WO2010092695A1 - 電子写真用感光体、その製造方法および電子写真装置 - Google Patents

電子写真用感光体、その製造方法および電子写真装置 Download PDF

Info

Publication number
WO2010092695A1
WO2010092695A1 PCT/JP2009/052576 JP2009052576W WO2010092695A1 WO 2010092695 A1 WO2010092695 A1 WO 2010092695A1 JP 2009052576 W JP2009052576 W JP 2009052576W WO 2010092695 A1 WO2010092695 A1 WO 2010092695A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
electrophotographic
iii
layer
production example
Prior art date
Application number
PCT/JP2009/052576
Other languages
English (en)
French (fr)
Inventor
信二郎 鈴木
洋一 中村
清三 北川
豊強 朱
和希 根橋
Original Assignee
富士電機システムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機システムズ株式会社 filed Critical 富士電機システムズ株式会社
Priority to KR1020117017149A priority Critical patent/KR101548409B1/ko
Priority to US13/148,438 priority patent/US8597864B2/en
Priority to CN2009801562713A priority patent/CN102301284B/zh
Priority to JP2010550395A priority patent/JP5195938B2/ja
Priority to PCT/JP2009/052576 priority patent/WO2010092695A1/ja
Priority to TW099103959A priority patent/TWI476546B/zh
Publication of WO2010092695A1 publication Critical patent/WO2010092695A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/056Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0564Polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0578Polycondensates comprising silicon atoms in the main chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0589Macromolecular compounds characterised by specific side-chain substituents or end groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0592Macromolecular compounds characterised by their structure or by their chemical properties, e.g. block polymers, reticulated polymers, molecular weight, acidity

Definitions

  • the present invention relates to an electrophotographic photoreceptor (hereinafter also referred to as “photoreceptor”), a method for producing the same, and an electrophotographic apparatus.
  • the electrophotographic photoreceptor comprises a conductive substrate and a photosensitive layer containing an organic material.
  • the present invention relates to an electrophotographic photoreceptor used for a printer, a copying machine, a fax machine, etc., a manufacturing method thereof, and an electrophotographic apparatus.
  • the electrophotographic photoreceptor has a basic structure in which a photosensitive layer having a photoconductive function is provided on a conductive substrate.
  • organic electrophotographic photoreceptors using organic compounds as functional components responsible for charge generation and transport have been actively researched and developed due to advantages such as material diversity, high productivity, and safety. Application to printers and printers is ongoing.
  • a photoreceptor needs to have a function of holding a surface charge in a dark place, a function of generating a charge by receiving light, and a function of transporting the generated charge.
  • a so-called single-layer type photoreceptor having a photosensitive layer, a charge generation layer mainly responsible for charge generation during photoreception, a function for retaining surface charges in the dark, and a charge generation layer during photoreception There is a so-called laminated type (functional separation type) photoconductor provided with a photosensitive layer in which a functionally separated layer is laminated on a charge transporting layer having a function of transporting generated charges.
  • the photosensitive layer is generally formed by applying a coating solution prepared by dissolving or dispersing a charge generating material, a charge transporting material and a resin binder in an organic solvent onto a conductive substrate.
  • a coating solution prepared by dissolving or dispersing a charge generating material, a charge transporting material and a resin binder in an organic solvent onto a conductive substrate.
  • These organic electrophotographic photoreceptors, particularly the outermost layer, are resistant to friction generated between paper and a blade for removing toner, have excellent flexibility, and have good exposure transparency.
  • polycarbonate is used as a resin binder.
  • bisphenol Z-type polycarbonate is widely used as the resin binder. A technique using such a polycarbonate as a resin binder is described in Patent Document 1 and the like.
  • a non-contact charging method in which a charging member such as scorotron and the photoconductor are not in contact, and a contact in which the charging member using a semiconductive rubber roller or brush contacts the photoconductor.
  • the contact charging method is characterized in that less corona discharge occurs in the vicinity of the photoreceptor than in the non-contact charging method, so that ozone is less generated and the applied voltage may be lower. Therefore, since a more compact, low-cost, and low environmental pollution electrophotographic apparatus can be realized, it is mainly used for medium-sized to small-sized apparatuses.
  • scraping with a blade As means for cleaning the surface of the photoreceptor, scraping with a blade, a simultaneous development cleaning process, or the like is mainly used.
  • cleaning with a blade untransferred residual toner on the surface of the organic photoreceptor may be scraped off by the blade, and the toner may be collected in a waste toner box or returned to the developing device again.
  • Such a scraper-type cleaner using a blade requires a collection box for collected toner or a space for recycling, and it is necessary to monitor the fullness of the toner collection box.
  • paper dust or an external additive stays on the blade, the surface of the organic photoreceptor may be damaged to shorten the life of the electrophotographic photoreceptor. Therefore, there is a case where a process for collecting the toner in the developing process or magnetically or electrically attracting the residual toner adhering to the surface of the electrophotographic photoreceptor just before the developing roller may be provided.
  • the surface of the photoconductor is contaminated by ozone, nitrogen oxides, etc. generated when the photoconductor is charged.
  • the adhered substance lowers the lubricity of the surface, and paper dust and toner are liable to adhere, and the blade squeaks, turns, and the surface is easily scratched.
  • an attempt is made to reduce the residual toner by improving the transfer efficiency by performing a control that optimizes the transfer current according to the temperature and humidity environment and the characteristics of the paper.
  • an organic photoreceptor suitable for such a process or contact charging method an organic photoreceptor with improved toner releasability or an organic photoreceptor with little transfer effect is required.
  • Patent Documents 2 and 3 propose a method of adding a filler to the surface layer of the photosensitive layer in order to improve the durability of the surface of the photoreceptor.
  • the presence of filler aggregates, film permeability, or the scattering of exposure light by the filler causes non-uniform charge transport and charge generation, resulting in poor image characteristics.
  • a method of adding a dispersing agent to improve the filler dispersibility can be mentioned.
  • the dispersing agent itself affects the photoreceptor characteristics, it is difficult to achieve compatibility with the filler dispersibility.
  • Patent Document 4 proposes a method of incorporating a fluororesin such as PTFE into the photosensitive layer.
  • Patent Document 5 proposes a method of adding a silicone resin such as alkyl-modified polysiloxane.
  • the fluororesin such as PTFE has low solubility in a solvent or poor compatibility with other resins, and phase separation causes light scattering at the resin interface. Therefore, the sensitivity characteristic as a photoconductor was not satisfied.
  • the method described in Patent Document 5 has a problem that the effect cannot be obtained continuously because the silicone resin bleeds to the surface of the coating film.
  • Patent Document 6 proposes a method for improving the wear resistance by using a resin in which a siloxane structure is added to the terminal structure.
  • Patent Document 7 proposes a photoconductor including polycarbonate and polyarylate using phenols containing a specific siloxane structure as a raw material.
  • Patent Document 8 proposes a photoreceptor containing a resin in which a siloxane resin structure containing a carboxyl group is introduced into the resin structure.
  • Patent Document 9 proposes a photosensitive layer containing a polycarbonate having a silicone structure and a reduced surface energy.
  • Patent Document 10 proposes a photoreceptor containing a polyester resin containing polysiloxane as a constituent unit on the outermost surface layer of the photoreceptor.
  • Patent Document 11 it is proposed to use polyarylate as a resin binder for the photosensitive layer, and various studies have been repeated for the purpose of improving durability and mechanical strength.
  • Patent Document 12 proposes a photoreceptor using a phenol-modified polysiloxane resin as a siloxane component and using a polycarbonate having a siloxane structure and a polyarylate resin as a photosensitive layer.
  • Patent Document 13 proposes an electrophotographic apparatus provided with a photosensitive layer containing a silicone-modified polyarylate resin.
  • the frictional resistance on the surface of the photosensitive drum is not sufficient for maintaining good electrical characteristics and image characteristics while maintaining low frictional resistance continuously after printing from the beginning.
  • an object of the present invention is to make it possible to reduce the frictional resistance of the surface of the photosensitive drum from the initial stage to after printing, further reduce the amount of wear and obtain a good image, and its photoconductor It is to provide a manufacturing method and an electrophotographic apparatus.
  • the present inventors have examined a photosensitive layer to which a resin having a low friction coefficient is applied, and as a result, have focused on polyarylate resin.
  • polyarylate resin containing a specific siloxane structure as a resin binder
  • an electrophotographic photoreceptor that maintains a low friction coefficient on the surface of the photoreceptor can be realized.
  • the rigidity of the resin is improved, and as a result, a low friction coefficient and a low amount of wear are achieved, and an electrophotographic photoreceptor excellent in electrical characteristics is realized.
  • the present invention was completed by finding out what can be done.
  • the electrophotographic photoreceptor of the present invention is an electrophotographic photoreceptor having a photosensitive layer on a conductive substrate, and the photosensitive layer has a structural unit represented by the following chemical structural formula 1 as a resin binder. It contains the copolymer polyarylate resin which has.
  • partial structural formulas (A), (B), (C), (D), (E), and (F) represent structural units constituting the resin binder.
  • a, b, c, d, e and f represent mol% of the structural units (A), (B), (C), (D), (E) and (F), respectively, and a + b + c + d + e + f is 100 mol%.
  • R 1 and R 2 may be the same or different and may have a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group which may have a substituent, or a substituent.
  • a cyclic structure may be formed together with the carbon atom to which the aryl group is attached or they are bonded, and 1 or 2 arylene groups may be bonded to the cyclic structure.
  • R 3 to R 18 may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, or a bromine atom.
  • R 19 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkylene group having 1 to 20 carbon atoms, an aryl group which may have a substituent or a cycloalkyl group which may have a substituent, a fluorine atom, A chlorine atom or a bromine atom is shown. s and t represent integers of 1 or more.
  • c and d are preferably 0 mol%, and e and f are preferably 0 mol%.
  • the amount of the siloxane component is preferably (c + d + e + f) of 0.001 to 10 mol%.
  • R 1 and R 2 are each a methyl group, and R 3 to R 18 are hydrogen atoms.
  • the photosensitive layer is a laminated type including at least a charge generation layer and a charge transport layer, and the charge transport layer further includes the copolymer polyarylate resin and a charge transport material. It is a waste.
  • the photosensitive layer is a single layer type, and further includes the copolymer polyarylate resin, a charge generation material, and a charge transport material.
  • the photoreceptor of the present invention is preferably a laminate type in which the photosensitive layer includes at least a charge transport layer and a charge generation layer, and the charge generation layer includes the copolymer polyarylate resin, charge generation. Material and charge transport material. In this case, the charge transport layer does not necessarily include the polyarylate resin.
  • the method for producing an electrophotographic photoreceptor of the present invention is a method for producing an electrophotographic photoreceptor including a step of forming a photosensitive layer by applying a coating solution containing at least a resin binder on a conductive substrate. And the coating liquid contains a copolymerized polyarylate resin represented by the chemical structural formula 1 as a resin binder.
  • the electrophotographic apparatus of the present invention is characterized in that the electrophotographic photosensitive member is mounted.
  • the surface of the photosensitive layer is maintained from the initial stage to after printing while maintaining the electrophotographic characteristics of the photosensitive member.
  • a low coefficient of friction could be maintained.
  • the cleaning property is improved, and it is possible to realize an electrophotographic photoreceptor capable of obtaining a good image.
  • the copolymerized polyarylate resin is a resin having high rigidity and excellent mechanical strength.
  • (P 2 -1-6) which is a resin described in Patent Document 10
  • P 2 -1-6 has the same polyester structure of the phthalic acid / bisphenol portion as that of the above structural formula (A) of the present invention. Since P 2 -1-6 uses a siloxane-containing dihydric phenol, a phenyl group is sandwiched on the siloxane side of the ester structure site.
  • Patent Document 12 uses a phenolic hydroxyl group when a siloxane structure is introduced into a resin.
  • an alcoholic hydroxyl group (hydroxyalkyl) structure is included at both ends or one end of the siloxane moiety, and the siloxane structure is introduced into the resin by ester bonding. Furthermore, the siloxane structure and the alcoholic hydroxyl group are bonded via an ether bond. Therefore, it becomes a structure containing an ethylene part and an ether bond, and the effect that it is easy to relieve internal stress can be expected.
  • the polyarylate resin incorporating the siloxane structure by the alcoholic hydroxyl structure of the present invention has no example in the prior art.
  • the structural formulas (E) and (F) are structures containing a single-terminal siloxane component, and further have R 19 at the terminal. Therefore, an effect that the compatibility between the resin and the charge transport material can be controlled is obtained. Furthermore, since the structural formula (E) has a comb shape with respect to the main chain of the resin, the siloxane component is branched from the structural formulas (C) and (D) that incorporate the siloxane structure into the main chain type. Due to the effect, the relationship between the molecular weight and the viscosity of the coating solution can be changed.
  • FIG. 3 is a diagram showing an H 1 -NMR of a copolymerized polyarylate resin (III-1) (in a THF-d 8 solvent).
  • FIG. 6 is a diagram showing an H 1 -NMR of a copolymerized polyarylate resin (III-10) (in a THF-d 8 solvent).
  • 1 is a schematic configuration diagram of an electrophotographic apparatus according to the present invention.
  • the electrophotographic photosensitive member is a so-called negatively charged laminated type photosensitive member and positively charged laminated type photosensitive member as a laminated type (function separation type) photosensitive member, and a single layer type mainly used in a positively charged type. Broadly divided into photoconductors.
  • FIG. 1 is a schematic cross-sectional view showing an electrophotographic photosensitive member according to an embodiment of the present invention, in which (a) is a negatively charged type laminated electrophotographic photosensitive member, and (b) is a positively charged type single photosensitive member.
  • a layer type electrophotographic photoreceptor, (c) shows a positively charged type laminated electrophotographic photoreceptor.
  • an undercoat layer 2 As shown in the figure, in the negatively charged laminated photoreceptor, an undercoat layer 2, a charge generation layer 4 having a charge generation function, and a charge transport layer 5 having a charge transport function are provided on a conductive substrate 1. The photosensitive layer is sequentially laminated.
  • an undercoat layer 2 and a single layer type photosensitive layer 3 having both charge generation and charge transport functions are sequentially laminated on a conductive substrate 1. .
  • the undercoat layer 2 the charge transport layer 5 having a charge transport function, and the charge generation layer 4 having both charge generation and charge transport functions are provided on the conductive substrate 1.
  • the undercoat layer 2 may be provided as necessary.
  • the “photosensitive layer” of the present invention includes both a laminated photosensitive layer in which a charge generation layer and a charge transport layer are laminated, and a single-layer type photosensitive layer.
  • the conductive substrate 1 serves as a support for each layer constituting the photoconductor as well as serving as an electrode of the photoconductor, and may have any shape such as a cylindrical shape, a plate shape, or a film shape.
  • a metal such as aluminum, stainless steel, nickel, or the like such as a glass, resin, or the like subjected to a conductive treatment can be used.
  • the undercoat layer 2 is composed of a resin-based layer or a metal oxide film such as alumite.
  • the undercoat layer 2 is used for controlling the charge injection property from the conductive substrate 1 to the photosensitive layer, or for covering defects on the surface of the conductive substrate, improving the adhesion between the photosensitive layer and the conductive substrate 1, etc.
  • the resin material used for the undercoat layer 2 include insulating polymers such as casein, polyvinyl alcohol, polyamide, melamine, and cellulose, and conductive polymers such as polythiophene, polypyrrole, and polyaniline. These resins are used alone, Alternatively, they can be used in combination as appropriate. These resins may be used by containing a metal oxide such as titanium dioxide or zinc oxide.
  • the charge generation layer 4 is formed by a method such as applying a coating solution in which particles of a charge generation material are dispersed in a resin binder, and receives light to generate charges.
  • the charge generation efficiency is important as well as the charge generation efficiency of the generated charge into the charge transport layer 5, and the electric field dependency is small.
  • Examples of the charge generating material include phthalocyanines such as X-type metal-free phthalocyanine, ⁇ -type metal-free phthalocyanine, ⁇ -type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, Y-type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, amorphous-type titanyl phthalocyanine, and ⁇ -type copper phthalocyanine.
  • phthalocyanines such as X-type metal-free phthalocyanine, ⁇ -type metal-free phthalocyanine, ⁇ -type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, Y-type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, amorphous-type titanyl phthalocyanine, and ⁇ -type copper phthalocyanine.
  • the charge generation layer 4 Since the charge generation layer 4 only needs to have a charge generation function, its film thickness is determined by the light absorption coefficient of the charge generation material, and is generally 1 ⁇ m or less, preferably 0.5 ⁇ m or less.
  • the charge generation layer 4 can also be used with a charge generation material as a main component and a charge transport material or the like added thereto.
  • Resin binders include polycarbonate resin, polyester resin, polyamide resin, polyurethane resin, vinyl chloride resin, vinyl acetate resin, phenoxy resin, polyvinyl acetal resin, polyvinyl butyral resin, polystyrene resin, polysulfone resin, diallyl phthalate resin, methacrylate ester resin These polymers and copolymers can be used in appropriate combinations.
  • the charge transport layer 5 is mainly composed of a charge transport material and a resin binder.
  • a copolymerized polyarylate resin having the structural unit represented by the chemical structural formula 1 as a resin binder of the charge transport layer 5. Thereby, the desired effect of the present invention can be obtained.
  • the copolymer polyarylate resin may have other structural units.
  • the blending ratio of the structural unit represented by the chemical structural formula 1 is preferably 10 to 100 mol%, particularly preferably 50 to 100 mol%.
  • (c + d + e + f) when the total amount (a + b + c + d + e + f) of the structural unit represented by the chemical structural formula 1 is 100 mol%, (c + d + e + f) is preferably 0.001 to 10 mol% as the amount of the siloxane component. More preferably, it is 0.03 to 10 mol%.
  • (c + d + e + f) is smaller than 0.001 mol%, there is a possibility that a sufficient friction coefficient that is sustainable cannot be obtained.
  • (c + d + e + f) when (c + d + e + f) is larger than 10 mol%, sufficient film hardness cannot be obtained, and when it is used as a coating solution, sufficient compatibility with a solvent or a functional material may not be obtained.
  • s and t are integers of 1 or more and 400 or less, preferably 8 or more and 250 or less.
  • a bisphenol A-type copolymer polyarylate resin in which R 1 and R 2 are methyl groups and R 3 to R 18 are hydrogen atoms in the above chemical structural formula 1. It is preferable that
  • examples of the siloxane structure of the copolymerized polyarylate resin represented by the chemical structural formula 1 include, for example, the following molecular formula (2) (reactive silicone silaplane manufactured by Chisso Corporation, FM4411 (number average molecular weight 1000), FM4421 (number average molecular weight 5000). , FM4425 (number average molecular weight 15000)), the following molecular formula (3) (reactive silicone silaplane FMDA11 (number average molecular weight 1000), FMDA21 (number average molecular weight 5000), FMDA26 (number average molecular weight 15000)) manufactured by Chisso Corporation), etc. Mention may be made of constituent monomers.
  • molecular formula (2) reactive silicone silaplane manufactured by Chisso Corporation
  • FM4411 number average molecular weight 1000
  • FM4421 number average molecular weight 5000
  • FM4425 number average molecular weight 15000
  • molecular formula (3) reactive silicone silaplane FMDA11 (number average molecular weight 1000
  • R 19 represents an n-butyl group.
  • the copolymer polyarylate resin represented by the above chemical structural formula 1 may be used alone or in combination with other resins.
  • other resins include other polyarylate resins, and various polycarbonate resins such as bisphenol A type, bisphenol Z type, bisphenol A type-biphenyl copolymer, bisphenol Z type-biphenyl copolymer, polyphenylene resin, and polyester.
  • Resin polyvinyl acetal resin, polyvinyl butyral resin, polyvinyl alcohol resin, vinyl chloride resin, vinyl acetate resin, polyethylene resin, polypropylene resin, acrylic resin, polyurethane resin, epoxy resin, melamine resin, silicone resin, polyamide resin, polystyrene resin, polyacetal Resins, polysulfone resins, methacrylic ester polymers, copolymers thereof, and the like can be used. Furthermore, the same kind of resins having different molecular weights may be mixed and used.
  • the content of the resin binder is preferably 10 to 90% by mass and more preferably 20 to 80% by mass with respect to the solid content of the charge transport layer 5. Further, the content of the copolymerized polyarylate resin with respect to the resin binder is preferably in the range of 1% by mass to 100% by mass, and more preferably in the range of 5% by mass to 80% by mass.
  • the weight average molecular weight of these polyarylate resins is preferably 5000 to 250,000, more preferably 10,000 to 150,000.
  • R 19 represents an n-butyl group.
  • charge transport material of the charge transport layer 5 various hydrazone compounds, styryl compounds, diamine compounds, butadiene compounds, indole compounds, etc. can be used alone or in combination as appropriate.
  • Examples of such a charge transport material include, but are not limited to, those shown in the following (II-1) to (II-14).
  • the film thickness of the charge transport layer 5 is preferably in the range of 3 to 50 ⁇ m and more preferably in the range of 15 to 40 ⁇ m in order to maintain a practically effective surface potential.
  • the photosensitive layer 3 in the case of a single layer type is mainly composed of a charge generation material, a hole transport material, an electron transport material (acceptor compound), and a resin binder.
  • a copolymerized polyarylate resin having a structural unit represented by the above chemical structural formula 1 as the resin binder of the single-layer type photosensitive layer 3.
  • Such a copolymerized polyarylate resin may have other structural units.
  • the blending ratio of the structural unit represented by the chemical structural formula 1 is preferably 10 to 100 mol%, particularly preferably 50 to 100 mol%.
  • phthalocyanine pigments for example, phthalocyanine pigments, azo pigments, anthanthrone pigments, perylene pigments, perinone pigments, polycyclic quinone pigments, squarylium pigments, thiapyrylium pigments, quinacridone pigments and the like can be used.
  • these charge generation materials can be used alone or in combination of two or more.
  • disazo pigments, trisazo pigments, and perylene pigments as azo pigments are N, N′-bis (3,5-dimethylphenyl) -3, 4: 9,10.
  • -Perylene-bis (carboxide) and phthalocyanine pigments are preferably metal-free phthalocyanine, copper phthalocyanine, and titanyl phthalocyanine. Furthermore, X-type metal-free phthalocyanine, ⁇ -type metal-free phthalocyanine, ⁇ -type copper phthalocyanine, ⁇ -type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, Y-type titanyl phthalocyanine, amorphous titanyl phthalocyanine, Japanese Patent Laid-Open No. 8-209003, US Pat.
  • the content of the charge generating substance is preferably 0.1 to 20% by mass, and more preferably 0.5 to 10% by mass with respect to the solid content of the single-layer type photosensitive layer 3.
  • the hole transport material for example, hydrazone compound, pyrazoline compound, pyrazolone compound, oxadiazole compound, oxazole compound, arylamine compound, benzidine compound, stilbene compound, styryl compound, poly-N-vinylcarbazole, polysilane, etc. are used. can do. Moreover, these hole transport materials can be used alone or in combination of two or more. As the hole transport material used in the present invention, a material that is excellent in the ability to transport holes generated during light irradiation and that is suitable for combination with a charge generation material is preferable.
  • the content of the hole transport material is preferably 3 to 80% by mass, more preferably 5 to 60% by mass with respect to the solid content of the single-layer type photosensitive layer 3.
  • Electron transport materials include succinic anhydride, maleic anhydride, dibromosuccinic anhydride, phthalic anhydride, 3-nitrophthalic anhydride, 4-nitrophthalic anhydride, pyromellitic anhydride, pyromellitic acid , Trimellitic acid, trimellitic anhydride, phthalimide, 4-nitrophthalimide, tetracyanoethylene, tetracyanoquinodimethane, chloranil, bromanyl, o-nitrobenzoic acid, malononitrile, trinitrofluorenone, trinitrothioxanthone, dinitrobenzene, Dinitroanthracene, dinitroacridine, nitroanthraquinone, dinitroanthraquinone, thiopyran compounds, quinone compounds, benzoquinone compounds, diphenoquinone compounds, naphthoquinone compounds, anthraquinone compounds, stilbes Quinone compounds, mention may be made
  • copolymer polyarylate resin having a structural unit represented by the above chemical structural formula 1 as a resin binder of the single-layer type photosensitive layer 3.
  • the desired effect of the present invention can be obtained.
  • copolymer polyarylate resin include the same ones as described above.
  • the copolymerized polyarylate resin represented by the above chemical structural formula 1 may be used alone or in combination with other resins.
  • Such other resins include various polycarbonate resins such as bisphenol A type, bisphenol Z type, bisphenol A type-biphenyl copolymer, bisphenol Z type-biphenyl copolymer, polyphenylene resin, polyester resin, polyvinyl acetal resin, polyvinyl butyral.
  • Resin polyvinyl alcohol resin, vinyl chloride resin, vinyl acetate resin, polyethylene resin, polypropylene resin, acrylic resin, polyurethane resin, epoxy resin, melamine resin, silicone resin, polyamide resin, polystyrene resin, polyacetal resin, other polyarylate resins, A polysulfone resin, a polymer of methacrylic acid ester, a copolymer thereof, and the like can be used. Furthermore, the same kind of resins having different molecular weights may be mixed and used.
  • the content of the resin binder is preferably 10 to 90% by mass, more preferably 20 to 80% by mass with respect to the solid content of the single-layer type photosensitive layer 3. Further, the content of the copolymerized polyarylate resin with respect to the resin binder is preferably in the range of 1% by mass to 100% by mass, and more preferably in the range of 5% by mass to 80% by mass.
  • the film thickness of the single-layer type photosensitive layer 3 is preferably in the range of 3 to 100 ⁇ m and more preferably in the range of 5 to 40 ⁇ m in order to maintain a practically effective surface potential.
  • the charge transport layer 5 is mainly composed of a charge transport material and a resin binder.
  • the charge transport material and the resin binder the same materials as those described in the embodiment of the charge transport layer 5 in the negatively charged laminated photoreceptor can be used.
  • the content of each material and the film thickness of the charge transport layer 5 can be the same as those of the negatively charged laminated photoreceptor.
  • a copolymer polyarylate resin having a structural unit represented by the above chemical structural formula 1 can be arbitrarily used as the resin binder.
  • the charge generation layer 4 provided on the charge transport layer 5 is mainly composed of a charge generation material, a hole transport material, an electron transport material (acceptor compound), and a resin binder.
  • a charge generation material As the charge generation material, the hole transport material, the electron transport material, and the resin binder, the same materials as those mentioned as the embodiment of the single layer type photosensitive layer 3 in the single layer type photoreceptor can be used.
  • the content of each material and the film thickness of the charge generation layer 4 can be the same as those of the single-layer photosensitive layer 3 in the single-layer photoreceptor.
  • a copolymerized polyarylate resin having a structural unit represented by the above chemical structural formula 1 As a resin binder for the charge generation layer 4.
  • the multilayered or single-layered photosensitive layer contains an anti-oxidant or a light stabilizer such as a light stabilizer for the purpose of improving environmental resistance and harmful light stability.
  • a light stabilizer such as a light stabilizer for the purpose of improving environmental resistance and harmful light stability.
  • Compounds used for this purpose include chromanol derivatives such as tocopherol and esterified compounds, polyarylalkane compounds, hydroquinone derivatives, etherified compounds, dietherified compounds, benzophenone derivatives, benzotriazole derivatives, thioether compounds, phenylenediamine derivatives. Phosphonic acid ester, phosphorous acid ester, phenol compound, hindered phenol compound, linear amine compound, cyclic amine compound, hindered amine compound and the like.
  • the photosensitive layer may contain a leveling agent such as silicone oil or fluorine oil for the purpose of improving the leveling property of the formed film and imparting lubricity.
  • a leveling agent such as silicone oil or fluorine oil
  • metal oxides such as silicon oxide (silica), titanium oxide, zinc oxide, calcium oxide, aluminum oxide (alumina), zirconium oxide, etc. for the purpose of adjusting film hardness, reducing friction coefficient, and imparting lubricity
  • It may also contain metal sulfides such as barium sulfate and calcium sulfate, metal nitride fine particles such as silicon nitride and aluminum nitride, fluorine resin particles such as tetrafluoroethylene resin, and fluorine-based comb-type graft polymerization resin. Good.
  • other known additives can be contained as long as the electrophotographic characteristics are not significantly impaired.
  • electrophotographic photoreceptor of the present invention By applying the electrophotographic photoreceptor of the present invention to various machine processes, desired effects can be obtained. Specifically, a charging process such as a contact charging method using a roller or a brush, a non-contact charging method using a corotron or scorotron, and a developing method such as a non-magnetic one component, a magnetic one component, or a two component are used. A sufficient effect can be obtained even in the development process such as the contact development and the non-contact development.
  • FIG. 4 shows a schematic configuration diagram of an electrophotographic apparatus according to the present invention.
  • the electrophotographic apparatus 60 of the present invention includes the electrophotographic photoreceptor 7 of the present invention including the conductive substrate 1, the undercoat layer 2 coated on the outer peripheral surface, and the photosensitive layer 300. Further, the electrophotographic apparatus 60 includes a roller charging member 21, a high-voltage power source 22 that supplies an applied voltage to the roller charging member 21, an image exposure member 23, and a developing device, which are disposed on the outer peripheral edge of the photoreceptor 7.
  • a developing device 24 having a roller 241, a paper feeding member 25 having a paper feeding roller 251 and a paper feeding guide 252, a transfer charger (direct charging type) 26, and a cleaning device 27 having a cleaning blade 271; And a static elimination member 28.
  • the electrophotographic apparatus 60 of the present invention can be a color printer.
  • Production Example 2 (Method for producing copolymer polyarylate resin (III-2)) Synthesis was performed in the same manner as in Production Example 1 except that 30.303 g of bisphenol A and 1.994 g of the compound of molecular formula (2) -3 in Production Example 1 were used. Tables 2 and 3 show the copolymerization ratios of the obtained copolymer polyarylate resin (III-2).
  • Production Example 3 (Production Method of Copolymerized Polyarylate Resin (III-3)) Synthesis was carried out in the same manner as in Production Example 1 except that 30.326 g of bisphenol A and 0.997 g of the compound of molecular formula (2) -3 in Production Example 1 were used.
  • the copolymerization ratios of the obtained copolymer polyarylate resin (III-3) are shown in Tables 2 and 3.
  • Production Example 4 (Production Method of Copolymerized Polyarylate Resin (III-4))
  • bisphenol A is 30.45 g
  • the compound of molecular formula (2) -3 is the compound of molecular formula (2) -2 (trade name “Silaplane FM-4421” manufactured by Chisso Corporation)
  • the molecular formula (2 ) -2 was synthesized in the same manner as in Production Example 1 except that the amount of the compound of -2 was changed to 6.647 g.
  • the copolymerization ratios of the obtained copolymer polyarylate resin (III-4) are shown in Tables 2 and 3.
  • Production Example 5 (Method for producing copolymer polyarylate resin (III-5)) Synthesis was carried out in the same manner as in Production Example 4 except that 30.197 g of bisphenol A and 3.332 g of the compound of molecular formula (2) -2 in Production Example 4 were used.
  • the copolymerization ratios of the obtained copolymer polyarylate resin (III-5) are shown in Tables 2 and 3.
  • Production Example 6 (Method for producing copolymer polyarylate resin (III-6)) Synthesis was carried out in the same manner as in Production Example 4 except that 30.288 g of bisphenol A and 1.329 g of the compound of molecular formula (2) -2 in Production Example 4 were used.
  • the copolymerization ratios of the obtained copolymer polyarylate resin (III-6) are shown in Tables 2 and 3.
  • Production Example 7 (Production Method of Copolymerized Polyarylate Resin (III-7))
  • Production Example 1 27.921 g of bisphenol A is used, and the compound of molecular formula (2) -3 is used as the compound of molecular formula (2) -1 (trade name “Silaplane FM-4411” manufactured by Chisso Corporation). ) -1 was synthesized in the same manner as in Production Example 1 except that the amount of the compound of -1 was changed to 10.635 g.
  • Tables 2 and 3 show the copolymerization ratios of the obtained copolymer polyarylate resin (III-7).
  • Production Example 8 (Production Method of Copolymerized Polyarylate Resin (III-8)) Synthesis was carried out in the same manner as in Production Example 7 except that 29.134 g of bisphenol A and 5.318 g of the compound of molecular formula (2) -1 in Production Example 7 were used.
  • the copolymerization ratios of the obtained copolymer polyarylate resin (III-8) are shown in Tables 2 and 3.
  • Production Example 9 (Method for producing copolymer polyarylate resin (III-9)) Synthesis was carried out in the same manner as in Production Example 7 except that the amount of bisphenol A in Production Example 7 was changed to 30.45 g and the compound of molecular formula (2) -1 was changed to 1.329 g. Tables 2 and 3 show the copolymerization ratios of the obtained copolymer polyarylate resin (III-9).
  • Production Example 10 (Method for producing copolymer polyarylate resin (III-10))
  • bisphenol A is 30.288 g
  • the compound of the molecular formula (2) -3 is a compound of the molecular formula (3) -3 (Shislaplane FMDA26 manufactured by Chisso Corporation)
  • the compound of the molecular formula (3) -3 The synthesis was performed in the same manner as in Production Example 1 except that the amount was 3.988 g.
  • the H 1 -NMR of the obtained copolymer polyarylate resin (III-10) in a THF-d 8 solvent is shown in FIG. 3, and the copolymerization ratios are shown below and in Tables 2 and 3.
  • the weight average molecular weight in terms of polystyrene of this resin III-10 was measured by GPC (gel permeation) analysis, the molecular weight was 87,000.
  • Production Example 11 (Production Method of Copolymerized Polyarylate Resin (III-11)) Synthesis was carried out in the same manner as in Production Example 10 except that 30.318 g of bisphenol A and 1.994 g of the compound of molecular formula (3) -3 in Production Example 10 were used.
  • the copolymerization ratios of the obtained copolymer polyarylate resin (III-11) are shown in Tables 2 and 3.
  • Production Example 12 (Production Method of Copolymerized Polyarylate Resin (III-12)) Synthesis was carried out in the same manner as in Production Example 10 except that 30.333 g of bisphenol A and 0.997 g of the compound of molecular formula (3) -3 in Production Example 10 were used. Tables 2 and 3 show the copolymerization ratios of the obtained copolymer polyarylate resin (III-12).
  • Production Example 13 (Production Method of Copolymerized Polyarylate Resin (III-13))
  • the amount of bisphenol A is 30.45 g
  • the compound of molecular formula (2) -3 is the compound of molecular formula (3) -2 (Silaplane FMDA21 manufactured by Chisso Corporation)
  • the compound of molecular formula (3) -2 is The synthesis was performed in the same manner as in Production Example 1 except that the amount was 6.647 g.
  • Tables 2 and 3 show the copolymerization ratios of the obtained copolymer polyarylate resin (III-13).
  • Production Example 14 (Method for producing copolymer polyarylate resin (III-14)) Synthesis was carried out in the same manner as in Production Example 13 except that 30.197 g of bisphenol A and 3.323 g of the compound of molecular formula (3) -2 in Production Example 13 were used.
  • the copolymerization ratios of the obtained copolymer polyarylate resin (III-14) are shown in Tables 2 and 3.
  • Production Example 15 (Production Method of Copolymerized Polyarylate Resin (III-15)) Synthesis was carried out in the same manner as in Production Example 13 except that 30.288 g of bisphenol A and 1.329 g of the compound of molecular formula (3) -2 in Production Example 13 were used. Tables 2 and 3 show the copolymerization ratios of the obtained copolymer polyarylate resin (III-15).
  • Production Example 16 (Production Method of Copolymerized Polyarylate Resin (III-16))
  • Production Example 1 28.831 g of bisphenol A, the compound of molecular formula (2) -3 as the compound of molecular formula (3) -1 (Sylaplane FMDA11 manufactured by Chisso), and the compound of molecular formula (3) -1
  • the synthesis was performed in the same manner as in Production Example 1 except that the amount was 6.647 g.
  • the copolymerization ratios of the obtained copolymer polyarylate resin (III-16) are shown in Tables 4 and 5.
  • Production Example 17 (Method for producing copolymer polyarylate resin (III-17)) Synthesis was carried out in the same manner as in Production Example 16, except that the amount of bisphenol A in Production Example 16 was 29.741 g and the amount of the compound of molecular formula (3) -1 was 2.659 g.
  • the copolymerization ratios of the obtained copolymer polyarylate resin (III-17) are shown in Tables 4 and 5.
  • Production Example 18 (Production Method of Copolymerized Polyarylate Resin (III-18)) Synthesis was carried out in the same manner as in Production Example 16 except that the amount of bisphenol A in Production Example 16 was 30.45 g and the amount of the compound of molecular formula (3) -1 was 1.329 g.
  • the copolymerization ratios of the obtained copolymer polyarylate resin (III-18) are shown in Tables 4 and 5.
  • Production Example 19 (Method for producing copolymer polyarylate resin (III-19))
  • 30.197 g of bisphenol A, the compound of molecular formula (2) -3 as the compound of molecular formula (2) -3 and the compound of molecular formula (3) -3, and the compound of molecular formula (2) -3 was synthesized in the same manner as in Production Example 1, except that 3.323 g of the compound of formula (3) -3 was used and 4.985 g of the compound of the molecular formula (3) -3.
  • the copolymerization ratios of the obtained copolymer polyarylate resin (III-19) are shown in Tables 4 and 5.
  • Production Example 20 (Production Method of Copolymerized Polyarylate Resin (III-20))
  • Production Example 19 29.059 g of bisphenol A, the compound of molecular formula (2) -3, the compound of molecular formula (3) -3, the compound of molecular formula (2) -3 and the compound of molecular formula (3) -1
  • the synthesis was carried out in the same manner as in Production Example 19, except that 3.323 g of the compound of molecular formula (2) -3 and 5.318 g of the compound of molecular formula (3) -1 were used.
  • Tables 4 and 5 show the copolymerization ratios of the obtained copolymer polyarylate resin (III-20).
  • Production Example 21 (Method for producing copolymer polyarylate resin (III-21))
  • bisphenol A was 28.436 g
  • the compound of molecular formula (2) -3 and the compound of molecular formula (3) -3 were converted into the compound of molecular formula (2) -1 and the compound of molecular formula (3) -3.
  • Synthesis was carried out in the same manner as in Production Example 19 except that 7.976 g of the compound of molecular formula (2) -1 and 5.982 g of the compound of molecular formula (3) -3 were used.
  • the copolymerization ratios of the obtained copolymer polyarylate resin (III-21) are shown in Tables 4 and 5.
  • Production Example 22 (Production Method of Copolymerized Polyarylate Resin (III-22))
  • 27.314 g of bisphenol A was used, the compound of molecular formula (2) -3 and the compound of molecular formula (3) -3 were converted into a compound of molecular formula (2) -1 and a compound of molecular formula (3) -1.
  • the synthesis was carried out in the same manner as in Production Example 19, except that 6.647 g of the compound of molecular formula (2) -1 and 6.647 g of the compound of molecular formula (3) -1 were used.
  • the copolymerization ratios of the obtained copolymer polyarylate resin (III-22) are shown in Tables 4 and 5.
  • Production Example 23 (Method for producing copolymer polyarylate resin (III-23)) Synthesis was carried out in the same manner as in Production Example 10 except that the terephthalic acid chloride in Production Example 10 was changed to 13.631 g and the isophthalic acid chloride was changed to 13.631 g.
  • the copolymerization ratios of the obtained copolymer polyarylate resin (III-23) are shown in Tables 4 and 5.
  • Production Example 24 (Production Method of Copolymerized Polyarylate Resin (III-24)) Synthesis was carried out in the same manner as in Production Example 10 except that the amount of terephthalic acid chloride was 9.542 g and the amount of isophthalic acid chloride was 17.720 g in Production Example 10.
  • the copolymerization ratios of the obtained copolymer polyarylate resin (III-24) are shown in Tables 4 and 5.
  • Production Example 25 (Production Method of Copolymerized Polyarylate Resin (III-25)) Synthesis was performed in the same manner as in Production Example 10 except that the production amount of terephthalic acid chloride was 14.994 g and that of isophthalic acid chloride was 12.268 g. Tables 4 and 5 show the copolymerization ratios of the obtained copolymer polyarylate resin (III-25).
  • Production Example 26 (Production Method of Copolymerized Polyarylate Resin (III-26)) The synthesis was carried out in the same manner as in Production Example 26 except that 27.010 g of bisphenol A and 14.623 g of the compound of molecular formula (2) -1 in Production Example 7 were used. The copolymerization ratios of the obtained copolymer polyarylate resin (III-26) are shown in Tables 4 and 5.
  • Production Example 27 (Method for producing copolymer polyarylate resin (III-27)) The synthesis was carried out in the same manner as in Production Example 1 except that 27.010 g of bisphenol A and 146.2232 g of the compound of molecular formula (2) -3 in Production Example 1 were used. The copolymerization ratios of the obtained copolymer polyarylate resin (III-27) are shown in Tables 4 and 5.
  • Production Example 28 (Production Method of Copolymerized Polyarylate Resin (III-28)) The same as in Production Example 1 except that the compound of formula (2) -3 was added in 30.348 g of bisphenol A in which 12.68 g of terephthalic acid chloride, 14.994 g of isophthalic acid chloride was added in Production Example 1. The synthesis was carried out. The copolymerization ratios of the obtained copolymer polyarylate resin (III-28) are shown in Tables 4 and 5.
  • Production Example 29 (Method for producing copolymer polyarylate resin (III-29)) Same as Production Example 1, except that terephthalic acid chloride was 9.542 g, isophthalic acid chloride was 17.720 g, bisphenol A was 30.348 g, and the compound of molecular formula (2) -3 was not added. The synthesis was carried out. The copolymerization ratios of the obtained copolymer polyarylate resin (III-29) are shown in Tables 4 and 5.
  • Production Example 30 (Method for producing copolymer polyarylate resin (III-30))
  • Production Example 1 17.720 g of terephthalic acid chloride, 9.542 g of isophthalic acid chloride, 30.348 g of bisphenol A, and without addition of the compound of molecular formula (2) -3, the same as Production Example 1
  • the synthesis was carried out.
  • the copolymerization ratios of the obtained copolymer polyarylate resin (III-30) are shown in Tables 4 and 5.
  • the copolymerization ratio is the ratio when a + b + c + d + e + f is 100 mol%.
  • the copolymerization ratio is the ratio when a + b + c + d + e + f is 100 mol%.
  • Example 1 A coating solution 1 is prepared by dissolving and dispersing 5 parts by mass of alcohol-soluble nylon (trade name “CM8000”, manufactured by Toray Industries, Inc.) and 5 parts by mass of aminosilane-treated titanium oxide fine particles in 90 parts by mass of methanol. did.
  • the coating liquid 1 is dip coated as an undercoat layer on the outer periphery of an aluminum cylinder having an outer diameter of 30 mm as the conductive substrate 1, and dried at a temperature of 100 ° C. for 30 minutes to form an undercoat layer 2 having a thickness of 3 ⁇ m Formed.
  • Y-type titanyl phthalocyanine 1 part by mass of Y-type titanyl phthalocyanine as a charge generation material and 1.5 parts by mass of a polyvinyl butyral resin (trade name “ESREC KS-1” manufactured by Sekisui Chemical Co., Ltd.) as a resin binder are added to 60 parts by mass of dichloromethane. Dissolve and disperse to prepare coating solution 2. On this undercoat layer 2, this coating solution 2 was dip-coated and dried at a temperature of 80 ° C. for 30 minutes to form a charge generation layer 4 having a thickness of 0.3 ⁇ m.
  • ESREC KS-1 polyvinyl butyral resin
  • a coating solution 3 was prepared by dissolving 90 parts by mass of the compound represented by the formula (1) and 110 parts by mass of the copolymerized polyarylate resin (III-1) of Production Example 1 as a resin binder in 1000 parts by mass of dichloromethane. On this charge generation layer 4, the coating solution 3 was dip-coated and dried at a temperature of 90 ° C. for 60 minutes to form a charge transport layer 5 having a film thickness of 25 ⁇ m, thereby preparing a negatively charged laminated type photoreceptor.
  • Example 2 The same as Example 1 except that the copolymerized polyarylate resin (III-1) of Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-2) produced in Production Example 2.
  • a photoconductor was prepared by this method.
  • Example 3 The same as Example 1 except that the copolymerized polyarylate resin (III-1) of Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-3) produced in Production Example 3. A photoconductor was prepared by this method.
  • Example 4 The same as Example 1 except that the copolymerized polyarylate resin (III-1) of Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-4) produced in Production Example 4. A photoconductor was prepared by this method.
  • Example 5 The same as Example 1 except that the copolymerized polyarylate resin (III-1) of Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-5) produced in Production Example 5. A photoconductor was prepared by this method.
  • Example 6 The same as Example 1 except that the copolymerized polyarylate resin (III-1) of Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-6) produced in Production Example 6. A photoconductor was prepared by this method.
  • Example 7 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) in Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-7) produced in Production Example 7. A photoconductor was prepared by this method.
  • Example 8 The same as Example 1 except that the copolymerized polyarylate resin (III-1) of Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-8) produced in Production Example 8. A photoconductor was prepared by this method.
  • Example 9 The same as Example 1 except that the copolymerized polyarylate resin (III-1) of Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-9) produced in Production Example 9. A photoconductor was prepared by this method.
  • Example 10 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) in Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-10) produced in Production Example 10. A photoconductor was prepared by this method.
  • Example 11 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) in Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-11) produced in Production Example 11. A photoconductor was prepared by this method.
  • Example 12 The same as Example 1 except that the copolymerized polyarylate resin (III-1) of Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-12) produced in Production Example 12. A photoconductor was prepared by this method.
  • Example 13 The same as Example 1 except that the copolymerized polyarylate resin (III-1) of Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-13) produced in Production Example 13. A photoconductor was prepared by this method.
  • Example 14 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) in Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-14) produced in Production Example 14. A photoconductor was prepared by this method.
  • Example 15 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) in Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-15) produced in Production Example 15. A photoconductor was prepared by this method.
  • Example 16 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) in Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-16) produced in Production Example 16. A photoconductor was prepared by this method.
  • Example 17 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) of Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-17) produced in Production Example 17. A photoconductor was prepared by this method.
  • Example 18 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) of Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-18) produced in Production Example 18. A photoconductor was prepared by this method.
  • Example 19 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) in Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-19) produced in Production Example 19. A photoconductor was prepared by this method.
  • Example 20 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) in Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-20) produced in Production Example 20. A photoconductor was prepared by this method.
  • Example 21 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) in Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-21) produced in Production Example 21. A photoconductor was prepared by this method.
  • Example 22 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) in Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-22) produced in Production Example 22. A photoconductor was prepared by this method.
  • Example 23 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) in Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-23) produced in Production Example 23. A photoconductor was prepared by this method.
  • Example 24 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) in Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-24) produced in Production Example 24. A photoconductor was prepared by this method.
  • Example 25 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) in Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-25) produced in Production Example 25. A photoconductor was prepared by this method.
  • Example 26 A photoconductor was prepared in the same manner as in Example 1 except that the Y-type titanyl phthalocyanine used in Example 1 was replaced with ⁇ -type titanyl phthalocyanine.
  • Example 27 A photoconductor was prepared in the same manner as in Example 1 except that the charge transport material used in Example 1 was replaced with a compound of the following formula.
  • Example 28 A photoconductor was prepared in the same manner as in Example 1 except that 22 parts by mass of the resin III-1 used in Example 1 and 88 parts by mass of the resin III-31 were added.
  • Example 29 A photoconductor was prepared in the same manner as in Example 1 except that the resin III-1 used in Example 1 was 22 parts by mass and the resin III-32 was 88 parts by mass.
  • Comparative Example 1 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) in Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-26) produced in Production Example 26. A photoconductor was prepared by this method.
  • Comparative Example 2 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) of Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-27) produced in Production Example 27. A photoconductor was prepared by this method.
  • Comparative Example 3 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) of Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-28) produced in Production Example 28. A photoconductor was prepared by this method.
  • Comparative Example 4 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) of Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-29) produced in Production Example 29. A photoconductor was prepared by this method.
  • Comparative Example 5 The same procedure as in Example 1 except that the copolymerized polyarylate resin (III-1) in Production Example 1 used in Example 1 was replaced with the copolymerized polyarylate resin (III-30) produced in Production Example 30. A photoconductor was prepared by this method.
  • Comparative Example 7 The copolymer polyarylate resin (III-1) of Production Example 1 used in Example 1 was replaced with polycarbonate A (S-3000 manufactured by Mitsubishi Engineering Plastics Co., Ltd., hereinafter referred to as “III-32”). A photoconductor was prepared in the same manner as in Example 1.
  • the copolymer polyarylate resin (III-1) of Production Example 1 used in Example 1 is represented by the following formula described in Patent Document 12 (Japanese Patent Laid-Open No. 2002-214807): A photoconductor was prepared in the same manner as in Example 1 except that the polyester resin A-1 (hereinafter referred to as “III-34”) shown in FIG.
  • Example 30 A vinyl chloride-vinyl acetate-vinyl alcohol copolymer (manufactured by Nissin Chemical Industry Co., Ltd., trade name "Solvine TA5R") is used as an undercoat layer on the outer periphery of an aluminum cylinder having an outer diameter of 24 mm as the conductive substrate 1.
  • a coating solution prepared by stirring and dissolving 0.2 parts by mass in 99 parts by mass of methyl ethyl ketone was dip coated and dried at a temperature of 100 ° C. for 30 minutes to form an undercoat layer 2 having a thickness of 0.1 ⁇ m.
  • the following formula as a charge generation material 1 part by mass of a metal-free phthalocyanine represented by the following formula, 30 parts by mass of a stilbene compound represented by the following formula: And 15 parts by mass of a stilbene compound represented by the following formula:
  • a coating solution prepared by dissolving and dispersing 30 parts by mass of the compound represented by the above formula and 55 parts by mass of the resin III-1 of Production Example 1 as a resin binder in 350 parts by mass of tetrahydrofuran was dip-coated, and the temperature was 100 ° C. And dried for 60 minutes to form a photosensitive layer having a film thickness of 25 ⁇ m, thereby producing a single-layer type photoreceptor.
  • Example 31 A photoconductor was prepared in the same manner as in Example 30, except that the metal-free phthalocyanine used in Example 30 was changed to Y-type titanyl phthalocyanine.
  • Example 32 A photoconductor was prepared in the same manner as in Example 30 except that the metal-free phthalocyanine used in Example 30 was ⁇ -type titanyl phthalocyanine.
  • Comparative Example 10 A photoconductor was prepared in the same manner as in Example 30, except that the polyarylate resin III-1 in Production Example 1 used in Example 30 was replaced with III-31.
  • Example 33 The following formula as a charge transport material, And 50 parts by mass of polycarbonate Z (III-31) as a resin binder were dissolved in 800 parts by mass of dichloromethane to prepare a coating solution. This coating solution was dip coated on the outer periphery of an aluminum cylinder having an outer diameter of 24 mm as the conductive substrate 1 and dried at a temperature of 120 ° C. for 60 minutes to form a charge transport layer having a thickness of 15 ⁇ m.
  • the following formula as a charge generating material 1.5 parts by mass of metal-free phthalocyanine represented by the following formula as a hole transport material, 10 parts by mass of a stilbene compound represented by the following formula as an electron transport material:
  • a coating solution prepared by dissolving and dispersing 25 parts by mass of the compound represented by the formula (1) and 60 parts by mass of the resin III-1 of Production Example 1 as a resin binder in 800 parts by mass of 1,2-dichloroethane was applied by dip coating. Then, the film was dried at a temperature of 100 ° C. for 60 minutes to form a photosensitive layer having a film thickness of 15 ⁇ m, thereby producing a positively charged laminated type photoreceptor.
  • Comparative Example 11 A photoconductor was prepared in the same manner as in Example 33 except that the polyarylate resin III-1 in Production Example 1 used in Example 33 was replaced with III-31.
  • the photoconductors produced in Examples 1 to 30 and Comparative Examples 1 to 9 were mounted on an HP printer LJ4000 that had been modified so that the surface potential of the photoconductor could be measured, and the exposure area potential was evaluated. Further, 10,000 sheets of A4 paper were printed, the film thickness of the photoconductor before and after printing was measured, and the amount of wear ( ⁇ m) after printing was evaluated. In addition, the photoconductors produced in Examples 30 to 33 and Comparative Examples 10 to 11 were mounted on a Brother printer HL-2040 that was modified so that the surface potential of the photoconductor could be measured, and the exposure area potential was evaluated. did. Further, 10,000 sheets of A4 paper were printed, the film thickness of the photoconductor before and after printing was measured, and the amount of wear ( ⁇ m) after printing was evaluated.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

 感光体ドラム表面の摩擦抵抗を初期から印字後まで低減することを可能とし、さらに磨耗量を低減し、良好な画像を得ることのできる電子写真用感光体、その製造方法および電子写真装置を提供する。 感光層が樹脂バインダとして、下記化学構造式1、(化学構造式1中、部分構造式(A)、(B)、(C)、(D)、(E)および(F)は樹脂バインダを構成する構造単位を示す。a、b、c、d、eおよびfはそれぞれ各構造単位(A)、(B)、(C)、(D)、(E)および(F)のmol%を示し、a+b+c+d+e+fが100mol%である。また、R~R19は水素原子等を示す。s、tは1以上の整数を示す。)で表される構造単位を有する共重合ポリアリレート樹脂を含む電子写真用感光体、その製造方法および電子写真装置である。

Description

電子写真用感光体、その製造方法および電子写真装置
 本発明は電子写真用感光体(以下、「感光体」とも称す)、その製造方法および電子写真装置に関し、詳しくは、主として導電性基体と有機材料を含む感光層とからなり、電子写真方式のプリンター、複写機、ファックスなどに用いられる電子写真用感光体、その製造方法および電子写真装置に関する。
 電子写真用感光体は、導電性基体上に光導電機能を有する感光層を設置した構造を基本構造とする。近年、電荷の発生や輸送を担う機能成分として有機化合物を用いる有機電子写真用感光体が、材料の多様性、高生産性、安全性などの利点により、研究開発が活発に進められ、複写機やプリンターなどへの適用が進められている。
 一般に、感光体には、暗所で表面電荷を保持する機能や、光を受容して電荷を発生する機能、さらには発生した電荷を輸送する機能が必要であり、これらの機能を併せ持った単層の感光層を備えた、いわゆる単層型感光体と、主として光受容時の電荷発生の機能を担う電荷発生層と、暗所で表面電荷を保持する機能および光受容時に電荷発生層にて発生した電荷を輸送する機能とを担う電荷輸送層とに機能分離した層を積層した感光層を備えた、いわゆる積層型(機能分離型)感光体とがある。
 上記感光層は、電荷発生材料および電荷輸送材料と樹脂バインダとを有機溶剤に溶解あるいは分散させた塗布液を、導電性基体上に塗布することにより形成されるのが一般的である。これら有機電子写真用感光体の、特に最表面となる層においては、紙や、トナー除去のためのブレードとの間に生ずる摩擦に強く、可とう性に優れ、かつ、露光の透過性が良いポリカーボネートを樹脂バインダとして使用することが多く見られる。中でも、樹脂バインダとしては、ビスフェノールZ型ポリカーボネートが広く用いられている。樹脂バインダとしてかかるポリカーボネートを用いた技術は、特許文献1等に記載されている。
 一方、近年の電子写真装置はアルゴン、ヘリウム-ネオン、半導体レーザーあるいは発光ダイオードなどの単色光を露光光源として、画像および文字などの情報をデジタル(digital)化処理して光信号に変換し、帯電させた感光体上に光照射することによって感光体表面に静電潜像を形成し、これをトナーによって可視化するという所謂デジタル機が主流となっている。
 感光体を帯電させる方法としては、スコロトロンなどの帯電部材と感光体とが非接触である非接触帯電方式と、半導電性のゴムローラーやブラシを用いた帯電部材と感光体とが接触する接触帯電方式とがある。このうち接触帯電方式は、非接触帯電方式と比較して感光体の極近傍でコロナ放電が起きるためにオゾンの発生が少なく、印加電圧が低くてよいという特長がある。従って、よりコンパクトで低コスト、低環境汚染の電子写真装置を実現できるため、特に中型~小型装置で主流となっている。
 感光体表面をクリーニングする手段としては、ブレードによる掻き落としや現像同時クリーニングプロセス等が主に用いられる。ブレードによるクリーニングは有機感光体表面の未転写残留トナーを該ブレードにより掻き落とし、トナーを廃トナーボックスに回収するか、再び現像器に戻す場合がある。かかるブレードによる掻き落とし方式のクリーナーは、回収トナーの回収ボックスや或いはリサイクルのための空間を必要とし、トナー回収ボックスの満杯を監視しなければならない。また、ブレードに紙粉や外添材が滞留した時、有機感光体の表面に傷が生じて電子写真感光体の寿命を短くする場合もある。そこで現像プロセスでトナーを回収したり、現像ローラの直前に電子写真感光体表面に付着した残留トナーを磁気的もしくは電気的に吸引するプロセスを設置する場合もある。
 また、クリーニングブレードを使用する場合、クリーニング性を向上するにはゴム硬度の向上や当接圧力を上げる必要がある。そのため、感光体の磨耗が促され、電位変動、感度変動を生じ、画像異常を生じ、カラー機では色のバランスや再現性に不具合が生じる。
 一方、接触帯電機構を用い、現像装置で現像兼クリーニングを行うクリーニングレス機構を用いる場合は、接触帯電機構部に帯電量が変動したトナーが発生する。または、極少量混入している逆極性トナーが存在する場合、これらのトナーがを感光体上から十分除去できず帯電装置を汚染する問題がある。
 また、感光体帯電時に生じるオゾン、窒素酸化物等により感光体表面が汚染される。汚染物質そのものによる画像流れ、付着した物質が表面の潤滑性を低下させ、紙粉、トナーが付着し易くなり、ブレード鳴き、めくれ、表面のキズを生じ易くする問題がある。
 さらに、転写工程におけるトナー転写効率を高めるため、温湿度環境や紙の特徴にあわせて転写電流を最適とする制御を行うことにより、転写効率の向上により残留トナーを低減する試みもなされている。そして、このようなプロセスや接触帯電方式に適した有機感光体として、トナーの離型性をよくした有機感光体や転写影響の少ない有機感光体が必要となる。
 これらの課題を解決するため、感光体最表面層の改良方法が提案されている。例えば、特許文献2および3には、感光体表面の耐久性を向上するため、感光層表層にフィラーを添加する方法が提案されている。しかしながら、かかる膜中にフィラーを分散する方法は、フィラーを均一に分散させることが難しい。さらに、フィラー凝集体が存在したり、膜の透過性が低下したり、露光光をフィラーが散乱することにより、電荷輸送や電荷発生が不均一となり、画像特性が低下する。また、フィラー分散性を向上するために分散材を添加する方法が挙げられるが、分散材そのものが感光体特性に影響するため、フィラー分散性との両立をすることが難しい。
 また、特許文献4には、感光層にPTFE等のフッ素樹脂を含有させる方法が、提案されている。また、特許文献5には、アルキル変性ポリシロキサン等のシリコーン樹脂を添加する方法が、提案されている。しかしながら、特許文献4記載の方法は、PTFE等フッ素樹脂は溶剤への溶解性が低い、あるいは他の樹脂との相溶性が悪いことから相分離して樹脂界面の光散乱を生じる。そのため、感光体としての感度特性を充足しなかった。また、特許文献5記載の方法は、シリコーン樹脂が塗膜表面にブリードするため、継続的に効果が得られないという問題がある。
 そこで、このような課題を解決するため、特許文献6には、末端構造にシロキサン構造を加えた樹脂を用いて耐摩耗性を向上する方法が、提案されている。また、特許文献7には、特定のシロキサン構造を含むフェノール類を原料としたポリカーボネート、ポリアリレートを含む感光体が、提案されている。さらに、特許文献8には、樹脂構造中にカルボキシル基を含むシロキサン樹脂構造を導入した樹脂を含有する感光体が、提案されている。さらにまた、特許文献9には、シリコーン構造を有し表面エネルギーを低下させたポリカーボネートを含有する感光層が、提案されている。また、特許文献10には、感光体の最表面層にポリシロキサンを構成単位として含むポリエステル樹脂を含有する感光体が、提案されている。
 また、特許文献11には、感光層の樹脂バインダとしてポリアリレートを用いることが、提案されており、耐久性や機械的強度の向上などを目的として、種々検討が重ねられてきている。さらに、特許文献12には、シロキサン成分としてフェノール変性ポリシロキサン樹脂を用いて、シロキサン構造を有するポリカーボネート、ポリアリレート樹脂を感光層に用いる感光体が、提案されている。さらにまた、特許文献13には、シリコーン変性ポリアリレート樹脂を含む感光層を備える電子写真装置が、提案されている。
 一方、感光層の保護や機械的強度の向上、および表面潤滑性の向上などを目的として、感光層上に表面保護層を形成する方法が提案されている。しかしながら、これら表面保護層を形成する方法では、電荷輸送層への成膜方法が難しいことや電荷輸送性能と電荷保持機能を十分に両立させることが難しいという課題がある。
特開昭61-62040号公報 特開平1-205171号公報 特開平7-333881号公報 特開平4-368953号公報 特開2002-162759号公報 特開2002-128883号公報 特開2007-199659号公報 特開2002-333730号公報 特開平5-113670号公報 特開平8-234468号公報 特開2005-115091号公報 特開2002-214807号公報 特開2004-93865号公報
 しかしながら、これらの特許文献では、感光体ドラム表面の摩擦抵抗を初期から印字後に渡り継続的に低摩擦抵抗を保ちながら、電気特性や画像特性についても良好に保つ為には十分ではなかった。
 そこで、本発明の目的は、感光体ドラム表面の摩擦抵抗を初期から印字後まで低減することを可能とし、さらに磨耗量を低減し、良好な画像を得ることのできる電子写真用感光体、その製造方法および電子写真装置を提供することにある。
 本発明者らは、上記課題を解決するために、摩擦係数の低い樹脂を適用した感光層につき検討した結果、ポリアリレート樹脂に着目した。その中でも特定のシロキサン構造を含むポリアリレート樹脂を樹脂バインダとして用いることにより、感光体表面において低摩擦係数を持続する電子写真用感光体を実現できることを見出した。さらに、特定のポリアリレート構造を樹脂中に導入することにより樹脂の剛直性を高め、その結果、低摩擦係数と低磨耗量を両立し、合わせて電気特性に優れた電子写真用感光体を実現できることを見出して、本発明を完成するに至った。
 即ち、本発明の電子写真用感光体は、導電性基体上に感光層を有する電子写真用感光体であり、前記感光層が、樹脂バインダとして、下記化学構造式1で表される構造単位を有する共重合ポリアリレート樹脂を含むことを特徴とするものである。
(化学構造式1)
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
ここで、化学構造式1中、部分構造式(A)、(B)、(C)、(D)、(E)および(F)は樹脂バインダを構成する構造単位を示す。a、b、c、d、eおよびfはそれぞれ各構造単位(A)、(B)、(C)、(D)、(E)および(F)のmol%を示し、a+b+c+d+e+fが100mol%である。また、RおよびRは、同一でも異なっていてもよく、水素原子、炭素数1~8のアルキル基、置換基を有してもよいシクロアルキル基、または置換基を有してもよいアリール基を示し、もしくはそれらが結合している炭素原子と共に環状構造を形成していてもよく、該環状構造には1または2個のアリーレン基が結合していてもよい。R~R18は、同一でも異なっていてもよく、水素原子、炭素数1~8のアルキル基、フッ素原子、塩素原子、または臭素原子を示す。R19は水素原子、炭素数1~20のアルキル基、炭素数1~20のアルキレン基、置換基を有してもよいアリール基あるいは置換基を有してもよいシクロアルキル基、フッ素原子、塩素原子、または臭素原子を示す。s、tは1以上の整数を示す。
 本発明の感光体においては、前記化学構造式1中、cおよびdが0mol%であることが好ましく、eおよびfが0mol%であることが好ましい。また、シロキサン成分の量として、(c+d+e+f)が0.001~10mol%であることが好ましい。さらに、前記化学構造式1中、RおよびRがそれぞれメチル基であり、かつ、R~R18が水素原子であることが好ましい。
 本発明の感光体は、好適には、前記感光層が少なくとも電荷発生層と電荷輸送層とを備える積層型であり、さらに、前記電荷輸送層が前記共重合ポリアリレート樹脂と電荷輸送材料を含むものである。また、本発明の感光体は、好適には、前記感光層が単層型であり、さらに、前記共重合ポリアリレート樹脂と、電荷発生材料と、電荷輸送材料とを含むものである。さらにまた、本発明の感光体は、好適には、前記感光層が少なくとも電荷輸送層と電荷発生層とを備える積層型であり、さらに、前記電荷発生層が前記共重合ポリアリレート樹脂、電荷発生材料と電荷輸送材料を含むものである。なお、この場合は、電荷輸送層には前記ポリアリレート樹脂を必ずしも含まなくてよい。
 また、本発明の電子写真用感光体の製造方法は、導電性基体上に、少なくとも樹脂バインダを含む塗布液を塗布して感光層を形成する工程を包含する電子写真用感光体の製造方法であり、前記塗布液中に、樹脂バインダとして前記化学構造式1で表される共重合ポリアリレート樹脂を含むことを特徴とするものである。
 さらに、本発明の電子写真装置は、前記電子写真感光体を搭載したことを特徴とするものである。
 本発明によれば、上記特定の構造単位からなる共重合ポリアリレート樹脂を感光層の樹脂バインダとして使用したことにより、感光体の電子写真特性を維持しつつ、感光層表面を初期から印字後まで低摩擦係数を維持することができた。また、クリーニング性が向上して、良好な画像の得られる電子写真用感光体を実現することが可能となった。さらに、上記共重合ポリアリレート樹脂は剛直性が高く機械的強度にも優れた樹脂であることが明らかとなった。
 また、特許文献10記載の樹脂である(P-1-6)は、フタル酸/ビスフェノール部のポリエステル構造が、本発明の上記構造式(A)と同様である。P-1-6は、シロキサン含有2価フェノールを使用することから、エステル構造部位のシロキサン側にフェニル基を挟んでいる。また、同様に特許文献12もシロキサン構造を樹脂へ導入する場合にはフェノール性水酸基を用いている。これらの樹脂構造は、樹脂剛直性が高まりすぎて、製膜時の内部応力による割れ(クラック)耐性が低下するという問題があった。これに対し、本発明でのシロキサン部位の導入においては、アルコール性水酸基(ヒドロキシアルキル)構造をシロキサン部位の両端あるいは片末端に含み、エステル結合させて樹脂にシロキサン構造を導入している。さらにシロキサン構造とアルコール性水酸基はエーテル結合を介して結合している。そのため、エチレン部およびエーテル結合を含む構造となり、内部応力を緩和しやすいという効果が期待できる。従来技術のフェノール性水酸基によるシロキサン構造の取り込みに対し、本発明のアルコール性水酸基構造によるシロキサン構造を取り込ませたポリアリレート樹脂は従来技術において例が無い。
 また、本発明において、上記構造式(E)および(F)は、片末端型シロキサン成分を含む構造であり、さらに、末端にR19を有する。そのため、樹脂と電荷輸送材料との相溶性を制御することができるという効果が得られる。さらに、上記構造式(E)はシロキサン成分が樹脂の主鎖に対してくし型に構成されるため、シロキサン構造を主鎖型に取り込む上記構造式(C)(D)に対して、枝分かれ構造による効果により、分子量と塗布液の粘度の関係を変えて使用できる。
(a)は、本発明に係る負帯電機能分離積層型電子写真用感光体を示す模式的断面図であり、(b)は、本発明に係る正帯電単層型電子写真用感光体を示す模式的断面図であり、(c)は、本発明に係る正帯電積層型電子写真用感光体を示す模式的断面図である。 共重合ポリアリレート樹脂(III-1)のH―NMRを示す図である(THF-d溶媒中)。 共重合ポリアリレート樹脂(III-10)のH―NMRを示す図である(THF-d溶媒中)。 本発明にかかる電子写真装置の概略構成図である。
符号の説明
1 導電性基体
2 下引き層
3 単層型感光層
4 電荷発生層
5 電荷輸送層
7 感光体
21 ローラ帯電部材
22 高圧電源
23 像露光部材
24 現像器
241 現像ローラ
25 給紙部材
251 給紙ローラ
252 給紙ガイド
26 転写帯電器(直接帯電型)
27 クリーニング装置
271 クリーニングブレード
28 除電部材
60 電子写真装置
300 感光層
 以下、本発明の実施形態について、図面を用いて詳細に説明する。本発明は以下の説明により何ら限定されるものではない。
 上記のように、電子写真用感光体は、積層型(機能分離型)感光体としての、いわゆる負帯電積層型感光体および正帯電積層型感光体と、主として正帯電型で用いられる単層型感光体とに大別される。図1は、本発明の一実施例の電子写真用感光体を示す模式的断面図であり、(a)は負帯電型の積層型電子写真用感光体、(b)は正帯電型の単層型電子写真用感光体、(c)は正帯電型の積層型電子写真用感光体を夫々示している。図示するように、負帯電積層型感光体においては、導電性基体1の上に、下引き層2と、電荷発生機能を備えた電荷発生層4および電荷輸送機能を備えた電荷輸送層5を有する感光層とが順次積層されている。一方、正帯電単層型感光体においては、導電性基体1の上に、下引き層2と、電荷発生および電荷輸送の両機能を併せ持つ単層型の感光層3とが順次積層されている。さらに正帯電積層型感光体においては、導電性基体1の上に、下引き層2と、電荷輸送機能を備えた電荷輸送層5と電荷発生および電荷輸送の両機能を備えた電荷発生層4とを有する感光層とが順次積層されている。尚、いずれのタイプの感光体においても、下引き層2は必要に応じ設ければよい。また、本発明の「感光層」は、電荷発生層および電荷輸送層を積層した積層型感光層と、単層型感光層の両方を含む。
 導電性基体1は、感光体の電極としての役目と同時に感光体を構成する各層の支持体となっており、円筒状、板状、フィルム状などいずれの形状でもよい。導電性基体1の材質としては、アルミニウム、ステンレス鋼、ニッケルなどの金属類、あるいはガラス、樹脂などの表面に導電処理を施したもの等を使用できる。
 下引き層2は、樹脂を主成分とする層やアルマイトなどの金属酸化皮膜からなるものである。かかる下引き層2は、導電性基体1から感光層への電荷の注入性を制御するため、または、導電性基体表面の欠陥の被覆、感光層と導電性基体1との接着性の向上などの目的で、必要に応じて設けられる。下引き層2に用いられる樹脂材料としては、カゼイン、ポリビニルアルコール、ポリアミド、メラミン、セルロースなどの絶縁性高分子、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性高分子が挙げられ、これらの樹脂は単独、あるいは適宜組み合わせて混合して用いることができる。また、これらの樹脂に、二酸化チタン、酸化亜鉛などの金属酸化物を含有させて用いてもよい。
 (負帯電積層型感光体)
 負帯電積層型感光体においては、電荷発生層4は、電荷発生材料の粒子を樹脂バインダ中に分散させた塗布液を塗布するなどの方法により形成され、光を受容して電荷を発生する。また、その電荷発生効率が高いことと同時に発生した電荷の電荷輸送層5への注入性が重要であり、電場依存性が少なく、低電場でも注入の良いことが望ましい。電荷発生物質としては、X型無金属フタロシアニン、τ型無金属フタロシアニン、α型チタニルフタロシアニン、β型チタニルフタロシアニン、Y型チタニルフタロシアニン、γ型チタニルフタロシアニン、アモルファス型チタニルフタロシアニン、ε型銅フタロシアニンなどのフタロシアニン化合物、各種アゾ顔料、アントアントロン顔料、チアピリリウム顔料、ペリレン顔料、ペリノン顔料、スクアリリウム顔料、キナクリドン顔料等を単独、または適宜組み合わせて用いることができ、画像形成に使用される露光光源の光波長領域に応じて好適な物質を選ぶことができる。
 電荷発生層4は、電荷発生機能を有すればよいので、その膜厚は電荷発生物質の光吸収係数より決まり、一般的には1μm以下であり、好適には0.5μm以下である。電荷発生層4は、電荷発生材料を主体として、これに電荷輸送材料などを添加して使用することも可能である。樹脂バインダとしては、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリスチレン樹脂、ポリスルホン樹脂、ジアリルフタレート樹脂、メタクリル酸エステル樹脂の重合体および共重合体などを適宜組み合わせて使用することが可能である。
 電荷輸送層5は、主として電荷輸送材料と樹脂バインダとにより構成される。本発明においては、電荷輸送層5の樹脂バインダとして、上記化学構造式1で示される構造単位を有する共重合ポリアリレート樹脂を用いることが必要である。これにより、本発明の所期の効果を得ることができる。
 本発明の感光体においては、かかる共重合ポリアリレート樹脂が他の構造単位を有していてもよい。共重合ポリアリレート樹脂全体を100とした場合、上記化学構造式1で示される構造単位の配合割合は10~100mol%が好ましく、特に50~100mol%が好ましい。
 また、本発明の感光体においては、上記化学構造式1で示される構造単位の全体量(a+b+c+d+e+f)を100mol%とした場合、シロキサン成分の量として(c+d+e+f)が0.001~10mol%が好適であり、より好ましくは0.03~10mol%である。(c+d+e+f)が0.001mol%よりも小さい場合は持続可能である十分な摩擦係数を得られないおそれがある。一方、(c+d+e+f)が10mol%よりも大きい場合は十分な膜の硬度を得られず、更に塗布液とした場合に溶剤や機能材と十分な相溶性が得られないおそれがある。
 また、上記化学構造式1中、cおよびdが0mol%で、構造式(C)および構造式(D)を含まない場合、あるいはeおよびfが0mol%で、構造式(E)および構造式(F)を含まない場合でも同様に本発明の所期の効果を得ることができる。
 さらに、上記化学構造式1中、s、tは1以上400以下の整数であるが、好ましくは8以上250以下の整数である。
 また、本発明の感光体においては、上記化学構造式1中、RおよびRがメチル基であり、かつ、R~R18が水素原子である、ビスフェノールA型の共重合ポリアリレート樹脂とすることが好ましい。
 さらに、上記化学構造式1の共重合ポリアリレート樹脂のシロキサン構造としては、例えば、下記分子式(2)(チッソ社製反応性シリコーンサイラプレーン FM4411(数平均分子量1000)、FM4421(数平均分子量5000)、FM4425(数平均分子量15000))、下記分子式(3)(チッソ社製反応性シリコーンサイラプレーンFMDA11(数平均分子量1000)、FMDA21(数平均分子量5000)、FMDA26(数平均分子量15000))等の構成モノマーを挙げることができる。
分子式(2)
Figure JPOXMLDOC01-appb-I000019
分子式(3)
Figure JPOXMLDOC01-appb-I000020
式中、R19は、n-ブチル基を示す。
 上記化学構造式1で表される共重合ポリアリレート樹脂は、単独で使用してもよく、また、他の樹脂と混合して用いてもよい。かかる他の樹脂としては、他のポリアリレート樹脂、さらにはビスフェノールA型、ビスフェノールZ型、ビスフェノールA型-ビフェニル共重合体、ビスフェノールZ型-ビフェニル共重合体などの各種ポリカーボネート樹脂、ポリフェニレン樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、メラミン樹脂、シリコーン樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリアセタール樹脂、ポリスルホン樹脂、メタクリル酸エステルの重合体およびこれらの共重合体などを用いることができる。さらに、分子量の異なる同種の樹脂を混合して用いてもよい。
 樹脂バインダの含有量としては、電荷輸送層5の固形分に対して、好適には10~90質量%、より好適には20~80質量%である。さらに、かかる樹脂バインダに対する共重合ポリアリレート樹脂の含有量としては、好適には、1質量%~100質量%、さらに好適には5質量%~80質量%の範囲である。
 また、これらのポリアリレート樹脂の重量平均分子量は5000~250000が好適であり、より好適には10000~150000である。
 以下に、上記化学構造式1で示される構造単位である構造式(A)~(F)の具体例を示す。また、下記表1に、該構造式(A)~(F)を有する共重合ポリアリレート樹脂の具体例を示す。但し、本発明に係る共重合ポリアリレート樹脂は、これら例示構造のものに限定されるものではない。
構造式(A)の具体例
Figure JPOXMLDOC01-appb-I000021
構造式(B)の具体例
Figure JPOXMLDOC01-appb-I000022
構造式(C)の具体例
Figure JPOXMLDOC01-appb-I000023
構造式(D)の具体例
Figure JPOXMLDOC01-appb-I000024
構造式(E)の具体例
Figure JPOXMLDOC01-appb-I000025
構造式(F)の具体例
Figure JPOXMLDOC01-appb-I000026
式中、R19は、n-ブチル基を示す。
Figure JPOXMLDOC01-appb-T000027
 また、電荷輸送層5の電荷輸送材料としては、各種ヒドラゾン化合物、スチリル化合物、ジアミン化合物、ブタジエン化合物、インドール化合物等を単独、あるいは適宜組み合わせて混合して用いることができる。かかる電荷輸送材料としては、例えば、以下の(II-1)~(II-14)に示すものを例示することができるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000029
 さらに、電荷輸送層5の膜厚としては、実用上有効な表面電位を維持するためには3~50μmの範囲が好ましく、15~40μmの範囲がより好ましい。
(単層型感光体)
 本発明において、単層型の場合の感光層3は、主として電荷発生物質、正孔輸送物質、電子輸送物質(アクセプター性化合物)、および樹脂バインダからなる。本発明においては、単層型感光層3の樹脂バインダとして、上記化学構造式1で示される構造単位を有する共重合ポリアリレート樹脂を用いることが必要である。かかる共重合ポリアリレート樹脂は他の構造単位を有していてもよい。共重合ポリアリレート樹脂全体を100とした場合、上記化学構造式1で示される構造単位の配合割合は10~100mol%が好ましく、特に50~100mol%が好ましい。
 電荷発生物質としては、例えば、フタロシアニン系顔料、アゾ顔料、アントアントロン顔料、ペリレン顔料、ペリノン顔料、多環キノン顔料、スクアリリウム顔料、チアピリリウム顔料、キナクリドン顔料等を使用することができる。また、これら電荷発生物質を単独または、2種以上を組み合わせて使用することが可能である。特に、本発明の電子写真用感光体には、アゾ顔料としては、ジスアゾ顔料、トリスアゾ顔料、ペリレン顔料としては、N,N’-bis(3,5-dimethlpheny1)-3,4:9,10-perylene-bis(carboximide)、フタロシアニン系顔料としては、無金属フタロシアニン、銅フタロシアニン、チタニルフタロシアニンが好ましい。さらには、X型無金属フタロシアニン、τ型無金属フタロシアニン、ε型銅フタロシアニン、α型チタニルフタロシアニン、β型チタニルフタロシアニン、Y型チタニルフタロシアニン、アモルファスチタニルフタロシアニン、特開平8-209023号公報、米国特許第5736282号明細書ならびに米国特許第5874570号明細書に記載のCuKα:X線回析スペクトルにてブラッグ角2θが9.6°を最大ピークとするチタニルフタロシアニンを用いると、感度、耐久性および画質の点で著しく改善された効果を示す。電荷発生物質の含有量は、単層型感光層3の固形分に対して、好適には、0.1~20質量%、より好適には、0.5~10質量%である。
 正孔輸送物質としては、例えば、ヒドラゾン化合物、ピラゾリン化合物、ピラゾロン化合物、オキサジアゾール化合物、オキサゾール化合物、アリールアミン化合物、ベンジジン化合物、スチルベン化合物、スチリル化合物、ポリ-N-ビニルカルバゾール、ポリシラン等を使用することができる。また、これら正孔輸送物質を、単独または2種以上を組み合わせて使用することが可能である。本発明において用いられる正孔輸送物質としては、光照射時に発生する正孔の輸送能力が優れている他、電荷発生物質との組み合せに好適なものが好ましい。正孔輸送物質の含有量は、単層型感光層3の固形分に対して、好適には、3~80質量%、より好適には、5~60質量%である。
 電子輸送物質(アクセプター性化合物)としては、無水琥珀酸、無水マレイン酸、ジブロモ無水琥珀酸、無水フタル酸、3-ニトロ無水フタル酸、4-ニトロ無水フタル酸、無水ピロメリット酸、ピロメリット酸、トリメリット酸、無水トリメリット酸、フタルイミド、4-ニトロフタルイミド、テトラシアノエチレン、テトラシアノキノジメタン、クロラニル、ブロマニル、o-ニトロ安息香酸、マロノニトリル、トリニトロフルオレノン、トリニトロチオキサントン、ジニトロベンゼン、ジニトロアントラセン、ジニトロアクリジン、ニトロアントラキノン、ジニトロアントラキノン、チオピラン系化合物、キノン系化合物、ベンゾキノン化合物、ジフェノキノン系化合物、ナフトキノン系化合物、アントラキノン系化合物、スチルベンキノン系化合物、アゾキノン系化合物等を挙げることができる。また、これら電子輸送物質を単独または2種以上組み合わせて使用することが可能である。電子輸送物質の含有量は、単層型感光層3の固形分に対して、好適には、1~50質量%、より好適には、5~40質量%である。
 本発明においては、単層型感光層3の樹脂バインダとして、上記化学構造式1で示される構造単位を有する共重合ポリアリレート樹脂を用いることが必要である。これにより、本発明の所期の効果を得ることができる。かかる共重合ポリアリレート樹脂としては、上記と同様のものを挙げることができる。
 また、単層型感光層3の樹脂バインダとして、上記化学構造式1で表される共重合ポリアリレート樹脂は、単独で使用してもよく、また、他の樹脂と混合して用いてもよい。かかる他の樹脂としては、ビスフェノールA型、ビスフェノールZ型、ビスフェノールA型-ビフェニル共重合体、ビスフェノールZ型-ビフェニル共重合体などの各種ポリカーボネート樹脂、ポリフェニレン樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、メラミン樹脂、シリコーン樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリアセタール樹脂、他のポリアリレート樹脂、ポリスルホン樹脂、メタクリル酸エステルの重合体およびこれらの共重合体などを用いることができる。さらに、分子量の異なる同種の樹脂を混合して用いてもよい。
 また、樹脂バインダの含有量としては、単層型感光層3の固形分に対して、好適には10~90質量%、より好適には20~80質量%である。さらに、かかる樹脂バインダに対する共重合ポリアリレート樹脂の含有量としては、好適には、1質量%~100質量%、さらに好適には5質量%~80質量%の範囲である。
 単層型感光層3の膜厚は、実用的に有効な表面電位を維持するためには3~100μmの範囲が好ましく、5~40μmの範囲がより好ましい。
(正帯電積層型感光体)
 正帯電積層型感光体においては、電荷輸送層5は、主として電荷輸送材料と樹脂バインダとにより構成される。電荷輸送材料及び樹脂バインダとして、負帯電積層型感光体における電荷輸送層5の実施の形態に挙げたものと同じ材料を用いることができる。各材料の含有量、電荷輸送層5の膜厚も負帯電積層型感光体と同様とすることができる。なお、樹脂バインダとして上記化学構造式1で示される構造単位を有する共重合ポリアリレート樹脂を任意に用いることができる。
 電荷輸送層5上に設けられる電荷発生層4は、主として電荷発生物質、正孔輸送物質、電子輸送物質(アクセプター性化合物)、および樹脂バインダからなる。電荷発生物質、正孔輸送物質、電子輸送物質、および樹脂バインダとして、単層型感光体における単層型感光層3の実施の形態として挙げたものと同じ材料を用いることができる。各材料の含有量、電荷発生層4の膜厚も単層型感光体における単層型感光層3と同様とすることができる。正帯電積層型感光体においては、電荷発生層4の樹脂バインダとして、上記化学構造式1で示される構造単位を有する共重合ポリアリレート樹脂を用いることが必要である。
 本発明において、積層型または単層型のいずれの感光層中にも、耐環境性や有害な光に対する安定性を向上させる目的で、酸化防止剤や光安定剤などの劣化防止剤を含有することができる。このような目的に用いられる化合物としては、トコフェロールなどのクロマノール誘導体およびエステル化化合物、ポリアリールアルカン化合物、ハイドロキノン誘導体、エーテル化化合物、ジエーテル化化合物、ベンゾフェノン誘導体、ベンゾトリアゾール誘導体、チオエーテル化合物、フェニレンジアミン誘導体、ホスホン酸エステル、亜リン酸エステル、フェノール化合物、ヒンダードフェノール化合物、直鎖アミン化合物、環状アミン化合物、ヒンダードアミン化合物等が挙げられる。
 また、上記感光層中には、形成した膜のレベリング性の向上や潤滑性の付与を目的として、シリコーンオイルやフッ素系オイル等のレベリング剤を含有させることもできる。さらに、膜硬度の調整、摩擦係数の低減、潤滑性の付与等を目的として、酸化ケイ素(シリカ)、酸化チタン、酸化亜鉛、酸化カルシウム、酸化アルミニウム(アルミナ)、酸化ジルコニウム等の金属酸化物、硫酸バリウム、硫酸カルシウム等の金属硫化物、窒化ケイ素、窒化アルミニウム等の金属窒化物微粒子、または、4フッ化エチレン樹脂等のフッ素系樹脂粒子、フッ素系クシ型グラフト重合樹脂等を含有してもよい。さらにまた、必要に応じて、電子写真特性を著しく損なわない範囲で、その他公知の添加剤を含有させることもできる。
(電子写真装置)
 本発明の電子写真用感光体は、各種マシンプロセスに適用することにより所期の効果が得られる。具体的には、ローラや、ブラシを用いた接触帯電方式、コロトロン、スコロトロンなどを用いた非接触帯電方式等の帯電プロセス、そして非磁性一成分、磁性一成分、二成分などの現像方式を用いた接触現像および非接触現像方式などの現像プロセスにおいても十分な効果が得られる。
 一例として、図4に本発明にかかる電子写真装置の概略構成図を示す。本発明の電子写真装置60は、導電性基体1とその外周面上に被覆された下引き層2、感光層300とを含む、本発明の電子写真感光体7を搭載する。さらに、この電子写真装置60は、感光体7の外周縁部に配置された、ローラ帯電部材21と、このローラ帯電部材21に印加電圧を供給する高圧電源22と、像露光部材23と、現像ローラ241を備えた現像器24と、給紙ローラ251および給紙ガイド252を備えた給紙部材25と、転写帯電器(直接帯電型)26と、クリーニングブレード271を備えたクリーニング装置27と、除電部材28と、から構成される。また、本発明の電子写真装置60は、カラープリンタとすることができる。
 以下、本発明の具体的態様を実施例によりさらに詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例によって限定されるものではない。
共重合ポリアリレート樹脂の製造
製造例1(共重合ポリアリレート樹脂(III-1)の製造方法)
 2リットルの4口平底フラスコに、イオン交換水540mLと、NaOH12.4gと、p-tert-ブチルフェノール0.459gと、ビスフェノールA30.257gと、分子式(2)-3の化合物(チッソ社製 商品名「サイラプレーンFM-4425」)3.988gと、テトラブチルアンモニウムブロミド0.272gとを仕込んだ。次いで、塩化メチレン540mLに、テレフタル酸クロライド12.268gと、イソフタル酸クロライド14.994gとを溶解して溶液を作製し、その溶液を2分ほどで投入し、さらに1.5時間攪拌して反応を行った。反応終了後、塩化メチレン360mLを追加して希釈した。水相を分離し、これを4倍容量のメタノールにて再沈した。60℃、2時間乾燥させた後、得られた粗製物を塩化メチレンにて5%溶液にし、それを3Lのイオン交換水中に加えて樹脂を再沈させることにより洗浄した。この洗浄を洗浄水の導電率が5μS/m以下となるまで実施した。取り出した樹脂を、再度、塩化メチレンに5質量%溶解し、攪拌している5倍量のアセトン中に滴下させて再沈を行った。析出物をろ過し、60℃で2時間乾燥して、目的のポリマー34.3gを得た。この共重合ポリアリレート樹脂(III-1)のTHF-d溶媒中のH―NMRを図2に示し、共重合比を以下および表2および3に示す。
(III-1)a:b:c:d=44.865:54.835:0.135:0.165
このIII-1の樹脂をGPC(ゲルパーミエーション)分析によりポリスチレン換算重量平均分子量を測定した時、分子量は8.5万であった。
製造例2(共重合ポリアリレート樹脂(III-2)の製造方法)
 製造例1中の、ビスフェノールAを30.303gとし、分子式(2)-3の化合物を1.994gとした以外は製造例1と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-2)の共重合比を表2および3に示す。
製造例3(共重合ポリアリレート樹脂(III-3)の製造方法)
 製造例1中の、ビスフェノールAを30.326gとし、分子式(2)-3の化合物を0.997gとした以外は製造例1と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-3)の共重合比を表2および3に示す。
製造例4(共重合ポリアリレート樹脂(III-4)の製造方法)
 製造例1中の、ビスフェノールAを30.045gとし、分子式(2)-3の化合物を分子式(2)-2の化合物(チッソ社製 商品名「サイラプレーンFM-4421」)とし、分子式(2)-2の化合物の量を6.647gとした以外は製造例1と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-4)の共重合比を表2および3に示す。
製造例5(共重合ポリアリレート樹脂(III-5)の製造方法)
 製造例4中の、ビスフェノールAを30.197gとし、分子式(2)-2の化合物を3.323gとした以外は製造例4と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-5)の共重合比を表2および3に示す。
製造例6(共重合ポリアリレート樹脂(III-6)の製造方法)
 製造例4中の、ビスフェノールAを30.288gとし、分子式(2)-2の化合物を1.329gとした以外は製造例4と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-6)の共重合比を表2および3に示す。
製造例7(共重合ポリアリレート樹脂(III-7)の製造方法)
 製造例1中の、ビスフェノールAを27.921gとし、分子式(2)-3の化合物を分子式(2)-1の化合物(チッソ社製 商品名「サイラプレーンFM-4411」)とし、分子式(2)-1の化合物の量を10.635gとした以外は製造例1と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-7)の共重合比を表2および3に示す。
製造例8(共重合ポリアリレート樹脂(III-8)の製造方法)
 製造例7中の、ビスフェノールAを29.134gとし、分子式(2)-1の化合物を5.318gとした以外は製造例7と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-8)の共重合比を表2および3に示す。
製造例9(共重合ポリアリレート樹脂(III-9)の製造方法)
 製造例7中の、ビスフェノールAを30.045gとし、分子式(2)-1の化合物を1.329gとした以外は製造例7と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-9)の共重合比を表2および3に示す。
製造例10(共重合ポリアリレート樹脂(III-10)の製造方法)
 製造例1中の、ビスフェノールAを30.288gとし、分子式(2)-3の化合物を分子式(3)-3の化合物(チッソ社製 サイラプレーンFMDA26)とし、分子式(3)-3の化合物の量を3.988gとした以外は製造例1と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-10)のTHF-d溶媒中のH―NMRを図3に示し、共重合比を以下および表2および3に示す。このIII-10の樹脂をGPC(ゲルパーミエーション)分析によりポリスチレン換算重量平均分子量を測定した時、分子量は8.7万であった。
製造例11(共重合ポリアリレート樹脂(III-11)の製造方法)
 製造例10中の、ビスフェノールAを30.318gとし、分子式(3)-3の化合物を1.994gとした以外は製造例10と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-11)の共重合比を表2および3に示す。
製造例12(共重合ポリアリレート樹脂(III-12)の製造方法)
 製造例10中の、ビスフェノールAを30.333gとし、分子式(3)-3の化合物を0.997gとした以外は製造例10と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-12)の共重合比を表2および3に示す。
製造例13(共重合ポリアリレート樹脂(III-13)の製造方法)
 製造例1中の、ビスフェノールAを30.045gとし、分子式(2)-3の化合物を分子式(3)-2の化合物(チッソ社製 サイラプレーンFMDA21)とし、分子式(3)-2の化合物の量を6.647gとした以外は製造例1と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-13)の共重合比を表2および3に示す。
製造例14(共重合ポリアリレート樹脂(III-14)の製造方法)
 製造例13中の、ビスフェノールAを30.197gとし、分子式(3)-2の化合物の量を3.323gとした以外は製造例13と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-14)の共重合比を表2および3に示す。
製造例15(共重合ポリアリレート樹脂(III-15)の製造方法)
 製造例13中の、ビスフェノールAを30.288gとし、分子式(3)-2の化合物の量を1.329gとした以外は製造例13と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-15)の共重合比を表2および3に示す。
製造例16(共重合ポリアリレート樹脂(III-16)の製造方法)
 製造例1中の、ビスフェノールAを28.831gとし、分子式(2)-3の化合物を分子式(3)-1の化合物(チッソ社製 サイラプレーンFMDA11)とし、分子式(3)-1の化合物の量を6.647gとした以外は製造例1と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-16)の共重合比を表4および5に示す。
製造例17(共重合ポリアリレート樹脂(III-17)の製造方法)
 製造例16中の、ビスフェノールAを29.741gとし、分子式(3)-1の化合物の量を2.659gとした以外は製造例16と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-17)の共重合比を表4および5に示す。
製造例18(共重合ポリアリレート樹脂(III-18)の製造方法)
 製造例16中の、ビスフェノールAを30.045gとし、分子式(3)-1の化合物の量を1.329gとした以外は製造例16と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-18)の共重合比を表4および5に示す。
製造例19(共重合ポリアリレート樹脂(III-19)の製造方法)
 製造例1中の、ビスフェノールAを30.197gとし、分子式(2)-3の化合物を分子式(2)-3の化合物および分子式(3)-3の化合物とし、分子式(2)-3の化合物を3.323g、分子式(3)-3の化合物を4.985gとした以外は製造例1と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-19)の共重合比を表4および5に示す。
製造例20(共重合ポリアリレート樹脂(III-20)の製造方法)
 製造例19中の、ビスフェノールAを29.059gとし、分子式(2)-3の化合物および分子式(3)-3の化合物を、分子式(2)-3の化合物および分子式(3)-1の化合物とし、分子式(2)-3の化合物を3.323g、分子式(3)-1の化合物を5.318gとした以外は製造例19と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-20)の共重合比を表4および5に示す。
製造例21(共重合ポリアリレート樹脂(III-21)の製造方法)
 製造例19中の、ビスフェノールAを28.436gとし、分子式(2)-3の化合物および分子式(3)-3の化合物を、分子式(2)-1の化合物および分子式(3)-3の化合物とし、分子式(2)-1の化合物を7.976g、分子式(3)-3の化合物を5.982gとした以外は製造例19と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-21)の共重合比を表4および5に示す。
製造例22(共重合ポリアリレート樹脂(III-22)の製造方法)
 製造例19中の、ビスフェノールAを27.314gとし、分子式(2)-3の化合物および分子式(3)-3の化合物を、分子式(2)-1の化合物および分子式(3)-1の化合物とし、分子式(2)-1の化合物を6.647g、分子式(3)-1の化合物を6.647gとした以外は製造例19と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-22)の共重合比を表4および5に示す。
製造例23(共重合ポリアリレート樹脂(III-23)の製造方法)
 製造例10中の、テレフタル酸クロライドを13.631gとし、イソフタル酸クロライドを13.631gとした以外は製造例10と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-23)の共重合比を表4および5に示す。
製造例24(共重合ポリアリレート樹脂(III-24)の製造方法)
 製造例10中の、テレフタル酸クロライドを9.542gとし、イソフタル酸クロライドを17.720gとした以外は製造例10と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-24)の共重合比を表4および5に示す。
製造例25(共重合ポリアリレート樹脂(III-25)の製造方法)
 製造例10中の、テレフタル酸クロライドを14.994gとし、イソフタル酸クロライドを12.268gとした以外は製造例10と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-25)の共重合比を表4および5に示す。
製造例26(共重合ポリアリレート樹脂(III-26)の製造方法)
 製造例7中の、ビスフェノールAを27.010gとし、分子式(2)-1の化合物を14.623gとした以外は製造例26と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-26)の共重合比を表4および5に示す。
製造例27(共重合ポリアリレート樹脂(III-27)の製造方法)
 製造例1中の、ビスフェノールAを27.010gとし、分子式(2)-3の化合物を146.232gとした以外は製造例1と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-27)の共重合比を表4および5に示す。
製造例28(共重合ポリアリレート樹脂(III-28)の製造方法)
 製造例1中の、テレフタル酸クロライドを12.268gとし、イソフタル酸クロライドを14.994gとしたビスフェノールAを30.348gとし、分子式(2)-3の化合物を添加せず、製造例1と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-28)の共重合比を表4および5に示す。
製造例29(共重合ポリアリレート樹脂(III-29)の製造方法)
 製造例1中の、テレフタル酸クロライドを9.542gとし、イソフタル酸クロライドを17.720gとし、ビスフェノールAを30.348gとし、分子式(2)-3の化合物を添加せず、製造例1と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-29)の共重合比を表4および5に示す。
製造例30(共重合ポリアリレート樹脂(III-30)の製造方法)
 製造例1中の、テレフタル酸クロライドを17.720gとし、イソフタル酸クロライドを9.542gとし、ビスフェノールAを30.348gとし、分子式(2)-3の化合物を添加せず、製造例1と同様に合成を実施した。得られた共重合ポリアリレート樹脂(III-30)の共重合比を表4および5に示す。
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
※ 表中、共重合比率はa+b+c+d+e+fを100mol%とした場合の比率である。
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
※ 表中、共重合比率はa+b+c+d+e+fを100mol%とした場合の比率である。
(負帯電積層型感光体の製造)
実施例1
 アルコール可溶性ナイロン(東レ(株)製、商品名「CM8000」)5質量部と、アミノシラン処理された酸化チタン微粒子5質量部とを、メタノール90質量部に溶解、分散させて、塗布液1を調製した。導電性基体1として外径30mmのアルミニウム製円筒の外周に、下引き層として、この塗布液1を浸漬塗工し、温度100℃で30分間乾燥して、膜厚3μmの下引き層2を形成した。
 電荷発生材料としてのY型チタニルフタロシアニン1質量部と、樹脂バインダとしてのポリビニルブチラール樹脂(積水化学(株)製、商品名「エスレックKS-1」)1.5質量部とをジクロロメタン60質量部に溶解、分散させて、塗布液2を調製した。この下引き層2上に、この塗布液2を浸漬塗工し、温度80℃で30分間乾燥して、膜厚0.3μmの電荷発生層4を形成した。
 電荷輸送材料としての下記式、
Figure JPOXMLDOC01-appb-I000034
で示される化合物90質量部と、樹脂バインダとしての前記製造例1の共重合ポリアリレート樹脂(III―1)110質量部とを、ジクロロメタン1000質量部に溶解して、塗布液3を調製した。この電荷発生層4上に、塗布液3を浸漬塗工し、温度90℃で60分間乾燥して、膜厚25μmの電荷輸送層5を形成し、負帯電積層型感光体を作製した。
実施例2
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例2で製造した共重合ポリアリレート樹脂(III-2)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例3
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例3で製造した共重合ポリアリレート樹脂(III-3)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例4
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例4で製造した共重合ポリアリレート樹脂(III-4)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例5
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例5で製造した共重合ポリアリレート樹脂(III-5)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例6
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例6で製造した共重合ポリアリレート樹脂(III-6)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例7
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例7で製造した共重合ポリアリレート樹脂(III-7)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例8
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例8で製造した共重合ポリアリレート樹脂(III-8)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例9
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例9で製造した共重合ポリアリレート樹脂(III-9)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例10
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例10で製造した共重合ポリアリレート樹脂(III-10)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例11
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例11で製造した共重合ポリアリレート樹脂(III-11)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例12
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例12で製造した共重合ポリアリレート樹脂(III-12)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例13
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例13で製造した共重合ポリアリレート樹脂(III-13)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例14
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例14で製造した共重合ポリアリレート樹脂(III-14)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例15
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例15で製造した共重合ポリアリレート樹脂(III-15)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例16
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例16で製造した共重合ポリアリレート樹脂(III-16)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例17
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例17で製造した共重合ポリアリレート樹脂(III-17)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例18
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例18で製造した共重合ポリアリレート樹脂(III-18)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例19
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例19で製造した共重合ポリアリレート樹脂(III-19)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例20
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例20で製造した共重合ポリアリレート樹脂(III-20)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例21
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例21で製造した共重合ポリアリレート樹脂(III-21)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例22
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例22で製造した共重合ポリアリレート樹脂(III-22)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例23
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例23で製造した共重合ポリアリレート樹脂(III-23)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例24
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例24で製造した共重合ポリアリレート樹脂(III-24)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例25
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例25で製造した共重合ポリアリレート樹脂(III-25)に代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例26
 実施例1で使用したY型チタニルフタロシアニンを、α型チタニルフタロシアニンに代えた以外は、実施例1と同様の方法で感光体を作製した。
実施例27
 実施例1で使用した電荷輸送材料を、下記式の化合物に代えた以外は、実施例1と同様の方法で感光体を作製した。
Figure JPOXMLDOC01-appb-I000035
実施例28
 実施例1で使用した樹脂III-1を22質量部とし、樹脂III-31を88質量部を加えた以外は、実施例1と同様の方法で感光体を作製した。
実施例29
 実施例1で使用した樹脂III-1を22質量部とし、樹脂III-32を88質量部を加えた以外は、実施例1と同様の方法で感光体を作製した。
比較例1
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例26で製造した共重合ポリアリレート樹脂(III-26)に代えた以外は、実施例1と同様の方法で感光体を作製した。
比較例2
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例27で製造した共重合ポリアリレート樹脂(III-27)に代えた以外は、実施例1と同様の方法で感光体を作製した。
比較例3
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例28で製造した共重合ポリアリレート樹脂(III-28)に代えた以外は、実施例1と同様の方法で感光体を作製した。
比較例4
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例29で製造した共重合ポリアリレート樹脂(III-29)に代えた以外は、実施例1と同様の方法で感光体を作製した。
比較例5
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、製造例30で製造した共重合ポリアリレート樹脂(III-30)に代えた以外は、実施例1と同様の方法で感光体を作製した。
比較例6
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、ポリカーボネートZ(三菱ガス化学(株)製 PCZ-500、以下「III-31」と記す)に代えた以外は、実施例1と同様の方法で感光体を作製した。
比較例7
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、ポリカーボネートA(三菱エンジニアリングプラスチック(株)製S-3000、以下「III-32」と記す)に代えた以外は、実施例1と同様の方法で感光体を作製した。
比較例8
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、特許文献10(特開平8-234468号公報)記載の下記式、
Figure JPOXMLDOC01-appb-I000036
で示されるポリエステル樹脂P-1-6(以下「III-33」と記す。)に代えた以外は、実施例1と同様の方法で感光体を作製した。
比較例9
 実施例1で使用した製造例1の共重合ポリアリレート樹脂(III-1)を、特許文献12(特開2002-214807号公報)記載の下記式、
Figure JPOXMLDOC01-appb-I000037
で示されるポリエステル樹脂A-1(以下「III-34」と記す。)に代えた以外は、に代えた以外は、実施例1と同様の方法で感光体を作製した。
(単層型感光体の製造)
実施例30
 導電性基体1としての外径24mmのアルミニウム製円筒の外周に、下引き層として、塩化ビニル-酢酸ビニル-ビニルアルコール共重合体(日信化学工業(株)製、商品名「ソルバインTA5R」)0.2質量部をメチルエチルケトン99質量部に攪拌溶解させて調製した塗布液を浸漬塗工し、温度100℃で30分間乾燥して、膜厚0.1μmの下引き層2を形成した。
 この下引き層2上に、電荷発生材料として下記式、
Figure JPOXMLDOC01-appb-I000038
で示される無金属フタロシアニン1質量部と、正孔輸送材料として下記式、
Figure JPOXMLDOC01-appb-I000039
で示されるスチルベン化合物30質量部と、下記式、
Figure JPOXMLDOC01-appb-I000040
で示されるスチルベン化合物15質量部と、電子輸送材料として下記式、
Figure JPOXMLDOC01-appb-I000041
で示される化合物30質量部と、樹脂バインダとして上記製造例1の樹脂III-1 55質量部とを、テトラヒドロフラン350質量部に溶解、分散させて調製した塗布液を浸漬塗工し、温度100℃で60分間乾燥して、膜厚25μmの感光層を形成し、単層型感光体を作製した。
実施例31
 実施例30で使用した無金属フタロシアニンをY型チタニルフタロシアニンとした以外は実施例30と同様の方法で感光体を作製した。
実施例32
 実施例30で使用した無金属フタロシアニンをα型チタニルフタロシアニンとした以外は実施例30と同様の方法で感光体を作製した。
比較例10
 実施例30で使用した製造例1のポリアリレート樹脂III-1をIII-31に代えた以外は、実施例30と同様の方法で感光体を作製した。
(正帯電積層型感光体の製造)
実施例33
 電荷輸送材料として下記式、
Figure JPOXMLDOC01-appb-I000042
で示される化合物50質量部と、樹脂バインダとしてポリカーボネートZ(III-31) 50質量部とを、ジクロロメタン800質量部に溶解して、塗布液を調製した。導電性基体1としての外径24mmのアルミニウム製円筒の外周に、この塗布液を浸漬塗工し、温度120℃で60分間乾燥して、膜厚15μmの電荷輸送層を形成した。
 この電荷輸送層上に、電荷発生材料としての下記式、
Figure JPOXMLDOC01-appb-I000043
で示される無金属フタロシアニン1.5質量部と、正孔輸送材料としての下記式、
Figure JPOXMLDOC01-appb-I000044
で示されるスチルベン化合物10質量部と、電子輸送材料としての下記式、
Figure JPOXMLDOC01-appb-I000045
で示される化合物25質量部と、樹脂バインダとしての前記製造例1の樹脂III-1 60質量部とを、1、2-ジクロロエタン 800質量部に溶解、分散させて調製した塗布液を浸漬塗工し、温度100℃で60分間乾燥して、膜厚15μmの感光層を形成し、正帯電積層型感光体を作製した。
比較例11
 実施例33で使用した製造例1のポリアリレート樹脂III-1をIII-31に代えた以外は、実施例33と同様の方法で感光体を作製した。
<感光体の評価>
 上述した実施例1~33および比較例1~11で作製した感光体の潤滑性、および電気特性を下記の方法で評価した。併せて、塗布液状態の評価として、電荷輸送層用塗布液調製時における共重合ポリアリレート樹脂の溶剤に対する溶解性の評価も示した。評価結果を表6~11に示す。
<潤滑性評価>
 表面性試験機(Heidon表面試験機Type14FW型)を用い、実施例及び比較例にて作製された感光体ドラム表面の潤滑性を測定した。ドラムはHP社製LJ4000に搭載し、A4用紙10000枚を印字し、印字後の感光体についても潤滑性の評価を実施した。
 測定はウレタン性ゴムブレードを一定荷重(20g)にてドラム表面に押し付け、ドラムの長手方向にこのブレードを動かすことにより生じる摩擦での荷重を摩擦力として計測した。
<電気特性>
 実施例1~25および比較例1~9の感光体については、温度22℃、湿度50%の環境下で、感光体の表面を暗所にてコロナ放電により-650Vに帯電せしめた後、帯電直後の表面電位Vを測定した。続いて、暗所で5秒間放置後、表面電位Vを測定し、下記計算式(1)、
Vk=V/V×100                 (1)
に従って、帯電後5秒後における電位保持率Vk(%)を求めた。次に、ハロゲンランプを光源とし、フィルターを用いて780nmに分光した1.0μW/cmの露光光を表面電位が-600Vになった時点から感光体に5秒間照射して、表面電位が-300Vとなるまで光減衰するのに要する露光量をE1/2(μJ/cm)、露光後5秒後の感光体表面の残留電位をVr5(V)として評価した。実施例30~33、比較例10~11においては帯電を+650Vとして、露光光は表面電位が+600Vから照射し、E1/2は+300Vとなる露光量として上記と同様に評価した。
<実機特性>
 実施例1~30及び比較例1~9において作製した感光体を、感光体の表面電位も測定できるように改造を施したHP製プリンターLJ4000に搭載して露光部電位を評価した。さらに、A4用紙10000枚を印字し、印字前後の感光体の膜厚を測定し、印字後の磨耗量(μm)について評価を実施した。また、実施例30~33及び比較例10~11において作製した感光体を、感光体の表面電位も測定できるように改造を施したブラザー社製プリンターHL-2040に搭載して露光部電位を評価した。さらに、A4用紙10000枚を印字し、印字前後の感光体の膜厚を測定し、印字後の磨耗量(μm)について評価を実施した。
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
 上記表6~11の結果から、実施例1~33では、感光体としての電気特性を損なうことなく、初期及び実機印字後の摩擦係数が低く、良好な特性を示した。さらに、印字後の磨耗量もシロキサン成分を含まない他の樹脂と比較して良好であった。一方、比較例1、2では樹脂の溶解性に問題があり、電気特性も損なう結果となった。また、比較例3~5、7はシロキサン成分を含有していないため、摩擦係数は大きく、印字後の画像にスジ状の画像不良を生じた。比較例6、10、11は電気特性に問題ないが、摩擦係数が高く、磨耗量も大きかった。比較例8、9は電気特性や初期の摩擦係数については問題ないが、印字後の摩擦係数が大きく変動しており、磨耗量も大きく、膜中の応力緩和に起因すると思われるスジ状の画像不良が確認された。
 以上により、本発明に係る共重合ポリアリレート樹脂を用いることによって、電気特性を損なうことなく、摩擦係数の低い、磨耗量の少ない優れた電子写真用感光体が得られることが確かめられた。

Claims (24)

  1.  導電性基体上に感光層を有する電子写真用感光体において、
     前記感光層が樹脂バインダとして、下記化学構造式1、
    (化学構造式1)
    Figure JPOXMLDOC01-appb-I000001
    Figure JPOXMLDOC01-appb-I000002
    Figure JPOXMLDOC01-appb-I000003
    Figure JPOXMLDOC01-appb-I000004
    Figure JPOXMLDOC01-appb-I000006
    (化学構造式1中、部分構造式(A)、(B)、(C)、(D)、(E)および(F)は樹脂バインダを構成する構造単位を示す。a、b、c、d、eおよびfはそれぞれ各構造単位(A)、(B)、(C)、(D)、(E)および(F)のmol%を示し、a+b+c+d+e+fが100mol%である。また、RおよびRは、同一でも異なっていてもよく、水素原子、炭素数1~8のアルキル基、置換基を有してもよいシクロアルキル基、または置換基を有してもよいアリール基を示し、もしくはそれらが結合している炭素原子と共に環状構造を形成していてもよく、該環状構造には1または2個のアリーレン基が結合していてもよい。R~R18は、同一でも異なっていてもよく、水素原子、炭素数1~8のアルキル基、フッ素原子、塩素原子、または臭素原子を示す。R19は水素原子、炭素数1~20のアルキル基、炭素数1~20のアルキレン基、置換基を有してもよいアリール基あるいは置換基を有してもよいシクロアルキル基、フッ素原子、塩素原子、または臭素原子を示す。s、tは1以上の整数を示す。)で表される構造単位を有する共重合ポリアリレート樹脂を含むことを特徴とする電子写真用感光体。
  2.  前記化学構造式1中、cおよびdが0mol%である請求項1記載の電子写真感光体。
  3.  前記化学構造式1中、eおよびfが0mol%である請求項1記載の電子写真感光体。
  4.  前記化学構造式1中、下記式、
    0.001≦c+d+e+f≦10
    で表される関係を満たす請求項1記載の電子写真感光体。
  5.  前記化学構造式1中、下記式、
    0.001≦c+d+e+f≦10
    で表される関係を満たす請求項2記載の電子写真感光体。
  6.  前記化学構造式1中、下記式、
    0.001≦c+d+e+f≦10
    で表される関係を満たす請求項3記載の電子写真感光体。
  7.  前記化学構造式1中、RおよびRがそれぞれメチル基であり、かつ、R~R18が水素原子である請求項1記載の電子写真用感光体。
  8.  前記感光層が少なくとも電荷発生層と電荷輸送層とを備え、かつ、前記電荷輸送層が前記共重合ポリアリレート樹脂と電荷輸送材料とを含む請求項1記載の電子写真用感光体。
  9.  前記電荷発生層と電荷輸送層とがこの順に前記導電性基体上に積層されてなる請求項8記載の電子写真用感光体。
  10.  前記感光層が、前記共重合ポリアリレート樹脂と、電荷発生材料と、電荷輸送材料とを含む請求項1記載の電子写真用感光体。
  11.  前記感光層が少なくとも電荷輸送層と電荷発生層とを備え、かつ、前記電荷発生層が前記共重合ポリアリレート樹脂と、電荷発生材料と、電荷輸送材料とを含む請求項1記載の電子写真用感光体。
  12.  前記電荷輸送層と電荷発生層とがこの順に前記導電性基体上に積層されてなる請求項11記載の電子写真用感光体。
  13.  前記電荷輸送材料が正孔輸送材料と電子輸送材料とを含む請求項11記載の電子写真用感光体。
  14.  導電性基体上に、少なくとも樹脂バインダを含む塗布液を塗布して感光層を形成する工程を包含する電子写真用感光体の製造方法において、
     前記塗布液中に、樹脂バインダとして下記化学構造式1、
    (化学構造式1)
    Figure JPOXMLDOC01-appb-I000007
    Figure JPOXMLDOC01-appb-I000008
    Figure JPOXMLDOC01-appb-I000009
    Figure JPOXMLDOC01-appb-I000010
    Figure JPOXMLDOC01-appb-I000011
    Figure JPOXMLDOC01-appb-I000012
    (化学構造式1中、部分構造式(A)、(B)、(C)、(D)、(E)および(F)は樹脂バインダを構成する構造単位を示す。a、b、c、d、eおよびfはそれぞれ各構造単位(A)、(B)、(C)、(D)、(E)および(F)のモル%を示し、a+b+c+d+e+fが100mol%である。また、RおよびRは、同一でも異なっていてもよく、水素原子、炭素数1~8のアルキル基、置換基を有してもよいシクロアルキル基、または置換基を有してもよいアリール基を示し、もしくはそれらが結合している炭素原子と共に環状構造を形成していてもよく、該環状構造には1または2個のアリーレン基が結合していてもよい。R~R18は、同一でも異なっていてもよく、水素原子、炭素数1~8のアルキル基、フッ素原子、塩素原子、または臭素原子を示す。R19は水素原子、炭素数1~20のアルキル基、炭素数1~20のアルキレン基、置換基を有してもよいアリール基あるいは置換基を有してもよいシクロアルキル基、フッ素原子、塩素原子、または臭素原子を示す。s、tは1以上の整数を示す。)で表される構造単位を有する共重合ポリアリレート樹脂を含むことを特徴とする電子写真用感光体の製造方法。
  15.  請求項1記載の電子写真感光体を搭載したことを特徴とする電子写真装置。
  16.  請求項2記載の電子写真感光体を搭載したことを特徴とする電子写真装置。
  17.  請求項3記載の電子写真感光体を搭載したことを特徴とする電子写真装置。
  18.  請求項4記載の電子写真感光体を搭載したことを特徴とする電子写真装置。
  19.  請求項5記載の電子写真感光体を搭載したことを特徴とする電子写真装置。
  20.  請求項6記載の電子写真感光体を搭載したことを特徴とする電子写真装置。
  21.  請求項7記載の電子写真感光体を搭載したことを特徴とする電子写真装置。
  22.  請求項8記載の電子写真感光体を搭載したことを特徴とする電子写真装置。
  23.  請求項10記載の電子写真感光体を搭載したことを特徴とする電子写真装置。
  24.  請求項11記載の電子写真感光体を搭載したことを特徴とする電子写真装置。
PCT/JP2009/052576 2009-02-16 2009-02-16 電子写真用感光体、その製造方法および電子写真装置 WO2010092695A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020117017149A KR101548409B1 (ko) 2009-02-16 2009-02-16 전자 사진용 감광체, 그의 제조 방법 및 전자 사진 장치
US13/148,438 US8597864B2 (en) 2009-02-16 2009-02-16 Photoreceptor for electrophotography, process for producing the same, and electrophotographic apparatus
CN2009801562713A CN102301284B (zh) 2009-02-16 2009-02-16 用于电子照相的感光体,其制造方法和电子照相装置
JP2010550395A JP5195938B2 (ja) 2009-02-16 2009-02-16 電子写真用感光体、その製造方法および電子写真装置
PCT/JP2009/052576 WO2010092695A1 (ja) 2009-02-16 2009-02-16 電子写真用感光体、その製造方法および電子写真装置
TW099103959A TWI476546B (zh) 2009-02-16 2010-02-09 An electrophotographic photoreceptor, a method for manufacturing the same, and an electrophotographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/052576 WO2010092695A1 (ja) 2009-02-16 2009-02-16 電子写真用感光体、その製造方法および電子写真装置

Publications (1)

Publication Number Publication Date
WO2010092695A1 true WO2010092695A1 (ja) 2010-08-19

Family

ID=42561547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052576 WO2010092695A1 (ja) 2009-02-16 2009-02-16 電子写真用感光体、その製造方法および電子写真装置

Country Status (6)

Country Link
US (1) US8597864B2 (ja)
JP (1) JP5195938B2 (ja)
KR (1) KR101548409B1 (ja)
CN (1) CN102301284B (ja)
TW (1) TWI476546B (ja)
WO (1) WO2010092695A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128575A1 (ja) * 2012-02-28 2013-09-06 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置、並びに共重合ポリアリレート樹脂の製造方法
JP2014146001A (ja) * 2013-01-30 2014-08-14 Kyocera Document Solutions Inc 正帯電積層型電子写真感光体及び画像形成装置
JP2014149363A (ja) * 2013-01-31 2014-08-21 Kyocera Document Solutions Inc 正帯電積層型電子写真感光体及び画像形成装置
WO2017072972A1 (ja) * 2015-10-30 2017-05-04 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置
WO2019142653A1 (ja) * 2018-01-19 2019-07-25 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置
US11036151B2 (en) 2018-01-19 2021-06-15 Fuji Electric Co., Ltd. Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5360236B2 (ja) * 2010-01-29 2013-12-04 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置
JP2014130235A (ja) * 2012-12-28 2014-07-10 Kyocera Document Solutions Inc 電子写真感光体及び画像形成装置
WO2015008323A1 (ja) * 2013-07-16 2015-01-22 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012657A (ja) * 2000-06-30 2002-01-15 Kao Corp 複合ポリエステル樹脂
JP2002351113A (ja) * 2001-03-23 2002-12-04 Ricoh Co Ltd 電子写真感光体並びにそれを用いた画像形成方法及び画像形成装置
JP2004219922A (ja) * 2003-01-17 2004-08-05 Canon Inc 電子写真感光体
JP2004323727A (ja) * 2003-04-25 2004-11-18 Dainippon Ink & Chem Inc 熱可塑性樹脂粒子の製造方法
JP2006078533A (ja) * 2004-09-07 2006-03-23 Ricoh Co Ltd 画像形成装置および画像形成装置用プロセスカートリッジ
JP2009013275A (ja) * 2007-07-04 2009-01-22 Toyo Ink Mfg Co Ltd 感圧式接着剤用ポリエステル及び感圧式接着剤組成物
JP2009019289A (ja) * 2007-07-10 2009-01-29 Teijin Fibers Ltd 優れた撥水性を有するスパンライク様2層構造糸

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162040A (ja) 1984-09-04 1986-03-29 Fuji Xerox Co Ltd 電子写真用感光体
JPH01205171A (ja) 1988-02-10 1989-08-17 Ricoh Co Ltd 電子写真感光体
JPH04368953A (ja) 1991-06-18 1992-12-21 Canon Inc 電子写真感光体、該電子写真感光体を備えた電子写真装置並びにファクシミリ
JP3024837B2 (ja) 1991-09-05 2000-03-27 キヤノン株式会社 電子写真感光体、該電子写真感光体を備えた電子写真装置並びにファクシミリ
JPH07333881A (ja) 1994-06-13 1995-12-22 Canon Inc 電子写真感光体及び該電子写真感光体を備えた電子写真装置
JPH08234468A (ja) 1995-02-24 1996-09-13 Konica Corp 電子写真感光体
JP2002162759A (ja) 2000-08-28 2002-06-07 Mitsubishi Chemicals Corp 電子写真感光体
JP3781268B2 (ja) 2000-10-25 2006-05-31 三菱化学株式会社 ポリエステル樹脂及びその製造方法、並びにそれを用いた電子写真感光体
JP2002214807A (ja) 2001-01-17 2002-07-31 Mitsubishi Chemicals Corp 電子写真感光体
US6936388B2 (en) 2001-03-23 2005-08-30 Ricoh Company, Ltd. Electrophotographic photoreceptor, and image forming method, image forming apparatus, and image forming apparatus processing unit using same
JP2002333730A (ja) 2001-05-11 2002-11-22 Mitsubishi Chemicals Corp 電子写真感光体
JP3740450B2 (ja) 2002-08-30 2006-02-01 キヤノン株式会社 電子写真装置
JP4336559B2 (ja) 2003-10-08 2009-09-30 富士電機デバイステクノロジー株式会社 電子写真用感光体およびその製造方法
JP2007199659A (ja) 2005-12-28 2007-08-09 Canon Inc 電子写真感光体、プロセスカートリッジ及び電子写真装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012657A (ja) * 2000-06-30 2002-01-15 Kao Corp 複合ポリエステル樹脂
JP2002351113A (ja) * 2001-03-23 2002-12-04 Ricoh Co Ltd 電子写真感光体並びにそれを用いた画像形成方法及び画像形成装置
JP2004219922A (ja) * 2003-01-17 2004-08-05 Canon Inc 電子写真感光体
JP2004323727A (ja) * 2003-04-25 2004-11-18 Dainippon Ink & Chem Inc 熱可塑性樹脂粒子の製造方法
JP2006078533A (ja) * 2004-09-07 2006-03-23 Ricoh Co Ltd 画像形成装置および画像形成装置用プロセスカートリッジ
JP2009013275A (ja) * 2007-07-04 2009-01-22 Toyo Ink Mfg Co Ltd 感圧式接着剤用ポリエステル及び感圧式接着剤組成物
JP2009019289A (ja) * 2007-07-10 2009-01-29 Teijin Fibers Ltd 優れた撥水性を有するスパンライク様2層構造糸

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128575A1 (ja) * 2012-02-28 2013-09-06 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置、並びに共重合ポリアリレート樹脂の製造方法
JPWO2013128575A1 (ja) * 2012-02-28 2015-07-30 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置、並びに共重合ポリアリレート樹脂の製造方法
US9442400B2 (en) 2012-02-28 2016-09-13 Fuji Electric Co., Ltd. Electrophotographic photoreceptor including a copolymer polyarylate resin, production method therefor, electrophotographic device including the photoreceptor, and production method for the copolymer polyarylate resin
JP2014146001A (ja) * 2013-01-30 2014-08-14 Kyocera Document Solutions Inc 正帯電積層型電子写真感光体及び画像形成装置
JP2014149363A (ja) * 2013-01-31 2014-08-21 Kyocera Document Solutions Inc 正帯電積層型電子写真感光体及び画像形成装置
WO2017072972A1 (ja) * 2015-10-30 2017-05-04 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置
JPWO2017072972A1 (ja) * 2015-10-30 2018-02-01 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置
US10782622B2 (en) 2015-10-30 2020-09-22 Fuji Electric Co., Ltd. Photoreceptor for electrophotography, method for manufacturing the same, and electrophotographic device
WO2019142653A1 (ja) * 2018-01-19 2019-07-25 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置
JPWO2019142653A1 (ja) * 2018-01-19 2020-06-18 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置
US11036151B2 (en) 2018-01-19 2021-06-15 Fuji Electric Co., Ltd. Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic device
US11143976B2 (en) 2018-01-19 2021-10-12 Fuji Electric Co., Ltd. Photoconductor having interlayer for hole injection promotion

Also Published As

Publication number Publication date
KR20110128803A (ko) 2011-11-30
TW201100984A (en) 2011-01-01
US20120058422A1 (en) 2012-03-08
TWI476546B (zh) 2015-03-11
KR101548409B1 (ko) 2015-08-28
JPWO2010092695A1 (ja) 2012-08-16
US8597864B2 (en) 2013-12-03
JP5195938B2 (ja) 2013-05-15
CN102301284B (zh) 2013-06-12
CN102301284A (zh) 2011-12-28

Similar Documents

Publication Publication Date Title
JP5195938B2 (ja) 電子写真用感光体、その製造方法および電子写真装置
WO2011092850A1 (ja) 電子写真用感光体、その製造方法および電子写真装置
JP6107973B2 (ja) 電子写真用感光体、その製造方法および電子写真装置
JP5871061B2 (ja) 電子写真用感光体、その製造方法および電子写真装置
JP5757364B2 (ja) 電子写真用感光体、その製造方法および電子写真装置、並びに共重合ポリアリレート樹脂の製造方法
JP4336559B2 (ja) 電子写真用感光体およびその製造方法
JP5077765B2 (ja) 電子写真用感光体およびその製造方法
KR101525655B1 (ko) 전자 사진용 감광체 및 그의 제조 방법
JP6311839B2 (ja) 電子写真用感光体、その製造方法および電子写真装置
JP6741165B2 (ja) 電子写真用感光体、その製造方法および電子写真装置
JP5360236B2 (ja) 電子写真用感光体、その製造方法および電子写真装置
JP2005241973A (ja) 電子写真感光体、該電子写真感光体を有するプロセスカートリッジ、および電子写真装置
JP5854195B2 (ja) 電子写真感光体、及びそれを用いた画像形成方法、画像形成装置、プロセスカートリッジ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156271.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117017149

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010550395

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13148438

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09840015

Country of ref document: EP

Kind code of ref document: A1