WO2012016366A1 - 脉冲可变流道涡轮机装置 - Google Patents

脉冲可变流道涡轮机装置 Download PDF

Info

Publication number
WO2012016366A1
WO2012016366A1 PCT/CN2010/002167 CN2010002167W WO2012016366A1 WO 2012016366 A1 WO2012016366 A1 WO 2012016366A1 CN 2010002167 W CN2010002167 W CN 2010002167W WO 2012016366 A1 WO2012016366 A1 WO 2012016366A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine casing
flow passage
turbine
outlet
casing
Prior art date
Application number
PCT/CN2010/002167
Other languages
English (en)
French (fr)
Inventor
王航
马超
朱智富
李永泰
王聪聪
宋丽华
郭锡禄
Original Assignee
Wang Hang
Ma Chao
Zhu Zhifu
Li Yongtai
Wang Congcong
Song Lihua
Guo Xilu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Hang, Ma Chao, Zhu Zhifu, Li Yongtai, Wang Congcong, Song Lihua, Guo Xilu filed Critical Wang Hang
Priority to EP10855504.6A priority Critical patent/EP2602450A4/en
Publication of WO2012016366A1 publication Critical patent/WO2012016366A1/zh
Priority to US13/757,840 priority patent/US9249719B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/10Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of charging or scavenging apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an internal combustion engine boosting device, and more particularly to a pulsed variable flow turbine device for a vehicle turbocharger.
  • variable geometry turbocharging technology has received more and more attention.
  • the variable flow turbine technology has been widely used due to its simple structure and good reliability. application.
  • the turbine portion of the conventional two-channel turbocharger includes a turbine casing 1, a turbine impeller 2, and an air outlet 3, wherein the internal flow passage of the turbine casing 1 is partitioned into the left side by the intermediate partition 5
  • the inner flow passage 4a and the right inner flow passage 4b are two parts.
  • the intake ports of the left inner flow passage 4a and the right inner flow passage 4b are respectively connected to the exhaust manifolds of different cylinders of the engine, and the engine cylinder exhaust is in the form of pulse waves in the left inner flow passage 4a and
  • the right inner flow passage 4b propagates and successively passes through the turbine nozzle, acts as the turbine wheel 2, and expands work in the flow passage of the turbine wheel 2, pushing the turbine wheel 2 to rotate.
  • the turbine wheel 2 drives the compressor wheel through the turbine shaft 6 to achieve supercharging of the engine.
  • the gas that has been completed passes through the air outlet 3 and finally flows into the engine exhaust manifold.
  • the double-flow volute is matched with the engine design in high operating conditions, the gas flow rate is reduced at low operating conditions, and the internal flow path volume of the turbine casing 1 is relatively large, the pulse wave is weakened, and the pulse energy is not reached. Effective use; If the engine design is matched to the low operating condition, the designed worm gear housing 1 is bound to be small. When the engine is in high working condition, the flow velocity in the turbine casing must increase, and the flow loss increases accordingly. The smaller turbine shell will have a correspondingly lower thermal load performance under high engine conditions.
  • variable section turbine structures In order to adapt to the engine's high and low load exhaust performance and improve turbine efficiency, a variety of variable section turbine structures have been developed based on dual-flow turbines, but conventional variable-section turbines and matching engine exhausts are often designed independently. The matching performance is bound to be affected.
  • the traditional variable-section turbine valve is placed inside the turbine casing, which causes a large aerodynamic loss at the wide door.
  • the traditional variable-section turbine turbine shell has fewer flow passages and multi-cylinders. When the machine is matched, the ability to properly organize the engine exhaust pulse is limited.
  • the problem to be solved by the present invention is to provide a pulsed variable flow turbine device capable of efficiently utilizing engine exhaust pulse energy in both high and low engine operating conditions.
  • a pulsed variable flow turbine device includes a turbine casing having a turbine wheel and an air outlet therein, an exhaust manifold connected to an inlet of the turbine casing, and an internal flow passage in the turbine casing
  • a position of the inner flow passage near the turbine wheel is provided with a turbine casing outlet, and an inner partition is provided in the inner flow passage, and the intermediate partition divides the inner flow passage into a left side flow passage and a right side flow passage.
  • An arcuate partition is disposed in each of the left side flow passage and the right side flow passage, and one end of the curved partition plate is fixed to the intermediate partition and the other end is disposed at a position close to the outlet of the turbine casing.
  • the inner channel of the flow path comprises an intermediate partition dividing the flow passage of the turbine casing into left and right flow passages and an arc-shaped partition separating the left and right flow passages, and the curved partition plate is integrally molded with the turbine casing.
  • the curved baffle located on the left flow channel divides the left flow channel into the outer flow channel on the left side of the turbine casing and the curved baffle on the left flow channel on the left side of the turbine casing.
  • the right flow channel is divided into the outer flow channel on the right side of the turbine casing.
  • the left outer flow passage of the turbine casing, the inner flow passage on the left side of the turbine casing, the outer flow passage on the right side of the turbine casing, and the inner flow passage on the right side of the turbine casing are respectively communicated with the turbine casing outlet.
  • the outer wall arc of the arcuate baffle in the outer flow passage on the left side of the turbine casing and the inner wall arc of the turbine casing in the outer flow passage on the left side of the turbine casing are parallel to the exit portion of the turbine casing;
  • the curved partition is located in the inner flow passage on the left side of the turbine casing and the inner wall arc in the inner flow passage on the right side of the turbine casing is parallel to the wall surface of the intermediate partition near the outlet of the turbine casing.
  • the curved baffle is in the same direction as the inner wall of the turbine casing, and the ratio of the sum of the cross-sectional area of the inner flow passage on the left side of the turbine casing and the inner flow passage on the right side of the turbine casing to the total cross-sectional area of the inner flow passage It is 1/3 ⁇ 1/2.
  • a turbine casing inlet mounting plate is provided at the inlet of the turbine casing, and is provided on the turbine casing inlet mounting plate Turbine casing inlet holes respectively communicating with the left outer flow passage of the turbine casing, the outer right outer flow passage of the turbine casing, the inner flow passage on the left side of the turbine casing, and the inner flow passage on the right side of the turbine casing.
  • An exhaust pipe outlet mounting plate connected to the turbine casing inlet mounting plate is disposed at an outlet of the exhaust manifold, and an exhaust pipe corresponding to the turbine casing inlet hole is disposed on the exhaust pipe outlet mounting plate Out of the hole.
  • the exhaust manifold is provided with four flow passages, two exhaust pipe outlet outer flow passages and two exhaust pipe outlet inner flow passages, wherein two exhaust pipe outlet outer flow passages respectively and the left outer flow passage of the turbine casing Corresponding to the outer flow passage on the right side of the turbine casing, the inner flow passages of the two exhaust pipe outlets respectively communicate with the inner flow passage on the left side of the turbine casing and the inner flow passage on the right side of the turbine casing.
  • a valve is disposed adjacent to the outlet of the exhaust pipe, and one end of the valve is hinged to the wall of the exhaust manifold.
  • the valve opens and the airflow flows smoothly into the four runners of the turbine casing. Under low engine conditions, the valve closes and the valve directs airflow into the two inner runners of the turbine casing.
  • a turbine casing outlet baffle having an arc-shaped cross section is disposed at a position of the right outer flow passage of the turbine casing and the outer flow passage of the right side of the turbine casing near the outlet of the turbine casing, and the arc of the turbine casing outlet baffle is at 0 degrees - Between 180 degrees, the right inner flow passage of the turbine casing and the right outer flow passage of the turbine casing are closed at the outlet corresponding to the turbine casing outlet partition.
  • the outer flow passage on the left side of the turbine casing and the outer flow passage on the right side of the turbine casing stop the intake air, and the engine exhaust gas flows into the inner flow passage on the left side of the turbine casing and the inner flow passage on the right side of the turbine casing, wherein the inner flow passage on the left side of the turbine casing
  • the outlet airflow achieves work for the entire circumference of the turbine impeller, and the outlet airflow of the inner flow passage on the right side of the turbine casing works on the turbine impeller at an angle section of the end of the arcuate diaphragm to a radius of 360 sections.
  • a symmetrical arc-shaped turbine casing outlet baffle is disposed at two outlet positions of the left outer flow passage of the turbine casing and the right outer flow passage of the turbine casing, and the static position corresponding to the position of the baffle is originally installed on the inner wall of the turbine casing.
  • the blade vanes, the arc of the turbine casing outlet baffle are between 0 and 180 degrees.
  • the valve When the engine is running at high operating conditions, the valve is opened, the four flow passages of the turbine casing are simultaneously inducted, and the inner flow passage on the left side of the turbine casing and the inner flow passage on the right side of the turbine casing realize the work on the entire circumference of the turbine impeller.
  • the outlet flow of the left outer flow passage and the outer flow passage on the right side of the turbine casing works on the turbine wheel at an angular section of the end of the curved partition to an arc of 360 sections.
  • the turbine casing only has two internal flow passages to allow the turbine to effectively utilize the exhaust pulse energy of the engine at low operating conditions. Therefore, the purpose of effectively utilizing the engine exhaust pulse energy under both high and low engine conditions is achieved.
  • the left inner flow passage is realized with the valve open.
  • the right inner flow channel, the left outer flow channel and the right outer flow channel work in different circumferential directions, so that the turbine impeller inlet airflow is more uniform, and the turbine is further increased while reducing the miscibility of different flow passages at the turbine casing outlet. Impeller efficiency.
  • the invention considers an engine exhaust system and a turbine as a system.
  • the exhaust gas is exhausted according to different design conditions in the left and right exhaust passages and the volute flow passage.
  • the interior of the manifold and turbine casing is divided into four different flow zones.
  • the four flow passages inside the turbine casing are simultaneously inducted, effectively utilizing the pulse energy of the engine exhaust in high working conditions, and further improving the energy utilization rate through the setting of the outer runner outlet vane cascade.
  • the turbine casing In the low engine operating conditions, the turbine casing only has two internal flow passages, allowing the turbine to effectively utilize the engine's exhaust pulse energy at low operating conditions. Therefore, the purpose of utilizing the engine exhaust pulse energy can be effectively utilized under the high and low working conditions of the turbine. Due to the arrangement of the turbine casing outlet block, the different flow paths of the turbine casing can work on the turbine impeller in different circumferential ranges, which can make the turbine impeller more uniform in the whole circumference and further improve the turbine performance.
  • Figure 1 is a schematic view showing the structure of a double-flow volute in the background art
  • FIG. 2 is an assembled view of a pulsed variable flow passage turbine and an exhaust pipe according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural view of a variable flow path turbine according to Embodiment 1 of the present invention
  • Figure 4 is a structural view showing the outer structure of a turbine casing in Embodiment 1 of the present invention.
  • Figure 5 is an external view of an exhaust pipe in Embodiment 1 of the present invention.
  • Figure 6 is a schematic view showing the internal flow passage and valve position of the pulse variable flow passage turbine inlet and the exhaust pipe outlet in the first embodiment of the present invention
  • Figure 7 is a schematic structural view of Embodiment 2 of the present invention
  • Figure 8 is a schematic cross-sectional view showing the internal flow passage of the variable flow passage turbine in Embodiment 2 of the present invention
  • Figure 9 is a cross-sectional view taken along line A-A of Figure 8.
  • Figure 10 is a schematic view showing the structure of Embodiment 3 of the present invention.
  • Embodiment 1 as shown in Fig. 2, a pulse variable flow turbine device including a turbine casing 1, and an exhaust manifold 16 is connected to an inlet of the turbine casing 1.
  • a turbine impeller 2 and an air outlet 3 are disposed in the turbine casing 1.
  • a turbine shaft 6 is mounted on the turbine impeller 2, and the turbine casing 1 has an internal flow passage therein, and the internal flow passage is close to the turbine impeller.
  • the position of 2 is provided with a turbine casing outlet 14 in which an intermediate partition 5 is provided, which divides the internal flow passage into a left side flow passage and a right side flow passage.
  • An arcuate partition 7 is provided in each of the left side flow channel and the right side flow path, and one end of the arcuate partition plate 7 is fixed to the intermediate partition plate 5, and the other end is disposed at a position close to the turbine casing outlet 14.
  • the curved partition 7 located on the left side flow path divides the left flow path into the outer flow passage 9 on the left side of the turbine casing and the inner flow passage 11 on the left side of the turbine casing.
  • the curved partition 7 located on the right flow path divides the right flow path into the outer flow passage 10 on the right side of the turbine casing and the inner flow passage 12 on the right side of the turbine casing.
  • the curved partition 7 and the intermediate partition 5 are integrally molded with the turbine casing 1.
  • the curved baffle 7 is tapered in the flow direction like the inner wall of the turbine casing, and the inner wall arc and the outer wall arc of the arcuate baffle section are both
  • the arc shape of the inner wall of the turbine shell section is similar.
  • the arc of the outer wall of the arcuate partition 7 located in the outer flow passage 9 on the left side of the turbine casing and the inner wall arc of the turbine casing 1 located in the outer flow passage 9 on the left side of the turbine casing are close to the turbine casing.
  • the exit 14 is parallel.
  • the curved partition ⁇ is located on the left side inner flow passage 11 of the turbine casing and the inner wall arc in the inner flow passage 12 on the right side of the turbine casing is parallel to the wall surface of the intermediate partition 5 near the turbine casing outlet 14.
  • a row of stationary blade cascades 13 is disposed in the outer peripheral flow passage 10 at a position close to the turbine casing outlet 14 , and the stationary blade cascade 13 blades are obliquely installed at the outlet of the outer casing of the fault casing, and the blades of the stationary blade cascade 13 Soldered on the inner wall of the turbine casing.
  • the ratio of the cross-sectional area of the inner flow passage 11 on the left side of the turbine casing and the inner flow passage 12 on the right side of the turbine casing to the cross-sectional area of the inner flow passage 4 is controlled at 1/3 - 1/2. .
  • the turbine casing 1 is provided with a turbine casing inlet mounting plate 20, and the turbine casing inlet mounting plate 20 is provided with a left outer flow passage 9 and a turbine casing right outer flow passage 10, respectively.
  • a turbine casing inlet hole 19 communicating with the inner flow passage 11 on the left side of the turbine casing and the inner flow passage 12 on the right side of the turbine casing.
  • an exhaust pipe outlet mounting plate 15 is provided at the outlet of the exhaust manifold 16, and the number and position of the exhaust pipe outlet mounting plate 15 are provided with the turbine casing.
  • Inlet 19 Corresponding exhaust pipe outlet hole 17.
  • the exhaust manifold 16 is provided with four flow passages, including two exhaust pipe outlet outer flow passages 25 and two exhaust pipe outlet inner flow passages 26, wherein the two exhaust pipe outlet outer flow passages 25 and the turbine respectively
  • the left outer flow passage 9 of the casing and the outer outer flow passage 10 of the turbine casing are correspondingly communicated, and the two inner exhaust passages 26 of the exhaust pipe are respectively in communication with the inner flow passage 11 on the left side of the turbine casing and the inner flow passage 12 on the right side of the turbine casing.
  • the turbine casing inlet mounting plate 20 and the exhaust pipe outlet mounting plate 15 are bolted together.
  • a valve 18 is disposed at a position near the exhaust pipe outlet of the two exhaust pipe outlets in the exhaust manifold 16 , and one end of the valve 18 and the exhaust manifold 16 are respectively disposed.
  • the pipe walls are hinged, and the wide door 18 is opened or closed according to a preset program by the engine operating parameters monitored by the external control system 21.
  • valve 18 When the engine is in high working condition, the valve 18 is opened, as shown by the solid line in the figure, the four flow passages of the turbine casing are simultaneously inducted; when the engine is in low working condition, the valve 18 is closed, as indicated by the dotted line in the figure, the wide door guides the airflow into the air.
  • the invention realizes simultaneous intake of four flow passages in the turbine shell under the high working condition of the engine, effectively utilizes the pulse energy of the engine exhaust in the high working condition, and further enhances the energy through the setting of the outer runner outlet vane cascade. Utilization rate.
  • the turbine casing only has two internal flow passages to allow the turbine to effectively utilize the exhaust pulse energy of the engine at low operating conditions. Therefore, the purpose of effectively utilizing the engine exhaust pulse energy under both high and low engine conditions is achieved.
  • the simultaneous design of the turbine and its associated exhaust pipe mechanism further enhances the utilization of engine exhaust energy.
  • This type of pulsed variable flow turbine is simple to process and can be completed using the same materials and existing casting and machining techniques.
  • Embodiment 2 as shown in FIG. 7 and FIG. 8, on the basis of Embodiment 1, it can also be on the right side of the turbine casing.
  • a turbine casing outlet baffle 22 having an arc-shaped cross section is disposed at an inner flow passage 12 and a right outer flow passage 10 of the turbine casing near the turbine casing outlet 14 to cancel the position of the partition plate corresponding to the original installation on the inner wall of the turbine casing.
  • the turbine casing outlet baffle 22 has an arc between 0 degrees and 180 degrees, and the turbine casing right inner flow passage 12 and the turbine casing right outer flow passage 10 correspond to the turbine casing outlet partition 22 The exit is closed.
  • the outer flow passage 9 on the left side of the turbine casing and the outer outer flow passage 10 on the right side of the blast casing stop the intake, and the exhaust gas of the engine flows into the inner flow passage 11 on the left side of the turbine casing and the inner flow passage 12 on the right side of the turbine casing, wherein
  • the flow of the outlet of the inner flow passage 11 on the left side of the turbine casing realizes the work of the entire circumference of the turbine impeller 2, and the outlet flow of the inner flow passage 12 on the right side of the turbine casing is at an angle of the end of the arc-shaped partition 22 to a section of 360 arc to the turbine impeller. 2 work.
  • the four flow passages inside the turbine casing are simultaneously inducted, and the pulse energy of the engine exhaust in the high working condition is effectively utilized, and the setting of the static vane outlet through the outer flow passage is further improved. Energy utilization.
  • the turbine casing only has two internal flow passages to allow the turbine to effectively utilize the exhaust pulse energy of the engine at low operating conditions. Therefore, the purpose of effectively utilizing the engine exhaust pulse energy under both high and low engine conditions is achieved.
  • the turbine casing outlet baffle 22 Due to the arrangement of the turbine casing outlet baffle 22, the turbine casing is left in the state of opening and closing the valve.
  • the side runner and the right runner work on the turbine impeller in different circumferential ranges, which alleviates the problem of uneven inlet airflow around the turbine impeller to some extent, and reduces the airflow blending loss at different runner outlets. , further improve the efficiency of the turbine wheel.
  • the turbine and its associated exhaust pipe mechanism further increase the utilization of engine exhaust energy.
  • This type of pulsed variable flow turbine is simple to process and can be completed using the same materials and existing casting and machining techniques.
  • Embodiment 3 Referring to Embodiment 2, on the basis of Embodiment 1, as shown in FIG. 10, a symmetrical cross section may be provided at two exit positions of the left outer flow passage 9 of the turbine casing and the outer outer flow passage 10 of the turbine casing.
  • the blade of the stationary blade cascade 13 originally installed on the inner wall of the turbine casing corresponding to the position of the baffle is eliminated, and the arc of the turbine casing outlet baffle 23 is between 0 and 180 degrees. between.
  • the valve 18 When the engine is running at high operating conditions, the valve 18 is opened, the four flow passages of the turbine casing are simultaneously inducted, the left inner flow passage 11 of the turbine casing and the outer flow passage 12 of the right side of the turbine casing are exhausted to achieve the entire circumference of the turbine impeller 2 The work is performed, and the outlet flow of the left outer flow passage 9 of the turbine casing and the outer flow passage 10 of the right side of the turbine casing works on the turbine impeller 2 at an angle section of the end of the arcuate partition 23 to a section 360 arc. .
  • the four flows in the turbine casing are simultaneously introduced, and the pulse energy of the engine exhaust in the high working condition is effectively utilized, and the energy is further improved by the setting of the outer runner exiting the stationary cascade. Utilization rate. ; - In the low engine operating conditions, the turbine casing only has two internal flow passages, allowing the turbine to effectively utilize the engine's exhaust pulse energy at low operating conditions. Therefore, the purpose of effectively utilizing the engine exhaust pulse energy under both high and low engine conditions is achieved.
  • the left inner flow passage 11, the right inner inner flow passage 12, the left outer outer flow passage 9 and the right outer outer flow passage 10 are realized in the circumferential direction of the word in the open state of the wide door.
  • the purpose is to make the inlet flow of the turbine impeller more uniform, and to further improve the efficiency of the turbine impeller while reducing the mixing loss of different flow passages at the turbine casing outlet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Description

脉冲可变流道涡轮机装置
技术领域:
本发明涉及一种内燃机增压装置, 具体地说是一种用于车用涡轮增压器的 脉冲可变流道涡轮机装置。
背景技术:
近年来, 随着发动机性能的提升以及排放法规的日益严格, 对车用涡轮增 压器的性能提出了更高的要求。 为了满足发动机全工况范围内的性能要求, 可 变几何涡轮增压技术受到越来越多的重视, 其中可变流道涡轮技术因其结构简 单、 可靠性好等优点得到了更为广泛的应用。
在多缸发动机中, 为了充分利用发动机不同气缸排气门开启时的脉冲能 量, 双流道蜗壳应用越来越广泛。 如图 1所示, 传统的双流道涡轮增压器的蜗 轮机部分包括涡轮壳 1、 涡轮叶轮 2和出气口 3三部分, 其中涡轮壳 1的内部 流道被中间隔板 5分隔成左侧内部流道 4a和右侧内部流道 4b两部分。
正常工作情况下, 左侧内部流道 4a和右侧内部流道 4b的进气口分别连接 发动机不同汽缸的排气歧管, 发动机汽缸排气以脉冲波的形式在左侧内部流道 4a和右侧内部流道 4b中传播并相继通过涡轮喷嘴,作用 f涡轮叶轮 2,并在涡 轮叶轮 2的流道内膨胀做功, 推动涡轮叶轮 2旋转。 涡轮叶轮 2通过涡轮轴 6 带动压气机叶轮旋转从而实现对发动机增压的目的。 做完功的气体通过出气口 3最终流入发动机排气总管。
然而双流道蜗壳若与发动机设计匹配在高运行工况, 则在低工况时, 气体 流量减小, 涡轮壳 1的内部流道体积则相对较大, 脉冲波减弱, 脉冲能量到不 到有效利用; 若与发动机设计匹配在低运行工况, 则所设计的蜗轮壳 1势必较 小, 在发动机高工况时, 涡轮壳内的流速必然增大, 流动损失相应增加, 同时 较小的涡轮壳在发动机高工况下的热负荷性能会相应降低。
为了适应发动机高低负荷排气性能, 提升涡轮机效率, 在双流道涡轮机基 础上开发了多种可变截面涡轮机结构, 但传统的可变截面涡轮机和与之相匹配 的发动机排气管往往独立设计, 匹配在一起性能势必受到影响, 传统的可变截 面涡轮机阀门设置在涡轮壳内部, 阔门处会造成较大的气动损失, 同时传统的 可变截面涡轮机涡轮壳由于流道较少在与多缸机匹配时, 合理组织发动机排气 脉冲的能力受到制约。
因此, 设计一种在发动机高低工况下均能有效组织排气脉冲, 充分利用发 动机废气能量的高性能可变截面涡轮机系统具有重要意义。
发明内容:
本发明所要解决的问题是要提供一种能够在发动机高低工况下均能高效 利用发动机排气脉冲能量的脉冲可变流道涡轮机装置。
为了解决上述问题,本发明采用的技术方案是:
一种脉冲可变流道涡轮机装置, 包括涡轮壳, 涡轮壳内设有涡轮叶轮和出 气口, 所述涡轮壳的进口处连接有排气歧管, 所述涡轮壳内具有内部流道, 所 述内部流道靠近涡轮叶轮的位置设有涡轮壳出口, 所述内部流道内设有中间隔 板, 所述中间隔板将内部流道分隔成左侧流道和右侧流道。
在左侧流道和右侧流道内分别设有弧形隔板, 所述弧形隔板的一端与中间 隔板固接, 另一端设置在靠近涡轮壳出口的位置处。
作为一种具体技术方案:
所述的流道内部隔板包括, 将涡轮壳流道分为左右流道的中间隔板以及将 左右流道分开的弧形隔板, 弧形隔板与涡轮壳铸为一体。 ^
以下是本发朋对上述方案的进一步改进: 位于左侧流道的弧形隔板将左侧流道分隔成涡轮壳左侧外流道和涡轮壳左 位于右侧流道的弧形隔板将右侧流道分隔成涡轮壳右侧外流道和涡轮壳右 侧内流道;
所述涡轮壳左侧外流道、 涡轮壳左侧内流道、 涡轮壳右侧外流道和涡轮壳 右侧内流道分别与涡轮壳出口连通。
更进一步改进:
为了减小涡轮壳出口的流动损失, 弧形隔板位于涡轮壳左侧外流道内的外 壁弧线与涡轮壳位于涡轮壳左侧外流道内的内壁弧线在靠近涡轮壳出口部位平 行;
弧形隔板位于涡轮壳左侧内流道和涡轮壳右侧内流道内的内壁弧线与中间 隔板的壁面在靠近涡轮壳出口部位平行。
更进一步改进:
为了控制发动机高工况下废气从涡轮壳左侧外流道和涡轮壳右侧外流道流 入涡轮叶轮的气流角度, 更加充分地利用废气能量, 在涡轮壳左侧外流道和涡 轮壳右侧外流道内靠近涡轮壳出口的位置全周范围内设置一排静叶栅, 所述静 叶栅叶片倾斜安装在涡轮壳外流道出口处, 所述静叶栅叶片焊接在涡轮壳内壁 上。'
更进一步改进:
所述的弧形隔板与涡轮壳内壁一样在流向方向上呈渐^ I型, 涡轮壳左侧内 流道和涡轮壳右侧内流道截面积之和与内部流道总截面积之比为 1/3〜1/2。
更进一步改进:
所述涡轮壳的进口处设有涡轮壳进口安装板, 在涡轮壳进口安装板上设有 分别与涡轮壳左侧外流道、 涡轮壳右侧外流道、 涡轮壳左侧内流道和涡轮壳右 侧内流道连通的涡轮壳进孔。
更进一步改进:
所述排气歧管的出口处设有与涡轮壳进口安装板连接的排气管出口安装 板,在排气管出口安装板上设有数量和位置都与涡轮壳进孔对应的排气管出孔。
更进一步改进:
所述排气歧管内设有四个流道, 分别两个排气管出口外流道和两个排气管 出口内流道, 其中两个排气管出口外流道分别与涡轮壳左侧外流道和涡轮壳右 侧外流道对应连通, 两个排气管出口内流道分别与涡轮壳左侧内流道和涡轮壳 右侧内流道对应连通。
更进一步改进:
为了减小阀门处的流动损失, 同时减小发动机低工况时排气管内的排气空 间, 进一步提升排气脉冲能量的利用率, 所述排气歧管内的两个排气管出口外 流道靠近排气管出口的位置分别设有阀门, 所述阀门的一端与排气歧管的管壁 之间铰接。
在发动机高工况下, 阀门打开, 气流顺利流入涡轮壳四个流道; 在发动机 低工况下, 阀门关闭, 阀门引导气流流入涡轮壳两个内流道。
另一种改进: 涡轮壳右侧内流道和涡轮壳右侧外流道内靠近涡轮壳出口位 置处设置截面为弧形的涡轮壳出口隔板, 所述涡轮壳出口隔板的弧度在 0度 -180度之间, 涡轮壳右侧内流道和涡轮壳右侧外流道与涡轮壳出口隔板相对应 的出口处封闭。 取消该隔板位置所对应的原先安装在涡轮壳内壁上的静叶栅叶 实现对涡轮叶轮的全周做功, 涡轮壳右侧外流道和涡轮壳右侧内流道的两个出 口的气流在弧形隔板末端所在角度截面到 360 截面弧度范围内对涡轮叶轮做 功。
当阀门关闭时, 涡轮壳左侧外流道和涡轮壳右侧外流道停止进气, 发动机 废气全部流入涡轮壳左侧内流道和涡轮壳右侧内流道中, 其中涡轮壳左侧内流 道出口气流实现对涡轮叶轮的全周做功, 涡轮壳右侧内流道的出口气流在弧形 隔板末端所在角度截面到 360截面弧度范围内对涡轮叶轮做功。
另一种改进:
在涡轮壳左侧外流道和涡轮壳右侧外流道的两个出口位置设置对称的截面 为弧形的涡轮壳出口隔板, 取消该隔板位置所对应的原先安装在涡轮壳内壁上 的静叶栅叶片, 所述涡轮壳出口隔板的弧度在 0度 -180度之间。
当发动机运行在高工况时, 阀门打开, 涡轮壳四个流道同时进气, 涡轮壳 左侧内流道和涡轮壳右侧内流道出口气流实现对涡轮叶轮的全周做功, 涡轮壳 左侧外流道和涡轮壳右侧外流道的出口气流在弧形隔板末端所在角度截面到 360截面弧度范围内对涡轮叶轮做功。 '
在发动机高工况时, 实现涡轮壳内部四个流道同时进气, 有效利用了高工 况时发动机排气的脉冲能量, 并通过外流道出口静叶栅的设置进一步提升了能 量的利用率。
在发动机低工况时, 涡轮壳仅内部两个流道进气, 使涡轮有效利用了低工 况时发动机的排气脉冲能量。 从而实现了在发动机高低工况下均能有效利用发 动机排气脉冲能量的目的。
由于涡轮壳出口隔板的设置, 在阀门开启的状态下, 实现了左侧内流道、 右侧内流道、 左侧外流道和右侧外流道在不同圆周方向做功的目的, 从而使涡 轮叶轮入口气流更加均匀, 在减小涡轮壳出口不同流道惨混损失的同时, 进一 步提升涡轮叶轮的效率。
本发明将发动机排气系统和涡轮机作为一个系统来考虑, 在传统排气总管 和双流道涡轮壳的基础上, 在左右排气通道和涡壳流道内部按照不同的设计工 况, 将排气总管及涡轮壳内部分成四个不同流动区域。
在发动机高工况时, 实现涡轮壳内部四个流道同时进气, 有效利用了高工 况时发动机排气的脉冲能量, 并通过外流道出口静叶栅的设置进一步提升了能 量的利用率。 在发动机低工况时, 涡轮壳仅内部两个流道进气, 使涡轮机有效 利用了低工况时发动机的排气脉冲能量。 从而实现了在涡轮机高低工况下均能 有效利用发动机排气脉冲能量的目的。 由于涡轮壳出口挡 ¾¾的设置, 实现了涡 轮壳不同流道在不同圆周范围内对涡轮叶轮做功的目的, 可以使涡轮叶轮全周 气流更加均匀, 进一步提升了涡轮性能。
下面结合附图和实施例对本发明进一步描述:
附图说明:
附图 1是背景技术中双流道蜗壳的结构示意图;
附图 2本发明实施例 1中脉冲可变流道涡轮及排气管的组装图; 附图 3本发明实施例 1中可变流道涡轮的结构示意图;
附图 4是本发明实施例 1中涡轮壳外部结构图;
附图 5是本发明实施例 1中排气管的外观图;
附图 6本发明实例 1中脉冲可变流道涡轮入口及排气管出口内部流道及阀 门位置示意图;
附图 7本发明实施例 2的结构示意图; 附图 8是本发明实施例 2中可变流道涡轮内部流道剖面示意图;
附图 9是附图 8中的 A- A向剖视图;
附图 10是本发明实施例 3的结构示意图。
图中: 1-涡轮壳; 2-涡轮叶轮; 3-出气口; 4a-左侧内部流道; 4b-右侧内 部流道; 5-中间隔板; 6-涡轮轴; 7-弧形隔板; 8-涡轮壳内壁; 9-涡轮壳左侧 外流道; 10-涡轮壳右侧外流道; 11-涡轮壳左侧内流道 ; 12-涡轮壳右侧内流 道; 13-静叶栅; 14-涡轮壳出口; 15-排气管出口安装板; 16-排气歧管; 17- 排气管出孔; 18-阀门; 19-涡轮壳进孔; 20-涡轮壳进口安装板; 21-控制系统; 22、 23-涡轮壳出口隔板; 25-排气管出口外流道; 26-排气管出口内流道。 具体实施方式
实施例 1, 如图 2所示, 一种脉冲可变流道涡轮机装置, 包括涡轮壳 1, 所 述涡轮壳 1的进口处连接有排气歧管 16。
如图 3所示, 涡轮壳 1 内设有涡轮叶轮 2和出气口 3, 在涡轮叶轮 2上安 装有涡轮轴 6, 所述涡轮壳 1 内具有内部流道, 所述内部流道靠近涡轮叶轮 2 的位置设有涡轮壳出口 14, 所述内部流道内设有中间隔板 5, 所述中间隔板 5 将内部流道分隔成左侧流道和右侧流道。
在左侧流道和右侧流道内分别设有弧形隔板 7, 所述弧形隔板 7的一端与 中间隔板 5固接, 另一端设置在靠近涡轮壳出口 14的位置处。
位于左侧流道的弧形隔板 7将左侧流道分隔成涡轮壳左侧外流道 9和涡轮 壳左侧内流道 11。
位于右侧流道的弧形隔板 7将右侧流道分隔成涡轮壳右侧外流道 10和涡轮 壳右侧内流道 12。
所述涡轮壳左侧外流道 9、 涡轮壳左侧内流道 11、 涡轮壳右侧外流道 10 和涡轮壳右侧内流道 12分别与涡轮壳出口 14连通。
所述弧形隔板 7、 中间隔板 5与涡轮壳 1一体铸造成型。
为了保证废气在涡壳流道内较好的气动性能, 所述弧形隔板 7与涡轮壳内 壁一样在流向方向上呈渐缩型, 弧形隔板截面的内壁弧线和外壁弧线均与涡轮 壳截面内壁弧线形状相近。
为了减小涡轮壳出口 14的流动损失,弧形隔板 7位于涡轮壳左侧外流道 9 内的外壁弧线与涡轮壳 1位于涡轮壳左侧外流道 9内的内壁弧线在靠近涡轮壳 出口 14部位平行。
弧形隔板 Ί位于涡轮壳左侧内流道 11和涡轮壳右侧内流道 12内的内壁弧 线与中间隔板 5的壁面在靠近涡轮壳出口 14部位平行。
为了控制发动机高工况下废气从涡轮壳左侧外流道 9和涡轮壳右侧外流道 10流入涡轮叶轮 2的气流角度, 更加充分地利用废气能量, 在涡轮壳左侧外流 道 9和涡轮壳右侧外流道 10内靠近涡轮壳出口 14的位置全周范围内设置一排 静叶栅 13, 所述静叶栅 13叶片倾斜安装在祸轮壳外流道出口处, 所述静叶栅 13叶片焊接在涡轮壳内壁上。
为了保证在发动机低工况下内流道形成较好的脉冲波, 涡轮壳左侧内流道 11和涡轮壳右侧内流道 12截面积之和与内部流道 4截面积之比控制在 1/3— 1/2。 .
如图 4所示, 所述涡轮壳 1的进口处设有涡轮壳进口安装板 20, 在涡轮壳 进口安装板 20上设有分别与涡轮壳左侧外流道 9、涡轮壳右侧外流道 10、涡轮 壳左侧内流道 11和涡轮壳右侧内流道 12连通的涡轮壳进孔 19。
如图 5所示,为了与涡轮机相配合,所述排气歧管 16的出口处设有排气管 出口安装板 15, 在排气管出口安装板 15上设有数量和位置都与涡轮壳进孔 19 对应的排气管出孔 17。
所述排气歧管 16内设有四个流道, 包括两个排气管出口外流道 25和两个 排气管出口内流道 26, 其中两个排气管出口外流道 25分别与涡轮壳左侧外流 道 9和涡轮壳右侧外流道 10对应连通, 两个排气管出口内流道 26分别与涡轮 壳左侧内流道 11和涡轮壳右侧内流道 12对应连通。
涡轮壳进口安装板 20和排气管出口安装板 15之间用螺栓固定连接。 如图 6所示, 所述排气歧管 16内的两个排气管出口外流道 25靠近排气管 出口的位置分别设有阀门 18,所述阀门 18的一端与排气歧管 16的管壁之间铰 接, 所述阔门 18通过外部控制系统 21所监测的发动机运行参数按照预先设定 的程序开启或关闭。
发动机高工况时, 阀门 18开启, 如图中实线所示, 涡轮壳四个流道同时 进气; 发动机低工况时, 阀门 18关闭, 如图中虚线所示, 阔门引导气流进入涡 轮壳左侧内流道 11和涡轮壳右侧内流道 12。
本发明在发动机高工况时, 实现涡轮壳内部四个流道同时进气, 有效利用 了高工况时发动机排气的脉冲能量, 并通过外流道出口静叶栅的设置进一步提 升了能量的利用率。
在发动机低工况时, 涡轮壳仅内部两个流道进气, 使涡轮有效利用了低工 况时发动机的排气脉冲能量。 从而实现了在发动机高低工况下均能有效利用发 动机排气脉冲能量的目的。 同时设计的涡轮机以及与之相匹配的排气管机构进 一步提升了发动机排气能量的利用率。 该类型脉冲可变流道涡轮工艺简单, 可 以采用同类材料和现有的铸造及加工技术完成。
实施例 2, 如图 7、 图 8所示, 在实施例 1的基础上, 还可以在涡轮壳右侧 内流道 12和涡轮壳右侧外流道 10内靠近涡轮壳出口 14位置处设置一截面为弧 形的涡轮壳出口隔板 22,取消该隔板位置所对应的原先安装在涡轮壳内壁上的 静叶栅 13叶片。
如图 9所示, 所述涡轮壳出口隔板 22的弧度在 0度 -180度之间, 涡轮壳 右侧内流道 12和涡轮壳右侧外流道 10与涡轮壳出口隔板 22相对应的出口处封 闭。
当阀门 18打开时, 涡轮壳左侧外流道 9和涡轮壳左侧内流道 11的两个出 口的气流实现对涡轮叶轮 2的全周做功,涡轮壳右侧外流道 10和涡轮壳右侧内 流道 12的两个出口的气流在弧形隔板 22末端所在角度截面到 360截面弧度范 围内对涡轮叶轮 2做功。
当阀门 18关闭时,涡轮壳左侧外流道 9和祸轮壳右侧外流道 10停止进气, 发动机废气全部流入涡轮壳左侧内流道 11和涡轮壳右侧内流道 12中, 其中涡 轮壳左侧内流道 11出口气流实现对涡轮叶轮 2的全周做功,涡轮壳右侧内流道 12的出口气流在弧形隔板 22末端所在角度截面到 360截面弧度范围内对涡轮 叶轮 2做功。
本实施例在发动机高工况时, 实现涡轮壳内部四个流道同时进气, 有效利 用了高工况时发动机排气的脉冲能量, 并通过外流道出口静叶栅的设置进一歩 提升了能量的利用率。
在发动机低工况时, 涡轮壳仅内部两个流道进气, 使涡轮有效利用了低工 况时发动机的排气脉冲能量。 从而实现了在发动机高低工况下均能有效利用发 动机排气脉冲能量的目的。
由于涡轮壳出口隔板 22 的设置, 实现在阀门开闭两禾中状态下, 涡轮壳左 侧流道和右侧流道在不同圆周范围内对涡轮叶轮做功的目的, 在一定程度上缓 解了涡轮叶轮全周进气不均匀的问题, 同时减小了不同流道出口的气流掺混损 失, 进一步提升涡轮叶轮的效率。
涡轮机以及与之相匹配的排气管机构进一步提升了发动机排气能量的利 用率。 该类型脉冲可变流道涡轮工艺简单, 可以采用同类材料和现有的铸造及 加工技术完成。
实施例 3: 参照实施例 2, 在实施例 1的基础上, 如图 10所示, 还可以在 涡轮壳左侧外流道 9和涡轮壳右侧外流道 10的两个出口位置设置对称的截面为 弧形的涡轮壳出口隔板 23,取消该隔板位置所对应的原先安装在涡轮壳内壁上 的静叶栅 13叶片, 所述涡轮壳出口隔板 23的弧度在 0度 -180度之间。
当发动机运行在高工况时, 阀门 18打开, 涡轮壳四个流道同时进气, 涡轮 壳左侧内流道 11和涡轮壳右侧内流道 12出口气流实现对涡轮叶轮 2的全周做 功, 涡轮壳左侧外流道 9和涡轮壳右侧外流道 10的出口气流在弧形隔板 23末 端所在角度截面到 360截面弧度范围内对涡轮叶轮 2做功。.
本实施例在发动机高工况时, 实现涡轮壳内部四个流 同时进气, 有效利 用了高工况时发动机排气的脉冲能量, 并通过外流道出口静叶栅的设置进一步 提升了能量的利用率。 ; - 在发动机低工况时, 涡轮壳仅内部两个流道进气, 使涡轮有效利用了低工 况时发动机的排气脉冲能量。 从而实现了在发动机高低工况下均能有效利用发 动机排气脉冲能量的目的。
由于涡轮壳出口隔板 23 的设置, 在阔门开启的状态下, 实现了左侧内流 道 11、 右侧内流道 12、 左侧外流道 9和右侧外流道 10在不词圆周方向做功的 目的, 从而使涡轮叶轮入口气流更加均匀, 在减小涡轮壳出口不同流道掺混损 失的同时, 进一步提升涡轮叶轮的效率。

Claims

权利要求
1、 一种脉冲可变流道涡轮机装置, 包括涡轮壳 (1), :涡轮壳 (1) 内设有 涡轮叶轮(2)和出气口 (3), 所述涡轮壳(1)的进口处连接有排气歧管(16), 所述涡轮壳 (1) 内具有内部流道, 所述内部流道靠近涡轮叶轮 (2) 的位置设 有涡轮壳出口 (14), 所述内部流道内设有中间隔板 (5), 所述中间隔板 (5) 将内部流道分隔成左侧流道和右侧流道, 其特征在于:
在左侧流道和右侧流道内分别设有弧形隔板(7), 所述弧形隔板(7)的一 端与中间隔板 (5) 固接, 另一端设置在靠近涡轮壳出口 (14) 的位置处。
2、 根据权利要求 1所述的脉冲可变流道涡轮机装置, 其特征在于: 位于左侧流道的弧形隔板 (7) 将左侧流道分隔成涡轮壳左侧外流道〈9) 和涡轮壳左侧内流道 (11);
位于右侧流道的弧形隔板 (7) 将右侧流道分隔成涡轮壳右侧外流道 (10) 和涡轮壳右侧内流道 (12);
所述涡轮壳左侧外流道(9)、 涡轮壳左侧内流道(11)、 涡轮壳右侧外流道 (10) 和涡轮壳右侧内流道 (12) 分别与涡轮壳出口 (14) 连通。
3、 根据权利要求 2所述的脉冲可变流道涡轮机装置, 其特征在于: 弧形隔板(7)位于涡轮壳左侧外流道(9) 内的外壁弧线与涡轮壳(1)位 于涡轮壳左侧外流道 (9) 内的内壁弧线在靠近涡轮壳出口 (14) 部位平行; 弧形隔板(7)位于涡轮壳左侧内流道(11)和涡轮壳右侧内流道(12) 内 的内壁弧线与中间隔板 (5) 的壁面在靠近涡轮壳出口 (14) 部位平行。
4、根据权利要求 2或 3所述的脉冲可变流道涡轮机装置, 其特征在于: 在 涡轮壳左侧外流道(9)和涡轮壳右侧外流道(10) 内靠近涡轮壳出口 (14) 的 位置全周范围内分别设置一排静叶栅(13), 所述静叶栅(13)的叶片倾斜安装 在涡轮壳外流道出口处。
5、根据权利要求 4所述的脉冲可变流道涡轮机装置,其特征在于: 所述静 叶栅 (13 ) 的叶片悍接在涡轮壳内壁上。
6、根据权利要求 4所述的脉冲可变流道涡轮机装置, 其特征在于: 涡轮壳 左侧内流道 (11 ) 和涡轮壳右侧内流道 (12 ) 截面积之和与内部流道总截面积 之比为 1/3〜1/2。
7、根据权利要求 4所述的脉冲可变流道涡轮机装置, 其特征在于: 所述涡 轮壳 (1 ) 的进口处设有涡轮壳进口安装板 (20), 在涡轮壳进口安装板 (20) 上设有分别与涡轮壳左侧外流道(9)、 涡轮壳右侧外流道(10 )、 涡轮壳左侧内 流道 (11 ) 和涡轮壳右侧内流道 (12) 连通的涡轮壳进孔 (19)。
8、根据权利要求 7所述的脉冲可变流道涡轮机装置, 其特征在于: 所述排 气歧管 (16) 的出口处设有与涡轮壳进口安装板 (20) 连接的排气管出口安装 板 (15), 在排气管出口安装板 (15) 上设有数量和位置都与涡轮壳进孔 (19 ) 对应的排气管出孔 (17)。
9、根据权利要求 8所述的脉冲可变流道涡轮机装置, 其特征在于: 所述排 气歧管 (16 ) 内设有四个流道, 分别两个排气管出口外流道 (25) 和两个排气 管出口内流道(26 ), 其中两个排气管出口外流道(25 )分别与涡轮壳左侧外流 道(9)和涡轮壳右侧外流道(10)对应连通, 两个排气管出口内流道(26 )分 别与涡轮壳左侧内流道 (11 ) 和涡轮壳右侧内流道 (12 ) 对应连通。
10、 根据权利要求 9所述的脉冲可变流道涡轮机装置, 其特征在于: 所述 排气歧管 (16) 内的两个排气管出口外流道 (25) 靠近排气管出口的位置分别 设有阀门 (18), 所述阀门 (18) 的一端与排气歧管 (16 ) 的管壁之间铰接。
11、 根据权利要求 2或 3所述的脉冲可变流道涡轮机装置, 其特征在于: 涡轮壳右侧内流道 (12) 和涡轮壳右侧外流道 (10) 内靠近涡轮壳出口 (14) 位置处设置截面为弧形的涡轮壳出口隔板(22), 所述涡轮壳出口隔板(22)的 弧度在 0度 -180度之间。
12、根据权利要求 11所述的脉冲可变流道涡轮机装置, 其特征在于: 涡轮 壳右侧内流道 (12) 和涡轮壳右侧外流道 (10) 与涡轮壳出口隔板 (22) 相对 应的出口处封闭。
13、 根据权利要求 2或 3所述的脉冲可变流道涡轮机装置, 其特征在于: 在涡轮壳左侧外流道(9)和涡轮壳右侧外流道(10)的两个出口位置设置对称 的截面为弧形的涡轮壳出口隔板(23), 所述涡轮壳出口隔板(23) 的弧度在 0 度 -180度之间。
PCT/CN2010/002167 2010-08-03 2010-12-27 脉冲可变流道涡轮机装置 WO2012016366A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10855504.6A EP2602450A4 (en) 2010-08-03 2010-12-27 PULSE TURBINE DEVICE WITH MODIFYING FLOW CHANNEL
US13/757,840 US9249719B2 (en) 2010-08-03 2013-02-03 Turbine device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102428627A CN101936214B (zh) 2010-08-03 2010-08-03 脉冲可变流道涡轮机装置
CN201010242862.7 2010-08-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/757,840 Continuation-In-Part US9249719B2 (en) 2010-08-03 2013-02-03 Turbine device

Publications (1)

Publication Number Publication Date
WO2012016366A1 true WO2012016366A1 (zh) 2012-02-09

Family

ID=43389749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/002167 WO2012016366A1 (zh) 2010-08-03 2010-12-27 脉冲可变流道涡轮机装置

Country Status (4)

Country Link
US (1) US9249719B2 (zh)
EP (1) EP2602450A4 (zh)
CN (1) CN101936214B (zh)
WO (1) WO2012016366A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094704A (zh) * 2011-01-27 2011-06-15 康跃科技股份有限公司 多喷管式可变流量增压装置
CN102383877A (zh) * 2011-10-08 2012-03-21 康跃科技股份有限公司 可变几何的脉冲进气涡轮机的蜗壳装置
CN102562186B (zh) * 2012-01-11 2015-03-04 康跃科技股份有限公司 带导流叶片的分段式蜗壳
US10570928B2 (en) * 2013-03-15 2020-02-25 Regal Beloit America, Inc. Centrifugal blower assembly and method for assembling the same
DE102015209369A1 (de) * 2015-05-21 2016-11-24 Bosch Mahle Turbo Systems Gmbh & Co. Kg Abgasturbolader
CN109184882B (zh) * 2018-08-03 2021-02-05 中国第一汽车股份有限公司 一种增压发动机排气歧管
US20220412221A1 (en) * 2021-06-23 2022-12-29 International Engine Intellectual Property Company, Llc Multiple Scroll Entry Turbine Turbocharger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04140425A (ja) * 1990-09-28 1992-05-14 Aisin Seiki Co Ltd ターボチヤージヤ
US6073447A (en) * 1996-04-25 2000-06-13 Aisin Seiki Kabushiki Kaisha Turbocharger
JP2007309140A (ja) * 2006-05-16 2007-11-29 Toyota Motor Corp ターボチャージャ
CN101598038A (zh) * 2009-07-03 2009-12-09 寿光市康跃增压器有限公司 涡轮增压器双层流道变截面涡轮机
CN201443420U (zh) * 2009-07-03 2010-04-28 寿光市康跃增压器有限公司 一种涡轮增压器双层流道变截面涡轮机
CN201756999U (zh) * 2010-08-03 2011-03-09 康跃科技股份有限公司 一种脉冲可变流道涡轮机装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3313518A (en) * 1966-02-25 1967-04-11 Garrett Corp Turbine control
DE2934041C2 (de) * 1979-08-23 1983-08-11 Günther Prof. Dr.-Ing. 5100 Aachen Dibelius Gesteuerte Abgasturboladerturbine
US4389845A (en) * 1979-11-20 1983-06-28 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Turbine casing for turbochargers
JPS6267237A (ja) * 1985-09-18 1987-03-26 Hitachi Ltd 二流路型排気駆動タ−ボチヤ−ジヤ
DE19618160C2 (de) * 1996-05-07 1999-10-21 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine
DE10061846B4 (de) * 2000-12-12 2004-09-09 Daimlerchrysler Ag Abgasturbolader für eine Brennkraftmaschine
FR2844552B1 (fr) * 2002-09-16 2006-05-26 Renault Sa Moteur suralimente comportant une turbine multi-volutes
US7269950B2 (en) * 2004-05-05 2007-09-18 Precision Industries, Inc. Staged turbocharger
US20090000296A1 (en) * 2007-06-29 2009-01-01 David Andrew Pierpont Turbocharger having divided housing with integral valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04140425A (ja) * 1990-09-28 1992-05-14 Aisin Seiki Co Ltd ターボチヤージヤ
US6073447A (en) * 1996-04-25 2000-06-13 Aisin Seiki Kabushiki Kaisha Turbocharger
JP2007309140A (ja) * 2006-05-16 2007-11-29 Toyota Motor Corp ターボチャージャ
CN101598038A (zh) * 2009-07-03 2009-12-09 寿光市康跃增压器有限公司 涡轮增压器双层流道变截面涡轮机
CN201443420U (zh) * 2009-07-03 2010-04-28 寿光市康跃增压器有限公司 一种涡轮增压器双层流道变截面涡轮机
CN201756999U (zh) * 2010-08-03 2011-03-09 康跃科技股份有限公司 一种脉冲可变流道涡轮机装置

Also Published As

Publication number Publication date
CN101936214B (zh) 2012-08-08
EP2602450A4 (en) 2014-01-22
US20130142650A1 (en) 2013-06-06
CN101936214A (zh) 2011-01-05
US9249719B2 (en) 2016-02-02
EP2602450A1 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2012016366A1 (zh) 脉冲可变流道涡轮机装置
EP3054121B1 (en) Variable geometry nozzle for partitioned volute
US6983596B2 (en) Controlled turbocharger with integrated bypass
US7461507B2 (en) High response compact turbocharger
JP5438686B2 (ja) 車両用内燃機関及びその制御方法
US8522547B2 (en) Exhaust gas turbocharger for an internal combustion engine of a motor vehicle
JP6670760B2 (ja) 非対称デュアル渦巻きを通じる燃料節約及びegr活用のためにパルスエネルギー分離を最適化するデュアル渦巻きターボチャージャ
WO2013104090A1 (zh) 阶段式可调流量涡轮壳
WO2013166626A1 (zh) 双驱并联顺序增压压气机
US20090249786A1 (en) Turbomachine system and turbine therefor
JP5589934B2 (ja) タービン及びターボチャージャ
CN103534461A (zh) 双流涡轮机壳体式涡轮增压器
WO2013049971A1 (zh) 可变几何的脉冲进气涡轮机的蜗壳装置
JP2012500356A (ja) エグゾーストターボチャージャを備える内燃機関
JP2012500356A5 (zh)
WO2011000182A1 (zh) 涡轮增压器双层流道变截面涡轮机
JP5664595B2 (ja) ターボチャージャ
JP2012241545A (ja) エンジンの排気装置
EP3438429B1 (en) Engine with turbo supercharger
WO2005010330A1 (ja) ターボチャージャ
US20180058340A1 (en) Supercharged internal combustion engine with compressor, exhaust-gas recirculation arrangement and flap
KR20150097576A (ko) 볼류트에 구획 베인을 구비한 터빈 하우징
WO2012100387A1 (zh) 多喷管式可变流量增压装置
JP2005509791A (ja) 一体化されたバイパスを備えた被制御ターボ過給機
JP2013002302A (ja) 内燃機関の排気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010855504

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010855504

Country of ref document: EP