WO2010093158A2 - 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치 - Google Patents

지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치 Download PDF

Info

Publication number
WO2010093158A2
WO2010093158A2 PCT/KR2010/000780 KR2010000780W WO2010093158A2 WO 2010093158 A2 WO2010093158 A2 WO 2010093158A2 KR 2010000780 W KR2010000780 W KR 2010000780W WO 2010093158 A2 WO2010093158 A2 WO 2010093158A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
clock
delay
mask
unit
Prior art date
Application number
PCT/KR2010/000780
Other languages
English (en)
French (fr)
Other versions
WO2010093158A3 (ko
Inventor
전현규
문용환
Original Assignee
(주)실리콘웍스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)실리콘웍스 filed Critical (주)실리콘웍스
Priority to US12/920,550 priority Critical patent/US8611484B2/en
Priority to CN201080001351.4A priority patent/CN101999144B/zh
Priority to JP2010550615A priority patent/JP5579625B2/ja
Publication of WO2010093158A2 publication Critical patent/WO2010093158A2/ko
Publication of WO2010093158A3 publication Critical patent/WO2010093158A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/0807Details of the phase-locked loop concerning mainly a recovery circuit for the reference signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • H03L7/0816Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the controlled phase shifter and the frequency- or phase-detection arrangement being connected to a common input
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/08Details of image data interface between the display device controller and the data line driver circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • G09G5/008Clock recovery

Definitions

  • the present invention relates to a receiver device of a display driving system, and more particularly, to a delay lock loop without a separate oscillator for generating a reference clock by eliminating a phase locked loop (PLL) structure in a receiver.
  • the present invention relates to a receiver unit having a delay-locked loop-based clock recovery unit capable of recovering a clock signal embedded with the same size between data signals using a clock recovery unit implemented only with a delay lock loop (DLL) structure.
  • DLL delay lock loop
  • display apparatuses include a timing controller that processes image data and generates timing control signals to drive a panel displaying image data, and a panel using image data and timing control signals transmitted from the timing controller. It is configured to include a data driver for driving.
  • a multi-drop method in which the data driver shares a data signal line and a clock signal line, and a data differential signal and a clock differential signal are used for each data driver.
  • Point-to-Point Differential Signaling (PPDS) transmission system which is supplied separately to the data, and data and clock signals are divided into multiple levels, and data differential signals embedded with such distinct clock signals in the timing controller are respectively separated by separate signal lines.
  • An interface for transmitting to the drive unit and the like are used.
  • the interface for transmitting the data differential signal embedded with the clock signal to the data driver by each independent signal line generates a transmission signal having a periodic transition corresponding to each data bit in the transmitter, wherein the periodic transition is constant. It can be made by the dummy bit inserted between the number of data bits. That is, the part immediately or immediately after the data bit to be transmitted has a different value from the data bit, causing a periodic transition.
  • the receiver provided in the data driver does not receive a separate clock signal, in order to receive the data differential signal in which the clock signal is embedded and restore the original data, embedding is performed between the received differential signal and the data signal. It was necessary to restore the clock signal.
  • the receiving unit should be provided with a recovery circuit for recovering the clock signal.
  • a clock recovery circuit has been generally configured as a phase locked loop (PLL) structure. That is, in order to recover the received data, a reference clock, which is a clock signal generated by an internal oscillation in the receiver, must be provided, such a clock signal recovery circuit includes a phase locked loop having an oscillator for generating a reference clock. It was common to consist of).
  • the receiver provided in the conventional data driver includes a clock generator for generating a received clock signal from a periodic transition of the differential signal received through the signal line; And a sampler for sampling the differential signal according to the received clock signal to recover data bits.
  • the clock generation unit outputs a signal corresponding to a time difference between the periodic transition of the received differential signal and the transition of the feedback clock signal, and the feedback clock signal and the reception according to the signal output from the transition detection circuit. It consists of an oscillator that changes the phase of the clock signal.
  • the oscillation frequency of the oscillator is adjusted by the clock signal input at the initial synchronization, and when data is input thereafter, the transition detector stops or operates the transition detector according to the enable signal. It is configured to.
  • the enable signal is generated by the clock signal input during the initial synchronization. However, since there is no clock edge in the time domain other than the enable signal period, the generation of the received clock signal is not affected.
  • the clock generator recognizes only a rising edge or a falling edge of a received signal made of a dummy bit as a transition in an interval in which the enable signal is logic high, and in the interval in which the enable signal is logic low. Because it is not recognized as a transition, the frequency and phase of the received clock generated by the oscillator are configured so as not to deviate from the periodic transition caused by the dummy bit.
  • the conventional clock generator is configured based on a phase locked loop (PLL) structure having a feature that the feedback signal inside the oscillator is input back to the oscillator to generate an enable signal after initial synchronization.
  • PLL phase locked loop
  • the conventional clock generator based on the PLL structure has a problem in that jitter is continuously accumulated in the PLL loop, which is an internal feedback loop.
  • the conventional clock generation unit is configured to exhibit a characteristic of a delay locked loop (DLL) in which the received signal is directly input to the oscillator to generate an enable signal during initial synchronization, and the feedback signal inside the oscillator is an oscillator after the initial synchronization. It could also be configured to represent the characteristics of a phase locked loop (PLL) input to generate an enable signal.
  • DLL delay locked loop
  • PLL phase locked loop
  • the conventional clock generator configured to operate by a delay locked loop (DLL) structure at the time of initial synchronization and to operate by a phase locked loop (PLL) structure after the initial synchronization is changed in a loop during an operation process. Due to this, there was a problem that disturbances occurred in the oscillation frequency and phase.
  • DLL delay locked loop
  • PLL phase locked loop
  • the technical problem to be solved by the present invention is that the input signal (CED signal) received through the signal line is not input to the voltage controlled oscillator (VCO), the internal clock signal generated by a separate internal oscillator as a reference clock input signal After comparing the phase difference with, the phase of the internal clock signal is adjusted to exclude the phase fixed loop used for data recovery, and the input signal (CED signal) is directly input to the delay line (VCDL) and delayed without a separate internal oscillator.
  • VCO voltage controlled oscillator
  • VCDL delay line
  • the receiver unit is provided with a delay locked loop based clock recovery unit. In providing.
  • Receiving unit device having a delay-locked loop-based clock recovery unit for achieving the above object, the clock signal receiving the input signal (CED signal) that is periodically embedded and transmitted between the data signal, and recovers the clock signal and outputs the clock
  • a receiver unit having a restoring unit and a serial-parallel conversion unit for restoring and outputting a data signal, wherein the input signal (CED signal) is composed of a single level signal periodically embedded between the data signals with the same size as a clock signal.
  • the clock recovery unit may be configured based on a delay locked loop (DLL) in which an internal oscillator for generating a reference clock is excluded.
  • DLL delay locked loop
  • the clock recovery unit of the receiver unit generates a reference clock as the master clock signal (MCLK) is restored by the input signal (CED signal) that the delay lock loop (DLL) is input to the delay line during the clock training period. And generating a reference clock as a master clock signal MCLK, in which a clock signal is restored by an embedded data signal after the clock training period ends.
  • the present invention recovers clock signals embedded and transmitted with the same magnitude between data signals using a clock recovery unit based only on a delay lock loop, thereby preventing jitter from accumulating by a feedback loop in a phase lock loop and delay lock.
  • the mixing of the loop and the phase locked loop has the advantage of preventing disturbances in the oscillation frequency and phase.
  • FIG. 1 is a block diagram of a receiver apparatus for receiving a single level signal embedded with a clock signal according to the present invention.
  • Figure 2 is an illustration of transmission data consisting of a single level signal embedded with a clock signal in accordance with the present invention.
  • FIG. 3 is a block diagram of a clock recovery unit according to the present invention.
  • FIG. 4 is a block diagram of a clock generator according to the present invention.
  • 5 and 6 are timing diagrams illustrating the operation of the clock recovery unit in accordance with the present invention.
  • FIG. 1 is a schematic block diagram of a receiver apparatus for receiving a single level signal embedded with a clock signal according to the present invention.
  • a receiver apparatus for receiving a single level signal embedded with a clock signal receives a single level signal (CED: clock embedded data) transmitted through a serial signal line from a timing controller, converts the signal into parallel data, and then restores the signal.
  • a serial-to-parallel converter 100 for transmitting the recovered data to the display panel and a clock signal embedded in the single-level signal (CED signal) are extracted and used to recover the data signal.
  • a clock recovery unit 200 for transmitting a sampling clock signal to the serial-parallel converter and recovering a recovered clock signal for data output.
  • phase locked loop (PLL) based clock recovery unit in which jitter is continuously accumulated while a clock signal generated by the clock recovery unit 200 passes through an internal feedback loop
  • DLL delay locked loop
  • a clock recovery unit 200 that allows a receiver to recover a clock without using an oscillator for generating a separate reference clock is provided.
  • other components of the receiver such as the serial-to-parallel converter 100 except for the clock recovery unit may be configured similarly to a conventional receiver that receives and restores a single level signal.
  • the configuration of the clock recovery unit 200 configured based on only Bay will be described in detail.
  • the single level signal (CED signal) received by the receiver device is a signal in which a clock signal is embedded between data signals to be transmitted, and the timing controller transmits the signal to the data driver by using a signal line.
  • the single-level signal (CED signal) is preferably embedded in the clock signal is the same size between the data signal, it is a matter of course that the clock signal may be configured to be embedded in a multi-level.
  • the CED signal is an input signal received by the receiver device through a signal line, and may be configured not only as a differential signal but also as a single-ended signal.
  • FIG. 2 is an exemplary diagram of transmission data consisting of a single level signal embedded with a clock signal according to the present invention.
  • the transmission data (CED signal) consisting of the single-level signal is inserted into the clock bits of the same size periodically between the data bits, the data to indicate the rising edge or falling edge of the inserted clock bit And a dummy bit between the clock bit and the clock bit.
  • the dummy bit and the clock bit may vary the width of the signal to facilitate circuit design.
  • the timing controller starts clock training by transmitting transmission data (CED signals) consisting of only clock signals before transmitting data.
  • the data driving unit performs clock training after a combination of the LOCK signal of the delay lock loop (DLL) itself and the LOCK signal input from another adjacent data driving unit or a control signal indicating that the initial synchronization is completed is “H” state (logical high state).
  • the received clock signal to be used for data sampling is restored according to the CED signal transmitted during the period.
  • the LOCK signals (LOCK 1 to LOCK N ) output the “H” state.
  • the timing controller finishes the clock training after a predetermined time and starts the transmission of the CED signal. If the LOCK signal changes to the “L” state (logical low state) during data transmission, the timing controller immediately starts clock training and continues for a predetermined time.
  • FIG. 3 is a block diagram of a clock recovery unit according to the present invention.
  • the clock recovery unit 200 is configured based on only a delay locked loop (DLL), and recovers a clock signal from a single level signal (CED signal), which is data transmitted from a transmitter, and restores data.
  • DLL delay locked loop
  • Delay line 220 that delays the generated master clock signal MCLK and outputs a recovered clock signal recovered to have various phases according to the delay level, and compares the received clock signals in the delay line with a phase difference.
  • a low control signal CTRL is generated and supplied to the delay line.
  • a band pass filter 240 is configured based on only a delay locked loop (DLL), and recovers a clock signal from a single level signal (CED signal), which is data transmitted from a transmitter, and restores data.
  • the clock generator 210 may include a mask signal MASK, a pull-up signal PU, or a pull-down signal PD by at least one of various delayed clock signals output from the delay line 220. And restore the clock signal embedded between the data signals. Accordingly, the clock generator 210 receives delayed clock signals CK 1 , CK 2 ... CK 2N + 1 output from the delay line 220 as an input, and before the delayed clock signals are generated.
  • the master clock signal MCLK is generated by the signal CED signal input during the clock training period. In this case, the number of delay clock signals must be greater than or equal to at least 2N + 1, where N is a natural number representing the number of data bits present between clock bits.
  • FIG. 4 is a block diagram of a clock generator according to the present invention.
  • the clock generator 210 receives the delayed clock signals to generate a mask signal MASK, and switches the cutoff switch by the mask signal to input an input signal.
  • a pull-up unit 214 and a pull-down unit 215 for generating and outputting the first switch 216 and the pull-down connecting one end of the pull-up unit 214 to a voltage power supply VDD; Second switch connecting one end of the unit 215 to the ground power source (GND) Tooth 217 is configured.
  • the LOCK signal is a signal indicating that the initial synchronization is completed, indicating that the operation of the delay lock loop is stabilized or that the external input signal is stabilized.
  • the mask signal generator 211 is configured to delay the delayed clock signals CK 1 , CK 2 ... CK 2N + 1 ) and a masking circuit for generating a mask signal (MASK) for detecting the rising edge or falling edge of the clock signal.
  • the pass switch 212 controls the operation of the cutoff switch 213 while switching by the LOCK signal to transmit a mask signal MASK for detecting an edge of a clock signal.
  • One end is connected to the other end, and the other end is connected to the cutoff switch 213 for blocking the input signal (CED signal) from being transmitted to the output of the clock generator.
  • the pass switch 212 is connected to the mask signal (MASK) to the cutoff switch 213 by a LOCK signal or a logic value of "1", that is, a value indicating a logic high state is connected to the cutoff switch 213. It is configured to be. That is, when the LOCK signal is in a logic high state, the cutoff switch operates by the mask signal MASK, and when the LOCK signal is in a logic low state, the input signal CED signal is a master clock signal MCLK. It is configured to connect directly to.
  • the input signal CED signal is a master clock signal MCLK. It is configured to receive a mask signal MASK from the pass switch 212 that detects an edge by adjusting the transmission to the delay line 220 as it is.
  • disconnect switch 213 is also connected to the connection node of the pull-up unit and the pull-down unit connected to the delay line to block the output of the input signal (CED signal) and output the signal restored by the pull-up or pull-down operation It is configured to.
  • the cutoff switch 213 operates by the mask signal MASK transmitted from the pass switch 212 when the LOCK signal is in a logic high state, and operates the rising or falling edge of the input signal CED signal.
  • the input signal CED is directly transmitted to the master clock signal MCLK while operating by a logic value of “1” when the LOCK signal is in a logic low state.
  • the pass switch 212 is connected to the logic value of "1", and the cutoff switch 213 of the mask signal (MASK)
  • the input signal CED is always transmitted as the master clock signal MCLK regardless of the logic state. Therefore, the clock signal transmitted during the clock training period from the clock generator 210 is transferred to the delay line 220.
  • an initial signal having a period corresponding to a period of a clock inserted between data during transmission by the timing controller is required.
  • Such an initial signal is referred to as a reference clock.
  • VCDL voltage control delay line
  • CCDL current control delay line
  • the transfer of the input signal (CED signal) is controlled by the mask signal MASK generated by the mask signal generator 211, and the rising or falling edge is controlled. Will be detected. That is, while the mask signal is in a logic high (H) state, the clock edge of the input signal (CED signal) is transmitted to an output, but in the section in which the mask signal is a logic low (L) state, By operating the cutoff switch 213 to block the input signal (CED signal) is transmitted as it is, the edge of the clock signal in the input signal (CED signal) by the operation of the pull-up unit or the pull-down unit using one or more delayed clock signal Restoring everything except
  • the pull-up unit 214 and the pull-down unit 215 are the delayed clock signals CK when the LOCK signal is in a logic high state and the mask signal MASK is in a logic low state. 1 , CK 2 ... CK 2N + 1 ) to perform pull-up and pull-down operations by generating a pull-up signal (PU signal) or pull-down signal (PD) by using at least one signal or by combining at least one signal. The rest of the signal except for the edge of the signal is restored.
  • PU signal pull-up signal
  • PD pull-down signal
  • one end of the pull-up unit 214 is connected to the voltage power supply VDD through the first switch 216, and the pull-down unit 215 also includes the second switch 217. It is configured to be connected to the ground power supply (GND) through.
  • the first switch and the second switch are controlled by the LOCK signal so that the switch is cut off when the LOCK signal is in a logic low state (L), and the switch is connected when the LOCK signal is in a logic high state (H). do.
  • the first switch blocks the pull-up unit 214 from connecting the power supply voltage VDD, and the second switch causes the pull-down unit 215 to provide a ground power supply. GND), and when the LOCK signal is in a logic high state, the first switch connects the pull-up unit 214 to a power supply voltage VDD, and the second switch connects the pull-down unit 215. It is connected to the ground voltage GND.
  • the operation of the first switch and the second switch is controlled by the LOCK signal, so that when the LOCK signal of the delay locked loop DLL is in the logic low state L, the master is operated by the malfunction of the pull-up part and the pull-down part. It is possible to prevent the clock signal MCLK from being incorrectly generated.
  • the pull-down signal PD has the voltage of the ground power supply GND at the output with respect to the input which becomes the logic low output because the pull-up unit 214 is turned off and no passage is formed between the voltage power supply VDD and the ground power supply GND.
  • the voltage value of the voltage power supply VDD is output to the output for the input combination which is not formed and becomes a logic high output.
  • the value determined by the switching operation in the pull-up unit 214 and the pull-down unit 215 is output as the master clock signal MCLK and transferred to the delay line 220.
  • the delay line may be configured as a voltage controlled delay line (VCDL) 220 or a current controlled delay line (CCDL), and may include a feedback loop in which an output delay clock signal is input again. It is configured based only on a delay lock loop (DLL: Delay Locked Loop) having a plurality of delay means capable of receiving and delaying and outputting the master clock signal MCLK outputted from the clock generator 210. .
  • DLL Delay Locked Loop
  • the delay line is referred to as a voltage controlled delay line (VCDL) 220 but is not limited thereto.
  • VCDL voltage controlled delay line
  • the delay means is composed of an inverter, the delay means is not limited to the inverter may be of course composed of other delay cells or delay elements.
  • the voltage control delay line 220 generates a delayed clock signal by delaying the master clock signal MCLK output from the clock generator 210 during a clock training period, and then the master clock signal MCLK and the delayed clock. By comparing the phase between two signals whose time difference is equal to the period in which clock bits are inserted, a reference clock can be generated without a separate internal oscillator.
  • the master clock signal MCLK recovers a signal other than the edge of the clock signal included in the input signal CED by the pull-up unit and the pull-down unit. By receiving and delaying the signal, the received clock signal is generated.
  • the plurality of inverters provided in the voltage control delay line 220 includes two inverter pairs as one delay unit, and the delayed clock signals CK1, CK2, CK3, and. CK 2N + 1 ) is generated and output.
  • the delayed clock signals output from the voltage control delay line 220 may be transmitted to the clock generator 210 to restore the remaining portions except for the edge of the clock signal inserted between the data. That is, the delay clock signal is composed of a clock signal delayed while passing through two pairs of inverters, and its output is input to the clock generator 210 so that the LOCK signal is a logic high state and the mask signal MASK is In the case of the logic low state, the rest of the clock signal except for the edge of the clock signal may be restored by the pull-up 214 or pull-down 215 operation.
  • any two clock signals of the input signal of the voltage control delay line 220 and the clock signal delayed in the voltage control delay line 200 compare the delay degree of the clock signal delayed while passing through the inverters,
  • the voltage control signal VCTRL which can change its delay degree, is transmitted to the phase difference detector 230 to receive from the low pass filter 240.
  • the phase detector 230 includes an input clock signal of a delay locked loop DLL and any two clock signals delayed in a delay locked loop based voltage or current control delay line (VCDL, CCDL). Has an input and is configured to generate an up / down signal (UP / DN), which is a delay amount control signal, by the time difference between two clock signals, and output the same to the low pass filter 240.
  • VCDL voltage or current control delay line
  • CCDL voltage or current control delay line
  • the phase difference detector 230 is a master clock signal (MCLK) output from the clock generator 210 when the lock signal is a logic high state and the delay lock loop (DLL) is locked (lock) and Among the delayed clock signals CK 1 , CK 2 , CK 3 , ..., CK 2N + 1 outputted from the voltage or current control delay line, any two clock signals having the same time period as the period in which the clock bits are inserted are selected. It is taken as the input to be compared.
  • two delayed first delayed clock signals CK 1 and second delayed clock signals CK 2N + 1 delayed while passing through all the plurality of inverter pairs provided in the voltage control delay line are provided.
  • it is configured to generate the up / down signals according to the time difference between the two input clock signals, but two delayed clock signals selected as inputs of the phase difference detector are not limited thereto. .
  • the charge pump 240 is a low pass filter. Charges the charge, and when the time difference is a negative signal, the down signal DN, the low-pass filter charge pump 240 discharges the charge while controlling the delay in the delay line 220. .
  • the low pass filter 240 supplies a signal for adjusting a delay level of a delay line by removing or reducing high frequency components of the up / down signal (UP / DN).
  • a charge pump is used. Although illustrated as consisting of, but is not limited to this may be of course composed of various loop filters.
  • the charge pump 240 receives the up / down signal UP / DN and adjusts the voltage control signal VCTRL to a delay line in the voltage control delay line VCDL 220. To output, the output terminal is connected to the inverters provided in the voltage control delay line 220 is configured. Accordingly, the charge pump 240 outputs the voltage control signal VCTRL by removing or reducing high frequency components of the up / down signals generated by the time difference between the two clock signals in the phase difference detector 230.
  • FIG. 5 is a timing diagram illustrating an operation of a clock recovery unit according to the present invention.
  • an input signal (CED signal) having a period corresponding to a period of an externally inserted clock signal at an initial stage of recovering a received clock signal.
  • the clock generator 210 outputs the input signal as the master clock signal MCLK from the clock generator 210 to the delay line VCDL 220. do.
  • the LOCK signal of the delay locked loop DLL is changed from the logic low state L to the logic high state H during the clock training period, and is restored by the master clock signal MCLK restored during the clock training period. Even if a separate oscillator is not provided, a reference clock used to recover a clock signal can be generated.
  • Mask signal MASK for detecting the rising or falling edge of the input signal (CED signal) to recover the received clock signal using a delayed clock signal that is at least one delay line output delayed in the delay line 220. And a pull-up signal that is a signal for driving the pull-up unit 214 and the pull-down unit 215 to generate the remaining portion of the clock signal except for the portion detected by the mask signal. PU) and a pulldown signal PD.
  • the delayed clock signal is delayed by a little bit as delayed by each delay means so that the transition time of the first delayed clock signal CK 1 and the second delayed clock signal CK 2N + 1 is reduced. If it is matched, the up / down signal is unnecessary and maintains the current state. However, when the transition timings of the two signals are inconsistent and the phase difference of the two signals occurs, charge and discharge in the low pass filter 240 are performed. The delay degree is adjusted by the voltage control signal VCTLR generated through the VCTLR.
  • the clock edge of the input signal CED signal is output only when both the LOCK signal and the mask signal MASK generated by the mask signal generator are logic high, and the mask signal MASK is logic low.
  • the pull-up unit 214 and the pull-down unit 215 operate the pull-up signal PU and the pull-down signal PD to restore the rest of the clock signal except the edge.
  • reception of a clock signal embedded in the input signal is restored to the same size as the data signal without preventing the accumulation of jitter by using a separate phase lock loop and without a separate internal oscillator. It is possible to generate a recovered clock.
  • FIG. 6 is a timing diagram illustrating another operation of the clock recovery unit according to the present invention.
  • At least one input signal is delayed and output from the delay line 220 during a clock training period to restore a clock signal embedded in the input signal (CED signal) as described above.
  • the mask signal MASK for detecting the rising or falling edge of the input signal CED signal and the pull-up signal for generating the remaining part of the clock except for the portion detected by the mask signal ( PU) and a pulldown signal PD.
  • the input signal (CED signal) shown in FIG. 6 indicates that a dummy bit is provided in advance of the clock signal, and the clock embedded after the dummy bit in a state where both the LOCK signal and the mask signal MASK are logic high.
  • the transition of the signal is recognized to detect the rising or falling edge.
  • the order of the pull-up signal PU and the pull-down signal PD for driving the pull-up unit and the pull-down unit may be changed depending on whether the rising edge or the falling edge of the input signal CED signal is detected.
  • an initial clock signal to be used in the receiver apparatus is generated by using an input signal (CED signal) transmitted during the clock training period in the receiver apparatus, and the clock embedded in the same size between the data signals by the initial clock signal.
  • a phase locked loop (PLL) for generating an internal oscillating clock signal by detecting an edge of the signal and restoring the remaining portion of the clock signal except for the detected portion to generate a recovered clock signal. It is possible to restore the clock signal from the output signal of the voltage control delay line 220 based on only the delay lock loop (DLL) without the ().

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

본 발명은 디스플레이 구동 시스템의 수신부 장치에 관한 것으로서, 보다 상세하게는 수신부에서 위상고정루프(PLL : Phase Locked Loop) 구조를 배제하여 레퍼런스 클럭(Reference clock)을 생성하기 위한 별도의 발진기 없이 지연고정루프(DLL : Delay Locked Loop) 구조만으로 구현된 클럭 복원부를 이용하여 데이터 신호 사이에 동일한 크기로 임베딩된 클럭 신호를 복원할 수 있게 한 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치에 관한 것이다.

Description

지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치
본 발명은 디스플레이 구동 시스템의 수신부 장치에 관한 것으로서, 보다 상세하게는 수신부에서 위상고정루프(PLL : Phase Locked Loop) 구조를 배제하여 레퍼런스 클럭(Reference clock)을 생성하기 위한 별도의 발진기 없이 지연고정루프(DLL : Delay Locked Loop) 구조만으로 구현된 클럭 복원부를 이용하여 데이터 신호 사이에 동일한 크기로 임베딩된 클럭 신호를 복원할 수 있게 한 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치에 관한 것이다.
일반적으로 디스플레이 장치들은 화상데이터를 디스플레이 하는 패널을 구동하기 위해 화상 데이터를 처리하고 타이밍 제어 신호를 생성하는 타이밍 제어부(Timing Controller)와, 이러한 타이밍 컨트롤러에서 전송되는 화상 데이터와 타이밍 제어 신호를 사용하여 패널을 구동하는 데이터 구동부를 포함하여 구성된다.
상기 타이밍 컨트롤러와 데이터 구동부간에 디스플레이하고자 하는 화상데이터를 전송하는 인터페이스로는, 데이터 신호선과 클럭 신호선을 데이터 구동부들이 공유하는 멀티 드롭 (Multi-Drop) 방식, 데이터 차동신호와 클럭 차동신호들이 각 데이터 구동부에 별도로 공급되는 PPDS(Point-to-Point Differential Signaling) 전송 방식, 및 데이터와 클럭 신호가 멀티 레벨로 구별되며 타이밍 컨트롤러에서 이와 같이 구별된 클럭 신호가 임베딩된 데이터 차동신호를 독립된 각 신호선에 의해 데이터 구동부로 전송하는 인터페이스 등이 이용되고 있다.
또한, 본 출원인은 대한민국 특허출원 제10-2008-0102492호에서 클럭 신호가 동일한 크기로 데이터 신호(LVDS 데이터) 사이에 임베딩된 단일 레벨 신호를 이용하여 데이터와 클럭을 독립된 단일 신호선에 의해 함께 전송하고 수신부에서 이를 복원할 수 있는 인터페이스를 제안한 바 있다.
이때, 상기 클럭 신호가 임베딩된 데이터 차동신호를 독립된 각 신호선에 의해 데이터 구동부로 전송하는 인터페이스에서는 송신부에서 각 데이터 비트들에 대응하면서 주기적인 천이를 갖는 송신신호를 생성하며, 상기 주기적인 천이는 일정한 개수의 데이터 비트들 사이에 삽입된 더미 비트에 의해 만들 수 있게 된다. 즉, 전송하고자 하는 데이터 비트의 직전 또는 직후 부분이 데이터 비트와 상이한 값을 갖도록 하여 주기적인 천이(transition)를 야기하게 된다. 이 경우 데이터 구동부에 구비된 수신부에서는 별도의 클럭 신호를 받지 못하기 때문에, 클럭 신호가 임베딩된 데이터 차동신호를 수신하여 원래의 데이터로 복원하기 위해서는 수신한 차동신호로부터 데이터 신호 사이에 임베딩(embedding)되어 있는 클럭 신호를 복원해야 하였다.
따라서, 수신부에는 클럭 신호를 복원하기 위한 복원회로가 구비되어야 하는데, 종래에는 이러한 클럭 복원회로가 위상고정루프(PLL) 구조로 구성되는 것이 일반적이었다. 즉, 수신한 데이터를 복원하기 위해서는 수신부에서 내부 발진하여 생성되는 클럭 신호인 레퍼런스 클럭(Reference clock)이 있어야 하므로, 이러한 클럭 신호 복원회로는 레퍼런스 클럭을 생성하기 위한 발진기를 구비하는 위상고정루프(PLL)로 구성되는 것이 일반적이었다.
그에 따라, 종래의 데이터 구동부에 구비된 수신부는 대한민국 등록특허공보 제10-868299호에 개시된 바와 같이, 신호선을 통하여 수신한 차동신호의 주기적인 천이로부터 수신 클럭 신호를 생성하는 클럭 생성부와, 상기 수신 클럭 신호에 따라 상기 차동신호를 샘플링하여 데이터 비트들을 복원하는 샘플러를 포함하여 구성되었다.
이때, 상기 클럭 생성부는 수신한 차동신호의 주기적인 천이 및 피드백 클럭 신호의 천이 사이의 시간차에 대응하는 신호를 출력하는 천이검출회로와, 상기 천이검출회로에서 출력되는 신호에 따라 피드백 클럭 신호와 수신 클럭 신호의 위상을 변경하는 발진기를 포함하여 구성되었다.
이 경우 상기 천이검출회로는 초기 동기시에 입력된 클럭 신호에 의해 발진기의 발진 주파수가 맞춰지게 되고, 이후 데이터가 들어오게 되면 인에이블 신호에 따라 천이 검출기(Transition Detector)의 동작을 멈추거나 동작시키도록 구성되었다. 이 경우 초기 동기시에 입력된 클럭 신호에 의하여 인에이블 신호가 발생하지만, 인에이블 신호 구간 이외의 시간 영역에서는 클럭 에지가 없으므로 수신 클럭 신호의 생성에는 영향을 미치지 않게 된다.
이와 같이 상기 클럭 생성부는 인에이블 신호가 논리 하이인 구간에서 더미 비트로 만들어진 수신신호의 라이징 에지(rising edge) 또는 폴링 에지(falling edge)만을 천이로 인식하고, 상기 인에이블 신호가 논리 로우인 구간에서는 천이로 인식하지 않아 발진기에서 생성된 수신 클럭의 주파수와 위상이 더미 비트에 의한 주기적인 천이에서 벗어나지 않도록 구성되었다.
즉, 종래의 클럭 생성부는 초기 동기 이후 발진기 내부의 피드백 신호가 오실레이터에 다시 입력되어 인에이블 신호를 생성하게 되는 특징을 갖는 위상고정루프(PLL) 구조를 기반으로 구성되었다.
그러나, 이와 같이 위상고정루프(PLL) 구조를 기반으로 구성된 종래의 클럭 생성부는 내부 피드백 루프인 PLL 루프에서 지터(jitter)가 지속적으로 쌓이게 되는 문제점이 있었다.
또한, 종래의 클럭 생성부는 초기 동기시에는 수신신호가 직접 발진기에 입력되어 인에이블 신호를 생성하는 지연고정루프(DLL)의 특징을 나타내도록 구성되고, 초기 동기 이후에는 발진기 내부의 피드백 신호가 발진기에 입력되어 인에이블 신호를 생성하는 위상고정루프(PLL)의 특징을 나타내도록 구성될 수도 있었다.
그러나, 이와 같이 초기 동기시에는 지연고정루프(DLL) 구조에 의해 동작하고, 초기 동기 이후부터는 위상고정루프(PLL) 구조에 의해 동작하도록 구성된 종래의 클럭 생성부는 동작 과정 중 루프(Loop)의 변경으로 인하여 발진 주파수 및 위상에 교란이 발생하게 되는 문제점이 있었다.
또한, 위상고정루프(PLL) 구조에 의해 초기 동기 이후의 인에이블 신호가 생성되므로 내부 피드백 루프인 PLL 루프에서 지터가 지속적으로 쌓이게 되는 문제점이 계속 존재하게 되었다.
본 발명이 해결하고자 하는 기술적 과제는, 신호선을 통하여 수신한 입력신호(CED 신호)가 전압제어발진기(VCO)로 입력되지 않고 별도의 내부 발진기에 의해 생성되는 내부 클럭신호를 레퍼런스 클럭으로 하여 입력신호와의 위상차를 비교한 후 내부 클럭신호의 위상을 조절하여 데이터 복원에 이용하는 위상고정루프를 배제하고, 상기 입력신호(CED 신호)를 지연라인(VCDL)에 직접 입력시켜 지연시킴으로써 별도의 내부 발진기 없이 레퍼런스 클럭을 생성하고 이러한 레퍼런스 클럭을 데이터 복원에 이용하는 지연고정루프만으로 클럭 신호를 복원하게 함으로써, 별도의 클럭 신호가 없는 수신부에서도 클럭 신호가 피드백 루프를 지속적으로 거치면서 지터(jitter)가 쌓이는 것을 방지할 수 있게 한 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치를 제공함에 있다.
상기 과제를 이루기 위한 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치는, 클럭 신호가 데이터 신호 사이에 주기적으로 임베딩되어 전송되는 입력신호(CED 신호)를 수신하고, 클럭 신호를 복원하여 출력하는 클럭 복원부와, 데이터 신호를 복원하여 출력하는 직렬-병렬 변환부가 구비된 수신부 장치에 있어서, 상기 입력신호(CED 신호)는 클럭 신호가 동일한 크기로 데이터 신호 사이에 주기적으로 임베딩된 단일 레벨 신호로 구성되며, 상기 클럭 복원부는 레퍼런스 클럭을 생성하기 위한 내부 발진기가 배제된 지연고정루프(DLL)를 기반으로 구성되는 것을 특징으로 한다.
또한, 본 발명에 따른 수신부 장치의 클럭 복원부는 지연고정루프(DLL)가 클럭훈련기간동안 지연라인으로 입력되는 입력신호(CED 신호)에 의해 복원되는 마스터 클럭 신호(MCLK)로 레퍼런스 클럭을 생성하고, 상기 클럭훈련기간이 끝난 후 클럭 신호가 임베딩된 데이터 신호에 의해 복원되는 마스터 클럭신호(MCLK)로 레퍼런스 클럭을 생성하도록 구성되는 것을 특징으로 한다.
본 발명은 지연고정루프만을 기반으로 이루어진 클럭 복원부를 이용하여 데이터 신호 사이에 동일한 크기로 임베딩되어 전송된 클럭 신호를 복원함으로써, 위상고정루프에서의 피드백 루프에 의해 지터가 쌓이는 것을 방지하고, 지연고정루프와 위상고정루프의 혼용에 의해 발진 주파수와 위상에 교란이 생기는 것을 방지할 수 있는 장점이 있다.
도 1은 본 발명에 따른 클럭 신호가 임베딩된 단일 레벨 신호를 수신하는 수신부 장치의 블록 구성도.
도 2는 본 발명에 따른 클럭 신호가 임베딩된 단일 레벨 신호로 이루어진 전송 데이터의 예시도.
도 3은 본 발명에 따른 클럭 복원부의 구성도.
도 4는 본 발명에 따른 클럭 생성부의 구성도.
도 5 및 도 6은 본 발명에 따른 클럭 복원부의 동작을 나타내는 타이밍도.
이하에서는 본 발명의 구체적인 실시예를 도면을 참조하여 상세히 설명하도록 한다.
도 1은 본 발명에 따른 클럭 신호가 임베딩된 단일 레벨 신호를 수신하는 수신부 장치의 개략적인 블록 구성도이다.
도 1을 참조하면, 클럭 신호가 임베딩된 단일 레벨 신호를 수신하는 수신부 장치는, 타이밍 제어부로부터 직렬 신호선을 통하여 전송된 단일 레벨 신호(CED : clock embedded data)를 수신하여 병렬 데이터로 변환한 후 복원 데이터 신호(recovered data)를 디스플레이 패널로 전송하는 직렬-병렬 변환부(Serial to parallel converter)(100)와, 상기 단일 레벨 신호(CED 신호)에 임베딩된 클럭 신호를 추출하여 데이터 신호의 복원에 이용하는 샘플링 클럭 신호(sampling clock signal)를 상기 직렬-병렬 변환부로 전송하고 데이터 출력을 위한 수신 클럭 신호(recovered clock)를 복원하는 클럭 복원부(clock recovery unit)(200)를 포함하여 구성된다.
본 발명은 클럭 복원부(200)에서 생성된 클럭 신호가 내부 피드백 루프를 거치면서 지속적으로 지터(jitter)가 쌓이게 되는 위상고정루프(PLL : Phase Locked Loop) 기반 클럭 복원부의 문제점을 해결하기 위해, 지터가 지속적으로 축적되지 않는 지연고정루프(DLL : Delay Locked Loop) 만을 이용하여 별도의 레퍼런스 클럭(Reference clock)을 생성하기 위한 발진기 없이 수신부에서 클럭을 복원할 수 있게 한 클럭 복원부(200)를 제안하는 것이다. 따라서, 이러한 클럭 복원부를 제외한 직렬-병렬 변환부(100)와 같은 수신부의 다른 구성요소는 단일 레벨 신호를 수신하여 복원하는 통상적인 수신부와 유사하게 구성될 수 있으므로, 이하에서는 지연고정루프(DLL) 만을 기반으로 하여 구성된 클럭 복원부(200)의 구성을 상세히 설명한다.
이때, 상기 수신부 장치에서 수신하는 단일 레벨 신호(CED 신호)는 전송하고자 하는 데이터 신호 사이에 클럭 신호가 임베딩(embedding)된 신호로서, 상기 타이밍 제어부에서 신호선을 이용하여 데이터 구동부로 전송하게 된다. 이때, 상기 단일 레벨 신호(CED 신호)는 상기 데이터 신호 사이에 클럭 신호가 동일한 크기로 임베딩되는 것이 바람직하지만, 상기 클럭 신호가 멀티 레벨로 임베딩되어 구성될 수도 있음은 물론이다. 이때, 상기 CED 신호는 신호선을 통하여 수신부 장치에서 수신하는 입력신호로서, 하나의 차동 신호(Differential Signal)로 구성될 수 있을 뿐만 아니라, 단일 신호(Single-ended Signal)로 구성될 수도 있게 된다.
도 2는 본 발명에 따른 클럭 신호가 임베딩된 단일 레벨 신호로 이루어진 전송 데이터의 예시도이다.
도 2를 참조하면, 상기 단일 레벨 신호로 이루어진 전송 데이터(CED 신호)는 데이터 비트들 사이에 주기적으로 동일한 크기의 클럭 비트를 삽입하고, 삽입된 클럭 비트의 상승 에지 또는 하강 에지를 나타내기 위해 데이터와 클럭 비트 사이에 더미 비트를 삽입하여 구성된다. 이때, 상기 더미 비트와 클럭 비트는 회로 설계를 용이하게 하기 위해 신호의 폭을 더 넓게 가변할 수도 있음은 물론이다.
상기 타이밍 제어부는 데이터를 전송하기 전에 먼저 클럭 신호만으로 구성된 전송 데이터(CED 신호)를 전송함으로써 클럭훈련(clock training)을 시작하게 된다. 상기 데이터 구동부는 지연고정루프(DLL) 자체의 LOCK 신호 및 인접한 다른 데이터 구동부로부터 입력받은 LOCK 신호의 조합 또는 초기 동기가 끝났음을 알리는 제어신호가 “H” 상태(논리 하이상태)가 된 후 클럭훈련기간 동안 전송되는 CED 신호에 따라 데이터 샘플링에 사용할 수신 클럭 신호를 복원하게 되며, 수신 클럭 신호가 안정화되면 LOCK 신호(LOCK1 ~ LOCKN)는 “H” 상태를 출력하게 된다.
상기 타이밍 제어부는 일정시간 이후 클럭훈련을 끝내고 CED 신호의 전송을 시작한다. 만약 데이터 전송 중 LOCK 신호가 “L” 상태(논리 로우 상태)로 변하면 타이밍 제어부는 즉시 클럭훈련을 시작하여 소정 시간동안 지속하게 된다.
도 3은 본 발명에 따른 클럭 복원부의 구성도이다.
도 3을 참조하면, 상기 클럭 복원부(200)는 지연고정루프(DLL : Delay Locked Loop) 만을 기반으로 구성되며, 송신부에서 전송되는 데이터인 단일 레벨 신호(CED 신호)로부터 클럭 신호를 복원하고 데이터를 검출하는데 이용될 하나 이상의 샘플링 클럭 신호와 수신 클럭 신호를 생성할 수 있도록, 상기 입력신호(CED 신호)로부터 마스터 클럭 신호(MCLK)를 생성하는 클럭 생성부(210)와, 상기 클럭 생성부에서 생성된 마스터 클럭 신호(MCLK)를 지연시키고 지연 정도에 따른 다양한 위상을 갖도록 복원된 수신 클럭 신호(recovered clock)를 출력하는 지연라인(220)과, 상기 지연라인에서의 수신 클럭 신호들을 비교하여 위상차 또는 시간차를 검출하는 위상차 검출기(230)와, 상기 위상차 검출기의 비교 결과에 따라 지연 제어신호(CTRL)를 생성하여 상기 지연라인으로 공급하는 저대역 통과 필터(240)를 포함하여 구성된다.
상기 클럭 생성부(clock generator)(210)는 지연라인(220)으로부터 출력되는 여러 지연 클럭 신호들 중 적어도 어느 하나 이상의 신호에 의해 마스크신호(MASK), 풀업신호(PU) 또는 풀다운신호(PD)를 생성하여, 데이터 신호 사이에 임베딩된 클럭 신호를 복원하도록 구성된다. 따라서, 상기 클럭 생성부(210)는 지연라인(220)에서 출력되는 지연 클럭 신호들(CK1, CK2 ... CK2N+1)을 입력으로 수신 받으며, 상기 지연 클럭 신호들이 생성되기 전에는 클럭훈련기간 동안 입력되는 신호(CED 신호)에 의해 마스터 클럭 신호(MCLK)를 생성하게 된다. 이때, 상기 지연 클럭 신호들의 개수는 적어도 2N+1개 보다 크거나 같아야 하며, 여기서 상기 N은 클럭 비트 사이에 존재하는 데이터 비트의 개수를 나타내는 자연수이다.
도 4는 본 발명에 따른 클럭 생성부의 구성도이다.
도 4를 참조하면, 상기 클럭 생성부(210)는 상기 지연 클럭 신호들을 수신하여 마스크 신호(MASK)를 생성하는 마스크 신호 생성부(211)와, 상기 마스크 신호에 의해 차단스위치를 스위칭 시켜 입력신호(CED 신호)의 전달 상태를 조절하는 통과스위치(212)와, 상기 타이밍 제어부에서 전송된 LOCK 신호와 마스크 신호(MASK)에 의해 상기 입력신호(CED 신호)의 직접적인 전달여부를 차단하는 차단스위치(213)와, 상기 차단스위치가 차단된 경우 상기 지연 클럭 신호들(CK1, CK2 ... CK2N+1) 중 적어도 하나 이상의 신호에 의해 서로 상보적으로 동작하며 마스터 클럭 신호(MCLK)를 생성하여 출력하는 풀업부(Pull up)(214)와 풀다운부(Pull down)(215), 및 상기 풀업부(214) 일단을 전압전원(VDD)에 연결시키는 제1스위치(216)와 상기 풀다운부(215) 일단을 접지전원(GND)에 연결시키는 제2스위치(217)를 포함하여 구성된다. 이때, 상기 LOCK 신호는 초기 동기가 끝났음을 나타내는 신호로서, 지연고정루프의 동작이 안정화되었음을 나타내거나 외부 입력신호가 안정화되었음을 나타내게 된다.
상기 마스크 신호 생성부(Mask signal generator)(211)는 수신 클럭 신호를 복원하기 위해 상기 지연라인(220)에서 다수의 인버터들을 거치며 지연된 후 출력되는 지연 클럭 신호들(CK1, CK2 ... CK2N+1)을 입력 받아 클럭 신호의 상승 에지 또는 하강 에지를 검출하기 위한 마스크 신호(MASK)를 생성하는 마스킹 회로로 구성된다.
상기 통과스위치(212)는 상기 LOCK 신호에 의해 스위칭하면서 차단스위치(213)의 동작을 제어하여 클럭 신호의 에지를 검출하기 위한 마스크 신호(MASK)를 전달할 수 있도록, 상기 마스크 신호 생성부(220)에 일단이 연결되고, 상기 입력신호(CED 신호)가 클럭 생성부의 출력으로 전달되는 것을 차단하는 차단스위치(213)에 타단이 연결되어 구성된다.
이때, 상기 통과스위치(212)는 LOCK 신호에 의해 상기 마스크 신호(MASK)가 차단스위치(213)로 연결되거나 “1”의 논리값, 즉 논리 하이상태를 나타내는 값이 차단스위치(213)로 연결되도록 구성된다. 즉, 상기 LOCK 신호가 논리 하이상태일 경우에는 상기 마스크 신호(MASK)에 의해 차단스위치가 동작하게 되고, 상기 LOCK 신호가 논리 로우상태일 때에는 상기 입력신호(CED 신호)가 마스터 클럭 신호(MCLK)에 바로 연결되도록 구성된다.
또한, 상기 차단스위치(213)는 상기 수신부 장치에 연결된 신호선에 일단이 연결되고, 상기 지연라인(220)에 타단이 연결되어 구성되며, 입력신호(CED 신호)가 마스터 클럭 신호(MCLK)로서 상기 지연라인(220)에 그대로 전달되는 것을 조절하여 에지를 검출하는 마스크 신호(MASK)를 상기 통과스위치(212)로부터 수신하도록 구성된다.
또한, 상기 차단스위치(213)의 타단은 상기 지연라인에 연결되는 풀업부와 풀다운부의 연결노드에도 함께 연결되어 입력신호(CED 신호)의 출력을 차단하고 풀업 또는 풀다운 동작에 의해 복원된 신호를 출력하도록 구성된다.
그에 따라, 상기 차단스위치(213)는 상기 LOCK 신호가 논리 하이상태일 경우에 통과스위치(212)에서 전송되는 마스크 신호(MASK)에 의해 동작하면서 상기 입력신호(CED 신호)의 상승 또는 하강 에지를 검출하도록 제어되고, 상기 LOCK 신호가 논리 로우상태일 때에는 “1”의 논리값에 의해 동작하면서 상기 입력신호(CED 신호)가 마스터 클럭 신호(MCLK)에 바로 전달되도록 구성된다.
이때, 상기 LOCK 신호가 논리 로우(L)상태인 경우에는 클럭훈련기간이므로, 상기 통과스위치(212)가 “1”의 논리값에 연결되고 상기 차단스위치(213)는 상기 마스크 신호(MASK)의 논리 상태와 무관하게 항상 상기 입력신호(CED 신호)를 마스터 클럭 신호(MCLK)로 그대로 전달하게 된다. 따라서, 상기 클럭 생성부(210)에서 클럭훈련기간 동안 전송된 클럭 신호가 지연라인(220)으로 전달된다.
즉, 클럭 신호의 에지(edge)를 복원하기 위해서는 타이밍 제어부에서의 전송시 데이터 사이에 삽입된 클럭의 주기에 대응하는 주기를 갖는 초기 신호가 필요하게 되는데, 이러한 초기 신호는 레퍼런스 클럭(Reference clock)을 발생하기 위한 별도의 발진기가 없어도 상기 클럭훈련기간동안 송신되는 입력신호를 상기 클럭 생성부(210)에서 그대로 출력시키면서 전압제어 지연라인(VCDL)이나 전류제어 지연라인(CCDL)로 이루어진 지연라인(220)으로 전달한 후 지연시켜 얻을 수 있게 된다.
그러나, 상기 LOCK 신호가 논리 하이(H)상태인 경우에는, 상기 마스크 신호 생성부(211)에서 발생된 마스크 신호(MASK)에 의해 입력신호(CED 신호)의 전달여부가 제어되며 상승 또는 하강 에지를 검출하게 된다. 즉, 상기 마스크(MASK) 신호가 논리 하이(H)상태인 구간에서는 상기 입력신호(CED 신호)의 클럭 에지를 출력에 전달하지만, 상기 마스크(MASK) 신호가 논리 로우(L)상태인 구간에서는 상기 차단스위치(213)를 동작시켜 상기 입력신호(CED 신호)가 그대로 전달되는 것을 차단하고 하나 이상의 지연 클럭 신호를 이용하여 풀업부나 풀다운부의 동작에 의해 상기 입력신호(CED 신호)에서 클럭 신호의 에지를 제외한 나머지 부분을 복원하게 된다.
상기 풀업부(Pull-up)(214)와 풀다운부(Pull-down)(215)는 상기 LOCK 신호가 논리 하이상태이고 마스크 신호(MASK)가 논리 로우상태인 경우에 상기 지연 클럭 신호들(CK1, CK2 ... CK2N+1) 중 적어도 하나 이상의 신호를 사용하거나 적어도 하나 이상의 신호를 조합하여 풀업신호(PU 신호) 또는 풀다운신호(PD)를 생성함으로써 풀업 및 풀다운 동작을 실행하며 클럭 신호의 에지(edge)를 제외한 나머지 부분을 복원하게 된다.
이때, 상기 풀업부(pull-up)(214)는 제1스위치(216)를 통하여 일단이 전압전원(VDD)에 연결되고, 상기 풀다운부(pull-down)(215)도 제2스위치(217)를 통하여 접지전원(GND)에 연결되도록 구성된다. 상기 제1스위치와 제2스위치는 상기 LOCK 신호가 논리 로우상태(L)인 경우에는 스위치가 차단되고, 상기 LOCK 신호가 논리 하이상태(H)인 경우에는 스위치가 연결되도록 상기 LOCK 신호에 의해 제어된다.
그에 따라, 상기 LOCK 신호가 논리 로우상태인 경우 상기 제1스위치는 상기 풀업부(214)가 전원전압(VDD)이 연결되는 것을 차단하고 상기 제2스위치는 상기 풀다운부(215)가 접지전원(GND)에 연결되는 것을 차단하며, 상기 LOCK 신호가 논리 하이상태인 경우 상기 제1스위치는 상기 풀업부(214)를 전원전압(VDD)에 연결시키고 상기 제2스위치는 상기 풀다운부(215)를 접지전압(GND)에 연결시키게 된다.
이와 같이, 상기 제1스위치 및 제2스위치의 동작이 상기 LOCK 신호에 의해 제어됨으로써, 지연고정루프(DLL)의 LOCK 신호가 논리 로우상태(L)일 때 상기 풀업부와 풀다운부의 오동작에 의해 마스터 클럭 신호(MCLK)가 잘못 생성되는 것을 방지할 수 있게 된다.
따라서, 상기 풀다운신호(PD)는 풀업부(214)가 꺼지고 전압전원(VDD)과 접지전원(GND)간에 통로가 형성되지 않아 논리 로우출력이 되는 입력에 대하여 출력에 접지전원(GND)의 전압값을 출력하게 되며, 상기 풀업신호(PU)는 그 출력노드의 전위를 전원전압(VDD)으로 끌어올리고 풀다운부(215)를 차단하여 전압전원(VDD)에서 접지전원(GND)에 이르는 통로를 형성하지 않아 논리 하이출력이 되는 입력 조합에 대하여 출력에 전압전원(VDD)의 전압값을 출력하게 된다. 이러한 상기 풀업부(214)와 풀다운부(215)에서의 스위칭 동작에 의해 결정된 값이 마스터 클럭 신호(MCLK)로 출력되어 지연라인(220)으로 전달된다.
상기 지연라인은 전압제어 지연라인(VCDL : Voltage controlled delay line)(220)이나 전류제어 지연라인(CCDL : Current controlled delay line)으로 구성될 수 있으며, 출력된 지연 클럭 신호가 다시 입력되는 피드백 루프를 갖지 않고, 클럭 생성부(210)에서 출력되는 마스터 클럭 신호(MCLK)를 입력받아 지연시키며 출력할 수 있는 다수 개의 지연수단이 구비된 지연고정루프(DLL : Delay Locked Loop) 만을 기반으로 하여 구성된다.
이하, 상기 지연라인은 전압제어 지연라인(VCDL)(220)으로 지칭하지만 이에 한정되지 않음은 물론이다. 또한, 도 3에는 상기 지연수단이 인버터로 구성된 것이 도시되어 있으나, 상기 지연수단은 인버터에 한정되지 않고 다른 지연셀이나 지연소자로 구성될 수도 있음은 물론이다.
상기 전압제어 지연라인(220)은 클럭훈련기간동안 상기 클럭 생성부(210)로부터 출력되는 마스터 클럭 신호(MCLK)를 지연시켜 지연 클럭 신호를 생성한 후, 상기 마스터 클럭 신호(MCLK) 및 지연 클럭 신호들 중에서 그 시간차가 클럭 비트가 삽입되는 주기와 동일한 두 신호 사이의 위상을 비교함으로써 별도의 내부 발진기 없이도 레퍼런스 클럭을 생성할 수 있게 된다. 또한, 상기 클럭훈련기간이 종료한 후에는 상기 풀업부와 풀다운부의 동작에 의해 상기 입력신호(CED 신호)에 포함되어 있는 클럭 신호의 에지를 제외한 나머지 부분을 복원한 신호를 마스터 클럭 신호(MCLK)로 수신하여 지연시킴으로써 수신 클럭 신호를 생성하게 된다.
상기 전압제어 지연라인(220)에 구비된 다수개의 인버터들은 2개의 인버터 쌍을 하나의 지연 단위로 하며, 이와 같이 2개의 인버터로 이루어진 인버터 쌍을 통과하면서 지연 클럭 신호(CK1, CK2, CK3, ... CK2N+1)를 생성하여 출력하게 된다.
이때, 상기 전압제어 지연라인(220)에서 출력되는 상기 지연 클럭 신호들은 클럭 생성부(210)로 전송되어 데이터 사이에 삽입된 클럭 신호의 에지를 제외한 나머지 부분을 복원할 수 있게 된다. 즉, 상기 지연 클럭 신호는 2개의 인버터 쌍을 통과하면서 지연된 클럭 신호로 구성되고, 그 출력이 상기 클럭 생성부(210)로 입력되어, 상기 LOCK 신호가 논리 하이상태이고 상기 마스크 신호(MASK)가 논리 로우상태인 경우에 풀업부(Pull-up)(214) 또는 풀다운부(Pull-down)(215) 동작에 의해 클럭 신호의 에지(edge)를 제외한 나머지 부분을 복원하게 된다.
또한, 상기 전압제어 지연라인(220)의 입력 신호 및 상기 전압제어 지연라인(200)에서 지연된 클럭 신호 중 임의의 두 클럭 신호는, 상기 인버터들을 통과하면서 지연되는 클럭 신호의 지연정도를 비교하고, 그 지연정도를 변경할 수 있는 전압제어신호(VCTRL)를 저대역 통과 필터(240)로부터 수신하기 위해 상기 위상차 검출기(230)로 전송된다.
상기 위상차 검출기(Phase detector)(230)는 지연고정루프(DLL)의 입력 클럭 신호와 더불어 지연고정루프 기반의 전압 또는 전류제어 지연라인(VCDL, CCDL)에서 지연된 클럭 신호들 중 임의의 두 클럭 신호를 입력으로 가지며, 두 클럭 신호의 시간차에 의해 지연량 제어신호인 업/다운 신호(UP/DN)를 생성하여 저대역 통과 필터(240)로 출력하도록 구성된다.
이때, 상기 위상차 검출기(230)는 상기 LOCK 신호가 논리 하이상태가 되어 상기 지연고정루프(DLL)가 락(lock) 되었을 때, 상기 클럭 생성부(210)에서 출력된 마스터 클럭 신호(MCLK) 및 전압 또는 전류제어 지연라인에서 출력되는 지연 클럭 신호들(CK1, CK2, CK3, ..., CK2N+1) 중에서 시간차가 클럭 비트가 삽입되는 주기와 동일한 임의의 두 개의 클럭 신호를 비교 대상인 입력으로 갖게 된다. 도 4에서는, 1차 지연된 제1지연 클럭 신호(CK1)와, 상기 전압제어 지연라인에 구비된 다수개의 인버터 쌍을 모두 통과하면서 지연된 제2N+1지연 클럭 신호(CK2N+1)를 두 입력으로 하며, 이러한 두 입력 클럭 신호의 시간차에 따라 상기 업/다운 신호를 생성하도록 구성되는 것을 일례로 나타내고 있으나, 상기 위상차 검출기의 입력으로 선택되는 2개의 지연 클럭 신호가 이에 한정되지 않음은 물론이다.
즉, 상기 제1지연 클럭 신호(CK1)와 제2N+1지연 클럭 신호(CK2N+1)의 시간차가 양의 신호인 업 신호(UP)인 경우 저대역 통과 필터인 전하펌프(240)가 전하를 충전시키고, 상기 시간차가 음의 신호인 다운 신호(DN)인 경우 상기 저대역 통과 필터인 전하펌프(240)가 전하를 방전시키면서 상기 지연라인(220)에서의 지연정도를 제어하게 된다.
상기 저대역 통과 필터(240)는 상기 업/다운 신호(UP/DN)의 고주파 성분을 제거 또는 감소시켜 지연 라인의 지연 정도를 조절하는 신호를 공급하는 것으로서, 상기 실시예에서는 전하펌프(Charge pump)로 구성하는 것을 도시하였으나, 이에 한정되지 않고 다양한 루프필터로 구성될 수 있음은 물론이다.
도 3에서 상기 전하펌프(240)는 상기 업/다운 신호(UP/DN)를 입력받아 전압제어 지연라인(VCDL)(220)에서의 지연정도를 조절하는 전압제어신호(VCTRL)를 지연라인으로 출력하기 위해, 출력단자가 상기 전압제어 지연라인(220)에 구비된 인버터들에 연결되어 구성된다. 그에 따라, 상기 전하펌프(240)는 상기 위상차 검출기(230)에서 두 클럭 신호의 시간차에 의해 생성된 업/다운 신호의 고주파 성분을 제거하거나 감소시켜 상기 전압제어신호(VCTRL)를 출력하게 되다.
도 5는 본 발명에 따른 클럭 복원부의 동작을 나타내는 타이밍도이다.
도 5를 참조하면, 데이터 사이에 삽입된 클럭 신호의 상승 또는 하강 에지를 복원하기 위해서는 수신 클럭 신호를 복원하는 초기에 외부에서 삽입된 클럭 신호의 주기에 대응하는 주기를 갖는 입력신호(CED 신호)가 필요하게 된다. 따라서, 상기 LOCK 신호가 논리 로우상태인 클럭훈련기간 동안 송신부에서 전송되는 입력신호 그대로를 상기 클럭 생성부(210)에서 마스터 클럭 신호(MCLK)로 출력하여 지연라인(VCDL)(220)으로 전달하게 된다. 이때, 상기 클럭훈련기간 동안 상기 지연고정루프(DLL)의 LOCK 신호는 논리 로우상태(L)에서 논리 하이상태(H)로 변경되고, 이러한 클럭훈련기간동안 복원된 마스터 클럭 신호(MCLK)에 의해 별도의 발진기가 구비되어 있지 않아도 클럭 신호의 복원에 이용되는 레퍼런스 클럭을 생성할 수 있게 된다.
상기 지연라인(220)에서 지연된 적어도 하나 이상의 지연라인 출력인 지연 클럭 신호를 이용하여 수신 클럭 신호를 복원하기 위해, 상기 입력신호(CED 신호)의 상승 또는 하강 에지를 검출하기 위한 마스크 신호(MASK)와, 상기 마스크 신호에 의해 검출된 부분을 제외한 클럭 신호의 나머지 부분을 생성하기 위해 풀업부(Pull-up)(214)와 풀다운부(Pull-down)(215)를 구동하는 신호인 풀업신호(PU)와 풀다운신호(PD)를 생성하게 된다.
도 5에 도시된 바와 같이, 상기 지연 클럭 신호는 각 지연수단에서 지연된 것만큼 조금씩 지연되어 제1지연 클럭 신호(CK1)와 제2N+1지연 클럭 신호(CK2N+1)의 천이 시점이 일치하게 될 경우에는 업/다운 신호가 불필요하며 현 상태를 유지하게 되나, 두 신호의 천이 시점이 불일치하게 되어 두 신호의 위상차가 발생하게 될 경우에는 저대역 통과 필터(240)에서의 충전과 방전을 통해 생성되는 전압제어신호(VCTLR)에 의해 지연정도를 조정하게 된다.
또한, 상기 LOCK 신호와 상기 마스크 신호 생성부에서 생성된 마스크 신호(MASK)가 모두 논리 하이인 경우에만 상기 입력신호(CED 신호)의 클럭 에지를 출력하게 되고, 상기 마스크 신호(MASK)가 논리 로우인 경우에는 풀업부(214)와 풀다운부(215)를 동작시키는 풀업신호(PU)와 풀다운신호(PD)에 의해 클럭 신호의 에지를 제외한 나머지 부분을 복원하게 된다.
그에 따라, 별도의 위상고정루프를 이용하지 않아 지터의 축적을 방지하고 별도의 내부 발진기를 구비하지 않으면서도, 데이터 신호와 동일한 크기로 상기 입력신호(CED 신호)에 임베딩된 클럭 신호를 복원한 수신 클럭 신호(Recovered clock)를 생성할 수 있게 된다.
도 6은 본 발명에 따른 클럭 복원부의 다른 동작을 나타내는 타이밍도이다.
도 6을 참조하면, 상술한 바와 같이 입력신호(CED 신호)에 임베딩된 클럭 신호를 복원하기 위해, 클럭훈련기간 동안의 입력신호(CED 신호)가 지연라인(220)에서 지연되어 출력되는 적어도 하나 이상의 지연 클럭 신호를 이용하여 상기 입력 신호(CED 신호)의 상승 또는 하강 에지를 검출하기 위한 마스크 신호(MASK)와, 상기 마스크 신호에 의해 검출된 부분을 제외한 클럭 나머지 부분을 생성하기 위한 풀업신호(PU)와 풀다운신호(PD)를 생성하게 된다.
도 6에 도시된 입력신호(CED 신호)는 클럭 신호에 앞서는 더미(dummy) 비트가 구비된 것을 나타내며, LOCK 신호와 마스크 신호(MASK)가 모두 논리 하이인 상태에서 이러한 더미 비트 이후에 임베딩된 클럭 신호의 천이를 인지하여 상승 또는 하강 에지를 검출하게 된다. 이때, 상기 입력 신호(CED 신호)의 상승 에지를 검출하는가 또는 하강 에지를 검출하는가에 따라 풀업부와 풀다운부를 구동하는 풀업신호(PU)와 풀다운신호(PD)의 순서는 변경될 수 있다.
이와 같이, 수신부 장치에서 클럭훈련기간 동안 전송되는 입력신호(CED 신호)를 이용하여 수신부 장치에서 이용할 초기의 클럭 신호를 생성하고, 이러한 초기의 클럭 신호에 의해 데이터 신호 사이에 동일한 크기로 임베딩된 클럭 신호의 에지(edge)를 검출하고, 이와 같이 검출된 부분을 제외한 클럭 신호의 나머지 부분을 복원하여 수신 클럭 신호(recovered clock)을 생성함으로써, 내부 발진하는 클럭 신호를 생성하기 위한 위상고정루프(PLL)를 구비하지 않고 지연고정루프(DLL)만을 기반으로 하여 전압제어 지연라인(220)의 출력 신호로부터 클럭 신호를 복원할 수 있게 된다.
이상에서는 본 발명에 대한 기술사상을 첨부 도면과 함께 서술하였지만 이는 본 발명의 바람직한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 이라면 누구나 본 발명의 기술적 사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.

Claims (11)

  1. 클럭 신호가 데이터 신호 사이에 주기적으로 임베딩되어 전송되는 입력신호(CED 신호)를 수신하고, 클럭 신호를 복원하여 출력하는 클럭 복원부와, 데이터 신호를 복원하여 출력하는 직렬-병렬 변환부가 구비된 수신부 장치에 있어서,
    상기 입력신호(CED 신호)는 클럭 신호가 동일한 크기로 데이터 신호 사이에 주기적으로 임베딩된 단일 레벨 신호로 구성되며,
    상기 클럭 복원부는 레퍼런스 클럭을 생성하기 위한 내부 발진기가 배제된 지연고정루프(DLL)를 기반으로 구성되는 것을 특징으로 하는 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치.
  2. 제1항에 있어서,
    상기 클럭 복원부는,
    상기 지연고정루프(DLL)가 클럭훈련기간동안 지연라인으로 입력되는 입력신호(CED 신호)에 의해 복원되는 마스터 클럭 신호(MCLK)로 레퍼런스 클럭을 생성하고, 상기 클럭훈련기간이 끝난 후 클럭 신호가 임베딩된 데이터 신호에 의해 복원되는 마스터 클럭신호(MCLK)로 레퍼런스 클럭을 생성하도록 구성되는 것을 특징으로 하는 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치.
  3. 제2항에 있어서,
    상기 클럭 복원부는,
    상기 입력신호(CED 신호)와 지연 클럭 신호의 출력 여부 및 출력 값을 조절하여 마스터 클럭 신호(MCLK)를 생성하는 클럭 생성부;
    상기 마스터 클럭 신호(MCLK)를 지연시키는 다수 개의 지연수단이 구비되며, 지연 정도에 따라 다양한 위상을 갖도록 복원된 지연 클럭 신호를 출력하는 지연라인;
    상기 마스터 클럭 신호(MCLK) 및 상기 지연 클럭 신호들을 비교하여 신호들 간의 시간차나 위상차를 검출하고 상기 지연라인의 지연 정도를 제어하는 업/다운 신호를 생성하는 위상차 검출기;
    상기 위상차 검출기에서의 비교 결과에 따라 생성된 상기 업/다운 신호의 고주파 성분을 제거하거나 감소시켜 상기 지연라인의 지연정도를 조절하는 제어신호를 상기 지연수단으로 공급하는 저대역 통과 필터를 포함하여 구성되는 것을 특징으로 하는 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치.
  4. 제3항에 있어서,
    상기 클럭 생성부는,
    상기 지연 클럭 신호들을 수신하여 상기 입력신호(CED 신호)에 임베딩된 클럭 신호의 상승 에지 또는 하강 에지를 검출하기 위한 마스크 신호(MASK)를 생성하는 마스크 신호 생성부;
    상기 LOCK 신호의 제어에 의해 상기 마스크 신호(MASK)나 논리 하이상태를 나타내는 값을 차단스위치의 스위칭 제어신호로 인가하는 통과스위치;
    상기 통과스위치에서 인가되는 마스크 신호(MASK) 또는 논리 하이상태를 나타내는 제어신호에 따라 상기 입력신호(CED 신호)가 상기 지연라인에 전달되는 것을 조절하여 입력신호의 상승 에지 또는 하강 에지를 검출하는 차단스위치; 및
    상기 마스크 신호(MASK)에 의해 차단스위치가 차단된 경우 상기 지연 클럭 신호들(CK1, CK2 ... CK2N+1) 중 적어도 하나 이상의 신호에 의해 상보적으로 동작하며 상기 지연라인으로 마스터 클럭 신호(MCLK)를 출력하는 풀업부(Pull up)와 풀다운부(Pull down)를 포함하여 구성되는 것을 특징으로 하는 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치.
  5. 제4항에 있어서,
    상기 통과스위치는 상기 LOCK 신호가 논리 로우상태일 경우 클럭훈련기간으로 인식하여 논리 하이상태를 나타내는 값을 상기 차단스위치의 제어신호로 인가하고,
    상기 차단스위치는 상기 통과스위치에서 전송되는 논리 하이상태를 나타내는 값에 의해 상기 입력신호(CED 신호)를 마스터 클럭 신호(MCLK)로 그대로 출력하여 상기 지연라인으로 전송하도록 구성된 것을 특징으로 하는 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치.
  6. 제4항에 있어서,
    상기 통과스위치는 상기 LOCK 신호가 논리 하이상태일 경우 상기 마스크 신호(MASK)를 상기 차단스위치의 제어신호로 인가하고,
    상기 차단스위치는 상기 마스크 신호(MASK)가 논리 하이상태인 구간에서 상기 입력신호(CED 신호)의 상승 에지 또는 하강 에지를 검출하여 상기 지연라인으로 출력하고, 상기 마스크 신호(MASK)가 논리 로우상태인 구간에서는 상기 입력신호(CED 신호)가 그대로 전달되는 것을 차단하며, 하나 이상의 상기 지연 클럭 신호를 이용하여 풀업부나 풀다운부를 동작시켜 상기 입력신호(CED 신호)에서 클럭 신호의 상승 또는 하강 에지를 제외한 나머지 부분을 복원하여 전송하도록 구성된 것을 특징으로 하는 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치.
  7. 제3항에 있어서,
    상기 지연라인은 적어도 2N+1개 보다 많거나 같은 개수의 지연 클럭 신호들을 생성(N은 상기 입력신호(CED 신호)에 존재하는 데이터 비트의 개수를 나타내는 자연수)하기 위해, 상기 지연 클럭 신호들의 개수에 상응하는 개수만큼의 지연수단이 구비되는 것을 특징으로 하는 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치.
  8. 제3항에 있어서,
    상기 지연라인은 전압제어 지연라인(VCDL) 또는 전류제어 지연라인(CCDL)으로 구성되는 것을 특징으로 하는 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치.
  9. 제3항에 있어서,
    상기 지연수단은 인버터로 구성되는 것을 특징으로 하는 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치.
  10. 제3항 내지 제9항 중 어느 한 항에 있어서,
    상기 위상차 검출기는 상기 LOCK 신호가 논리 하이상태가 되어 상기 지연고정루프(DLL)가 락(lock) 되었을 때, 상기 클럭 생성부에서 출력된 마스터 클럭 신호(MCLK) 및 상기 지연라인에서 출력되는 지연 클럭 신호들(CK1, CK2, CK3, ..., CK2N+1) 중에서 임의의 두 개의 클럭 신호를 비교 대상인 입력으로 하여 지연량 제어신호인 업/다운 신호를 생성하도록 구성되는 것을 특징으로 하는 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치.
  11. 제3항 내지 제9항 중 어느 한 항에 있어서,
    상기 저대역 통과 필터는 출력단자가 상기 지연라인에 연결된 전하펌프로 구성되는 것을 특징으로 하는 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치.
PCT/KR2010/000780 2009-02-13 2010-02-09 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치 WO2010093158A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/920,550 US8611484B2 (en) 2009-02-13 2010-02-09 Receiver having clock recovery unit based on delay locked loop
CN201080001351.4A CN101999144B (zh) 2009-02-13 2010-02-09 基于延迟锁定回路具有时钟回复单元的接收器
JP2010550615A JP5579625B2 (ja) 2009-02-13 2010-02-09 遅延同期ループを基礎としたクロック復元部が具備された受信部装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090011727A KR101169210B1 (ko) 2009-02-13 2009-02-13 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치
KR10-2009-0011727 2009-02-13

Publications (2)

Publication Number Publication Date
WO2010093158A2 true WO2010093158A2 (ko) 2010-08-19
WO2010093158A3 WO2010093158A3 (ko) 2010-10-28

Family

ID=42562171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000780 WO2010093158A2 (ko) 2009-02-13 2010-02-09 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치

Country Status (6)

Country Link
US (1) US8611484B2 (ko)
JP (1) JP5579625B2 (ko)
KR (1) KR101169210B1 (ko)
CN (1) CN101999144B (ko)
TW (1) TWI452838B (ko)
WO (1) WO2010093158A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113886300A (zh) * 2021-09-23 2022-01-04 珠海一微半导体股份有限公司 一种总线接口的时钟数据自适应恢复系统及芯片

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101125504B1 (ko) * 2010-04-05 2012-03-21 주식회사 실리콘웍스 클럭 신호가 임베딩된 단일 레벨의 데이터 전송을 이용한 디스플레이 구동 시스템
KR101681782B1 (ko) * 2010-09-02 2016-12-02 엘지디스플레이 주식회사 액정표시장치
CN102769430B (zh) * 2011-05-04 2015-03-18 智原科技股份有限公司 时钟产生方法、无参考频率接收器以及无晶体振荡器系统
KR101978937B1 (ko) * 2012-03-16 2019-05-15 주식회사 실리콘웍스 전원 잡음에 둔감한 표시장치용 소스 드라이버
US8797075B2 (en) * 2012-06-25 2014-08-05 Intel Corporation Low power oversampling with reduced-architecture delay locked loop
US8779815B2 (en) 2012-06-25 2014-07-15 Intel Corporation Low power oversampling with delay locked loop implementation
KR101327221B1 (ko) * 2012-07-06 2013-11-11 주식회사 실리콘웍스 클럭생성기, 데이터 수신부 및 마스터 클럭신호 복원방법
TWI567705B (zh) * 2012-12-27 2017-01-21 天鈺科技股份有限公司 顯示裝置及其驅動方法、時序控制電路的資料處理及輸出方法
US9881579B2 (en) * 2013-03-26 2018-01-30 Silicon Works Co., Ltd. Low noise sensitivity source driver for display apparatus
KR102112089B1 (ko) * 2013-10-16 2020-06-04 엘지디스플레이 주식회사 표시장치와 그 구동 방법
TWI547102B (zh) 2014-08-08 2016-08-21 瑞昱半導體股份有限公司 多通道時序回復裝置
JP6468763B2 (ja) * 2014-09-08 2019-02-13 ラピスセミコンダクタ株式会社 データ処理装置
KR102167139B1 (ko) * 2014-09-17 2020-10-19 엘지디스플레이 주식회사 표시장치
KR102303914B1 (ko) * 2015-03-06 2021-09-17 주식회사 실리콘웍스 디스플레이 신호 전송 장치 및 방법
JP6883377B2 (ja) * 2015-03-31 2021-06-09 シナプティクス・ジャパン合同会社 表示ドライバ、表示装置及び表示ドライバの動作方法
KR102366952B1 (ko) 2015-07-14 2022-02-23 주식회사 엘엑스세미콘 지연고정루프 기반의 클럭 복원 장치 및 이를 구비한 수신 장치
KR102273191B1 (ko) * 2017-09-08 2021-07-06 삼성전자주식회사 스토리지 장치 및 그것의 데이터 트레이닝 방법
KR101930532B1 (ko) 2017-09-26 2018-12-19 주식회사 티엘아이 능동적이며 안정적으로 클락 데이터를 복원하는 클락 복원 회로
KR102518935B1 (ko) * 2018-07-03 2023-04-17 주식회사 엘엑스세미콘 인터페이스신호에서 임베디드클럭을 복원하는 클럭복원장치 및 소스드라이버
KR102507862B1 (ko) * 2018-07-09 2023-03-08 주식회사 엘엑스세미콘 인터페이스신호에서 임베디드클럭을 복원하는 클럭복원장치 및 소스드라이버
JP7224831B2 (ja) * 2018-09-28 2023-02-20 キヤノン株式会社 撮像装置
KR102621926B1 (ko) * 2018-11-05 2024-01-08 주식회사 엘엑스세미콘 인터페이스신호에서 임베디드클럭을 복원하는 클럭복원장치 및 소스드라이버
KR20220087752A (ko) * 2020-12-18 2022-06-27 주식회사 엘엑스세미콘 데이터 구동 회로 및 그의 클럭 복원 방법과 디스플레이 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980058222A (ko) * 1996-12-30 1998-09-25 구자홍 데이타 통신장치의 클럭주파수 및 위상 복원회로
KR20030052667A (ko) * 2001-12-21 2003-06-27 주식회사 하이닉스반도체 지연 고정 루프 회로
KR20080011834A (ko) * 2006-07-31 2008-02-11 삼성전자주식회사 지연 동기 루프 회로 및 클럭 신호 발생 방법
JP2008072597A (ja) * 2006-09-15 2008-03-27 Ricoh Co Ltd 遅延ロックループ回路
KR20080066327A (ko) * 2007-01-12 2008-07-16 삼성전자주식회사 클럭 임베디드 신호를 이용한 직렬 통신 방법 및 장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100319890B1 (ko) * 1999-01-26 2002-01-10 윤종용 지연동기루프 및 이에 대한 제어방법
KR100400043B1 (ko) 2001-06-11 2003-09-29 삼성전자주식회사 데이터 복원 회로 및 방법
KR100562860B1 (ko) * 2005-09-23 2006-03-24 주식회사 아나패스 디스플레이, 컬럼 구동 집적회로, 멀티레벨 검출기 및멀티레벨 검출 방법
US7705841B2 (en) * 2006-01-20 2010-04-27 Novatek Microelectronics Corp. Display system and method for embeddedly transmitting data signals, control signals, clock signals and setting signals
KR100661828B1 (ko) * 2006-03-23 2006-12-27 주식회사 아나패스 직렬화된 멀티레벨 데이터 신호를 전달하기 위한디스플레이, 타이밍 제어부 및 데이터 구동부
WO2007108574A1 (en) 2006-03-23 2007-09-27 Anapass Inc. Display, timing controller and data driver for transmitting serialized multi-level data signal
US7844021B2 (en) * 2006-09-28 2010-11-30 Agere Systems Inc. Method and apparatus for clock skew calibration in a clock and data recovery system using multiphase sampling
TWI364219B (en) * 2007-08-20 2012-05-11 Novatek Microelectronics Corp High transmission rate interface for storing both clock and data signals
KR101174768B1 (ko) * 2007-12-31 2012-08-17 엘지디스플레이 주식회사 평판 표시 장치의 데이터 인터페이스 장치 및 방법
US7692462B2 (en) * 2008-01-25 2010-04-06 Himax Technologies Limited Delay-locked loop and a stabilizing method thereof
JP4990315B2 (ja) * 2008-03-20 2012-08-01 アナパス・インコーポレーテッド ブランク期間にクロック信号を伝送するディスプレイ装置及び方法
KR100868299B1 (ko) 2008-03-20 2008-11-11 주식회사 아나패스 클록 정보와 함께 데이터를 전송하는 방법 및 장치
KR100986041B1 (ko) 2008-10-20 2010-10-07 주식회사 실리콘웍스 클럭 신호가 임베딩된 단일 레벨 신호 전송을 이용한 디스플레이 구동 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980058222A (ko) * 1996-12-30 1998-09-25 구자홍 데이타 통신장치의 클럭주파수 및 위상 복원회로
KR20030052667A (ko) * 2001-12-21 2003-06-27 주식회사 하이닉스반도체 지연 고정 루프 회로
KR20080011834A (ko) * 2006-07-31 2008-02-11 삼성전자주식회사 지연 동기 루프 회로 및 클럭 신호 발생 방법
JP2008072597A (ja) * 2006-09-15 2008-03-27 Ricoh Co Ltd 遅延ロックループ回路
KR20080066327A (ko) * 2007-01-12 2008-07-16 삼성전자주식회사 클럭 임베디드 신호를 이용한 직렬 통신 방법 및 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113886300A (zh) * 2021-09-23 2022-01-04 珠海一微半导体股份有限公司 一种总线接口的时钟数据自适应恢复系统及芯片
CN113886300B (zh) * 2021-09-23 2024-05-03 珠海一微半导体股份有限公司 一种总线接口的时钟数据自适应恢复系统及芯片

Also Published As

Publication number Publication date
JP5579625B2 (ja) 2014-08-27
US8611484B2 (en) 2013-12-17
CN101999144B (zh) 2014-05-28
CN101999144A (zh) 2011-03-30
WO2010093158A3 (ko) 2010-10-28
TWI452838B (zh) 2014-09-11
JP2011514560A (ja) 2011-05-06
US20110286562A1 (en) 2011-11-24
TW201115925A (en) 2011-05-01
KR101169210B1 (ko) 2012-07-27
KR20100092562A (ko) 2010-08-23

Similar Documents

Publication Publication Date Title
WO2010093158A2 (ko) 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치
KR101408457B1 (ko) 직류 밸런스 제어를 갖는 클럭 에지 변조 직렬 링크를 이용하는 신호 수신기
CA2329233A1 (en) Skew-insensitive low voltage differential receiver
US8279216B2 (en) Apparatus and method for data interface of flat panel display device
EP1388975B1 (en) System and method for data transition control in a multirate communication system
US9203606B2 (en) Clock recovery circuit, data receiving device, and data sending and receiving system
TW201810996A (zh) 資料接收裝置
KR100868299B1 (ko) 클록 정보와 함께 데이터를 전송하는 방법 및 장치
JP5553999B2 (ja) デジタル位相ロックループを実施するためのシステム及び方法
JP2009232462A (ja) クロック情報とデータを伝送する装置及び方法
CN105938712B (zh) 用于传输显示信号的装置和方法
KR20110132308A (ko) 지연고정루프 기반의 클럭 복원부가 구비된 수신부 장치의 데이터 수신방법
US20090195272A1 (en) Data transmission system for exchanging multi-channel signals
KR20100078604A (ko) 데이터 송신 및 수신 장치들
KR100513385B1 (ko) 선형 위상 검출기를 이용한 클럭 및 데이터 복원 장치 및 그 방법
KR100998773B1 (ko) 역직렬화 타이밍 신호들을 생성하기 위한 시스템 및 방법
KR101470599B1 (ko) 복원된 클럭을 이용하여 송신한 데이터를 수신하는 장치
KR102366952B1 (ko) 지연고정루프 기반의 클럭 복원 장치 및 이를 구비한 수신 장치
US6563355B2 (en) Recovery circuit generating low jitter reproduction clock
WO2002089405A2 (en) Fibre channel transceiver
KR20090101053A (ko) 클록 정보와 함께 데이터를 전송하는 방법 및 장치
KR100261287B1 (ko) 신호 천이 방식에 의한 위상 비교 검출기 및 검출방법
US20100052754A1 (en) Input-signal recovery circuit and asynchronous serial bus data reception system using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001351.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12920550

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010550615

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741376

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741376

Country of ref document: EP

Kind code of ref document: A2