WO2010097981A1 - 可変容量型排気ターボ過給機 - Google Patents

可変容量型排気ターボ過給機 Download PDF

Info

Publication number
WO2010097981A1
WO2010097981A1 PCT/JP2009/066651 JP2009066651W WO2010097981A1 WO 2010097981 A1 WO2010097981 A1 WO 2010097981A1 JP 2009066651 W JP2009066651 W JP 2009066651W WO 2010097981 A1 WO2010097981 A1 WO 2010097981A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
valve
turbine housing
flap valve
scroll passage
Prior art date
Application number
PCT/JP2009/066651
Other languages
English (en)
French (fr)
Inventor
幹 惠比寿
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/146,668 priority Critical patent/US9151218B2/en
Priority to EP09840828.9A priority patent/EP2402578B1/en
Priority to KR1020117018470A priority patent/KR101306360B1/ko
Priority to CN200980156456.4A priority patent/CN102317594B/zh
Publication of WO2010097981A1 publication Critical patent/WO2010097981A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a variable displacement exhaust turbocharger including a turbine in which an inner scroll passage and an outer scroll passage are formed.
  • FIG. 8 shows a general example of a conventional exhaust turbocharger.
  • the turbocharger includes a turbine housing 1, a bearing housing unit 5 fastened to the turbine housing 1, and a compressor housing 2 fastened to the bearing housing unit 5.
  • the turbine wheel 3 and the stationary vane 4 are accommodated in the space enclosed by the bearing housing unit 5 and the turbine housing 1 (not shown, but the compressor wheel is also present).
  • An opening is formed in the upper surface of the turbine housing 1, and a valve cover 7 is fastened to the opening with a gasket 6 interposed therebetween.
  • a flow control valve 8 is attached immediately below the valve cover 7.
  • the turbine housing 1 is formed with an intake plate portion 1a for fastening and fixing the turbine housing 1 at an exhaust gas intake port.
  • the exhaust gas flows into the intake plate portion 1a and forms an inner scroll flow formed in a spiral shape. It flows along the path T1. At this time, the exhaust gas flows in a direction toward the inside of the spiral.
  • the inner scroll channel T1 and the outer scroll channel T2 are partitioned by the vane portion 4a of the fixed vane. Since the exhaust gas is directed to the inside of the spiral, the exhaust gas does not flow from the inner scroll passage T1 to the outer scroll passage T2 even though it is partitioned by a large number of blade portions 4a.
  • the flow control valve 8 rotates to the valve cover side, so that the exhaust gas flowing into the intake plate portion 1a flows into the inner scroll passage T1. And the outer scroll channel T2.
  • the exhaust gas that has flowed into the inner scroll flow path T1 flows in the direction toward the inner side of the spiral as in FIG.
  • the exhaust gas flowing into the outer scroll channel T2 flows along the spiral, flows into the inner scroll channel T1 from the gap between the blade portions 4a, and merges with the exhaust gas flowing through the inner scroll channel T1, It is discharged to the outside of the turbine housing 1.
  • the heat capacity of the turbine housing assembly increases, the amount of heat taken away from the exhaust gas by the turbine housing assembly increases from the low temperature of the turbine housing assembly when the engine is started until the temperature rises. For this reason, the time until the temperature of the exhaust gas purification catalyst provided downstream from the turbine housing outlet reaches the activation temperature becomes longer. For this reason, it is desirable to reduce the heat capacity of the turbine housing assembly as much as possible in order to increase the degree of purification of exhaust gas when starting the engine. Further, the structure using the valve cover 7 is not preferable in consideration of cost, packaging effort, gas leakage, and the like.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a variable capacity exhaust turbocharger having a small heat capacity and a simple structure.
  • the present invention has been made as a means for solving such a problem.
  • the present invention relates to a turbine housing into which exhaust gas of an internal combustion engine is introduced, a turbine wheel that is provided in the turbine housing and rotationally driven, and an exhaust gas flow for rotationally driving the turbine wheel on the inner peripheral side.
  • an inner scroll passage and an outer scroll passage, which are partitioned into an outer peripheral side, are provided inside the turbine housing, and control the exhaust gas flow rate to the inner scroll passage and the outer scroll passage.
  • a variable displacement exhaust turbocharger comprising a flow control valve and a compressor housing connected to the turbine housing via a bearing housing, wherein the flow control valve is a flap valve, and the inner scroll passage An inner flow channel communicating with the outer scroll channel and an outer flow channel communicating with the outer scroll channel And an intake port structure that opens and closes the outer flow path, and an exhaust structure of the turbine housing body in which the inner scroll flow path and the outer scroll flow path are formed.
  • the suction port main body includes a valve retracting / accommodating portion for disposing the flap valve along the outer flow path, and a flap valve for blocking the outer flow path.
  • the flap valve is located between the position of contact with the seating portion and the position stored in the valve retracting and storing portion while placing the rotation center in the storing space of the valve retracting and storing portion. It is characterized by being made rotatable.
  • the flap valve is rotatable between the contact position with the seating portion and the position accommodated in the valve retracting / accommodating portion while placing the rotation center in the accommodating space of the valve retracting / accommodating portion. Therefore, a conventionally used valve cover is not required, and gas leakage from the valve cover seat surface does not occur.
  • the turbine assembly can be simplified in structure and reduced in size, and the heat capacity can be reduced. As a result, the time until the exhaust gas purification catalyst is activated is shortened.
  • the flap valve to which the arm member is connected is housed in the valve retracting housing portion together with the arm member and does not hinder the flow of the exhaust gas, the pressure loss of the exhaust gas is reduced and the turbine efficiency is improved. Furthermore, a valve cover, a gasket, and a bolt for attaching them are unnecessary, and the production cost can be reduced.
  • the present invention is further characterized in that the inlet structure is separately attached to an exhaust gas inlet of the turbine housing body.
  • the suction port structure is attached as a separate body, it is possible to easily assemble the flap valve and the arm member connected to the flap valve.
  • a flange portion is formed in the intake port structure, and a second seat portion on which the flap valve is seated is formed on a flow path wall located inside the flange portion. It is characterized by that.
  • the second seating portion on which the flap valve is seated is formed on the flow path wall located inside the flange portion, the second seating portion is not affected even if the impact of the flap valve is repeatedly applied for a long period of time. It can withstand the strength sufficiently. Moreover, the flow of the exhaust gas to the outer scroll channel can be more accurately blocked.
  • the present invention relates to a turbine housing into which exhaust gas of an internal combustion engine is introduced, a turbine wheel that is provided in the turbine housing and rotationally driven, and an exhaust gas flow for rotationally driving the turbine wheel on the inner peripheral side.
  • an inner scroll passage and an outer scroll passage which are partitioned into an outer peripheral side, are provided inside the turbine housing, and control the exhaust gas flow rate to the inner scroll passage and the outer scroll passage.
  • a variable displacement exhaust turbocharger comprising a flow control valve and a compressor housing coupled to the turbine housing via a bearing housing, wherein the flow control valve is a flap valve, and an intake gas flows in Port insertion pipe part and the flap valve provided in the suction port insertion pipe part Is provided at the exhaust gas inlet of the turbine housing body in which the inner scroll passage and the outer scroll passage are formed, and the inner scroll flow is provided at the exhaust gas inlet of the turbine housing body.
  • a partition portion that divides the path and the outer scroll flow path is provided, and an end portion on the exhaust gas inlet side of the partition portion is formed with a seating portion on which the flap valve is seated.
  • the flap valve When the flap valve is in a position along the pipe direction and is rotatable between a position where the partition part is seated on the seating part and a position along the pipe direction, the flap valve is connected to the inlet insertion pipe. It is characterized in that it is located outside the section and does not obstruct the flow of exhaust gas.
  • the conventionally used valve cover becomes unnecessary, and the valve cover
  • the turbine assembly can be simplified in structure and reduced in size, and the heat capacity can be reduced. As a result, the time until the exhaust gas purification catalyst is activated is shortened.
  • the flap valve when exhaust gas is circulated through the outer scroll passage during high-speed operation of the engine, the flap valve is arranged at a position along the pipe direction, so that the flow of exhaust gas is not hindered. More specifically, when the flap valve is in a position along the pipe direction, the flap valve is located outside the inlet insertion pipe portion together with the arm member connected to the flap valve to prevent the flow of exhaust gas. There is no structure. Therefore, the pressure loss of the exhaust gas is reduced and the turbine efficiency is improved. Furthermore, a valve cover, a gasket, and a bolt for attaching them are unnecessary, and the production cost can be reduced.
  • the present invention is further characterized in that a double-pipe structure is formed by inserting the inlet insertion pipe portion into an exhaust gas inlet of the turbine housing body.
  • the suction port insertion pipe portion is inserted into the exhaust gas inlet of the turbine housing main body so that it has a double pipe structure, so that the exhaust gas can flow only to the inner pipe, An air layer can be formed between the outer tube and the inner tube.
  • the present invention is further characterized in that the suction port insertion tube portion is formed of sheet metal.
  • the inlet insertion pipe portion is formed of a thin sheet metal and has a double pipe structure with a pipe outside the turbine housing inlet, so that the amount of heat transferred to the turbine housing by heat transfer is reduced, Since the temperature of the exhaust gas can be kept high, the time until the exhaust gas purification catalyst is activated is shortened.
  • the present invention relates to a turbine housing into which exhaust gas of an internal combustion engine is introduced, a turbine wheel that is provided in the turbine housing and rotationally driven, and an exhaust gas flow for rotationally driving the turbine wheel on the inner peripheral side.
  • an inner scroll passage and an outer scroll passage which are partitioned into an outer peripheral side, are provided inside the turbine housing, and control the exhaust gas flow rate to the inner scroll passage and the outer scroll passage.
  • a variable displacement exhaust turbocharger comprising a flow control valve and a compressor housing coupled to the turbine housing via a bearing housing, wherein the flow control valve is a butterfly valve, and the inner scroll passage And a turbine housing body in which an outer scroll passage is formed
  • the exhaust gas inlet is provided with the butterfly valve
  • the exhaust gas inlet of the turbine housing main body is provided with a partition portion for partitioning the inner scroll passage and the outer scroll passage, and the partition portion
  • a seat portion on which the butterfly valve is seated is formed at an end portion on the exhaust gas inlet side of the exhaust gas, and the butterfly valve has a position seated on the seat portion of the partition portion and a position along the exhaust gas flow direction. It is characterized by being able to rotate between them.
  • the butterfly valve is pivotable between a position where the butterfly valve is seated on the seating portion of the partition portion and a position along the exhaust gas flow direction, a conventionally used valve cover becomes unnecessary,
  • the turbine assembly can be simplified in structure and reduced in size, and the heat capacity can be reduced.
  • the time until the exhaust gas purification catalyst is activated is shortened.
  • the butterfly valve can be changed in the direction along the exhaust gas flow direction, the flow of the exhaust gas is not hindered, so that the pressure loss of the exhaust gas is reduced and the turbine efficiency is improved.
  • a valve cover, a gasket, and a bolt for attaching them are unnecessary, and the production cost can be reduced.
  • a flange portion is formed in the intake port structure, and a second seat portion on which the butterfly valve is seated is formed on a flow path wall located inside the flange portion. It is characterized by that.
  • the second seating portion on which the butterfly valve is seated is formed on the flow path wall located inside the flange portion, the second seating portion is not affected even if the impact of the butterfly valve is repeatedly applied for a long period of time. It can withstand the strength sufficiently. Moreover, the flow of the exhaust gas to the outer scroll channel can be more accurately blocked.
  • the present invention is further characterized in that the butterfly valve is structured to be incorporated from an exhaust gas inlet of the turbine housing body.
  • a butterfly valve can be easily incorporated, and tact time and production cost can be reduced.
  • the present invention is further characterized in that when the butterfly valve is seated on a seating portion of the partition portion, the butterfly valve is inclined in a direction in which exhaust gas can flow smoothly through the inner scroll flow path. To do.
  • the butterfly valve when the butterfly valve is seated on the seating portion of the partition portion, the butterfly valve is inclined in a direction in which the exhaust gas can flow smoothly through the inner scroll passage, thereby reducing the pressure loss of the exhaust gas. be able to.
  • the present invention is further characterized in that the butterfly valve and the seating portion of the partition portion are in surface contact.
  • the sealing performance when the butterfly valve is seated is improved, the exhaust gas flowing in the inner scroll is prevented from leaking to the outer scroll. For this reason, the fall of the turbine performance at the time of butterfly valve seating can be reduced.
  • the present invention is further characterized in that the seating portion is polished.
  • the seating portion is polished, the sealing performance when the flap valve or the butterfly valve is seated is further enhanced.
  • the present invention is further characterized in that the turbine housing body is formed of sheet metal.
  • the turbine housing body is formed of sheet metal, the heat capacity of the turbine assembly can be reduced. As a result, the time until the exhaust gas purification catalyst is activated is shortened.
  • variable capacity exhaust turbocharger of the present invention has a small heat capacity and can have a simple structure.
  • FIG. 9A shows the state during engine low speed operation
  • FIG. 9B shows the state during engine high speed operation.
  • FIG. 8 shows a general example of a conventional exhaust turbocharger.
  • the turbocharger includes a turbine housing 1, a bearing housing unit 5 fastened to the turbine housing 1, and a compressor housing 2 fastened to the bearing housing unit 5.
  • the turbine wheel 3 and the stationary vane 4 are accommodated in the space enclosed by the bearing housing unit 5 and the turbine housing 1 (not shown, but the compressor wheel is also present).
  • An opening is formed in the upper surface of the turbine housing 1, and a valve cover 7 is fastened to the opening with a gasket 6 interposed therebetween.
  • a flow control valve 8 is attached immediately below the valve cover 7.
  • the turbine housing 1 is formed with an intake plate portion 1a for fastening and fixing the turbine housing 1 at an exhaust gas intake port.
  • FIG. 1 shows a first embodiment of a variable displacement exhaust turbocharger according to the present invention.
  • the variable displacement exhaust turbocharger of this embodiment is A turbine housing 1 into which exhaust gas of the internal combustion engine is introduced is provided, and a turbine wheel 3 provided in the turbine housing 1 and driven to rotate.
  • the turbocharger includes a bearing housing unit 5 fastened to the turbine housing 1 and a compressor housing 2 to which the bearing housing unit 5 is connected in a state of being housed inside.
  • the turbine wheel 3 and the stationary vane 4 are accommodated in the space enclosed by the bearing housing unit 5 and the turbine housing 1 (not shown, but the compressor wheel is also present).
  • the turbine housing 1 is made of sheet metal, and the heat capacity of the turbine assembly can be reduced.
  • FIG. 2 shows the internal structure of the turbocharger, which is a characteristic part of the present invention.
  • an inner scroll passage T1 and an outer scroll passage formed by dividing an exhaust gas flow for rotating the turbine wheel into an inner peripheral side and an outer peripheral side. T2 is formed in the turbine housing of the supercharger.
  • a flap valve 12 is provided in the turbine housing as a flow control valve for controlling the exhaust gas flow rate to the inner scroll passage T1 and the outer scroll passage T2.
  • the inlet main-body part 11 in which the inner side flow path U1 connected to the inner side scroll flow path T1 and the outer side flow path U2 connected to the outer side scroll flow path T2 were formed, and the flap valve 12 which opens and closes the outer side flow path U2.
  • the intake port structure 13 is separately attached to the exhaust gas inlet of the turbine housing main body 14, the assembly of the flap valve 12 and the arm member connected to the flap valve 12 can be easily performed. Can do.
  • the connection of the suction port structure 13 to the turbine housing main body 14 can be performed by welding, for example.
  • the suction port main body 11 includes a valve retracting and storing portion 11a for disposing the flap valve 12 along the outer flow path U2, and a flap valve seating section 11b for blocking the outer flow path U2. Is formed. Further, an intake plate portion 11c serving as a flange portion is formed on the exhaust gas inlet side of the turbine housing body 14, and a flap valve 12 is seated on a flow path wall located inside the intake plate portion 11c. Two seating portions 11c1 are formed. Therefore, even if the impact of the flap valve 12 is repeatedly applied for a long time, the seating portion 11c1 can sufficiently withstand the strength. Moreover, the flow of the exhaust gas to the outer scroll channel T2 can be more accurately blocked.
  • the flap valve 12 is placed in the storage space of the valve retracting / accommodating portion 11a while the flap valve 12 is in contact with the seating portion 11b (solid line in the figure) and the position accommodated in the valve retracting / accommodating portion 11a (dotted line in the diagram) ). As shown in FIG. 3, for example, power is transmitted to the disk-shaped flap valve 12 (the shape may not be disk-shaped) via the arm member 15 and the lever member 16, and the flap valve 12 rotates. .
  • the sealing performance when the flap valve 12 is seated is improved, and the exhaust gas is prevented from flowing into the outer scroll passage T2. Therefore, it is possible to reduce a decrease in turbine performance when the flap valve is seated. Further, since the seating portion 11b is polished, the sealing performance when the flap valve 12 is seated is further enhanced.
  • the exhaust gas flows into the intake plate portion 11c and flows along the inner scroll passage T1 formed in a spiral shape. At this time, the exhaust gas flows in a direction toward the inside of the spiral.
  • the inner scroll channel T1 and the outer scroll channel T2 are partitioned by a partition portion 14a.
  • the blade portion 4a is formed such that the upstream side wall has a slightly gentle slope and the downstream side wall has a tight slope.
  • wing part 4a is arrange
  • the flap valve 12 shown in FIG. 2 rotates toward the valve retracting / accommodating portion 11a, so that the exhaust gas flowing into the intake plate portion 11c flows into the inner scroll passage T1 and the outer scroll flow. It flows through both the road T2.
  • the exhaust gas that has flowed into the inner scroll channel T1 flows in a direction toward the inner side of the spiral.
  • the exhaust gas that has flowed into the outer scroll channel T2 flows along the spiral, flows into the inner scroll channel T1 from the gap between the blade portions 4a (shown in FIG. 1), and flows through the inner scroll channel T1.
  • the gas merges with the gas and is discharged to the outside of the turbine housing 1.
  • the flap valve 12 is positioned between the contact position with the seating portion 11b and the position stored in the valve retracting / retracting portion 11a while placing the rotation center in the storing space of the valve retracting / retracting portion 11a. Since it is made rotatable, the conventional valve cover is no longer required, gas leakage from the valve cover seat surface does not occur, and the turbine assembly is simplified in structure and reduced in size. Can be reduced. As a result, the time until the exhaust gas purification catalyst is activated is shortened. Further, since the flap valve 12 to which the arm member 15 is connected is housed in the valve retracting / accommodating portion 11a together with the arm member 15, and does not hinder the flow of exhaust gas, the pressure loss of the exhaust gas is reduced and the turbine efficiency is improved. Furthermore, a valve cover, a gasket, and a bolt for attaching them are unnecessary, and the production cost can be reduced.
  • FIG. 4 shows the internal structure of the second embodiment of the variable displacement exhaust turbocharger of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • a suction port structure 13 having a suction port insertion pipe portion 17 through which exhaust gas flows and a flap valve 12 provided in the suction port insertion pipe portion 17 is partitioned by a partition portion 14a.
  • the inner scroll passage T1 and the outer scroll passage T2 are provided at the exhaust gas inlet of the turbine housing body 14 in which the inner scroll passage T1 and the outer scroll passage T2 are formed.
  • the intake port insertion pipe portion 17 is formed of sheet metal and has a double pipe structure with a pipe outside the turbine housing inlet, so that the amount of heat transferred to the turbine housing by heat transfer is reduced, and the temperature of the exhaust gas is reduced. Since it can be kept high, the time until the exhaust gas purification catalyst is activated is shortened.
  • a seating portion 14a1 on which the flap valve 12 sits in surface contact is formed at the end of the partitioning portion 14a on the exhaust gas inlet side.
  • the flap valve 12 is rotatable between a position where the flap valve 12 is seated on the seat 14a1 of the partition 14a and a position along the pipe direction.
  • the flap valve 12 is opened and closed via an arm member 15 and a lever member 16 as shown in the schematic diagram of FIG.
  • the flap valve 12 is a rectangular plate member.
  • the suction port insertion pipe portion 17 is inserted into the exhaust gas inlet (outer pipe 14b) of the turbine housing body, so that the exhaust gas inlet side is doubled. It has a tube structure. Therefore, it is possible to flow the exhaust gas only through the inner tube 17, and an air layer S can be formed between the outer tube 14 b and the inner tube 17. When the air layer S is formed in this manner, the heat insulation is excellent, the temperature of the exhaust gas is maintained high, and the time until the exhaust gas purification catalyst is activated can be shortened.
  • the flap valve 12 is rotatable between a position where the flap valve 12 is seated on the seating portion 14a1 of the partition portion 14a and a position along the pipe direction, a conventionally used valve cover is used. Is not required, and gas leakage from the valve cover seat surface does not occur.
  • the simplified structure and size of the turbine assembly can be achieved, and the heat capacity can be reduced. As a result, the time until the exhaust gas purification catalyst is activated is shortened. Further, when exhaust gas is circulated through the outer scroll passage T2 during high-speed operation of the engine, the flap valve 12 is disposed at a position along the pipe direction, so that the flow of exhaust gas is not hindered.
  • the flap valve 12 when the flap valve 12 is in a position along the pipe direction, the flap valve 12 is positioned outside the inlet insertion pipe portion 17 together with the arm member 15 connected to the flap valve 12 and exhausted.
  • the structure does not hinder the flow of gas. Therefore, the pressure loss of the exhaust gas is reduced and the turbine efficiency is improved. Furthermore, a valve cover, a gasket, and a bolt for attaching them are unnecessary, and the production cost can be reduced.
  • FIG. 7 shows the internal structure of a third embodiment of the variable displacement exhaust turbocharger of the present invention.
  • a butterfly valve 12A is provided at the exhaust gas inlet of the turbine housing body 14 in which the inner scroll passage T1 and the outer scroll passage T2 are formed. Is provided with a partition portion 14a that partitions the inner scroll channel T1 and the outer scroll channel T2.
  • a seating portion 14a1 on which the butterfly valve 12A is seated is formed at the end of the partition portion 14a on the exhaust gas inlet side.
  • a flange portion 14c is formed on the exhaust gas inlet side of the turbine housing main body 14, and a second seating portion 14c1 on which the butterfly valve 12A is seated is formed on a flow path wall located inside the flange portion 14c. Is formed. Therefore, even if the impact of the butterfly valve 12A is repeatedly applied for a long time, the seating portion 14c1 can sufficiently withstand the strength. Moreover, the flow of the exhaust gas to the outer scroll channel T2 can be more accurately blocked.
  • the butterfly valve 12A is rotatable between a position where it sits on the seating portions 14a1 and 14c1 and a position along the exhaust gas flow direction.
  • the butterfly valve 12 ⁇ / b> A is configured to be incorporated from the exhaust gas inlet of the turbine housing 1. Therefore, the butterfly valve 12A can be easily incorporated, and the tact time and production cost can be reduced.
  • the butterfly valve 12A shown in the drawing When the butterfly valve 12A shown in the drawing is seated on the seating portion 14a1 of the partition portion 14a, the butterfly valve 12A is inclined in a direction in which the exhaust gas can flow smoothly through the inner scroll passage T1. Therefore, the pressure loss of exhaust gas can be reduced. Further, since the butterfly valve 12A is in surface contact with the seating portions 14a1 and 14c1, the sealing performance when the butterfly valve 12A is seated is improved, and the exhaust gas is prevented from flowing from the inner scroll to the outer scroll channel T2.
  • the butterfly valve 12A is pivotable between a position where the butterfly valve 12A is seated on the seating portions 14a1 and 14c1 and a position along the exhaust gas flow direction. Is not required, and gas leakage from the valve cover seat surface does not occur.
  • the simplified structure and size of the turbine assembly can be achieved, and the heat capacity can be reduced. As a result, the time until the exhaust gas purification catalyst is activated is shortened.
  • the butterfly valve 12A can be changed in the direction along the exhaust gas flow direction, the flow of the exhaust gas is not hindered, so that the pressure loss of the exhaust gas is reduced and the turbine efficiency is improved. Furthermore, a valve cover, a gasket, and a bolt for attaching them are unnecessary, and the production cost can be reduced.
  • variable capacity exhaust turbocharger of the present invention has a small heat capacity and can have a simple structure.
  • the configuration of the characterizing portion of the present invention can be applied to the entire turbocharger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

熱容量が小さく、簡易な構造にすることができる可変容量型排気ターボ過給機を提供する。内側スクロール流路T1に連通する内側流路U1と外側スクロール流路T2に連通する外側流路U2とが形成された吸入口本体部11と、外側流路U2を開閉するフラップバルブ12と、を有する吸入口構造体13が、内側スクロール流路T1と外側スクロール流路T2が形成されたタービンハウジング本体14の排気ガス流入口に設けられ、吸入口本体部11には、フラップバルブ12を外側流路U2に沿うように配置させるためのバルブ退避収納部11aと、外側流路U2を遮断するためのフラップバルブ用の着座部11bとが形成され、フラップバルブ12は、回動中心をバルブ退避収納部11aの収納空間に置きながら、着座部11bとの接触位置とバルブ退避収納部11aに収納される位置との間を回動自在にされている。

Description

可変容量型排気ターボ過給機
 本発明は、内側スクロール流路と外側スクロール流路とが形成されたタービンを備える可変容量型排気ターボ過給機に関する。
 従来、車両用内燃機関等に用いられる比較的小型の排気ターボ過給機では、エンジンからの排気ガスを、タービンハウジングに形成されたスクロール流路内に充填し、該スクロール流路の内周側に設けられた複数のノズルベーンに通して、該ノズルベーンの内周側に設けられたタービンロータに作用させる構造が採用されている。このような輻流型可変容量排気ターボ過給機は多く用いられている(例えば、特許文献1ないし3参照)。
 図8は、従来の排気ターボ過給機の一般的な例を示している。この図は可変容量型排気ターボ過給機の分解斜視図である。図に示すように、ターボ過給機には、タービンハウジング1と、このタービンハウジング1に締結される軸受ハウジングユニット5と、この軸受ハウジングユニット5に締結されるコンプレッサハウジング2とを備えている。そして、軸受ハウジングユニット5とタービンハウジング1と内包される空間には、タービンホイール3と固定べーン4が収容される(図示はしないがコンプレッサホイールも同様に存在する)。また、タービンハウジング1の上面には開口部が形成され、この開口部にはガスケット6を挟んでバルブカバー7が締結される。そして、バルブカバー7の直下にフローコントロールバルブ8が取り付けられる。また、タービンハウジング1には、タービンハウジング1を締結して固定させるための吸気板部1aが排気ガスの吸入口に形成されている。
 図8のターボ過給機を組み立てて、エンジンを低速運転させた場合、図9(a)に示すように、排気ガスは、吸気板部1aに流入し、渦巻き状に形成された内側スクロール流路T1に沿って流れる。このとき、排気ガスは、渦巻きの内側に向かう方向に流れる。この内側スクロール流路T1と外側スクロール流路T2とは、固定べーンの羽根部4aによって区画されている。排気ガスは、渦巻きの内側に向かうので、多数の羽根部4aで区画されているにも拘わらず、内側スクロール流路T1から外側スクロール流路T2に排気ガスは流れない。
 一方、エンジンを高速運転させた場合、図9(b)に示すように、フローコントロールバルブ8はバルブカバー側に回動するので、吸気板部1aに流入した排気ガスは、内側スクロール流路T1と外側スクロール流路T2との両方を流れる。内側スクロール流路T1に流入した排気ガスは、図9(a)と同様に渦巻きの内側に向かう方向に流れる。一方、外側スクロール流路T2に流入した排気ガスは、渦巻きに沿って流れ、羽根部4a間の隙間から内側スクロール流路T1に流入して、内側スクロール流路T1を流れる排気ガスに合流し、タービンハウジング1の外部に排出される。
 なお、図9(a)に示したエンジン低速運転時には、内側スクロール流路T1にのみ排気ガスが流れるので、エンジン高速運転時より流速が速くなる。一方、図9(b)に示したエンジン高速運転時には、内側スクロール流路T1と外側スクロール流路T2との両方に排気ガスが流れるので、背圧が低減され、燃費を向上させることができる。
 しかし、従来の可変容量型排気ターボ過給機では、インサート部4、フローコントロールバルブ8及びバルブカバー7の存在により、タービンハウジングアッセンブリの熱容量が大きくなるため、より低熱容量のものが要求されていた。タービンハウジングアッセンブリの熱容量が大きくなると、エンジン始動時のタービンハウジングアッセンブリの温度が低い状態から、温度が上昇するまでの間に、排気ガスからタービンハウジングアッセンブリに奪われる熱量が大きくなる。このため、タービンハウジング出口より下流に設けられた排気ガス浄化触媒の温度が、活性化温度に達するまでの時間が長くなる。このため、エンジン始動時の排気ガスの浄化度を高めるためには、タービンハウジングアッセンブリの熱容量をできるだけ小さくすることが望ましい。
 また、バルブカバー7を使用する構造は、コスト、パッケージングの手間、ガス漏れなどを考慮すると、好ましくない。
特開2008-128065号公報 特開2008-215083号公報 米国特許2860827号公報
 本発明は、かかる従来技術の課題に鑑み、熱容量が小さく、簡易な構造の可変容量型排気ターボ過給機を提供することを目的とする。
 本発明はかかる課題を解決する手段としてなされたものである。
 本発明は、内燃機関の排気ガスが内部に導入されるタービンハウジングと、該タービンハウジング内に設けられて回転駆動されるタービンホイールと、該タービンホイールを回転駆動させる排気ガスの流れを内周側と外周側とに区画してなる内側スクロール流路及び外側スクロール流路、が形成された前記タービンハウジングの内部に設けられ、前記内側スクロール流路及び外側スクロール流路への排気ガス流量を制御するフローコントロールバルブと、軸受ハウジングを介して前記タービンハウジングに連結されるコンプレッサハウジングと、を備える可変容量型排気ターボ過給機であって、前記フローコントロールバルブはフラップバルブであり、前記内側スクロール流路に連通する内側流路と前記外側スクロール流路に連通する外側流路とが形成された吸入口本体部と、前記外側流路を開閉する前記フラップバルブと、を有する吸入口構造体が、前記内側スクロール流路及び外側スクロール流路が形成されたタービンハウジング本体の排気ガス流入口に設けられ、前記吸入口本体部には、前記フラップバルブを前記外側流路に沿うように配置させるためのバルブ退避収納部と、前記外側流路を遮断するためのフラップバルブ用の着座部とが形成され、前記フラップバルブは、回動中心を前記バルブ退避収納部の収納空間に置きながら、前記着座部との接触位置と前記バルブ退避収納部に収納される位置との間を回動自在にされていることを特徴とする。
 かかる発明では、フラップバルブが、回動中心をバルブ退避収納部の収納空間に置きながら、着座部との接触位置とバルブ退避収納部に収納される位置との間を回動自在にされているので、従来用いられたバルブカバーが不要となり、バルブカバーシート面からのガス漏れが発生することがないことに加え、タービンアッセンブリの簡易構造化及び小型化が図られ熱容量を小さくすることができる。ひいては、排気ガス浄化触媒が活性化されるまでの時間が短縮される。また、アーム部材が連結されるフラップバルブはアーム部材と共にバルブ退避収納部に収納され、排気ガスの流れを妨げないため、排気ガスの圧力損失が低減され、タービン効率が向上する。さらに、バルブカバー、ガスケット、及びこれらを取り付けるボルトが不要となり、生産コストを低減させることができる。
 本発明は、さらに、前記吸入口構造体は、前記タービンハウジング本体の排気ガス流入口に別体として取り付けられていることを特徴とする。
 かかる発明では、吸入口構造体が別体として取り付けられるので、フラップバルブや、フラップバルブと連結されるアーム部材などの組付けを容易に行うことができる。
 本発明は、さらに、前記吸気口構造体には、フランジ部が形成され、該フランジ部の内側に位置する流路壁には、前記フラップバルブが着座する第2の着座部が形成されていることを特徴とする。
 かかる発明では、フランジ部の内側に位置する流路壁にフラップバルブが着座する第2の着座部が形成されているので、長期間繰り返してフラップバルブの衝撃が加わっても第2の着座部は強度的に十分に耐えることができる。また、外側スクロール流路への排気ガスの流れをより的確に遮断することができる。
 本発明は、内燃機関の排気ガスが内部に導入されるタービンハウジングと、該タービンハウジング内に設けられて回転駆動されるタービンホイールと、該タービンホイールを回転駆動させる排気ガスの流れを内周側と外周側とに区画してなる内側スクロール流路及び外側スクロール流路、が形成された前記タービンハウジングの内部に設けられ、前記内側スクロール流路及び外側スクロール流路への排気ガス流量を制御するフローコントロールバルブと、軸受ハウジングを介して前記タービンハウジングに連結されるコンプレッサハウジングと、を備える可変容量型排気ターボ過給機であって、前記フローコントロールバルブはフラップバルブであり、排気ガスが流れる吸入口挿入管部と、該吸入口挿入管部に設けられた前記フラップバルブとを有する吸入口構造体が、前記内側スクロール流路及び外側スクロール流路が形成されたタービンハウジング本体の排気ガス流入口に設けられ、前記タービンハウジング本体の排気ガス流入口には、前記内側スクロール流路と前記外側スクロール流路とを区画する仕切り部が設けられ、該仕切り部の排気ガス流入口側の端部には、前記フラップバルブが着座する着座部が形成され、前記フラップバルブは、前記仕切り部の着座部に着座する位置と、管方向に沿った位置との間を回動自在にされ、前記フラップバルブが管方向に沿った位置にあるときは、フラップバルブは、吸入口挿入管部の外側に位置して排気ガスの流れを妨げない構造にされていることを特徴とする。
 かかる発明では、フラップバルブが、仕切り部の着座部に着座する位置と、管方向に沿った位置との間を回動自在にされているので、従来用いられたバルブカバーが不要となり、バルブカバーシート面からのガス漏れが発生することがないことに加え、タービンアッセンブリの簡易構造化及び小型化が図られ熱容量を小さくすることができる。ひいては、排気ガス浄化触媒が活性化されるまでの時間が短縮される。また、エンジン高速運転時に外側スクロール流路に排気ガスを流通させると、フラップバルブが管方向に沿った位置に配置されるので、排気ガスの流れは妨げられない。より具体的には、フラップバルブが管方向に沿った位置にあるときは、フラップバルブは、フラップバルブに連結されたアーム部材と共に吸入口挿入管部の外側に位置して排気ガスの流れを妨げない構造にされている。そのため、排気ガスの圧力損失が低減され、タービン効率が向上する。さらに、バルブカバー、ガスケット、及びこれらを取り付けるボルトが不要となり、生産コストを低減させることができる。
 本発明は、さらに、前記吸入口挿入管部が前記タービンハウジング本体の排気ガス流入口に挿入されることで、二重管構造にされていることを特徴とする。
 かかる発明では、吸入口挿入管部がタービンハウジング本体の排気ガス流入口に挿入されることで、二重管構造にされているため、排気ガスを内側の管にのみ流すことが可能であり、外側の管と内側の管との間に空気層を形成することができる。このように空気層を形成すると、断熱性に優れ、排気ガスの温度が高く維持され、排気ガス浄化触媒が活性化されるまでの時間を短縮させることができる。
 本発明は、さらに、前記吸入口挿入管部は、板金により形成されていることを特徴とする。
 かかる発明では、吸入口挿入管部が薄肉の板金により形成されており、タービンハウジング入口の外側の管との二重管構造となっているため、タービンハウジングに伝熱により伝わる熱量が低減され、排ガスの温度を高く維持することができるため、排気ガス浄化触媒が活性化されるまでの時間が短縮される。
 本発明は、内燃機関の排気ガスが内部に導入されるタービンハウジングと、該タービンハウジング内に設けられて回転駆動されるタービンホイールと、該タービンホイールを回転駆動させる排気ガスの流れを内周側と外周側とに区画してなる内側スクロール流路及び外側スクロール流路、が形成された前記タービンハウジングの内部に設けられ、前記内側スクロール流路及び外側スクロール流路への排気ガス流量を制御するフローコントロールバルブと、軸受ハウジングを介して前記タービンハウジングに連結されるコンプレッサハウジングと、を備える可変容量型排気ターボ過給機であって、前記フローコントロールバルブはバタフライバルブであり、前記内側スクロール流路及び外側スクロール流路が形成されたタービンハウジング本体の排気ガス流入口には、前記バタフライバルブが設けられ、前記タービンハウジング本体の排気ガス流入口には、前記内側スクロール流路と前記外側スクロール流路とを区画する仕切り部が設けられ、該仕切り部の排気ガス流入口側の端部には、前記バタフライバルブが着座する着座部が形成され、バタフライバルブは、前記仕切り部の着座部に着座する位置と、排気ガス流れ方向に沿った位置との間を回動自在にされていることを特徴とする。
 かかる発明では、バタフライバルブが、仕切り部の着座部に着座する位置と、排気ガス流れ方向に沿った位置との間を回動自在にされているので、従来用いられたバルブカバーが不要となり、バルブカバーシート面からのガス漏れが発生することがないことに加え、タービンアッセンブリの簡易構造化及び小型化が図られ熱容量を小さくすることができる。ひいては、排気ガス浄化触媒が活性化されるまでの時間が短縮される。また、バタフライバルブは排気ガス流れ方向に沿った向きに変更可能であるので、排気ガスの流れを妨げないため、排気ガスの圧力損失が低減され、タービン効率が向上する。さらに、バルブカバー、ガスケット、及びこれらを取り付けるボルトが不要となり、生産コストを低減させることができる。
 本発明は、さらに、前記吸気口構造体には、フランジ部が形成され、該フランジ部の内側に位置する流路壁には、前記バタフライバルブが着座する第2の着座部が形成されていることを特徴とする。
 かかる発明では、フランジ部の内側に位置する流路壁にバタフライバルブが着座する第2の着座部が形成されているので、長期間繰り返してバタフライバルブの衝撃が加わっても第2の着座部は強度的に十分に耐えることができる。また、外側スクロール流路への排気ガスの流れをより的確に遮断することができる。
 本発明は、さらに、前記バタフライバルブは、前記タービンハウジング本体の排気ガス流入口から組み込まれる構造にされていることを特徴とする。
 かかる発明では、バタフライバルブを容易に組み込むことができ、タクトタイムや生産コストの低減が可能である。
 本発明は、さらに、前記バタフライバルブが前記仕切り部の着座部に着座している時に、前記バタフライバルブは、前記内側スクロール流路に排気ガスをスムーズに流せる方向に傾斜していることを特徴とする。
 かかる発明では、バタフライバルブが仕切り部の着座部に着座している時に、バタフライバルブは、内側スクロール流路に排気ガスをスムーズに流せる方向に傾斜しているので、排気ガスの圧力損失を低減させることができる。
 本発明は、さらに、前記バタフライバルブと前記仕切り部の着座部とは、面接触することを特徴とする。
 かかる発明では、バタフライバルブの着座時のシール性が高まるため、内側スクロールに流れる排気ガスが外側スクロールに漏れることが防止される。このため、バタフライバルブ着座時のタービン性能の低下を低減することができる。
 更にかかる発明では、外側スクロール流路に排気ガスが流れることが防止され、熱損失を抑止することができる。そのため、タービンアッセンブリの熱容量を小さくすることができ、ひいては、排気ガス浄化触媒が活性化されるまでの時間が短縮される。
 本発明は、さらに、前記着座部には、研磨加工が施されていることを特徴とする。
 かかる発明では、着座部に研磨加工が施されているので、フラップバルブ又はバタフライバルブの着座時のシール性がさらに高まる。
 本発明は、さらに、前記タービンハウジング本体が板金で形成されていることを特徴とする。
 かかる発明では、タービンハウジング本体が板金で形成されているので、タービンアッセンブリの熱容量を小さくすることができる。ひいては、排気ガス浄化触媒が活性化されるまでの時間が短縮される。
 本発明の可変容量型排気ターボ過給機では、熱容量が小さく、簡易な構造にすることができる。
本発明の可変容量型排気ターボ過給機の第1実施形態を示す説明図である。 図1のタービンハウジングの内部構造を示す説明図である。 図2のフラップバルブの開閉機構を示す説明図である。 本発明の可変容量型排気ターボ過給機の第2実施形態の内部構造を示す説明図である。 図4のフラップバルブの開閉機構を示す説明図である。 図4のA-A線に沿う断面図である。 本発明の可変容量型排気ターボ過給機の第3実施形態の内部構造を示す説明図である。 従来の可変容量型排気ターボ過給機を示す説明図である。 タービンハウジング内の構造を示す説明図である。図9(a)はエンジン低速運転時の状態を示しており、図9(b)はエンジン高速運転時の状態を示している。
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対位置などは特に記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。
 図8は、従来の排気ターボ過給機の一般的な例を示している。この図は可変容量型排気ターボ過給機の分解斜視図である。図に示すように、ターボ過給機には、タービンハウジング1と、このタービンハウジング1に締結される軸受ハウジングユニット5と、この軸受ハウジングユニット5に締結されるコンプレッサハウジング2とを備えている。そして、軸受ハウジングユニット5とタービンハウジング1と内包される空間には、タービンホイール3と固定べーン4が収容される(図示はしないがコンプレッサホイールも同様に存在する)。また、タービンハウジング1の上面には開口部が形成され、この開口部にはガスケット6を挟んでバルブカバー7が締結される。そして、バルブカバー7の直下にフローコントロールバルブ8が取り付けられる。また、タービンハウジング1には、タービンハウジング1を締結して固定させるための吸気板部1aが排気ガスの吸入口に形成されている。
 [第1実施形態]
 図1は、本発明の可変容量型排気ターボ過給機の第1実施形態を示している。本実施形態の可変容量型排気ターボ過給機は、
内燃機関の排気ガスが内部に導入されるタービンハウジング1と、該タービンハウジング1内に設けられて回転駆動されるタービンホイール3とを備えている。
また、この過給機は、このタービンハウジング1に締結される軸受ハウジングユニット5と、この軸受ハウジングユニット5がその内側に収納された状態で連結されるコンプレッサハウジング2とを備えている。そして、軸受ハウジングユニット5とタービンハウジング1と内包される空間には、タービンホイール3と固定べーン4が収容される(図示はしないがコンプレッサホイールも同様に存在する)。なお、本実施形態では、タービンハウジング1は板金で形成されており、タービンアッセンブリの熱容量を小さくすることができる。
 図2は、本発明の特徴部分であるターボ過給機の内部構造を示している。図に示すように、この過給機のタービンハウジング内には、タービンホイールを回転駆動させる排気ガスの流れを内周側と外周側とに区画してなる内側スクロール流路T1及び外側スクロール流路T2が形成されている。また、タービンハウジング内には、内側スクロール流路T1及び外側スクロール流路T2への排気ガス流量を制御するフローコントロールバルブとしてフラップバルブ12が設けられている。そして、内側スクロール流路T1に連通する内側流路U1と外側スクロール流路T2に連通する外側流路U2とが形成された吸入口本体部11と、外側流路U2を開閉するフラップバルブ12と、を有する吸入口構造体13が、内側スクロール流路T1と外側スクロール流路T2が形成されたタービンハウジング本体14の排気ガス流入口に設けられている。
 この吸入口構造体13は、タービンハウジング本体14の排気ガス流入口に別体として取り付けられているので、フラップバルブ12や、フラップバルブ12と連結されるアーム部材などの組付けを容易に行うことができる。なお、吸入口構造体13のタービンハウジング本体14への連結は、例えば、溶接を用いて行うことができる。
 また、吸入口本体部11には、フラップバルブ12を外側流路U2に沿うように配置させるためのバルブ退避収納部11aと、外側流路U2を遮断するためのフラップバルブ用の着座部11bとが形成されている。
 また、タービンハウジング本体14の排気ガス流入口側には、フランジ部となる吸気板部11cが形成され、該吸気板部11cの内側に位置する流路壁には、フラップバルブ12が着座する第2の着座部11c1が形成されている。そのため、長期間繰り返してフラップバルブ12の衝撃が加わっても着座部11c1は強度的に十分に耐えることができる。また、外側スクロール流路T2への排気ガスの流れをより的確に遮断することができる。
 フラップバルブ12は、回動中心をバルブ退避収納部11aの収納空間に置きながら、着座部11bとの接触位置(図中、実線)とバルブ退避収納部11aに収納される位置(図中、点線)との間を回動自在にされている。図3に示すように、例えば円盤状(形状が円盤状で無い場合もある)のフラップバルブ12には、アーム部材15及びレバー部材16を介して動力が伝達され、フラップバルブ12は回動する。
 また、フラップバルブ12は、図2に示すように、着座部11bに対し面接触するので、フラップバルブ12の着座時のシール性が高まり、外側スクロール流路T2に排気ガスが流れることが防止されるため、フラップバルブ着座時のタービン性能の低下を低減することができる。
また、着座部11bには研磨加工が施されているので、フラップバルブ12の着座時のシール性がさらに高まる。
 そして、エンジンを低速運転させた場合、排気ガスは、吸気板部11cに流入し、渦巻き状に形成された内側スクロール流路T1に沿って流れる。このとき、排気ガスは、渦巻きの内側に向かう方向に流れる。この内側スクロール流路T1と外側スクロール流路T2とは、仕切り部14aによって区画されている。この仕切り部14aの後端より後流側には、図1に示す固定べーン4の羽根部4a(図2に不図示)が配置される。羽根部4aは、上流側壁がやや緩やかな傾斜状にされ、かつ下流側壁がきつい傾斜状に形成されている。また、羽根部4aは、過給機中心軸に向かって所定の傾斜角度で配置されている。そして、排気ガスは、渦巻きの内側に向かうので、多数の羽根部4aで区画されているにも拘わらず、内側スクロール流路T1から外側スクロール流路T2に排気ガスは流れない。
 一方、エンジンを高速運転させた場合、図2に示すフラップバルブ12はバルブ退避収納部11a側に回動するので、吸気板部11cに流入した排気ガスは、内側スクロール流路T1と外側スクロール流路T2との両方を流れる。内側スクロール流路T1に流入した排気ガスは、渦巻きの内側に向かう方向に流れる。一方、外側スクロール流路T2に流入した排気ガスは、渦巻きに沿って流れ、羽根部4a(図1記載)間の隙間から内側スクロール流路T1に流入して、内側スクロール流路T1を流れる排気ガスに合流し、タービンハウジング1の外部に排出される。
 この第1実施形態では、フラップバルブ12が、回動中心をバルブ退避収納部11aの収納空間に置きながら、着座部11bとの接触位置とバルブ退避収納部11aに収納される位置との間を回動自在にされているので、従来用いられたバルブカバーが不要となり、バルブカバーシート面からのガス漏れが発生することがないことに加え、タービンアッセンブリの簡易構造化及び小型化が図られ熱容量を小さくすることができる。ひいては、排気ガス浄化触媒が活性化されるまでの時間が短縮される。また、アーム部材15が連結されるフラップバルブ12はアーム部材15と共にバルブ退避収納部11aに収納され、排気ガスの流れを妨げないため、排気ガスの圧力損失が低減され、タービン効率が向上する。さらに、バルブカバー、ガスケット、及びこれらを取り付けるボルトが不要となり、生産コストを低減させることができる。
 [第2実施形態]
 図4は、本発明の可変容量型排気ターボ過給機の第2実施形態の内部構造を示している。なお、この第2実施形態では、第1実施形態と同一の構成要素には同一の符号を付し、その説明を省略する。
 図に示すように、排気ガスが流れる吸入口挿入管部17と、該吸入口挿入管部17に設けられたフラップバルブ12と、を有する吸入口構造体13が、仕切り部14aにより区画されて内側スクロール流路T1と外側スクロール流路T2が形成されたタービンハウジング本体14の排気ガス流入口に設けられている。吸入口挿入管部17は、板金により形成されており、タービンハウジング入口の外側の管との二重管構造となっているため、タービンハウジングに伝熱により伝わる熱量が低減され、排ガスの温度を高く維持することができるため、排気ガス浄化触媒が活性化されるまでの時間が短縮される。
 また、仕切り部14aの排気ガス流入口側の端部には、フラップバルブ12が面接触して着座する着座部14a1が形成されている。面接触すると、フラップバルブ12の着座時のシール性が高まり、内側スクロールから外側スクロール流路に排気ガスが流れるのが防止される。
 本実施形態では、フラップバルブ12は、仕切り部14aの着座部14a1に着座する位置と、管方向に沿った位置との間を回動自在にされている。
 フラップバルブ12の開閉は、図5の模式図に示すように、アーム部材15及びレバー部材16を介して行われる。本実施形態では、フラップバルブ12は長方形の板状部材である。
 また、図6に示すように、本実施形態では、吸入口挿入管部17がタービンハウジング本体の排気ガス流入口(外側の管14b)に挿入されることで、排気ガスの流入口側が二重管構造にされている。そのため、排気ガスを内側の管17にのみ流すことが可能であり、外側の管14bと内側の管17との間に空気層Sを形成することができる。このように空気層Sを形成すると、断熱性に優れ、排気ガスの温度が高く維持され、排気ガス浄化触媒が活性化されるまでの時間を短縮させることができる。
 この第2実施形態では、フラップバルブ12が、仕切り部14aの着座部14a1に着座する位置と、管方向に沿った位置との間を回動自在にされているので、従来用いられたバルブカバーが不要となり、バルブカバーシート面からのガス漏れが発生することがないことに加え、タービンアッセンブリの簡易構造化及び小型化が図られ熱容量を小さくすることができる。ひいては、排気ガス浄化触媒が活性化されるまでの時間が短縮される。また、エンジン高速運転時に外側スクロール流路T2に排気ガスを流通させると、フラップバルブ12が管方向に沿った位置に配置されるので、排気ガスの流れは妨げられない。より具体的には、フラップバルブ12が管方向に沿った位置にあるときは、フラップバルブ12は、フラップバルブ12に連結されたアーム部材15と共に吸入口挿入管部17の外側に位置して排気ガスの流れを妨げない構造にされている。そのため、排気ガスの圧力損失が低減され、タービン効率が向上する。さらに、バルブカバー、ガスケット、及びこれらを取り付けるボルトが不要となり、生産コストを低減させることができる。
 [第3実施形態]
 図7は、本発明の可変容量型排気ターボ過給機の第3実施形態の内部構造を示している。なお、この第3実施形態では、第1実施形態と同一の構成要素には同一の符号を付し、その説明を省略する。
 図に示すように、内側スクロール流路T1と外側スクロール流路T2が形成されたタービンハウジング本体14の排気ガス流入口には、バタフライバルブ12Aが設けられ、タービンハウジング本体14の排気ガス流入口には、内側スクロール流路T1と外側スクロール流路T2とを区画する仕切り部14aが設けられている。この仕切り部14aの排気ガス流入口側の端部には、バタフライバルブ12Aが着座する着座部14a1が形成されている。また、タービンハウジング本体14の排気ガス流入口側には、フランジ部14cが形成され、該フランジ部14cの内側に位置する流路壁には、バタフライバルブ12Aが着座する第2の着座部14c1が形成されている。そのため、長期間繰り返してバタフライバルブ12Aの衝撃が加わっても着座部14c1は強度的に十分に耐えることができる。また、外側スクロール流路T2への排気ガスの流れをより的確に遮断することができる。
 このバタフライバルブ12Aは、着座部14a1,14c1に着座する位置と、排気ガス流れ方向に沿った位置との間を回動自在にされている。
 また、バタフライバルブ12Aは、タービンハウジング1の排気ガス流入口から組み込まれる構造にされている。そのため、バタフライバルブ12Aを容易に組み込むことができ、タクトタイムや生産コストの低減が可能である。
 図に示すバタフライバルブ12Aが仕切り部14aの着座部14a1に着座している時に、バタフライバルブ12Aは、内側スクロール流路T1に排気ガスをスムーズに流せる方向に傾斜している。そのため、排気ガスの圧力損失を低減させることができる。
 また、バタフライバルブ12Aは、着座部14a1,14c1に対し面接触するので、バタフライバルブ12Aの着座時のシール性が高まり、内側スクロールから外側スクロール流路T2に排気ガスが流れることが防止される。
 この第3実施形態では、バタフライバルブ12Aが、着座部14a1,14c1に着座する位置と、排気ガス流れ方向に沿った位置との間を回動自在にされているので、従来用いられたバルブカバーが不要となり、バルブカバーシート面からのガス漏れが発生することがないことに加え、タービンアッセンブリの簡易構造化及び小型化が図られ熱容量を小さくすることができる。ひいては、排気ガス浄化触媒が活性化されるまでの時間が短縮される。また、バタフライバルブ12Aは排気ガス流れ方向に沿った向きに変更可能であるので、排気ガスの流れを妨げないため、排気ガスの圧力損失が低減され、タービン効率が向上する。さらに、バルブカバー、ガスケット、及びこれらを取り付けるボルトが不要となり、生産コストを低減させることができる。
 以上、本発明を説明してきたが、本発明は上述した実施形態にのみ限定されるものではなく、その本質を逸脱しない範囲で、他の種々の変形が可能であることはいうまでもない。
 本発明の可変容量型排気ターボ過給機では、熱容量が小さく、簡易な構造にすることができる。本発明の特徴部分の構成は、ターボ過給機全体に適用することが可能である。

Claims (14)

  1.  内燃機関の排気ガスが内部に導入されるタービンハウジングと、
     該タービンハウジング内に設けられて回転駆動されるタービンホイールと、
     該タービンホイールを回転駆動させる排気ガスの流れを内周側と外周側とに区画してなる内側スクロール流路及び外側スクロール流路、が形成された前記タービンハウジングの内部に設けられ、前記内側スクロール流路及び外側スクロール流路への排気ガス流量を制御するフローコントロールバルブと、
     軸受ハウジングを介して前記タービンハウジングに連結されるコンプレッサハウジングと、
     を備える可変容量型排気ターボ過給機であって、
     前記フローコントロールバルブはフラップバルブであり、
     前記内側スクロール流路に連通する内側流路と前記外側スクロール流路に連通する外側流路とが形成された吸入口本体部と、前記外側流路を開閉する前記フラップバルブと、を有する吸入口構造体が、前記内側スクロール流路及び外側スクロール流路が形成されたタービンハウジング本体の排気ガス流入口に設けられ、
     前記吸入口本体部には、前記フラップバルブを前記外側流路に沿うように配置させるためのバルブ退避収納部と、前記外側流路を遮断するためのフラップバルブ用の着座部とが形成され、
     前記フラップバルブは、回動中心を前記バルブ退避収納部の収納空間に置きながら、前記着座部との接触位置と前記バルブ退避収納部に収納される位置との間を回動自在にされていることを特徴とする可変容量型排気ターボ過給機。
  2.  前記吸入口構造体は、前記タービンハウジング本体の排気ガス流入口に別体として取り付けられていることを特徴とする請求項1に記載の可変容量型排気ターボ過給機。
  3.  前記吸気口構造体には、フランジ部が形成され、
     該フランジ部の内側に位置する流路壁には、前記フラップバルブが着座する第2の着座部が形成されていることを特徴とする請求項1又は請求項2に記載の可変容量型排気ターボ過給機。
  4.  内燃機関の排気ガスが内部に導入されるタービンハウジングと、
     該タービンハウジング内に設けられて回転駆動されるタービンホイールと、
     該タービンホイールを回転駆動させる排気ガスの流れを内周側と外周側とに区画してなる内側スクロール流路及び外側スクロール流路、が形成された前記タービンハウジングの内部に設けられ、前記内側スクロール流路及び外側スクロール流路への排気ガス流量を制御するフローコントロールバルブと、
     軸受ハウジングを介して前記タービンハウジングに連結されるコンプレッサハウジングと、
     を備える可変容量型排気ターボ過給機であって、
     前記フローコントロールバルブはフラップバルブであり、
     排気ガスが流れる吸入口挿入管部と、該吸入口挿入管部に設けられた前記フラップバルブとを有する吸入口構造体が、前記内側スクロール流路及び外側スクロール流路が形成されたタービンハウジング本体の排気ガス流入口に設けられ、
     前記タービンハウジング本体の排気ガス流入口には、前記内側スクロール流路と前記外側スクロール流路とを区画する仕切り部が設けられ、
     該仕切り部の排気ガス流入口側の端部には、前記フラップバルブが着座する着座部が形成され、
     前記フラップバルブは、前記仕切り部の着座部に着座する位置と、管方向に沿った位置との間を回動自在にされ、
     前記フラップバルブが管方向に沿った位置にあるときは、フラップバルブは、吸入口挿入管部の外側に位置して排気ガスの流れを妨げない構造にされていることを特徴とする可変容量型排気ターボ過給機。
  5.  前記吸入口挿入管部が前記タービンハウジング本体の排気ガス流入口に挿入されることで、二重管構造にされていることを特徴とする請求項4に記載の可変容量型排気ターボ過給機。
  6.  前記吸入口挿入管部は、板金により形成されていることを特徴とする請求項4又は請求項5に記載の可変容量型排気ターボ過給機。
  7.  内燃機関の排気ガスが内部に導入されるタービンハウジングと、
     該タービンハウジング内に設けられて回転駆動されるタービンホイールと、
     該タービンホイールを回転駆動させる排気ガスの流れを内周側と外周側とに区画してなる内側スクロール流路及び外側スクロール流路、が形成された前記タービンハウジングの内部に設けられ、前記内側スクロール流路及び外側スクロール流路への排気ガス流量を制御するフローコントロールバルブと、
     軸受ハウジングを介して前記タービンハウジングに連結されるコンプレッサハウジングと、
     を備える可変容量型排気ターボ過給機であって、
     前記フローコントロールバルブはバタフライバルブであり、
     前記内側スクロール流路及び外側スクロール流路が形成されたタービンハウジング本体の排気ガス流入口には、前記バタフライバルブが設けられ、
     前記タービンハウジング本体の排気ガス流入口には、前記内側スクロール流路と前記外側スクロール流路とを区画する仕切り部が設けられ、
     該仕切り部の排気ガス流入口側の端部には、前記バタフライバルブが着座する着座部が形成され、
     前記バタフライバルブは、前記仕切り部の着座部に着座する位置と、排気ガス流れ方向に沿った位置との間を回動自在にされていることを特徴とする可変容量型排気ターボ過給機。
  8.  前記吸気口構造体には、フランジ部が形成され、
     該フランジ部の内側に位置する流路壁には、前記バタフライバルブが着座する第2の着座部が形成されていることを特徴とする請求項7に記載の可変容量型排気ターボ過給機。
  9.  前記バタフライバルブは、前記タービンハウジング本体の排気ガス流入口から組み込まれる構造にされていることを特徴とする請求項8に記載の可変容量型排気ターボ過給機。
  10.  前記バタフライバルブが前記仕切り部の着座部に着座している時に、前記バタフライバルブは、前記内側スクロール流路に排気ガスをスムーズに流せる方向に傾斜していることを特徴とする請求項8又は請求項9に記載の可変容量型排気ターボ過給機。
  11.  前記フラップバルブと前記仕切り部の着座部とは、面接触することを特徴とする請求項1ないし請求項6のいずれかに記載の可変容量型排気ターボ過給機。
  12.  前記バタフライバルブと前記仕切り部の着座部とは、面接触することを特徴とする請求項7ないし請求項10のいずれかに記載の可変容量型排気ターボ過給機。
  13.  前記着座部には、研磨加工が施されていることを特徴とする請求項11又は請求項12に記載の可変容量型排気ターボ過給機。
  14.  前記タービンハウジング本体が板金で形成されていることを特徴とする請求項1ないし請求項13のいずれかに記載の可変容量型排気ターボ過給機。
PCT/JP2009/066651 2009-02-27 2009-09-25 可変容量型排気ターボ過給機 WO2010097981A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/146,668 US9151218B2 (en) 2009-02-27 2009-09-25 Variable capacity exhaust gas turbocharger
EP09840828.9A EP2402578B1 (en) 2009-02-27 2009-09-25 Variable displacement exhaust turbocharger
KR1020117018470A KR101306360B1 (ko) 2009-02-27 2009-09-25 가변 용량형 배기 터보과급기
CN200980156456.4A CN102317594B (zh) 2009-02-27 2009-09-25 可变容量式排气涡轮增压器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-047410 2009-02-27
JP2009047410A JP5193093B2 (ja) 2009-02-27 2009-02-27 可変容量型排気ターボ過給機

Publications (1)

Publication Number Publication Date
WO2010097981A1 true WO2010097981A1 (ja) 2010-09-02

Family

ID=42665201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066651 WO2010097981A1 (ja) 2009-02-27 2009-09-25 可変容量型排気ターボ過給機

Country Status (6)

Country Link
US (1) US9151218B2 (ja)
EP (1) EP2402578B1 (ja)
JP (1) JP5193093B2 (ja)
KR (1) KR101306360B1 (ja)
CN (1) CN102317594B (ja)
WO (1) WO2010097981A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017516012A (ja) * 2014-05-20 2017-06-15 ボーグワーナー インコーポレーテッド 排気ガスターボチャージャ

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127531A1 (ja) * 2011-03-23 2012-09-27 アイシン高丘株式会社 タービンハウジング
JP5589934B2 (ja) * 2011-04-05 2014-09-17 株式会社デンソー タービン及びターボチャージャ
US9932843B2 (en) 2011-06-10 2018-04-03 Borgwarner Inc. Double flow turbine housing turbocharger
WO2013085766A1 (en) * 2011-12-09 2013-06-13 Borgwarner Inc. Bearing housing of an exhaust-gas turbocharger
JP5787790B2 (ja) 2012-02-29 2015-09-30 三菱重工業株式会社 遠心流体機械の吸気管構造
WO2014189526A1 (en) * 2013-05-24 2014-11-27 International Engine Intellectual Property Company, Llc Turbine of a turbocharger
US9080506B2 (en) * 2013-08-13 2015-07-14 Ford Global Technologies, Llc Methods and systems for boost control
JP5954292B2 (ja) * 2013-10-11 2016-07-20 株式会社デンソー ターボチャージャ
CN105221334B (zh) * 2014-06-12 2016-12-14 山西华旗风能科技有限公司 一种集风装置
JP6222613B2 (ja) 2014-08-27 2017-11-01 三菱重工業株式会社 開閉弁装置、及び回転機械
JP6458676B2 (ja) * 2014-09-12 2019-01-30 株式会社デンソー バルブ装置
KR101628548B1 (ko) * 2014-12-01 2016-06-09 현대자동차주식회사 2단 터보차저 장치
USD778221S1 (en) * 2015-08-26 2017-02-07 James W. Stewart Muffler tip
US10006347B2 (en) * 2015-11-05 2018-06-26 Ford Global Technologies, Llc Engine system and method for controlling turbine operation
EP3825531B1 (en) 2016-05-26 2023-05-03 Hamilton Sundstrand Corporation An energy flow of an advanced environmental control system
US11506121B2 (en) * 2016-05-26 2022-11-22 Hamilton Sundstrand Corporation Multiple nozzle configurations for a turbine of an environmental control system
EP3248880B1 (en) 2016-05-26 2022-03-16 Hamilton Sundstrand Corporation Mixing ram and bleed air in a dual entry turbine system
JP6437597B1 (ja) * 2017-06-16 2018-12-12 本田技研工業株式会社 内燃機関
CN108757156A (zh) * 2018-04-10 2018-11-06 中国北方发动机研究所(天津) 一种涡轮箱新型的旁通结构
US11174779B2 (en) * 2018-12-07 2021-11-16 Polaris Industries Inc. Turbocharger system for a two-stroke engine
US11280258B2 (en) 2018-12-07 2022-03-22 Polaris Industries Inc. Exhaust gas bypass valve system for a turbocharged engine
US11725573B2 (en) 2018-12-07 2023-08-15 Polaris Industries Inc. Two-passage exhaust system for an engine
US11639684B2 (en) 2018-12-07 2023-05-02 Polaris Industries Inc. Exhaust gas bypass valve control for a turbocharger for a two-stroke engine
US11131235B2 (en) 2018-12-07 2021-09-28 Polaris Industries Inc. System and method for bypassing a turbocharger of a two stroke engine
US11236668B2 (en) 2018-12-07 2022-02-01 Polaris Industries Inc. Method and system for controlling pressure in a tuned pipe of a two stroke engine
US11352935B2 (en) 2018-12-07 2022-06-07 Polaris Industries Inc. Exhaust system for a vehicle
US20200182164A1 (en) 2018-12-07 2020-06-11 Polaris Industries Inc. Method And System For Predicting Trapped Air Mass In A Two-Stroke Engine
US11828239B2 (en) 2018-12-07 2023-11-28 Polaris Industries Inc. Method and system for controlling a turbocharged two stroke engine based on boost error
US20200200107A1 (en) * 2018-12-20 2020-06-25 GM Global Technology Operations LLC Twin-scroll turbine with flow control valve
US11788432B2 (en) 2020-01-13 2023-10-17 Polaris Industries Inc. Turbocharger lubrication system for a two-stroke engine
CA3201948A1 (en) 2020-01-13 2021-07-13 Polaris Industries Inc. Turbocharger system for a two-stroke engine having selectable boost modes
US11384697B2 (en) 2020-01-13 2022-07-12 Polaris Industries Inc. System and method for controlling operation of a two-stroke engine having a turbocharger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2860827A (en) 1953-06-08 1958-11-18 Garrett Corp Turbosupercharger
JPS57114134U (ja) * 1980-12-30 1982-07-15
JP2001263080A (ja) * 2000-03-17 2001-09-26 Aisin Seiki Co Ltd 可変容量ターボチャージャ
JP2002138845A (ja) * 2000-11-06 2002-05-17 Aisin Seiki Co Ltd タービン
JP2007120396A (ja) * 2005-10-27 2007-05-17 Toyota Motor Corp 内燃機関用ターボ過給機のタービンハウジング
JP2008128056A (ja) 2006-11-20 2008-06-05 Kyoritsu Kiko Kk 縦長ポンプ用のホルダーパイプ及び該ホルダーパイプを使用した縦長ポンプ外付け型液体供給装置
JP2008215083A (ja) 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd 可変容量型排気ターボ過給機における可変ノズル機構部取付構造

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US94868A (en) * 1869-09-14 Improvement in turbine water-wheels
US228629A (en) * 1880-06-08 Turbine water-wheel
US3137477A (en) * 1960-10-25 1964-06-16 Geratebau Eberspacher Ohg Gas turbine having adjustable nozzle flow means
NL296316A (ja) * 1962-08-07
US3383092A (en) * 1963-09-06 1968-05-14 Garrett Corp Gas turbine with pulsating gas flows
US3552876A (en) * 1968-06-12 1971-01-05 Trw Inc Pulse sensitive turbine nozzle
BE755769A (fr) * 1969-09-04 1971-02-15 Cummins Engine Co Inc Corps de turbine, notamment pour turbo-compresseur a gaz d'echappement
US4389845A (en) * 1979-11-20 1983-06-28 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Turbine casing for turbochargers
JPS57114134A (en) 1981-01-06 1982-07-15 Toshiba Corp Supplying device of sheet film
JPS58172427A (ja) 1982-04-01 1983-10-11 Ishikawajima Harima Heavy Ind Co Ltd 過給機における可変容量タ−ビン車室
DE3346472C2 (de) * 1982-12-28 1991-09-12 Nissan Motor Co., Ltd., Yokohama, Kanagawa Radialturbine mit veränderlicher Leistung
DE3302186A1 (de) 1983-01-24 1984-07-26 Klöckner-Humboldt-Deutz AG, 5000 Köln Abgasturbolader fuer brennkraftmaschinen
EP0180917A3 (en) * 1984-11-02 1987-09-16 Hitachi, Ltd. Exhaust gas turbine type supercharger
JPS61160526A (ja) * 1985-01-07 1986-07-21 Hitachi Ltd 可変容量タ−ボチヤ−ジヤ
JPS61175239A (ja) * 1985-01-30 1986-08-06 Mazda Motor Corp エンジンの過給装置
JPS61137850U (ja) * 1985-02-15 1986-08-27
JPH0652052B2 (ja) * 1985-02-18 1994-07-06 株式会社日立製作所 タ−ボチヤ−ジヤ
US4745753A (en) * 1985-05-29 1988-05-24 Mazda Motor Corporation Engine turbo-supercharger control
JPS627934A (ja) * 1985-07-03 1987-01-14 Hitachi Ltd 可変容量式タ−ボチヤ−ジヤ
JPS6278434A (ja) * 1985-09-30 1987-04-10 Aisin Seiki Co Ltd 可変容量ラジアルタ−ビン過給機
JPS62126224A (ja) * 1985-11-25 1987-06-08 Hitachi Ltd 過給機
JPS62131923A (ja) * 1985-12-02 1987-06-15 Mazda Motor Corp 排気タ−ボ過給機付エンジン
JPH0745827B2 (ja) * 1986-03-25 1995-05-17 マツダ株式会社 排気タ−ボ過給装置
JPS6321326A (ja) * 1986-07-12 1988-01-28 Mazda Motor Corp タ−ボ過給エンジンの排気マニホ−ルド
JPS63215829A (ja) * 1987-03-04 1988-09-08 Hitachi Ltd 排気タ−ビン過給機
JPH0192531A (ja) * 1987-10-05 1989-04-11 Hitachi Ltd 可変容量排気タービン過給機
JP3725287B2 (ja) 1996-04-25 2005-12-07 アイシン精機株式会社 可変容量ターボチャージャ
JP2000008868A (ja) * 1998-06-25 2000-01-11 Aisin Seiki Co Ltd 可変容量ターボチャージャ
JP2003120302A (ja) * 2001-10-12 2003-04-23 Toyota Motor Corp 可変ノズル付ターボチャージャ
US6941755B2 (en) * 2003-10-28 2005-09-13 Daimlerchrysler Corporation Integrated bypass and variable geometry configuration for an exhaust gas turbocharger
JP2007192128A (ja) * 2006-01-19 2007-08-02 Toyota Motor Corp 可変容量ターボチャージャ
JP4755071B2 (ja) 2006-11-20 2011-08-24 三菱重工業株式会社 排気ターボ過給機
US7694518B2 (en) * 2007-08-14 2010-04-13 Deere & Company Internal combustion engine system having a power turbine with a broad efficiency range
JP4838830B2 (ja) * 2008-08-28 2011-12-14 三菱重工業株式会社 可変容量排気ガスタービンの製造方法
JP2010101271A (ja) * 2008-10-24 2010-05-06 Mitsubishi Heavy Ind Ltd 可変容量タービン
DE102011082385A1 (de) * 2010-09-09 2012-04-26 Denso Corporation Abgassteuervorrichtung für einen Motor
US9932843B2 (en) * 2011-06-10 2018-04-03 Borgwarner Inc. Double flow turbine housing turbocharger
JP5854662B2 (ja) * 2011-06-28 2016-02-09 三菱重工業株式会社 内燃機関の制御装置および方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2860827A (en) 1953-06-08 1958-11-18 Garrett Corp Turbosupercharger
JPS57114134U (ja) * 1980-12-30 1982-07-15
JP2001263080A (ja) * 2000-03-17 2001-09-26 Aisin Seiki Co Ltd 可変容量ターボチャージャ
JP2002138845A (ja) * 2000-11-06 2002-05-17 Aisin Seiki Co Ltd タービン
JP2007120396A (ja) * 2005-10-27 2007-05-17 Toyota Motor Corp 内燃機関用ターボ過給機のタービンハウジング
JP2008128056A (ja) 2006-11-20 2008-06-05 Kyoritsu Kiko Kk 縦長ポンプ用のホルダーパイプ及び該ホルダーパイプを使用した縦長ポンプ外付け型液体供給装置
JP2008215083A (ja) 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd 可変容量型排気ターボ過給機における可変ノズル機構部取付構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017516012A (ja) * 2014-05-20 2017-06-15 ボーグワーナー インコーポレーテッド 排気ガスターボチャージャ

Also Published As

Publication number Publication date
EP2402578A4 (en) 2014-08-20
CN102317594B (zh) 2014-03-19
US9151218B2 (en) 2015-10-06
JP5193093B2 (ja) 2013-05-08
EP2402578A1 (en) 2012-01-04
US20110296835A1 (en) 2011-12-08
JP2010203261A (ja) 2010-09-16
CN102317594A (zh) 2012-01-11
KR20110101246A (ko) 2011-09-15
KR101306360B1 (ko) 2013-09-09
EP2402578B1 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP5193093B2 (ja) 可変容量型排気ターボ過給機
JP4797788B2 (ja) ターボチャージャ
RU2718397C2 (ru) Снижение нагрузки от осевого усилия в турбокомпрессоре
JP5052651B2 (ja) 排気アセンブリ
US6983596B2 (en) Controlled turbocharger with integrated bypass
US8844282B2 (en) Exhaust-gas turbocharger having a ball-cock waste-gate valve with a stress-relieved crank arm
JP5369723B2 (ja) 遠心圧縮機
JP5589934B2 (ja) タービン及びターボチャージャ
JP2007309139A (ja) ターボチャージャ
JP4779898B2 (ja) タービンハウジング
JP4005025B2 (ja) 一体化されたバイパスを備えた被制御ターボ過給機
JP2014534378A (ja) 排気ガスターボチャージャーなどに用いられる回動可能なガイド部材を斜めに配設して成る流体エネルギ機械
JP2002349275A (ja) 過給機のタービンハウジング
WO2014109210A1 (ja) 過給機
WO2012016366A1 (zh) 脉冲可变流道涡轮机装置
JP3956884B2 (ja) 可変容量ターボチャージャ
JP5954292B2 (ja) ターボチャージャ
JP2016053352A (ja) ターボチャージャの排気タービン
JP5742538B2 (ja) 内燃機関の排気装置
WO2015066258A1 (en) Rotary wastegate valve
JP2003027951A (ja) 可変容量型過給機の流量増加構造
JP2010013972A (ja) 可変容量型ターボチャージャ
JP7357848B2 (ja) ターボチャージャ
JP2004116432A (ja) ターボチャージャ
JP2008190494A (ja) 可変容量型ターボチャージャ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156456.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117018470

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009840828

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009840828

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13146668

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE