WO2010075376A2 - Anti-viral compounds - Google Patents
Anti-viral compounds Download PDFInfo
- Publication number
- WO2010075376A2 WO2010075376A2 PCT/US2009/069177 US2009069177W WO2010075376A2 WO 2010075376 A2 WO2010075376 A2 WO 2010075376A2 US 2009069177 W US2009069177 W US 2009069177W WO 2010075376 A2 WO2010075376 A2 WO 2010075376A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optionally substituted
- compound
- occurrence
- alkyl
- halogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 *1c2ccccc2N=C1 Chemical compound *1c2ccccc2N=C1 0.000 description 7
- WMAFVVZFJFDLOL-UHFFFAOYSA-N CC(C)C(C1)N(C)C(C2)C2S1(=O)=O Chemical compound CC(C)C(C1)N(C)C(C2)C2S1(=O)=O WMAFVVZFJFDLOL-UHFFFAOYSA-N 0.000 description 1
- YKGUAEYDQDOOIC-KOHORPAVSA-N CC(C)c(cc1)nc2c1c(Nc(cc(cc1)C#Cc(cc3)ccc3-c3c[nH]c([C@H](CCC4)N4C([C@@H](c4ccccc4)N(C)C)=O)n3)c1Sc(cc1)ccc1OC)ncn2 Chemical compound CC(C)c(cc1)nc2c1c(Nc(cc(cc1)C#Cc(cc3)ccc3-c3c[nH]c([C@H](CCC4)N4C([C@@H](c4ccccc4)N(C)C)=O)n3)c1Sc(cc1)ccc1OC)ncn2 YKGUAEYDQDOOIC-KOHORPAVSA-N 0.000 description 1
- UFPZDKVSUVKQNX-UHFFFAOYSA-N CC(C1)N(C)CC(C)S1=O Chemical compound CC(C1)N(C)CC(C)S1=O UFPZDKVSUVKQNX-UHFFFAOYSA-N 0.000 description 1
- RVNOEJVZMRIUBI-UHFFFAOYSA-N CC(CSC)NC Chemical compound CC(CSC)NC RVNOEJVZMRIUBI-UHFFFAOYSA-N 0.000 description 1
- QGNAQMQFQMYEFB-UHFFFAOYSA-N CCCN(C)C(C)CS(C)=O Chemical compound CCCN(C)C(C)CS(C)=O QGNAQMQFQMYEFB-UHFFFAOYSA-N 0.000 description 1
- OBSZFDCJDKSXQE-UHFFFAOYSA-N COC(c(cc1)cc([N+]([O-])=O)c1Sc(cc1)ccc1N)=O Chemical compound COC(c(cc1)cc([N+]([O-])=O)c1Sc(cc1)ccc1N)=O OBSZFDCJDKSXQE-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
Definitions
- the present invention relates to compounds effective in inhibiting replication of Hepatitis C virus ("HCV").
- HCV Hepatitis C virus
- the present invention also relates to compositions comprising these compounds and methods of using these compounds to treat HCV infection.
- HCV is an RNA virus belonging to the Hepacivirus genus in the Flaviviridae family. HCV has enveloped virions that contain a positive stranded RNA genome encoding all known virus-specific proteins in one single, uninterrupted, open reading frame.
- the open reading frame comprises approximately 9500 nucleotides encoding a single large polyprotein of about 3000 amino acids.
- the polyprotein comprises a core protein, envelope proteins El and E2, a membrane bound protein p7, and the non-structural proteins NS2, NS3, NS4A, NS4B, NS5A and NS5B.
- HCV infection is associated with progressive liver pathology, including cirrhosis and hepatocellular carcinoma.
- Chronic hepatitis C may be treated with peginterferon-alpha in combination with ribavirin.
- Substantial limitations to efficacy and tolerability remain as many users suffer from side effects and viral elimination from the body is often inadequate. Therefore, there is a need for new drugs to treat HCV infection.
- the present invention features compounds of Formulae I, II and III, and pharmaceutically acceptable salts thereof. These compounds and salts are capable of inhibiting the replication of HCV.
- compositions comprising the compounds or salts of the present invention.
- the compositions can also include other therapeutic agents, such as HCV helicase inhibitors, HCV polymerase inhibitors, HCV protease inhibitors, NS5A inhibitors, CD81 inhibitors, cyclophilin inhibitors, or internal ribosome entry site (IRES) inhibitors.
- HCV helicase inhibitors such as HCV helicase inhibitors, HCV polymerase inhibitors, HCV protease inhibitors, NS5A inhibitors, CD81 inhibitors, cyclophilin inhibitors, or internal ribosome entry site (IRES) inhibitors.
- HCV helicase inhibitors such as HCV helicase inhibitors, HCV polymerase inhibitors, HCV protease inhibitors, NS5A inhibitors, CD81 inhibitors, cyclophilin inhibitors, or internal ribosome entry site (IRES) inhibitors.
- HCV helicase inhibitors such as HCV helicase inhibitors, HCV polymerase inhibitors,
- the present invention further features methods of using the compounds or salts of the present invention to inhibit HCV replication.
- the methods comprise contacting cells infected with HCV virus with a compound or salt of the present invention, thereby inhibiting the replication of HCV virus in the cells.
- the present invention features methods of using the compounds or salts of the present invention, or compositions comprising the same, to treat HCV infection.
- the methods comprise administering a compound or salt of the present invention, or a pharmaceutical composition comprising the same, to a patient in need thereof, thereby reducing the blood or tissue level of HCV virus in the patient.
- the present invention also features use of the compounds or salts of the present invention for the manufacture of medicaments for the treatment of HCV infection.
- the present invention features processes of making the compounds or salts of the invention.
- the present invention features compounds having Formula I, and pharmaceutically acceptable salts thereof,
- a 1 is C 3 -C 14 carbocyclyl or 3- to 14-membered heterocyclyl, and is substituted with -X 1 -R 7 , wherein said C 3 -C 14 carbocyclyl and 3- to 14-membered heterocyclyl are optionally substituted with one or more R A ;
- X 1 is selected from a bond, -Ls-, -O-, -S-, or -N(R B )-;
- R 7 is selected from hydrogen, -L A , C 5 -C 10 carbocyclyl, or 5- to 10-membered heterocyclyl, wherein at each occurrence said C 5 -C 10 carbocyclyl and 5- to 10-membered heterocyclyl are each independently optionally substituted with one or more R A ;
- Z 1 is selected from a bond, -C(RcRc )- -O-, -S-, or -N(R B )-;
- W 1 and W 2 are each independently selected from N or C(R D );
- R 1 is selected from hydrogen or R A ;
- R 3 and R 4 are each independently selected from hydrogen or R A ; or R 3 and R 4 , taken together with the carbon atoms to which they are attached, form a C 5 -C 10 carbocyclyl or 5- to 10-
- a 2 is C 3 -C 14 carbocyclyl or 3- to 14-membered heterocyclyl, and is optionally substituted with one or more R A ;
- R 2 is -N(R B )C(O)C(R 5 R 6 )N(R 8 )-T-R D , , , or -L K -
- R 5 is Rc
- R 6 is Rc, and R 8 is R B ; or R 6 and R 8 , taken together with the atoms to which they are attached, form a 3- to 10-membered heterocyclic ring which is optionally substituted with one or more R A ;
- L K is a bond; C 1 -C 6 alkylene, C 2 -C 6 alkenylene, or C 2 -C 6 alkynylene, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, R s (except hydrogen), -O-R s , -S-R s , -N(R S R S ), -OC(O)Rs, - C(O)ORs, nitro, phosphate, oxo, thioxo, formyl or cyano; or -N(R B )C(0)- or -C(0)N(R B )-; B is C3-C 1 ocarbocycle or 3- to 10-membered heterocycle, and is optionally substituted with one or more R A ;
- T is independently selected at each occurrence from a bond, -Ls-, -L s -M-L s — , -L s -M-L s — M'- Ls -, wherein M and M' are each independently selected from a bond, -0-, -S-, -N(R B )-, - C(O)- -S(O) 2 -, -S(O)- -OS(O)- -OS(O) 2 -, -S(O) 2 O-, -S(O)O-, -C(O)O-, -OC(O)- - OC(O)O-, -C(O)N(R B )-, -N(R B )C(O)- -N(R B )C(O)O-, -OC(O)N(R B )-, -N(R B )S(O)-, -C(O)N
- R A is independently selected at each occurrence from halogen, hydroxy, mercapto, amino, carboxy, nitro, phosphate, oxo, thioxo, formyl, cyano, -L A , or -L S -R E ;
- R B and R B - are each independently selected at each occurrence from hydrogen; or C 1 -C 6 alkyl, C 2 -
- L s , L 8 - and L 8 -. are each independently selected at each occurrence from a bond; or C 1 -C 6 alkylene, C 2 -C6alkenylene, or C 2 -C6alkynylene, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, -O-Rs, -S-Rs, - N(RsRs ), -OC(O)Rs, -C(O)ORs, nitro, phosphate, oxo, thioxo, formyl or cyano;
- R E is independently selected at each occurrence from -O-Rs, -S-Rs, -C(O)Rs, -OC(O)Rs, - C(O)OR 8 , -N(RsRs ), -S(O)R 8 , -SO 2 R 8 , -C(O)N(R 8 R 8 ),
- R 8 (except hydrogen), halogen, -0-R B , -S-R B , -N(R B R B ), -OC(O)R B , - C(O)OR B , nitro, phosphate, oxo, thioxo, formyl or cyano;
- R 8 , R 8 - and R 8 -. are each independently selected at each occurrence from hydrogen; or C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 6 carbocyclyl, C 3 -C 6 carbocyclylC r C 6 alkyl, 3- to 6- membered heterocyclyl, or (3- or 6-membered heterocyclyl)C 1 -C 6 alkyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, -0-R B , -S-R B , -N(R B R B ), -OC(O)R B , -C(O)OR B , nitro, phosphate, oxo, thioxo, formyl or cyano.
- Ai preferably is selected from C 5 -C 6 carbocycles or 5- to 6-membered heterocycles (e.g., phenyl, thiazolyl, thienyl, pyrrolidinyl or piperidinyl), and is optionally substituted with one or more
- a I is substituted with -Xi-R 7 .
- the ring system in Ai can be identical to, or different from, that in
- Ai and A 2 can both be phenyl, or Ai is phenyl and A 2 is thiazolyl, thienyl, furanyl, imidazolyl, pyridinyl, pyrimidinyl, pyridazinyl, benzoxazolyl, benzothienyl, benzimidazolyl, indolyl,
- Zi and T can be attached to Ai via any two substitutable ring atoms on Ai. Two adjacent R A on Ai, taken together with the ring atoms to which they are attached, may form a C 5 -C 6 carbocycle or a 5- to 6-membered heterocycle.
- Z 1 preferably is -N(R B )-, such as -NH- or -N(C r C 6 alkyl)-.
- R 3 and R 4 taken together with the carbon atoms to which they are attached, preferably form a C 5 -C 6 carbocycle or a 5- to 6-membered heterocycle, which is optionally substituted with one or more R A .
- W 5 and W 6 are independently N or C(R D ), Q is N or C(R D ), and R D , R9 and Rn are each independently selected at each occurrence from hydrogen or R A .
- suitable 5- to 6-membered heterocycles include where R9, Rio, and Rn are each independently selected from hydrogen or R A . More preferably, R3 and R 4 , taken together
- R9, Rio, and Rn are each independently selected from hydrogen; halogen; or C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -
- R9 is selected from C 1 -
- Ri can be, without limitation, hydrogen or C 1 -C 6 alkyl.
- Ri is hydrogen.
- Xi is preferably selected from -CH 2 -, -O-, or -S-.
- R 7 can be selected, without limitation, from C 5 -C 6 carbocycles or 5- to 6-membered heterocycles, and is optionally substituted with one or more R A .
- R 7 is phenyl, and is optionally substituted with one or more R A (e.g., -N(R S R S ), such as -NH 2 or -NH(C 1 -C 6 alkyl)).
- a 2 can be selected, without limitation, from C 5 -C 1 ocarbocycles or 5- to 10-membered heterocycles, and is optionally substituted with one or more R A .
- a 2 is selected from C 5 - C 6 carbocycles or 5- to 6-membered heterocycles, and is optionally substituted with one or more R A .
- Two adjacent R A on A 2 taken together with the ring atoms to which they are attached, may form a C 5 - C 6 carbocycle or a 5- to 6-membered heterocycle.
- Non-limiting examples of suitable A 2 include phenyl, pyrazinyl, pyridinyl, pyrimidinyl, pyridazinyl, oxazolyl, thiazolyl, thienyl, furanyl, imidazolyl, pyrazolyl, triazolyl, benzoxazolyl, benzothienyl, benzimidazolyl, benzofuranyl, benzothiazolyl, indolyl, indenyl, naphthalenyl, quinolinyl, isoquinolinyl, quinoxalinyl, cinnolinyl, quinazolinyl, or phthalazinyl, each of which is optionally substituted with one or more R A .
- a 2 is , where X is O, S or N(R B ). T and R 2 can be attached to A 2 via any
- a 2 can be R 2 can be -N(R B )C(O)C(R 5 R 6 )N(R 8 )-T-R D , where R 5 is R c (e.g., hydrogen) and R 6 and R 8 , taken together with the atoms to which they are attached, form a 5- to 6-membered heterocyclic ring which is optionally substituted with one or more R A .
- R 6 and Rg taken together with the atoms to
- R A can form, without limitation, or , each of which is independently optionally substituted with one or more R A , where n is 0, 1 or 2, and m is 1 or 2.
- R A can form, without limitation, or , each of which is independently optionally substituted with one or more R A , where n is 0, 1 or 2, and m is 1 or 2.
- Two adjacent R A taken together with the atoms to which they are attached, can form a C 5 - C 6 carbocycle or a 5- to 6-membered heterocycle.
- -T-R D preferably is -C(O)-Ls -Ri 2 or -C(O)-Ls -M'-L s -Ri 2 , where Ri 2 is (i) hydrogen, (ii) C 1 -C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, -O-Rs, -S-Rs, -N(R S R S ), - OC(O)Rs, -C(O)ORs, nitro, phosphate, oxo, thioxo, formyl or cyano, or (iii) C 3 -C 10 carbocyclyl or 3- to 10-membered heterocyclyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from C 1 -C 6 alkyl, C 2 -
- -T-R D can also be, without limitation, -L s -(C3-C 1 ocarbocyclyl) or - L s -(3- to 10-membered heterocyclyl), where said C3-C 1 ocarbocyclyl and 3- to 10-membered heterocyclyl are each independently optionally substituted with one or more substituents selected from C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, R s (except hydrogen), halogen, -0-R B , -S-R B , - N(R B R B ), -OC(O)R B , -C(O)OR B , nitro, phosphate, oxo, thioxo, formyl or cyano.
- -T-R D can be, without limitation, -L 8 -R E , -C(O)-L S -R E , -C(O)O-L S -R E .
- R 2 is , , or , where n is 0, 1 or 2, m is 1 or 2, and k is 0, 1, 2, 3 or 4.
- Two adjacent R A taken together with the atoms to which they are attached, can form a C 5 -C 6 carbocycle or a 5- to 6-membered heterocycle.
- Ri 2 can be, without limitation, -L ⁇ -N(R B )-L ⁇ -R E , -L ⁇ -N(R B )C(O)-L ⁇ -R E , or -L ⁇ -N(R B )C(O)-L ⁇ -R E , wherein L ⁇ and L ⁇ are each independently selected from (i) a bond, or (ii) C 1 -C 6 alkylene, C 2 - C 6 alkenylene, or C 2 -C6alkynylene, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, C 3 -C 10 carbocyclyl, 3- to 10- membered heterocyclyl, -O-R s , -S-Rs, -N(R S R S ), -OC(O)Rs, -C(O)ORs, nitro, phosphate, oxo, thioxo, formyl
- Ri 2 is -L T -N(R B )-L TT -R S , -L T -N(R B )C(O)-L TT -R S , or -L ⁇ - N(R B )C(O)-L TT — R s , where L ⁇ and L ⁇ are as defined immediately above.
- Ri 2 can also be, without limitation, -L S -R E , such as -L s -O-R s , -L 13 -S-Rs, or -L s -N(R s Rs ).
- Ri 2 can be, without limitation, -L s -(C 3 -C 1 ocarbocyclyl) or -L s -(3- to 10-membered heterocyclyl), where said C 3 - C 1 ocarbocyclyl and 3- to 10-membered heterocyclyl are each independently optionally substituted with one or more substituents selected from C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, R s (except hydrogen), halogen, -O-R B , -S-R B , -N(R B R B ), -OC(O)R B , -C(O)OR B , nitro, phosphate, oxo, thioxo, formyl or cyano.
- R 2 can also be , where R 5 is R 0 (e.g., hydrogen), and R 6 and R 8 , taken together with the atoms to which they are attached, form a 5- to 6-membered heterocyclic ring which is optionally substituted with one or more R A .
- R 6 and Rg taken together with the
- atoms to which they are attached can form, without limitation, ,
- R A each of which is optionally substituted with one or more R A , where n is 0, 1 or 2, and m is 1 or 2.
- R A Two adjacent R A , taken together with the atoms to which they are attached, can form a C 5 -C 6 carbocycle or a 5- to 6-membered heterocycle.
- -T-R D can be, without limitation, -C(O)-L S — Ri 2 or -C(O)-L S — M'-L s — Ri 2 , where Ri 2 is (i) hydrogen, (ii) C 1 -C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, -O-Rs, -S-Rs, - N(R S R S '), -OC(O)Rs, -C(O)ORs, nitro, phosphate, oxo, thioxo, formyl or cyano, or (iii) C 3 - C 1 ocarbocyclyl or 3- to 10-membered heterocyclyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from C 1 -C 6 alkyl,
- -T-R 0 - can also be , without limitation, -L 8 -(C 3 - C 1 ocarbocyclyl) or -L s -(3- to 10-membered heterocyclyl), where said C 3 -C 10 carbocyclyl and 3- to 10- membered heterocyclyl are each independently optionally substituted with one or more substituents selected from C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, R s (except hydrogen), halogen, -0-R B , -S-R B , -N(R B R B ), -OC(O)R B , -C(O)OR B , nitro, phosphate, oxo, thioxo, formyl or cyano.
- -T- R D " can be, without limitation, -L 8 -R E , -C(O)-L S -R E
- R 2 is where n is O, 1 or 2, m is 1 or 2, and k is O, 1, 2, 3 or 4.
- Two adjacent R A taken together with the atoms to which they are attached, can form a C 5 -C 6 carbocycle or a 5- to 6-membered heterocycle.
- Ri 2 can be, without limitation, -L ⁇ -N(R B )-L ⁇ -R E , -L ⁇ -N(R B )C(O)-L ⁇ T -R E , or -L T -N(R B )C(O)-L TT -R E , wherein L ⁇ and L ⁇ are each independently selected from (i) a bond, or (ii) C 1 -C 6 alkylene, C 2 - C 6 alkenylene, or C 2 -C6alkynylene, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, C 3 -C 1 ocarbocyclyl, 3- to 10- membered heterocyclyl, -O-R s , -S-R 8 , -N(R 8 Rs ), -OC(O)R 8 , -C(O)ORs, nitro, phosphate, oxo, thiox
- Ri 2 is -L T -N(R B )-L TT -R 8 , -L T -N(R B )C(O)-L TT -R 8 , or -L ⁇ - N(R B )C(O)-L TT — R 8 , where L ⁇ and L ⁇ are as defined immediately above.
- Ri 2 can also be, without limitation, -L 8 -R E , such as -L 8 -O-R 8 , -L 8 -S-R 8 , or -L 8 -N(R 8 R 8 ).
- Ri 2 can be, without limitation, -L 8 -(C 3 -C 1 ocarbocyclyl) or -L 8 -(3- to 10-membered heterocyclyl), where said C 3 - C 1 ocarbocyclyl and 3- to 10-membered heterocyclyl are each independently optionally substituted with one or more substituents selected from C 1 -C 6 alkyl, C 2 -C 6 alkenyl, CrC 6 alkynyl, R 8 (except hydrogen), halogen, -0-R B , -S-R B , -N(R B R B ), -OC(O)R B , -C(O)OR B , nitro, phosphate, oxo, thioxo, formyl or cyano.
- R 2 can be, without limitation, -L ⁇ - B, where B is C 3 -C 1 ocarbocycle or 3- to 10- membered heterocycle, and is optionally substituted with one or more R A .
- B is C 3 -C 1 ocarbocycle or 3- to 10- membered heterocycle, and is optionally substituted with one or more R A .
- suitable B include , or , each of which is optionally substituted with one or more RA.
- R A taken together with the atoms to which they are attached, can form a C 5 -C 6 carbocycle or a 5- to 6-
- suitable B include
- R 2 is -R s , -ORs or -N(R S R S ), and wherein two adjacent R A , taken together with the atoms to which they are attached, can form a C 5 -C 6 carbocycle or a 5- to 6-membered heterocycle.
- R 2 is
- n 0, 1, 2, 3 or 4
- two adjacent R A taken together with the atoms to which they are attached, can form a C 5 -C 6 carbocycle or a 5- to 6-membered heterocycle.
- R 2 can also be, without l liimmiittaattiioonn,. ?
- R D and R D ' are independently selected from (i) C 1 -C 6 alkyl, C 2 -Cealkenyl or CVC 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, -O-R s , -S-Rs, - N(R S R S ), -OC(O)Rs, -C(O)ORs, nitro, phosphate, oxo, thioxo, formyl or cyano; (ii) -L s -C3- C 1 ocarbocyclyl or -L s -(3- to 10-membered heterocyclyl), each of which is optionally substituted with one or more substituents selected from C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2
- T is selected from Table 4 described below.
- T is -L S -N(R T )-L S - (e.g., -CH 2 -N(Rx)-CH 2 -), or -L s -C(R T R T ')-Ls- (e.g., -CH 2 -C(R T R T ')-CH 2 -).
- R T is C r C 6 alkyl, C 2 -C 6 alkenyl, or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, -O-R s , -S-R s , -N(R 8 R 8 .), -OC(O)R 8 , -C(O)OR 8 , nitro, phosphate, oxo, thioxo, formyl or cyano; or R ⁇ is C 3 -C 6 carbocyclyl, C 3 -C 6 carbocyclylC 1 -C 6 alkyl, 3- to 6-membered heterocyclyl, or (3- or 6-membered heterocyclyl)C 1 -C 6 alkyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2
- Ai is 5- to 6-membered carbocycle or heterocycle (e.g., phenyl, thiazolyl, thienyl, pyrrolidinyl or piperidinyl), which is substituted with -Xi-R 7 and is optionally substituted with one or more R A ; and
- a 2 is 5- to 10-membered carbocycle or heterocycle (e.g., phenyl, pyrazinyl, pyridinyl, pyrimidinyl, pyridazinyl, oxazolyl, thiazolyl, thienyl, furanyl, imidazolyl, pyrazolyl, triazolyl, benzoxazolyl, benzothienyl, benzimidazolyl, benzofuranyl, benzothiazolyl, indolyl, indenyl, naphthalenyl, quinolinyl, isoquinolinyl, quinoxalinyl,
- R3 and R 4 taken together with the carbon atoms to which they are attached, form a 5- to 6-membered carbocycle or heterocycle which is optionally substituted with one or more R A .
- a 2 is 5- to 6-membered carbocycle or heterocycle (e.g., phenyl), and is optionally substituted with one or more R A ;
- a I is phenyl and is optionally substituted with one or more R A ;
- Xi is -CH 2 -, -O-, or -S-; and
- R 7 is 5- to 6-membered carbocycle or heterocycle (e.g., phenyl) which is optionally substituted with one or more R A .
- Wi and W 2 are N, and Zi is -N(R B )-.
- Zi is selected from
- Zi is selected from -NH- or -N(C 1 -C 6 alkly)-, -N(C 2 -C 6 alkenyl)-, -N(C 2 -C 6 alkynyl)-, -N(C r C 6 haloalkyl)-, -N(C 2 - C 6 haloalkenyl)-, or -N(C 2 -C 6 haloalkynyl)-. More preferably, Zi is selected from -NH- or -N(C 1 -
- Wi and W 2 are N
- Zi is -N(R B )- (e.g., -NH- or -N(C r C 6 alkly)-)
- Xi is -CH 2 -, -O- or -S-.
- R 7 preferably is phenyl, and is optionally substituted with one or more R A .
- Ri is hydrogen; and R 9 , Ri 0 , and Rn are each independently selected from hydrogen; halogen; or C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 6 carbocyclyl, or C 3 -C 6 carbocyclylC 1 - C 6 alkyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, phosphate, oxo, thioxo, formyl or cyano.
- Rio and Rn are hydrogen; and R9 is selected from C 1 -C 6 alkyl, C 2 - C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 6 carbocyclyl (e.g., C 3 -C 6 cycloalkyl), or C 3 -C 6 carbocyclyC 1 -C 6 alkyl (e.g., CrCecycloalkylC 1 -C 6 alkyl), and is optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, phosphate, oxo, thioxo, formyl or cyano.
- R 3 and R 4 are each independently selected from hydrogen or R A ; and R 7 is a 5- to 6-membered carbocycle or heterocycle (e.g., phenyl), which is optionally substituted with one or more R A .
- R 3 and R 4 are each independently selected from hydrogen or R A ;
- Ai is 5- to 6-membered carbocycle or heterocycle (e.g., phenyl, thiazolyl, thienyl, pyrrolidinyl or piperidinyl), which is substituted with -Xi-R 7 and is optionally substituted with one or more R A ;
- a 2 is a 5- to 10-membered carbocycle or heterocycle (e.g., phenyl, pyrazinyl, pyridinyl, pyrimidinyl, pyridazinyl, oxazolyl, thiazolyl, thienyl, furanyl, imidazolyl, pyrazolyl, triazolyl, benzoxazolyl, benzothienyl, benzimidazolyl, benzofuranyl, benzothiazolyl, indolyl, indenyl, naphthalenyl, quin
- a 2 is 5- to 6-membered carbocycle or heterocycle (e.g., phenyl), and is optionally substituted with one or more R A ;
- a I is phenyl and is optionally substituted with one or more R A ;
- Xi is -CH 2 -, -0-, or -S-; and
- R 7 is 5- to 6-membered carbocycle or heterocycle (e.g., phenyl) which is optionally substituted with one or more R A .
- W I and W 2 can be N, and Z 1 can be -N(R B )-, such as -NH-, -N(C r C 6 alkly)-, -N(C 2 -C 6 alkenyl)-, -N(C 2 -C 6 alkynyl)-, - N(C 1 -C 6 haloalkyl)-, -N(C 2 -C 6 haloalkenyl)-, or -N(C 2 -C 6 haloalkynyl)-.
- R B Z 1 can be -N(R B )-, such as -NH-, -N(C r C 6 alkly)-, -N(C 2 -C 6 alkenyl)-, -N(C 2 -C 6 alkynyl)-, - N(C 1 -C 6 haloalkyl)-, -N(C 2 -C 6 haloalkenyl)
- Ri 3 is R s .
- Ri 3 is C 1 -Cealkyl, C 2 - C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 6 carbocyclyl, C 3 -C 6 carbocyclylC 1 -C 6 alkyl, 3- to 6-membered heterocyclyl, or (3- or 6-membered heterocyclyl)C 1 -C 6 alkyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, -O- R B , -S-R B , -N(R B R B ), -OC(O)R B , -C(O)OR B , nitro, phosphate, oxo, thioxo, formyl or cyano.
- X preferably is O, S, NH orN(C r C 6 alkyl).
- the present invention also features compounds having Formula II or III, and pharmaceutically acceptable salts thereof,
- Xi is independently selected from a bond, -L s -, -O-, -S-, or -N(R B )-;
- R 7 is selected from hydrogen, -L A , C 5 -C 10 carbocyclyl, or 5- to 10-membered heterocyclyl, wherein said C 5 -C 1 ocarbocyclyl and 5- to 10-membered heterocyclyl are each independently optionally substituted with one or more R A ;
- Z 1 is selected from a bond, -C(RcRc )- -O-, -S-, or -N(R B )-;
- Wi, W 2 , W 5 , and W 6 are each independently selected from N or C(R D ), wherein R D is independently selected at each occurrence from hydrogen or R A ;
- Ri, Rg, Rn, and Ri 5 are each independently selected at each occurrence from hydrogen or R A ; p is selected from 0, 1, 2, or 3;
- a 2 is C 3 -C 14 carbocyclyl or 3- to 14-membered heterocyclyl, and is optionally substituted with one or more R A ;
- R 2 is -N(R B )C(O)C(R 5 R 6 )N(R S )-T-R 0 , j 0r _ L ⁇ _
- R 5 is Rc
- R 6 is Rc, and Rg is R B ; or R 6 and Rg, taken together with the atoms to which they are attached, form a 3- to 10-membered heterocyclic ring which is optionally substituted with one or more
- L K is a bond; C 1 -C 6 alkylene, C 2 -C 6 alkenylene, or C 2 -C 6 alkynylene, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, R s (except hydrogen), -O-R s , -S-R s , -N(R S R S ), -OC(O)Rs, - C(O)ORs, nitro, phosphate, oxo, thioxo, formyl or cyano; or -N(R B )C(O)- or -C(O)N(R B )-;
- B is C 3 -C 1 ocarbocycle or 3- to 10-membered heterocycle, and is optionally substituted with one or more R A ;
- T is independently selected at each occurrence from a bond, -L s -, -L s -M-L s — , -L s -M-L s — M'-
- M and M' are each independently selected from a bond, -O-, -S-, -N(R B )-, - C(O)- -S(O) 2 -, -S(O)- -OS(O)- -OS(O) 2 -, -S(O) 2 O-, -S(O)O-, -C(O)O-, -OC(O)- -
- R A is independently selected at each occurrence from halogen, hydroxy, mercapto, amino, carboxy, nitro, phosphate, oxo, thioxo, formyl, cyano, -L A , or -L S -R E ;
- R B and R B - are each independently selected at each occurrence from hydrogen; or C 1 -C 6 alkyl, C 2 - C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 6 carbocyclyl, CrC 6 carbocyclylC 1 -Cealkyl, 3- to 6-membered heterocyclyl, or (3- or 6-membered heterocyclyl)C 1 -C 6 alkyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, phosphate, oxo, thioxo, formyl or cyano;
- Rc and Rc are each independently selected at each occurrence from hydrogen; halogen; hydroxy; mercapto; amino; carboxy; nitro; phosphate; oxo; thioxo; formyl; cyano; or C r C 6 alkyl, C 2 - C 6 alkenyl, C 2 -C 6 alkynyl, or C 3 -C 6 carbocyclyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, phosphate, oxo, thioxo, formyl or cyano;
- R D , R D ' and R D • are each independently selected at each occurrence from hydrogen or R A L A is independently selected at each occurrence from C 1 -C 6 alkyl, C 2 -C 6 alkenyl, or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, -O-R s , -S-R s , -N(R 8 R 8 .), -OC(O)Rs, -C(O)ORs, nitro, phosphate, oxo, thioxo, formyl or cyano;
- Ls, L s - and L 8 - are each independently selected at each occurrence from a bond; or d-C 6 alkylene, CrC 6 alkenylene, or CrC 6 alkynylene, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, -O-R s , -S-Rs, - N(RsRs ), -OC(O)Rs, -C(O)ORs, nitro, phosphate, oxo, thioxo, formyl or cyano; R E is independently selected at each occurrence from -O-Rs, -S-Rs, -C(O)Rs, -OC(O)Rs, -
- Z 1 preferably is -N(R B )-, such as -NH- or -N(C 1 -C 6 alkyl)-.
- Xi preferably is -CH 2 -, -O- or -S.
- R 7 can be selected, without limitation, C 5 -C 6 carbocycle or 5- to 6-membered heterocycle, each of which is optionally substituted with one or more R A .
- R 7 is phenyl, and is optionally substituted with one or more R A (e.g., -N(R S R S ) such as -NH 2 ).
- a 2 can be selected, without limitation, from C 5 -Ci 0 carbocycles or 5- to 10-membered heterocycles, and is optionally substituted with one or more R A .
- a 2 is selected from C 5 - C 6 carbocycles or 5- to 6-membered heterocycles, and is optionally substituted with one or more R A .
- R A on A 2 taken together with the ring atoms to which they are attached, may form a C 5 - C 6 carbocycle or a 5- to 6-membered heterocycle.
- suitable A 2 include phenyl, pyrazinyl, pyridinyl, pyrimidinyl, pyridazinyl, oxazolyl, thiazolyl, thienyl, furanyl, imidazolyl, pyrazolyl, triazolyl, benzoxazolyl, benzothienyl, benzimidazolyl, benzofuranyl, benzothiazolyl, indolyl, indenyl, naphthalenyl, quinolinyl, isoquinolinyl, quinoxalinyl, cinnolinyl, quinazolinyl, or phthalazinyl, each of which is optionally substituted with one or more R A .
- a 2 is where X is O, S or N(R B ). T and R 2 can be attached to A 2 via any
- a 2 can be or
- R 2 can be -N(R B )C(O)C(R 5 R 6 )N(R 8 )-T-R D , where R 5 is R c (e.g., hydrogen) and R 6 and R 8 , taken together with the atoms to which they are attached, form a 5- to 6-membered heterocyclic ring which is optionally substituted with one or more R A .
- R 6 and R 8 taken together with the
- atoms to which they are attached can form, without limitation, or each of which is independently optionally substituted with one or more R A , where n is 0, 1 or 2, and m is 1 or 2.
- R A Two adjacent R A , taken together with the atoms to which they are attached, can form a C 5 -C 6 carbocycle or a 5- to 6-membered heterocycle.
- -T-R D preferably is -C(O)-Ls- Ri 2 or -C(O)-L S — M'-L s — Ri 2 , where Ri 2 is (i) hydrogen, (ii) Ci-C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, -O-Rs, -S-Rs, -N(R s Rs ), - OC(O)Rs, -C(O)ORs, nitro, phosphate, oxo, thioxo, formyl or cyano, or (iii) C 3 -Ci 0 carbocyclyl or 3- to 10-membered heterocyclyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from Ci-C 6 alkyl, C 2 -C 6 alkeny
- -T-R D can also be, without limitation, -L s -(C3-C 1 ocarbocyclyl) or - L s -(3- to 10-membered heterocyclyl), where said C 3 -C 10 carbocyclyl and 3- to 10-membered heterocyclyl are each independently optionally substituted with one or more substituents selected from C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, R s (except hydrogen), halogen, -O-R B , -S-R B , - N(R B R B ), -OC(O)R B , -C(O)OR B , nitro, phosphate, oxo, thioxo, formyl or cyano.
- -T-R D can be, without limitation, -L S -R E , -C(O)-L S -R E , -C
- R 2 is , , or , where n is 0, 1 or 2, m is 1 or 2, and k is 0, 1, 2, 3 or 4.
- Two adjacent R A taken together with the atoms to which they are attached, can form a C 5 -C 6 carbocycle or a 5- to 6-membered heterocycle.
- Ri 2 can be, without limitation, -L T -N(R B )-L TT -R E , -L T -N(R B )C(O)-L TT -R E , or -L T -N(R B )C(O)-L TT -R E , wherein L ⁇ and L ⁇ are each independently selected from (i) a bond, or (ii) C 1 -C 6 alkylene, C 2 - C 6 alkenylene, or C 2 -C 6 alkynylene, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, C 3 -C 10 carbocyclyl, 3- to 10- membered heterocyclyl, -O-R s , -S-Rs, -N(R S R S ), -OC(O)Rs, -C(O)ORs, nitro, phosphate, oxo, thioxo,
- Ri 2 is -L ⁇ -N(R B )-L ⁇ -R s , -L ⁇ -N(R B )C(O)-L ⁇ -R s , or -L ⁇ - N(R B )C(O)-L TT — Rs, where L ⁇ and L ⁇ are as defined immediately above.
- Ri 2 can also be, without limitation, -L S -R E , such as -Ls-O-Rs, -Ls-S-Rs, or -L s -N(R s Rs').
- Ri 2 can be, without limitation, -L s -(C 3 -C 1 ocarbocyclyl) or -L s -(3- to 10-membered heterocyclyl), where said C 3 - C 1 ocarbocyclyl and 3- to 10-membered heterocyclyl are each independently optionally substituted with one or more substituents selected from C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 1 -C 6 alkynyl, R s (except hydrogen), halogen, -O-R B , -S-R B , -N(R B R B ), -OC(O)R B , -C(O)OR B , nitro, phosphate, oxo, thioxo, formyl or cyano.
- R 2 can also be where R 5 is Rc (e.g., hydrogen), and R 6 and R 8 , taken together with the atoms to which they are attached, form a 5- to 6-membered heterocyclic ring which is optionally substituted with one or more R A .
- R 6 and Rg taken together with the
- atoms to which they are attached can form, without limitation, 5 , 5 5 each of which is optionally substituted with one or more R A , where n is 0, 1 or 2, and m is 1 or 2.
- R A Two adjacent R A , taken together with the atoms to which they are attached, can form a C 5 -C 6 carbocycle or a 5- to 6-membered heterocycle.
- -T-R D " can be, without limitation, -C(O)-L 8 -R 12 or -C(O)-L S — M'-L s — R 12 , where R 12 is (i) hydrogen, (ii) C 1 -C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, -O-Rs, -S-Rs, - N(R S R S '), -OC(O)Rs, -C(O)ORs, nitro, phosphate, oxo, thioxo, formyl or cyano, or (iii) C 3 - C 1 ocarbocyclyl or 3- to 10-membered heterocyclyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from CrC 6 alkyl, C 2
- -T-R D can also be , without limitation, -L S -(C 3 - C 10 carbocyclyl) or -L s -(3- to 10-membered heterocyclyl), where said C 3 -C 10 CaAoCyCIyI and 3- to 10- membered heterocyclyl are each independently optionally substituted with one or more substituents selected from C 1 -C 6 alkyl, C 2 -C6alkenyl, C 2 -C6alkynyl, R s (except hydrogen), halogen, -0-R B , -S-R B , -N(R B R B ') J -OC(O)R B , -C(O)OR B , nitro, phosphate, oxo, thioxo, formyl or cyano.
- -T- R D - can be, without limitation, -L S -R E , -C(O)-L S -R E
- R 2 is where n is 0, 1 or 2, m is 1 or 2, k is 0, 1, 2, 3 or 4.
- Two adjacent R A taken together with the atoms to which they are attached, can form a C 5 -C 6 carbocycle or a 5- to 6-membered heterocycle.
- R 12 can be, without limitation, -L ⁇ -N(R B )-L ⁇ -R E , -L T -N(R B )C(O)-L TT -R E , or -L T -N(R B )C(O)-L TT -R E , wherein L ⁇ and L ⁇ are each independently selected from (i) a bond, or (ii) CrC 6 alkylene, C 2 - C 6 alkenylene, or C 2 -C6alkynylene, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, C 3 -C 10 CaAoCyCIyI, 3- to 10- membered heterocyclyl, -O-R s , -S-Rs, -N(R S R S ), -OC(O)Rs, -C(O)ORs, nitro, phosphate, oxo, thioxo, for
- R 12 is -L ⁇ -N(R B )-L ⁇ -R s , -L ⁇ -N(R B )C(O)-L ⁇ -R s , or -L ⁇ - N(R B )C(O)-L TT —R S , where L ⁇ and L ⁇ are as defined immediately above.
- R 12 can also be, without limitation, -L S -R E , such as -Ls-O-Rs, -Ls-S-Rs, or -L s -N(R s Rs )• I n addition, R 12 can be, without limitation, -L s -(C 3 -C 10 carbocyclyl) or -L s -(3- to 10-membered heterocyclyl), where said C 3 - C 1 ocarbocyclyl and 3- to 10-membered heterocyclyl are each independently optionally substituted with one or more substituents selected from CrC 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, R s (except hydrogen), halogen, -O-R B , -S-R B , -N(R B R B ), -OC(O)R B , -C(O)OR B , nitro, phosphate, oxo,
- R 2 can be, without limitation, -L ⁇ -B, where B is C3-C 1 ocarbocycle or 3- to 10- membered heterocycle, and is optionally substituted with one or more R A .
- B is C3-C 1 ocarbocycle or 3- to 10- membered heterocycle, and is optionally substituted with one or more R A .
- suitable B include
- R A taken together with the atoms to which they are attached, can form a C 5 -C 6 carbocycle or a 5- to 6-
- suitable B include 5 ; s s s s or where n is 0, 1, 2, 3 or 4, m is 0, 1, 2 or 3, V is -C(O)- or -S(O) 2 -, and R 12 is -R s , -
- R 2 is , where n is 0, 1, 2, 3 or 4, and two adjacent R A , taken together with the atoms to which they are attached, can form a C 5 -C 6 carbocycle or a 5- to 6- membered heterocycle.
- R 2 can also be, without limitation, where R D and R D ' are independently selected from (i) C 1 -C 6 alkyl, CrC 6 alkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, -O-R s , -S-Rs, - N(R S R S ), -OC(O)Rs, -C(O)ORs, nitro, phosphate, oxo, thioxo, formyl or cyano; (ii) -L s -C3- C 1 ocarbocyclyl or -L s -(3- to 10-membered heterocyclyl), each of which is optionally substituted with one or more substituents selected from C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, R s (except hydrogen), hal
- T can be selected, without limitation, from the following moieties:
- R and R* are independently hydrogen or C 1 -C 6 alkyl
- R' and R" are independently C 1 -C 6 alkyl or C 6 -C 10 aryl.
- T is selected from Table 4 described below.
- T is -L S -N(R T )-L S .- (e.g., -CH 2 -N(Rx)-CH 2 -), or -L s -C(R ⁇ R ⁇ ')-Ls- (e.g., -CH 2 -C(R T R T ')-CH 2 -).
- R T is C r C 6 alkyl, C 2 -C 6 alkenyl, or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, -O-R s , -S-R s , -N(R S R S ), -OC(O)Rs, -C(O)ORs, nitro, phosphate, oxo, thioxo, formyl or cyano; or R ⁇ is C 3 -C 6 carbocyclyl, C3-C6carbocyclylC 1 -C 6 alkyl, 3- to 6-membered heterocyclyl, or (3- or 6-membered heterocyclyl)C 1 -C 6 alkyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C
- R r is R A , and preferably R r is hydrogen.
- L s , L s -, R A , R B , R B -, RS, and Rs- are as defined above.
- a 2 is 5- to 10-membered carbocycle or heterocycle (e.g., phenyl, pyrazinyl, pyridinyl, pyrimidinyl, pyridazinyl, oxazolyl, thiazolyl, thienyl, furanyl, imidazolyl, pyrazolyl, triazolyl, benzoxazolyl, benzothienyl, benzimidazolyl, benzofuranyl, benzothiazolyl, indolyl, indenyl, naphthalenyl, quinolinyl, isoquinolinyl, quinoxalinyl, cinnolinyl, quinazolinyl, or phthalazinyl) and is optional
- a 2 is 5- to 6-membered carbocycle or heterocycle (e.g., phenyl), and is optionally substituted with one or more R A ;
- Xi is selected from -CH 2 -, -O-, or -S-;
- R 7 is selected from 5- to 6-membered carbocycles or heterocycles, and is optionally substituted with one or more R A ;
- Zi is -N(R B )- (e.g., -NH- or -N(C 1 -C6alkyl)-
- Wi, W 2 , and W 5 are N, and We is C(R F ); Ri is hydrogen; R 7 is phenyl, and is optionally substituted with one or more R A ; and Rg, Rn, and R F are each independently selected at each occurrence from hydrogen; halogen; C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 - C 6 carbocyclyl, or C 3 -C6carbocyclylC 1 -C6alkyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, phosphate, oxo, thioxo, formyl or cyano.
- Rg is C 1 -C 6 alkyl, CrC 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 6 carbocyclyl (e.g., C 3 -C 6 cycloalkyl), or C 3 -C 6 carbocyclyC 1 -C 6 alkyl (e.g., C 3 - C 6 cycloalkylC 1 -C 6 alkyl), each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, phosphate, oxo, thioxo, formyl or cyano; and Rn and R F are hydrogen.
- Zi can be -N(R B )- (e.g., - NH- or -N(C 1 -C 6 alkyl)-);
- Xi is -CH 2 -, -O-, or -S-; and
- a 2 can be 5- to 10-membered carbocycle or heterocycle (e.g., phenyl, pyrazinyl, pyridinyl, pyrimidinyl, pyridazinyl, oxazolyl, thiazolyl, thienyl, furanyl, imidazolyl, pyrazolyl, triazolyl, benzoxazolyl, benzothienyl, benzimidazolyl, benzofuranyl, benzothiazolyl, indolyl, indenyl, naphthalenyl, quinolinyl, isoquinolinyl, quinoxalinyl, cinnolinyl, quinazolinyl
- Ri 3 is C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 - C 6 carbocyclyl, CrC 6 carbocyclylC 1 -Cealkyl, 3- to 6-membered heterocyclyl, or (3- or 6-membered heterocyclyl)C 1 -C 6 alkyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, -O-R B , -S-R B , -N(R B R B ), -OC(O)R B , - C(O)OR B , nitro, phosphate, oxo, thioxo, formyl or cyano; and X is O, S, NH or N(C 1 -C 6 alkyl).
- the compounds of the present invention can be used in the form of salts.
- a salt of a compound may be advantageous due to one or more of the salt's physical properties, such as enhanced pharmaceutical stability under certain conditions or desired solubility in water or oil.
- a salt of a compound may be useful for the isolation or purification of the compound.
- salt preferably is pharmaceutically acceptable.
- Pharmaceutically acceptable salts include, but are not limited to, acid addition salts, base addition salts, and alkali metal salts.
- Pharmaceutically acceptable acid addition salts may be prepared from inorganic or organic acids.
- suitable inorganic acids include, but are not limited to, hydrochloric, hydrobromic acid, hydroionic, nitric, carbonic, sulfuric, and phosphoric acid.
- suitable organic acids include, but are not limited to, aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclyl, carboxylic, and sulfonic classes of organic acids.
- suitable organic acids include acetate, trifluoroacetate, formate, propionate, succinate, glycolate, gluconate, digluconate, lactate, malate, tartaric acid, citrate, ascorbate, glucuronate, maleate, fumarate, pyruvate, aspartate, glutamate, benzoate, anthranilic acid, mesylate, stearate, salicylate, p-hydroxybenzoate, phenylacetate, mandelate, embonate (pamoate), methanesulfonate, ethanesulfonate, benzenesulfonate, pantothenate, toluenesulfonate, 2-hydroxyethanesulfonate, sufanilate, cyclohexylaminosulfonate, algenic acid, b- hydroxybutyric acid, galactarate, galacturonate, adipate, alginate, bisulfate, but
- Pharmaceutically acceptable base addition salts include, but are not limited to, metallic salts and organic salts.
- suitable metallic salts include alkali metal (group Ia) salts, alkaline earth metal (group Ha) salts, and other pharmaceutically acceptable metal salts.
- Such salts may be made, without limitation, from aluminum, calcium, lithium, magnesium, potassium, sodium, or zinc.
- suitable organic salts can be made from tertiary amines and quaternary amine, such as tromethamine, diethylamine, N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine), and procaine.
- Basic nitrogen-containing groups can be quaternized with agents such as alkyl halides (e.g., methyl, ethyl, propyl, butyl, decyl, lauryl, myristyl, and stearyl chlorides/bromides/iodides), dialkyl sulfates (e.g., dimethyl, diethyl, dibuytl, and diamyl sulfates), aralkyl halides (e.g., benzyl and phenethyl bromides), and others.
- alkyl halides e.g., methyl, ethyl, propyl, butyl, decyl, lauryl, myristyl, and stearyl chlorides/bromides/iodides
- dialkyl sulfates e.g., dimethyl, diethyl, dibuytl, and diamyl sulfates
- the compounds or salts of the present invention may exist in the form of solvates, such as with water (i.e., hydrates), or with organic solvents (e.g., with methanol, ethanol or acetonitrile to form, respectively, methanolate, ethanolate or acetonitrilate).
- solvates such as with water (i.e., hydrates), or with organic solvents (e.g., with methanol, ethanol or acetonitrile to form, respectively, methanolate, ethanolate or acetonitrilate).
- organic solvents e.g., with methanol, ethanol or acetonitrile to form, respectively, methanolate, ethanolate or acetonitrilate.
- the compounds or salts of the present invention may also be used in the form of prodrugs.
- prodrugs are aliphatic or aromatic esters derived from acidic groups on the compounds of the invention. Others are aliphatic or aromatic esters of hydroxyl or amino groups on the compounds of the invention. Phosphate prodrugs of hydroxyl groups are preferred prodrugs.
- the compounds of the invention may comprise asymmetrically substituted carbon atoms known as chiral centers. These compounds may exist, without limitation, as single stereoisomers (e.g., single enantiomers or single diastereomer), mixtures of stereoisomers (e.g. a mixture of enantiomers or diastereomers), or racemic mixtures. Compounds identified herein as single stereoisomers are meant to describe compounds that are present in a form that is substantially free from other stereoisomers (e.g., substantially free from other enantiomers or diastereomers).
- substantially free it means that at least 80% of the compound in a composition is the described stereoisomer; preferably, at least 90% of the compound in a composition is the described stereoisomer; and more preferably, at least 95%, 96%, 97%, 98% or 99% of the compound in a composition is the described stereoisomer.
- the stereochemistry of a chiral carbon is not specified in the chemical structure of a compound, the chemical structure is intended to encompass compounds containing either stereoisomer of the chiral center.
- Individual stereoisomers of the compounds of this invention can be prepared using a variety of methods known in the art.
- These methods include, but are not limited to, stereospecific synthesis, chromatographic separation of diastereomers, chromatographic resolution of enantiomers, conversion of enantiomers in an enantiomeric mixture to diastereomers followed by chromatographically separation of the diastereomers and regeneration of the individual enantiomers, and enzymatic resolution.
- Stereospecific synthesis typically involves the use of appropriate optically pure (enantiomerically pure) or substantial optically pure materials and synthetic reactions that do not cause racemization or inversion of stereochemistry at the chiral centers.
- Mixtures of stereoisomers of compounds, including racemic mixtures, resulting from a synthetic reaction may be separated, for example, by chromatographic techniques as appreciated by those of ordinary skill in the art. Chromatographic resolution of enantiomers can be accomplished by using chiral chromatography resins, many of which are commercially available.
- racemate is placed in solution and loaded onto the column containing a chiral stationary phase. Enantiomers can then be separated by HPLC.
- Resolution of enantiomers can also be accomplished by converting enantiomers in a mixture to diastereomers by reaction with chiral auxiliaries.
- the resulting diastereomers can be separated by column chromatography or crystallization/re-crystallization. This technique is useful when the compounds to be separated contain a carboxyl, amino or hydroxyl group that will form a salt or covalent bond with the chiral auxiliary.
- suitable chiral auxiliaries include chirally pure amino acids, organic carboxylic acids or organosulfonic acids.
- Enzymes such as esterases, phosphatases or lipases, can be useful for the resolution of derivatives of enantiomers in an enantiomeric mixture.
- an ester derivative of a carboxyl group in the compounds to be separated can be treated with an enzyme which selectively hydrolyzes only one of the enantiomers in the mixture.
- the resulting enantiomerically pure acid can then be separated from the unhydrolyzed ester.
- salts of enantiomers in a mixture can be prepared using any method known in the art, including treatment of the carboxylic acid with a suitable optically pure base such as alkaloids or phenethylamine, followed by precipitation or crystallization/re-crystallization of the enantiomerically pure salts.
- a suitable optically pure base such as alkaloids or phenethylamine
- Methods suitable for the resolution/separation of a mixture of stereoisomers, including racemic mixtures can be found in ENANTIOMERS, RACEMATES, AND RESOLUTIONS (Jacques et al, 1981, John Wiley and Sons, New York, NY).
- a compound of this invention may possess one or more unsaturated carbon-carbon double bonds. All double bond isomers, such as the cis (Z) and trans (E) isomers, and mixtures thereof are intended to be encompassed within the scope of a recited compound unless otherwise specified. In addition, where a compound exists in various tautomeric forms, a recited compound is not limited to any one specific tautomer, but rather is intended to encompass all tautomeric forms.
- Certain compounds of the invention may exist in different stable conformational forms which may be separable. Torsional asymmetry due to restricted rotations about an asymmetric single bond, for example because of steric hindrance or ring strain, may permit separation of different conformers.
- the compounds of the invention includes each conformational isomer of these compounds and mixtures thereof.
- Certain compounds of the invention may also exist in zwitterionic form and the invention includes each zwitterionic form of these compounds and mixtures thereof.
- the compounds of the present invention are generally described herein using standard nomenclature. For a recited compound having asymmetric center(s), it should be understood that all of the stereoisomers of the compound and mixtures thereof are encompassed in the present invention unless otherwise specified. Non-limiting examples of stereoisomers include enantiomers, diastereomers, and cis-transisomers. Where a recited compound exists in various tautomeric forms, the compound is intended to encompass all tautomeric forms. Certain compounds are described herein using general formulas that include variables (e.g., Ai, A 2 , Zi, T, R B , or R A ).
- each variable within such a formula is defined independently of any other variable, and any variable that occurs more than one time in a formula is defined independently at each occurrence. If moieties are described as being "independently" selected from a group, each moiety is selected independently from the other. Each moiety therefore can be identical to or different from the other moiety or moieties.
- C x -C y The number of carbon atoms in a hydrocarbyl moiety can be indicated by the prefix "C x -C y ,” where x is the minimum and y is the maximum number of carbon atoms in the moiety.
- C 1 -C 6 alkyl refers to an alkyl substituent containing from 1 to 6 carbon atoms.
- C 3 -C 6 cycloalkyl means a saturated hydrocarbyl ring containing from 3 to 6 carbon ring atoms.
- a prefix attached to a multiple-component substituent only applies to the first component that immediately follows the prefix.
- the term "carbocyclylalkyl” contains two components: carbocyclyl and alkyl.
- C 5 -CecarbocyclylC 1 -C 6 alkyl refers to a C 5 -C 6 carbocyclyl appended to the parent molecular moiety through a C 1 -C 6 alkyl group.
- the leftmost-described component of the linking element is the component that is bound to the left element in the depicted structure.
- the chemical structure is Ai-T-A 2 and T is described as -N(R B )S(O)-, then the chemical will A 1 -N(R B )-S(O)-A 2 .
- a linking element in a depicted structure is a bond, then the left element in the depicted structure is joined directly to the right element in the depicted structure.
- a moiety is described as being “optionally substituted", the moiety may be either substituted or unsubstituted. If a moiety is described as being optionally substituted with up to a particular number of non-hydrogen radicals, that moiety may be either unsubstituted, or substituted by up to that particular number of non-hydrogen radicals or by up to the maximum number of substitutable positions on the moiety, whichever is less. Thus, for example, if a moiety is described as a heterocycle optionally substituted with up to three non-hydrogen radicals, then any heterocycle with less than three substitutable positions will be optionally substituted by up to only as many non- hydrogen radicals as the heterocycle has substitutable positions.
- alkenyl means a straight or branched hydrocarbyl chain containing one or more double bonds. Each carbon-carbon double bond may have either cis or trans geometry within the alkenyl moiety, relative to groups substituted on the double bond carbons.
- Non-limiting examples of alkenyl groups include ethenyl (vinyl), 2-propenyl, 3-propenyl, 1 ,4-pentadienyl, 1 ,4-butadienyl, 1-butenyl, 2-butenyl, and 3-butenyl.
- alkenylene refers to a divalent unsaturated hydrocarbyl chain which may be linear or branched and which has at least one carbon-carbon double bond.
- alkyl means a straight or branched saturated hydrocarbyl chain.
- alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t- butyl, pentyl, iso-amyl, and hexyl.
- alkylene denotes a divalent saturated hydrocarbyl chain which may be linear or branched.
- Representative examples of alkylene include, but are not limited to, -CH 2 -, -CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 -, and -CH 2 CH(CH 3 )CH 2 -.
- alkynyl means a straight or branched hydrocarbyl chain containing one or more triple bonds.
- Non- limiting examples of alkynyl include ethynyl, 1-propynyl, 2-propynyl, 3-propynyl, decynyl, 1-butynyl, 2-butynyl, and 3-butynyl.
- alkynylene refers to a divalent unsaturated hydrocarbon group which may be linear or branched and which has at least one carbon-carbon triple bonds.
- Carbocycle or “carbocyclic” or “carbocyclyl” refers to a saturated (e.g., “cycloalkyl"), partially saturated (e.g., “cycloalkenyl” or “cycloalkynyl") or completely unsaturated (e.g., "aryl”) ring system containing zero heteroatom ring atom.
- Ring atoms or “ring members” are the atoms bound together to form the ring or rings.
- a carbocyclyl may be, without limitation, a single ring, two fused rings, or bridged or spiro rings.
- a substituted carbocyclyl may have either cis or trans geometry.
- carbocyclyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclopentenyl, cyclopentadienyl, cyclohexadienyl, adamantyl, decahydro-naphthalenyl, octahydro-indenyl, cyclohexenyl, phenyl, naphthyl, indanyl, 1,2,3,4-tetrahydro-naphthyl, indenyl, isoindenyl, decalinyl, and norpinanyl.
- a carbocyclyl group can be attached to the parent molecular moiety through any substitutable carbon ring atom.
- a carbocyclyl group is a divalent moiety, such as Ai and A 2 in Formula I, it can be attached to the remaining molecular moiety through any two substitutable ring atoms.
- Carbocyclylalkyl refers to a carbocyclyl group appended to the parent molecular moiety through an alkylene group.
- C 3 -C 6 carbocyclylC 1 -C 6 alkyl refers to a C 3 - C 6 carbocyclyl group appended to the parent molecular moiety through C 1 -C 6 alkylene.
- cycloalkenyl refers to a non-aromatic, partially unsaturated carbocyclyl moiety having zero heteroatom ring member. Representative examples of cycloalkenyl groups include, but are not limited to, cyclobutenyl, cyclopentenyl, cyclohexenyl, and octahydronaphthalenyl.
- cycloalkyl refers to a saturated carbocyclyl group containing zero heteroatom ring member.
- Non-limiting examples of cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, decalinyl and norpinanyl.
- C 1 -Cehaloalkyl means a C 1 -C 6 alkyl substituent wherein one or more hydrogen atoms are replaced with independently selected halogen radicals.
- Non- limiting examples of C 1 -C 6 haloalkyl include chloromethyl, 1 -bromoethyl, fluoromethyl, difluoromethyl, trifluoromethyl, and 1,1,1 -trifluoroethyl. It should be recognized that if a substituent is substituted by more than one halogen radical, those halogen radicals may be identical or different (unless otherwise stated).
- heterocycle or “heterocyclo” or “heterocyclyl” refers to a saturated (e.g., “heterocycloalkyl"), partially unsaturated (e.g., “heterocycloalkenyl” or “heterocycloalkynyl”) or completely unsaturated (e.g., “heteroaryl”) ring system where at least one of the ring atoms is a heteroatom (i.e., nitrogen, oxygen or sulfur), with the remaining ring atoms being independently selected from the group consisting of carbon, nitrogen, oxygen and sulfur.
- a heterocyclyl group can be linked to the parent molecular moiety via any substitutable carbon or nitrogen atom(s) in the group. Where a heterocyclyl group is a divalent moiety, such as Ai and A 2 in Formula I, it can be attached to the remaining molecular moiety through any two substitutable ring atoms.
- a heterocyclyl may be, without limitation, a monocycle which contains a single ring.
- monocycles include furanyl, dihydrofuranyl, tetrahydrofuranyl, pyrrolyl, isopyrrolyl, pyrrolinyl, pyrrolidinyl, imidazolyl, isoimidazolyl, imidazolinyl, imidazolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, triazolyl, tetrazolyl, dithiolyl, oxathiolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiazolinyl, isothiazolinyl, thiazolidinyl, isothiazolidinyl, thiodiazolyl, oxathiazolyl, oxadiazolyl (including 1,2,3-oxadiazolyl
- a heterocyclyl may also be, without limitation, a bicycle containing two fused rings, such as, for example, naphthyridinyl (including [1,8] naphthyridinyl, and [1,6] naphthyridinyl), thiazolpyrimidinyl, thienopyrimidinyl, pyrimidopyrimidinyl, pyridopyrimidinyl, pyrazolopyrimidinyl, indolizinyl, pyrindinyl, pyranopyrrolyl, 4H-quinolizinyl, purinyl, pyridopyridinyl (including pyrido[3,4-b]-pyridinyl, pyrido[3,2-b]-pyridinyl, and pyrido[4,3-b]-pyridinyl), pyridopyrimidine, and pteridinyl.
- naphthyridinyl including [1,8]
- fused-ring heterocycles include benzo-fused heterocyclyls, such as indolyl, isoindolyl, indoleninyl (also known as “pseudoindolyl”), isoindazolyl (also known as “benzpyrazolyl”), benzazinyl (including quinolinyl (also known as “ 1 -benzazinyl”) and isoquinolinyl (also known as “2-benzazinyl”)), phthalazinyl, quinoxalinyl, benzodiazinyl (including cinnolinyl (also known as “1,2-benzodiazinyl”) and quinazolinyl (also known as "1,3- benzodiazinyl”)), benzopyranyl (including “chromenyl” and “isochromenyl”), benzothiopyranyl (also known as “thiochromenyl”), benzoxazolyl, indoxazinyl (also known as "ps
- a heterocyclyl may comprise one or more sulfur atoms as ring members; and in some cases, the sulfur atom(s) is oxidized to SO or SO 2 .
- the nitrogen heteroatom(s) in a heterocyclyl may or may not be quaternized, and may or may not be oxidized to N-oxide. In addition, the nitrogen heteroatom(s) may or may not be N-protected.
- pharmaceutically acceptable is used adjectivally to mean that the modified noun is appropriate for use as a pharmaceutical product or as a part of a pharmaceutical product.
- prodrug refers to derivatives of the compounds of the invention which have chemically or metabolically cleavable groups and become, by solvolysis or under physiological conditions, the compounds of the invention which are pharmaceutically active in vivo.
- a prodrug of a compound may be formed in a conventional manner by reaction of a functional group of the compound (such as an amino, hydroxy or carboxy group).
- Prodrugs often offer advantages of solubility, tissue compatibility, or delayed release in mammals (see, Bungard, H., DESIGN OF PRODRUGS, pp. 7-9, 21-24, Elsevier, Amsterdam 1985).
- Prodrugs include acid derivatives well known to practitioners of the art, such as, for example, esters prepared by reaction of the parent acidic compound with a suitable alcohol, or amides prepared by reaction of the parent acid compound with a suitable amine.
- Examples of prodrugs include, but are not limited to, acetate, formate, benzoate or other acylated derivatives of alcohol or amine functional groups within the compounds of the invention.
- solvate refers to the physical association of a compound of this invention with one or more solvent molecules, whether organic or inorganic. This physical association often includes hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate” encompasses both solution-phase and isolable solvates. Exemplary solvates include, but are not limited to, hydrates, ethanolates, and methanolates.
- N-protecting group or “N-protected” refers to those groups capable of protecting an amino group against undesirable reactions. Commonly used N-protecting groups are described in Greene and Wuts, PROTECTING GROUPS IN CHEMICAL SYNTHESIS (3 rd ed., John Wiley & Sons, NY (1999).
- N-protecting groups include acyl groups such as formyl, acetyl, propionyl, pivaloyl, t-butylacetyl, 2-chloroacetyl, 2-bromoacetyl, trifluoroacetyl, trichloroacetyl, phthalyl, o-nitrophenoxyacetyl, benzoyl, 4-chlorobenzoyl, 4-bromobenzoyl, or 4-nitrobenzoyl; sulfonyl groups such as benzenesulfonyl or p-toluenesulfonyl; sulfenyl groups such as phenylsulfenyl (phenyl-S-) or triphenylmethylsulfenyl (trityl-S-); sulfinyl groups such as p-methylphenylsulfinyl (p- methylphenyl-S(O)-)
- N-protecting groups include formyl, acetyl, benzoyl, pivaloyl, t-butylacetyl, phenylsulfonyl, benzyl, t-butyloxycarbonyl (Boc) and benzyloxycarbonyl (Cbz).
- the compounds of the present invention can be prepared by coupling a compound of Formula IV to a compound of Formula V as showed in Scheme I, where Ai, A 2 , Zi, Wi, W 2 , Ri, R 2 , R3, R 4 , and T are as defined hereinabove.
- Compounds of Formula IV can be prepared according to the processes described in U.S. Patent Application Publication Nos.
- the compounds of the present invention can be prepared by coupling a compound of Formula IV to a compound of Formula V as shown in Scheme II, where T 1 is a carboxylic acid as shown or an activated derivative such as an acid chloride or an activated ester (e.g., N-hydroxysuccinimide or pentafluorophenyl esters), and T 2 is an amine or substituted amine.
- Amide bond coupling reagents such as DCC, EDAC, PyBOP, and HATU may be employed with the option of adding an amine base such as triethylamine or Hunig's base in a solvent such as DMF, DMSO, THF, or dichloromethane.
- the compounds of the present invention can be prepared by coupling a compound of Formula IV to a compound of Formula V as shown in Scheme III, where Ti and T 2 are carboxylic acids or activated derivatives such as acid chlorides or activated esters (e.g., N- hydroxysuccinimide or pentafluorophenyl esters) by reaction with an amine or substituted amine as shown.
- Amide bond coupling reagents such as DCC, EDAC, PyBOP, and HATU may be employed with the option of adding an amine base such as triethylamine or Hunig's base in a solvent such as DMF, DMSO, THF, or dichloromethane.
- Couplings may be conducted concurrently to give symmetric products or sequentially to give non-symmetric products.
- R B and R B - are as defined hereinabove, and -C(O)N(R B )-T'-N(R B )C(O)- is T.
- the compounds of the present invention can be prepared by coupling a compound of Formula IV to a compound of Formula V as shown in Scheme IV, where Ti and T 2 are independently boronic acids or esters as shown by reaction with heterocyclic or carbocyclic halides (iodide shown in Scheme IV) or triflates and a transition metal catalyst.
- T' is a heterocyclic or carbocyclic, and R can be, without limitation, independently selected at each occurrence from hydrogen or L A , and L A is as defined hereinabove.
- alkyl stannanes such as a tributyl- or trimethylstannanes
- Pd catalysts such as Pd(PPh 3 ) 4 or Pd(dppf)Cl 2 may be employed or generated in situ using a Pd (II) catalyst such Pd(OAc) 2 or Pd 2 (dba) 3 and organophosphorous ligands, such as PPh 3 or P(t-Bu) 3 .
- Reactions may be conducted with addition of a base such K 2 CO 3 or K 3 PO 4 in a solvent such as THF or DMF. Couplings may be conducted concurrently to give symmetric products or sequentially to give non-symmetric products.
- the compounds of the present invention can be prepared by coupling a compound of Formula IV to a compound of Formula V as shown in Scheme V, where Ti and T 2 are halides (iodide as shown) by reaction with an alkyne, where R may be trimethylsilyl (TMS) or another suitable protecting group, by Sonogashira reaction using a suitable catalyst.
- Pd catalysts such as Pd(PPh 3 ) 4 or Pd(dppf)Cl 2 may be employed or generated in situ using a Pd (II) catalyst such Pd(OAc) 2 or Pd 2 (dba) 3 and organophosphorous ligands, such as PPh 3 or P(t-Bu) 3 .
- a Cu (I) catalyst may be employed, such as Cu (I) iodide.
- Reactions may be conducted with addition of a base such K 2 CO 3 or K 3 PO 4 or an amine base such as triethylamine or Hunig's base in a solvent such as THF or DMF.
- the TMS protecting group may be removed using a base such as K 2 CO 3 in a solvent such as methanol or THF.
- a second Sonogashira reaction with V may be conducted under the analogous conditions to the first coupling. Couplings may be conducted concurrently to give symmetric products or sequentially to give non-symmetric products.
- the compounds of the present invention can be prepared by coupling a compound of Formula IV to a compound of Formula V as shown in Scheme VI.
- Formula IV and V are both aldehydes, and can be reacted with an amine to form Formula VI (step 1) by reductive amination using a suitable reducing agent such as NaCNBH 3 or NaBH(OAc) 3 , in a solvent such as THF or ethanol with or without the addition of acetic acid.
- R may be, without limitation, C 1 -C 6 alkyl such as tert-buyl or isopropyl, C 6 -C 1 ocarbocycle such as phenyl, or 6- to 10- membered heterocycle.
- R may be a protecting group, such as benzyl or 2,4-dimethoxy benzyl, which may be removed from VI using hydrogenolysis or by treatment with an acid, such as TFA or HCl.
- V may contain an alkyl halide, such as the bromide shown, and reacted with the product of reductive amination (step 2) of aldehyde IV with the amine to form VI (step 3).
- the alkylation using halide V may be conducted in the presence of a base, such as NaH, NaOH, Hunig's base, or NaHMDS in a solvent such as THF or DMF.
- the halide and nitro substituted compounds VI may be reacted with alkyl, aryl, or heteroaryl alcohols, thiols, phenols, or thiophenols using a base such as K 2 CO 3 or Hunig's base in a solvent such as THF or DMF.
- Nitro groups may be reduced to amino groups, using Pd or Raney Ni catalyzed hydrogenation or using Fe in the presence of NH 4 Cl, HCl, or acetic acid, and further functionalized to compounds I using the processes described in U.S. Patent Application Publication Nos.
- T is -CH 2 -N(R)-CH 2 - or -CH2-NH-CH2-.
- the compounds of Formula I can be directly prepared from or an activated derivative thereof.
- the compounds of the present invention can be prepared from a compound of Formula VI as shown in Scheme VII, which can be prepared through Schemes I-V by substituting chloro and/or nitro for IV and V.
- the halide and nitro substituted compounds VI may be reacted with alkyl, aryl, or heteroaryl alcohols, thiols, phenols, or thiophenols using a base such as K 2 CO 3 or Hunig's base in a solvent such as THF or DMF.
- Nitro groups may be reduced to amino groups, using Pd or Raney Ni catalyzed hydrogenation or using Fe in the presence of NH 4 Cl, HCl, or acetic acid, and further functionalized to compounds I using the processes described in U.S. Patent Application Publication Nos. 20070232627, 20070197558 and 20070232645, and WO2008/133753, as well as those described in WO2004014313, WO2004014852, WO2006133326, WO2007070556, WO2007070600, WO2008021927, WO2008021928, WO2008021936, WO2008064218, and WO2008070447.
- a moiety described herein e.g., -NH 2 or -OH
- the moiety may be protected with a suitable protecting group that is stable to the reaction conditions used in the methods.
- the protecting group may be removed at a suitable point in the reaction sequence to provide a desired intermediate or target compound.
- Suitable protecting groups and methods for protecting or deprotecting moieties are well know in the art, examples of which can be found in Greene and Wuts, supra.
- Optimum reaction conditions and reaction times for each individual step may vary depending on the particular reactants employed and substituents present in the reactants used. Solvents, temperatures and other reaction conditions may be readily selected by one of ordinary skill in the art based on the present invention. It should be understood that the above-described embodiments and schemes and the following examples are given by way of illustration, not limitation. Various changes and modifications within the scope of the present invention will become apparent to those skilled in the art from the present description.
- aqueous LiOH prepared from LiOH monohydrate (1.02 g, 24 mmol) and H 2 O (10 mL)] dropwise at room temperature. The mixture was stirred at room temperature for 26 hours, and then evaporated. The aqueous mixture was diluted with 100 mL of H 2 O, washed with ethyl acetate (50 mL), and then carefully acidified to pH 4-5 with 10% HCl at 5 °C under stirring. The resulting solid was collected by filtration, washed with H 2 O, and dried at 60 °C overnight under reduced pressure gave the title compound as pale yellow crystal (3.09 g, 98% yield).
- Example IG 0.545 g, 1.52 mmol
- dichloromethane 15 mL
- trifluoroacetic acid 2.34 mL, 30.4 mmol
- the solution was stirred for 16 hours then concentrated and azeotroped with toluene twice to give an orange waxy solid TFA salt (0.367 g, 65%).
- Phenyl acetic acid (0.066 mL, 0.53 mmol). The solution was stirred for 16 hours, then diluted with water and the product was filtered off and purified by combi-flash 12g column, eluting with 0-5% methanol in dichloromethane to give a solid (0.137 g, 75%).
- Example IK To a solution of the Product of Example IK (0.092 g, 0.11 mmol) in tetrahydrofuran (1 mL) was added 4 M HCl in dioxane (1 mL, 4.2 mol) at ambient temperature. After stirred for four hours, the solid HCl salt of the product was filtered off and taken up in a small amount of methanol and added to a NaHC03 solution. The free amine was extracted into ethyl acetate, concentrated and purified by combi-flash 12g column, eluting with 0-10% Methanol in dichloromethane to give a yellow solid (0.035 g, 43%).
- Example 2 4-(4-aminophenylthio)-N-(4-(2-((S)- 1 -((R)-2-(dimethylamino)-2-phenylacetyl)pyrrolidin-2-yl)- 1H- imidazol-4-yl)phenyl)-3-(7-isopropylpyrido[2,3-d]pyrimidin-4-ylamino)benzamide
- Example 2B The Product of Example 2B (0.21 g, 0.50 mmol) was processed in the same manner as in Example IJ to give a waxy solid (0.085 g, 44%).
- Example 2C A solution of the Product of Example 2C (0.081 g, 0.21 mmol) and the product from Example IE (0.10 g, 0.188 mmol) was processed in the same manner as in Example IK to give a solid (0.094 g, 55%).
- Example 2D The Product of Example 2D (0.094 g, 0.10 mmol) was processed in the same manner as in
- Example IL to give a yellow solid (0.016 g, 19%).
- Example IE The product from Example IE (0.15 g, 0.28 mmol) and the Product from Example 3B (0.134 I, 0.395 mmol) were processed in the same manner as Example IK to give a solid (0.155g, 64%).
- Example 3C The Product of Example 3C (0.094 g, 0.10 mmol) was processed in the same manner as in Example IL to give a yellow solid (0.045 g, 33%).
- Example 3C The Product of Example 3C (0.094 g, 0.10 mmol) was processed in the same manner as in Example IL to give this product as a yellow solid (0.014 g, 12%).
- Table 3 a and Table 3b respectively; and T is selected from Table 4.
- h may also be selected from Table 5.
- the inhibitory activities of the compounds of the present invention can be evaluated using a variety of assays known in the art.
- two stable subgenomic replicon cell lines can be used for compound characterization in cell culture: one derived from genotype la-H77 and the other derived from genotype lb-Conl.
- the replicon constructs can be bicistronic subgenomic replicons.
- the genotype Ia replicon construct contains NS3-NS5B coding region derived from the H77 strain of HCV (la-H77).
- the replicon also has a firefly luciferase reporter and a neomycin phosphotransferase (Neo) selectable marker.
- These two coding regions comprise the first cistron of the bicistronic replicon construct, with the second cistron containing the NS3-NS5B coding region with addition of adaptive mutations.
- the lb-Conl replicon construct is identical to the la-H77 replicon, except that the NS3-NS5B coding region is derived from the lb-Conl strain, and that the replicon contains different adaptive mutations.
- Replicon cell lines can be maintained in Dulbecco's modified Eagles medium (DMEM) containing 10% (v/v) fetal bovine serum (FBS), 100 IU/ml penicillin, 100 mg/ml streptomycin (Invitrogen), and 200 mg/ml G418 (Invitrogen).
- DMEM Dulbecco's modified Eagles medium
- FBS fetal bovine serum
- penicillin 100 IU/ml bovine serum
- streptomycin Invitrogen
- G418 Invitrogen
- the inhibitory effects of the compounds of the invention on HCV replication can be determined by measuring activity of the luciferase reporter gene.
- replicon-containing cells can be seeded into 96 well plates at a density of 5000 cells per well in 100 ⁇ l DMEM containing 5% FBS.
- the following day compounds can be diluted in dimethyl sulfoxide (DMSO) to generate a 20Ox stock in a series of eight half-log dilutions.
- the dilution series can then be further diluted 100-fold in the medium containing 5% FBS.
- Medium with the inhibitor is added to the overnight cell culture plates already containing 100 ⁇ l of DMEM with 5% FBS.
- the medium from the overnight cell culture plates can be replaced with DMEM containing 40% human plasma and 5% FBS.
- the cells can be incubated for three days in the tissue culture incubators and are then lysed for RNA extraction.
- 30 ⁇ l of Passive Lysis buffer (Promega) can be added to each well, and then the plates are incubated for 15 minutes with rocking to lyse the cells.
- Luciferin solution 100 ⁇ l, Promega
- luciferase activity can be measured with a Victor II luminometer (Perkin- Elmer).
- the percent inhibition of HCV RNA replication can be calculated for each compound concentration and the IC 50 and/or EC 50 value can be calculated using nonlinear regression curve fitting to the 4-parameter logistic equation and GraphPad Prism 4 software.
- representative compounds of the present invention inhibited HCV replicon replication with IC 50 values in the range of from about 0.1 nM to about 100 ⁇ M.
- IC 50 refers to 50% inhibitory concentration.
- Cytotoxicity of the compounds of the present invention can also be evaluated using methods known in the art. When tested, the TC 50 values of representative compounds of the present invention were often greater than the corresponding IC 50 values of the compounds. TC 50 refers to 50% toxicity concentration.
- Table 6 lists the IC 50 values of the compounds of Examples 1-18 when tested using HCV replicons. Table 6
- the present invention also features pharmaceutical compositions comprising the compounds of the invention.
- a pharmaceutical composition of the present invention can comprise one or more compounds of the invention, each of which has a formula independently selected from selected from Formulae I, II or III.
- compositions comprising pharmaceutically acceptable salts, solvates, or prodrugs of the compounds of the invention.
- pharmaceutically acceptable salts can be zwitterions or derived from pharmaceutically acceptable inorganic or organic acids or bases.
- a pharmaceutically acceptable salt retains the biological effectiveness of the free acid or base of the compound without undue toxicity, irritation, or allergic response, has a reasonable benefit/risk ratio, is effective for the intended use, and is not biologically or otherwise undesirable.
- compositions comprising a compound of the invention (or a salt, solvate or prodrug thereof) and another therapeutic agent.
- these other therapeutic agents can be selected from antiviral agents (e.g., anti-HIV agents, anti-HBV agents, or other anti-HCV agents such as HCV protease inhibitors, HCV polymerase inhibitors, HCV helicase inhibitors, IRES inhibitors or NS5A inhibitors), anti-bacterial agents, anti-fungal agents, immunomodulators, anti-cancer or chemotherapeutic agents, anti- inflammation agents, antisense RNA, siRNA, antibodies, or agents for treating cirrhosis or inflammation of the liver.
- antiviral agents e.g., anti-HIV agents, anti-HBV agents, or other anti-HCV agents such as HCV protease inhibitors, HCV polymerase inhibitors, HCV helicase inhibitors, IRES inhibitors or NS5A inhibitors
- anti-bacterial agents e.g., anti-fungal agents, immuno
- these other therapeutic agents include, but are not limited to, ribavirin, ⁇ -interferon, ⁇ -interferon, pegylated interferon- ⁇ , pegylated interferon-lambda, ribavirin, viramidine, R-5158, nitazoxanide, amantadine, Debio-025, NIM-811, R7128, R1626, R4048, T-1106, PSI-7851, PF-00868554, ANA-598, IDXl 84, IDXl 02, IDX375, GS-9190, VCH-759, VCH-916, MK-3281, BCX-4678, MK-3281, VBY708, ANA598, GL59728, GL60667, BMS-790052, BMS-791325, BMS-650032, GS-9132, ACH- 1095, AP-H005, A-831, A-689, AZD2836, telapre
- a pharmaceutical composition of the present invention comprises one or more compounds of the present invention (or salts, solvates or prodrugs thereof), and one or more other antiviral agents.
- a pharmaceutical composition of the present invention comprises one or more compounds of the present invention (or salts, solvates or prodrugs thereof), and one or more other anti-HCV agents.
- a pharmaceutical composition of the present invention can comprise a compounds of the present invention having Formula I, II or III (or (or a salts, solvate or prodrug thereof), and an agent selected from HCV polymerase inhibitors (including nucleoside or non-nucleoside type of polymerase inhibitors), HCV protease inhibitors, HCV helicase inhibitors, CD81 inhibitors, cyclophilin inhibitors, IRES inhibitors, or NS5A inhibitors.
- a pharmaceutical composition of the present invention comprises one or more compounds of the present invention (or salts, solvates or prodrugs thereof), and one or more other antiviral agents, such as anti-HBV, anti-HIV agents, or anti-hepatitis A, anti-hepatitis D, anti-hepatitis E or anti-hepatitis G agents.
- anti-HBV agents include adefovir, lamivudine, and tenofovir.
- Non-limiting examples of anti-HIV drugs include ritonavir, lopinavir, indinavir, nelf ⁇ navir, saquinavir, amprenavir, atazanavir, tipranavir, TMC-114, fosamprenavir, zidovudine, lamivudine, didanosine, stavudine, tenofovir, zalcitabine, abacavir, efavirenz, nevirapine, delavirdine, TMC-125, L-870812, S-1360, enfuvirtide, T- 1249, or other HIV protease, reverse transcriptase, integrase or fusion inhibitors. Any other desirable antiviral agents can also be included in a pharmaceutical composition of the present invention, as appreciated by those skilled in the art.
- a pharmaceutical composition of the present invention typically includes a pharmaceutically acceptable carrier or excipient.
- suitable pharmaceutically acceptable carriers/excipients include sugars (e.g., lactose, glucose or sucrose), starches (e.g., corn starch or potato starch), cellulose or its derivatives (e.g., sodium carboxymethyl cellulose, ethyl cellulose or cellulose acetate), oils (e.g., peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil or soybean oil), glycols (e.g., propylene glycol), buffering agents (e.g., magnesium hydroxide or aluminum hydroxide), agar, alginic acid, powdered tragacanth, malt, gelatin, talc, cocoa butter, pyrogen-free water, isotonic saline, Ringer's solution, ethanol, or phosphate buffer solutions.
- Lubricants, coloring agents, releasing agents, coating agents, sweetening
- compositions of the present invention can be formulated based on their routes of administration using methods well known in the art.
- a sterile injectable preparation can be prepared as a sterile injectable aqueous or oleagenous suspension using suitable dispersing or wetting agents and suspending agents.
- Suppositories for rectal administration can be prepared by mixing drugs with a suitable nonirritating excipient such as cocoa butter or polyethylene glycols which are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drugs.
- Solid dosage forms for oral administration can be capsules, tablets, pills, powders or granules.
- the active compounds can be admixed with at least one inert diluent such as sucrose lactose or starch.
- Solid dosage forms may also comprise other substances in addition to inert diluents, such as lubricating agents.
- the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.
- Liquid dosage forms for oral administration can include pharmaceutically acceptable emulsions, solutions, suspensions, syrups or elixirs containing inert diluents commonly used in the art.
- Liquid dosage forms may also comprise wetting, emulsifying, suspending, sweetening, flavoring, or perfuming agents.
- compositions of the present invention can also be administered in the form of liposomes, as described in U.S. Patent No. 6,703,403.
- Formulation of drugs that are applicable to the present invention is generally discussed in, for example, Hoover, John E., REMINGTON'S PHARMACEUTICAL SCIENCES (Mack Publishing Co., Easton, PA: 1975), and Lachman, L., eds., PHARMACEUTICAL DOSAGE FORMS (Marcel Decker, New York, N.Y., 1980).
- Any compound described herein, or a pharmaceutically acceptable salt thereof, can be used to prepared pharmaceutical compositions of the present invention.
- the present invention further features methods of using the compounds of the present invention (or salts, solvates or prodrugs thereof) to inhibit HCV replication.
- the methods comprise contacting cells infected with HCV virus with an effective amount of a compound of the present invention (or a salt, solvate or prodrug thereof), thereby inhibiting the replication of HCV virus in the cells.
- inhibiting means significantly reducing, or abolishing, the activity being inhibited (e.g., viral replication).
- representative compounds of the present invention can reduce the replication of HCV virus (e.g., in an HCV replicon assay as described above) by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or more.
- the compounds of the present invention may inhibit all HCV subtypes.
- HCV subtypes that are amenable to the present invention include, but are not be limited to, HCV genotypes 1, 2, 3, 4, 5 and 6, including HCV genotypes Ia, Ib, 2a, 2b, 2c or 3a.
- a compound or compounds of the present invention (or salts, solvates or prodrugs thereof) are used to inhibit the replication of HCV genotype 1 a.
- a compound or compounds of the present invention or salts, solvates or prodrugs thereof
- a compound or compounds of the present invention are used to inhibit the replication of HCV genotype Ib.
- a compound or compounds of the present invention (or salts, solvates or prodrugs thereof) are used to inhibit the replication of both HCV genotypes 1 a and Ib.
- the present invention also features methods of using the compounds of the present invention
- the methods typically comprise administering a therapeutic effective amount of a compound of the present invention (or a salt, solvate or prodrug thereof), or a pharmaceutical composition comprising the same, to an HCV patient, thereby reducing the HCV viral level in the blood or liver of the patient.
- treating refers to reversing, alleviating, inhibiting the progress of, or preventing the disorder or condition, or one or more symptoms of such disorder or condition to which such term applies.
- treatment refers to the act of treating.
- the methods comprise administering a therapeutic effective amount of two or more compounds of the present invention (or salts, solvates or prodrugs thereof), or a pharmaceutical composition comprising the same, to an HCV patient, thereby reducing the HCV viral level in the blood or liver of the patient.
- a compound of the present invention (or a salt, solvate or prodrug thereof) can be administered as the sole active pharmaceutical agent, or in combination with another desired drug, such as other anti-HCV agents, anti-HIV agents, anti-HBV agents, anti-hepatitis A agents, anti- hepatitis D agents, anti-hepatitis E agents, anti-hepatitis G agents, or other antiviral drugs. Any compound described herein, or a pharmaceutically acceptable salt thereof, can be employed in the methods of the present invention.
- a compound of the present invention (or a salt, solvent or prodrug thereof) can be administered to a patient in a single dose or divided doses.
- a typical daily dosage can range, without limitation, from 0.1 to 200 mg/kg body weight, such as from 0.25 to 100 mg/kg body weight.
- Single dose compositions can contain these amounts or submultiples thereof to make up the daily dose.
- each dosage contains a sufficient amount of a compound of the present invention that is effective in reducing the HCV viral load in the blood or liver of the patient.
- the amount of the active ingredient, or the active ingredients that are combined, to produce a single dosage form may vary depending upon the host treated and the particular mode of administration.
- the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, rate of excretion, drug combination, and the severity of the particular disease undergoing therapy.
- the present invention further features methods of using the pharmaceutical compositions of the present invention to treat HCV infection.
- the methods typically comprise administering a pharmaceutical composition of the present invention to an HCV patient, thereby reducing the HCV viral level in the blood or liver of the patient. Any pharmaceutical composition described herein can be used in the methods of the present invention.
- the present invention features use of the compounds or salts of the present invention for the manufacture of medicaments for the treatment of HCV infection. Any compound described herein, or a pharmaceutically acceptable salt thereof, can be used to make medicaments of the present invention.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Virology (AREA)
- Public Health (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Molecular Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Priority Applications (10)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009801522561A CN102264737A (zh) | 2008-12-23 | 2009-12-22 | 抗病毒化合物 |
| SG2011046240A SG172352A1 (en) | 2008-12-23 | 2009-12-22 | Anti-viral compounds |
| JP2011542569A JP2012513409A (ja) | 2008-12-23 | 2009-12-22 | 抗ウイルス化合物 |
| CA2740193A CA2740193A1 (en) | 2008-12-23 | 2009-12-22 | Anti-viral compounds |
| HK12100025.5A HK1159619B (en) | 2008-12-23 | 2009-12-22 | Anti-viral derivatives of pyrimidine |
| ES09796254.2T ES2567047T3 (es) | 2008-12-23 | 2009-12-22 | Derivados de pirimidina anti-virales |
| MX2011006332A MX2011006332A (es) | 2008-12-23 | 2009-12-22 | Compuestos antivirales. |
| EP09796254.2A EP2367824B1 (en) | 2008-12-23 | 2009-12-22 | Anti-viral derivatives of pyrimidine |
| RU2011130833/04A RU2505540C2 (ru) | 2008-12-23 | 2009-12-22 | Антивирусные соединения |
| ZA2011/05355A ZA201105355B (en) | 2008-12-23 | 2011-07-20 | Anti-viral compounds |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14026208P | 2008-12-23 | 2008-12-23 | |
| US61/140,262 | 2008-12-23 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2010075376A2 true WO2010075376A2 (en) | 2010-07-01 |
| WO2010075376A3 WO2010075376A3 (en) | 2010-09-30 |
Family
ID=42169497
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2009/069177 Ceased WO2010075376A2 (en) | 2008-12-23 | 2009-12-22 | Anti-viral compounds |
Country Status (11)
| Country | Link |
|---|---|
| US (2) | US8541424B2 (enExample) |
| EP (1) | EP2367824B1 (enExample) |
| JP (1) | JP2012513409A (enExample) |
| CN (1) | CN102264737A (enExample) |
| CA (1) | CA2740193A1 (enExample) |
| ES (1) | ES2567047T3 (enExample) |
| MX (1) | MX2011006332A (enExample) |
| RU (1) | RU2505540C2 (enExample) |
| SG (1) | SG172352A1 (enExample) |
| WO (1) | WO2010075376A2 (enExample) |
| ZA (1) | ZA201105355B (enExample) |
Cited By (150)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8138215B2 (en) | 2009-05-29 | 2012-03-20 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8143414B2 (en) | 2009-04-13 | 2012-03-27 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8143301B2 (en) | 2009-04-09 | 2012-03-27 | Bristol Myers Squibb Company | Hepatitis C virus inhibitors |
| US8211928B2 (en) | 2009-05-29 | 2012-07-03 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8362020B2 (en) | 2009-12-30 | 2013-01-29 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8377980B2 (en) | 2009-12-16 | 2013-02-19 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8394968B2 (en) | 2009-02-17 | 2013-03-12 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8486938B2 (en) | 2010-06-24 | 2013-07-16 | Gilead Sciences, Inc. | Pyrazolo[1,5-a]pyrimidines for antiviral treatment |
| US8541424B2 (en) | 2008-12-23 | 2013-09-24 | Abbott Laboratories | Anti-viral compounds |
| US8546405B2 (en) | 2008-12-23 | 2013-10-01 | Abbott Laboratories | Anti-viral compounds |
| US8552047B2 (en) | 2011-02-07 | 2013-10-08 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| WO2013178362A1 (en) | 2012-05-31 | 2013-12-05 | Phenex Pharmaceuticals Ag | Carboxamide or sulfonamide substituted thiazoles and related derivatives as modulators for the orphan nuclear receptor ror[gamma] |
| US8618153B2 (en) | 2009-11-12 | 2013-12-31 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8648079B2 (en) | 2011-10-07 | 2014-02-11 | Takeda Pharmaceutical Company Limited | Heterocyclic compounds |
| WO2014023367A1 (en) | 2012-08-09 | 2014-02-13 | Phenex Pharmaceuticals Ag | Carboxamide or sulfonamide substituted nitrogen-containing 5-membered heterocycles as modulators for the orphan nuclear receptor ror gamma |
| US8686026B2 (en) | 2010-06-10 | 2014-04-01 | Abbvie Inc. | Solid compositions |
| US8691938B2 (en) | 2009-06-11 | 2014-04-08 | Abbvie Inc. | Anti-viral compounds |
| US8716454B2 (en) | 2009-06-11 | 2014-05-06 | Abbvie Inc. | Solid compositions |
| US8796466B2 (en) | 2009-03-30 | 2014-08-05 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8815271B2 (en) | 2010-11-03 | 2014-08-26 | Dow Agrosciences, Llc. | Pesticidal compositions and processes related thereto |
| US8901153B2 (en) | 2012-04-27 | 2014-12-02 | Dow Agrosciences, Llc. | Pesticidal compositions and processes related thereto |
| US8937150B2 (en) | 2009-06-11 | 2015-01-20 | Abbvie Inc. | Anti-viral compounds |
| US8946238B2 (en) | 2011-12-22 | 2015-02-03 | Gilead Sciences, Inc. | Pyrazolo[1,5-A]pyrimidines as antiviral agents |
| US8980878B2 (en) | 2012-04-17 | 2015-03-17 | Gilead Sciences, Inc. | Compounds and methods for antiviral treatment |
| WO2015038596A1 (en) | 2013-09-11 | 2015-03-19 | Emory University | Nucleotide and nucleoside compositions and uses related thereto |
| US9006455B2 (en) | 2009-11-11 | 2015-04-14 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US9024031B1 (en) | 2014-08-19 | 2015-05-05 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9029556B1 (en) | 2014-07-31 | 2015-05-12 | Dow Argosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9029554B1 (en) | 2013-10-17 | 2015-05-12 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9029555B1 (en) | 2014-07-31 | 2015-05-12 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9034832B2 (en) | 2011-12-29 | 2015-05-19 | Abbvie Inc. | Solid compositions |
| US9044017B2 (en) | 2013-10-17 | 2015-06-02 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9067922B2 (en) | 2013-04-19 | 2015-06-30 | Pfizer Limited | Chemical compounds |
| US9085564B2 (en) | 2013-10-17 | 2015-07-21 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9085552B1 (en) | 2014-09-12 | 2015-07-21 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9102654B2 (en) | 2013-10-17 | 2015-08-11 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9102655B2 (en) | 2013-10-17 | 2015-08-11 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9108946B2 (en) | 2013-10-17 | 2015-08-18 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9108950B2 (en) | 2011-10-03 | 2015-08-18 | Respivert, Ltd. | 1-pyrazolyl-3-(4-((2-anilinopyrimidin-4-yl)oxy)napththalen-1-yl) ureas as p38 MAP kinase inhibitors |
| US9137998B2 (en) | 2013-10-22 | 2015-09-22 | Dow Agrosciences Llc | Pesticidal compositions and related methods |
| US9144241B2 (en) | 2013-10-22 | 2015-09-29 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9149040B2 (en) | 2013-10-22 | 2015-10-06 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9156831B2 (en) | 2013-01-23 | 2015-10-13 | Astrazeneca Ab | Chemical compounds |
| US9174962B2 (en) | 2013-10-17 | 2015-11-03 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9199964B1 (en) | 2014-07-31 | 2015-12-01 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9249125B2 (en) | 2012-08-29 | 2016-02-02 | Respivert Limited | Pyrazole derivatives as p38 MAP inhibitors |
| US9278922B2 (en) | 2009-04-15 | 2016-03-08 | Abbvie Inc. | Anti-viral compounds |
| US9282739B2 (en) | 2012-04-27 | 2016-03-15 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
| US9282740B2 (en) | 2013-10-22 | 2016-03-15 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9295258B2 (en) | 2013-10-22 | 2016-03-29 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9295260B2 (en) | 2013-10-22 | 2016-03-29 | Dow Agrosciences Llc | Pesticidal compositions and related methods |
| US9326973B2 (en) | 2012-01-13 | 2016-05-03 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US9333204B2 (en) | 2014-01-03 | 2016-05-10 | Abbvie Inc. | Solid antiviral dosage forms |
| US9394279B2 (en) | 2009-06-11 | 2016-07-19 | Abbvie Inc. | Anti-viral compounds |
| US9445597B2 (en) | 2013-10-22 | 2016-09-20 | Dow Agrosciences Llc | Pesticidal compositions and related methods |
| US9475796B2 (en) | 2011-10-03 | 2016-10-25 | Respivert Limited | 1-pyrazolyl-3-((4-((2-anilinopyrimidin-4-yl) oxy) napththalen-1-yl) ureas as p38 MAP kinase inhibitors |
| US9474276B2 (en) | 2013-10-22 | 2016-10-25 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9491944B2 (en) | 2013-10-22 | 2016-11-15 | Dow Agrosciences Llc | Pesticidal compositions and related methods |
| US9497966B2 (en) | 2013-10-22 | 2016-11-22 | Dow Agrosciences Llc | Pesticidal compositions and related methods |
| US9497967B2 (en) | 2013-10-22 | 2016-11-22 | Doe AgroSciences LLC | Synergistic pesticidal compositions and related methods |
| US9518064B2 (en) | 2012-04-26 | 2016-12-13 | Bristol-Myers Squibb Company | Imidazothiadiazole and imidazopyridazine derivatives as protease activated receptor 4 (PAR4) inhibitors for treating platelet aggregation |
| US9546160B2 (en) | 2011-05-12 | 2017-01-17 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US9546156B2 (en) | 2012-11-13 | 2017-01-17 | Array Biopharma Inc. | N-bicyclic aryl,N'-pyrazolyl urea, thiourea, guanidine cyanoguanidine compounds as TrkA kinase inhibitors |
| US9549560B2 (en) | 2013-10-22 | 2017-01-24 | Dow Agrosciences Llc | Pesticidal compositions and related methods |
| US9562055B2 (en) | 2011-05-13 | 2017-02-07 | Array Biopharma Inc. | Pyrrolidinyl urea, pyrrolidinyl thiourea and pyrrolidinyl guanidine compounds as TrkA kinase inhibitors |
| US9598419B1 (en) | 2014-06-24 | 2017-03-21 | Universite De Montreal | Imidazotriazine and imidazodiazine compounds |
| US9598422B2 (en) | 2014-11-05 | 2017-03-21 | Flexus Biosciences, Inc. | Immunoregulatory agents |
| US9617279B1 (en) | 2014-06-24 | 2017-04-11 | Bristol-Myers Squibb Company | Imidazooxadiazole compounds |
| US9643972B2 (en) | 2014-11-05 | 2017-05-09 | Flexus Biosciences, Inc. | Immunoregulatory agents |
| US9655365B2 (en) | 2011-10-26 | 2017-05-23 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
| US9663529B2 (en) | 2013-07-02 | 2017-05-30 | Bristol-Myers Squibb Company | Tricyclic pyrido-carboxamide derivatives as rock inhibitors |
| US9688695B2 (en) | 2012-04-26 | 2017-06-27 | Bristol-Myers Squibb Company | Imidazothiadiazole and imidazopyrazine derivatives as protease activated receptor 4 (PAR4) inhibitors for treating platelet aggregation |
| US9701670B2 (en) | 2012-08-17 | 2017-07-11 | Respivert Limited | Pyrazolyl-ureas as kinase inhibitors |
| US9708288B2 (en) | 2012-04-27 | 2017-07-18 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
| US9717712B2 (en) | 2013-07-02 | 2017-08-01 | Bristol-Myers Squibb Company | Combinations comprising tricyclohexadecahexaene derivatives for use in the treatment of hepatitis C virus |
| US9770439B2 (en) | 2013-07-02 | 2017-09-26 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US9775831B2 (en) | 2013-07-17 | 2017-10-03 | Bristol-Myers Squibb Company | Combinations comprising biphenyl derivatives for use in the treatment of HCV |
| US9776981B2 (en) | 2009-11-11 | 2017-10-03 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US9788546B2 (en) | 2013-10-22 | 2017-10-17 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9790210B2 (en) | 2012-11-13 | 2017-10-17 | Array Biopharma Inc. | N-(monocyclic aryl),N'-pyrazolyl-urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors |
| US9790178B2 (en) | 2012-11-13 | 2017-10-17 | Array Biopharma Inc. | Pyrrolidinyl urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors |
| US9788545B2 (en) | 2013-10-22 | 2017-10-17 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9801376B2 (en) | 2013-10-22 | 2017-10-31 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9801383B2 (en) | 2013-10-22 | 2017-10-31 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| WO2017189978A1 (en) | 2016-04-28 | 2017-11-02 | Emory University | Alkyne containing nucleotide and nucleoside therapeutic compositions and uses related thereto |
| US9809578B2 (en) | 2012-11-13 | 2017-11-07 | Array Biopharma Inc. | Pyrazolyl urea, thiourea, guanidine and cyanoguanidine compounds as trkA kinase inhibitors |
| US9808008B2 (en) | 2013-10-22 | 2017-11-07 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9822118B2 (en) | 2012-11-13 | 2017-11-21 | Array Biopharma Inc. | Bicyclic heteroaryl urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors |
| US9828360B2 (en) | 2012-11-13 | 2017-11-28 | Array Biopharma Inc. | Pyrrolidinyl urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors |
| US9850233B2 (en) | 2013-03-14 | 2017-12-26 | Respivert Limited | Kinase inhibitors |
| US9862730B2 (en) | 2012-04-26 | 2018-01-09 | Bristol-Myers Squibb Company | Imidazothiadiazole derivatives as protease activated receptor 4 (PAR4) inhibitors for treating platelet aggregation |
| US9896435B2 (en) | 2012-11-13 | 2018-02-20 | Array Biopharma Inc. | N-pyrrolidinyl,N′-pyrazolyl-urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors |
| US9914740B2 (en) | 2013-07-02 | 2018-03-13 | Bristol-Myers Squibb Company | Tricyclic pyrido-carboxamide derivatives as rock inhibitors |
| US9932314B2 (en) | 2014-06-03 | 2018-04-03 | Idorsia Pharmaceuticals Ltd | Pyrazole compounds and their use as T-type calcium channel blockers |
| US9951069B1 (en) | 2017-01-11 | 2018-04-24 | Rodin Therapeutics, Inc. | Bicyclic inhibitors of histone deacetylase |
| US9969694B2 (en) | 2012-11-13 | 2018-05-15 | Array Biopharma Inc. | N-(arylalkyl)-N′-pyrazolyl-urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors |
| US9981959B2 (en) | 2012-11-13 | 2018-05-29 | Array Biopharma Inc. | Thiazolyl and oxazolyl urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors |
| US10100033B2 (en) | 2016-12-29 | 2018-10-16 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US10118920B2 (en) | 2015-04-20 | 2018-11-06 | Cellcentric Ltd | Isoxazolyl substituted benzimidazoles |
| US10201541B1 (en) | 2011-05-17 | 2019-02-12 | Abbvie Inc. | Compositions and methods for treating HCV |
| US10233155B2 (en) | 2016-12-29 | 2019-03-19 | Dow Agrosciences Llc | Processes for the preparation of pesticide compounds |
| US10246426B2 (en) | 2014-09-15 | 2019-04-02 | Idorsia Pharmaceuticals Ltd | Triazole compounds as T-type calcium channel blockers |
| US10308644B2 (en) | 2016-12-22 | 2019-06-04 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US10351575B2 (en) | 2012-11-13 | 2019-07-16 | Array Biopharma Inc. | Bicyclic urea, thiourea, guanidine and cyanoguanidine compounds useful for the treatment of pain |
| US10421756B2 (en) | 2015-07-06 | 2019-09-24 | Rodin Therapeutics, Inc. | Heterobicyclic N-aminophenyl-amides as inhibitors of histone deacetylase |
| US10428065B2 (en) | 2015-04-20 | 2019-10-01 | Cellcentric Ltd | Isoxazolyl substituted imidazopyridines |
| US10618916B2 (en) | 2018-05-11 | 2020-04-14 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US10617675B2 (en) | 2015-08-06 | 2020-04-14 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US10669271B2 (en) | 2018-03-30 | 2020-06-02 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US10689347B2 (en) | 2015-06-04 | 2020-06-23 | Aurigene Discovery Technologies Limited | Substituted heterocyclyl derivatives as CDK inhibitors |
| US10793565B2 (en) | 2016-12-22 | 2020-10-06 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US10806785B2 (en) | 2016-12-22 | 2020-10-20 | Incyte Corporation | Immunomodulator compounds and methods of use |
| US10835533B2 (en) | 2014-05-15 | 2020-11-17 | Array Biopharma Inc. | 1 -((3S,4R)-4-(3-fluorophenyl)-1-(2-methoxyethyl)pyrrolidin-3-yl)-3-(4-methyl-3-(2-methylpyrimidin-5-yl)-1-phenyl-1H-pyrazol-5-yl)urea as a TrkA kinase inhibitor |
| US10849895B2 (en) | 2014-10-24 | 2020-12-01 | Landos Biopharma, Inc. | Lanthionine synthetase C-like 2-based therapeutics |
| US10899695B2 (en) | 2017-02-06 | 2021-01-26 | Idorsia Pharmaceuticals Ltd | Process for the synthesis of 1-aryl-1-trifluoromethylcyclopropanes |
| US10919902B2 (en) | 2015-07-06 | 2021-02-16 | Alkermes, Inc. | Hetero-halo inhibitors of histone deacetylase |
| US10987322B2 (en) | 2014-06-06 | 2021-04-27 | Flexus Biosciences, Inc. | Immunoregulatory agents |
| US11091447B2 (en) | 2020-01-03 | 2021-08-17 | Berg Llc | UBE2K modulators and methods for their use |
| US11117881B2 (en) | 2019-12-20 | 2021-09-14 | Landos Biopharma, Inc. | Lanthionine c-like protein 2 ligands, cells prepared therewith, and therapies using same |
| US11213517B2 (en) | 2016-12-16 | 2022-01-04 | Idorsia Pharmaceuticals Ltd | Pharmaceutical combination comprising a T-type calcium channel blocker |
| US11225475B2 (en) | 2017-08-07 | 2022-01-18 | Alkermes, Inc. | Substituted pyridines as inhibitors of histone deacetylase |
| US11242319B2 (en) | 2014-11-05 | 2022-02-08 | Flexus Biosciences, Inc. | Immunoregulatory agents |
| US11247987B2 (en) | 2017-10-06 | 2022-02-15 | Forma Therapeutics, Inc. | Inhibiting ubiquitin specific peptidase 30 |
| US11401279B2 (en) | 2019-09-30 | 2022-08-02 | Incyte Corporation | Pyrido[3,2-d]pyrimidine compounds as immunomodulators |
| US11407749B2 (en) | 2015-10-19 | 2022-08-09 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11440898B2 (en) | 2016-12-28 | 2022-09-13 | Minoryx Therapeutics S.L. | Isoquinoline compounds, methods for their preparation, and therapeutic uses thereof in conditions associated with the alteration of the activity of beta galactosidase |
| US11465981B2 (en) | 2016-12-22 | 2022-10-11 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11484534B2 (en) | 2013-03-14 | 2022-11-01 | Abbvie Inc. | Methods for treating HCV |
| US11535615B2 (en) | 2015-12-22 | 2022-12-27 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11535618B2 (en) | 2018-10-05 | 2022-12-27 | Forma Therapeutics, Inc. | Fused pyrrolines which act as ubiquitin-specific protease 30 (USP30) inhibitors |
| US11572366B2 (en) | 2015-11-19 | 2023-02-07 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11608337B2 (en) | 2016-05-06 | 2023-03-21 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11613536B2 (en) | 2016-08-29 | 2023-03-28 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11673883B2 (en) | 2016-05-26 | 2023-06-13 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11718605B2 (en) | 2016-07-14 | 2023-08-08 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11753406B2 (en) | 2019-08-09 | 2023-09-12 | Incyte Corporation | Salts of a PD-1/PD-L1 inhibitor |
| US11760756B2 (en) | 2020-11-06 | 2023-09-19 | Incyte Corporation | Crystalline form of a PD-1/PD-L1 inhibitor |
| US11780836B2 (en) | 2020-11-06 | 2023-10-10 | Incyte Corporation | Process of preparing a PD-1/PD-L1 inhibitor |
| US11866451B2 (en) | 2019-11-11 | 2024-01-09 | Incyte Corporation | Salts and crystalline forms of a PD-1/PD-L1 inhibitor |
| US11866434B2 (en) | 2020-11-06 | 2024-01-09 | Incyte Corporation | Process for making a PD-1/PD-L1 inhibitor and salts and crystalline forms thereof |
| US11873309B2 (en) | 2016-06-20 | 2024-01-16 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11878968B2 (en) | 2021-07-09 | 2024-01-23 | Plexium, Inc. | Aryl compounds and pharmaceutical compositions that modulate IKZF2 |
| US12012403B2 (en) | 2021-08-18 | 2024-06-18 | Chemocentryx, Inc. | Aryl sulfonyl compounds as CCR6 inhibitors |
| US12018016B2 (en) | 2021-08-18 | 2024-06-25 | Amgen Inc. | Aryl sulfonyl (hydroxy) piperidines as CCR6 inhibitors |
| US12037346B2 (en) | 2021-04-13 | 2024-07-16 | Nuvalent, Inc. | Amino-substituted heteroaryls for treating cancers with EGFR mutations |
| US12049466B2 (en) | 2018-05-17 | 2024-07-30 | Forma Therapeutics, Inc. | Fused bicyclic compounds useful as ubiquitin-specific peptidase 30 inhibitors |
| US12054477B2 (en) | 2021-09-15 | 2024-08-06 | Hua Medicine (Shanghai) Ltd. | Prodrug of pyrrolidone derivatives as glucokinase activator |
| US12180205B2 (en) | 2018-09-19 | 2024-12-31 | Biogen Ma Inc. | O-glycoprotein-2-acetamido-2-deoxy-3-d-glucopyranosidase inhibitors |
| US12234578B2 (en) | 2020-01-29 | 2025-02-25 | Wisconsin Alumni Research Foundation | Tannin composite fibers |
| US12466822B2 (en) | 2016-12-22 | 2025-11-11 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
Families Citing this family (54)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2370424A1 (en) | 2008-11-10 | 2011-10-05 | Vertex Pharmaceuticals Incorporated | Compounds useful as inhibitors of atr kinase |
| EP2376485B1 (en) | 2008-12-19 | 2017-12-06 | Vertex Pharmaceuticals Incorporated | Pyrazine derivatives useful as inhibitors of atr kinase |
| CN102791687B (zh) * | 2009-12-18 | 2015-02-11 | 北京凯因科技股份有限公司 | C型肝炎病毒复制的新型抑制剂 |
| EP2569286B1 (en) | 2010-05-12 | 2014-08-20 | Vertex Pharmaceuticals Inc. | Compounds useful as inhibitors of atr kinase |
| KR20130066633A (ko) | 2010-05-12 | 2013-06-20 | 버텍스 파마슈티칼스 인코포레이티드 | Atr 키나제의 억제제로서 유용한 화합물 |
| WO2011143399A1 (en) | 2010-05-12 | 2011-11-17 | Vertex Pharmaceuticals Incorporated | Compounds useful as inhibitors of atr kinase |
| JP2013526540A (ja) | 2010-05-12 | 2013-06-24 | バーテックス ファーマシューティカルズ インコーポレイテッド | Atrキナーゼ阻害剤として有用な化合物 |
| US8962631B2 (en) | 2010-05-12 | 2015-02-24 | Vertex Pharmaceuticals Incorporated | Compounds useful as inhibitors of ATR kinase |
| EP2569284B1 (en) | 2010-05-12 | 2015-07-08 | Vertex Pharmaceuticals Incorporated | 2-aminopyridine derivatives useful as inhibitors of atr kinase |
| WO2011163527A1 (en) | 2010-06-23 | 2011-12-29 | Vertex Pharmaceuticals Incorporated | Pyrrolo- pyrazine derivatives useful as inhibitors of atr kinase |
| WO2012138938A1 (en) | 2011-04-05 | 2012-10-11 | Vertex Pharmaceuticals Incorporated | Aminopyrazine compounds useful as inhibitors of tra kinase |
| US8822469B2 (en) | 2011-06-22 | 2014-09-02 | Vertex Pharmaceuticals Incorporated | Pyrrolo[2,3-B]pyrazines useful as inhibitors of ATR kinase |
| US9309250B2 (en) | 2011-06-22 | 2016-04-12 | Vertex Pharmaceuticals Incorporated | Substituted pyrrolo[2,3-b]pyrazines as ATR kinase inhibitors |
| US9096602B2 (en) | 2011-06-22 | 2015-08-04 | Vertex Pharmaceuticals Incorporated | Substituted pyrrolo[2,3-B]pyrazines as ATR kinase inhibitors |
| BR112014007690B1 (pt) | 2011-09-30 | 2022-10-04 | Vertex Pharmaceuticals Incorporated | Usos de inibidores de atr no tratamento de câncer pancreático e câncer de pulmão de células não pequenas |
| US8853217B2 (en) | 2011-09-30 | 2014-10-07 | Vertex Pharmaceuticals Incorporated | Compounds useful as inhibitors of ATR kinase |
| EP2751088B1 (en) | 2011-09-30 | 2016-04-13 | Vertex Pharmaceuticals Incorporated | Compounds useful as inhibitors of atr kinase |
| CN103987709B (zh) | 2011-09-30 | 2016-09-28 | 沃泰克斯药物股份有限公司 | 用于制备可用作atr激酶抑制剂的化合物的方法 |
| IN2014KN00943A (enExample) | 2011-09-30 | 2015-08-21 | Vertex Pharma | |
| US8841449B2 (en) | 2011-11-09 | 2014-09-23 | Vertex Pharmaceuticals Incorporated | Compounds useful as inhibitors of ATR kinase |
| WO2013071090A1 (en) | 2011-11-09 | 2013-05-16 | Vertex Pharmaceuticals Incorporated | Compounds useful as inhibitors of atr kinase |
| WO2013071093A1 (en) | 2011-11-09 | 2013-05-16 | Vertex Pharmaceuticals Incorporated | Pyrazine compounds useful as inhibitors of atr kinase |
| WO2013071094A1 (en) | 2011-11-09 | 2013-05-16 | Vertex Pharmaceuticals Incorporated | Compounds useful as inhibitors of atr kinase |
| US8846917B2 (en) | 2011-11-09 | 2014-09-30 | Vertex Pharmaceuticals Incorporated | Compounds useful as inhibitors of ATR kinase |
| EP3311816A1 (en) | 2012-04-05 | 2018-04-25 | Vertex Pharmaceuticals Incorporated | Compounds useful as inhibitors of atr kinase for the treatment of cancer |
| US8999632B2 (en) | 2012-10-04 | 2015-04-07 | Vertex Pharmaceuticals Incorporated | Method for measuring ATR inhibition mediated increases in DNA damage |
| EP2909202A1 (en) | 2012-10-16 | 2015-08-26 | Vertex Pharmaceuticals Incorporated | Compounds useful as inhibitors of atr kinase |
| PL3808749T3 (pl) | 2012-12-07 | 2023-07-10 | Vertex Pharmaceuticals Incorporated | Pirazolo[1,5-a]pirymidyny użyteczne jako inhibitory kinazy atr do leczenia chorób nowotworowych |
| JP2016512815A (ja) | 2013-03-15 | 2016-05-09 | バーテックス ファーマシューティカルズ インコーポレイテッドVertex Pharmaceuticals Incorporated | Atrキナーゼの阻害剤として有用な縮合ピラゾロピリミジン誘導体 |
| SG10201704327RA (en) | 2013-10-14 | 2017-06-29 | Eisai R&D Man Co Ltd | Selectively substituted quinoline compounds |
| MX363708B (es) | 2013-10-14 | 2019-03-29 | Eisai R&D Man Co Ltd | Compuestos de quinolina selectivamente sustituidos. |
| PL3077397T3 (pl) | 2013-12-06 | 2020-04-30 | Vertex Pharmaceuticals Inc. | Związek 2-amino-6-fluoro-n-[5-fluoro-pirydyn-3-ylo]pyrazolo [1,5-a]pirymidino-3-karboksamidu przydatny jako inhibitor kinazy atr, jego wytwarzanie, różne postacie stałe i ich radioznakowane pochodne |
| SG10201902206QA (en) | 2014-06-05 | 2019-04-29 | Vertex Pharma | Radiolabelled derivatives of a 2-amino-6-fluoro-n-[5-fluoro-pyridin-3-yl]- pyrazolo[1,5-a]pyrimidin-3-carboxamide compound useful as atr kinase inhibitor, the preparation of said compound and different solid forms thereof |
| PT3157566T (pt) | 2014-06-17 | 2019-07-11 | Vertex Pharma | Método para tratamento de cancro utilizando uma combinação de inibidores chk1 e atr |
| JP6578349B2 (ja) | 2014-08-11 | 2019-09-18 | アンジオン バイオメディカ コーポレーション | チトクロームp450阻害剤およびその使用 |
| HUE055662T2 (hu) | 2014-12-29 | 2021-12-28 | Us Health | Laktát-dehidrogenáz kismolekulás inhibitorai és alkalmazási eljárásai |
| CN107531631B (zh) | 2014-12-31 | 2021-09-03 | 安吉昂生物医药公司 | 用于治疗疾病的方法和药剂 |
| RU2768621C1 (ru) | 2015-09-30 | 2022-03-24 | Вертекс Фармасьютикалз Инкорпорейтед | Способ лечения рака с использованием комбинации повреждающих днк средств и ингибиторов atr |
| CN106279120A (zh) * | 2016-07-15 | 2017-01-04 | 谢阳 | 一种n‑芳基氨基甲酰基脯氨酸类化合物及其药物组合物和应用 |
| JOP20190080A1 (ar) | 2016-10-14 | 2019-04-11 | Bayer Pharma AG | مركبات مشتقة من 6-(1h-بيرازول-1-يل) بيريميدين-4- أمين مستبدل واستخداماتها |
| SG10202002990XA (en) | 2017-08-04 | 2020-05-28 | Skyhawk Therapeutics Inc | Methods and compositions for modulating splicing |
| SI3752501T1 (sl) | 2018-02-13 | 2023-08-31 | Gilead Sciences, Inc. | Inhibitorji pd-1/pd-l1 |
| WO2019168847A1 (en) | 2018-02-27 | 2019-09-06 | Incyte Corporation | Imidazopyrimidines and triazolopyrimidines as a2a / a2b inhibitors |
| CA3093130C (en) | 2018-04-19 | 2023-10-17 | Gilead Sciences, Inc. | Pd-1/pd-l1 inhibitors |
| US11168089B2 (en) | 2018-05-18 | 2021-11-09 | Incyte Corporation | Fused pyrimidine derivatives as A2A / A2B inhibitors |
| JOP20200342A1 (ar) | 2018-07-05 | 2020-12-30 | Incyte Corp | مشتقات بيرازين مدمجة كمثبطات a2a/a2b |
| SI3820572T1 (sl) | 2018-07-13 | 2023-12-29 | Gilead Sciences, Inc. | Inhibitorji pd-1/pd-l1 |
| JP7158577B2 (ja) | 2018-10-24 | 2022-10-21 | ギリアード サイエンシーズ, インコーポレイテッド | Pd-1/pd-l1阻害剤 |
| EP3886854A4 (en) | 2018-11-30 | 2022-07-06 | Nuvation Bio Inc. | Pyrrole and pyrazole compounds and methods of use thereof |
| TWI829857B (zh) | 2019-01-29 | 2024-01-21 | 美商英塞特公司 | 作為a2a / a2b抑制劑之吡唑并吡啶及三唑并吡啶 |
| KR20210135241A (ko) | 2019-02-05 | 2021-11-12 | 스카이호크 테라퓨틱스, 인코포레이티드 | 스플라이싱을 조절하는 방법 및 조성물 |
| KR20210135507A (ko) | 2019-02-06 | 2021-11-15 | 스카이호크 테라퓨틱스, 인코포레이티드 | 스플라이싱을 조절하는 방법 및 조성물 |
| US11180473B2 (en) | 2020-03-27 | 2021-11-23 | Landos Biopharma, Inc. | PLXDC2 ligands |
| CN117327000A (zh) * | 2023-10-07 | 2024-01-02 | 海南因瑞生物医药科技有限公司 | 一种联苯四氢吡咯化合物及其制备方法和用途 |
Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004014852A2 (en) | 2002-08-12 | 2004-02-19 | Bristol-Myers Squibb Company | Iminothiazolidinones as inhibitors of hcv replication |
| US6703403B2 (en) | 1995-06-29 | 2004-03-09 | Abbott Laboratories | Method for improving pharmacokinetics |
| WO2006133326A1 (en) | 2005-06-06 | 2006-12-14 | Bristol-Myers Squibb Company | Inhibitors of hcv replication |
| WO2007070600A2 (en) | 2005-12-12 | 2007-06-21 | Genelabs Technologies, Inc. | N-(5-membered heteroaromatic ring)-amido anti-viral compounds |
| WO2007070556A2 (en) | 2005-12-12 | 2007-06-21 | Genelabs Technologies, Inc. | N-(6-membered aromatic ring)-amido anti-viral compounds |
| US20070197558A1 (en) | 2005-12-21 | 2007-08-23 | Betebenner David A | Anti-viral compounds |
| US20070232645A1 (en) | 2005-12-21 | 2007-10-04 | Rockway Todd W | Anti-viral compounds |
| US20070232627A1 (en) | 2005-12-21 | 2007-10-04 | Betebenner David A | Anti-viral compounds |
| WO2008021928A2 (en) | 2006-08-11 | 2008-02-21 | Bristol-Myers Squibb Company | Hepatitis c virus inhibitors |
| WO2008021927A2 (en) | 2006-08-11 | 2008-02-21 | Bristol-Myers Squibb Company | Hepatitis c virus inhibitors |
| WO2008021936A2 (en) | 2006-08-11 | 2008-02-21 | Bristol-Myers Squibb Company | Hepatitis c virus inhibitors |
| WO2008064218A2 (en) | 2006-11-21 | 2008-05-29 | Smithkline Beecham Corporation | Amido anti-viral compounds |
| WO2008070447A2 (en) | 2006-11-21 | 2008-06-12 | Smithkline Beecham Corporation | Anti-viral compounds |
| WO2008133753A2 (en) | 2006-12-20 | 2008-11-06 | Abbott Laboratories | Anti-viral compounds |
Family Cites Families (168)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE75755C (de) | 1894-06-14 | DAHL & COMP, in Barmen | Verfahren zur Darstellung von aromatisch substituirten Amidodinaphtylmethanen. | |
| AU7044994A (en) | 1993-05-24 | 1994-12-20 | Nycomed Pharma | Hemoregulatory peptides |
| US5935982A (en) | 1997-02-28 | 1999-08-10 | The University Of North Carolina At Chapel Hill | Methods of treating retroviral infection and compounds useful therefor |
| US6235493B1 (en) | 1997-08-06 | 2001-05-22 | The Regents Of The University Of California | Amino acid substituted-cresyl violet, synthetic fluorogenic substrates for the analysis of agents in individual in vivo cells or tissue |
| EA200001208A1 (ru) | 1998-05-20 | 2001-06-25 | Эли Лилли Энд Компани | Противовирусные соединения |
| US6271390B1 (en) | 1998-05-22 | 2001-08-07 | Avanir Pharmaceuticals | Suppression of the IgE-dependent allergic response by benzimidazole analogs |
| US6369091B1 (en) | 1998-05-22 | 2002-04-09 | Avanir Pharmaceuticals | Benzimidazole analogs as down-regulators of IgE |
| US6919366B2 (en) | 1998-05-22 | 2005-07-19 | Avanir Pharmaceuticals | Benzimidazole derivatives as modulators of IgE |
| US6911462B2 (en) | 1998-05-22 | 2005-06-28 | Avanir Pharmaceuticals | Benzimidazole compounds for regulating IgE |
| US6387885B1 (en) | 1998-08-26 | 2002-05-14 | Abbott Laboratories | 3′,3′-N-bis-desmethyl-3′-N-cycloalkyl erythromycin derivatives as LHRH antagonists |
| US6610688B2 (en) | 1999-12-21 | 2003-08-26 | Sugen, Inc. | 4-substituted 7-aza-indolin-2-ones and their use as protein kinase inhibitors |
| EP1309591B1 (en) | 2000-08-14 | 2007-01-24 | Ortho-McNeil Pharmaceutical, Inc. | Substituted pyrazoles |
| AU2002239344A1 (en) | 2000-12-15 | 2002-06-24 | Glaxo Group Limited | Pyrazolopyridines |
| JP4169246B2 (ja) | 2001-03-16 | 2008-10-22 | 富士フイルム株式会社 | ヘテロ環化合物及びそれを用いた発光素子 |
| PT1401825E (pt) | 2001-06-11 | 2009-10-23 | Virochem Pharma Inc | Compostos e métodos para o tratamento ou para a prevenção de infecções com flavivírus |
| EP2335700A1 (en) | 2001-07-25 | 2011-06-22 | Boehringer Ingelheim (Canada) Ltd. | Hepatitis C virus polymerase inhibitors with a heterobicylic structure |
| RU2286343C2 (ru) | 2001-08-10 | 2006-10-27 | Орто-Макнейл Фармасьютикал, Инк. | Замещенные пиразолы |
| MY151199A (en) | 2001-11-02 | 2014-04-30 | Rigel Pharmaceuticals Inc | Substituted diphenyl heterocycles useful for treating hcv infection |
| TW200304820A (en) | 2002-03-25 | 2003-10-16 | Avanir Pharmaceuticals | Use of benzimidazole analogs in the treatment of cell proliferation |
| JP3925265B2 (ja) | 2002-03-25 | 2007-06-06 | コニカミノルタホールディングス株式会社 | 有機エレクトロルミネッセンス素子及びそれを用いた表示装置 |
| PL374190A1 (en) | 2002-06-14 | 2005-10-03 | Merck & Co, Inc. | Mitotic kinesin inhibitors |
| MXPA05000256A (es) * | 2002-07-01 | 2005-07-15 | Upjohn Co | Inhibidores de polimerasa ns5b del vhc. |
| JP4570955B2 (ja) | 2002-07-09 | 2010-10-27 | バーテクス ファーマスーティカルズ インコーポレイテッド | プロテインキナーゼ阻害活性を持つイミダゾール類 |
| GB0229518D0 (en) | 2002-12-19 | 2003-01-22 | Astrazeneca Ab | Chemical compounds |
| TW200508224A (en) * | 2003-02-12 | 2005-03-01 | Bristol Myers Squibb Co | Cyclic derivatives as modulators of chemokine receptor activity |
| AR045697A1 (es) | 2003-07-14 | 2005-11-09 | Arena Pharm Inc | Aril y heteroaril derivados fusionados como moduladores del metabolismo y la prevencion y tratamiento de trastornos relacionados con el mismo |
| CN1829709A (zh) | 2003-08-01 | 2006-09-06 | 健亚生物科技公司 | 对抗黄病毒的双环咪唑衍生物 |
| EP1678147B1 (en) * | 2003-09-15 | 2012-08-08 | Lead Discovery Center GmbH | Pharmaceutically active 4,6-disubstituted aminopyrimidine derivatives as modulators of protein kinases |
| US20060003942A1 (en) | 2003-10-27 | 2006-01-05 | Roger Tung | Combinations for HCV treatment |
| JP4772690B2 (ja) * | 2003-12-03 | 2011-09-14 | ワイエム・バイオサイエンシズ・オーストラリア・ピーティーワイ・リミテッド | チューブリン阻害剤 |
| BRPI0401908A (pt) | 2004-06-04 | 2006-01-17 | Univ Rio De Janeiro | Compostos inibidores de serina protease, processo de obtenção e uso para tratamento de flaviviroses |
| EP1765332A2 (en) | 2004-06-17 | 2007-03-28 | Cengent Therapeutics, Inc. | Trisubstituted nitrogen modulators of tyrosine phosphatases |
| US7772271B2 (en) | 2004-07-14 | 2010-08-10 | Ptc Therapeutics, Inc. | Methods for treating hepatitis C |
| CA2574220C (en) | 2004-07-27 | 2014-09-16 | Gilead Sciences, Inc. | Imidazo[4,5-d]pyrimidines, their uses and methods of preparation |
| BRPI0514316A (pt) * | 2004-08-13 | 2008-06-10 | Praecis Pharm Inc | métodos e composições para modulação de atividade de receptor de esfingosina-1-fosfato (s1p) |
| ZA200701620B (en) * | 2004-08-13 | 2008-11-26 | Praecis Pharm Inc | Methods and compositions for modulating sphingosine-1-phosphate (S1P) receptor activity |
| GB0501964D0 (en) | 2005-01-31 | 2005-03-09 | Arrow Therapeutics Ltd | Chemical compounds |
| CN101146793A (zh) | 2005-02-16 | 2008-03-19 | 先灵公司 | 具有cxcr3拮抗剂活性的新的杂环取代了的吡啶或苯基化合物 |
| WO2006093867A1 (en) | 2005-02-28 | 2006-09-08 | The Rockefeller University | Structure of the hepatitits c virus ns5a protein |
| EP1877400A1 (en) * | 2005-04-15 | 2008-01-16 | Amgen, Inc | Vanilloid receptor ligands and their use in treatments |
| US7541359B2 (en) | 2005-06-30 | 2009-06-02 | Janssen Pharmaceutica N.V. | N-heteroarylpiperazinyl ureas as modulators of fatty acid amide hydrolase |
| US20080221107A1 (en) | 2005-07-15 | 2008-09-11 | Astrazeneca Ab | Therapeutic Agents |
| JP2009521460A (ja) * | 2005-12-21 | 2009-06-04 | アボット・ラボラトリーズ | 抗ウイルス化合物 |
| EP1963276B9 (en) | 2005-12-21 | 2012-09-26 | Decode Genetics EHF | N-linked aryl heteroaryl inhibitors of lta4h for treating inflammation |
| WO2007082554A1 (en) | 2006-01-23 | 2007-07-26 | Istituto Di Ricerche Di Biologia Molecolare P Angeletti Spa | Modulators of hcv replication |
| AU2007250443B2 (en) | 2006-05-16 | 2013-06-13 | Pharmascience Inc. | IAP BIR domain binding compounds |
| CN101454328A (zh) | 2006-06-08 | 2009-06-10 | 伊莱利利公司 | 新的mch受体拮抗剂 |
| US8188088B2 (en) | 2006-06-16 | 2012-05-29 | Syngenta Participations Ag | Ethenyl carboxamide derivatives useful as microbiocides |
| WO2008014236A1 (en) | 2006-07-24 | 2008-01-31 | Tetralogic Pharmaceuticals Corporation | Dimeric iap inhibitors |
| WO2008014238A2 (en) | 2006-07-24 | 2008-01-31 | Tetralogic Pharmaceuticals Corporation | Dimeric iap inhibitors |
| US7745636B2 (en) | 2006-08-11 | 2010-06-29 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US20100158862A1 (en) | 2006-08-11 | 2010-06-24 | Bristol-Myers Squibb Company | Hepatitis C Virus Inhibitors |
| US8303944B2 (en) | 2006-08-11 | 2012-11-06 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| PE20080906A1 (es) * | 2006-08-17 | 2008-07-05 | Kemia Inc | Derivados heteroarilo como inhibidores de citocina |
| WO2008074450A2 (en) | 2006-12-20 | 2008-06-26 | Nicox S.A. | Non-peptidic renin inhibitors nitroderivatives |
| AU2008240153B2 (en) | 2007-04-12 | 2013-01-31 | Joyant Pharmaceuticals, Inc. | SMAC mimetic dimers and trimers useful as anti-cancer agents |
| US7741347B2 (en) | 2007-05-17 | 2010-06-22 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| PE20090717A1 (es) | 2007-05-18 | 2009-07-18 | Smithkline Beecham Corp | Derivados de quinolina como inhibidores de la pi3 quinasa |
| TW200901969A (en) * | 2007-06-06 | 2009-01-16 | Smithkline Beecham Corp | Chemical compounds |
| WO2009003009A1 (en) | 2007-06-26 | 2008-12-31 | Enanta Pharmaceuticals, Inc. | Substituted pyrrolidine as anti-infectives |
| EP2185154A2 (en) | 2007-08-03 | 2010-05-19 | Schering Corporation | Method of treating cxcr3 mediated diseases using heterocyclic substituted piperazines |
| US7728027B2 (en) | 2007-08-08 | 2010-06-01 | Bristol-Myers Squibb Company | Process for synthesizing compounds useful for treating hepatitis C |
| US8629171B2 (en) | 2007-08-08 | 2014-01-14 | Bristol-Myers Squibb Company | Crystalline form of methyl ((1S)-1-((25)-2-(5-(4'-(2-((25)-1((2S)-2-((methoxycarbonyl)amino)-3-methylbutanoyl)-2-pyrrolidinyl)-1H-imidazol-2-yl)-1-pyrrolidinyl)carbonyl)-2-methylpropyl)carbamate dihydrochloride salt |
| US20090047247A1 (en) | 2007-08-13 | 2009-02-19 | Yao-Ling Qiu | Pyrrolidine Derivatives |
| GB0801199D0 (en) | 2008-01-23 | 2008-02-27 | Acal Energy Ltd | Fuel cells |
| US9029411B2 (en) | 2008-01-25 | 2015-05-12 | Millennium Pharmaceuticals, Inc. | Thiophenes and uses thereof |
| AU2008350327B2 (en) | 2008-02-12 | 2013-09-12 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| JP2011511841A (ja) | 2008-02-12 | 2011-04-14 | ブリストル−マイヤーズ スクイブ カンパニー | C型肝炎ウイルス阻害剤 |
| US8147818B2 (en) | 2008-02-13 | 2012-04-03 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| CA2715839C (en) | 2008-02-13 | 2014-12-09 | Bristol-Myers Squibb Company | Imidazolyl biphenyl imidazoles as hepatitis c virus inhibitors |
| US7704992B2 (en) | 2008-02-13 | 2010-04-27 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8034966B1 (en) | 2008-02-20 | 2011-10-11 | Cell Viable Corporation | Phenoxyisobutyric acid compounds and methods for synthesis |
| WO2009136290A1 (en) | 2008-05-05 | 2009-11-12 | Aegera Therapeutics, Inc. | Functionalized pyrrolidines and use thereof as iap inhibitors |
| WO2009143361A1 (en) | 2008-05-22 | 2009-11-26 | Smithkline Beecham Corporation | Amido anti-viral compounds |
| AU2009261919A1 (en) | 2008-06-27 | 2009-12-30 | Pharmascience Inc. | Bridged secondary amines and use thereof as IAP BIR domain binding compounds |
| US20100068197A1 (en) | 2008-07-11 | 2010-03-18 | Myriad Pharmaceuticals, Inc. | Pharmaceutical compounds as inhibitors of cell proliferation and the use thereof |
| WO2010015090A1 (en) | 2008-08-07 | 2010-02-11 | Aegera Therapeutics Inc. | Functionalized pyrrolidines and use thereof as iap inhibitors |
| US7906655B2 (en) | 2008-08-07 | 2011-03-15 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8383094B2 (en) | 2008-10-01 | 2013-02-26 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8946289B2 (en) | 2008-11-19 | 2015-02-03 | Duke University | Manassatin compounds and methods of making and using the same |
| JP2010126571A (ja) | 2008-11-26 | 2010-06-10 | Toyo Ink Mfg Co Ltd | 有機エレクトロルミネッセンス素子材料および有機エレクトロルミネッセンス素子 |
| US8729077B2 (en) | 2008-11-28 | 2014-05-20 | Glaxosmithkline Llc | Anti-viral compounds, compositions, and methods of use |
| PE20120124A1 (es) | 2008-12-03 | 2012-03-17 | Presidio Pharmaceuticals Inc | Derivados 2-pirrolidin-3-il-1h-imidazol, como inhibidores de la proteina no estructural 5a del virus de la heptitis c |
| CA2750577A1 (en) | 2008-12-03 | 2010-06-10 | Presidio Pharmaceuticals, Inc. | Inhibitors of hcv ns5a |
| US8541424B2 (en) | 2008-12-23 | 2013-09-24 | Abbott Laboratories | Anti-viral compounds |
| RU2505539C2 (ru) * | 2008-12-23 | 2014-01-27 | Эбботт Лэборетриз | Антивирусные соединения |
| US8314135B2 (en) | 2009-02-09 | 2012-11-20 | Enanta Pharmaceuticals, Inc. | Linked dibenzimidazole antivirals |
| EP2393359A4 (en) | 2009-02-09 | 2012-10-03 | Enanta Pharm Inc | COMPOUND DIBENZIMIDAZOLE DERIVATIVES |
| US8188132B2 (en) | 2009-02-17 | 2012-05-29 | Enanta Pharmaceuticals, Inc. | Linked dibenzimidazole derivatives |
| US8242156B2 (en) | 2009-02-17 | 2012-08-14 | Enanta Pharmaceuticals, Inc. | Linked dibenzimidazole derivatives |
| US8394968B2 (en) | 2009-02-17 | 2013-03-12 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8420686B2 (en) | 2009-02-17 | 2013-04-16 | Enanta Pharmaceuticals, Inc. | Linked diimidazole antivirals |
| TWI438200B (zh) | 2009-02-17 | 2014-05-21 | 必治妥美雅史谷比公司 | C型肝炎病毒抑制劑 |
| US8637561B2 (en) | 2009-02-17 | 2014-01-28 | Enanta Pharmaceuticals, Inc. | Linked diimidazole derivatives |
| WO2010096462A1 (en) | 2009-02-17 | 2010-08-26 | Enanta Pharmaceuticals, Inc | Linked diimidazole derivatives |
| WO2010096777A1 (en) | 2009-02-23 | 2010-08-26 | Presidio Pharmaceuticals, Inc. | Inhibitors of hcv ns5a |
| UY32462A (es) | 2009-02-23 | 2010-09-30 | Arrow Therapeutics Ltd | Derivados de bifenilo novedosos para el tratamiento de infección por virus de hepatitis c 644 |
| US8101643B2 (en) | 2009-02-27 | 2012-01-24 | Enanta Pharmaceuticals, Inc. | Benzimidazole derivatives |
| US8426458B2 (en) | 2009-02-27 | 2013-04-23 | Enanta Pharmaceuticals, Inc. | Hepatitis C Virus inhibitors |
| CA2753382C (en) | 2009-02-27 | 2014-12-23 | Enanta Pharmaceuticals, Inc. | Hepatitis c virus inhibitors |
| US8507522B2 (en) | 2009-03-06 | 2013-08-13 | Enanta Pharmaceuticals, Inc. | Hepatitis C virus inhibitors |
| SG10201402969QA (en) | 2009-03-27 | 2014-09-26 | Merck Sharp & Dohme | Inhibitors of hepatitis c virus replication |
| AU2010229795A1 (en) | 2009-03-27 | 2011-10-13 | Presidio Pharmaceuticals, Inc. | Fused ring inhibitors of hepatitis C |
| CA2756255A1 (en) | 2009-03-27 | 2010-09-30 | Presidio Pharmaceuticals, Inc. | Substituted bicyclic hcv inhibitors |
| TWI476190B (zh) | 2009-03-30 | 2015-03-11 | 必治妥美雅史谷比公司 | C型肝炎病毒抑制劑 |
| US20110237636A1 (en) | 2009-03-30 | 2011-09-29 | Bristol-Myers Squibb Company | Hepatitis C Virus Inhibitors |
| US8796466B2 (en) | 2009-03-30 | 2014-08-05 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| WO2010115767A1 (en) | 2009-04-08 | 2010-10-14 | Basf Se | Pyrrolopyrrole derivatives, their manufacture and use as semiconductors |
| TW201038559A (en) | 2009-04-09 | 2010-11-01 | Bristol Myers Squibb Co | Hepatitis C virus inhibitors |
| US8143414B2 (en) | 2009-04-13 | 2012-03-27 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| JP5734956B2 (ja) | 2009-04-15 | 2015-06-17 | アッヴィ・インコーポレイテッド | 抗ウィルス化合物 |
| JP2012524761A (ja) | 2009-04-24 | 2012-10-18 | テイボテク・フアーマシユーチカルズ | ジアリールエーテル類 |
| AU2010249080A1 (en) | 2009-05-12 | 2012-01-12 | Merck Sharp & Dohme Corp. | Fused tricyclic aryl compounds useful for the treatment of viral diseases |
| NZ619205A (en) | 2009-05-13 | 2015-04-24 | Gilead Pharmasset Llc | Antiviral compounds |
| US8211928B2 (en) | 2009-05-29 | 2012-07-03 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| EP2435424B1 (en) | 2009-05-29 | 2015-01-21 | Merck Sharp & Dohme Corp. | Antiviral compounds composed of three linked aryl moieties to treat diseases such as hepatitis c |
| AU2010253790A1 (en) | 2009-05-29 | 2011-12-15 | Merck Sharp & Dohme Corp. | Antiviral compounds composed of three aligned aryl moieties to treat diseases such as Hepatitis C |
| US8138215B2 (en) | 2009-05-29 | 2012-03-20 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| PL2368890T3 (pl) * | 2009-06-11 | 2013-10-31 | Abbvie Bahamas Ltd | Inhibitory wirusa zapalenia wątroby C |
| US9394279B2 (en) * | 2009-06-11 | 2016-07-19 | Abbvie Inc. | Anti-viral compounds |
| US8937150B2 (en) * | 2009-06-11 | 2015-01-20 | Abbvie Inc. | Anti-viral compounds |
| US8221737B2 (en) | 2009-06-16 | 2012-07-17 | Enanta Pharmaceuticals, Inc. | Hepatitis C virus inhibitors |
| WO2010148006A1 (en) | 2009-06-16 | 2010-12-23 | Enanta Pharmaceuticals, Inc. | Hepatitis c virus inhibitors |
| US8609648B2 (en) | 2009-07-02 | 2013-12-17 | Enanta Pharmaceuticals, Inc. | Hepatitis C virus inhibitors |
| WO2011004276A1 (en) | 2009-07-06 | 2011-01-13 | Pfizer Limited | Hepatitis c virus inhibitors |
| JP2012533569A (ja) | 2009-07-16 | 2012-12-27 | ヴァーテックス ファーマシューティカルズ、 インコーポレイテッド | フラビウイルス感染症を治療又は予防するためのベンゾイミダゾール類似体 |
| RU2540897C2 (ru) | 2009-08-07 | 2015-02-10 | Тиботек Фармасьютикалз | Производные бис-бензимидазола в качестве ингибиторов вируса гепатита с |
| BR112012004969A2 (pt) | 2009-09-03 | 2019-09-24 | Tibotec Pharm Ltd | derivados de bis-benzimidazol |
| NZ597982A (en) | 2009-09-04 | 2013-01-25 | Glaxosmithkline Llc | CHEMICAL COMPOUNDS for treating Hepatitis C virus |
| WO2011031904A1 (en) | 2009-09-11 | 2011-03-17 | Enanta Pharmaceuticals, Inc | Hepatitis c virus inhibitors |
| US8815928B2 (en) | 2009-09-11 | 2014-08-26 | Enanta Pharmaceuticals, Inc. | Hepatitis C virus inhibitors |
| US8927709B2 (en) | 2009-09-11 | 2015-01-06 | Enanta Pharmaceuticals, Inc. | Hepatitis C virus inhibitors |
| US8822700B2 (en) | 2009-09-11 | 2014-09-02 | Enanta Pharmaceuticals, Inc. | Hepatitis C virus inhibitors |
| US8759332B2 (en) | 2009-09-11 | 2014-06-24 | Enanta Pharmaceuticals, Inc. | Hepatitis C virus inhibitors |
| US8703938B2 (en) | 2009-09-11 | 2014-04-22 | Enanta Pharmaceuticals, Inc. | Hepatitis C virus inhibitors |
| WO2011031934A1 (en) | 2009-09-11 | 2011-03-17 | Enanta Pharmaceuticals, Inc. | Hepatitis c virus inhibitors |
| WO2011050146A1 (en) | 2009-10-23 | 2011-04-28 | Glaxosmithkline Llc | Chemical compounds |
| UA108211C2 (uk) | 2009-11-04 | 2015-04-10 | Янссен Рід Айрленд | Бензімідазолімідазольні похідні |
| US20110269956A1 (en) | 2009-11-11 | 2011-11-03 | Bristol-Myers Squibb Company | Hepatitis C Virus Inhibitors |
| US20110274648A1 (en) | 2009-11-11 | 2011-11-10 | Bristol-Myers Squibb Company | Hepatitis C Virus Inhibitors |
| US20110281910A1 (en) | 2009-11-12 | 2011-11-17 | Bristol-Myers Squibb Company | Hepatitis C Virus Inhibitors |
| US20120276047A1 (en) | 2009-11-25 | 2012-11-01 | Rosenblum Stuart B | Fused tricyclic compounds and derivatives thereof useful for the treatment of viral diseases |
| AU2010325980B2 (en) | 2009-12-04 | 2016-04-07 | National Health Research Institutes | Proline derivatives |
| EP2512480A4 (en) | 2009-12-14 | 2013-05-15 | Enanta Pharm Inc | HEPATITIS C-VIRUS HEMMER |
| US8377980B2 (en) | 2009-12-16 | 2013-02-19 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| WO2011075615A1 (en) | 2009-12-18 | 2011-06-23 | Idenix Pharmaceuticals, Inc. | 5,5-fused arylene or heteroarylene hepatitis c virus inhibitors |
| CN102791687B (zh) | 2009-12-18 | 2015-02-11 | 北京凯因科技股份有限公司 | C型肝炎病毒复制的新型抑制剂 |
| EP2516430B1 (en) | 2009-12-22 | 2014-11-05 | Merck Sharp & Dohme Corp. | Fused tricyclic compounds and methods of use thereof for the treatment of viral diseases |
| WO2011079327A1 (en) | 2009-12-24 | 2011-06-30 | Vertex Pharmaceuticals Incorporated | Analogues for the treatment or prevention of flavivirus infections |
| US8362020B2 (en) | 2009-12-30 | 2013-01-29 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| WO2011091446A1 (en) | 2010-01-22 | 2011-07-28 | Glaxosmithkline Llc | Chemical compounds |
| MX2012008658A (es) | 2010-01-25 | 2012-12-05 | Enanta Pharm Inc | Inhibidores del virus de la hepatitis c. |
| WO2011091532A1 (en) | 2010-01-28 | 2011-08-04 | Boehringer Ingelheim International Gmbh | Hepatitis c inhibitor compounds |
| US8178531B2 (en) | 2010-02-23 | 2012-05-15 | Enanta Pharmaceuticals, Inc. | Antiviral agents |
| BR112012022311A2 (pt) | 2010-03-04 | 2016-08-23 | Enanta Pharm Inc | agentes farmacêuticos de combinação como inibidores da replicação de hcv. |
| BR112012022125A2 (pt) | 2010-03-09 | 2016-11-01 | Merck Sharp & Dhme Corp | composto, sal de dicloridrato, composição farmacêutica, uso do composto, e, método para tratar um paciente |
| JP2013522375A (ja) | 2010-03-24 | 2013-06-13 | バーテックス ファーマシューティカルズ インコーポレイテッド | フラビウイルス感染を処置または予防するためのアナログ |
| WO2011119858A1 (en) | 2010-03-24 | 2011-09-29 | Vertex Pharmaceuticals Incorporated | Analogues for the treatment or prevention of flavivirus infections |
| WO2011119860A1 (en) | 2010-03-24 | 2011-09-29 | Vertex Pharmaceuticals Incorporated | Analogues for the treatment or prevention of flavivirus infections |
| JP2013522377A (ja) | 2010-03-24 | 2013-06-13 | バーテックス ファーマシューティカルズ インコーポレイテッド | フラビウイルス感染を処置または予防するためのアナログ |
| US9127021B2 (en) | 2010-04-09 | 2015-09-08 | Enanta Pharmaceuticals, Inc. | Hepatitis C virus inhibitors |
| US20110312996A1 (en) | 2010-05-17 | 2011-12-22 | Intermune, Inc. | Novel inhibitors of hepatitis c virus replication |
| EP2575475A4 (en) | 2010-05-28 | 2013-11-27 | Presidio Pharmaceuticals Inc | HCV NS5A INHIBITORS |
| US8778938B2 (en) | 2010-06-04 | 2014-07-15 | Enanta Pharmaceuticals, Inc. | Hepatitis C virus inhibitors |
| TW201201801A (en) | 2010-06-09 | 2012-01-16 | Presidio Pharmaceuticals Inc | Inhibitors of HCV NS5A protein |
| NZ605440A (en) | 2010-06-10 | 2014-05-30 | Abbvie Bahamas Ltd | Solid compositions comprising an hcv inhibitor |
| WO2012083164A1 (en) | 2010-12-16 | 2012-06-21 | Abbott Laboratories | Anti-viral compounds |
| JP5906253B2 (ja) | 2010-12-16 | 2016-04-20 | アッヴィ・インコーポレイテッド | 抗ウイルス性化合物 |
-
2009
- 2009-12-22 US US12/644,427 patent/US8541424B2/en active Active
- 2009-12-22 WO PCT/US2009/069177 patent/WO2010075376A2/en not_active Ceased
- 2009-12-22 JP JP2011542569A patent/JP2012513409A/ja active Pending
- 2009-12-22 ES ES09796254.2T patent/ES2567047T3/es active Active
- 2009-12-22 SG SG2011046240A patent/SG172352A1/en unknown
- 2009-12-22 RU RU2011130833/04A patent/RU2505540C2/ru not_active IP Right Cessation
- 2009-12-22 CA CA2740193A patent/CA2740193A1/en not_active Abandoned
- 2009-12-22 CN CN2009801522561A patent/CN102264737A/zh active Pending
- 2009-12-22 EP EP09796254.2A patent/EP2367824B1/en not_active Not-in-force
- 2009-12-22 MX MX2011006332A patent/MX2011006332A/es active IP Right Grant
-
2011
- 2011-07-20 ZA ZA2011/05355A patent/ZA201105355B/en unknown
-
2013
- 2013-09-09 US US14/021,435 patent/US9163017B2/en active Active
Patent Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6703403B2 (en) | 1995-06-29 | 2004-03-09 | Abbott Laboratories | Method for improving pharmacokinetics |
| WO2004014852A2 (en) | 2002-08-12 | 2004-02-19 | Bristol-Myers Squibb Company | Iminothiazolidinones as inhibitors of hcv replication |
| WO2004014313A2 (en) | 2002-08-12 | 2004-02-19 | Bristol-Myers Squibb Company | Combination pharmaceutical agents as inhibitors of hcv replication |
| WO2006133326A1 (en) | 2005-06-06 | 2006-12-14 | Bristol-Myers Squibb Company | Inhibitors of hcv replication |
| WO2007070600A2 (en) | 2005-12-12 | 2007-06-21 | Genelabs Technologies, Inc. | N-(5-membered heteroaromatic ring)-amido anti-viral compounds |
| WO2007070556A2 (en) | 2005-12-12 | 2007-06-21 | Genelabs Technologies, Inc. | N-(6-membered aromatic ring)-amido anti-viral compounds |
| US20070197558A1 (en) | 2005-12-21 | 2007-08-23 | Betebenner David A | Anti-viral compounds |
| US20070232645A1 (en) | 2005-12-21 | 2007-10-04 | Rockway Todd W | Anti-viral compounds |
| US20070232627A1 (en) | 2005-12-21 | 2007-10-04 | Betebenner David A | Anti-viral compounds |
| WO2008021928A2 (en) | 2006-08-11 | 2008-02-21 | Bristol-Myers Squibb Company | Hepatitis c virus inhibitors |
| WO2008021927A2 (en) | 2006-08-11 | 2008-02-21 | Bristol-Myers Squibb Company | Hepatitis c virus inhibitors |
| WO2008021936A2 (en) | 2006-08-11 | 2008-02-21 | Bristol-Myers Squibb Company | Hepatitis c virus inhibitors |
| WO2008064218A2 (en) | 2006-11-21 | 2008-05-29 | Smithkline Beecham Corporation | Amido anti-viral compounds |
| WO2008070447A2 (en) | 2006-11-21 | 2008-06-12 | Smithkline Beecham Corporation | Anti-viral compounds |
| WO2008133753A2 (en) | 2006-12-20 | 2008-11-06 | Abbott Laboratories | Anti-viral compounds |
Non-Patent Citations (4)
| Title |
|---|
| BUNGARD, H.: "DESIGN OF PRODRUGS", 1985, ELSEVIER, pages: 7-9 - 21-24 |
| GREENE; WUTS: "PROTECTING GROUPS IN CHEMICAL SYNTHESIS(3rd ed.,", 1999, JOHN WILEY & SONS |
| HOOVER, JOHN E.: "REMINGTON'S PHARMACEUTICAL SCIENCES", 1975, MACK PUBLISHING CO. |
| LACHMAN, L.,: "PHARMACEUTICAL DOSAGE FORMS", 1980, MARCCL DECKER |
Cited By (273)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8546405B2 (en) | 2008-12-23 | 2013-10-01 | Abbott Laboratories | Anti-viral compounds |
| US9249138B2 (en) | 2008-12-23 | 2016-02-02 | Abbvie Inc. | Anti-viral compounds |
| US9163017B2 (en) | 2008-12-23 | 2015-10-20 | Abbvie Inc. | Anti-viral compounds |
| US8541424B2 (en) | 2008-12-23 | 2013-09-24 | Abbott Laboratories | Anti-viral compounds |
| US8394968B2 (en) | 2009-02-17 | 2013-03-12 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8796466B2 (en) | 2009-03-30 | 2014-08-05 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8143301B2 (en) | 2009-04-09 | 2012-03-27 | Bristol Myers Squibb Company | Hepatitis C virus inhibitors |
| US8143414B2 (en) | 2009-04-13 | 2012-03-27 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US9278922B2 (en) | 2009-04-15 | 2016-03-08 | Abbvie Inc. | Anti-viral compounds |
| US8138215B2 (en) | 2009-05-29 | 2012-03-20 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8211928B2 (en) | 2009-05-29 | 2012-07-03 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US10039754B2 (en) | 2009-06-11 | 2018-08-07 | Abbvie Inc. | Anti-viral compounds |
| US9394279B2 (en) | 2009-06-11 | 2016-07-19 | Abbvie Inc. | Anti-viral compounds |
| US8937150B2 (en) | 2009-06-11 | 2015-01-20 | Abbvie Inc. | Anti-viral compounds |
| US8921514B2 (en) | 2009-06-11 | 2014-12-30 | Abbvie Inc. | Anti-viral compounds |
| US9586978B2 (en) | 2009-06-11 | 2017-03-07 | Abbvie Inc. | Anti-viral compounds |
| US8691938B2 (en) | 2009-06-11 | 2014-04-08 | Abbvie Inc. | Anti-viral compounds |
| US8716454B2 (en) | 2009-06-11 | 2014-05-06 | Abbvie Inc. | Solid compositions |
| US10028937B2 (en) | 2009-06-11 | 2018-07-24 | Abbvie Inc. | Anti-viral compounds |
| US9776981B2 (en) | 2009-11-11 | 2017-10-03 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US9006455B2 (en) | 2009-11-11 | 2015-04-14 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8618153B2 (en) | 2009-11-12 | 2013-12-31 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8377980B2 (en) | 2009-12-16 | 2013-02-19 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8735398B2 (en) | 2009-12-30 | 2014-05-27 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8362020B2 (en) | 2009-12-30 | 2013-01-29 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US8686026B2 (en) | 2010-06-10 | 2014-04-01 | Abbvie Inc. | Solid compositions |
| US8809330B2 (en) | 2010-06-24 | 2014-08-19 | Gilead Sciences, Inc. | Pyrazolo[1,5-A]pyrimidines for antiviral treatment |
| US9957275B2 (en) | 2010-06-24 | 2018-05-01 | Gilead Sciences, Inc. | Pyrazolo[1,5-A]pyrimidines for antiviral treatment |
| US9238039B2 (en) | 2010-06-24 | 2016-01-19 | Gilead Sciences, Inc. | Pyrazolo[1,5-A]pyrimidines for antiviral treatment |
| US8486938B2 (en) | 2010-06-24 | 2013-07-16 | Gilead Sciences, Inc. | Pyrazolo[1,5-a]pyrimidines for antiviral treatment |
| US8815271B2 (en) | 2010-11-03 | 2014-08-26 | Dow Agrosciences, Llc. | Pesticidal compositions and processes related thereto |
| US9422278B2 (en) | 2010-11-03 | 2016-08-23 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
| US8552047B2 (en) | 2011-02-07 | 2013-10-08 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US9340520B2 (en) | 2011-02-07 | 2016-05-17 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US9546160B2 (en) | 2011-05-12 | 2017-01-17 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US9878997B2 (en) | 2011-05-13 | 2018-01-30 | Array Biopharma Inc. | Pyrrolidinyl urea, pyrrolidinyl thiourea and pyrrolidinyl guanidine compounds as TrkA kinase inhibitors |
| US10323022B2 (en) | 2011-05-13 | 2019-06-18 | Array Biopharma Inc. | Pyrrolidinyl urea, pyrrolidinyl thiourea and pyrrolidinyl guanidine compounds as TrkA kinase inhibitors |
| US9562055B2 (en) | 2011-05-13 | 2017-02-07 | Array Biopharma Inc. | Pyrrolidinyl urea, pyrrolidinyl thiourea and pyrrolidinyl guanidine compounds as TrkA kinase inhibitors |
| US10201541B1 (en) | 2011-05-17 | 2019-02-12 | Abbvie Inc. | Compositions and methods for treating HCV |
| US10201584B1 (en) | 2011-05-17 | 2019-02-12 | Abbvie Inc. | Compositions and methods for treating HCV |
| US9993478B2 (en) | 2011-10-03 | 2018-06-12 | Respivert, Ltd. | 1-pyrazolyl-3-(4-((2-anilinopyrimidin-4-yl) oxy) napththalen-1-yl) ureas as P38 MAP knase inhibitors |
| US9475796B2 (en) | 2011-10-03 | 2016-10-25 | Respivert Limited | 1-pyrazolyl-3-((4-((2-anilinopyrimidin-4-yl) oxy) napththalen-1-yl) ureas as p38 MAP kinase inhibitors |
| US10266519B2 (en) | 2011-10-03 | 2019-04-23 | Respivert Limited | 1-pyrazolyl-3-(4-((2-anilinopyrimidin-4-yl) oxy) napththalen-I-yl) ureas as P38 mapkinase inhibitors |
| US9108950B2 (en) | 2011-10-03 | 2015-08-18 | Respivert, Ltd. | 1-pyrazolyl-3-(4-((2-anilinopyrimidin-4-yl)oxy)napththalen-1-yl) ureas as p38 MAP kinase inhibitors |
| US10238658B2 (en) | 2011-10-03 | 2019-03-26 | Respivert Limited | 1-pyrazolyl-3-(4-((2-anilinopyrimidin-4-yl) oxy) napththalen-1-yl) ureas as p38 MAP kinase inhibitors |
| US10738032B2 (en) | 2011-10-03 | 2020-08-11 | Respivert Limited | 1-pyrazolyl-3-(4-((2-anilinopyrimidin-4-yl) oxy) napththalen-i-yl) ureas as P38 mapkinase inhibitors |
| US9724347B2 (en) | 2011-10-03 | 2017-08-08 | Respivert, Ltd. | 1-pyrazolyl-3-(4-((2-anilinopyrimidin-4-yl)oxy)napththalen-1-yl) ureas as P38 MAP knase inhibitors |
| US9850231B2 (en) | 2011-10-03 | 2017-12-26 | Respivert Limited | 1-pyrazolyl-3-(4-((2-anilinopyrimidin-4-yl) oxy) napththalen-I-yl) ureas as P38 mapkinase inhibitors |
| US10813932B2 (en) | 2011-10-03 | 2020-10-27 | Respivert Limited | 1-pyrazolyl-3-(4-((2-anilinopyrimidin-4-yl) oxy) napththalen-1-yl) ureas as P38 MAP knase inhibitors |
| US9586930B2 (en) | 2011-10-07 | 2017-03-07 | Takeda Pharmaceutical Company Limited | 1-arylcarbonyl-4-oxy-piperidine compounds useful for the treatment of neurodegenerative diseases |
| US8865717B2 (en) | 2011-10-07 | 2014-10-21 | Takeda Pharmaceutical Company Limited | Heterocyclic compounds |
| US11174272B2 (en) | 2011-10-07 | 2021-11-16 | Takeda Pharmaceutical Company Limited | 1-arylcarbonyl-4-oxy-piperidine compounds useful for the treatment of neurodegenerative diseases |
| US8871766B2 (en) | 2011-10-07 | 2014-10-28 | Takeda Pharmaceutical Co., Ltd. | Heterocyclic compounds |
| US9193709B2 (en) | 2011-10-07 | 2015-11-24 | Takeda Pharmaceutical Company Limited | 1-arylcarbonyl-4-oxy-piperidine compounds useful for the treatment of neurodegenerative diseases |
| US10144743B2 (en) | 2011-10-07 | 2018-12-04 | Takeda Pharmaceutical Company Limited | 1-arylcarbonyl-4-oxy-piperidine compounds useful for the treatment of neurodegenerative diseases |
| US10717748B2 (en) | 2011-10-07 | 2020-07-21 | Takeda Pharmaceutical Company Limited | 1-arylcarbonyl-4-oxy-piperidine compounds useful for the treatment of neurodegenerative diseases |
| US8648079B2 (en) | 2011-10-07 | 2014-02-11 | Takeda Pharmaceutical Company Limited | Heterocyclic compounds |
| US9440990B2 (en) | 2011-10-07 | 2016-09-13 | Takeda Pharmaceutical Company Limited | 1-arylcarbonyl-4-oxy-piperidine compounds useful for the treatment of neurodegenerative diseases |
| US10550129B2 (en) | 2011-10-07 | 2020-02-04 | Takeda Pharmaceutical Company Limited | 1-arylcarbonyl-4-oxy-piperidine compounds useful for the treatment of neurodegenerative diseases |
| US10273245B2 (en) | 2011-10-07 | 2019-04-30 | Takeda Pharmaceutical Company Limited | 1-arylcarbonyl-4-oxy-piperidine compounds useful for the treatment of neurodegenerative diseases |
| US9655365B2 (en) | 2011-10-26 | 2017-05-23 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
| US8946238B2 (en) | 2011-12-22 | 2015-02-03 | Gilead Sciences, Inc. | Pyrazolo[1,5-A]pyrimidines as antiviral agents |
| US9278975B2 (en) | 2011-12-22 | 2016-03-08 | Gilead Sciences, Inc. | Pyrazolo[1,5-A]pyrimidines as antiviral agents |
| US9034832B2 (en) | 2011-12-29 | 2015-05-19 | Abbvie Inc. | Solid compositions |
| US9326973B2 (en) | 2012-01-13 | 2016-05-03 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US9504689B2 (en) | 2012-04-17 | 2016-11-29 | Gilead Sciences, Inc. | Compounds and methods for antiviral treatment |
| US8980878B2 (en) | 2012-04-17 | 2015-03-17 | Gilead Sciences, Inc. | Compounds and methods for antiviral treatment |
| US10174038B2 (en) | 2012-04-17 | 2019-01-08 | Gilead Sciences, Inc. | Compounds and methods for antiviral treatment |
| US9862730B2 (en) | 2012-04-26 | 2018-01-09 | Bristol-Myers Squibb Company | Imidazothiadiazole derivatives as protease activated receptor 4 (PAR4) inhibitors for treating platelet aggregation |
| US9518064B2 (en) | 2012-04-26 | 2016-12-13 | Bristol-Myers Squibb Company | Imidazothiadiazole and imidazopyridazine derivatives as protease activated receptor 4 (PAR4) inhibitors for treating platelet aggregation |
| US10428077B2 (en) | 2012-04-26 | 2019-10-01 | Bristol-Myers Squibb Company | Imidazothiadiazole and imidazopyrazine derivatives as protease activated receptor4 (PAR4) inhibitors for treating platelet aggregation |
| US9688695B2 (en) | 2012-04-26 | 2017-06-27 | Bristol-Myers Squibb Company | Imidazothiadiazole and imidazopyrazine derivatives as protease activated receptor 4 (PAR4) inhibitors for treating platelet aggregation |
| US10047103B2 (en) | 2012-04-26 | 2018-08-14 | Bristol-Myers Squibb Company | Imidazothiadiazole and imidazopyrazine derivatives as protease activated receptor 4 (PAR4) inhibitors for treating platelet aggregation |
| US12084452B2 (en) | 2012-04-26 | 2024-09-10 | Bristol-Myers Squibb Company | Imidazothiadiazole and imidazopyrazine derivatives as protease activated receptor 4 (PAR4) inhibitors for treating platelet aggregation |
| US10822343B2 (en) | 2012-04-26 | 2020-11-03 | Bristol-Myers Squibb Company | Imidazothiadiazole and imidazopyrazine derivatives as protease activated receptor4 (PAR4) inhibitors for treating platelet aggregation |
| US9282739B2 (en) | 2012-04-27 | 2016-03-15 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
| US8901153B2 (en) | 2012-04-27 | 2014-12-02 | Dow Agrosciences, Llc. | Pesticidal compositions and processes related thereto |
| US9591857B2 (en) | 2012-04-27 | 2017-03-14 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
| US9708288B2 (en) | 2012-04-27 | 2017-07-18 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
| US10301272B2 (en) | 2012-05-31 | 2019-05-28 | Phenex Pharmaceuticals Ag | Carboxamide or sulfonamide substituted thiazoles and related derivatives as modulators for the orphan nuclear receptor ROR[γ] |
| WO2013178362A1 (en) | 2012-05-31 | 2013-12-05 | Phenex Pharmaceuticals Ag | Carboxamide or sulfonamide substituted thiazoles and related derivatives as modulators for the orphan nuclear receptor ror[gamma] |
| WO2014023367A1 (en) | 2012-08-09 | 2014-02-13 | Phenex Pharmaceuticals Ag | Carboxamide or sulfonamide substituted nitrogen-containing 5-membered heterocycles as modulators for the orphan nuclear receptor ror gamma |
| US9458104B2 (en) | 2012-08-09 | 2016-10-04 | Phenex Pharmaceuticals Ag | Carboxamide or sulfonamide substituted nitrogen-containing 5-membered heterocycles as modulators for the orphan nuclear receptor RORγ |
| EP3118189A1 (en) | 2012-08-09 | 2017-01-18 | Phenex Pharmaceuticals AG | Carboxamide or sulfonamide substituted nitrogen-containing 5-membered heterocycles as modulators for the orphan nuclear receptor ror gamma |
| US9701670B2 (en) | 2012-08-17 | 2017-07-11 | Respivert Limited | Pyrazolyl-ureas as kinase inhibitors |
| US9249125B2 (en) | 2012-08-29 | 2016-02-02 | Respivert Limited | Pyrazole derivatives as p38 MAP inhibitors |
| US10851080B2 (en) | 2012-11-13 | 2020-12-01 | Array Biopharma Inc. | Methods of treatment using pyrrolidinyl urea, thiourea, guanidine and cyanoguanidine compounds |
| US9790210B2 (en) | 2012-11-13 | 2017-10-17 | Array Biopharma Inc. | N-(monocyclic aryl),N'-pyrazolyl-urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors |
| US9981959B2 (en) | 2012-11-13 | 2018-05-29 | Array Biopharma Inc. | Thiazolyl and oxazolyl urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors |
| US9790178B2 (en) | 2012-11-13 | 2017-10-17 | Array Biopharma Inc. | Pyrrolidinyl urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors |
| US9896435B2 (en) | 2012-11-13 | 2018-02-20 | Array Biopharma Inc. | N-pyrrolidinyl,N′-pyrazolyl-urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors |
| US10351575B2 (en) | 2012-11-13 | 2019-07-16 | Array Biopharma Inc. | Bicyclic urea, thiourea, guanidine and cyanoguanidine compounds useful for the treatment of pain |
| US10889589B2 (en) | 2012-11-13 | 2021-01-12 | Array Biopharma Inc. | Bicyclic urea, thiourea, guanidine and cyanoguanidine compounds useful for the treatment of pain |
| US9809578B2 (en) | 2012-11-13 | 2017-11-07 | Array Biopharma Inc. | Pyrazolyl urea, thiourea, guanidine and cyanoguanidine compounds as trkA kinase inhibitors |
| US9828360B2 (en) | 2012-11-13 | 2017-11-28 | Array Biopharma Inc. | Pyrrolidinyl urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors |
| US9546156B2 (en) | 2012-11-13 | 2017-01-17 | Array Biopharma Inc. | N-bicyclic aryl,N'-pyrazolyl urea, thiourea, guanidine cyanoguanidine compounds as TrkA kinase inhibitors |
| US9822118B2 (en) | 2012-11-13 | 2017-11-21 | Array Biopharma Inc. | Bicyclic heteroaryl urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors |
| US9969694B2 (en) | 2012-11-13 | 2018-05-15 | Array Biopharma Inc. | N-(arylalkyl)-N′-pyrazolyl-urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors |
| US9657008B2 (en) | 2013-01-23 | 2017-05-23 | Astrazeneca Ab | Chemical compounds |
| US9156831B2 (en) | 2013-01-23 | 2015-10-13 | Astrazeneca Ab | Chemical compounds |
| US10301288B2 (en) | 2013-03-14 | 2019-05-28 | Topivert Pharma Limited | Kinase inhibitors |
| US9850233B2 (en) | 2013-03-14 | 2017-12-26 | Respivert Limited | Kinase inhibitors |
| US11484534B2 (en) | 2013-03-14 | 2022-11-01 | Abbvie Inc. | Methods for treating HCV |
| US9067922B2 (en) | 2013-04-19 | 2015-06-30 | Pfizer Limited | Chemical compounds |
| US9717712B2 (en) | 2013-07-02 | 2017-08-01 | Bristol-Myers Squibb Company | Combinations comprising tricyclohexadecahexaene derivatives for use in the treatment of hepatitis C virus |
| US9663529B2 (en) | 2013-07-02 | 2017-05-30 | Bristol-Myers Squibb Company | Tricyclic pyrido-carboxamide derivatives as rock inhibitors |
| US9770439B2 (en) | 2013-07-02 | 2017-09-26 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US9914740B2 (en) | 2013-07-02 | 2018-03-13 | Bristol-Myers Squibb Company | Tricyclic pyrido-carboxamide derivatives as rock inhibitors |
| US9775831B2 (en) | 2013-07-17 | 2017-10-03 | Bristol-Myers Squibb Company | Combinations comprising biphenyl derivatives for use in the treatment of HCV |
| WO2015038596A1 (en) | 2013-09-11 | 2015-03-19 | Emory University | Nucleotide and nucleoside compositions and uses related thereto |
| EP4094767A1 (en) | 2013-09-11 | 2022-11-30 | Emory University | Nucleotide and nucleoside therapeutic compositions and uses related thereto |
| US10315999B2 (en) | 2013-10-17 | 2019-06-11 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9661849B2 (en) | 2013-10-17 | 2017-05-30 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9988356B2 (en) | 2013-10-17 | 2018-06-05 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9580405B2 (en) | 2013-10-17 | 2017-02-28 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9670164B2 (en) | 2013-10-17 | 2017-06-06 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9670178B2 (en) | 2013-10-17 | 2017-06-06 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9540342B2 (en) | 2013-10-17 | 2017-01-10 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9029554B1 (en) | 2013-10-17 | 2015-05-12 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9044017B2 (en) | 2013-10-17 | 2015-06-02 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9447048B2 (en) | 2013-10-17 | 2016-09-20 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9723839B2 (en) | 2013-10-17 | 2017-08-08 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9433215B2 (en) | 2013-10-17 | 2016-09-06 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9908864B2 (en) | 2013-10-17 | 2018-03-06 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9434712B2 (en) | 2013-10-17 | 2016-09-06 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9085564B2 (en) | 2013-10-17 | 2015-07-21 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9414594B2 (en) | 2013-10-17 | 2016-08-16 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9901095B2 (en) | 2013-10-17 | 2018-02-27 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9102654B2 (en) | 2013-10-17 | 2015-08-11 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9102655B2 (en) | 2013-10-17 | 2015-08-11 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9108946B2 (en) | 2013-10-17 | 2015-08-18 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9796682B2 (en) | 2013-10-17 | 2017-10-24 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9260396B2 (en) | 2013-10-17 | 2016-02-16 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9255082B2 (en) | 2013-10-17 | 2016-02-09 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9862702B2 (en) | 2013-10-17 | 2018-01-09 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9255083B2 (en) | 2013-10-17 | 2016-02-09 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9126974B2 (en) | 2013-10-17 | 2015-09-08 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9199942B2 (en) | 2013-10-17 | 2015-12-01 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9174962B2 (en) | 2013-10-17 | 2015-11-03 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US9295258B2 (en) | 2013-10-22 | 2016-03-29 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9282740B2 (en) | 2013-10-22 | 2016-03-15 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9149040B2 (en) | 2013-10-22 | 2015-10-06 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9808008B2 (en) | 2013-10-22 | 2017-11-07 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9144241B2 (en) | 2013-10-22 | 2015-09-29 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9801383B2 (en) | 2013-10-22 | 2017-10-31 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9801376B2 (en) | 2013-10-22 | 2017-10-31 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9788545B2 (en) | 2013-10-22 | 2017-10-17 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| USRE48057E1 (en) | 2013-10-22 | 2020-06-23 | Dow Agrosciences Llc | Pesticidal compositions and related methods |
| US9788546B2 (en) | 2013-10-22 | 2017-10-17 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9523100B2 (en) | 2013-10-22 | 2016-12-20 | Dow Agrosciences Llc | Pesticidal compositions and related methods |
| US9549560B2 (en) | 2013-10-22 | 2017-01-24 | Dow Agrosciences Llc | Pesticidal compositions and related methods |
| US9295260B2 (en) | 2013-10-22 | 2016-03-29 | Dow Agrosciences Llc | Pesticidal compositions and related methods |
| US9497967B2 (en) | 2013-10-22 | 2016-11-22 | Doe AgroSciences LLC | Synergistic pesticidal compositions and related methods |
| US9137998B2 (en) | 2013-10-22 | 2015-09-22 | Dow Agrosciences Llc | Pesticidal compositions and related methods |
| US9445597B2 (en) | 2013-10-22 | 2016-09-20 | Dow Agrosciences Llc | Pesticidal compositions and related methods |
| US9474276B2 (en) | 2013-10-22 | 2016-10-25 | Dow Agrosciences Llc | Synergistic pesticidal compositions and related methods |
| US9491944B2 (en) | 2013-10-22 | 2016-11-15 | Dow Agrosciences Llc | Pesticidal compositions and related methods |
| US9497966B2 (en) | 2013-10-22 | 2016-11-22 | Dow Agrosciences Llc | Pesticidal compositions and related methods |
| US9333204B2 (en) | 2014-01-03 | 2016-05-10 | Abbvie Inc. | Solid antiviral dosage forms |
| US9744170B2 (en) | 2014-01-03 | 2017-08-29 | Abbvie Inc. | Solid antiviral dosage forms |
| US10105365B2 (en) | 2014-01-03 | 2018-10-23 | Abbvie Inc. | Solid antiviral dosage forms |
| US10835533B2 (en) | 2014-05-15 | 2020-11-17 | Array Biopharma Inc. | 1 -((3S,4R)-4-(3-fluorophenyl)-1-(2-methoxyethyl)pyrrolidin-3-yl)-3-(4-methyl-3-(2-methylpyrimidin-5-yl)-1-phenyl-1H-pyrazol-5-yl)urea as a TrkA kinase inhibitor |
| US10065929B2 (en) | 2014-06-03 | 2018-09-04 | Idorsia Pharmaceuticals Ltd | Pyrazole compounds and their use as T-type calcium channel blockers |
| US9932314B2 (en) | 2014-06-03 | 2018-04-03 | Idorsia Pharmaceuticals Ltd | Pyrazole compounds and their use as T-type calcium channel blockers |
| US10987322B2 (en) | 2014-06-06 | 2021-04-27 | Flexus Biosciences, Inc. | Immunoregulatory agents |
| US9598419B1 (en) | 2014-06-24 | 2017-03-21 | Universite De Montreal | Imidazotriazine and imidazodiazine compounds |
| US9617279B1 (en) | 2014-06-24 | 2017-04-11 | Bristol-Myers Squibb Company | Imidazooxadiazole compounds |
| US9255081B1 (en) | 2014-07-31 | 2016-02-09 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9580403B2 (en) | 2014-07-31 | 2017-02-28 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9371310B2 (en) | 2014-07-31 | 2016-06-21 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9573931B2 (en) | 2014-07-31 | 2017-02-21 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9249122B1 (en) | 2014-07-31 | 2016-02-02 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9840490B2 (en) | 2014-07-31 | 2017-12-12 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US10035786B2 (en) | 2014-07-31 | 2018-07-31 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1h-pyrazol-1-yl)pyridine |
| US9029555B1 (en) | 2014-07-31 | 2015-05-12 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9029556B1 (en) | 2014-07-31 | 2015-05-12 | Dow Argosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9611247B2 (en) | 2014-07-31 | 2017-04-04 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9199964B1 (en) | 2014-07-31 | 2015-12-01 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US10005758B2 (en) | 2014-08-19 | 2018-06-26 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9522900B2 (en) | 2014-08-19 | 2016-12-20 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9024031B1 (en) | 2014-08-19 | 2015-05-05 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9809570B2 (en) | 2014-08-19 | 2017-11-07 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9115115B1 (en) | 2014-08-19 | 2015-08-25 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9422265B2 (en) | 2014-09-12 | 2016-08-23 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9663489B2 (en) | 2014-09-12 | 2017-05-30 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9896430B2 (en) | 2014-09-12 | 2018-02-20 | Dow Agrosciences Llc | Process for the preparation of 3-(3-CHLORO-1H-pyrazol-1-yl)pyridine |
| US9156813B1 (en) | 2014-09-12 | 2015-10-13 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US9085552B1 (en) | 2014-09-12 | 2015-07-21 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine |
| US10246426B2 (en) | 2014-09-15 | 2019-04-02 | Idorsia Pharmaceuticals Ltd | Triazole compounds as T-type calcium channel blockers |
| US11571419B2 (en) | 2014-10-24 | 2023-02-07 | Landos Biopharma, Inc. | Lanthionine synthetase C-like 2-based therapeutics |
| US10849895B2 (en) | 2014-10-24 | 2020-12-01 | Landos Biopharma, Inc. | Lanthionine synthetase C-like 2-based therapeutics |
| US10206893B2 (en) | 2014-11-05 | 2019-02-19 | Flexus Biosciences, Inc. | Immunoregulatory agents |
| US10106546B2 (en) | 2014-11-05 | 2018-10-23 | Flexus Biosciences, Inc. | Immunoregulatory agents |
| US9643972B2 (en) | 2014-11-05 | 2017-05-09 | Flexus Biosciences, Inc. | Immunoregulatory agents |
| US9598422B2 (en) | 2014-11-05 | 2017-03-21 | Flexus Biosciences, Inc. | Immunoregulatory agents |
| US11242319B2 (en) | 2014-11-05 | 2022-02-08 | Flexus Biosciences, Inc. | Immunoregulatory agents |
| US11932601B2 (en) | 2014-11-05 | 2024-03-19 | Flexus Biosciences, Inc. | Immunoregulatory agents |
| US10533014B2 (en) | 2014-11-05 | 2020-01-14 | Flexus Biosciences, Inc. | Immunoregulatory agents |
| US10428065B2 (en) | 2015-04-20 | 2019-10-01 | Cellcentric Ltd | Isoxazolyl substituted imidazopyridines |
| US10118920B2 (en) | 2015-04-20 | 2018-11-06 | Cellcentric Ltd | Isoxazolyl substituted benzimidazoles |
| US10689347B2 (en) | 2015-06-04 | 2020-06-23 | Aurigene Discovery Technologies Limited | Substituted heterocyclyl derivatives as CDK inhibitors |
| US11174232B2 (en) | 2015-06-04 | 2021-11-16 | Aurigene Discovery Technologies Limited | Substituted heterocyclyl derivatives as CDK inhibitors |
| US12331023B2 (en) | 2015-06-04 | 2025-06-17 | Aurigene Oncology Limited | Substituted heterocyclyl derivatives as CDK inhibitors |
| US11858939B2 (en) | 2015-07-06 | 2024-01-02 | Alkermes, Inc. | Hetero-halo inhibitors of histone deacetylase |
| US10421756B2 (en) | 2015-07-06 | 2019-09-24 | Rodin Therapeutics, Inc. | Heterobicyclic N-aminophenyl-amides as inhibitors of histone deacetylase |
| US10919902B2 (en) | 2015-07-06 | 2021-02-16 | Alkermes, Inc. | Hetero-halo inhibitors of histone deacetylase |
| US10617675B2 (en) | 2015-08-06 | 2020-04-14 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| US11407749B2 (en) | 2015-10-19 | 2022-08-09 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11572366B2 (en) | 2015-11-19 | 2023-02-07 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11535615B2 (en) | 2015-12-22 | 2022-12-27 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11866435B2 (en) | 2015-12-22 | 2024-01-09 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| WO2017189978A1 (en) | 2016-04-28 | 2017-11-02 | Emory University | Alkyne containing nucleotide and nucleoside therapeutic compositions and uses related thereto |
| US11192914B2 (en) | 2016-04-28 | 2021-12-07 | Emory University | Alkyne containing nucleotide and nucleoside therapeutic compositions and uses related thereto |
| US11608337B2 (en) | 2016-05-06 | 2023-03-21 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11673883B2 (en) | 2016-05-26 | 2023-06-13 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11873309B2 (en) | 2016-06-20 | 2024-01-16 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11718605B2 (en) | 2016-07-14 | 2023-08-08 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11613536B2 (en) | 2016-08-29 | 2023-03-28 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11213517B2 (en) | 2016-12-16 | 2022-01-04 | Idorsia Pharmaceuticals Ltd | Pharmaceutical combination comprising a T-type calcium channel blocker |
| US11566026B2 (en) | 2016-12-22 | 2023-01-31 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US10800768B2 (en) | 2016-12-22 | 2020-10-13 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US10806785B2 (en) | 2016-12-22 | 2020-10-20 | Incyte Corporation | Immunomodulator compounds and methods of use |
| US10793565B2 (en) | 2016-12-22 | 2020-10-06 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11339149B2 (en) | 2016-12-22 | 2022-05-24 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US10308644B2 (en) | 2016-12-22 | 2019-06-04 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11787793B2 (en) | 2016-12-22 | 2023-10-17 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11465981B2 (en) | 2016-12-22 | 2022-10-11 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US12466822B2 (en) | 2016-12-22 | 2025-11-11 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11440898B2 (en) | 2016-12-28 | 2022-09-13 | Minoryx Therapeutics S.L. | Isoquinoline compounds, methods for their preparation, and therapeutic uses thereof in conditions associated with the alteration of the activity of beta galactosidase |
| US10233155B2 (en) | 2016-12-29 | 2019-03-19 | Dow Agrosciences Llc | Processes for the preparation of pesticide compounds |
| US10100033B2 (en) | 2016-12-29 | 2018-10-16 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| US10793567B2 (en) | 2017-01-11 | 2020-10-06 | Rodin Therapeutics, Inc. | Bicyclic inhibitors of histone deacetylase |
| US11286256B2 (en) | 2017-01-11 | 2022-03-29 | Alkermes, Inc. | Bicyclic inhibitors of histone deacetylase |
| US10519149B2 (en) | 2017-01-11 | 2019-12-31 | Rodin Therapeutics, Inc. | Bicyclic inhibitors of histone deacetylase |
| US11987580B2 (en) | 2017-01-11 | 2024-05-21 | Alkermes, Inc. | Bicyclic inhibitors of histone deacetylase |
| US10696673B2 (en) | 2017-01-11 | 2020-06-30 | Rodin Therapeutics, Inc. | Bicyclic inhibitors of histone deacetylase |
| US9951069B1 (en) | 2017-01-11 | 2018-04-24 | Rodin Therapeutics, Inc. | Bicyclic inhibitors of histone deacetylase |
| US11225479B2 (en) | 2017-01-11 | 2022-01-18 | Alkermes, Inc. | Bicyclic inhibitors of histone deacetylase |
| US10899695B2 (en) | 2017-02-06 | 2021-01-26 | Idorsia Pharmaceuticals Ltd | Process for the synthesis of 1-aryl-1-trifluoromethylcyclopropanes |
| US11912702B2 (en) | 2017-08-07 | 2024-02-27 | Alkermes, Inc. | Substituted pyridines as inhibitors of histone deacetylase |
| US11225475B2 (en) | 2017-08-07 | 2022-01-18 | Alkermes, Inc. | Substituted pyridines as inhibitors of histone deacetylase |
| US11247987B2 (en) | 2017-10-06 | 2022-02-15 | Forma Therapeutics, Inc. | Inhibiting ubiquitin specific peptidase 30 |
| US11124511B2 (en) | 2018-03-30 | 2021-09-21 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US10669271B2 (en) | 2018-03-30 | 2020-06-02 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US12247026B2 (en) | 2018-03-30 | 2025-03-11 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US10906920B2 (en) | 2018-05-11 | 2021-02-02 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US10618916B2 (en) | 2018-05-11 | 2020-04-14 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US11414433B2 (en) | 2018-05-11 | 2022-08-16 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US12187743B2 (en) | 2018-05-11 | 2025-01-07 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
| US12049466B2 (en) | 2018-05-17 | 2024-07-30 | Forma Therapeutics, Inc. | Fused bicyclic compounds useful as ubiquitin-specific peptidase 30 inhibitors |
| US12275728B2 (en) | 2018-09-19 | 2025-04-15 | Biogen Ma Inc. | O-glycoprotein-2-acetamido-2-deoxy-3-D-glucopyranosidase inhibitors |
| US12180205B2 (en) | 2018-09-19 | 2024-12-31 | Biogen Ma Inc. | O-glycoprotein-2-acetamido-2-deoxy-3-d-glucopyranosidase inhibitors |
| US11814386B2 (en) | 2018-10-05 | 2023-11-14 | Forma Therapeutics, Inc. | Fused pyrrolines which act as ubiquitin-specific protease 30 (USP30) inhibitors |
| US11535618B2 (en) | 2018-10-05 | 2022-12-27 | Forma Therapeutics, Inc. | Fused pyrrolines which act as ubiquitin-specific protease 30 (USP30) inhibitors |
| US11753406B2 (en) | 2019-08-09 | 2023-09-12 | Incyte Corporation | Salts of a PD-1/PD-L1 inhibitor |
| US11401279B2 (en) | 2019-09-30 | 2022-08-02 | Incyte Corporation | Pyrido[3,2-d]pyrimidine compounds as immunomodulators |
| US12247038B2 (en) | 2019-09-30 | 2025-03-11 | Incyte Corporation | Pyrido[3,2-d]pyrimidine compounds as immunomodulators |
| US11866451B2 (en) | 2019-11-11 | 2024-01-09 | Incyte Corporation | Salts and crystalline forms of a PD-1/PD-L1 inhibitor |
| US11377437B2 (en) | 2019-12-20 | 2022-07-05 | Landos Biopharma, Inc. | Lanthionine C-like protein 2 ligands, cells prepared therewith, and therapies using same |
| US12145920B2 (en) | 2019-12-20 | 2024-11-19 | Nimmune Biopharma, Inc. | Lanthionine c-like protein 2 ligands, cells prepared therewith, and therapies using same |
| US11117881B2 (en) | 2019-12-20 | 2021-09-14 | Landos Biopharma, Inc. | Lanthionine c-like protein 2 ligands, cells prepared therewith, and therapies using same |
| US11091447B2 (en) | 2020-01-03 | 2021-08-17 | Berg Llc | UBE2K modulators and methods for their use |
| US12234578B2 (en) | 2020-01-29 | 2025-02-25 | Wisconsin Alumni Research Foundation | Tannin composite fibers |
| US11760756B2 (en) | 2020-11-06 | 2023-09-19 | Incyte Corporation | Crystalline form of a PD-1/PD-L1 inhibitor |
| US12404272B2 (en) | 2020-11-06 | 2025-09-02 | Incyte Corporation | Process for making a PD-1/PD-L1 inhibitor and salts and crystalline forms thereof |
| US12084443B2 (en) | 2020-11-06 | 2024-09-10 | Incyte Corporation | Process of preparing a PD-1/PD-L1 inhibitor |
| US11780836B2 (en) | 2020-11-06 | 2023-10-10 | Incyte Corporation | Process of preparing a PD-1/PD-L1 inhibitor |
| US11866434B2 (en) | 2020-11-06 | 2024-01-09 | Incyte Corporation | Process for making a PD-1/PD-L1 inhibitor and salts and crystalline forms thereof |
| US12037346B2 (en) | 2021-04-13 | 2024-07-16 | Nuvalent, Inc. | Amino-substituted heteroaryls for treating cancers with EGFR mutations |
| US11878968B2 (en) | 2021-07-09 | 2024-01-23 | Plexium, Inc. | Aryl compounds and pharmaceutical compositions that modulate IKZF2 |
| US12012403B2 (en) | 2021-08-18 | 2024-06-18 | Chemocentryx, Inc. | Aryl sulfonyl compounds as CCR6 inhibitors |
| US12018016B2 (en) | 2021-08-18 | 2024-06-25 | Amgen Inc. | Aryl sulfonyl (hydroxy) piperidines as CCR6 inhibitors |
| US12054477B2 (en) | 2021-09-15 | 2024-08-06 | Hua Medicine (Shanghai) Ltd. | Prodrug of pyrrolidone derivatives as glucokinase activator |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102264737A (zh) | 2011-11-30 |
| CA2740193A1 (en) | 2010-07-01 |
| US8541424B2 (en) | 2013-09-24 |
| US20100168138A1 (en) | 2010-07-01 |
| RU2505540C2 (ru) | 2014-01-27 |
| ES2567047T3 (es) | 2016-04-19 |
| US20140213601A1 (en) | 2014-07-31 |
| HK1159619A1 (zh) | 2012-08-03 |
| MX2011006332A (es) | 2011-06-27 |
| WO2010075376A3 (en) | 2010-09-30 |
| JP2012513409A (ja) | 2012-06-14 |
| ZA201105355B (en) | 2012-03-28 |
| US9163017B2 (en) | 2015-10-20 |
| EP2367824B1 (en) | 2016-03-23 |
| SG172352A1 (en) | 2011-07-28 |
| EP2367824A2 (en) | 2011-09-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2367824B1 (en) | Anti-viral derivatives of pyrimidine | |
| RU2505539C2 (ru) | Антивирусные соединения | |
| US9394279B2 (en) | Anti-viral compounds | |
| US8232246B2 (en) | Anti-viral compounds | |
| JP5906253B2 (ja) | 抗ウイルス性化合物 | |
| US20120115918A1 (en) | Anti-Viral Compounds | |
| US20110092415A1 (en) | Anti-Viral Compounds | |
| HK1159619B (en) | Anti-viral derivatives of pyrimidine | |
| AU2012247053B2 (en) | Anti-viral compounds |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200980152256.1 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09796254 Country of ref document: EP Kind code of ref document: A2 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2740193 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2009796254 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2011542569 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2011/006332 Country of ref document: MX |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2856/KOLNP/2011 Country of ref document: IN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011130833 Country of ref document: RU |