor is manufactured, for example, by the following method.
  • the Sr sialon green phosphor represented by the general formula (1) is obtained by dry-processing each raw material such as strontium carbonate SrCO 3 , aluminum nitride AlN, silicon nitride Si 3 N 4 , europium oxide Eu 2 O 3 , and oxide.
  • the phosphor raw material mixture is prepared by mixing, and the phosphor raw material mixture can be produced by firing in a nitrogen atmosphere.
  • the phosphor raw material mixture contains 0.05 to 0.5% by mass of carbon when the phosphor raw material mixture containing carbon is 100% by mass. It is preferable that the phosphor raw material mixture contains carbon because the sphericity of the green phosphor powder is increased. If the amount of carbon exceeds 0.5% by mass, the luminance of the phosphor tends to be lowered due to carbon residue.
  • the carbon is preferably a powder.
  • the phosphor raw material mixture may contain, as a flux agent, an alkali metal or alkaline earth metal fluoride such as potassium fluoride which is a reaction accelerator, strontium chloride SrCl 2 or the like.
  • an alkali metal or alkaline earth metal fluoride such as potassium fluoride which is a reaction accelerator, strontium chloride SrCl 2 or the like.
  • Fluorescent material mixture is filled in a refractory crucible.
  • a refractory crucible for example, a boron nitride crucible, a carbon crucible or the like is used.
  • the phosphor raw material mixture filled in the refractory crucible is fired.
  • the baking apparatus an apparatus is used in which the composition and pressure of the internal baking atmosphere in which the refractory crucible is arranged, the baking temperature and the baking time are maintained under predetermined conditions.
  • an electric furnace is used as such a baking apparatus.
  • An inert gas is used as the firing atmosphere.
  • the inert gas for example, N 2 gas, Ar gas, a mixed gas of N 2 and H 2 or the like is used.
  • N 2 in the firing atmosphere has a function of eliminating an appropriate amount of oxygen O from the phosphor raw material mixture when the phosphor powder is fired from the phosphor raw material mixture.
  • Ar in the firing atmosphere has an action of not supplying excess oxygen O to the phosphor raw material mixture when the phosphor powder is fired from the phosphor raw material mixture.
  • H 2 in the firing atmosphere acts as a reducing agent when the phosphor powder is fired from the phosphor raw material mixture, and more oxygen O is lost from the phosphor raw material mixture than N 2 .
  • the firing time can be shortened compared to the case where H 2 is not contained in the inert gas.
  • the content of H 2 in the inert gas is too large, the composition of the obtained phosphor powder tends to be different from that of the Sr sialon green phosphor represented by the general formula (1). There is a possibility that the emission intensity of the light becomes weak.
  • N 2: H 2 Inert gas, if a mixed gas of N 2 gas or N 2 and H 2, the molar ratio of N 2 and H 2 in the inert gas, N 2: H 2 is usually 10: 0 To 1: 9, preferably 8: 2 to 2: 8, more preferably 6: 4 to 4: 6.
  • the molar ratio of N 2 to H 2 in the inert gas is within the above range, that is, usually 10: 0 to 1: 9, a high-quality single crystal with few crystal structure defects in a short time firing
  • the phosphor powder can be obtained.
  • the molar ratio of N 2 and H 2 in the inert gas, the N 2 and H 2 which is continuously fed into the chamber of the calciner, the ratio of the flow rate of N 2 and H 2 are in the ratio
  • the above ratio that is, usually 10: 0 to 1: 9, can be obtained by continuously supplying the mixed gas and exhausting the mixed gas in the chamber.
  • An inert gas that is a firing atmosphere is preferably distributed so as to form an air flow in a chamber of a firing apparatus because firing is performed uniformly.
  • the pressure of the inert gas that is the firing atmosphere is usually 0.1 MPa (approximately 1 atm) to 1.0 MPa (approximately 10 atm), preferably 0.4 MPa to 0.8 MPa.
  • the composition of the phosphor powder obtained after firing is represented by the general formula (1) as compared with the phosphor raw material mixture charged in the crucible before firing. It is easy to differ from the green phosphor, and for this reason, the emission intensity of the phosphor powder may be weakened.
  • the firing conditions are not particularly changed even when the pressure is 1.0 MPa or less, which is not preferable because energy is wasted.
  • the firing temperature is usually 1400 ° C to 2000 ° C, preferably 1750 ° C to 1950 ° C, more preferably 1800 ° C to 1900 ° C.
  • the firing temperature is in the range of 1400 ° C. to 2000 ° C., a high-quality single crystal phosphor powder with few crystal structure defects can be obtained by firing in a short time.
  • the phosphor powder obtained may be excited by ultraviolet light, violet light or blue light, and the color of the emitted light may not be a desired color. That is, when it is desired to manufacture the Sr sialon green phosphor represented by the general formula (1), there is a possibility that the color of light emitted by being excited by ultraviolet light, violet light or blue light becomes a color other than green. is there.
  • the firing time is usually 0.5 hours to 20 hours, preferably 1 hour to 10 hours, more preferably 1 hour to 5 hours, more preferably 1.5 hours to 2.5 hours.
  • the composition of the obtained phosphor powder tends to be different from that of the Sr sialon green phosphor represented by the general formula (1). There exists a possibility that the emitted light intensity of powder may become weak.
  • the firing time is preferably a short time within a range of 0.5 to 20 hours when the firing temperature is high, and a long time within a range of 0.5 to 20 hours when the firing temperature is low. It is preferable that
  • a fired body made of phosphor powder is generated.
  • the fired body is usually in the form of a weak and solid lump.
  • a phosphor powder is obtained.
  • the phosphor powder obtained by crushing becomes a powder of Sr sialon green phosphor represented by the general formula (1).
  • the Sr sialon green phosphor obtained through the above process has a plate shape or a column shape, and is different from a spherical shape.
  • the inventors have found that the oxygen concentration in the firing atmosphere of the phosphor greatly affects the particle shape within the composition range represented by the general formula (1). I found.
  • the Sr sialon green phosphor was found to have a more nearly spherical particle shape such as a plate-like particle with an increased thickness.
  • the Sr sialon green phosphor has a Wadell sphericity ( ⁇ ) of particles improved from about 0.4 to 0.5 to about 0.5 to 0.6.
  • the Wadell sphericity ( ⁇ ) is obtained by the following method.
  • the particle size distribution of the powdered phosphor is measured by the Coulter counter method.
  • Ni is the number frequency at a certain particle size Di.
  • the Coulter counter method is a method of defining the particle size from the voltage change according to the volume of the particle
  • the particle size Di is the diameter of a spherical particle having the same volume as the actual particle defined by the voltage change.
  • the specific surface area (S) of the powder phosphor is calculated using the number frequency Ni and the particle size Di.
  • the specific surface area is a value obtained by dividing the surface area of the powder by its weight, and is defined as the surface area per unit weight.
  • the weight of the particle having the particle diameter Di is (4 ⁇ / 3) ⁇ (Di / 2) 3 ⁇ Ni ⁇ ⁇ (where ⁇ is the density of the powder).
  • the weight of the powder is represented by the following formula (A2) in which this weight is added to each particle size. [Equation 2] ⁇ ⁇ (4 ⁇ / 3) ⁇ (Di / 2) 3 ⁇ Ni ⁇ ⁇ (A2) Further, the surface area of the particles having the particle diameter Di is 4 ⁇ ⁇ (Di / 2) 2 ⁇ Ni.
  • the specific surface area (S) of the powder phosphor is represented by the following formula (A3).
  • the Wadell sphericity ( ⁇ ) can be obtained by the following formula (A5) by comparing the specific surface area calculated from the particle size distribution with the specific surface area calculated from the particle diameter of the aeration method.
  • the particle size of the particle size distribution is usually expressed as a particle size range.
  • the particle size Di is set to an intermediate value of the particle size range, and the particle size range is set to every 0.2 ⁇ m in order to improve accuracy.
  • the particle size distribution is plotted on log-normal probability paper, it can be approximated by two straight lines. Therefore, the number frequency data for every 0.2 ⁇ m can be easily obtained from the two normal probability distributions.
  • a method for firing the phosphor in a low oxygen atmosphere for example, introduction of hydrogen gas can be considered.
  • a more effective method is a method of mixing 0.05 to 0.5% by mass or less of carbon powder during mixing of raw materials.
  • carbon powder exceeding 0.5 mass% is mixed, the luminance of the phosphor is lowered due to the carbon residue.
  • the emission wavelength of the phosphor moves by the method of firing the phosphor in a low oxygen atmosphere, it can be corrected by adjusting the Eu concentration.
  • the phosphor When the phosphor is fired in a low oxygen atmosphere as described above, a phosphor having a high Wadell sphericity ( ⁇ ) can be obtained. However, when the obtained phosphor was observed by SEM, it was found that a small particle phosphor having a small particle size has a large deviation from the spherical shape. Therefore, in the present invention, the Wadell sphericity of the phosphor powder is improved to 0.65 or more by performing a classification step of classifying and removing these small particles.
  • a small particle portion which is a portion integrated in order from a particle having a small particle diameter, among the phosphor powders obtained by firing the phosphor raw material mixture is classified into 20% by mass of the phosphor powder. It is the process of removing in the following ranges.
  • a classification method for example, a method using a mesh or a method in which a phosphor is dispersed and left in water and a small particle is removed from a sedimentation difference in particle diameter can be used.
  • the amount of small particles removed by such classification is 20% by mass or less with respect to the amount of phosphor before classification.
  • Table 1 shows an example of the relationship between the change in the sphericity of the phosphor powder and the luminance of the light emitting device of the present invention.
  • a phosphor having a composition of Sr 2.7 Eu 0.3 Si 13 Al 3 O 2 N 21 was used as the phosphor.
  • Table 1 shows that there is a correlation between the sphericity and the light emission luminance. And it turns out that the brightness
  • the light emitting device is a light emitting device using the Sr sialon green phosphor represented by the general formula (1). Specifically, the light-emitting device is formed on a substrate, a semiconductor light-emitting element that is disposed on the substrate, emits ultraviolet light, violet light, or blue light, and covers a light-emitting surface of the semiconductor light-emitting element.
  • a phosphor including a phosphor that emits visible light when excited by light emitted from the light-emitting element, and the phosphor is a light-emitting device that includes a Sr sialon green phosphor represented by the general formula (1). As a result, the light emitting device emits green light.
  • the light emitting device includes a red phosphor such as a blue phosphor and an Sr sialon red phosphor having an Sr sialon structure in addition to the Sr sialon green phosphor in the light emitting portion
  • the phosphors of the respective colors A white light emitting device that emits white light from the emitting surface of the light emitting device by mixing light of each color such as red light, blue light, and green light emitted from the light emitting device.
  • the light emitting device may include a Sr sialon green phosphor and a Sr sialon red phosphor represented by the general formula (1) as phosphors.
  • a Sr sialon green phosphor and a Sr sialon red phosphor represented by the general formula (1) as phosphors.
  • substrate for example, ceramics such as alumina and aluminum nitride (AlN), glass epoxy resin, and the like are used. It is preferable that the substrate is an alumina plate or an aluminum nitride plate because the thermal conductivity is high and the temperature rise of the LED light source can be suppressed.
  • AlN aluminum nitride
  • the substrate is an alumina plate or an aluminum nitride plate because the thermal conductivity is high and the temperature rise of the LED light source can be suppressed.
  • the semiconductor light emitting element is disposed on the substrate.
  • a semiconductor light emitting element that emits ultraviolet light, violet light, or blue light is used.
  • ultraviolet light, violet light or blue light means light having a peak wavelength in the wavelength range of ultraviolet light, violet light or blue light.
  • the ultraviolet light, violet light, or blue light is preferably light having a peak wavelength in the range of 370 nm to 470 nm.
  • Examples of the semiconductor light emitting device that emits ultraviolet light, violet light, or blue light include ultraviolet light emitting diodes, violet light emitting diodes, blue light emitting diodes, ultraviolet laser diodes, purple laser diodes, and blue laser diodes.
  • the semiconductor light emitting element is a laser diode
  • the peak wavelength means a peak oscillation wavelength.
  • the light emitting part includes a phosphor that is excited by ultraviolet light, violet light, or blue light, which is emitted light from the semiconductor light emitting element, and emits visible light in the transparent resin cured product, and the light emitting surface of the semiconductor light emitting element It is formed so that it may coat
  • the phosphor used in the light emitting unit includes at least the above Sr sialon green phosphor.
  • the phosphor may contain Sr sialon red phosphor.
  • the phosphor used in the light emitting unit may include the above Sr sialon green phosphor and a phosphor other than the Sr sialon green phosphor.
  • a phosphor other than the Sr sialon green phosphor for example, a red phosphor, a blue phosphor, a green phosphor, a yellow phosphor, a purple phosphor, an orange phosphor, or the like can be used.
  • a powdery one is usually used.
  • the phosphor is contained in the cured transparent resin. Usually, the phosphor is dispersed in a cured transparent resin.
  • the transparent resin cured product used for the light emitting part is obtained by curing a transparent resin, that is, a highly transparent resin.
  • a transparent resin for example, a silicone resin or an epoxy resin is used. Silicone resins are preferred because they have higher UV resistance than epoxy resins. Among silicone resins, dimethyl silicone resin is more preferable because of its high UV resistance.
  • the light emitting part is preferably composed of 20 to 1000 parts by mass of the transparent resin cured product with respect to 100 parts by mass of the phosphor. When the ratio of the transparent resin cured product to the phosphor is within this range, the light emission intensity of the light emitting part is high.
  • the film thickness of the light emitting part is usually 80 ⁇ m or more and 800 ⁇ m or less, preferably 150 ⁇ m or more and 600 ⁇ m or less.
  • the film thickness of the light emitting portion is not less than 80 ⁇ m and not more than 800 ⁇ m, practical brightness can be ensured with a small amount of leakage of ultraviolet light, violet light, or blue light emitted from the semiconductor light emitting element.
  • the film thickness of the light emitting part is 150 ⁇ m or more and 600 ⁇ m or less, light emitted from the light emitting part can be brightened.
  • the light emitting unit first mixes a transparent resin and a phosphor to prepare a phosphor slurry in which the phosphor is dispersed in the transparent resin, and then applies the phosphor slurry to the semiconductor light emitting device and the inner surface of the globe. It is obtained by curing.
  • the light emitting portion When the phosphor slurry is applied to the semiconductor light emitting element, the light emitting portion is in contact with and covered with the semiconductor light emitting element. Further, when the phosphor slurry is applied to the inner surface of the globe, the light emitting portion is formed on the inner surface of the globe while being separated from the semiconductor light emitting element.
  • a light emitting device in which the light emitting portion is formed on the inner surface of the globe is referred to as a remote phosphor type LED light emitting device.
  • the phosphor slurry can be cured by heating to 100 ° C. to 160 ° C., for example.
  • FIG. 1 is an example of an emission spectrum of the light emitting device.
  • a violet LED that emits violet light having a peak wavelength of 400 nm is used as a semiconductor light emitting device, and a basic composition represented by Sr 2.7 Eu 0.3 Si 13 Al 3 O 2 N 21 as a phosphor. It is the emission spectrum of the green light-emitting device at 25 degreeC using only Sr sialon green fluorescent substance which has this.
  • the purple LED has a forward voltage drop Vf of 3.199 V and a forward current If of 20 mA.
  • the green light emitting device using the Sr sialon green phosphor represented by the general formula (1) as the phosphor has a high emission intensity even when excitation light having a short wavelength such as violet light is used. .
  • Example 1 (Production of green phosphor) First, 337 g of SrCO 3 , 104 g of AlN, 514 g of Si 3 N 4 , 44 g of Eu 2 O 3 , and 1 g of carbon powder were weighed, and an appropriate amount of a fluxing agent was added thereto, followed by dry mixing to obtain a phosphor raw material A mixture was prepared. Thereafter, the phosphor raw material mixture was filled in a boron nitride crucible. When a boron nitride crucible filled with the phosphor raw material mixture was baked in an electric furnace at 1850 ° C.
  • the baked powder after classification was filtered, dried, and then sieved with a nylon mesh having an opening of 45 microns, whereby the baked powder of the present invention was obtained.
  • the fired powder was analyzed, it was a single crystal Sr sialon green phosphor having the composition shown in Table 2.
  • a light emitting device was manufactured using the obtained Sr sialon green phosphor.
  • the sphericity of the obtained Sr sialon green phosphor was measured, and the luminous efficiency of the light emitting device using this Sr sialon green phosphor was measured.
  • the luminous efficiency is measured at room temperature (25 ° C.) and is shown as a relative value (%) where the luminous efficiency (lm / W) at room temperature in Comparative Example 1 described later is 100.
  • the comparative example 1 is the fluorescent substance produced like Example 1 except not mix
  • Example 1 A phosphor was produced in the same manner as in Example 1 except that no carbon powder was blended in the phosphor raw material mixture and no classification step was performed. For the obtained green phosphor, the sphericity and the luminous efficiency of the light emitting device using the same were measured in the same manner as in Example 1. Table 2 shows the measurement results of sphericity and luminous efficiency.
  • Examples 2 to 10 Comparative Examples 2 to 10
  • the amount of carbon powder in the phosphor raw material mixture was changed as shown in Table 2 to obtain a fired powder having the basic composition shown in Table 2, and the classification process of the fired powder was performed as shown in Table 2.
  • green phosphors were produced (Examples 2 to 10).
  • Phosphors were produced in the same manner as in Examples 2 to 10 except that no carbon powder was added to the phosphor raw material mixture and no classification step was performed (Comparative Examples 2 to 10).
  • Example 2 shows the measurement results of sphericity and luminous efficiency.
  • the luminous efficiencies of Examples 2 to 10 are 100 as the luminous efficiencies (lm / W) of Comparative Examples produced in the same manner except that no carbon powder is blended in the phosphor raw material mixture and no classification step is performed. Relative value (%).
  • the luminous efficiencies of Examples 2 to 10 are shown as relative values (%) where the luminous efficiency (lm / W) of Comparative Examples 2 to 10 is 100, respectively.

Abstract

 下記一般式(1) [化1] 一般式:(Sr1-x,EuαSiβAlγδω (1) (式中、xは0<x<1、αは0<α≦4であり、β、γ、δおよびωはαが3のときに換算した数値が、9<β≦15、1≦γ≦5、0.5≦δ≦3、10≦ω≦30を満足する数である) で表される基本組成を有するユーロピウム付活サイアロン結晶体からなる蛍光体であって、前記蛍光体は、粒子の球形度が0.65以上であり、紫外光、紫色光または青色光で励起されることにより緑色発光する蛍光体。

Description

蛍光体、蛍光体の製造方法および発光装置
 本発明の実施形態は、緑色発光する蛍光体、蛍光体の製造方法および発光装置に関する。
 蛍光体粉末は、たとえば、発光ダイオード(LED:Light Emitting Diode)等の発光装置に用いられる。発光装置は、たとえば、基板上に配置され所定の色の光を出射する半導体発光素子と、この半導体発光素子から出射される紫外光、青色光等の光により励起されて可視光を発する蛍光体粉末を封止樹脂である透明樹脂硬化物中に含む発光部とを備える。
 発光装置の半導体発光素子としては、たとえば、GaN、InGaN、AlGaN、InGaAlP等が用いられる。また、蛍光体粉末の蛍光体としては、たとえば、半導体発光素子からの出射光により励起されてそれぞれ青色光、緑色光、黄色光、赤色光の光を出射する青色蛍光体、緑色蛍光体、黄色蛍光体、赤色蛍光体等が用いられる。
 発光装置は、封止樹脂中に緑色蛍光体等の各種の蛍光体粉末を含有させることにより、放射光の色を調整することができる。すなわち、半導体発光素子と、半導体発光素子から放射された光を吸収して所定波長域の光を発光する蛍光体粉末とを組み合わせて用いることにより、半導体発光素子から放射された光と蛍光体粉末から放射された光との作用で、可視光領域の光や白色光を発光させることが可能になる。
 従来、蛍光体としては、ストロンチウムを含むユーロピウム付活サイアロン(Si-Al-O-N)構造の蛍光体(Srサイアロン蛍光体)が知られている。
国際公開第2007/105631号
 しかし、近年、より発光効率の高いSrサイアロン蛍光体が要望されている。
 本発明は、上記事情に鑑みてなされたものであり、発光効率が高いSrサイアロン構造の蛍光体、蛍光体の製造方法、および発光装置を提供することを目的とする。
 実施形態の蛍光体、蛍光体の製造方法および発光装置は、特定組成のSrサイアロン蛍光体の粒子の形状をより球形に近いものにすれば、Srサイアロン蛍光体を用いた発光装置の輝度が高くなることを見出して完成されたものである。
 粒子の形状が球形に近いか否かを判断する指標としては、Wadellの球形度(ψ)が知られている。
 Wadellの球形度(ψ)は実際の粒子の表面積とその粒子と同じ体積を有する球の表面積の比として次式(A1)により定義される。
  [数1]
  ψ=(粒子と同じ体積を有する球の表面積)/(実際の粒子の表面積)  (A1)
 通常、ある体積を持った粒子においては、球形の形状を持った粒子の表面積がもっとも小さい値となる。従ってWadellの球形度(ψ)は通常の粒子では1以下であり、粒子形状が球形に近づくほど1に近づいていく。
 Srサイアロン蛍光体は、通常、斜方晶系という低対称の結晶系に属する。このため、Srサイアロン蛍光体の粒子の形状は、球形から異なる粒子形状、たとえば、板状、柱状等の形状を有することが一般的であった。その粒子形状はWadellの球形度(ψ)で評価すると0.6以下であり球形からかけ離れた形状であった。
 ところで、半導体発光素子と蛍光体を組み合わせてなる発光装置では、半導体発光素子から出射された光が蛍光体表面で反射されたり、蛍光体に吸収された後、発光した蛍光体から出射された光が他の蛍光体表面で反射されたりして、多重反射を繰り返しながら、外部に光が取り出される。
 しかし、こうした光の反射現象が生じると、光のエネルギーロスが生じる。このため、コンピュータシミュレーション等によれば、蛍光体の粒子形状として、表面積が小さい球形のものが適していると予想されていた。
 かかる状況下、本発明者らは、Srサイアロン蛍光体の粒子形状の球状化を模索した。この結果、蛍光体製造のプロセス条件を特定の条件とすれば、蛍光体粒子の球形度を向上させることができることを見出した。そして、この球形度が向上した蛍光体を用いた発光装置によれば、輝度レベルが大幅に改善されることを見出した。
 実施形態の蛍光体は、上記問題点を解決するものであり、下記一般式(1)
  [化1]
  一般式:(Sr1-x,EuαSiβAlγδω     (1)
 (式中、xは0<x<1、αは0<α≦4であり、β、γ、δおよびωはαが3のときに換算した数値が、9<β≦15、1≦γ≦5、0.5≦δ≦3、10≦ω≦30を満足する数である)
で表される基本組成を有するユーロピウム付活サイアロン結晶体からなる蛍光体であって、前記蛍光体は、粒子の球形度が0.65以上であり、紫外光、紫色光または青色光で励起されることにより緑色発光することを特徴とする。
 また、実施形態の蛍光体の製造方法は、上記問題点を解決するものであり、前記蛍光体を製造する蛍光体の製造方法であって、蛍光体の原料である蛍光体原料混合物が0.05~0.5質量%の炭素を含み、前記蛍光体原料混合物を焼成して得られた蛍光体粉末のうちの、粒径が小さい粒子から順番に積算した部分である小粒子部分を、分級により前記蛍光体粉末の20質量%以下の範囲で除去する分級工程を有することを特徴とする。
 さらに、実施形態の発光装置は、上記問題点を解決するものであり、基板と、この基板上に配置され、紫外光、紫色光または青色光を出射する半導体発光素子と、この半導体発光素子の発光面を覆うように形成され、前記半導体発光素子からの出射光により励起されて可視光を発する蛍光体を含む発光部と、を備え、前記蛍光体は、請求項1~5のいずれか1項に記載された蛍光体を含むことを特徴とする。
 本発明のSrサイアロン構造の蛍光体、および発光装置は、発光効率が高い。
 本発明の蛍光体の製造方法は、発光効率が高いSrサイアロン構造の蛍光体および発光装置を効率よく製造することができる。
発光装置の発光スペクトルの一例である。
 実施形態の蛍光体、蛍光体の製造方法および発光装置について説明する。実施形態の蛍光体は、紫外光、紫色光または青色光で励起されることにより緑色発光する緑色蛍光体である。
[緑色蛍光体]
 本発明の緑色蛍光体は、下記一般式(1)
  [化2]
  一般式:(Sr1-x,EuαSiβAlγδω     (1)
 (式中、xは0<x<1、αは0<α≦4であり、β、γ、δおよびωはαが3のときに換算した数値が、9<β≦15、1≦γ≦5、0.5≦δ≦3、10≦ω≦30を満足する数である)
で表される基本組成を有するユーロピウム付活サイアロン結晶体からなる蛍光体である。また、本発明の蛍光体は、紫外光、紫色光または青色光で励起されることにより緑色発光する。この緑色発光する蛍光体を、以下、「Srサイアロン緑色蛍光体」ともいう。さらに、本発明の蛍光体は、粒子の球形度が0.65以上である。
 ここで、一般式(1)で表される基本組成を有するユーロピウム付活サイアロン結晶体と、Srサイアロン緑色蛍光体との関係について説明する。
 一般式(1)で表される基本組成を有するユーロピウム付活サイアロン結晶体は、斜方晶の単結晶である。
 一方、Srサイアロン緑色蛍光体は、一般式(1)で表される基本組成を有するユーロピウム付活サイアロン結晶体の1個からなる結晶体、またはこのユーロピウム付活サイアロン結晶体の2個以上が凝集してなる結晶体の集合体である。
 通常、Srサイアロン緑色蛍光体は、単結晶粉末の形態をとる。
 このSrサイアロン緑色蛍光体の粉末は、平均粒径が、通常1μm以上100μm以下、好ましくは5μm以上80μm以下、さらに好ましくは8μm以上80μm以下、より好ましくは8μm以上40μm以下である。ここで、平均粒径とは、コールターカウンター法による測定値であり、体積累積分布の中央値D50を意味する。その粉末粒子の形状は通常板状または柱状といった球形とは異なるものである。
 Srサイアロン緑色蛍光体が、上記ユーロピウム付活サイアロン結晶体の2個以上が凝集してなる結晶体の集合体である場合は、解砕することにより、上記ユーロピウム付活サイアロン結晶体ごとに分離することが可能になっている。
 一般式(1)において、xは、0<x<1、好ましくは0.025≦x≦0.5、さらに好ましくは0.25≦x≦0.5を満足する数である。
 xが0であると焼成工程で得られる焼成体が蛍光体にならず、xが1であるとSrサイアロン緑色蛍光体の発光効率が低くなる。
 また、xは0<x<1の範囲内で小さい数になるほどSrサイアロン緑色蛍光体の発光効率が低下しやすくなる。さらに、xは0<x<1の範囲内で大きい数になるほどEu濃度の過剰のために濃度消光を起こしやすくなる。
 このため、xは0<x<1のうちでも、0.025≦x≦0.5を満足する数が好ましく、0.25≦x≦0.5を満足する数がさらに好ましい。
 一般式(1)において、Srの総合的な添え字(1-x)αは0<(1-x)α<4を満足する数である。また、Euの総合的な添え字xαは0<xα<4を満足する数である。すなわち、一般式(1)において、SrおよびEuの総合的な添え字は、それぞれ0を超え4未満を満足する数である。
 一般式(1)において、SrとEuの合計量はαで表される。この合計量αを一定値3とした場合におけるβ、γ、δおよびωの数値を規定することにより、一般式(1)のα、β、γ、δおよびωの比率の特定は明確になっている。
 一般式(1)において、β、γ、δおよびωは、αが3のときに換算した数値である。
 一般式(1)において、Siの添え字であるβは、αが3のときに換算した数値が9<β≦15を満足する数である。
 一般式(1)において、Alの添え字であるγは、αが3のときに換算した数値が1≦γ≦5を満足する数である。
 一般式(1)において、Oの添え字であるδは、αが3のときに換算した数値が0.5≦δ≦3を満足する数である。
 一般式(1)において、Nの添え字であるωは、αが3のときに換算した数値が10≦ω≦30を満足する数である。
 一般式(1)において、添え字β、γ、δおよびωが、それぞれ上記範囲外の数になると、焼成で得られる蛍光体の組成が、一般式(1)で表される斜方晶系のSrサイアロン緑色蛍光体と異なるものになるおそれがある。
 本発明のSrサイアロン緑色蛍光体は、球形度が0.65以上である。ここで、球形度とは、Wadellの球形度(ψ)を意味する。
 球形度が0.65以上であると、Srサイアロン緑色蛍光体の輝度レベルが高いため好ましい。
 紫外光、紫色光または青色光の受光により励起された一般式(1)で表されるSrサイアロン緑色蛍光体は、発光ピーク波長が500nm以上540nm以下の範囲内の緑色光を発光する。
 Srサイアロン緑色蛍光体は、たとえば、以下に示す方法で製造される。
[緑色蛍光体の製造方法]
 一般式(1)で表されるSrサイアロン緑色蛍光体は、たとえば、炭酸ストロンチウムSrCO、窒化アルミニウムAlN、窒化珪素Si、酸化ユーロピウムEu、および酸化物等の各原料を乾式混合して蛍光体原料混合物を調製し、この蛍光体原料混合物を窒素雰囲気中で焼成することにより作製することができる。
 蛍光体原料混合物は、炭素を含む蛍光体原料混合物を100質量%としたときに、炭素を0.05~0.5質量%含む。蛍光体原料混合物が、炭素を含むと、緑色蛍光体粉末の球形度が高くなるため好ましい。
 炭素の配合量が、0.5質量%を超えると、炭素の残留により蛍光体の輝度が低下しやすい。炭素は、粉末であると好ましい。
 また、蛍光体原料混合物は、フラックス剤として、反応促進剤であるフッ化カリウム等のアルカリ金属またはアルカリ土類金属のフッ化物や、塩化ストロンチウムSrCl等を含んでいてもよい。
 蛍光体原料混合物は、耐火るつぼに充填される。耐火るつぼとしては、たとえば、窒化ホウ素るつぼ、カーボンるつぼ等が用いられる。
 耐火るつぼに充填された蛍光体原料混合物は焼成される。焼成装置は、耐火るつぼが配置される内部の焼成雰囲気の組成および圧力、ならびに焼成温度および焼成時間が所定条件に保たれる装置が用いられる。このような焼成装置としては、たとえば、電気炉が用いられる。
 焼成雰囲気としては、不活性ガスが用いられる。不活性ガスとしては、たとえば、Nガス、Arガス、NとHとの混合ガス等が用いられる。
 一般的に、蛍光体原料混合物から蛍光体粉末を焼成するときは、蛍光体粉末に対して酸素Oを過剰に含む蛍光体原料混合物から適量の酸素Oが消失することにより、所定の組成の蛍光体粉末を得る。
 焼成雰囲気中のNは、蛍光体原料混合物から蛍光体粉末を焼成する際に、蛍光体原料混合物から適量の酸素Oを消失させる作用を有する。
 また、焼成雰囲気中のArは、蛍光体原料混合物から蛍光体粉末を焼成する際に、蛍光体原料混合物に余分な酸素Oを供給しない作用を有する。
 また、焼成雰囲気中のHは、蛍光体原料混合物から蛍光体粉末を焼成する際に、還元剤として作用し、Nに比べて蛍光体原料混合物からより多くの酸素Oを消失させる。
 このため、不活性ガス中にHが含まれる場合は、不活性ガス中にHが含まれない場合に比べて、焼成時間を短くすることができる。ただし、不活性ガス中のHの含有量が多すぎると、得られる蛍光体粉末の組成が、一般式(1)で表されるSrサイアロン緑色蛍光体と異なりやすく、このために蛍光体粉末の発光強度が弱くなるおそれがある。
 不活性ガスが、Nガス、またはNとHとの混合ガスである場合、不活性ガス中のNとHとのモル比率は、N:Hが、通常10:0~1:9、好ましくは8:2~2:8、さらに好ましくは6:4~4:6である。
 不活性ガス中のNとHとのモル比率が、上記範囲内、すなわち通常10:0~1:9であると、短時間の焼成で、結晶構造の欠陥の少ない高品質な単結晶の蛍光体粉末を得ることができる。
 不活性ガス中のNとHとのモル比率は、焼成装置のチャンバー内に連続的に供給されるNとHとを、NとHとの流量の比率が上記比率になるように供給するとともに、チャンバー内の混合ガスを連続的に排出することにより、上記比率、すなわち通常10:0~1:9にすることができる。
 焼成雰囲気である不活性ガスは、焼成装置のチャンバー内で気流を形成させるように流通させると、焼成が均一に行われるため好ましい。
 焼成雰囲気である不活性ガスの圧力は、通常0.1MPa(略1atm)~1.0MPa(略10atm)、好ましくは0.4MPa~0.8MPaである。
 焼成雰囲気の圧力が0.1MPa未満であると、焼成前にるつぼに仕込んだ蛍光体原料混合物に比較して、焼成後に得られる蛍光体粉末の組成が一般式(1)で表されるSrサイアロン緑色蛍光体と異なりやすく、このために蛍光体粉末の発光強度が弱くなるおそれがある。
 焼成雰囲気の圧力が1.0MPaを超えると、圧力が1.0MPa以下の場合と比較しても焼成条件に特に変化がなく、エネルギーの無駄遣いになるため好ましくない。
 焼成温度は、通常1400℃~2000℃、好ましくは1750℃~1950℃、さらに好ましくは1800℃~1900℃である。
 焼成温度が1400℃~2000℃の範囲内にあると、短時間の焼成で、結晶構造の欠陥の少ない高品質な単結晶の蛍光体粉末を得ることができる。
 焼成温度が1400℃未満であると、得られる蛍光体粉末が紫外光、紫色光または青色光により励起されて出射する光の色が、所望の色にならないおそれがある。すなわち、一般式(1)で表されるSrサイアロン緑色蛍光体を製造したい場合に、紫外光、紫色光または青色光により励起されて出射する光の色が緑色以外の色になったりするおそれがある。
 焼成温度が2000℃を超えると、焼成の際のNとOの消失度合いが大きくなることにより得られる蛍光体粉末の組成が一般式(1)で表されるSrサイアロン緑色蛍光体と異なりやすく、このために蛍光体粉末の発光強度が弱くなるおそれがある。
 焼成時間は、通常0.5時間~20時間、好ましくは1時間~10時間、さらに好ましくは1時間~5時間、より好ましくは1.5時間~2.5時間である。
 焼成時間が0.5時間未満である場合または20時間を超える場合は、得られる蛍光体粉末の組成が一般式(1)で表されるSrサイアロン緑色蛍光体と異なりやすく、このために蛍光体粉末の発光強度が弱くなるおそれがある。
 焼成時間は、焼成温度が高い場合は、0.5時間~20時間の範囲内で短い時間とすることが好ましく、焼成温度が低い場合は、0.5時間~20時間の範囲内で長い時間とすることが好ましい。
 焼成後の耐火るつぼ中には、蛍光体粉末からなる焼成体が生成される。焼成体は、通常、弱く固まった塊状になっている。焼成体を、乳棒等を用いて軽く解砕すると、蛍光体粉末が得られる。解砕で得られた蛍光体粉末は、一般式(1)で表されるSrサイアロン緑色蛍光体の粉末になる。
 以上のようなプロセスを経て得られるSrサイアロン緑色蛍光体はその粒子の形状が板状または柱状であり球形とは異なるものである。本発明者らは、蛍光体の粒子形状を球形化する方法を模索した結果、一般式(1)で示される組成範囲内で蛍光体の焼成雰囲気の酸素濃度がその粒子形状に大きく影響することを見出した。
 すなわち低酸素雰囲気中で焼成することにより、Srサイアロン緑色蛍光体は板状の粒子がその厚みを増し円柱状といったより球形に近い粒子形状となることを見出した。この低酸素雰囲気中での焼成により、Srサイアロン緑色蛍光体は粒子のWadellの球形度(Ψ)が0.4~0.5程度の形状から0.5~0.6程度に向上する。
 ここでWadell球形度(Ψ)とは次の方法で求められたものである。はじめに、粉末の蛍光体の粒度分布をコールターカウンター法で測定する。得られた粒度分布において、ある粒径Diにおける個数頻度をNiとする。ここで、コールターカウンター法とは粒子の体積に応じた電圧変化から粒度を規定する方法であり、粒径Diとは電圧変化で規定された実際の粒子と同体積の球形粒子の直径である。
 これらの個数頻度Niおよび粒径Diを用いて粉末蛍光体の比表面積(S)を計算する。比表面積は粉体の表面積をその重量で割った値であり、単位重量当たりの表面積として定義される。
 粒径Di持った粒子の重量は、(4π/3)×(Di/2)×Ni×ρ(ここでρは粉体の密度である)である。粉体の重量は、この重量を各粒径に対し足し合わせた下記式(A2)で表される。
  [数2]
  Σ{(4π/3)×(Di/2)×Ni×ρ}    (A2)
 また、粒径Di持った粒子の表面積は4π×(Di/2)×Niである。しかし、実際の粒子形状は球形ではないため、実際の比表面積はWadell球形度(Ψ)で割った値{4π×(Di/2)×Ni}/Ψを各粒径に対し足し合わせたものとなる。
 従って、粉末蛍光体の比表面積(S)は、下記式(A3)で表される。
  [数3]
  S=[Σ{4π×(Di/2)×Ni}/Ψ]/[Σ{(4π/3)×(Di/2)×Ni×ρ}]
  =(6/ρ/Ψ)×{Σ(Di×Ni)}/{Σ(Di×Ni)}  (A3)
 実際にはWadell球形度(Ψ)が各粒径に対し少し異なる値になることも考えられるが、粉体全体として球形からのずれとして平均的な値であると解釈することができる。
 一方、粉体の粒径を測定する方法としては、通気法(ブレーン法、フィッシャー法等)が知られている。この方法は両端が開放した金属製のチューブに粉体を詰め、その粉体層に空気を通過させ、すなわち通気させ、空気の通過しやすさから粒径を規定するものであり、その粒径は比表面積径(d)と呼ばれる。比表面積径(d)と比表面積(S)とは下記式(A4)の関係がある。
  [数4]
  S=6/ρ/d    (A4)
 従って、Wadell球形度(Ψ)は、粒度分布から計算される比表面積と通気法の粒径から計算される比表面積を比べることにより、下記式(A5)で求めることができる。
  [数5]
  Ψ=d×{Σ(Di×Ni)}/{Σ(Di×Ni)}  (A5)
 粒度分布の粒径は通常粒径範囲として表現されるが、本発明では粒径Diを粒径範囲の中間値とし、精度をあげるために粒径範囲を0.2μm毎とした。粒度分布を対数正規確率紙にプロットすると2本の直線で近似できる。従って、その2本の正規確率分布から0.2μm毎の個数頻度データを容易に得ることができる。
 低酸素雰囲気で蛍光体を焼成する方法としては、たとえば、水素ガスの導入が考えられる。しかし、より有効な方法は、原料混合中に炭素粉末を0.05~0.5質量%以下混入させる方法である。
 0.5質量%を超える炭素粉末の混入は、その炭素の残留により蛍光体の輝度低下を招くこととなる。低酸素雰囲気で蛍光体を焼成するする方法により蛍光体の発光波長が動く場合にはEu濃度の調整により補正することが可能である。
 上記のように低酸素雰囲気で蛍光体を焼成すると、Wadell球形度(Ψ)の高い蛍光体が得られる。しかし、得られた蛍光体をSEM観察したところ、粒径が小さい小粒子の蛍光体において球形からの乖離が大きいことが分かった。そこで、本発明では、それらの小粒子を分級して取り除く分級工程を行うことにより、蛍光体粉末のWadellの球形度を0.65以上にまで向上させる。
(分級工程)
 分級工程は、蛍光体原料混合物を焼成して得られた蛍光体粉末のうちの、粒径が小さい粒子から順番に積算した部分である小粒子部分を、分級により前記蛍光体粉末の20質量%以下の範囲で除去する工程である。
 分級方法としては、たとえば、メッシュを用いる方法や、水中に蛍光体を分散、静置し、粒子径での沈降差から小粒子を取り除く方法を用いることができる。こうした分級により取り除かれる小粒子の量は、分級前の蛍光体量に対して、20質量%以下である。
 表1は、蛍光体粉末の球形度の変化と本発明の発光装置の輝度との関係の一例を示したものである。蛍光体としては、Sr2.7Eu0.3Si13Al21の組成の蛍光体を用いた。
Figure JPOXMLDOC01-appb-T000001
 表1より、球形度と発光輝度との間に相関関係があることが分かる。そして、本発明のSrサイアロン緑色蛍光体を用いることにより発光装置の輝度を有効に改善できることが分かる。
[発光装置]
 発光装置は、上記の一般式(1)で表されるSrサイアロン緑色蛍光体を用いる発光装置である。
 具体的には、発光装置は、基板と、この基板上に配置され、紫外光、紫色光または青色光を出射する半導体発光素子と、この半導体発光素子の発光面を覆うように形成され、半導体発光素子からの出射光により励起されて可視光を発する蛍光体を含む発光部とを備え、蛍光体は、一般式(1)で表されるSrサイアロン緑色蛍光体を含む発光装置である。これにより、発光装置は緑色光を出射する。
 また、発光装置は、発光部中に、Srサイアロン緑色蛍光体に加え、青色蛍光体、およびSrサイアロン構造を有するSrサイアロン赤色蛍光体等の赤色蛍光体を含むようにしたりすると、各色の蛍光体から出射される赤色光、青色光および緑色光等の各色の光の混色により、発光装置の出射面から白色光を出射する白色光発光装置とすることもできる。
 なお、発光装置は、蛍光体として、一般式(1)で表されるSrサイアロン緑色蛍光体とSrサイアロン赤色蛍光体とを含んでいてもよい。蛍光体として、Srサイアロン緑色蛍光体とSrサイアロン赤色蛍光体との両方が含まれる場合は、温度特性の良い発光装置が得られる。
(基板)
 基板としては、たとえば、アルミナ、窒化アルミニウム(AlN)等のセラミックス、ガラスエポキシ樹脂等が用いられる。基板がアルミナ板や窒化アルミニウム板であると、熱伝導性が高く、LED光源の温度上昇を抑制することができるため好ましい。
(半導体発光素子)
 半導体発光素子は、基板上に配置される。
 半導体発光素子としては、紫外光、紫色光または青色光を出射する半導体発光素子が用いられる。ここで、紫外光、紫色光または青色光とは、紫外光、紫色光または青色光の波長域内にピーク波長を有する光を意味する。紫外光、紫色光または青色光は、370nm以上470nm以下の範囲内にピーク波長を有する光であることが好ましい。
 紫外光、紫色光または青色光を出射する半導体発光素子としては、たとえば、紫外発光ダイオード、紫色発光ダイオード、青色発光ダイオード、紫外レーザダイオード、紫色レーザダイオードおよび青色レーザダイオード等が用いられる。なお、半導体発光素子がレーザダイオードの場合、上記ピーク波長とは、ピーク発振波長を意味する。
(発光部)
 発光部は、半導体発光素子からの出射光である紫外光、紫色光または青色光により励起されて可視光を出射する蛍光体を透明樹脂硬化物中に含むものであり、半導体発光素子の発光面を被覆するように形成される。
 発光部に用いられる蛍光体は、少なくとも上記のSrサイアロン緑色蛍光体を含む。また、蛍光体は、Srサイアロン赤色蛍光体を含んでいてもよい。
 また、発光部に用いられる蛍光体は、上記のSrサイアロン緑色蛍光体と、Srサイアロン緑色蛍光体以外の蛍光体とを含むものであってもよい。Srサイアロン緑色蛍光体以外の蛍光体としては、たとえば、赤色蛍光体、青色蛍光体、緑色蛍光体、黄色蛍光体、紫色蛍光体、橙色蛍光体等を用いることができる。蛍光体としては、通常、粉末状のものが用いられる。
 発光部において、蛍光体は透明樹脂硬化物中に含まれる。通常、蛍光体は透明樹脂硬化物中に分散される。
 発光部に用いられる透明樹脂硬化物は、透明樹脂、すなわち透明性の高い樹脂を硬化させたものである。透明樹脂としては、たとえば、シリコーン樹脂、エポキシ樹脂等が用いられる。シリコーン樹脂は、エポキシ樹脂よりもUV耐性が高いため好ましい。また、シリコーン樹脂のうちでは、ジメチルシリコーン樹脂が、UV耐性が高いためさらに好ましい。
 発光部は、蛍光体100質量部に対して透明樹脂硬化物20~1000質量部の割合で構成されていることが好ましい。蛍光体に対する透明樹脂硬化物の割合がこの範囲内にあると、発光部の発光強度が高い。
 発光部の膜厚は、通常、80μm以上800μm以下、好ましくは150μm以上600μm以下である。発光部の膜厚が80μm以上800μm以下であると、半導体発光素子から出射される紫外光、紫色光または青色光の漏出量が少ない状態で実用的な明るさを確保することができる。発光部の膜厚を150μm以上600μm以下とすると、発光部からの発光をより明るくすることができる。
 発光部は、たとえば、はじめに透明樹脂と蛍光体とを混合して、蛍光体が透明樹脂中に分散した蛍光体スラリーを調製し、次に、蛍光体スラリーを半導体発光素子やグローブ内面に塗布し硬化させることにより得られる。
 蛍光体スラリーを半導体発光素子に塗布した場合には、発光部は半導体発光素子に接触して被覆する形態となる。また、蛍光体スラリーをグローブ内面に塗布した場合には、発光部は半導体発光素子と離間してグローブ内面に形成される形態となる。この発光部がグローブ内面に形成される形態の発光装置は、リモートフォスファー型LED発光装置と称される。
 蛍光体スラリーは、たとえば、100℃~160℃に加熱することにより硬化させることができる。
 図1は、発光装置の発光スペクトルの一例である。
 具体的には、半導体発光素子としてピーク波長が400nmの紫色光を出射する紫色LEDを用いるとともに、蛍光体としてSr2.7Eu0.3Si13Al21で表される基本組成を有するSrサイアロン緑色蛍光体のみを用いた、25℃での緑色発光装置の発光スペクトルである。
 なお、紫色LEDは、順方向降下電圧Vfが3.199V、順方向電流Ifが20mAである。
 図1に示すように、蛍光体として一般式(1)で表されるSrサイアロン緑色蛍光体を用いた緑色発光装置は、紫色光等の短波長の励起光を用いた場合でも発光強度が高い。
 以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。
[実施例1]
(緑色蛍光体の作製)
 はじめに、SrCOを337g、AlNを104g、Siを514g、Euを44g、および炭素粉末を1g、それぞれ秤量し、これらにフラックス剤を適量加え、乾式混合して蛍光体原料混合物を調製した。その後、この蛍光体原料混合物を窒化ホウ素るつぼに充填した。
 蛍光体原料混合物が充填された窒化ホウ素るつぼを、電気炉内で、0.7MPa(略7気圧)の窒素雰囲気中、1850℃で2時間焼成したところ、るつぼ中に焼成粉末の塊が得られた。
 この塊を解砕した後、焼成粉末に焼成粉末の質量の10倍量の純水を加えて10分間攪拌し、ろ過して焼成粉末を得た。この焼成粉末の洗浄操作をさらに4回繰り返し、合計5回洗浄した。
<分級工程>
 次に、洗浄と同様に焼成粉末の質量の10倍量の純水を加えて10分間攪拌したのち、攪拌を停止し、一定時間放置した後上澄みを小粒子蛍光体とともに排出することにより分級を行った。分級はその操作を3回行った。分級後の焼成粉末をろ過し、乾燥した後、目開き45ミクロンのナイロンメッシュで篩別したところ、本発明の焼成粉末が得られた。
 この焼成粉末を分析したところ、表2に示す組成からなる単結晶のSrサイアロン緑色蛍光体であった。
Figure JPOXMLDOC01-appb-T000002
(発光装置の作製)
 得られたSrサイアロン緑色蛍光体を用いて発光装置を作製した。
(緑色蛍光体および発光装置の評価)
 得られたSrサイアロン緑色蛍光体について球形度を測定し、このSrサイアロン緑色蛍光体を使用した発光装置の発光効率を測定した。発光効率は、室温(25℃)で測定したものであり、後述する比較例1の室温での発光効率(lm/W)を100とする相対値(%)として示す。
 なお、比較例1は、蛍光体原料混合物に炭素粉末を配合しないとともに分級工程を行わないこと以外は、実施例1と同様にして作製した蛍光体である。
 球形度、発光効率の測定結果を表2に示す。
[比較例1]
 蛍光体原料混合物に炭素粉末を配合しないとともに分級工程を行わないこと以外は、実施例1と同様にして蛍光体を作製した。
 得られた緑色蛍光体に対し、実施例1と同様にして、球形度、それを使用した発光装置の発光効率を測定した。球形度、発光効率の測定結果を表2に示す。
[実施例2~10、比較例2~10]
(緑色蛍光体の作製)
 蛍光体原料混合物中の炭素粉末の配合量を表2に示すように変えて、表2に示す基本組成の焼成粉末を得るとともに、焼成粉末の分級工程を表2に示すように行った以外は、実施例1と同様にして、緑色蛍光体を作製した(実施例2~10)。
 蛍光体原料混合物に炭素粉末を配合しないとともに分級工程を行わないこと以外は、実施例2~10の各実施例と同様にして蛍光体を作製した(比較例2~10)。
 得られた緑色蛍光体(実施例2~10、比較例2~10)に対し、実施例1と同様にして、球形度、それを使用した発光装置の発光効率を測定した。球形度、発光効率の測定結果を表2に示す。
 なお、実施例2~10の発光効率は、蛍光体原料混合物に炭素粉末を配合しないとともに分級工程を行わないこと以外は、同様にして作製した比較例の発光効率(lm/W)を100とする相対値(%)として示す。
 具体的には、実施例2~10の発光効率は、それぞれ、比較例2~10の発光効率(lm/W)を100とする相対値(%)として示す。
 表2より、本発明のプロセスにより球形度を高めた蛍光体及びそれを用いた発光装置は従来の蛍光体及びそれを用いた発光装置に比較して、発光効率が向上することが分かる。
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (8)

  1. 下記一般式(1)
      [化1]
      一般式:(Sr1-x,EuαSiβAlγδω   (1)
     (式中、xは0<x<1、αは0<α≦4であり、β、γ、δおよびωはαが3のときに換算した数値が、9<β≦15、1≦γ≦5、0.5≦δ≦3、10≦ω≦30を満足する数である)
    で表される基本組成を有するユーロピウム付活サイアロン結晶体からなる蛍光体であって、
     前記蛍光体は、粒子の球形度が0.65以上であり、
     紫外光、紫色光または青色光で励起されることにより緑色発光することを特徴とする蛍光体。
  2. 前記蛍光体は、斜方晶系に属することを特徴とする請求項1に記載の蛍光体。
  3. 前記紫外光、紫色光または青色光は、370nm以上470nm以下の範囲内にピーク波長を有する光であることを特徴とする請求項1または2に記載の蛍光体。
  4. 平均粒径が5μm以上80μm以下であることを特徴とする請求項1~3のいずれか1項に記載の蛍光体。
  5. 発光ピーク波長が500nm以上540nm以下であることを特徴とする請求項1~4のいずれか1項に記載の蛍光体。
  6. 請求項1~5のいずれか1項に記載された蛍光体を製造する蛍光体の製造方法であって、
     蛍光体の原料である蛍光体原料混合物が、炭素を0.05~0.5質量%含み、
     前記蛍光体原料混合物を焼成して得られた蛍光体粉末のうちの、粒径が小さい粒子から順番に積算した部分である小粒子部分を、分級により前記蛍光体粉末の20質量%以下の範囲で除去する分級工程を有することを特徴とする蛍光体の製造方法。
  7. 基板と、
     この基板上に配置され、紫外光、紫色光または青色光を出射する半導体発光素子と、
     この半導体発光素子の発光面を覆うように形成され、前記半導体発光素子からの出射光により励起されて可視光を発する蛍光体を含む発光部と、を備え、
     前記蛍光体は、請求項1~5のいずれか1項に記載された蛍光体を含むことを特徴とする発光装置。
  8. 前記半導体発光素子は370nm以上470nm以下の範囲内にピーク波長を有する光を出射する発光ダイオードまたはレーザダイオードであることを特徴とする請求項7に記載の発光装置。
PCT/JP2013/057405 2012-03-16 2013-03-15 蛍光体、蛍光体の製造方法および発光装置 WO2013137434A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147007348A KR101593857B1 (ko) 2012-03-16 2013-03-15 형광체, 형광체의 제조 방법 및 발광 장치
CN201380003188.9A CN103827260B (zh) 2012-03-16 2013-03-15 荧光体、荧光体的制造方法及发光装置
EP13761307.1A EP2743330A4 (en) 2012-03-16 2013-03-15 PHOSPHORE, METHOD FOR THE PRODUCTION OF PHOSPHORUS AND LIGHT-EMITTING DEVICE
US14/344,087 US9512359B2 (en) 2012-03-16 2013-03-15 Phosphor, method for producing phosphor and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012060085 2012-03-16
JP2012-060085 2012-03-16

Publications (1)

Publication Number Publication Date
WO2013137434A1 true WO2013137434A1 (ja) 2013-09-19

Family

ID=49161330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057405 WO2013137434A1 (ja) 2012-03-16 2013-03-15 蛍光体、蛍光体の製造方法および発光装置

Country Status (6)

Country Link
US (1) US9512359B2 (ja)
EP (1) EP2743330A4 (ja)
JP (1) JPWO2013137434A1 (ja)
KR (1) KR101593857B1 (ja)
CN (1) CN103827260B (ja)
WO (1) WO2013137434A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244523A1 (ja) * 2021-05-21 2022-11-24 国立研究開発法人物質・材料研究機構 蛍光体、その製造方法、発光素子および発光装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9487696B2 (en) * 2012-03-16 2016-11-08 Kabushiki Kaisha Toshiba Phosphor of SiAlON crystal, method for producing phosphor and light emitting device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194347A (ja) * 2000-12-22 2002-07-10 Toshiba Corp 蛍光体,その製造方法および発光デバイス
JP2006052337A (ja) * 2004-08-12 2006-02-23 Fujikura Ltd サイアロン蛍光体およびその製造方法
WO2007105631A1 (ja) 2006-03-10 2007-09-20 Kabushiki Kaisha Toshiba 蛍光体および発光装置
JP2007332324A (ja) * 2006-06-19 2007-12-27 Denki Kagaku Kogyo Kk サイアロン蛍光体とその製造方法、およびそれを用いた発光素子
JP2010031201A (ja) * 2008-07-31 2010-02-12 Toshiba Corp 蛍光体およびそれを用いた発光装置
JP2010106127A (ja) * 2008-10-29 2010-05-13 Toshiba Corp 赤色蛍光体およびそれを用いた発光装置
JP2010185009A (ja) * 2009-02-12 2010-08-26 Showa Denko Kk 窒化物系または酸窒化物系の蛍光体原料混合物及び窒化物系または酸窒化物系の蛍光体の製造方法
WO2010098141A1 (ja) * 2009-02-26 2010-09-02 日亜化学工業株式会社 蛍光体及びその製造方法並びにこれを用いた発光装置
JP2011037913A (ja) * 2009-08-06 2011-02-24 Showa Denko Kk 蛍光体及びその製造方法、並びにそれを用いた発光装置
JP2011184577A (ja) * 2010-03-09 2011-09-22 Toshiba Corp 蛍光体、蛍光体の製造方法、発光装置及び発光モジュール
WO2012036016A1 (ja) * 2010-09-17 2012-03-22 株式会社東芝 蛍光体および発光装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1602703A4 (en) * 2003-03-11 2008-07-02 Konica Minolta Holdings Inc PHOSPHORUS, PROCESS FOR PRODUCING PHOSPHORUS, PHOSPHORUS PASTE AND PLASMA DISPLAY
US7229573B2 (en) * 2004-04-20 2007-06-12 Gelcore, Llc Ce3+ and Eu2+ doped phosphors for light generation
WO2007129713A1 (ja) 2006-05-10 2007-11-15 Denki Kagaku Kogyo Kabushiki Kaisha サイアロン蛍光体及びその製造方法並びにそれを用いた照明器具及び発光素子
JP5188687B2 (ja) * 2006-07-18 2013-04-24 昭和電工株式会社 蛍光体及びその製造法並びに発光装置
JP5536421B2 (ja) * 2009-11-13 2014-07-02 住友建機株式会社 作業機械の油圧回路
JP5190475B2 (ja) * 2010-02-19 2013-04-24 株式会社東芝 蛍光体およびそれを用いた発光装置
US20130343059A1 (en) * 2011-03-17 2013-12-26 Toshiba Materials Co., Ltd. Phosphor and light emitting device
CN102260500A (zh) 2011-06-08 2011-11-30 中国科学院宁波材料技术与工程研究所 一种白光led用氮化物/氧氮化物荧光粉的制备方法
JP6285100B2 (ja) * 2012-06-13 2018-02-28 アルパッド株式会社 蛍光体および発光装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194347A (ja) * 2000-12-22 2002-07-10 Toshiba Corp 蛍光体,その製造方法および発光デバイス
JP2006052337A (ja) * 2004-08-12 2006-02-23 Fujikura Ltd サイアロン蛍光体およびその製造方法
WO2007105631A1 (ja) 2006-03-10 2007-09-20 Kabushiki Kaisha Toshiba 蛍光体および発光装置
JP2007332324A (ja) * 2006-06-19 2007-12-27 Denki Kagaku Kogyo Kk サイアロン蛍光体とその製造方法、およびそれを用いた発光素子
JP2010031201A (ja) * 2008-07-31 2010-02-12 Toshiba Corp 蛍光体およびそれを用いた発光装置
JP2010106127A (ja) * 2008-10-29 2010-05-13 Toshiba Corp 赤色蛍光体およびそれを用いた発光装置
JP2010185009A (ja) * 2009-02-12 2010-08-26 Showa Denko Kk 窒化物系または酸窒化物系の蛍光体原料混合物及び窒化物系または酸窒化物系の蛍光体の製造方法
WO2010098141A1 (ja) * 2009-02-26 2010-09-02 日亜化学工業株式会社 蛍光体及びその製造方法並びにこれを用いた発光装置
JP2011037913A (ja) * 2009-08-06 2011-02-24 Showa Denko Kk 蛍光体及びその製造方法、並びにそれを用いた発光装置
JP2011184577A (ja) * 2010-03-09 2011-09-22 Toshiba Corp 蛍光体、蛍光体の製造方法、発光装置及び発光モジュール
WO2012036016A1 (ja) * 2010-09-17 2012-03-22 株式会社東芝 蛍光体および発光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2743330A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244523A1 (ja) * 2021-05-21 2022-11-24 国立研究開発法人物質・材料研究機構 蛍光体、その製造方法、発光素子および発光装置

Also Published As

Publication number Publication date
CN103827260A (zh) 2014-05-28
JPWO2013137434A1 (ja) 2015-08-03
EP2743330A1 (en) 2014-06-18
KR101593857B1 (ko) 2016-02-12
KR20140054305A (ko) 2014-05-08
EP2743330A4 (en) 2015-04-01
US9512359B2 (en) 2016-12-06
CN103827260B (zh) 2015-11-25
US20150014726A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
TWI404792B (zh) A phosphor and a method for manufacturing the same, and a light-emitting device using the same
JPWO2015001860A1 (ja) 蛍光体及び発光装置
WO2013137436A1 (ja) 蛍光体、蛍光体の製造方法および発光装置
WO2012036016A1 (ja) 蛍光体および発光装置
KR20150133702A (ko) 산질화물 형광체 분말 및 그 제조 방법
JPWO2016199406A1 (ja) 蛍光体およびその製造方法、ならびにledランプ
WO2013137434A1 (ja) 蛍光体、蛍光体の製造方法および発光装置
JP2010196049A (ja) 蛍光体及びその製造方法、蛍光体含有組成物、並びに、該蛍光体を用いた発光装置、画像表示装置及び照明装置
WO2013137435A1 (ja) 蛍光体、蛍光体の製造方法および発光装置
JP6139334B2 (ja) 蛍光体およびその製造方法、並びにその蛍光体を用いたledランプ
JP5702568B2 (ja) 蛍光体の製造方法および発光装置
JP5955835B2 (ja) 蛍光体および発光装置
JP5718580B2 (ja) 赤色蛍光体およびその製造方法、ならびに発光装置
JP7007594B2 (ja) アルミン酸塩蛍光体及び発光装置
JP2018150433A (ja) 橙色蛍光体および発光装置
JP5730084B2 (ja) ユーロピウム付活ストロンチウムサイアロン蛍光体およびその製造方法、ならびに発光装置
JP2017186459A (ja) 窒化物蛍光体粉末およびその製造方法
JP5702569B2 (ja) 蛍光体の製造方法および発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761307

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14344087

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014505021

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147007348

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE