WO2010092938A1 - 多孔質複層フィルターおよびその製造方法 - Google Patents

多孔質複層フィルターおよびその製造方法 Download PDF

Info

Publication number
WO2010092938A1
WO2010092938A1 PCT/JP2010/051847 JP2010051847W WO2010092938A1 WO 2010092938 A1 WO2010092938 A1 WO 2010092938A1 JP 2010051847 W JP2010051847 W JP 2010051847W WO 2010092938 A1 WO2010092938 A1 WO 2010092938A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration layer
layer
support layer
filtration
porous
Prior art date
Application number
PCT/JP2010/051847
Other languages
English (en)
French (fr)
Inventor
宇野敦史
船津始
辻脇寛之
Original Assignee
住友電工ファインポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ファインポリマー株式会社 filed Critical 住友電工ファインポリマー株式会社
Priority to CN201080001381.5A priority Critical patent/CN102006925B/zh
Priority to EP10741215.7A priority patent/EP2397217A4/en
Priority to US12/988,242 priority patent/US20110052900A1/en
Priority to JP2010516313A priority patent/JPWO2010092938A1/ja
Publication of WO2010092938A1 publication Critical patent/WO2010092938A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00933Chemical modification by addition of a layer chemically bonded to the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/58Fusion; Welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0281Fibril, or microfibril structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/02Moulding by agglomerating
    • B29C67/04Sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/04Coating on the layer surface on a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/025Particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0257Polyolefin particles, e.g. polyethylene or polypropylene homopolymers or ethylene-propylene copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/026Porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/728Hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/73Hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • B32B2327/18PTFE, i.e. polytetrafluoroethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Definitions

  • the present invention relates to a porous multilayer filter, and particularly to a microfiltration filter capable of filtering ultrafine particles at a high flow rate.
  • PTFE polytetrafluoroethylene
  • PTFE porous filters are frequently used as filtration filters for chemicals, gases, etc., particularly in semiconductor-related fields, liquid crystal-related fields, and food and medical-related fields due to their excellent characteristics such as high chemical stability.
  • higher performance microfiltration filters are desired due to further technological innovation and increasing requirements.
  • semiconductor manufacturing the degree of integration is increasing year by year, and the photoresist is miniaturized to an area of 0.5 ⁇ m or less.
  • liquid crystal production fine processing using a photosensitive material is performed, and therefore a microfiltration filter capable of reliably capturing fine particles in a smaller area is required.
  • These microfiltration filters are mainly used as cleanroom outdoor air treatment filters and chemical filter filters, and their performance affects the product yield.
  • the completeness of filtration absolute removability
  • a PTFE porous membrane having a micropore having a pore diameter of 0.02 ⁇ m that is currently marketed has an isopropyl alcohol (IPA) flow rate of 0.0005 ml / cm 2 / min at a differential pressure of 0.95 kg / cm 2 , and is almost permeable. Not obtained.
  • IPA isopropyl alcohol
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-80590
  • a PTFE fine powder or an extruded product thereof is irradiated with radiation before being stretched, so that it has high filtration performance even with the same permeability.
  • Porous bodies have been proposed.
  • the porous body of Patent Document 1 has a problem that it is expensive and expensive because a process of irradiating radiation is essential.
  • Patent Document 2 JP-A-7-316327 discloses that particles having a particle diameter of 0.109 ⁇ m can be removed with a particle removal rate of 90% or more, a porosity of 60 to 90%, and a differential pressure of 1 kg.
  • a PTFE porous body having an IPA flow rate measured at / cm 2 of 0.6 ml / cm 2 / min or more is provided.
  • the PTFE porous material of Patent Document 2 is excellent in that a high particle removal rate is obtained, there is still room for improvement in permeability. That is, the IPA flow rate is 0.6 ml / cm 2 / min or more, and even the best IPA flow rate among the examples of Patent Document 2 is 1.8 ml / cm 2 / min. It takes a considerable amount of time. It is difficult to obtain a filter having such a high particle removal rate and permeability.
  • a porous membrane having a hydrophilic coating film is provided for the purpose of simply performing aqueous filtration.
  • this hydrophilic coating film is provided on the surface of a PTFE porous body or the like having a thickness of 20 ⁇ m or less, when the hydrophilic polymer of the hydrophilic coating film dries and shrinks, it loses its strength and becomes PTFE porous. There is a problem that the body contracts, the porosity decreases, and the permeate flow rate decreases.
  • the thickness of the porous PTFE material is increased in advance and the thickness of the hydrophilic coating film is maintained at 20 ⁇ m or less to produce a hydrophilic filtration membrane, the thick film thickness increases resistance and increases the flow rate. There is a problem that cannot be realized. Therefore, there is room for improvement in this respect.
  • the present invention has been made in view of the above problems, and provides a porous multilayer filter capable of capturing ultrafine particles of less than 0.1 ⁇ m at a high capture rate and increasing the flow rate, and a method for producing the same.
  • the challenge is to do.
  • a support layer comprising a porous expanded PTFE sheet;
  • a filtration layer comprising a porous expanded PTFE sheet different from the support layer;
  • At least the treatment liquid inflow surface of the filtration layer is subjected to a hydrophilic treatment,
  • the boundary between the filtration layer and the support layer is fused and multilayered, and the pores of the support layer and the pores of the filtration layer communicate with each other three-dimensionally,
  • a porous multilayer filter characterized in that the pores surrounded by the fibrous skeleton of the filtration layer are made smaller than the pores of the support layer.
  • a support layer comprising a porous expanded PTFE sheet;
  • a filtration layer comprising a porous expanded PTFE sheet different from the support layer;
  • the boundary between the filtration layer and the support layer is fused and multilayered, and the pores of the support layer and the pores of the filtration layer communicate with each other three-dimensionally,
  • the pores surrounded by the fibrous skeleton of the filtration layer are made smaller than the pores of the support layer, and the thickness of the filtration layer is thinner than the thickness of the support layer
  • the difference between the first invention and the second invention is that, in the first invention, at least the treatment liquid inflow surface of the filtration layer is subjected to hydrophilic treatment, but in the second invention, the hydrophilic treatment is not performed, and the surface Is that it is hydrophobic.
  • in the first invention and the second invention in the first invention, at least the treatment liquid inflow surface of the filtration layer is subjected to hydrophilic treatment, but in the second invention, the hydrophilic treatment is not performed and the surface is hydrophobic. It is different in that.
  • the first invention and the second invention are common in other respects such as a multilayered filtration layer and support layer. In the case of hydrophilicity, there is a problem of shrinkage during drying as described above.
  • the filter layer alone may cause damage to the membrane. If the thickness of the filtration layer is increased to suppress these, it is difficult to increase the flow rate.
  • the flow rate is increased while capturing the ultrafine particles at a high capture rate. be able to.
  • the thickness of the filtration layer is 2-10 ⁇ m, preferably 3-5 ⁇ m, while the thickness of the support layer is the filtration layer.
  • the thickness is preferably 1.5 to 10 times, more preferably 5 to 10 times, and the thickness is preferably 20 to 50 ⁇ m.
  • the average pore diameter of the filtration layer is preferably 0.01 to 0.45 ⁇ m, and the average pore diameter of the support layer is preferably 5 to 1000 times the average pore diameter of the filtration layer.
  • the porosity of the filtration layer is preferably 40 to 90%, and the porosity of the support layer is preferably 1 to 2.5 times the porosity of the filtration layer.
  • the filter of the second aspect of the invention has a filter layer thickness greater than that of the filter of the first aspect of the invention. May be made thin within the set range.
  • Both the porous multilayer filter of the first invention subjected to hydrophilic treatment and the porous multilayer filter of the second invention that is hydrophobic without being hydrophilic treated have a filtration function in the filtration layer.
  • the support layer is provided with a support function, the function is divided into two parts by the filtration layer and the support layer, and the pores of the support layer are enlarged to enable high flow rate processing. Therefore, in order to increase the flow rate as an average pore diameter capable of capturing ultrafine particles of less than 0.1 ⁇ m, even if the thickness of the filtration layer is reduced, the entire filter can be stiffened and reinforced, and the thin filtration layer can be expanded and contracted. Can be suppressed.
  • the flow rate can be increased by using the filtration layer as a thin film.
  • (flow rate before drying treatment of hydrophilic film ⁇ flow rate after drying treatment) / flow rate before drying treatment is defined as a flow rate change rate, and is 0.3 to 0.8 when there is no support layer. If there is a support layer, it can be suppressed to within 0-0.1, the effect of thinning the filtration layer can be utilized, and a high-performance filtration membrane is maintained by maintaining the balance between the bubble point and the flow rate. Can do.
  • the porous expanded PTFE sheet used as the filtration layer is replaced according to the particle size of the trap target, and the support layer integrated with the filtration layer has an average pore diameter of 5 to 1000 times, preferably 10 to 10 times. It is preferable to set it within a range of 30 times and use it in common.
  • the average pore diameter is measured by a pore diameter distribution measuring device (Palm Porometer manufactured by PUI, USA).
  • the porous expanded PTFE sheet of the filtration layer having a hydrophilic treatment and the filtration layer having a hydrophobic surface without being subjected to the hydrophilic treatment may be replaced to form a multilayer with the support layer used in common.
  • the porosity of the filtration layer is preferably 40% or more and 90% or less. This is because if the porosity is less than 40%, the flow rate is too low, and if it exceeds 90%, the strength may be too low.
  • the porosity is calculated by the method described in ASTM-D-792, or by calculating from the membrane volume and true specific gravity. It shows that it is excellent in the permeability, so that this figure is high.
  • the filtration layer has a bubble point of 70 kPa to 400 kPa.
  • particles of less than 0.08 ⁇ m and 0.01 ⁇ m or more are used as a capture target.
  • the minimum particle size that can be captured is 0.1 ⁇ m.
  • particles smaller than 0.1 ⁇ m can be captured.
  • transmission flow at that time can permeate
  • the particle capture rate is measured by the following method.
  • the filter is punched into a circular shape with a diameter of 47 mm, set in a holder, and an aqueous solution containing 1.4 ⁇ 10 10 particles / cm 2 of polystyrene latex homogeneous particles (manufactured by JSR) having a particle diameter of 0.055 ⁇ m is prepared.
  • Filtration is carried out at a pressure of 41.2 kPa using a film set with 32 cm 3 , the absorbance of the aqueous solution before filtration and the filtrate are measured, and the ratio is obtained.
  • Absorbance was measured at a wavelength of 310 nm using a UV-visible spectrophotometer (UV-160, manufactured by Shimadzu Corporation) (measurement accuracy 1/100).
  • the fine particles of 0.08 ⁇ m or less described above can be captured without reducing the permeation flow rate.
  • the porous expanded PTFE sheet constituting the filtration layer it is intended for capturing particles exceeding 0.08 ⁇ m.
  • the permeate flow rate at that time can be made higher than that of a conventional filter.
  • this invention provides the manufacturing method of said 1st hydrophilic-processed porous multilayer filter.
  • the manufacturing method includes firing the filtration layer and the support layer at a melting point of PTFE or higher, and fusing a boundary between the filtration layer and the support layer, Next, the integrated filtration layer and the support layer are impregnated with a hydrophilic material, Thereafter, the hydrophilic material is insolubilized by treatment with a crosslinking solution.
  • hydrophilic material used in the hydrophilic treatment examples include polyvinyl alcohol (PVA), ethylene vinyl alcohol copolymer (EVOH), and acrylate resin.
  • PVA polyvinyl alcohol
  • EVOH ethylene vinyl alcohol copolymer
  • acrylate resin examples of the hydrophilic material used in the hydrophilic treatment.
  • the first invention and the second invention are the same, and the thickness of the filtration layer is formed to be 5 ⁇ m to 20 ⁇ m thicker than the final thickness,
  • a filtration layer made of PTFE having a melting point of 347 ° C. and a support layer are overlapped, heated at a temperature of 350 to 410 ° C. for 30 seconds to 10 minutes, and baked, so that the total thickness is 20 ⁇ m to 50 ⁇ m. I wear it.
  • IPA is then impregnated with the integrated porous expanded PTFE sheet, and then the PVA resin is adhered to the fiber surface of the porous expanded PTFE sheet by impregnating the PVA aqueous solution with a certain concentration. is doing.
  • the porous expanded PTFE sheet with the PVA resin adhered to the fiber surface is treated with the crosslinking liquid to be crosslinked, thereby insolubilizing the PVA resin.
  • the porous stretched PTFE sheet is subjected to a crosslinking treatment with a crosslinking solution, and the PVA resin shrinks after drying. Since the filtration layer made of is supported by the support layer and has strength, shrinkage of the filtration layer can be suppressed, and a decrease in the porosity of the filtration layer can be prevented.
  • the porous expanded PTFE sheet of the filtration layer and the support layer constituting the porous multilayer filter of the present invention is produced by the following method.
  • the filtration layer has a longitudinal draw ratio of 5 to 15 times, preferably 8 to 12 times.
  • the stretching ratio in the transverse direction is 10 to 100 times, preferably 15 to 40 times. If the draw ratio is less than the above-mentioned ratio, the open area ratio is lowered, the resin lump remains, the pores are not rounded, and sufficient permeability cannot be obtained. On the other hand, if the magnification is exceeded, the fibers are torn and large holes may be formed.
  • the longitudinal and transverse stretch ratio is preferably 1: 2 to 1: 5, and 1: 2 to 1: 3, in order to make the fiber lengths in the longitudinal direction and the transverse direction equal, and to form a round hole shape. Is more preferable.
  • the supporting layer has a longitudinal stretching ratio of 4 to 15 times, preferably 5 to 10 times, and a transverse stretching ratio of 0 to 15 times, preferably 2 to 5 times.
  • the stretching ratio in the longitudinal direction of the support layer is less than the above ratio, the open area ratio becomes low, and when it exceeds the above ratio, the fiber is torn. If the stretching ratio in the transverse direction is too low, the hole area ratio will be low. However, if a sufficient flow rate can be secured even in stretching in the position direction with respect to the support layer, stretching in the transverse direction is not necessarily required. On the other hand, if the draw ratio is exceeded, the residual stress becomes high and the supporting role becomes insufficient.
  • the filtration layer has high permeability while having fine pores.
  • the porous filter which has can be obtained. This is because when high-molecular-weight PTFE unsintered powder is used, even if a higher magnification is applied in the vertical and horizontal biaxial directions, one hole is prevented from being excessively spread or the film is torn.
  • the fiberization is advanced to a high degree, and the nodule that is a mass of PTFE is substantially eliminated, and it is possible to produce a porous filter with minute pores having fine fibers as a skeleton.
  • the support layer reinforces the filtration layer, and thickness and flow permeability are important. Therefore, the vertical and horizontal total stretch ratio is set lower than that of the filtration layer, and the residual stress is increased while maintaining the thickness. It is set not to.
  • the high molecular weight PTFE unsintered powder forming the filtration layer it is preferable to use a powder having a number average molecular weight of 4 million or more. More preferably, it is 12 million or more. This is a particularly high molecular weight grade among the PTFE green powders currently on the market.
  • the number average molecular weight is determined by the specific gravity of the molded product, but the molecular weight of PTFE varies depending on the measurement method, and accurate measurement is difficult. Therefore, depending on the measurement method, it may not be within the above range. .
  • the support layer can be manufactured in a wide range.
  • a draw ratio shall be 150 times or more by area ratio in a filtration layer. More preferably, it is 300 times or more, and most preferably 600 times or more.
  • the upper limit of the draw ratio (area ratio) is preferably 1500 times or less. If the draw ratio is less than 150 times in area ratio, fiberization cannot be advanced to a high degree. On the other hand, if it exceeds 1500 times, the film becomes too thin and the strength decreases.
  • the draw ratio is 8 times or more, more preferably 15 times or more.
  • the upper limit of the draw ratio (area ratio) is preferably 60 times or less. When the draw ratio is less than 8 times in terms of area ratio, fiberization cannot be advanced to a high degree. On the other hand, if it exceeds 60 times, the residual stress becomes too strong and the role of the support film is lowered.
  • the specific manufacturing process of the porous multilayer filter of the present invention is as follows.
  • a molded body is produced by a known PTFE green powder paste extrusion method.
  • a liquid lubricant is mixed at a ratio of 10 to 40 parts by mass, preferably 16 to 25 parts by mass with respect to 100 parts by mass of PTFE resin, and extrusion molding is performed.
  • liquid lubricant various lubricants conventionally used in the paste extrusion method can be used.
  • petroleum solvents such as solvent / naphtha and white oil, hydrocarbon oils such as undecane, aromatic hydrocarbons such as toluol and xylol, alcohols, ketones, esters, silicone oil, fluorochlorocarbon oil, etc.
  • examples thereof include a solution in which a polymer such as polyisobutylene or polyisoprene is dissolved in the above solvent, a mixture of two or more thereof, water or an aqueous solution containing a surfactant, and the like. Since a single component can be uniformly mixed rather than a mixture, it is preferable.
  • Molding by paste extrusion is performed at a sintering temperature of PTFE, that is, 327 ° C. or lower, usually around room temperature. Prior to paste extrusion, preforming is usually performed. In the pre-molding, the mixture is compression-molded at a pressure of, for example, about 1 to 10 MPa to form blocks, rods, tubes, and sheets.
  • a molded body having a shape that can be stretched is produced by extruding the molded body obtained by the preliminary molding with a paste extruder, rolling with a calender roll or the like, or extruding and rolling.
  • the liquid lubricant is removed from the molded body.
  • the liquid lubricant may be removed before sintering and may be removed after stretching, but is preferably removed before stretching. Removal of the liquid lubricant is performed by heating, extraction or dissolution, and is preferably performed by heating. In general, the heating temperature is preferably 200 to 330 ° C. Further, when a liquid lubricant having a relatively high boiling point such as silicone oil or fluorocarbon is used, it is preferably removed by extraction.
  • liquid lubricant in addition to the liquid lubricant, other substances may be included depending on the purpose.
  • Inorganic fillers such as salts, metal powder, metal oxide powder, metal sulfide powder and the like can be added.
  • substances that can be removed or decomposed by heating, extraction, dissolution, etc. such as ammonium chloride, sodium chloride, other plastics, rubber, etc., may be blended in powder or solution form. it can.
  • the obtained molded body by paste extrusion is divided into molded bodies constituting the support layer and the filtration layer, and each is stretched at the above-described stretching ratio.
  • the stretching is preferably performed at a temperature as high as possible below the melting point.
  • the temperature is preferably room temperature (or 20 ° C.) to 300 ° C., more preferably 250 ° C. to 280 ° C.
  • stretching is performed at a low temperature, a porous film having a relatively large pore diameter and a high porosity is likely to be formed.
  • stretching is performed at a high temperature, a dense porous film having a small pore diameter is likely to be formed. By combining these conditions, the pore diameter and the porosity can be controlled.
  • the stretching may be performed in a first stage at a low temperature of 20 to 70 ° C. and then in a second stage under the high temperature conditions as described above.
  • the heat setting is important because the stretch ratio is particularly increased and the porous structure is not lost. It is preferably performed immediately after the stretching in the transverse direction, and when stretching in two or more stages is preferably performed after stretching in each stage.
  • the heat setting is usually performed by holding the stretched film at a tension, for example, by fixing both ends of the stretched film, and holding at an atmospheric temperature of 200 to 500 ° C. for 0.1 to 20 minutes.
  • the integration is performed by heating at a sintering temperature of 327 ° C. or higher, which is the transition point of PTFE, and heating for several minutes to several tens of minutes, and in some cases, longer. Usually, it is appropriate to heat in a furnace maintained at 350 to 500 ° C.
  • porous expanded PTFE sheets of the filtration layer and the support layer of the present invention have the above-described thicknesses.
  • the filter of the first invention is then subjected to the hydrophilic treatment described above, whereas the filter of the second invention is not subjected to the hydrophilic treatment.
  • a filtration layer and a support layer each made of a porous expanded PTFE sheet are provided, and the pores of the support layer are made larger than the pores of the filtration layer.
  • the porous expanded PTFE sheet of each of the filtration layer and the support layer is heated at a temperature equal to or higher than the melting point of PTFE to fuse the boundary surface, and only the filtration layer having a reduced thickness has a filtration function. Is supported by a support layer, and the pores of the support layer are enlarged to increase the permeability. Therefore, ultrafine particles of about 0.05 ⁇ m can be transmitted at a permeation flow rate comparable to that of a 0.1 ⁇ m particle capturing filter.
  • the filter of the present invention is a filter capable of capturing ultrafine particles, it can ensure stable permeability and can transmit at a high flow rate. Therefore, in particular, it can be suitably used as a microfiltration filter for gases and liquids used in manufacturing processes in the semiconductor, liquid crystal field and food / medical field in which the capture rate of ultrafine particles is increased and the processing speed is required. .
  • the porous multilayer filter 1 includes a support layer 2 composed of a stretched porous PTFE sheet and a stretched porous provided on the outer peripheral surface of the support layer 2. It consists of a filtration membrane having a two-layer structure in which a filtration layer 3 made of a textured PTFE sheet is laminated and integrated.
  • the filtration layer 3 and the support layer 2 are subjected to a hydrophilic treatment with a hydrophilic material made of PVA5, and the PVA5 is applied to the fiber surfaces of the filtration layer 3 and the support layer 2 with a uniform thickness of 0.03 to 0.05 ⁇ m. Yes.
  • the thickness of the support layer 2 is 5 to 10 times the thickness of the filtration layer 3.
  • the filtration layer 3 has a thickness of 2 to 10 ⁇ m.
  • the filtration layer 3 has a structure shown in FIG. 2A
  • the support layer 2 has a structure shown in an enlarged photograph 3000 times that of FIG. 2B.
  • Each of the filtration layer 3 and the support layer 2 includes a fibrous skeleton in which flexible fibers F are connected in a three-dimensional network by a knot, and the fibrous skeleton surrounds a substantially slit-shaped hole P, The holes P are communicated in three dimensions.
  • the filter layer 3 has an average pore diameter of 0.03 to 0.05 ⁇ m and a porosity of 70 to 80%.
  • the filtration layer 3 sets the bubble point by adjusting the average pore diameter and the porosity within the above range according to the solid particles to be captured.
  • the filtration layer 3 is for capturing ultrafine particles of less than 0.08 ⁇ m and 0.01 ⁇ m or more, the bubble point is 200 to 400 kPa, the water flow rate is 70 to 300 sec / 100 ml, the differential pressure is 29.4 kPa, the effective area. It is 9.6 cm 2 .
  • the bubble point of the filtration layer 3 is set to 50 kPa or more and less than 150 kPa, and the water flow rate is set to 30 sec / 100 ml or less.
  • the bubble point of the filtration layer 3 is 150 kPa or more and less than 200 kPa, and the water flow rate is 40 sec / 100 ml or less.
  • the porous expanded PTFE sheet constituting the support layer 2 has a pore diameter of 2 to 30 kPa for the IPA bubble point and 75 to 90% for the porosity of the outer surface 2a serving as a contact surface with the filtration layer 3, and a differential pressure of 93.1 kPa.
  • the IPA transmission coefficient is 40 to 100 ml / min / cm 2 .
  • the matrix tensile strength is 50 to 110 MPa.
  • Each physical property value is measured by the following method.
  • Porosity Based on ASTM-D-792, this is a value obtained from the specific gravity (apparent specific gravity) obtained in water and the specific gravity of tetrafluoroethylene resin. The larger this value, the better the permeability. .
  • Average pore diameter Measured with a palm porometer (model number CFP-1200A) manufactured by PMI.
  • Bubble point Measured using isopropyl alcohol by a method based on ASTM-F-316-80.
  • Flow rate Sheet: The sheet of the filtration layer was measured by the method of ASTM-F-317, and the differential pressure was 29.4 kPa.
  • the porous expanded PTFE sheets constituting the support layer 2 and the filtration layer 3 are manufactured separately.
  • the liquid lubricant is blended at a ratio of 16 to 25 parts by mass with respect to 100 parts by mass of the PTFE green powder (fine polymer) and mixed.
  • the PTFE green powder a high molecular weight one having a number average molecular weight of 1 million to 15 million is used.
  • the liquid lubricant petroleum-based solvents such as solvent naphtha and white oil are used.
  • the obtained mixture is compression-molded by a compression molding machine to form a block-shaped molded body (preliminary molding), and the block-shaped molded body is sheet-shaped at a temperature of room temperature to 50 ° C. at a speed of 20 mm / min. Is extruded. Furthermore, the obtained sheet-like molded object is rolled with a calendar roll etc., and it is set as the sheet-like molded object of thickness 300 micrometers.
  • the sheet-like molded product is dried by passing it through a heating roll having a roll temperature of 130 to 220 ° C.
  • both the support layer 2 and the filtration layer 3 are subjected to longitudinal stretching first and then lateral stretching. Transverse stretching is performed in a furnace in a high-temperature atmosphere of 70 to 200 ° C., and after stretching, it is held at 280 to 390 ° C. for 0.25 to 1 minute for heat setting.
  • the filtration layer 3 is placed on one surface of the stretched porous PTFE sheet serving as the support layer 2 and heated at 360 to 400 ° C., which is higher than the melting point of PTFE, for 0.5 to 3 minutes. Thereby, the boundary surface of the support layer 2 and the filtration layer 3 is heat-seal
  • the porous expanded PTFE sheet obtained by integrating the filtration layer 3 and the support layer 2 obtained in the above process is hydrophilically treated with PVA.
  • the hydrophilic treatment is performed by immersing the laminated and expanded porous expanded PTFE sheet in isopropyl alcohol (IPA) for 0.25 to 2 minutes, and then adjusting the concentration to 0.5 wt% to 0.8 wt%, respectively. Impregnate in aqueous solution for 5-10 minutes. Then, after being immersed in pure water for 2 to 5 minutes, crosslinking is performed.
  • IPA isopropyl alcohol
  • Crosslinking is performed by any method of glutaraldehyde crosslinking (GA), terephthalaldehyde crosslinking (TPA), or electron beam crosslinking with irradiation of 6 Mrad electron beam.
  • G glutaraldehyde crosslinking
  • TPA terephthalaldehyde crosslinking
  • electron beam crosslinking with irradiation of 6 Mrad electron beam.
  • the porous multilayer filter 1 manufactured as described above includes a support layer 2 made of a porous expanded PTFE sheet, and an expanded porous PTFE integrated on the outer peripheral surface of the support layer 2. It is a multilayer comprising a filtration layer 3 made of a sheet, and the outer surface of the filtration layer 3 and the support layer 2 and the surface of the inner fibers are hydrophilically treated with PVA.
  • the pores of the support layer 2 and the filtration layer 3 shown in FIGS. 2A and 2B are three-dimensionally communicated with each other.
  • the pores on the outer surface and the pores of the PVA 5 of the hydrophilic coating layer are provided.
  • the hole is in communication.
  • the porous multilayer filter 1 performs a solid-liquid separation process by supplying a treatment liquid from the outer surface of the filtration layer 3 toward the inner peripheral surface of the support layer 2, for example.
  • Example of the first embodiment The first to fifth porous multilayer filters in which the bubble point of the filtration layer 3 was changed were prepared as examples.
  • Example 1 The filtration layer body is mixed and mixed at a ratio of 18 parts by mass of liquid lubricant (Supersol FP-25, (component: naphtha)) by 100 parts by mass of PTFE fine powder (PTFE 601A manufactured by DuPont). Then, it was put in a molding machine and compression molded to obtain a block-shaped molded product. Next, the block-like molded product is continuously extruded into a sheet shape, passed through a rolling roller, and further passed through a heating roll (130 to 220 ° C.) to remove the liquid lubricant. A sheet was obtained.
  • liquid lubricant Supersol FP-25, (component: naphtha)
  • PTFE 601A manufactured by DuPont
  • the sheet as the filter layer body was stretched twice in the machine direction (flow direction) at a roll temperature of 250 ° C. to 280 ° C., and further stretched 4 times under the same temperature conditions. That is, the longitudinal stretching was performed at a stretching ratio of 8 times in two stages. Both ends in the width direction of the film after longitudinal stretching were gripped by a chuck, and transverse stretching of 5 times stretching was performed in an atmosphere perpendicular to the flow direction at 50 ° C. Thereafter, heat setting was performed by maintaining the temperature at 285 ° C. for 0.25 to 1 minute. Subsequently, the film was stretched 18 times in an atmosphere at 170 ° C., and then heat-fixed by holding at 340 ° C. for 0.25 to 1 minute.
  • transverse stretching was performed at a stretching ratio of 90 times in two stages.
  • the stretched sheet was passed through a heating furnace at 360 ° C. and sintered for 1.5 minutes to obtain a filtration layer body of Example 1.
  • the bubble point of the filtration layer main body of Example 1 was 350 kPa, and the particles of the capture target were 0.03 ⁇ m.
  • the sheet for the support layer 2 was formed at a temperature condition of 180 to 200 ° C., a longitudinal draw ratio of 7.4 times, and a transverse draw ratio of 10 times.
  • the pore diameter of the support layer 2 was 6 times that of the filtration layer 3 and the thickness was 30 ⁇ m.
  • porous expanded PTFE sheets of the filtration layer 3 and the support layer 2 were stacked and heated at 370 ° C. for 100 seconds, and the boundary between the filtration layer 3 and the support layer 2 was heat-sealed and integrated.
  • the composite membrane in which the filtration layer 3 and the support layer 2 were integrated was hydrophilized with PVA by the method described above.
  • Example 2 In the filtration layer 3, the blending amount of the liquid lubricant with respect to the resin 601A (manufactured by DuPont) was changed to 20 parts by mass.
  • the vertical and horizontal draw ratio was 8 times, and the horizontal draw ratio was 30 times.
  • the bubble point of the filtration layer 3 was 250 kPa, and the trap target particles were 0.05 ⁇ m.
  • Other configurations were the same as those in Example 1.
  • Example 3 The resin of the filtration layer 3 was changed to CD123 (manufactured by Asahi Glass Co., Ltd.), and the blending amount of the liquid lubricant was changed to 20 parts by mass. Instead of the longitudinal and transverse draw ratio, the longitudinal draw ratio was 6 times and the transverse draw ratio was 15 times.
  • the bubble point of the filtration layer 3 was 200 kPa, and the trap target particles were 0.1 ⁇ m. Other configurations were the same as those in Example 1.
  • Example 4 The resin of the filtration layer 3 was changed to CD123 (manufactured by Asahi Glass Co., Ltd.), and the blending amount of the liquid lubricant was changed to 22 parts by mass. Instead of the longitudinal and transverse stretching ratios of the filtration layer body, the longitudinal stretching ratio was 5 times and the transverse stretching ratio was 10 times.
  • the bubble point of the filtration layer 3 was 150 kPa, and the trap target particles were 0.2 ⁇ m. Other configurations were the same as those in Example 1.
  • Example 5 The resin of the filtration layer 3 was changed to CD145 (manufactured by Asahi Glass Co., Ltd.), and the blending amount of the liquid lubricant was changed to 22 parts by mass. Instead of the longitudinal and transverse stretching ratio, the longitudinal stretching ratio was 5 times and the transverse stretching ratio was 10 times. The bubble point of the filtration layer 3 was 100 kPa, and the trap target particles were 0.45 ⁇ m. Other configurations were the same as those in Example 1.
  • Comparative Examples 1-1 to 1-3 were all made of a single layer of porous expanded PTFE sheet.
  • Proportional Example 1-1 had a bubble point of 200 kPa and trap target particles of 0.1 ⁇ m.
  • the bubble point was 150 kPa, and the trap target particle was 0.2 ⁇ m.
  • the bubble point was 100 kPa, and the trap target particle was 0.45 ⁇ m.
  • the filter of Comparative Example 1 is a filter described in Japanese Patent Application Laid-Open No. 2008-119662 filed by the applicant of the present application.
  • Comparative Example 1 (1-1 to 1-3), 100 parts by mass of PTFE fine powder (CD123 product number, molecular weight 12 million manufactured by Asahi Glass Co., Ltd.) is used as a liquid lubricant (Supersol FP-25 manufactured by Idemitsu Oil Co., Ltd.) Ingredient: naphtha)) In a proportion of 18 parts by mass, mixed, put in a molding machine and compression molded to obtain a block-shaped molded product. Next, the block-shaped molded product is continuously extruded into a sheet shape, passed through a rolling roller, wound around a roll through a heating roll (130 to 220 ° C.), and a 300 ⁇ m sheet from which the liquid lubricant has been removed is obtained. Obtained.
  • the film was stretched 6 times in the machine direction (flow direction) at a roll temperature of 250 ° C. to 280 ° C.
  • both ends in the width direction of the film were gripped with a chuck, and stretched 4 times in an atmosphere perpendicular to the flow direction at 150 ° C.
  • the sheet was passed through a heating furnace at 360 ° C. and sintered for 2 minutes to obtain a filter of Comparative Example 1 (1-1 to 1-3).
  • Example 1 to 5 and Comparative Example 1 100 ml of the treatment solution was passed under a pressure of 29.4 KPa, and the permeation time (s) was measured. The result is shown in the graph of FIG. In FIG. 3, white circles are Examples 1 to 5 and black circles are Comparative Example 1.
  • Example 3 in Example 3 where the bubble point was 200 kPa and 0.1 ⁇ m particles were captured, the permeation time was reduced to about 1 ⁇ 4, and a large flow rate could be permeated. . As compared with Comparative Examples 1-2 and 1-3 in which Examples 4 and 5 also had the same trapping performance, the permeation time could be reduced and permeation could be performed at a high flow rate.
  • the porous multilayer filter of Example 1 of the first embodiment of the present invention can capture 0.03 ⁇ m particles that could not be captured by the filters of Comparative Examples 1 and 2, and 0 of Comparative Example 1 It was confirmed that it could be processed at a high flow rate with a flow rate equivalent to that of a 1 ⁇ m capture filter. Moreover, when the bubble point was made equal to Comparative Examples 1 and 2, it was confirmed that the permeation time can be reduced and the flow rate can be increased. That is, the filter of the present invention has excellent permeability without decreasing the permeation flow rate while being a microfiltration filter that captures ultrafine particles.
  • the porous multilayer filter 10 of the second embodiment is not subjected to hydrophilic treatment, and therefore, a hydrophilic film made of PVA5 is not formed on the fiber surfaces of the filtration layer 3 and the support layer 2 as shown in FIG. It is different from the first embodiment.
  • the thickness of the support layer 2 is 5 to 10 times the thickness of the filtration layer 3, but among them, it is preferable to make the thickness as thin as about 5 to 7 times. Therefore, the thickness of the filtration layer 3 is preferably 2 to 10 ⁇ m, particularly 2 to 5 ⁇ m.
  • the structure itself of the said filtration layer 3 and the support layer 2 is substantially the same as the structure shown to the 3000 times enlarged photograph of said FIG. 2 (A) (B) of 1st embodiment, and the filtration layer 3 and the support layer 2 are either
  • a fiber skeleton is formed by connecting flexible fibers F in a three-dimensional network by a knot, and the fiber skeleton surrounds a substantially slit-shaped hole P, and the hole P is communicated in three dimensions. ing.
  • the filtration layer 3 has an average pore diameter of 0.03 to 0.05 ⁇ m and a porosity of 70 to 80%.
  • the filtration layer 3 sets the bubble point by adjusting the average pore diameter and the porosity within the above range according to the solid particles to be captured.
  • the average pore diameter is preferably 0.04 to 0.05 ⁇ m in 0.03 to 0.05 ⁇ m
  • the porosity is preferably 75 to 80% in 70 to 80%.
  • the filtration layer 3 is for capturing ultrafine particles of less than 0.08 ⁇ m and 0.01 ⁇ m or more, the bubble point is 200 to 400 kPa, the IPA flow rate is 70 to 300 sec / 100 ml, the differential pressure is 93.1 kPa, the effective area. It is 9.6 cm 2 .
  • the bubble point of the filtration layer 3 When capturing solid particles exceeding 0.5 to 0.1 ⁇ m, the bubble point of the filtration layer 3 is set to 50 kPa or more and less than 150 kPa, and the IPA flow rate is set to 30 sec / 100 ml or less. When capturing solid particles of 0.1 ⁇ m or less and 0.08 ⁇ m or more, the bubble point of the filtration layer 3 is 150 kPa or more and less than 200 kPa, and the IPA flow rate is 40 sec / 100 ml or less.
  • a plurality of filtration layers 3 having bubble points changed in accordance with the size of the solid particles to be captured are provided, and the filtration layers are integrated into a common support layer 2 to form a multilayer. Used.
  • the porous expanded PTFE sheet constituting the support layer 2 has an IPA bubble point of 2 to 30 kPa and a porosity of 75 on the outer surface 2a which is a contact surface with the filtration layer 3.
  • the IPA permeability coefficient at a differential pressure of 93.1 kPa is 40 to 100 ml / min / cm 2 when the pressure is 90%.
  • the matrix tensile strength is 50 to 110 MPa.
  • the production of the porous multilayer filter 10 composed of the support layer 2 and the filtration layer 3 of the second embodiment is different from the first embodiment in that the hydrophilic treatment is not performed, and other steps are the same as those of the first embodiment. It is the same. That is, in the first step, the porous expanded PTFE sheets constituting the support layer 2 and the filtration layer 3 are manufactured separately. In detail, it is the same as that of 1st embodiment, and both the support layer 2 and the filtration layer 3 are 16-25 mass parts of liquid lubricants with respect to 100 mass parts of PTFE unsintered powder (fine polymer). Mix and mix in proportions.
  • the mixture is compression-molded by a compression molding machine to form a block-shaped molded body (preliminary molding), and the block-shaped molded body is extruded into a sheet at a temperature of room temperature to 50 ° C. at a speed of 20 mm / min. .
  • the obtained sheet-like molded body is rolled with a calendar roll or the like to obtain a sheet-like molded body having a thickness of 300 ⁇ m.
  • the sheet-shaped molded product is dried by passing through a heating roll having a roll temperature of 130 to 220 ° C.
  • the obtained sheet-shaped molded body is biaxially stretched in the vertical and horizontal directions.
  • the stretching ratio of the sheet-shaped molded body used as the support layer 2 and the sheet-shaped molded body used as the main body of the filtration layer 3 is the same as that of the first embodiment. Similarly, make them different.
  • the filtration layer 3 is placed on one side of the stretched porous PTFE sheet used as the support layer 2 and heated at 360 to 400 ° C., which is equal to or higher than the melting point of PTFE, for 0.5 to 3 minutes. Thereby, the boundary surface of the support layer 2 and the filtration layer 3 is heat-seal
  • Examples 6 to 10 of the second embodiment are different from Examples 1 to 5 in which the hydrophilic treatment of the first embodiment is performed only in that the hydrophilic treatment is not performed, and other materials, manufacturing methods, Since the thickness, average pore diameter, porosity, bubble point, and the like are all the same, detailed description thereof is omitted.
  • the bubble points and trapping target particles of Examples 6 to 10 are as follows. In Example 6, the bubble point of the filtration layer was 350 kPa, and the trap target particle was 0.03 ⁇ m. In Example 7, the bubble point of the filtration layer 3 was 250 kPa, and the trap target particle was 0.05 ⁇ m.
  • Example 8 the bubble point of the filtration layer 3 was 200 kPa, and the particles of the capture target were 0.1 ⁇ m. In Example 9, the bubble point of the filtration layer 3 was 150 kPa, and the trap target particles were 0.2 ⁇ m. In Example 10, the bubble point of the filtration layer 3 was set to 100 kPa, and the particles of the capture target were set to 0.45 ⁇ m.
  • the Examples 6 to 10 of the second embodiment were passed through the filters of Comparative Examples 1-1, 1-2, and 1-3 of the first embodiment by applying a pressure of 93.1 KPa to 100 ml of the treatment liquid, The transmission time (s) of the IPA was measured. That is, in the case of the filter subjected to the hydrophilic treatment of the first embodiment, the treatment liquid was pressurized at 29.4 KPa, whereas when passing through the hydrophobic filter not subjected to the hydrophilic treatment of the second embodiment, the treatment liquid And about 3 times the pressure of 93.1 KPa is passed through the filter. The results are shown in the graph of FIG. In FIG. 5, white marks are Examples 6 to 10, and black marks are comparative examples.
  • the IPA permeation time (the time required to permeate 100 ml of IPA) is 100 to 150 (s).
  • the permeation time was the same as in Comparative Example 1-1, where the trapping target was 0.1 ⁇ m and the bubble point was 200 to 220 kPa.
  • 0.03 ⁇ m particles could be captured at an IPA flow rate equivalent to that of the filter of proportional example 1 that captures 0.1 ⁇ m particles as compared with the conventional example.
  • Example 7 When 0.05 ⁇ m particles were captured at a bubble point of 250 kPa in Example 7, the IPA transmission time was 60 to 110 (s), the capture target was 0.1 ⁇ m, and the bubble point was 200 kPa Comparative Example 1-1 The permeation time was equivalent.
  • the IPA transmission time was 10-30 (s), the transmission time was shortened, the capture target was 0.45 ⁇ m, and the bubble point was 100 kPa.
  • the transmission time was the same as that of Comparative Example 1-3.
  • Example 10 When 0.45 ⁇ m particles were captured with the bubble point of Example 10 set to 100 kPa, it was 7 to 25 (s), and the IPA permeation time was about half that of the target comparative example 1-3.
  • the porous multilayer filters of Examples 6 to 10 of the second embodiment of the present invention can capture 0.03 ⁇ m particles that could not be captured by the filters of Comparative Examples 1 and 2, and Comparative Example 1 It was confirmed that it could be processed at a high speed with an IPA flow rate equivalent to a 0.1 ⁇ m capture filter. In addition, when the bubble point was the same as in Comparative Examples 1 and 2, it was confirmed that the permeation time can be reduced and the flow rate can be increased.
  • the permeate flow rate is the same as the microfiltration filter that captures ultrafine particles even in the hydrophilic treatment filter of the first invention of the present invention and the hydrophobic filter of the second invention that is not hydrophilic treatment. And has excellent permeability.

Abstract

 超微粒子の捕捉性能を有しながら、透過性が良く高流量処理ができる多孔質複層フィルターを提供する。多孔質延伸PTFEシートからなる支持層2と、該支持層2とは別の多孔質延伸PTFEシートからなる濾過層3を備え、前記濾過層3の少なくとも処理液流入面が親水処理されており、前記濾過層3と前記支持層2との境界が融着されて複層化されていると共に、該支持層2の空孔と濾過層3の空孔が互いに三次元的に連通し、前記濾過層3の繊維状骨格により囲まれた空孔は上記支持層2の空孔より小さくされていることを特徴とする。

Description

多孔質複層フィルターおよびその製造方法
 本発明は、多孔質複層フィルターに関し、特に、超微粒子を高流量で濾過できる精密濾過フィルターに関するものである。
 ポリテトラフルオロエチレン(以下、PTFEという)多孔質フィルターは、PTFE自体のもつ高い耐熱性、化学安定性、耐候性、不燃性、高強度、非粘着性、低摩擦係数等の特性に加えて、多孔質体のもつ可撓性、液体透過性、粒子捕捉性、低誘電率等の特性を有し、従来から液体・気体の精密濾過フィルター(メンブランフィルター)、電線被覆用材料、呼吸弁(エアベント)など広範な分野で使用されている。
 近年、PTFE多孔質フィルターはその高い化学安定性等の優れた特性により、特に半導体関連分野、液晶関連分野、及び食品・医療関連分野における薬液、ガス等の濾過フィルターとして多く使用されている。
 このような分野では、さらなる技術革新や要求事項の高まりから、より高性能な精密濾過フィルターが要望されている。具体的には、半導体製造においては年々集積度が高まり、0.5μm以下の領域までフォトレジストが微細化されている。液晶製造においても同様に感光性材料による微細加工が施されるため、さらに小さな領域の微細粒子を確実に捕捉できる精密濾過フィルターが必要となってきている。これらの精密濾過フィルターは主にクリーンルームの外気処理用フィルター、薬液の濾過フィルターとして使用され、その性能は製品の歩留まりにも影響する。
 また、食品・医療関連分野においては、近年の安全意識の高まりから、微小異物に対する濾過の完全性(絶対除去性)が強く要望されている。
 しかし、高い粒子捕捉性を確保しようと孔径の小さいフィルターとすると、透過性、すなわち薬液やエアーの処理速度の低下が生じ、製品の生産性が低下する。現在市販されている孔径0.02μmの微細孔を有するPTFE多孔質膜では、イソプロピルアルコール(IPA)流量が差圧0.95kg/cm2で0.0005ml/cm2/minとなり、殆ど透過性が得られていない。このように、従来の精密濾過フィルターでは、処理速度と粒子捕捉率とのバランスをとることは非常に困難である。
 前記した問題に対して、種々のPTFE多孔質体が提案されている。
 例えば、特開2003-80590号公報(特許文献1)では、PTFEファインパウダー、或いはその押出成形品に対して、延伸加工前に放射線を照射することにより、同じ透過性でも、高い濾過性能を持つ多孔質体が提案されている。
 しかし、特許文献1の多孔質体は放射線を照射する工程が必須となるため費用がかかり高価となる問題がある。
 また、特開平7-316327号公報(特許文献2)には、粒子径0.109μmの粒子を90%以上の粒子除去率で除去可能で、気孔率が60~90%、かつ、差圧1kg/cm2で測定したIPA流量が0.6ml/cm2/min以上のPTFE多孔質体が提供されている。
 特許文献2のPTFE多孔質体は、高い粒子除去率を得ている点では優れているが、透過性においては未だ改善の余地がある。すなわち、IPA流量は0.6ml/cm2/min以上としており、特許文献2の実施例のなかでIPA流量が最も良好なものでも、1.8ml/cm2/minであるため、濾過には相当な時間を要する。
 このように高い粒子除去率と透過性を兼ね備えたフィルターを得るのは困難である。
 さらに、PTFE多孔質体は撥水性であるため、多孔質体内に水を透過しにくい問題がある。そのため、簡便に水系の濾過を行うことを目的として、親水性の塗布膜を形成した多孔質膜が提供されている。
 しかしながら、この親水性塗布膜を厚さ20μm以下のPTFE多孔質体等の表面に設けると、該親水性塗布膜の親水性ポリマーが乾燥して収縮する際に、その強度に負けてPTFE多孔質体が収縮し、気孔率が低下して透過流量が低下する問題がある。一方、予めPTFE多孔質体の厚さを大として、親水性塗布膜の厚さを20μm以下に維持して、親水性濾過膜を製造すると、膜厚が厚いことにより抵抗が大きくなり、高流量化を図ることができなくなる問題がある。よって、この点でも改善の余地がある。
特開2003-80590号公報 特開平7-316327号公報
 本発明は前記問題に鑑みてなされたものであり、0.1μm未満の超微粒子を高捕捉率で捕捉でき、かつ、高流量化を図ることができる多孔質複層フィルターおよびその製造方法を提供することを課題としている。
 前記課題を解決するため、第一の発明として、
 多孔質延伸PTFEシートからなる支持層と、
 該支持層とは別の多孔質延伸PTFEシートからなる濾過層を備え、
 前記濾過層の少なくとも処理液流入面が親水処理されており、
 前記濾過層と前記支持層との境界が融着されて複層化されていると共に、該支持層の空孔と濾過層の空孔が互いに三次元的に連通し、
 前記濾過層の繊維状骨格により囲まれた空孔は上記支持層の空孔より小さくされていることを特徴とする多孔質複層フィルターを提供している。
 また、第二の発明として、
 多孔質延伸PTFEシートからなる支持層と、
 該支持層とは別の多孔質延伸PTFEシートからなる濾過層を備え、
 前記濾過層と前記支持層との境界が融着されて複層化されていると共に、該支持層の空孔と濾過層の空孔が互いに三次元的に連通し、
 前記濾過層の繊維状骨格により囲まれた空孔は上記支持層の空孔より小さくされていると共に、濾過層の厚さは支持層の厚さよりも薄くしていることを特徴とする多孔質複層フィルターを提供している。
 第一の発明と第二の発明の相違点は、第一の発明では濾過層の少なくとも処理液流入面が親水処理されているが、第二の発明では該親水処理がなされておらず、表面が疎水性となっている点である。
 第一の発明と第二の発明は、第一の発明では濾過層の少なくとも処理液流入面が親水処理されているが、第二の発明では該親水処理がなされておらず、表面が疎水性となっている点で相違する。
 しかしながら、第一の発明と第二の発明は、濾過層と支持層を複層化するなどその他の点で共通する。親水性の場合、上述のように乾燥時の収縮の問題がある。親水処理を行わない場合においても、高圧をかけると濾過層単体では膜へのダメージが生じる可能性がある。これらを抑制するために濾過層の厚さを大とすると、高流量化が困難となってしまう。第一の発明および第二の発明ではいずれも、濾過層と支持層を複層化するなどの共通の構成を採用することで、超微粒子を高捕捉率で捕捉しつつ、高流量化を図ることができる。
 前記第一および第二の発明の多孔質複層フィルターは、いずれも、前記濾過層の厚さは2~10μm、好ましくは3~5μmと薄くする一方、前記支持層の厚さは該濾過層の厚さの1.5~10倍、好ましくは5~10倍で、厚さ20~50μmとしていることが好ましい。
 また、前記濾過層の平均空孔径は0.01~0.45μm、支持層の平均空孔径は前記濾過層の平均空孔径の5~1000倍としていることが好ましい。
 さらに、前記濾過層の気孔率は40~90%、支持層の気孔率は前記濾過層の気孔率の1~2.5倍としていることが好ましい。
 前記第一の発明の親水処理したフィルターと、第二の発明の親水処理せずに疎水性としたフィルターとでは、第二の発明のフィルターは第一の発明のフィルターより、濾過層の厚さを前記設定範囲内で薄くしてもよい。
 親水処理した第一の発明の多孔質複層フィルター、親水処理せずに疎水性の第二の発明の多孔質複層フィルターは、いずれも、濾過機能は濾過層に持たせ、該濾過層の支持機能を支持層に持たせ、濾過層と支持層で機能を2分化し、支持層の空孔を大きくして高流量の処理を可能としている。
 よって、0.1μm未満の超微粒子を捕捉できる平均空孔径として高流量化を図るため濾過層の厚みを薄くしても、フィルター全体としてコシを持たせて補強出来ると共に薄い濾過層の伸びと収縮を抑制できる。したがって、第一の発明において親水処理する場合、親水処理後の乾燥時に収縮することを防止できる。その結果、0.1μm未満の0.01μmの粒子の捕捉を可能としながら透過流量を低下させず、高流量で濾過処理することができる。
 このように、本発明(以下、第一の発明と第二の発明が共通して有する構成および機能については、本発明と称す)のフィルターは、濾過層を支持層と一体化しているため、濾過層を薄膜として高流量化を図ることができる。
 具体的には、(親水性被膜の乾燥処理前の流量-乾燥処理後の流量)/乾燥処理前の流量を流量変化率とすると、支持層が無い場合は0.3~0.8であり、支持層がある場合は0~0.1以内に抑えることができ、濾過層を薄膜化した効果を生かすことができ、バブルポイントと流量のバランスを維持して高性能の濾過膜とすることができる。
 前記濾過層とする多孔質延伸PTFEシートは捕捉ターゲットの粒子の大きさに応じて取り替え、該濾過層と複層一体化する支持層は、平均空孔径が前記5~1000倍、好ましくは10~30倍となる範囲で設定して共用で用いることが好ましい。
 平均孔径は、細孔直径分布測定装置(米国PUI社製 パームポロメータ)により測定している。
 また 親水処理した濾過層と、親水処理せずに疎水性表面を有する濾過層の多孔質延伸PTFEシートを取り替えて、前記共用で用いる支持層と複層化してもよい。
 濾過層の気孔率は前記のように40%以上90%以下であることが好ましい。
 これは、気孔率が40%未満であると流量が低下しすぎ、90%を超えると強度が低下しすぎる恐れがあることに因る。
 気孔率は、ASTM-D-792に記載の方法や、膜の体積と真比重より計算して算出している。この数値が高い程透過性に優れていることを示す。
 また、前記濾過層は、バブルポイントを70kPa以上400kPa以下としている。
 本発明では、0.08μm未満0.01μm以上の粒子を捕捉ターゲットとしている。 従来のこの種のフィルターでは、捕捉できる最小の粒子径は0.1μmである。これに対して、本発明では0.1μm未満の粒子を捕捉できるようにしている。かつ、その際の透過流量を従来の前記0.1μmの粒子を捕捉するフィルターの透過流量程度の高流量で透過することができるものとしている。
 前記粒子捕捉率は、次の方法により測定している。
 フィルターを直径47mmの円形に打ち抜き、ホルダーにセットし、粒子径0.055μmのポリスチレンラテックス均質粒子(JSR社製)を1.4×1010個/cm2の割合で含有する水溶液を調製し、その32cm3をセットしたフィルムにより、41.2kPaの圧力で濾過を行い、濾過前の水溶液と濾液の吸光度を測定し、その比により求めている。吸光度は、紫外可視分光光度計(島津製作所社製UV-160)を用い、波長310nmで測定している(測定精度1/100)。
 前記した0.08μm以下の微小粒子を透過流量を低下させることなく捕捉できるものとしているが、濾過層を構成する多孔質延伸PTFEシートを代えることにより、0.08μmを超える粒子捕捉用とすることができ、かつ、その際の透過流量を従来のフィルターと比較して高流量とすることができる。
 さらに、本発明は、前記第一の親水処理した多孔質複層フィルターの製造方法を提供している。
 該製造方法は、前記濾過層と前記支持層とをPTFEの融点以上で焼成して、該濾過層と支持層との境界を融着し、
 ついで、前記一体化した濾過層と支持層とに親水性材料を含浸し、
 その後、架橋液で処理して前記親水性材料を不溶化していることを特徴とする。
 前記親水処理で用いる親水性材料としては、ポリビニルアルコール(PVA)、エチレンビニルアルコール共重合体(EVOH)、アクリレート系樹脂等を挙げることができる。この中でも、PVAの水溶液をPTFE多孔質体に含浸させる時に、PTFEの繊維表面に吸着しやすく、繊維に均一に塗布され易いため好適に用いられる。
 前記親水処理工程前までの複層化工程までは、前記第一の発明と第二の発明とは同一であり、濾過層の厚さは最終厚さよりも5μm~20μmと厚く成形しておき、融点が347℃のPTFEからなる濾過層と支持層とを重ねて、350~410℃の温度で30秒~10分加熱して焼成し、全体厚みを20μm~50μmの厚みとなるように熱融着している。
 親水処理する第一の発明では、その後、一体化した多孔質延伸PTFEシートをIPAに含浸し、ついで、一定濃度のPVA水溶液に含浸することで多孔質延伸PTFEシートの繊維表面にPVA樹脂を付着している。このように、PVA樹脂が繊維表面に付着された多孔質延伸PTFEシートを架橋液で処理して架橋し、PVA樹脂を不溶化している。 前記のように、濾過層に支持層を一体化した状態でPVA樹脂溶液を含浸させているため、架橋液で架橋処理し、その後、乾燥時にPVA樹脂が収縮しても、多孔質延伸PTFEシートからなる濾過層は支持層に支持されて強度を有するため、濾過層の収縮は抑制でき、濾過層の気孔率の低下を防止できる。
 本発明の多孔質複層フィルターを構成する濾過層と支持層の多孔質延伸PTFEシートは、以下の方法で製造している。
 高分子量PTFE未焼結粉末と液状潤滑剤との混練物をペースト押出によってシートを設ける工程と、
 前記シートを延伸して多孔質のフィルムとする工程と、
 前記各延伸された多孔質のフィルムを焼結する工程とからなる。
 前記濾過層は、縦方向の延伸倍率は5倍~15倍、好ましくは8倍~12倍である。横方向の延伸倍率は10倍~100倍、好ましくは15倍~40倍である。
 前記延伸倍率を前記倍率未満とすると開孔率が低くなり、樹脂の塊が残り、空孔の形状も丸くならず、十分な透過性が得られないことに因る。一方、前記倍率を超えると繊維が引き裂かれて、大きな孔が生じるおそれがあることに因る。
 縦横の延伸比は、縦方向及び横方向の繊維長さが等しくなり、丸い孔形状とするためには、1:2~1:5とするのが好ましく、1:2~1:3とするのがより好ましい。
 一方、前記支持層は、縦方向の延伸倍率は4倍~15倍、好ましくは5~10倍、横方向の延伸倍率は0倍~15倍、好ましくは2~5倍である。
 前記支持層の縦方向の延伸倍率が前記倍率未満であると開孔率が低くなり、前記倍率を超えると繊維が引き裂かれる。
 横方向の延伸倍率は倍率が低すぎると開孔率が低くなるが、支持層に対して位置方向の延伸でも十分な流量が確保できる場合、必ずしも横方向の延伸が必要ではない。また、前記延伸倍率を超えると残留応力が高くなり、支持の役目が不十分となる。
 前記のように、従来よりも高分子量のPTFE未焼結粉末を用いると共に、成形体の縦横二軸方向の延伸倍率を高めることにより、濾過層は微細孔を有しながらも、高い透過性を有する多孔質フィルターを得ることができる。
 これは、高分子量のPTFE未焼結粉末を用いると、縦横二軸方向に従来よりも高い倍率の延伸を施しても、1つの空孔が過度に広がったり、フィルムが引き裂かれることを防止しながら、高度に繊維化を進行させ、PTFEの塊である結節も実質的になくなり、細い繊維を骨格とする微小な空孔が緻密に備えられた多孔質フィルターを作製することができることに因る。
 一方、支持層は、濾過層を補強するものであり、厚みと流量透過性が重要であることから、縦横のトータル延伸率は濾過層よりも低く設定し、厚みを維持しながら残留応力を高くしないように設定している。
 前記濾過層を形成する高分子量のPTFE未焼結粉末としては、具体的には、数平均分子量が400万以上のものを用いることが好ましい。より好ましくは1200万以上である。これは現在市販されているPTFE未焼結粉末のうち、分子量のグレードが特に高いものである。
 前記した数平均分子量は成形品の比重により求めたものであるが、PTFEの分子量は測定方法によりバラツキが大きく正確な測定が困難であるため、測定方法によっては前記した範囲とはならない場合もある。
 前記支持層については、幅広い範囲のもので製造することができる。
 また、延伸倍率は濾過層では面積比で150倍以上とするのが好ましい。さらに好ましくは300倍以上、最も好ましくは600倍以上である。また、延伸倍率(面積比)の上限は1500倍以下とすることが好ましい。
 延伸倍率が面積比で150倍未満であると高度に繊維化を進行させることができない。一方、1500倍を超えるとフィルムが薄くなり過ぎて強度が低下する。
 支持層では、延伸倍率は8倍以上、さらに好ましくは15倍以上である。
 延伸倍率(面積比)の上限は60倍以下とすることが好ましい。
 延伸倍率が面積比で8倍未満であると高度に繊維化を進行させることができない。一方、60倍を超えると、残留応力が強くなり過ぎ、支持膜の役割が低下する。
 本発明の多孔質複層フィルターの具体的な製造工程は下記の通りである。
 第一の工程では公知のPTFE未焼結粉末のペースト押出法により成形体を製造する。ペースト押出法では、通常、PTFE樹脂100質量部に対して液状潤滑剤を10~40質量部、好ましくは16~25質量部の割合で混合し、押出成形を行う。
 液状潤滑剤としては、従来からペースト押出法で用いられている各種潤滑剤を使用することができる。例えば、ソルベント・ナフサ、ホワイトオイルなどの石油系溶剤、ウンデカン等の炭化水素油、トルオール、キシロールなどの芳香族炭化水素類、アルコール類、ケトン類、エステル類、シリコーンオイル、フルオロクロロカーボンオイル、これらの溶剤にポリイソブチレン、ポリイソプレンなどのポリマーを溶かした溶液、これらの2つ以上の混合物、表面活性剤を含む水または水溶液などが挙げられる。混合物よりも単一成分の方が均一混合することができるため、好ましい。
 ペースト押出による成形は、PTFEの焼結温度すなわち327℃以下、通常は室温付近で行われる。ペースト押出に先立って、通常、予備成形を行う。予備成形は、前記混合物を例えば1~10MPa程度の圧力で圧縮成形して、ブロック、ロッド、チューブ、シート状としている。
 予備成形で得られる成形体をペースト押出機により押出し、またはカレンダーロールなどにより圧延し、あるいは押出した後、圧延するなどして延伸処理し得る形状の成形体を製造する。
 次に、成形体から液状潤滑剤を除去する。液状潤滑剤は焼結する前に除去すればよく、延伸後に除去してもよいが、延伸前に除去することが好ましい。
 液状潤滑剤の除去は、加熱、抽出または溶解などにより行っており、加熱により行うことが好ましい。加熱する場合の加熱温度は、通常、200~330℃とするのが好ましい。また、シリコーンオイルやフルオロカーボンなどの比較的沸点が高い液状潤滑剤を使用する場合には、抽出により除去するのが好ましい。
 なお、液状潤滑剤の他に目的に応じて、他の物質を含ませることもできる。
 例えば、着色のための顔料、耐磨耗性の改良、低温流れの防止や気孔の生成を容易にする等のためにカーボンブラック、グラファイト、シリカ粉、ガラス粉、ガラス繊維、けい酸塩類や炭酸塩類などの無機充填剤、金属粉、金属酸化物粉、金属硫化物粉などを添加することができる。また、多孔質構造の生成を助けるために、加熱、抽出、溶解等により除去または分解される物質、例えば塩化アンモニウム、塩化ナトリウム、他のプラスチック、ゴム等を粉末または溶液の状態で配合することもできる。
 次工程で、得られたペースト押出による成形体を、支持層と濾過層とを構成する成形体に分けて、前記した延伸倍率でそれぞれ延伸する。
 延伸は、融点以下のできるだけ高温で行うのが好ましい。好ましくは室温(もしくは20℃)~300℃、さらに好ましくは250℃~280℃である。
 低い温度で延伸を行うと、比較的孔径が大きく、気孔率が高い多孔質膜を生じ易く、高い温度で延伸を行うと、孔径の小さい緻密な多孔質膜を生じ易い。
 これらの条件を組み合わせることにより、孔径や気孔率をコントロールすることができるが、濾過層では孔径の小さい緻密な多孔質膜とするため、比較的高い延伸温度とすることが好ましい。
 延伸は、20~70℃の低温で1段延伸した後、さらに前記のような高温条件下で2段目の延伸を行ってもよい。
 さらに、延伸後のシートの収縮を防止するために熱固定を行うことが好ましい。 本発明では、特に延伸倍率を高めているので多孔質構造を消失させないため、熱固定は重要である。前記横方向の延伸を行った直後に行なうことが好ましく、2段以上の延伸を行う場合には各段の延伸後に行うことが好ましい。
 熱固定は、通常、延伸フィルムの両端を固定するなど緊張下に保って、雰囲気温度200~500℃で0.1~20分間保持して行う。
 次いで、延伸シートを一体化させる。一体化は、PTFEの転移点である327℃以上の焼結温度とし、数分から数十分程度、場合によってはそれ以上の時間加熱することによって行う。通常は、350~500℃に保った炉中で加熱するのが適当である。
 このようにして得られた本発明の濾過層と支持層の多孔質延伸PTFEシートはそれぞれ前記した厚みとしている。
 第一の発明のフィルターでは、その後、前記した親水処理を行う一方、第二の発明のフィルターでは該親水処理を行っていない。
 以上の説明から明らかなように、本発明の多孔質複層フィルターでは、それぞれ多孔質延伸PTFEシートからなる濾過層と支持層とを設け、濾過層の空孔より支持層の空孔を大とし、濾過層と支持層のそれぞれの多孔質延伸PTFEシートをPTFEの融点以上の温度で加熱して境界面を融着し、厚さを薄くした濾過層のみに濾過機能を持たせ、該濾過層を支持層で支持し、支持層の空孔を大きくして透過性を高めている。
 よって、0.05μm程度の超微粒子を、0.1μmの粒子捕捉用フィルターと同程度の透過流量で透過することができる。
 かつ、濾過層に支持層を一体化させ、濾過層の強度を保持しているため、親水処理を行う場合には、親水性被膜の乾燥時に濾過層に収縮を発生させず、気孔率を維持できる。 このように、本発明のフィルターは超微粒子を捕捉できるフィルターとしながら、安定した透過性も確保でき高流量で透過することができる。
 そのため、特に、超微粒子の捕捉率を高めることと処理速度が要求される半導体、液晶分野および食品・医療分野の製造工程で使用する気体用、液体用の精密濾過フィルターとして好適に用いることができる。
本発明の第一実施形態の多孔質複層フィルターの概略断面図である。 (A)は濾過層の3000倍拡大写真、(B)は支持層の3000倍拡大写真である。 第一実施形態の実施例の実験結果を示すグラフである。 本発明の第二実施形態の多孔質複層フィルターの概略断面図である。 第二実施形態の実施例の実験結果を示すグラフである。
 以下、本発明を図面を参照して説明する。
 図1乃至図3に第一実施形態の多孔質複層フィルターを示す。
 図1の概略断面図および図2の拡大断面模式図に示すように、多孔質複層フィルター1は、延伸多孔質PTFEシートからなる支持層2と、該支持層2の外周面に設ける延伸多孔質延伸PTFEシートからなる濾過層3とを積層一体化した2層構造の濾過膜からなる。かつ、前記濾過層3および支持層2はPVA5からなる親水材料で親水処理され、該濾過層3および支持層2の繊維表面にPVA5が均一な厚さ0.03~0.05μmで塗布されている。
 本実施形態では、支持層2の厚さは濾過層3の厚さに対して、5~10倍の厚さとしている。前記濾過層3の厚さは2~10μmとしている。
 前記濾過層3は図2(A)、支持層2は図2(B)の3000倍の拡大写真に示す構成からなる。
 濾過層3、支持層2はいずれも、結節部により柔軟な繊維Fが三次元網目状に連結されてなる繊維状骨格を備え、該繊維状骨格で略スリット形状の空孔Pを囲み、該空孔Pは三次元で連通されている。
 本実施形態では、前記濾過層3は平均空孔径は0.03~0.05μm、気孔率は70~80%としている。
 該濾過層3は捕捉目的の固体粒子に応じて平均空孔径および気孔率を前記範囲内で調整してバブルポイントを設定している。
 具体的には、濾過層3は0.08μm未満0.01μm以上の超微粒子の捕捉用とし、バブルポイントを200~400kPaとし、水流量を70~300sec/100ml、差圧29.4kPa、有効面積9.6cm2としている。
 0.5~0.1μmを超える固体粒子を捕捉する場合には、濾過層3のバブルポイントを50kPa以上150kPa未満とし、水流量を30sec/100ml以下としている。
 0.1μm以下0.08μm以上の固体粒子を捕捉する場合には、濾過層3のバブルポイントを150kPa以上200kPa未満とし、水流量を40sec/100ml以下としている。
 このように、捕捉目的とする固体粒子の大きさに合わせてバブルポイントを変えた複数の濾過層3を設け、該濾過層を共用の支持層2に一体化して複層化して用いている。
 前記支持層2を構成する多孔質延伸PTFEシートは、濾過層3との接触面となる外面2aの孔径はIPAバブルポイントを2~30kPa、気孔率を75~90%とし、差圧93.1kPaの時のIPA透過係数が40~100ml/min/cm2としている。また、マトリックス引張強度は50~110MPaとしている。
 前記各物性値は下記の方法で測定している。
(1)気孔率:ASTM-D-792に準拠し、水中で求めた比重(見掛け比重)と四弗化エチレン樹脂の比重より求めた値であり、この値が大きいほど透過性に優れている。
(2)平均孔径:PMI社製パームポロメーター(型番 CFP-1200A)により測定している。
(3)バブルポイント:ASTM-F-316-80に準拠した方法により、イソプロピルアルコールを用いて測定した。
(4)流量:
 シート:濾過層のシートはASTM-F-317の方法で測定したもので差圧は29.4kPaとした。
 マトリックス引張強度:JIS K 7161に準拠し、試験時の引張速度は100mm/分、標線間距離は50mmとして測定した値を用い下記式を用いて算出した。
  マトリックス引張強度=引張強度/(1-気孔率(%)/100)
 以下、支持層2と濾過層3とからなる第一実施形態の多孔質複層フィルターの製造方法について説明する。
 第一の工程で、支持層2および濾過層3を構成する多孔質延伸PTFEシートをそれぞれ別体で製造する。
 いずれも、PTFE未焼結粉末(ファインポリマー)100質量部に対して、液状潤滑剤を16~25質量部の割合で配合し、混合している。
 PTFE未焼結粉末としては、数平均分子量100万~1500万の高分子量のものを用いている。
 液状潤滑剤としては、ソルベント・ナフサ、ホワイトオイルなどの石油系溶剤を用いている。
 次いで、得られた混合物を圧縮成形機により圧縮成形し、ブロック状の成形体とし(予備成形)、該ブロック状の成形体を、室温から50℃の温度で、速度20mm/minで、シート状に押出成形している。
 さらに、得られたシート状成形体をカレンダーロールなどにより圧延し、厚さ300μmのシート状成形体としている。
 次の工程では、液状潤滑剤を前記シート状成形物から除去するため、ロール温度130~220℃の加熱ロールに通して、シート状成形体を乾燥している。
 次に、このようにして得られたシート状成形体を縦横方向に二軸延伸している。
 該延伸時に、支持層2とするシート状成形体と濾過層3の本体とするシート状成形体の延伸倍率を前記のように、相違させている。
 本実施形態においては、支持層2、濾過層3とするいずれも、縦延伸を先に行い、その後、横延伸を行っている。
 横延伸は炉の内部で70~200℃の高温雰囲気下で行うと共に、延伸後に280~390℃で0.25~1分間保持して、熱固定を行っている。
 ついで、支持層2とする延伸多孔質PTFEシートの一面に濾過層3を重ね、PTFEの融点以上の360~400℃で0.5~3分間加熱する。
 これにより、支持層2と濾過層3の境界面を熱融着して一体化し、多孔質複層フィルターとしている。
 前記工程で得られた濾過層3と支持層2とを一体化した多孔質延伸PTFEシートをPVAで親水処理している。
 該親水処理は、前記積層一体化した多孔質延伸PTFEシートをイソプロピルアルコール(IPA)に0.25~2分間浸漬した後、それぞれ、濃度を0.5重量%~0.8重量%としたPVA水溶液に5~10分間含浸する。その後、純水に2~5分間浸漬した後に架橋を行う。
 架橋は、グルタルアルデヒド架橋(GA)、テレフタルアルデヒド架橋(TPA)あるいは6Mradの電子線を照射する電子線架橋のいずれかの方法で行う。
 前記架橋後に、積層一体化した多孔質延伸PTFEシートを純水で水洗した後、常温~80℃で乾燥させ、積層一体化された親水性PTFE多孔質膜を製造する。
 前記のようにして製造する多孔質複層フィルター1は、図1に示すように、多孔質延伸PTFEシートからなる支持層2と、該支持層2の外周面に一体化された延伸多孔質PTFEシートからなる濾過層3を備えた複層であり、該濾過層3および支持層2の外表面および内部の繊維の表面にPVAで親水処理されている。
 図2(A)(B)に示す支持層2と濾過層3の空孔は、互いに三次元的に連通され、かつ、濾過層3では外表面の空孔と親水性被覆層のPVA5の空孔を連通している。
 該多孔質複層フィルター1は、例えば、濾過層3の外表面から支持層2の内周面側に向けて処理液を供給し、固液分離処理を行うものである。
 「第一実施形態の実施例」
 前記した濾過層3のバブルポイントを変えた第1~第5の多孔質複層フィルターを作成して実施例とした。
(実施例1)
 濾過層本体は、PTFEファインパウダー(デュポン社製 PTFE 601A)100質量部に対し、液状潤滑剤(出光石油社製 スーパーゾルFP-25、(成分:ナフサ))18質量部の割合で配合・混合し、成形機に入れて圧縮成形し、ブロック状成形物を得た。
 次に該ブロック状成形物を連続的にシート状に押出したのち、圧延ローラに通し、さらに液状潤滑剤を除去するために加熱ロール(130~220℃)に通してロールに巻き取り、300μmのシートを得た。
 次に、濾過層本体とするシートは、ロール温度250℃~280℃で縦方向(流れ方向)に2倍延伸したのち、同温度条件でさらに4倍延伸した。すなわち、縦延伸は2段で8倍の延伸倍率とした。
 縦延伸後のフィルムの幅方向の両端をチャックで掴み、流れ方向とは垂直な方向に50℃の雰囲気下で5倍延伸の横延伸を行った。その後、そのまま285℃で0.25~1分間保持して熱固定を行った。続いて170℃の雰囲気下で18倍延伸を行ったのち、そのまま340℃で0.25~1分間保持して熱固定を行った。すなわち、2段で90倍の延伸倍率で横延伸を行った。
 この延伸されたシートを360℃の加熱炉を通過させて1.5分間焼結し、実施例1の濾過層本体を得た。該実施例1の濾過層本体のバブルポイントが350kPaで、捕捉ターゲットの粒子は0.03μmとした。
 一方、支持層2とするシートは温度条件は180~200℃とし、縦延伸倍率を7.4倍、横延伸倍率を10倍として形成した。該支持層2の空孔径は濾過層3の6倍とし、厚さは30μmとした。
 前記濾過層3と支持層2の多孔質延伸PTFEシートを重ね、370℃で100秒加熱し、濾過層3と支持層2の境界を熱融着して一体化した。
 ついで、前記濾過層3と支持層2を一体化した複合膜を前記した方法でPVAにより親水化処理した。
(実施例2)
 前記濾過層3は、樹脂601A(デュポン社製)に対する液状潤滑剤の配合量を20質量部に変更した。縦横延伸倍率を8倍、横延伸倍率を30倍とした。該濾過層3のバブルポイントを250kPaとし、捕捉ターゲットの粒子を0.05μmとした。他の構成は実施例1と同様とした。
(実施例3)
 前記濾過層3の樹脂をCD123(旭硝子社製)に変更し、かつ、液状潤滑剤の配合量を20質量部に変更した。縦横延伸倍率を代えて、縦延伸倍率6倍、横延伸倍率を15倍とした。該濾過層3のバブルポイントを200kPaとし、捕捉ターゲットの粒子を0.1μmとした。他の構成は実施例1と同様とした。
(実施例4)
 前記濾過層3の樹脂をCD123(旭硝子社製)に変更し、かつ、液状潤滑剤の配合量を22質量部に変更した。前記濾過層本体の縦横延伸倍率を代えて、縦延伸倍率5倍、横延伸倍率を10倍とした。該濾過層3のバブルポイントを150kPaとし、捕捉ターゲットの粒子を0.2μmとした。他の構成は実施例1と同様とした。
(実施例5)
 前記濾過層3の樹脂をCD145(旭硝子社製)に変更し、液状潤滑剤の配合量を22質量部に変更した。縦横延伸倍率を代えて、縦延伸倍率5倍、横延伸倍率を10倍とした。該濾過層3のバブルポイントを100kPaとし、捕捉ターゲットの粒子を0.45μmとした。他の構成は実施例1と同様とした。
(比較例1-1~1-3)
 比較例1-1~1-3は、いずれも一層の多孔質延伸PTFEシートからなるフィルターで、比例例1-1はバブルポイントを200kPaとし、捕捉ターゲットの粒子は0.1μmとした。比較例1-2はバブルポイントを150kPaとし、捕捉ターゲットの粒子は0.2μmとした。該比較例1-3はバブルポイントを100kPaとし、捕捉ターゲットの粒子は0.45μmとした。該比較例1のフィルターは本出願人の先願の特開2008-119662号公報に記載したフィルターからなる。
 該比較例1(1-1~1-3)は、PTFEファインパウダー(旭硝子社製 CD123 品番、分子量1200万)100質量部に対し、液状潤滑剤(出光石油社製 スーパーゾルFP-25、(成分:ナフサ))18質量部の割合で配合し、混合後、成形機に入れて圧縮成形し、ブロック状成形物を得た。
 次に、このブロック状成形物を連続的にシート状に押出したのち、圧延ローラに通したのち、加熱ロール(130~220℃)を通してロールに巻き取り、液状潤滑剤を除去した300μmのシートを得た。
 次に、ロール温度250℃~280℃で縦方向(流れ方向)に6倍延伸した。
 次に、フィルムの幅方向の両端をチャックで掴み、流れ方向とは垂直な方向に150℃の雰囲気下で4倍延伸を行った。
 このシートを360℃の加熱炉を通過させて2分間焼結し、比較例1(1-1~1-3)のフィルターを得た。
 前記実施例1~5、比較例1に処理液100mlに、29.4KPaの加圧をかけて流通させ、その透過時間(s)を測定した。
 その結果を図3のグラフに示す。図3中、白丸は実施例1~5、黒丸は比較例1である。
 図3のグラフから分かるように、実施例1のバブルポイントを350kPaとして0.03μmの粒子を捕捉する場合、比較例1-1と同等の透過時間(水100mlを透過されるのに要する時間)であった。これにより、0.1μmの粒子を捕捉する比例例1のフィルターと同等な水流量率で、0.03μmの粒子を捕捉することができた。
 また、実施例2のバブルポイントを250kPaとして0.05μmの粒子を捕捉した場合、比較例1-1の0.1μmの粒子を捕捉する場合より透過時間を短くでき、高流量で処理でき透過性が高くなっていた。
 比較例1-1と同様にバブルポイントを200kPaとして0.1μmの粒子の捕捉用とした実施例3では、透過時間が1/4程度に低下し、大幅に高流量を透過することができた。
 実施例4、5も同等の捕捉性能とした比較例1-2、1-3と比較して、透過時間を低下でき、高流量で透過することができた。
 このように、本発明の第一実施形態の実施例1の多孔質複層フィルターは、比較例1、2のフィルターでは捕捉できなかった0.03μmの粒子を捕捉できると共に、比較例1の0.1μmの捕捉用のフィルターと同等な流量で高速で処理できることが確認できた。 また、バブルポイントを比較例1、2と同等とした場合においては、透過時間を低減でき、高流量化できることが確認できた。
 即ち、本発明のフィルターは、超微粒子を捕捉する精密濾過フィルターとしながら、透過流量を低下させず、優れた透過性を有していた。
 図4および図5に第二実施形態を示す。
 第二実施形態の多孔質複層フィルター10は、親水処理を施しておらず、よって、濾過層3および支持層2の繊維表面にPVA5からなる親水膜が形成されていない点が図1に示す第一実施形態と相違する。
 第二実施形態においても、支持層2の厚さは濾過層3の厚さよりに対して、5~10倍の厚さとしているが、その中でも、5~7倍程度と薄くする方が好ましい。よって、濾過層3の厚さは2~10μm、特に2~5μmが好ましい。
 前記濾過層3および支持層2の構成自体は第一実施形態の前記図2(A)(B)の3000倍の拡大写真に示す構成と略同様であり、濾過層3、支持層2はいずれも、結節部により柔軟な繊維Fが三次元網目状に連結されてなる繊維状骨格を備え、該繊維状骨格で略スリット形状の空孔Pを囲み、該空孔Pは三次元で連通されている。
 第二実施形態においても、第一実施形態と同様に、濾過層3は平均空孔径は0.03~0.05μm、気孔率は70~80%としている。
 該濾過層3は捕捉目的の固体粒子に応じて平均空孔径および気孔率を前記範囲内で調整してバブルポイントを設定している。
 なお、第一実施形態と比較して、前記平均空孔径は0.03~0.05μmの中でも、0.04~0.05μm、気孔率は70~80%の中でも75~80%が好ましい。
 具体的には、濾過層3は0.08μm未満0.01μm以上の超微粒子の捕捉用とし、バブルポイントを200~400kPaとし、IPA流量を70~300sec/100ml、差圧93.1kPa、有効面積9.6cm2としている。
 0.5~0.1μmを超える固体粒子を捕捉する場合には、濾過層3のバブルポイントを50kPa以上150kPa未満とし、IPA流量を30sec/100ml以下としている。
 0.1μm以下0.08μm以上の固体粒子を捕捉する場合には、濾過層3のバブルポイントを150kPa以上200kPa未満とし、IPA流量を40sec/100ml以下としている。
 第一実施形態と同様に、捕捉目的とする固体粒子の大きさに合わせてバブルポイントを変えた複数の濾過層3を設け、該濾過層を共用の支持層2に一体化して複層化して用いている。
 また、第一実施形態と同様に、前記支持層2を構成する多孔質延伸PTFEシートは、濾過層3との接触面となる外面2aの孔径はIPAバブルポイントを2~30kPa、気孔率を75~90%とし、差圧93.1kPaの時のIPA透過係数が40~100ml/min/cm2としている。また、マトリックス引張強度は50~110MPaとしている。
 第二実施形態の支持層2と濾過層3とからなる多孔質複層フィルター10の製造は、親水処理を施していない点が第一実施形態と相違し、他の工程は第一実施形態と同様である。 即ち、第一の工程で、支持層2および濾過層3を構成する多孔質延伸PTFEシートをそれぞれ別体で製造する。
 詳細には、第一実施形態と同様であり、支持層2、濾過層3のいずれも、PTFE未焼結粉末(ファインポリマー)100質量部に対して、液状潤滑剤を16~25質量部の割合で配合して混合する。該混合物を圧縮成形機により圧縮成形し、ブロック状の成形体とし(予備成形)、該ブロック状の成形体を、室温から50℃の温度で、速度20mm/minで、シート状に押出成形する。得られたシート状成形体をカレンダーロールなどにより圧延し、厚さ300μmのシート状成形体とする。
 次の工程では、液状潤滑剤を前記シート状成形物から除去するため、ロール温度130~220℃の加熱ロールに通して、シート状成形体を乾燥する。
 次に、得られたシート状成形体を縦横方向に二軸延伸するが、支持層2とするシート状成形体と濾過層3の本体とするシート状成形体の延伸倍率を第一実施形態と同様に相違させる。延伸後に、支持層2とする延伸多孔質PTFEシートの一面に濾過層3を重ね、PTFEの融点以上の360~400℃で0.5~3分間加熱する。
 これにより、支持層2と濾過層3の境界面を熱融着して一体化し、多孔質複層フィルター10を製造している。即ち、第一実施形態で、支持層2と濾過層とを積層一体化した後に行う親水処理は行っていない。
 「第二実施形態の実施例」
 第二実施形態の実施例6~10は、第一実施形態の親水処理を施した実施例1~5と親水処理を施していない点だけが相違し、他の要件である材料、製造方法、厚さ、平均空孔径、気孔率、バブルポイント等は全て同一であるため詳述を省略する。
 実施例6~10のバブルポイントおよび捕捉ターゲットの粒子は下記の通りである。
 実施例6は濾過層のバブルポイントが350kPaで、捕捉ターゲットの粒子は0.03μmとした。
 実施例7は濾過層3のバブルポイントを250kPaとし、捕捉ターゲットの粒子を0.05μmとした。
 実施例8は濾過層3のバブルポイントを200kPaとし、捕捉ターゲットの粒子を0.1μmとした。
 実施例9は濾過層3のバブルポイントを150kPaとし、捕捉ターゲットの粒子を0.2μmとした。
 実施例10は濾過層3のバブルポイントを100kPaとし、捕捉ターゲットの粒子を0.45μmとした。
 前記第二実施形態の実施例6~10を第一実施形態の比較例1-1、1-2、1-3のフィルターに、処理液100mlに93.1KPaの圧力をかけてと流通させ、そのIPAの透過時間(s)を測定した。即ち、第一実施形態の親水処理したフィルターの場合、処理液を29.4KPaで加圧していたのに対して、第二実施形態の親水処理していない疎水性のフィルターを通す場合、処理液に約3倍の93.1KPaの加圧をかけてフィルターに通している。
 その結果を図5のグラフに示す。図5中、白印は実施例6~10、黒印は比較例である。
 図5に示すように、実施例6のバブルポイントを350kPaとして0.03μmの粒子を捕捉する場合、IPAの透過時間(IPA100mlを透過されるのに要する時間)は100~150(s)であり、捕捉ターゲットが0.1μm、バブルポイントガ200~220kPaの比較例1-1と同等の透過時間であった。これにより、従来例と比較すると0.1μmの粒子を捕捉する比例例1のフィルターと同等なIPA流量率で、0.03μmの粒子を捕捉することができた。
 実施例7のバブルポイントを250kPaとして0.05μmの粒子を捕捉した場合、IPAの透過時間は60~110(s)であり、捕捉ターゲットが0.1μm、バブルポイントが200kPaの比較例1-1と同等の透過時間であった。
 実施例8のバブルポイントを200kPaとして0.1μmの粒子を捕捉した場合、IPAの透過時間は25~60(s)であり、捕捉ターゲットが0.2μm、バブルポイントが150kPaの比較例1-2と同等の透過時間であった。
 実施例9のバブルポイントを150kPaとして0.2μmの粒子を捕捉した場合、IPAの透過時間は10~30(s)であり、透過時間は短くなり、捕捉ターゲットが0.45μm、バブルポイントが100kPaの比較例1-3と同等の透過時間であった。
 実施例10のバブルポイントを100kPaとして0.45μmの粒子を捕捉した場合、7~25(s)であり、IPAの透過時間は同ターゲット比較例1-3の約半分であった。
 このように、本発明の第二実施形態の実施例6~10の多孔質複層フィルターは、比較例1、2のフィルターでは捕捉できなかった0.03μmの粒子を捕捉できると共に、比較例1の0.1μmの捕捉用のフィルターと同等なIPA流量で高速で処理できることが確認できた。 また、バブルポイントを比較例1、2と同等とした場合においては、透過時間を低減でき、高流量化できることが確認できた。
 前記のように、本発明の第一の発明の親水処理したフィルター、第二の発明の親水処理していない疎水性のフィルターであっても、超微粒子を捕捉する精密濾過フィルターとしながら、透過流量を低下させず、優れた透過性を有する。
1 多孔質複層フィルター
2 支持層
3 濾過層

Claims (6)

  1.  多孔質延伸PTFEシートからなる支持層と、
     該支持層とは別の多孔質延伸PTFEシートからなる濾過層を備え、
     前記濾過層の少なくとも処理液流入面が親水処理されており、
     前記濾過層と前記支持層との境界が融着されて複層化されていると共に、該支持層の空孔と濾過層の空孔が互いに三次元的に連通し、
     前記濾過層の繊維状骨格により囲まれた空孔は上記支持層の空孔より小さくされていることを特徴とする多孔質複層フィルター。
  2.  前記濾過層および支持層の繊維の表面に架橋されたPVA樹脂が固定化されて親水処理されている請求項1に記載の多孔質複層フィルター。
  3.  多孔質延伸PTFEシートからなる支持層と、
     該支持層とは別の多孔質延伸PTFEシートからなる濾過層を備え、
     前記濾過層と前記支持層との境界が融着されて複層化されていると共に、該支持層の空孔と濾過層の空孔が互いに三次元的に連通し、
     前記濾過層の繊維状骨格により囲まれた空孔は上記支持層の空孔より小さくされていることを特徴とする多孔質複層フィルター。
  4.  前記濾過層の厚さは2~10μm、前記支持層の厚さは該濾過層の厚さの1~30倍、前記濾過層の平均空孔径は0.01~0.45μm、前記支持層の平均空孔径は濾過層の平均空孔径の5~1000倍、
     前記濾過層の気孔率は40~90%、前記支持層の気孔率は前記濾過層の気孔率の1~2.5倍である請求項1乃至請求項3のいずれか1項に記載の多孔質複層フィルター。
  5.  前記濾過層は、バブルポイントが70kPa以上400kPa以下である請求項1乃至請求項4のいずれか1項に記載の多孔質複層フィルター。
  6.  請求項1に記載の多孔質複層フィルターの製造方法であって、
     前記濾過層と前記支持層とをPTFEの融点以上で焼成して、該濾過層と支持層との境界を融着し、
     ついで、前記一体化した濾過層と支持層とに親水性材料を含浸し、
     その後、架橋液で処理して前記親水性材料を不溶化していることを特徴とする多孔質複層フィルターの製造方法。
PCT/JP2010/051847 2009-02-16 2010-02-09 多孔質複層フィルターおよびその製造方法 WO2010092938A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080001381.5A CN102006925B (zh) 2009-02-16 2010-02-09 多孔多层过滤器及其制备方法
EP10741215.7A EP2397217A4 (en) 2009-02-16 2010-02-09 POROUS MULTILAYER FILTER AND MANUFACTURING METHOD THEREFOR
US12/988,242 US20110052900A1 (en) 2009-02-16 2010-02-09 Porous multilayer filter and method for producing same
JP2010516313A JPWO2010092938A1 (ja) 2009-02-16 2010-02-09 多孔質複層フィルターおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009032987 2009-02-16
JP2009-032987 2009-02-16

Publications (1)

Publication Number Publication Date
WO2010092938A1 true WO2010092938A1 (ja) 2010-08-19

Family

ID=42561780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051847 WO2010092938A1 (ja) 2009-02-16 2010-02-09 多孔質複層フィルターおよびその製造方法

Country Status (7)

Country Link
US (1) US20110052900A1 (ja)
EP (1) EP2397217A4 (ja)
JP (1) JPWO2010092938A1 (ja)
KR (1) KR20110120202A (ja)
CN (1) CN102006925B (ja)
TW (1) TW201034743A (ja)
WO (1) WO2010092938A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120969A (ja) * 2010-12-07 2012-06-28 Sumitomo Electric Fine Polymer Inc 多孔質複層フィルター
JP2012154717A (ja) * 2011-01-25 2012-08-16 Denso Corp ガスセンサ
CN102958587A (zh) * 2011-02-25 2013-03-06 住友电工超效能高分子股份有限公司 多孔的多层过滤器
JP2014042869A (ja) * 2012-08-24 2014-03-13 Sumitomo Electric Fine Polymer Inc 多孔質複層フィルター
WO2015002002A1 (ja) 2013-07-01 2015-01-08 住友電工ファインポリマー株式会社 多孔質ポリテトラフルオロエチレン膜の製造方法及び多孔質ポリテトラフルオロエチレン膜
WO2015002001A1 (ja) 2013-07-01 2015-01-08 住友電工ファインポリマー株式会社 多孔質ポリテトラフルオロエチレン膜及びその製造方法
WO2015060364A1 (ja) * 2013-10-23 2015-04-30 ダイキン工業株式会社 エンボス加工されたエアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエンボス加工されたエアフィルタ用濾材の製造方法
JP2018500168A (ja) * 2014-12-15 2018-01-11 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated 細菌のろ過のためのフルオロポリマー物品
WO2018092516A1 (ja) * 2016-11-17 2018-05-24 住友電気工業株式会社 中空糸膜、濾過モジュール及び排水処理装置
TWI668046B (zh) * 2018-07-18 2019-08-11 國立臺北科技大學 過濾材的製造方法、過濾材的製造裝置及使用該方法所得之過濾材
US10792620B2 (en) 2014-11-20 2020-10-06 Entegris, Inc. Grafted ultra high molecular weight polyethylene microporous membranes
CN114132032A (zh) * 2021-11-24 2022-03-04 西南林业大学 一种有吸附性的空气过滤膜及其制备方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2974742B1 (fr) * 2011-05-04 2013-05-03 Rexam Healthcare La Verpillier Dispositif de distribution de liquide muni d'un canal de passage d'air
US9327217B2 (en) 2011-09-21 2016-05-03 Nanyang Technological University Multilayer filter
US20130112621A1 (en) 2011-11-03 2013-05-09 Lei Zheng Water filtration article and related methods
CN104520496B (zh) * 2012-07-31 2016-08-24 日本华尔卡工业株式会社 亲水化片材及其制造方法
JP5865317B2 (ja) * 2012-09-28 2016-02-17 富士フイルム株式会社 二酸化炭素分離用複合体、二酸化炭素分離用モジュール、及び二酸化炭素分離用複合体の製造方法
JP2015009219A (ja) 2013-07-01 2015-01-19 住友電工ファインポリマー株式会社 ポリテトラフルオロエチレン製多孔質複合体及びその製造方法
DE102013226253B4 (de) * 2013-12-17 2016-03-24 Aptar Radolfzell Gmbh Schutzkappe für einen Spender und Spender zum Austrag von pharmazeutischen und/oder kosmetischen Flüssigkeiten
US20150209721A1 (en) * 2014-01-28 2015-07-30 Air Products And Chemicals, Inc. Solid-State Membrane Module
US9067172B1 (en) * 2014-01-28 2015-06-30 Air Products And Chemicals, Inc. Solid-state membrane module
KR20160002357A (ko) 2014-06-27 2016-01-07 (주)웰크론 항혈전성 연신 폴리테트라플루오르에틸렌(e-PTFE) 튜브형 인공혈관 제조 방법
US20160016124A1 (en) * 2014-07-21 2016-01-21 W.L. Gore & Associates, Inc. Fluoropolymer Article for Mycoplasma Filtration
US20160016126A1 (en) * 2014-07-21 2016-01-21 W. L. Gore & Associates, Inc Fluoropolymer Article For Bacterial Filtration
JP6549869B2 (ja) * 2015-03-26 2019-07-24 東京応化工業株式会社 積層膜
US9724650B2 (en) * 2015-03-31 2017-08-08 Pall Corporation Hydrophilically modified fluorinated membrane (II)
US9649603B2 (en) * 2015-03-31 2017-05-16 Pall Corporation Hydrophilically modified fluorinated membrane (III)
CN109219475B (zh) * 2016-05-31 2021-05-07 阿莫绿色技术有限公司 过滤器集合体、其制造方法及包括其的过滤器模块
KR101686437B1 (ko) * 2016-06-23 2016-12-15 (주)웰크론 인공혈관용 폴리테트라플루오로에틸렌 튜브 제조 방법
WO2018110965A1 (ko) * 2016-12-15 2018-06-21 주식회사 아모그린텍 필터여재, 이의 제조방법 및 이를 포함하는 필터유닛
CN110087753A (zh) * 2016-12-15 2019-08-02 阿莫绿色技术有限公司 过滤器滤材、其制造方法及包括其的过滤器单元
KR102055723B1 (ko) * 2016-12-15 2019-12-13 주식회사 아모그린텍 필터여재, 이의 제조방법 및 이를 포함하는 필터유닛
US11207644B2 (en) 2016-12-15 2021-12-28 Amogreentech Co., Ltd. Filter medium with improved backwashing durability, method for manufacturing same, and filter unit comprising same
CN107224807A (zh) * 2017-05-31 2017-10-03 桐乡市富鸿塑料制品有限公司 一种高强度过滤片
CN107362699A (zh) * 2017-07-17 2017-11-21 广州市兴胜杰科技有限公司 一种亲水性聚四氟乙烯薄膜及其制备方法与应用
WO2019017747A1 (ko) * 2017-07-21 2019-01-24 주식회사 아모그린텍 해수담수화 장치
GB201807322D0 (en) * 2018-05-03 2018-06-20 Pradin Ltd A semipermeable arrangement and method of manufacture
KR102242547B1 (ko) * 2018-08-17 2021-04-19 주식회사 엘지화학 불소계 수지 다공성 막
WO2020080896A1 (ko) * 2018-10-18 2020-04-23 주식회사 엘지화학 불소계 수지 다공성 막 및 이의 제조방법
KR102218062B1 (ko) * 2018-10-18 2021-02-19 주식회사 엘지화학 불소계 수지 다공성 막 및 이의 제조방법
CN110523299A (zh) * 2019-09-16 2019-12-03 德蓝水技术股份有限公司 一种亲水性聚四氟乙烯中空纤维膜的制备方法
KR102406235B1 (ko) * 2020-04-10 2022-06-10 (주)크린앤사이언스 맞춤화된 다층 구조의 집진 여재 및 이의 제조방법
KR20230054448A (ko) * 2020-08-27 2023-04-24 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 상이한 표면 에너지를 갖는 복합 플루오로중합체 막

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321270A (en) * 1976-08-10 1978-02-27 Sumitomo Electric Industries Hydrophobic porous composite structure and its manufacture
JPS55144036A (en) * 1979-04-27 1980-11-10 Nitto Electric Ind Co Ltd Production of hydrophilic plastic molded article
JPS6279806A (ja) * 1985-10-02 1987-04-13 Ube Ind Ltd 多孔質分離膜とその製造方法
JPH08174738A (ja) * 1994-12-21 1996-07-09 Sumitomo Electric Ind Ltd 多孔質四弗化エチレン樹脂積層体とその製造方法
JP2007154153A (ja) * 2005-11-10 2007-06-21 Sumitomo Electric Fine Polymer Inc フッ素樹脂多孔質膜
JP2008119662A (ja) * 2006-11-15 2008-05-29 Sumitomo Electric Fine Polymer Inc フィルター及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4213560B1 (ja) * 1963-11-01 1967-08-01
GB1538810A (en) * 1976-08-10 1979-01-24 Sumitomo Electric Industries Hydrophilic porous fluorocarbon structures and process for their production
DE69003114T2 (de) * 1989-12-18 1994-04-07 Gore & Ass Neues filtermedium zu gebrauchen als chirurgische oder reinraummaske.
US6235377B1 (en) * 1995-09-05 2001-05-22 Bio Med Sciences, Inc. Microporous membrane with a stratified pore structure created in situ and process
JP2000079332A (ja) * 1998-07-08 2000-03-21 Nitto Denko Corp エアフィルタ用ろ材
JP3851864B2 (ja) * 2002-10-23 2006-11-29 住友電工ファインポリマー株式会社 多孔質複層中空糸および該多孔質複層中空糸を備えた濾過モジュール
JP5008850B2 (ja) * 2005-09-15 2012-08-22 住友電工ファインポリマー株式会社 四フッ化エチレン樹脂成形体、延伸四フッ化エチレン樹脂成形体、それらの製造方法、並びに、複合体、フィルター、衝撃変形吸収材及びシール材
SG182176A1 (en) * 2007-07-03 2012-07-30 Sumitomo Elec Fine Polymer Inc Flat sheet membrane element for filtration and flat sheet membrane filtration module
US8118910B2 (en) * 2009-03-23 2012-02-21 General Electric Company Layered filtration membrane and methods of making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321270A (en) * 1976-08-10 1978-02-27 Sumitomo Electric Industries Hydrophobic porous composite structure and its manufacture
JPS55144036A (en) * 1979-04-27 1980-11-10 Nitto Electric Ind Co Ltd Production of hydrophilic plastic molded article
JPS6279806A (ja) * 1985-10-02 1987-04-13 Ube Ind Ltd 多孔質分離膜とその製造方法
JPH08174738A (ja) * 1994-12-21 1996-07-09 Sumitomo Electric Ind Ltd 多孔質四弗化エチレン樹脂積層体とその製造方法
JP2007154153A (ja) * 2005-11-10 2007-06-21 Sumitomo Electric Fine Polymer Inc フッ素樹脂多孔質膜
JP2008119662A (ja) * 2006-11-15 2008-05-29 Sumitomo Electric Fine Polymer Inc フィルター及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2397217A1 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120969A (ja) * 2010-12-07 2012-06-28 Sumitomo Electric Fine Polymer Inc 多孔質複層フィルター
JP2012154717A (ja) * 2011-01-25 2012-08-16 Denso Corp ガスセンサ
CN102958587B (zh) * 2011-02-25 2016-01-20 住友电工超效能高分子股份有限公司 多孔的多层过滤器
CN102958587A (zh) * 2011-02-25 2013-03-06 住友电工超效能高分子股份有限公司 多孔的多层过滤器
KR20130143478A (ko) * 2011-02-25 2013-12-31 스미토모덴코파인폴리머 가부시키가이샤 다공질 복층 필터
EP2679298A1 (en) 2011-02-25 2014-01-01 Sumitomo Electric Fine Polymer, Inc. Porous multilayered filter
KR101907475B1 (ko) * 2011-02-25 2018-10-12 스미토모덴코파인폴리머 가부시키가이샤 다공질 복층 필터
EP2679298A4 (en) * 2011-02-25 2017-05-17 Sumitomo Electric Fine Polymer, Inc. Porous multilayered filter
JP2014042869A (ja) * 2012-08-24 2014-03-13 Sumitomo Electric Fine Polymer Inc 多孔質複層フィルター
WO2015002002A1 (ja) 2013-07-01 2015-01-08 住友電工ファインポリマー株式会社 多孔質ポリテトラフルオロエチレン膜の製造方法及び多孔質ポリテトラフルオロエチレン膜
WO2015002001A1 (ja) 2013-07-01 2015-01-08 住友電工ファインポリマー株式会社 多孔質ポリテトラフルオロエチレン膜及びその製造方法
KR20160026820A (ko) 2013-07-01 2016-03-09 스미토모덴코파인폴리머 가부시키가이샤 다공질 폴리테트라플루오로에틸렌막 및 그의 제조 방법
KR20160026821A (ko) 2013-07-01 2016-03-09 스미토모덴코파인폴리머 가부시키가이샤 다공질 폴리테트라플루오로에틸렌막의 제조 방법 및 다공질 폴리테트라플루오로에틸렌막
US9493619B2 (en) 2013-07-01 2016-11-15 Sumitomo Electric Fine Polymer, Inc. Method for producing porous polytetrafluoroethylene film and porous polytetrafluoroethylene film
US9695291B2 (en) 2013-07-01 2017-07-04 Sumitomo Electric Fine Polymer, Inc. Porous polytetrafluoroethylene film and method for producing same
WO2015060364A1 (ja) * 2013-10-23 2015-04-30 ダイキン工業株式会社 エンボス加工されたエアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエンボス加工されたエアフィルタ用濾材の製造方法
JP2015107482A (ja) * 2013-10-23 2015-06-11 ダイキン工業株式会社 エンボス加工されたエアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエンボス加工されたエアフィルタ用濾材の製造方法
US10792620B2 (en) 2014-11-20 2020-10-06 Entegris, Inc. Grafted ultra high molecular weight polyethylene microporous membranes
JP2018500168A (ja) * 2014-12-15 2018-01-11 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated 細菌のろ過のためのフルオロポリマー物品
JPWO2018092516A1 (ja) * 2016-11-17 2019-10-17 住友電気工業株式会社 中空糸膜、濾過モジュール及び排水処理装置
WO2018092516A1 (ja) * 2016-11-17 2018-05-24 住友電気工業株式会社 中空糸膜、濾過モジュール及び排水処理装置
TWI668046B (zh) * 2018-07-18 2019-08-11 國立臺北科技大學 過濾材的製造方法、過濾材的製造裝置及使用該方法所得之過濾材
CN114132032A (zh) * 2021-11-24 2022-03-04 西南林业大学 一种有吸附性的空气过滤膜及其制备方法
CN114132032B (zh) * 2021-11-24 2024-03-08 西南林业大学 一种有吸附性的空气过滤膜及其制备方法

Also Published As

Publication number Publication date
KR20110120202A (ko) 2011-11-03
US20110052900A1 (en) 2011-03-03
JPWO2010092938A1 (ja) 2012-08-16
CN102006925A (zh) 2011-04-06
EP2397217A4 (en) 2013-07-31
TW201034743A (en) 2010-10-01
EP2397217A1 (en) 2011-12-21
CN102006925B (zh) 2014-10-08

Similar Documents

Publication Publication Date Title
WO2010092938A1 (ja) 多孔質複層フィルターおよびその製造方法
WO2012114868A1 (ja) 多孔質複層フィルター
JP5154784B2 (ja) フィルター
JPH078926B2 (ja) ポリテトラフルオロエチレン複層多孔膜の製造方法
TWI778119B (zh) 用於製造通氣過濾器的方法
JP2014042869A (ja) 多孔質複層フィルター
KR20140105720A (ko) 폴리테트라플루오로에틸렌제 다공질 수지막, 폴리테트라플루오로에틸렌제 다공질 수지막 복합체, 및 분리막 엘리먼트
WO2015182538A1 (ja) 多孔質フィルタ
JPH078927B2 (ja) ポリテトラフルオロエチレン複層多孔膜の製造方法
JP2017193112A (ja) 積層体及び積層体の製造方法
KR102102460B1 (ko) 불소계 수지 다공성 막의 제조 방법
CN111655358B (zh) 基于氟的树脂多孔膜及其制备方法
KR102145535B1 (ko) 불소 수지 다공성 막의 제조 방법 및 불소 수지 다공성 막
JP6862642B2 (ja) 半透膜及び半透膜の製造方法
WO2023139868A1 (ja) 多孔質膜、多孔質膜積層体及び多孔質膜の製造方法
KR102610907B1 (ko) 다층 구조(Multi-layer)의 불소계 수지 멤브레인
WO2012124500A1 (ja) 結晶性ポリマー微孔性膜及びその製造方法、並びに濾過用フィルタ
WO2017065150A1 (ja) 半透膜及び半透膜の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001381.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010516313

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107022298

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010741215

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE