WO2010074259A1 - 伸縮性光信号伝送ケーブル - Google Patents
伸縮性光信号伝送ケーブル Download PDFInfo
- Publication number
- WO2010074259A1 WO2010074259A1 PCT/JP2009/071665 JP2009071665W WO2010074259A1 WO 2010074259 A1 WO2010074259 A1 WO 2010074259A1 JP 2009071665 W JP2009071665 W JP 2009071665W WO 2010074259 A1 WO2010074259 A1 WO 2010074259A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- signal transmission
- transmission cable
- optical signal
- stretchable
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/4434—Central member to take up tensile loads
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/46—Processes or apparatus adapted for installing or repairing optical fibres or optical cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/22—Cables including at least one electrical conductor together with optical fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/06—Extensible conductors or cables, e.g. self-coiling cords
Definitions
- the present invention relates to a stretchable optical signal transmission cable having stretchability and excellent optical signal transmission properties.
- Some signal transmission cables use so-called electrical signals and others use optical signals.
- a device using an electric signal is easy to handle and is versatile, but has a limitation in high-speed transmission and is vulnerable to electromagnetic interference.
- Optical signals have the advantage that they can be transmitted at high speed and are not subject to electromagnetic interference.
- an optical fiber cable is used as a medium for transmitting an optical signal, it is generally rigid and has poor handleability. For this reason, it is often used as a fixed wiring.
- an optical fiber curl cord see Patent Document 1 below.
- the curl cord has a problem that the outer diameter is large, the curled part is easily caught, and it is easy to hang down when it is horizontal, and it cannot be said that the handling property is sufficiently improved.
- the problem to be solved by the present invention is to provide a stretchable optical fiber cable that has shape deformation followability, can transmit light even when deformed, and can be used repeatedly.
- the elastic optical signal transmission cable is an elastic cylindrical body having elasticity of 10% or more and at least one optical fiber wound around the elastic cylindrical body, and the bending diameter R of the optical fiber is
- the present invention has been completed by finding that a stretchable optical signal transmission cable characterized in that is equal to or larger than the limit bending diameter Re can solve the above-mentioned problems. That is, the present invention provides the following inventions.
- a stretchable optical signal transmission cable having a stretchability of 10% or more and an optical transmission loss of less than 20 dB / m in a relaxed state, and an elastic cylindrical body having a stretchability of 10% or more and the elasticity
- a stretchable optical signal transmission cable comprising at least one optical fiber wound around a cylindrical body, wherein a bending diameter R of the optical fiber is not less than a limit bending diameter Re.
- the stretchable optical signal transmission cable according to any one of [1] to [10], further including an outer coating layer made of fiber on an outer periphery of the optical fiber.
- One or more anti-stretch filaments having an overall length shorter than that of the optical fiber are included, and the filaments are represented by the following formula: 100 ⁇ (L 0 ⁇ Lk) / Lk [%] ⁇ Where L 0 is the total length of the optical fiber and Lk is the total length of the anti-stretch filament.
- the stretchable optical signal transmission cable according to any one of the above [1] to [12], wherein the total breaking strength of the filamentous body when stretched to a value defined by is 10000 cN or more.
- a function of extending the elastic cylinder, a function of winding at least one transmission line and at least one filament in the same direction around the elastic cylinder, and at least one constraining filament In a state where the elastic cylinder is stretched by an apparatus having a function of winding the wire in the direction opposite to the above direction, at least one optical fiber and at least one filamentous body are arranged in the same direction around the elastic cylinder. And winding at least one constraining thread body alternately through the outer side and the inner side (elastic cylinder side) of one or a plurality of optical fibers in the opposite direction to the optical fiber.
- the method for producing a stretchable optical signal transmission cable according to any one of [3] to [15].
- the stretchable optical signal transmission cable of the present invention is useful as a transmission cable for robots and wearable electronic devices because it can propagate high-speed signals without being disturbed and attenuated, and has stretchability and conformability to form deformation. It is.
- Optical fiber diameter d (mm).
- Optical fiber winding diameter D (mm). The minimum is represented by Dmin and the maximum is represented by Dmax.
- Optical fiber wound outer diameter Do (mm).
- Optical fiber bending diameter R (mm). The minimum is Rmin, the maximum is Rmax, the average is Rave, and the limit bending diameter is Re.
- the stretchable optical signal transmission cable of the present invention even if it is used repeatedly, even if the optical signal propagates without being disturbed and attenuated, the bending diameter of the optical fiber is little changed over the entire length. It is important. In order to develop stretchability, it is necessary to integrate a highly flexible optical fiber with a stretchable structure.
- the stretchable optical signal transmission cable of the present invention needs to exhibit a stretchability of 10% or more. Preferably it is 20% or more, More preferably, it is 30% or more. If it is less than 10%, the deformation followability is poor and the above object cannot be achieved.
- stretchability refers to one having a recovery rate of 50% or more after being relaxed after being stretched to a predetermined degree, for example, 10%.
- the stretchable optical signal transmission cable of the present invention is intended to be used as wiring via a portion corresponding to a joint in order to be used as wiring for an articulated robot or a body-mounted electronic device. For this reason, the length is 1 m as a guide. Further, for high-speed signal transmission, the optical transmission loss needs to be less than 20 dB / m. If it is more than this, the transmission performance is poor and not suitable for optical signal transmission. Preferably it is 10 dB / m or less, More preferably, it is 6 dB / m or less, Most preferably, it is 3 dB / m or less.
- the transmission loss referred to in the present invention refers to a value obtained by a so-called cutback method.
- the stretchable optical signal transmission cable of the present invention is wound in the same direction around an elastic cylinder (1) having a stretchability of 10% or more and the elastic cylinder. It consists of a transmission body part including at least one optical fiber cable (2 and 3). Furthermore, it is preferable to have an outer coating layer on the outer periphery of the transmission part (the outer coating layer is not shown). Note that at least a part of the optical fiber may exist inside the surface layer of the elastic cylindrical body.
- the elastic cylindrical body can be formed from an elastic long fiber, an elastic tube, a coil spring, or the like. Moreover, it is preferable that an elastic cylinder has a space
- the method of forming the void includes, for example, a method of arranging insulating fibers around the elastic long fibers, a method of braiding elastic long fibers or a thread-like body in which insulating fibers are arranged around the elastic long fibers, and elastic long fibers. There are a method of foaming, a method of hollowing out elastic long fibers, or a method of combining them. When formed from an elastic tube or coil spring, it is naturally hollow.
- the elastic long fiber used to form the elastic cylinder needs to have a stretchability of 10% or more. It preferably has a stretchability of 50% or more. When the stretchability is less than 50%, the stretchability is poor, and the load when the stretchable optical signal transmission cable is stretched is increased. It is more preferable to use elastic long fibers having a stretchability of 100% or more, and particularly preferably 300% or more.
- the elastic long fiber used in the present invention is not particularly limited as long as it is rich in elasticity as described above.
- polyurethane-based elastic long fiber, polyolefin-based elastic long fiber, polyester-based elastic long fiber, polyamide-based elastic long fiber, natural rubber-based elastic long fiber, synthetic rubber-based elastic long fiber, and composite rubber-based elastic of natural rubber and synthetic rubber A long fiber etc. can be mentioned.
- Polyurethane elastic long fibers are most suitable as the elastic long fibers of the present invention because they have large elongation and excellent durability.
- Natural rubber-based long fibers have the advantage that the stress per cross-sectional area is small compared to other elastic long fibers, and it is easy to obtain an elastic signal transmission cable that expands and contracts with low stress. However, since it tends to deteriorate, it is difficult to maintain stretchability for a long time. Therefore, it is suitable for applications intended for short-term use.
- Synthetic rubber-based elastic long fibers are excellent in durability. Silicone rubber is preferably used because it has good elongation and durability. In addition, fluororubber is small in elongation but excellent in durability and nonflammability.
- a known synthetic rubber-based elastic long fiber can be used depending on the application.
- the elastic long fiber may be monofilament or multifilament.
- the diameter of the elastic long fiber is preferably in the range of 0.01 to 30 mm. More preferably, it is 0.02 to 20 mm. More preferably, it is 0.03 to 10 mm. When the diameter is 0.01 mm or less, stretchability is not obtained, and when the diameter exceeds 30 mm, a large force is required to extend.
- the elastic long fiber By making the elastic long fiber into twin yarn or multi-twisted in advance, or having the elastic long fiber as a core and winding another elastic long fiber around it, the elastic cylindrical body and the transmission body part (To prevent the transmission body portion from shifting when it expands and contracts) can be facilitated.
- the coil spring used for forming the elastic cylindrical body may be a coil spring other than metal or a metal coil spring.
- Metal coil springs do not deteriorate even at high temperatures and are suitable for applications that are used in high-temperature environments.
- the coil-shaped spring can be arbitrarily designed by selecting a coiling machine and setting conditions of the selected coiling machine. Since a coil spring alone cannot wind a conductor wire around it, an elastic cylindrical body can be obtained by forming a braid of insulating fibers around the coil spring in advance. It is preferable that the coil diameter Cd and the wire drawing (wire material forming the coil) diameter Sd satisfy 24> Cd / Sd> 4.
- Cd / Sd When Cd / Sd is 24 or more, a spring having a stable form cannot be obtained, and it is not preferable because it is easily deformed.
- Cd / Sd is 16 or less.
- Cd / Sd when Cd / Sd is 4 or less, it becomes difficult to form a coil, and at the same time, stretchability is hardly exhibited.
- Cd / Sd is preferably 6 or more.
- the diameter Sd of the wire drawing is preferably 3 mm or less. If it is 3 mm or more, the spring becomes heavy, and the stretching stress and the coil diameter increase, which is not preferable. On the other hand, if the diameter of the wire drawing is 0.01 mm or less, the spring that can be formed is too weak, and when a force is applied from the side, it is easily deformed, which is not practical.
- the coil pitch interval is preferably 1 ⁇ 2 Cd or less. Although the coil-shaped spring can be formed even at an interval larger than this, it is difficult to form a braid of insulating fibers on the outer periphery of the coil. Furthermore, it is not preferable because the stretchability is lowered and it is easily deformed by an external force.
- the pitch interval of the coils is preferably 1/10 Cd or less.
- a pitch interval of almost zero has the advantage that the stretchability can be maximized, the spring itself is hard to get tangled, the wound spring is easy to pull out, and it is strong against deformation due to external force, preferable.
- the coil diameter is preferably in the range of 0.02 to 30 mm. More preferably, it is 0.05 to 20 mm, and further preferably 0.1 to 10 mm.
- a coil spring having an outer diameter of 0.02 mm or less is difficult to manufacture, and if it exceeds 30 mm, the winding diameter of the optical fiber becomes too large, which is not preferable.
- the material of the coil spring can be arbitrarily selected from known wire drawing. Examples of the wire material include piano wire, hard steel wire, stainless steel wire, oil tempered wire, phosphor bronze wire, beryllium copper wire, and white wire. Stainless steel wire is desirable because it is excellent in corrosion resistance and heat resistance and is easily available.
- the elastic tube has a void inside, and can be used as it is as an elastic cylinder, or can be formed as an elastic cylinder by forming a fiber layer on the outer layer of the elastic tube.
- An optical fiber can also be embedded in the elastic tube. For example, after winding an optical fiber on a stainless steel rod and immersing or coating it in rubber latex, after performing a known method (for example, vulcanization treatment, heat treatment and drying treatment), the internal stainless steel rod is removed. By leaving or the like, the optical fiber can be embedded in the elastic tube.
- the elasticity of the elastic cylindrical body needs to be 10% or more, preferably 30% or more, and more preferably 50% or more. When the stretchability is as low as less than 30%, the elongation may decrease due to the covering of the transmission body portion and the outer covering layer, and the transmission cable may have a low stretchability.
- the 20% elongation load of the elastic cylindrical body is preferably 2000 cN or less. More preferably, it is 1000 cN or less, More preferably, it is 500 cN or less.
- the diameter of the elastic cylinder is 30 mm or less, preferably 20 mm or less, more preferably 10 mm or less. When the diameter is 30 mm or more, it becomes thick and heavy, which is not preferable for practical use.
- the elastic cylinder is designed to have a 20% elongation stress of 1 to 500 cN / mm 2 , more preferably 1 to 200 cN / mm 2 , and even more preferably 5 to 100 cN / mm 2 . By designing in the above range, good stretchability can be obtained.
- the optical fiber used in the present invention is preferably a flexible optical fiber with good transmission characteristics.
- a holey type having a large number of holes around the core and a multi-core type divided into a large number of fine wires are known.
- a holey type is preferably used as the glass optical fiber, and a multi-type is preferably used as the plastic optical fiber.
- Glass optical fibers have the advantages of high transparency, a small diameter and a small connector.
- the bending radius is relatively large and it is easy to break.
- a plastic optical fiber has the advantage of being soft and easy to bend.
- the permeability is relatively low, the diameter becomes thick, and the connector portion must be enlarged. Utilizing each feature, it can be used properly according to the application. In any case, it is preferable to use one having both transmission and flexibility.
- the bare optical fiber can be used alone as the optical fiber constituting the signal line, if the surface is damaged, the transmission performance is lowered.
- a single-core optical fiber can be used, but lacks flexibility.
- the plastic optical fiber it is preferable to use a multi-core type optical fiber composed of a collection line of fine wires.
- the glass optical fiber is preferably a hole type having a plurality of air holes around the core.
- the number of multi-cores and the number of hole-type air holes there is no particular upper limit for the number of multi-cores and the number of hole-type air holes, and the upper limit can be arbitrarily determined in consideration of flexibility and transmission.
- the diameter is increased, so that it is preferably 10,000 or less, more preferably 1,000 or less.
- the single wire diameter of the thin wire constituting the multi-core is preferably 0.1 mm or less, more preferably 0.08 mm or less, and still more preferably 0.05 mm or less. By thinning, flexibility can be increased. Since it will become difficult to manufacture if it is too thin, 0.001 mm or more is preferable.
- any known method may be used in the present invention.
- a length of about 1 m is required, and transmission is performed at a short distance.
- a multi-core for example, 37
- plastic optical fiber having a diameter of 1 mm or less the wound diameter can be reduced, it is compact and highly stretchable, and is not easily broken even in repeated use.
- a stretchable optical signal transmission cable can be obtained.
- the optical fiber preferably has a diameter d (mm) of 3>d> 0.1 and a limit bending diameter Re (mm) of 30>Re> 0.5. More preferably, 2>d> 0.1, 20>Re> 0.5, and further preferably 1>d> 0.1, 10>Re> 0.5.
- the small diameter and small bending radius have the advantage of being compact and rich in elasticity, good in conformity to form deformation, strong against repeated expansion and contraction, and having little change in transmission even when deformed.
- the sheath of the optical fiber can also be protected by covering the optical fiber with the aggregate of fibers.
- the fiber is not particularly limited, but examples thereof include polyester fiber and nylon fiber as inexpensive, strong and easy to handle.
- a fiber excellent in flame retardancy such as a fluorine fiber or a saran fiber can be used, a high-strength fiber such as an aramid fiber or a polysulfonic acid fiber, or a polypropylene fiber can be used. It is also possible to use a fiber that has been subjected to a water-repellent finish or a flame-retardant finish in advance.
- the stretchable signal transmission cable of the present invention can be obtained by winding one or more optical fibers around an elastic cylindrical body having a stretchability of 10% or more.
- a so-called multi-core optical fiber cable or an electro-optic composite cable may be used by using two or more optical fibers or using one or more conductor wires as described later.
- the conductor wire In order to obtain the electro-optic composite cable, the conductor wire needs to include a length of 1.2 times or more compared to the cable length when relaxed. If it is less than this, the elasticity of the cable will be hindered.
- the conductor wire In order to make the cable rich in elasticity, the conductor wire is preferably wound in a spiral shape. In order to obtain a spiral shape, for example, it can be wound in one direction by a covering machine or wound in both directions of S / Z.
- the conductor wire and the optical fiber can be wound on the same circumference or concentrically and wound in multiple layers. When winding on the same circumference, it is preferable to wind in parallel.
- “Parallel” refers to a state in which transmission lines (optical fiber and conductor line) do not cross and overlap each other, preferably do not overlap partially, and are wound in the same direction.
- the overlapping part is not preferable because it causes disconnection in repeated expansion and contraction.
- by winding in parallel it becomes easy to obtain a compact and highly stretchable optical signal transmission cable.
- Cases used for general purposes include 1, 2, 3, 4, 5-10, and the like.
- an upper limit is not specifically limited, If it becomes ten or more, a stretching property will be easy to be inhibited. Preferably it is within eight. More preferably, the number is 1 to 4.
- the optical fiber when a conductor line is included together with the optical fiber, the optical fiber can be a signal line, and the conductor line can be a power line and / or a signal line.
- a cable having both a signal line and a power line is preferred as a highly versatile cable. For example, by using a total of three optical signal lines, one power supply line, and one ground line, a stretchable optical signal transmission cable having both signal transmission by optical communication and power supply can be obtained.
- Conductor wires can be used together as signal lines. At least one signal line is required. Two are preferable.
- a general-purpose differential signal can be transmitted by two signal lines. By including two conductor wires for power supply, two conductor wires for high-frequency transmission, and one or two optical fibers, all of the power, high-frequency signal, and optical signal can be transmitted simultaneously.
- the optical fiber and the conductor wire are constrained by a constraining thread-like body at one or more places per winding.
- a constraining thread-like body can be arbitrarily used as the constraining thread-like body.
- multifilament, monofilament, or spun yarn can be used. From the viewpoint of being thin, soft, strongly binding (high strength), and inexpensive, polyester fibers and nylon fibers can be mentioned.
- fluorine fibers From the viewpoint of a low dielectric constant, fluorine fibers, polyethylene fibers, and polypropylene fibers can be mentioned. From the viewpoint of flame retardancy, examples include vinyl chloride fiber, saran fiber, and glass fiber. From the viewpoint of stretchability, polyurethane fibers or those obtained by coating the outside of the polyurethane fibers with other insulating fibers can be used. In addition, silk, rayon fiber, cupra fiber, and cotton spun yarn can also be used. However, it is not limited to these, and a known fiber can be arbitrarily used.
- the optical fiber By winding the optical fiber in one direction (for example, the Z direction) and winding the thread body in the reverse direction (S direction) from above, the optical fiber can be restrained and displacement due to expansion and contraction can be prevented.
- the winding tension is increased by increasing the winding speed (increasing the spindle rotation speed).
- the binding force can be increased.
- the filament is wound around the inner side (elastic cylinder side) and the outer side of the optical fiber in the opposite direction to the optical fiber to restrain the optical fiber.
- the winding pitch of the stretched and relaxed can be reduced even by repeated stretching and bending operations.
- a stretchable optical signal transmission cable with little change and little change in the winding pitch by repeated stretching can be obtained.
- the optical fibers may be alternately passed one by one, or the plurality of optical fibers may be collectively passed alternately.
- the thread body is preferably thinner than the optical fiber. If a thick yarn state is used, the optical fiber itself must be deformed and is difficult to expand and contract.
- the filamentous body is wound by alternately passing the inside and the outside of the optical fiber so as to have one or more, preferably four or more, more preferably eight or more restraining points per circumference. It is preferable to do.
- the winding tension can be increased and the binding force can be increased. It is preferable to adjust the load while watching the wound state. If the load is too small, the mutual restraining force becomes small, and the winding pitch of the optical fiber may fluctuate due to stretching. If the load is too strong, the optical fiber itself is strongly tightened from the side surface, which may reduce the transmission performance.
- the constraining thread-like body is interposed, the optical fiber and the intervening thread-like body are combined, or separately, alternately passing through the inside and the outside of the restraining thread-like body. You can also twist your body.
- the pitch of the optical fiber can also be controlled by this inclusion.
- an optical fiber is rigid, and even if it is wound as described above and restrained by a constraining thread-like body, a twisting force is generated due to expansion and contraction, and the wound state tends to be disturbed.
- the residual torque rate of the optical fiber is preferably 70% or less. More preferably, it is 50% or less, More preferably, it is 30% or less.
- Residual torque ratio 100 * (10 ⁇ N) / 10 (%)
- the heat treatment conditions are set in consideration of the residual torque reduction effect of the optical fiber and the light transmission and stretchability of the optical fiber.
- the effective temperature is determined by measuring the residual torque rate, light transmittance, and stretchability. If the treatment is performed at a high temperature for a long time, the transmission performance decreases. Furthermore, the stretchability of the elastic body may be impaired. On the other hand, at low temperatures, the effect of strain removal is poor.
- the heat treatment is preferably performed at a temperature of 40 ° C. or higher. More preferably, it is 60 ° C. or higher, more preferably 80 ° C. or higher.
- the time is arbitrarily set in relation to the temperature.
- Stable heat treatment can be performed by maintaining at a predetermined temperature for 1 second or longer, preferably 10 seconds or longer, more preferably 1 minute or longer. If the optical fiber is held at a high temperature for a long time, the transmittance of the optical fiber may be lowered. Therefore, it is preferable to set the reduction of the transmittance within a range of 50% or less. More preferably, it is 30% or less, More preferably, it is 10% or less. In the case of a plastic optical fiber, the temperature is preferably 150 ° C. or lower. More preferably, it is 120 degrees C or less. In the case of a glass optical fiber, the temperature is preferably 200 ° C. or lower. In addition, when held at a high temperature for a long time, the stretchability may be lowered.
- elastic long fibers When elastic long fibers are used as the elastic body, for example, it is preferably 180 ° C. or lower for silicone rubber, 150 ° C. or lower for polyurethane elastic long fibers, and 130 ° C. or lower for natural rubber. Moreover, when using what braided the circumference
- a higher temperature may be required to reduce the residual torque ratio.
- silicon rubber or a coil spring having high heat resistance as an elastic body. The residual torque can be reduced while maintaining the optical fiber permeability without impairing the stretchability.
- the optical fiber and the elastic cylinder may be bonded.
- the adhesive has poor stretchability, and when applied so as to cover the entire elastic cylinder, the elasticity of the elastic cylinder tends to be lost.
- the optical fibers are preferably wound at a constant pitch in the same direction. If the pitch varies in the length direction, the bending rate of the optical fiber varies, and the transmission performance tends to decrease. Further, due to the expansion and contraction, the deformation is easily concentrated at one place, and the portion where the optical fiber is fully extended and the portion where the optical fiber is bent are easily generated.
- the bending diameter R (mm) of the optical fiber represented by the following formula by the pitch P (mm) and the winding diameter D (mm) of the optical fiber to be wound is equal to or larger than the limit bending diameter Re. However, it is preferable not to depart from the range of 50 ⁇ R ⁇ Re.
- FIG. 5 is a diagram for explaining a bending diameter in the present invention.
- A is a schematic diagram of the stretchable optical signal transmission cable of the present invention
- B is a diagram in which the cable is cut and developed in the length direction.
- the bending diameter R is a winding diameter in consideration of the winding angle ⁇ of the optical fiber.
- R exceeds 50 mm, the outer diameter becomes too large, or the stretchability tends to be impaired. More preferably, it is 30 mm or less, More preferably, it is 20 mm or less, Most preferably, it is 10 mm or less.
- the lower limit of the bending diameter R is preferably not less than the limit bending diameter Re of the optical fiber. More preferably, it is 2 Re or more, and further preferably 3 Re or more. The method for obtaining the limit bending diameter Re of the optical fiber will be described later.
- R is equal to or greater than Re even at any stretch up to the stretch limit. More preferably, it is 2 Re or more, and further preferably 3 Re or more. It is preferable not to deviate from this range even by repeated stretching. If it deviates from this range, the transmission performance is reduced or the stretchability is lost.
- the stretch limit referred to in the present invention refers to a value obtained by multiplying the stretch rate at which the stretch recovery rate is less than 80% by 0.8.
- the stretchable optical signal transmission cable of the present invention preferably has an optical fiber winding pitch (P) of 0.5 to 50 mm.
- P optical fiber winding pitch
- the winding pitch is 1 to 20 mm, and further preferably the winding pitch is 2 to 10 mm.
- the winding diameter of the optical fiber is preferably Re-30 mm. More preferably, Re is 20 mm, and further preferably Re is 10 mm. In the case of 30 mm or more, the finished outer diameter becomes too large, which is not preferable. In the case of Re or less, transmission becomes difficult.
- the distance between adjacent optical fibers (t and t ′ in FIGS. 1 and 2), and the distance between adjacent transmission lines (optical fibers and / or conductor lines) including conductor lines when including conductor lines as described later is It is preferably 0.01 to 20 mm. If it is less than 0.01 mm, the sheath of the optical fiber is likely to be damaged due to expansion and contraction, and there is a risk that the transmission performance is lowered. In the case of 20 mm or more, the stretchability becomes poor. More preferably, it is 0.1 to 10 mm, and further preferably 0.1 to 5 mm.
- the pitch, interval, and winding diameter of the optical fiber are in the above ranges, it is easy to obtain a compact and highly stretchable optical signal transmission cable, and in repeated expansion and contraction, the bending diameter R is 50 ⁇ R ⁇ Re. It is easy to obtain a stretchable optical signal transmission cable suitable for repeated use.
- the stretchable optical signal transmission cable of the present invention may have an outer covering layer. By having the outer coating layer, it is protected from physical stimulation and chemical stimulation, and durability is improved.
- the outer coating layer is preferably formed of an elastic resin having fiber or rubber elasticity.
- a conductive fiber or an insulating fiber can be used as the fiber. As will be described later, it is preferable to use an insulating fiber when a conductor wire is used in combination.
- the conductive fiber can also be used as an outer shield layer or a countermeasure against static electricity.
- a water-repellent insulating fiber is preferable because it has an effect of preventing infiltration of water having a high dielectric constant.
- a water-repellent insulating fiber such as a fluorine fiber or a polypropylene fiber can be used, or a polyester fiber or a nylon fiber can be subjected to a water-repellent finish.
- the water repellent finish can be arbitrarily selected from known finishes. Specific examples include fluorine-based and silicon-based water repellent finishing agents. Moreover, a flame-retardant process can also be performed. When dyeing polyester or nylon for external coating, flame retardant processing can be performed using a bromine-based or phosphate-based processing agent (not limited to this agent). A flame-retardant treatment can be applied, or the stretchable optical signal transmission cable can be flame-retardant. It is preferable that the fiber to be used is flame-retardant processed in advance.
- the fiber multifilament, monofilament, or spun yarn can be used. Multifilaments are preferable because they have good coverage and are less likely to cause fluff.
- the fibers can be arbitrarily selected from known fibers in accordance with the use of the stretchable transmission cable and the assumed use conditions.
- the fiber may be a raw yarn, but an original yarn or a pre-dyed yarn can be used from the viewpoint of design and prevention of deterioration. By finishing, flexibility and friction can be improved.
- the handleability at the time of practical use can be improved by performing known fiber processing such as flame retardant processing, oil repellent processing, antifouling processing, antibacterial processing, antibacterial processing, and deodorizing processing.
- fibers that achieve both heat resistance and wear resistance include aramid fibers, polysulfone fibers, and fluorine fibers.
- glass fiber, flame-resistant acrylic fiber, fluorine fiber and saran fiber, aramid fiber, and the like can be mentioned.
- wear resistance and strength high-strength polyethylene fibers and polyketone fibers are added.
- polyester fiber, nylon fiber and acrylic fiber there are polyester fiber, nylon fiber and acrylic fiber.
- Examples thereof include aramid fibers, polysulfone fibers, cotton, rayon, cupra, wool, silk and acrylic fibers.
- examples include high-strength polyethylene fiber, aramid fiber, and polyphenylene sulfide fiber.
- examples thereof include fluorine fibers, nylon fibers, and polyester fibers.
- acrylic fibers with good color can be used. Furthermore, when importance is attached to the tactile sensation due to human contact, cellulosic fibers such as cupra, acetate, cotton, and rayon, and silk or synthetic fibers with fine fineness can be used.
- Coating with an elastic resin or coating with a rubber tube is preferably used for applications where there is a risk that liquid may enter the interior.
- the elastic resin can be arbitrarily selected from various elastic insulating resins, and can be selected in consideration of the use of the stretchable optical transmission cable and compatibility with other fibers used at the same time. Performances to consider include transmission, stretchability, wear resistance, heat resistance and chemical resistance. Examples of those having excellent stretchability include so-called natural rubber-based elastic resins, styrene-butadiene-based elastic resins, and silicon-based elastic resins.
- Synthetic rubber-based elastic bodies can be cited as those excellent in abrasion resistance, heat resistance and chemical resistance, and fluorine-based rubber, silicone-based rubber, ethylene / propylene-based rubber, chloroprene-based rubber and butyl-based rubber are preferable.
- the outer coating layer can be a combination of a braided fiber and an elastic resin.
- the expansion / contraction transmission cable is desired to be expanded / contracted with a small force, but in the case of covering only with an elastic resin, the elastic resin tends to be thick, and the expansion / contraction force tends to increase. In such a case, it is possible to achieve both coverage and stretchability by combining a thin elastic resin and a braid made of insulating fibers.
- an elastic resin it can also be covered with a so-called rubber tube. The rubber tube generally has poor friction, so that the outside can be further covered with a fiber in order to compensate for this.
- the stretchable optical signal transmission cable of the present invention may be shielded.
- the shield is used for the purpose of preventing radiation and penetration of electromagnetic waves. For this reason, it is preferably used when a conductor wire is used in combination.
- the shielding method can be obtained by braiding with electrically conductive organic fibers or metal wires with good electrical conductivity, winding a tape-like material (eg, aluminum foil) with good electrical conductivity, etc. it can.
- a coating layer is constituted by the fiber, and a shield layer is formed on the outer periphery thereof.
- the shield layer can be obtained by braiding with electrically conductive organic fibers, metal wires with good electrical conductivity, or a combination thereof.
- Electrically conductive organic fibers are those with a specific resistance of 1 ⁇ ⁇ cm or less.
- a plated fiber or a fiber filled with a conductive filler can be raised. More specifically, silver plating fiber etc. are mentioned.
- the stretchable optical signal transmission cable of the present invention has an anti-stretch fiber body (anti-stretch fiber body total length: Lk) whose overall length is shorter than the optical fiber (optical fiber total length: L 0 ) in order to prevent disconnection of the optical fiber due to overstretching. It is preferable that 1 or more is included. And it is preferable to design so that the total breaking strength of the anti-stretch filaments is 10,000 cN or more when the anti-stretch filaments are stretched to 100 ⁇ (L 0 -Lk) / Lk [%]. For example, when the electronic device is accidentally dropped while the stretchable optical signal transmission cable of the present invention is connected to an electronic device of several kg, a sudden load may be applied to the cable. Even in such a case, by designing as described above, it is possible to prevent an excessive load from being applied to the optical fiber, and to prevent a decrease in the transmission property of the elastic optical signal transmission cable and a decrease in the elasticity. Can do.
- An anti-stretch filament that is shorter than the optical fiber is externally coated at a winding angle smaller than the winding angle of the optical fiber, or the elastic cylinder of the core is resistant to winding at a winding angle smaller than that of the optical fiber.
- the stretchable fiber of the present invention is wound by either winding the stretched filamentous body or inserting the anti-stretched filamentous body along the stretched elastic cylinder at the time of winding the optical fiber. It can be included in an optical signal transmission cable. Moreover, it can set shorter than an optical fiber by selecting the conditions.
- the pitch interval is the base of the virtual triangle
- the value obtained by multiplying the winding diameter by the circumference is the height of the virtual triangle
- the hypotenuse of the virtual triangle is one virtual triangle unit. It becomes the optical fiber length.
- the hypotenuse of the virtual triangle of the wound optical fiber is shorter than the target than the hypotenuse of the wound anti-stretch filament.
- the anti-stretched filamentous body is placed along the stretched elastic cylindrical body, the stretching magnification is 1.1 times or more, the antistretchable filamentous body is placed without winding, and an optical fiber is placed around the stretched filamentous body. This can be realized by winding.
- the anti-stretched filamentous body When the anti-stretched filamentous body is placed along the elastic cylindrical body of the core part, it is preferable to use high-strength fibers in order to realize a breaking load with a small number.
- Aramid fibers, polyketone fibers, PPS fibers, high-strength PE fibers, high-strength PP fibers and the like can be mentioned.
- the anti-stretch filamentous body is arranged by controlling the winding angle, it can also serve as an outer coating, and the total breaking strength can be increased to 10,000 cN or more by using a plurality of strands.
- known fibers such as polyester fibers, nylon fibers, acrylic fibers, rayon fibers, cupra fibers, polylactron fibers, cotton, and silk can be used.
- a conductor line can be arranged in addition to the optical fiber.
- the conductor wire preferably has an electric resistance of 100 ⁇ / m or less per 1 m of the stretchable optical signal transmission cable in the relaxed state. More preferably, it is 10 ⁇ / m or less. Particularly preferably, it is 5 ⁇ / m or less.
- the conductor wire used in the present invention is preferably a collection of fine wires made of a highly conductive material.
- the aggregated metal wires are soft and difficult to break, contributing to the stretchability and durability of the stretchable signal transmission cable.
- a thin wire can be used alone as the conductor wire constituting the signal line, but if the electrical resistance is increased, the transmission performance is lowered. For this reason, it is preferable to gather two or more thin wires and use them as one conductor wire.
- the upper limit of the number of sets is not particularly limited, but can be arbitrarily determined in consideration of flexibility and electrical resistance. Increasing the number of aggregates decreases productivity, so 10,000 or less are preferable. More preferably, it is 1000 or less.
- a substance having good conductivity means an electric conductor having a specific resistance of 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less. More preferably, it refers to a metal of 1 ⁇ 10 ⁇ 5 ⁇ ⁇ cm or less. Specific examples include so-called copper (specific resistance is 0.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm) aluminum (specific resistance is 0.3 ⁇ 10 ⁇ 5 ⁇ ⁇ cm) and the like.
- Copper wire is preferable because it is relatively inexpensive, has low electrical resistance, and can be easily thinned.
- Aluminum wires are preferred after copper wires because they are lightweight.
- Copper wire is generally annealed copper wire or tin-copper alloy wire, but strong copper alloy with enhanced strength (eg, oxygen-free copper added with iron, phosphorus, indium, etc.), tin, gold, silver or platinum
- strong copper alloy with enhanced strength eg, oxygen-free copper added with iron, phosphorus, indium, etc.
- tin gold
- silver or platinum it is possible to use a material that has been plated to prevent oxidation, or a surface treated with gold or other elements in order to improve electric signal transmission characteristics, but is not limited thereto.
- the single wire diameter of the thin wire which comprises a conductor wire is 0.1 mm or less, More preferably, it is 0.08 mm or less, More preferably, it is 0.05 mm or less.
- thinning flexibility can be increased.
- the surface area can be increased and the transmission property can be improved by thinning. Since it will be easy to disconnect at the time of a process when too thin, 0.01 mm or more is preferable.
- the conductor wire used in the present invention is preferably insulated as each thin wire or conductor wire.
- the thickness and type of the insulating layer are arbitrarily designed according to the use of the elastic signal transmission cable.
- the insulating material is selected in consideration of insulating properties, transmission properties and flexibility.
- the insulating material can be arbitrarily selected from known insulating materials. From the viewpoint of transmission, a material having a low dielectric constant is preferable, and examples thereof include fluorine-based and polyolefin-based insulating materials. In terms of flexibility, insulating materials such as vinyl chloride and rubber can be used.
- An insulating material containing air can also be used.
- a material obtained by foaming the above insulating material can also be used.
- Air has a low dielectric constant and has the effect of lowering the dielectric constant.
- An insulating layer containing air can also be formed by covering the conductor wire with an aggregate of insulating fibers.
- the insulating fiber is not particularly limited, and examples thereof include polyester fiber and nylon fiber as inexpensive, strong, and easy to handle.
- fluorine fibers and polypropylene fibers having a low dielectric constant can also be used.
- water-repellent fibers can also be used.
- the stretchable optical signal transmission cable of the present invention can also hold air between the optical fiber and the conductor wire.
- Air is a medium having an insulating property and a low dielectric constant, and has an effect of improving transmission properties.
- a thread-like body made of insulating fibers can be interposed, a hollow tube can be interposed, or the whole can be covered with a foamable resin.
- the stretchable optical signal transmission cable of the present invention preferably has an optical signal transmission loss of 20 dB / m or less at any extension up to the extension limit. Beyond this range, signal transmission is low and signal transmission becomes difficult. More preferably, the transmission loss is 10 dB / m or less. More preferably, it is 6 dBm or less, and particularly preferably 3 dB / m or less.
- the optical fiber used as the signal line is preferably an optical fiber having a small critical bending diameter. More preferably, the optical fiber is flexible and hardly broken.
- a glass optical fiber is a holey type, and a plastic optical fiber is a multi-core type.
- the stretchable optical signal transmission cable of the present invention preferably has a high stretch recovery rate.
- the recovery rate after 20% elongation (20% elongation recovery rate) is preferably 80% or more. Those that do not recover 80% or more after being stretched by 20% are less likely to follow the shape deformation. More preferably, it recovers 80% or more after stretching 30%. More preferably, it recovers 80% or more after stretching 40% or more.
- the stretchable optical signal transmission cable of the present invention is easily stretched.
- the 20% stretch load is preferably less than 5000 cN. More preferably, it is less than 2000 cN, More preferably, it is 1000 cN or less, Most preferably, it is 500 cN or less. Those having a viscosity of 5000 cN or more are not preferable because a large load is required for stretching.
- the stretchable signal transmission cable of the present invention does not break even if the predetermined extension during use is repeated 10,000 times or more, preferably 100,000 times or more, more preferably 200,000 times or more, and the transmission performance is less deteriorated. preferable.
- the present invention provides a stretchable optical signal transmission cable having excellent repeatability and suitable for practical use.
- the stretchable signal transmission cable of the present invention has a function of extending an elastic cylindrical body, a function of winding a plurality of transmission lines in parallel around the elastic cylinder, and a binding thread-like body in a direction opposite to the winding direction of the transmission line.
- Manufactured by winding at least one optical fiber on a stretched elastic cylinder with an apparatus having a function of rotating, and winding a constraining filament in the opposite direction of the optical fiber to the outside of the optical fiber. can do.
- the function of winding the constraining thread-like body in the direction opposite to the winding direction of the optical fiber is a function capable of winding the constraining thread-like body alternately through the inner side (elastic cylinder side) and the outer side of the optical fiber,
- One or more transmission lines are wound in parallel, and a constraining filamentous body is wound in an opposite direction to the transmission line alternately through the inside and outside of the one or more transmission lines to restrain the transmission line. That is.
- the device to be used is not particularly limited as long as the device has the above function.
- the main mechanisms provided by the device having the above functions are as follows: (1) a mechanism for supplying an elastic cylinder; (2) A mechanism for gripping an elastic cylinder and feeding it at a constant speed (preferably a mechanism for gripping without feeding a nip and feeding at a constant speed, for example, 8 in a V-groove of a double roll having a plurality of V-grooves. Gripping and feeding along the hook) (3) A mechanism for gripping an elastic cylindrical body and winding it at a constant speed (preferably a mechanism for gripping and winding at a constant speed without a nip, for example, 8 in a V-groove of a double roll having a plurality of V-grooves.
- a mechanism for gripping and winding along the hook, or a mechanism for winding a coil around a V-groove of a large diameter drum having a V-groove) (4) A mechanism for winding a transmission line including at least one or more optical fibers in parallel with the elastic cylinder while the elastic cylinder is stretched (for example, elasticity holding a bobbin wound with an optical fiber or a filament)
- a mechanism for rotating around the cylindrical body, a mechanism for rotating the gripped elastic cylinder to wind the optical fiber or filament around the elastic cylinder, or a plurality of hollow bobbins wound with the optical fiber or filament Are arranged in series, and a mechanism for rotating the hollow bobbin while allowing the elastic cylindrical body to pass through the hollow portion of the hollow bobbin)
- Stretchability Mark the stretchable optical signal transmission cable at 20 cm intervals. The outside is stretched by hand until the position of the mark becomes 22 cm, then relaxed and the length is measured. Differentiated by the following criteria, those that can be stretched to 22 cm and recovered to less than 21 cm after relaxation (A) were judged to have a stretchability of 10% or more: A: Can be stretched to 22 cm, recovered to less than 21 cm when relaxed, B: Cannot be extended to 22 cm, or can be extended to 22 cm, but does not recover to less than 21 cm even when relaxed.
- Pitch interval A distance of an arbitrary pitch of the same optical fiber was measured using a ruler, and set as a pitch interval P (mm).
- the iron core diameter is 5mm or more, change from thicker to thinner ones in increments of 1mm, less than 5mm, 2mm or more, 0.5mm, less than 2mm, and reduce transmission loss of 3-5dB.
- the larger diameter of the indicated diameter or the initially fractured diameter was defined as De.
- a value obtained by adding the diameter d of the optical fiber to De is defined as Re.
- the chuck part (21) and chuck part (22) of the dematcher tester shown in FIG. 6 were set to a length of 20 cm of the sample (20).
- the center part of a 50 cm sample with connectors attached to both ends in advance was set on the chuck part (21) and the chuck part (22), and the pitch interval was measured to determine the pitch variation Pr1.
- a stainless steel rod (23) having a diameter of 1.27 cm was disposed between the chuck portion (21) and the chuck portion (22).
- both ends were connected to an opto power meter (photo205A, light source 650 nm), and the output P1 was measured.
- the movable position of the chuck portion (22) is set to 26 cm, which is the time when the sample is stretched, and is repeatedly stretched 100,000 times at 100 times / min at an initial stretch of 11% and a stretch of 40% when pulled at room temperature.
- the sample was stopped at the initial extension position, and the output P2 was measured.
- the stainless steel rod was removed, and the variation Pr2 in the pitch interval of the optical fiber was measured.
- the repeated stretch resistance was evaluated according to the following criteria.
- Transmission loss (dB) A 0.1 or less and 3 dB or less B greater than 0.1 or less than 0.5 or greater than 3 dB and less than or equal to 10 dB C greater than 0.5 or greater than 10 dB
- Drop elongation resistance A load of 5 kg was tied to one end of a sample having a length of 50 cm, the other end was fixed to a height of 100 cm, and the side to which the load was attached was dropped freely. The state after dropping was observed, and the drop resistance was evaluated according to the following criteria.
- C The optical fiber is broken.
- Transmission loss (L (dB)) Measuring device: Opto power meter: photo205A (manufactured by Gray Technos) Light source: 650 nm 310-065CF (manufactured by Gray Technos) Connector adapter: 180-HTL Measurement method: Cutback method (A stretchable optical signal transmission cable having a length L1 (m) when relaxed was attached to the measuring device, and the output P1 was measured. Next, the cable was cut at L2 (m) from the light source. The output P2 was measured after being mounted on a measuring device. Transmission loss (dB / m) 10 ⁇ (Log (P2 / P1)) / (L1-L2)) The transmission loss was obtained.
- the elastic cylinder body was used as a core, and coating was performed using a woolly nylon 230 dtex under a 2.4-fold extension with a 16-placing string machine to obtain an elastic cylinder body (B) having a diameter of 2.4 mm.
- the eight double cover yarns were braided using an eight-punch stringing machine to obtain an elastic cylindrical intermediate body.
- the elastic cylinder intermediate body is used as a core, and the outer coating is performed using 16 bobbins obtained by winding two Woolley nylon 230dtex under a stretch of 2.4 times using a 16-strand stringer.
- a 3.2 mm elastic cylinder (C) was obtained.
- the elastic cylinder body is used as the core, and the outer cylinder is covered with 16 bobbins obtained by winding three Woolley nylon 230 dtex under a stretch of 2.2 times, and an elastic cylinder body (D) having a diameter of 4 mm.
- a natural rubber No. 8 is used as a core, covered with a bobbin with three wooly nylons (230 dtex) and stretched three times using a 32-strand stringer, and an elastic cylinder (diameter 5 mm) E) was obtained.
- the above-mentioned elastic cylindrical body is made of a special stringing machine ((1) a mechanism for supplying the elastic cylindrical body as a core, (2) an elastic cylindrical body of a double roll having a plurality of V grooves. A mechanism that grips and feeds the V-groove along the shape of 8 and (3) grips the elastic cylindrical body along the shape of the 8-shape along the V-groove of the double roll having a plurality of V-grooves. A winding mechanism; (4) a mechanism for winding the optical fiber in parallel with the elastic cylinder while the elastic cylinder is extended; and (5) a winding direction of the optical fiber with the elastic cylinder being extended.
- the optical fiber (Luminous TM product name) is stretched by 2.0 times under the condition of a special stringing machine equipped with a mechanism that winds the filaments alternately through the inside and outside of the optical fiber in the opposite direction.
- One and three ester woolies (330 dtex) in the S direction and four ester woolies (330 dtex) in the Z direction are wound around the inside and outside of each other to wrap the elastic optical signal transmission cable of the present invention. Obtained.
- Table 1 The structure and evaluation results of the obtained stretchable optical signal transmission cable are shown in Table 1 below.
- a bobbin in which an optical fiber is pre-wound is set on the lower stage of a covering device provided with a mechanism for winding a constraining filament in the opposite direction.
- the optical fiber was twisted in the Z direction at 160 T / M while stretching the core part three times using the special covering machine.
- the paper tube was continuously wound at a relaxation rate of 70%, and was placed in a hot air dryer while being wound on the paper tube, and heat treatment was performed at 85 ° C. for 5 minutes. After allowing to cool, the paper tube was removed and the stretchable optical signal transmission cable of the present invention was obtained.
- Table 1 The configuration and evaluation results of the obtained stretchable optical signal transmission cable are also shown in Table 1 below.
- the stretchable optical transmission cable of the present invention is an optical signal transmission cable that can be repeatedly stretched and used, can transmit optical signal even when stretched, and is strong against twisting.
- Example 7 In the same manner as in Example 6, ester wooly 330 dtex was wound at 170 T / M in the optical fiber lower twist Z direction and 130 T / M in the upper twist S direction with the elastic cylinder B as the core. Next, this was continuously wound around a paper tube at a relaxation rate of 70%, and placed in a hot air dryer while being wound on the paper tube, and heat-treated at 85 ° C. for 5 minutes. After standing to cool, it was removed from the paper tube to obtain a stretchable optical signal transmission cable of the present invention. As a result of examining the residual torque ratio before and after heat treatment, it was 70% before heat treatment and 20% after heat treatment. From this, it can be seen that heat treatment is effective for significantly reducing the residual torque ratio.
- Example 8 Using the special stringing machine described in Example 1, the stretchable optical signal transmission cable obtained in Example 2 is used as a core, and is 90 T / m (at an ester Woolley of 300 dtex under 1.2 times extension). The outer coating was performed at 90 times the number of wrinkles per m) to obtain a stretchable optical signal transmission cable having an outer coating layer. The cable was cut out 100 mm, disassembled, and the lengths of the optical fiber and ester wooly were examined. The optical fiber was 171 mm and the ester wool was 155 mm. Incidentally, the load at the time of 10% (100 ⁇ (171-155) / 155) extension of one ester wooly was 1800N. Therefore, the total load of 16 pieces was 28800N.
- Example 9 Elastic cylinder B is stretched 1.6 times using the special stringing machine described in Example 1, and three aramid fibers (Kevlar Type 961 440 dtex) are placed along the stretched core to supply yarn. Then, the elastic cylindrical body and the aramid fiber were combined to form a core, and the optical fiber and the ester fiber were wound around the core in the same manner as in Example 1 to obtain the stretchable optical signal transmission cable of the present invention. .
- the cable was cut out 100 mm, disassembled, and the lengths of the optical fiber and the aramid fiber were examined. The optical fiber was 174 mm and the aramid fiber was 151 mm. It can be seen that the aramid fiber is 9% shorter than the optical fiber.
- the aramid fiber had a breaking elongation of 5% and a breaking load of 8300 cN.
- the three 5% breaking loads were 24900 cN. Therefore, it can be seen that the aramid fiber is stretched before the stretching load is applied to the optical fiber, and exhibits an anti-stretching effect.
- Table 2 The evaluation results of the drop extension resistance of the samples of Examples 7 to 9 are shown in Table 2 below.
- Example 10 to 12 Establish a predetermined number of optical fibers and ester wooly 330 dtex in the S direction evenly in the S direction under a 1.6 times extension using the special stringer described in Example 1 with a predetermined elastic cylindrical body as the core.
- Four 330 dtex wires were wound evenly in the Z direction, alternately above and below, to obtain a stretchable optical signal transmission cable of the present invention.
- the evaluation results of the obtained stretchable optical signal transmission cable are shown in Table 3 below.
- Examples 13 to 16 A predetermined number of optical fibers and a predetermined number of conductor wires (manufactured by Tatsuno Electric Wire Co., Ltd.) are stretched 1.6 times using a special stringer described in Example 1 with a predetermined elastic cylindrical body as a core. 2USTC (30 ⁇ * 90), a predetermined number of ester woolies 330dtex are wound in the S direction in the order of optical fiber, conductor gland, ester wooly, conductor wire, and four ester wools are alternately wound up and down in the Z direction, A stretchable optical signal transmission cable according to the present invention was obtained, and a stretchable optical signal transmission cable capable of simultaneously supplying an optical signal, power and an electrical signal was obtained. The evaluation results of the obtained stretchable optical signal transmission cable are shown in Table 4 below.
- Example 17 The stretchable optical signal transmission cable obtained in Example 2 was heat-treated for 10 minutes under a hot air dryer (80 ° C.). The sample was allowed to cool at room temperature for 18 hours to obtain a stretchable optical signal transmission cable (Example 17) of the present invention.
- the residual torque ratio of the samples of Example 17 and Example 2 was measured, it was 50% in Example 2 and 20% in Example 17.
- the 20% stretch recovery was 92% in Example 2 but 95% in Example 17. From this, it is understood that the stretch recovery property is improved by the heat treatment.
- the stretchable optical signal transmission cable of the present invention is suitable as a signal wiring of a device having a bending portion such as bending and stretching of body-worn equipment and clothes-worn equipment, including the robot field, and is particularly suitable for humanoid robots (internal wiring). And outer wiring), power assist devices, wearable electronic devices and the like.
- Other robots industrial robots, home robots, hobby robots, etc.
- rehabilitation aids vital data measurement equipment, motion capture, protective clothing with electronic equipment, game controllers (including human body wearing type), and microphones It can be suitably used in such fields.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Communication Cables (AREA)
- Insulated Conductors (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
電気信号を用いたものは取り扱いやすく汎用的である反面、高速伝送には限界があり、電磁波障害にも弱いという欠点がある。光信号は、高速伝送ができ電磁波障害も受けないという利点がある。光信号を伝送する媒体として光ファイバケーブルが用いられるが、一般に剛直で取り扱い性が悪い。このため、固定された配線として用いられることが多い。この欠点を改善したものとして、光ファイバカールコードがある(以下、特許文献1参照)。
しかし、カールコードは、外径が大きく、カール部分がひっかかりやすく、水平にすると垂れ下がりやすい、といった問題を抱えており、取り扱い性を十分に向上させたと言える物ではない。
これらの問題を解決するために、形態変形追随性があり、変形時に、ひっかかったり、からまったりすることが無く、変形時においても光信号が伝送でき、繰り返し伸長で使用できるストレート形状で伸縮性がある、光ファイバケーブルが求められている。
すなわち、本発明は下記の発明を提供する。
[4]光ファイバの残留トルク率が70%以下である、前記「1」~「3」のいずれかに記載の伸縮性光信号伝送ケーブル。
100×(L0-Lk)/Lk[%]
{式中、L0は、光ファイバの全長であり、そしてLkは、抗伸張糸状体の全長である。}で定義される値まで伸張した時の、該糸状体合計の破断強度が10000cN以上である、前記[1]~[12]のいずれかに記載の伸縮性光信号伝送ケーブル。
光ファイバ 直径 : d(mm)。
光ファイバ捲回径 : D(mm)。最小をDmin、最大をDmaxで表す。
光ファイバ捲回外径 : Do(mm)。
光ファイバ捲回ピッチ: P(mm)。最小をPmin、最大をPmaxで表す。
光ファイバ曲げ直径 : R(mm)。最小をRmin、最大をRmax、平均をRave、限界曲げ直径をReで表す。
伝送ロス : L(dB)。伸張時伝送ロスをLsで表す。
伸張時伝送性 : I。
荷重 : T(cN)。
伸張率 : E(%)。
なお、光ファイバの少なくとも一部は弾性円筒体の表層内部に存在してもよい。
また、弾性円筒体は内部に空隙を有していることが好ましい。空隙は、伸縮性を阻害せず、光ファイバの捲回径を大きくできるため、伸縮性を高める効果がある。空隙を形成する方法は、例えば、弾性長繊維の周囲に絶縁繊維を配置する方法、弾性長繊維または、弾性長繊維の周囲に絶縁繊維を配置した糸状体を編み組みする方法、弾性長繊維を発泡させる方法、弾性長繊維を中空にする方法、またはこれらを組み合わせた方法などがある。弾性チューブまたはコイルバネから形成した場合は当然中空になる。
ポリウレタン系弾性長繊維は、伸びが大きく、耐久性にもすぐれるため本発明の弾性長繊維として最適である。
合成ゴム系弾性長繊維は、耐久性に優れる。シリコンゴムは、伸び、耐久性双方良好で、好ましく用いられる。また、フッ素ゴムは、伸びは小さいが、耐久性および不燃性に優れる。用途に応じて、公知の合成ゴム系弾性長繊維を用いることができる。
弾性長繊維は、モノフィラメントでもマルチフィラメントでもよい。
弾性長繊維をあらかじめ、双糸もしくは多子撚りとしたもの、または、弾性長繊維を芯にしてその回りに別の弾性長繊維を捲回したものとすることで、弾性円筒体と伝送体部との一体化(伸縮した場合に伝送体部がずれないようにすること)を容易にすることもできる。
コイルバネ単独では、その周囲に導体線を捲回できないため、あらかじめコイルバネの周囲に絶縁繊維の編み組み等を形成することで弾性円筒体を得ることができる。
コイル直径Cdと伸線(コイルを形成する線材のこと)直径Sdが24>Cd/Sd>4であることが好ましい。Cd/Sdが24以上の場合は、安定な形態のバネが得られず、変形しやすく好ましくない。好ましくはCd/Sdが、16以下である。一方、Cd/Sdが4以下では、コイルを形成することが困難となると同時に、伸縮性が発現しにくい。Cd/Sdは、好ましくは6以上である。
コイルのピッチ間隔は1/2Cd以下であることが望ましい。これ以上の間隔であってもコイル状のバネを形成することはできるが、コイル外周への絶縁繊維の編み組み等の形成が困難となる。さらに、伸縮性が低下するとともに、外力により変形しやすくなるので好ましくない。コイルのピッチ間隔は、好ましくは1/10Cd以下である。
ピッチ間隔をほぼゼロとしたものは、伸縮性を最も高くすることができ、バネそのものがからまりにくく、巻き取ったバネを引き出しやすいという特徴があり、外力による変形にも強いという利点があり、好ましい。
コイルバネの材料は、公知の伸線から任意に選ぶことができる。線材の材料は、ピアノ線、硬鋼線、ステンレス鋼線、オイルテンパー線、燐青銅線、ベリウム銅線および洋白線などがある。耐食性および耐熱性に優れ、かつ入手しやすい点から、ステンレス鋼線が望ましい。
また、弾性チューブの中に光ファイバを埋め込むこともできる。例えば、ステンレス棒に光ファイバを捲回し、これをゴムラテックス中に浸漬または塗布した後、公知の方法(例えば、加硫処理、熱処理および乾燥処理等)を行った後、内部のステンレス棒を抜き去る等することにより、弾性チューブの中に光ファイバを埋め込むことができる。
弾性円筒体の20%伸長荷重は2000cN以下であることが好ましい。より好ましくは1000cN以下、さらに好ましくは500cN以下である。
弾性円筒体の直径は、30mm以下、好ましくは20mm以下、より好ましくは10mm以下である。直径が30mm以上となると、太く、重くなり、実用上好ましくない。
弾性円筒体の20%伸長応力は1~500cN/mm2、より好ましくは1~200cN/mm2、さらに好ましくは5~100cN/mm2となるように設計する。
以上のような範囲に設計することで、良好な伸縮性を得ることができる。
信号線を構成する光ファイバは裸線を単独で用いることもできるが、表面に傷がつくと伝送性が低下する。単芯の光ファイバを用いることもできるが、屈曲性が欠しい。
プラスチック光ファイバにおいては、細線の集合線で構成されるマルチコアタイプの光ファイバを用いることが好ましい。また、ガラス光ファイバにおいては、コアの周辺に複数の空気孔を持つホーリ型が好ましい。
マルチコアを構成する細線の単線直径は0.1mm以下であることが好ましく、より好ましくは0.08mm以下であり、さらに好ましくは0.05mm以下である。細線化することにより、柔軟性を高めることができる。あまり細すぎると製造が困難となるため、0.001mm以上が好ましい。
例えば、身体装着用のケーブルとしては、1m程度の長さが求められ、近距離での伝送となるため、透過性が低くても伝送できる。このため、マルチコア(例えば37本)のプラスチック光ファイバで、直径が1mm以下のものを用いることで、捲回径を小さくすることができ、コンパクトで伸縮性に富み、繰り返し使用においても断線しにくい、伸縮性光信号伝送ケーブルを得ることができる。
直径が細く、曲げ半径の小さいものが、コンパクトで伸縮性に富み、形態変形追随性が良く、繰り返し伸縮に対して強く、変形しても伝送性の変化が小さいという利点がある。
あらかじめ、撥水加工や難燃加工を施した繊維を用いることもできる。
2本以上の光ファイバを用い、または後述するように1本以上の導体線と共に用いて、所謂多芯光ファイバケーブルまたは電気光複合ケーブルとすることもできる。
伸縮性に富むケーブルとするため、導体線は螺旋状に捲回されていることが好ましい。
螺旋状を得るためには、例えばカバーリングマシーンにより1方向に捲回したものや、S/Zの双方向に捲回することができる。
導体線と光ファイバは、同一円周上に捲回することも、同心円状に、多層に捲回することもできる。
同一円周上に捲回する場合は、並列に捲回されていることが好ましい。
汎用性が高いケーブルとして、信号ラインと電源ラインを併せ持つものが好まれる。例えば光信号ライン1本、電源ライン1本、グランドライン1本の合計3本とすることで、光通信による信号伝送と、電源供給を併せ持つ伸縮性光信号伝送ケーブルを得ることができる。導体線を信号ラインとして併用することもできる。信号ラインは、最低1本が必要となる。好ましくは2本である。2本の信号ラインにより、汎用の差動信号の伝送を行うこともできる。電力供給用に2本の導体線、高周波伝送用に2本の導体線、光ファイバを1~2本含むことで、電力、高周波信号、光信号の全てを同時に伝送することもできる。
拘束糸状体には、公知の糸状体を任意に用いることができる。例えば、マルチフィラメント、モノフィラメント、または、紡績糸を用いることができる。細く、柔らかく、拘束力が強く(高強度)、安価という観点からは、ポリエステル繊維、ナイロン繊維が挙げられる。誘電率が低いという観点からはフッ素繊維、ポリエチレン繊維、ポリプロピレン繊維が挙げられる。難燃性の観点からは、塩化ビニル繊維、サラン繊維、ガラス繊維を挙げることができる。伸縮性の観点からは、ポリウレタン繊維または、ポリウレタン繊維の外部を他の絶縁繊維で被覆したもの等を挙げることができる。その他、絹、レーヨン繊維、キュプラ繊維、コットン紡績糸を用いることもできる。しかし、これらに限定されるものではなく、公知の繊維を任意に用いることができる。
図3に示すように、カバーリングマシーンにより光ファイバの外側に拘束糸状体を捲回する場合は、捲回速度を高める(スピンドル回転数を上げる)ことで、捲回張力(バルーニング張力)が増し、拘束力を高めることができる。
当該糸条体は、光ファイバより細いものが好ましい。太い糸状態を用いると、光ファイバそのものが、変形せざるをえなくなり、伸縮しにくくなる。
捲回する糸に荷重をかけることで、捲回張力を高めることができ、拘束力を増すことができる。荷重は捲回状態を見ながら調整することが好ましい。荷重が小さすぎると互いの拘束力が小さくなり、伸張により光ファイバの捲回ピッチが変動することがある。荷重を強くしすぎると、光ファイバそのものを側面から強く締め付けることになり、伝送性が低下することがある。
一般に光ファイバは剛直であり、上記のように捲回して、拘束糸状体で拘束しても、伸縮により、撚りを解く力が生じ、捲回状態が乱れやすい。
このため、光ファイバの残留トルク率は70%以下であることが好ましい。より好ましくは、50%以下であり、さらに好ましくは30%以下である。残留トルク率とは、10ターン光ファイバを解いて、取り出し、室温下で10分間放置後のターン数をNとし 次式で求めた値をいう:
残留トルク率=100*(10-N)/10 (%)
残留トルクを減少させるためには、光ファイバを捲回した後に、熱処理を施すことが好ましい。
熱処理により光ファイバの捲回による歪を除去することができ、残留トルクを低減することができる。
残留トルクが低減することにより、形態が安定化し、繰り返し伸縮しやすくなり、かつ、繰り返し伸縮後も、もとの形態に戻りやすくなる。これにより、繰り返し伸縮による光ファイバの捲回状態の乱れを防ぐことができ、実用性が向上する。
高温で長時間処理すると、伝送性が低下する。さらに、弾性体の伸縮性が損なわれることがある。一方、低温では、歪除去の効果が乏しい。
温度は40℃以上で熱処理を行うことが好ましい。より好ましくは、60℃以上さらに好ましくは80℃以上である。
時間は、温度との関係で任意に設定される。1秒以上、好ましくは10秒以上より好ましくは、1分以上所定温度に保持することで、安定した熱処理を施すことができる。高温下に長時間保持すると、光ファイバの透過性が低下することがあるため、透過性の低減が50%以下の範囲で設定することが好ましい。より好ましくは30%以下、さらに好ましくは10%以下である。プラスチック光ファイバの場合、温度は150℃以下が好ましい。さらに好ましくは120℃以下である。ガラス光ファイバの場合、温度は200℃以下が好ましい。また、高温下で長時間保持すると伸縮性が低下することもある。弾性体として弾性長繊維を用いる場合は、例えばシリコンゴムでは180℃以下が好ましく、ポリウレタン系弾性長繊維では150℃以下が好ましく、天然ゴム系では130℃以下が好ましい。また、コイルバネの周囲を編み組みしたものを弾性体として用いる場合は温度を200℃以下とすることが好ましい。例えば、弾性体として、ポリウレタン弾性長繊維を用い、光ファイバとしてプラスチック光ファイバを用いる場合は80~100℃下で、5分~15分程度処理することにより、伝送性の低下がほとんど無く、残留トルク率を70%以下にすることができる。
ガラス製光ファイバを用いる場合は、残留トルク率低減のために、より高温が求められることがあるが、このような場合は、弾性体として耐熱性の高い、シリコンゴムや、コイルバネを用いることにより、伸縮性を損なうことなく、光ファイバの透過性を保持しながら、残留トルクを低減することができる。
図5は、本発明でいう曲げ直径を説明する図である。図5において、Aは本発明の伸縮性光信号伝送ケーブルの模式図であり、Bはそのケーブルを長さ方向に切断して展開した図である。これらの図から分かるように、曲げ直径Rとは光ファイバの捲回角度θを考慮した捲回直径である。
Rが50mmを越えると外径が大きくなりすぎるか、または、伸縮性が損なわれ易い。より好ましくは30mm以下、さらに好ましくは20mm以下、特に好ましくは10mm以下である。
曲げ直径Rの下限は、光ファイバの限界曲げ直径Re以上であることが好ましい。より好ましくは2Re以上であり、さらに好ましくは3Re以上である。なお、光ファイバの限界曲げ直径Reの求め方は後述する。
撥水性の絶縁繊維は、誘電率の高い水の浸入を防ぐ効果があり、好ましい。具体的には、フッ素繊維や、ポリプロピレン繊維などの撥水性の絶縁繊維を用いることも、ポリエステル繊維や、ナイロン繊維に撥水加工を施して用いることもできる。撥水加工剤は、公知の加工剤から任意に選定することができる。具体的にはフッ素系、シリコン系の撥水加工剤等を挙げることができる。
また、難燃加工を行うこともできる。外部被覆用のポリエステルまたはナイロンの染色時に、臭素系やリン酸エステル系の加工剤(本剤に限定するものではない)を用いて難燃加工を行うことができる。難燃加工を付与することも、伸縮性光信号伝送ケーブルを難燃加工することもできる。使用する繊維をあらかじめ難燃加工しておくことが好ましい。
繊維は、伸縮伝送ケーブルの用途や想定される使用条件に合わせて、公知の繊維から任意に選ぶことができる。繊維は生糸のままでも良いが、意匠性や劣化防止の観点から原着糸や先染め糸を用いることもできる。仕上げ加工により、柔軟性や摩擦性の向上を図ることもできる。さらに、難燃加工、撥油加工、防汚加工、抗菌加工、制菌加工および消臭加工など、公知の繊維の加工を施すことにより、実用時の取り扱い性を向上させることもできる。
さらに、人との接触による触感を重視する場合は、キュプラ、アセテート、コットンおよびレーヨンなどのセルロース系繊維や、絹または繊度の細い合成繊維を用いることができる。
弾性樹脂は、様々な弾性の絶縁樹脂から任意に選ぶことができ、伸縮性光伝送ケーブルの用途及び同時に使用する他の繊維との相性を考慮しながら、選定することができる。
考慮すべき性能として、伝送性、伸縮性、耐磨耗性、耐熱性および耐薬品性などが挙げられる。
伸縮性に優れるものとしては、所謂天然ゴム系の弾性樹脂、スチレンブタジエン系の弾性樹脂、シリコン系弾性樹脂が挙げられる。
耐磨耗性、耐熱性、耐薬品性に優れるものとしては合成ゴム系弾性体が挙げられ、フッ素系ゴム、シリコーン系ゴム、エチレン・プロピレン系ゴム、クロロプレン系ゴムおよびブチル系ゴムが好ましい。
伸縮伝送ケーブルは小さい力で伸縮させることを望むケースが多いが、弾性樹脂のみでの被覆の場合は、弾性樹脂の厚みが厚くなる傾向があり、伸縮させる力が大きくなりやすい。このような場合は、厚みの薄い弾性樹脂と、絶縁繊維による編組を組み合わせることで、被覆性と伸縮性を両立させることができる。
弾性樹脂として、所謂ゴムチューブで被覆することもできる。ゴムチューブは一般に摩擦性が悪いため、これを補うために、さらに外部を繊維被覆することもできる。
例えば数kgの電子機器に本発明の伸縮性光信号伝送ケーブルを接続した状態で、電子機器を誤って落下した場合、急激な荷重がケーブルにかかることがある。このような場合でも、上記のように設計することで、光ファイバに過大な荷重が及ぶことを防ぐことができ、伸縮性光信号伝送ケーブルの伝送性の低下や、伸縮性の低下を防ぐことができる。
また、伸張した芯部の弾性円筒体に抗伸張糸状体を沿わせる場合は、伸張倍率を1.1倍以上とし、抗伸張糸状体を捲回することなく沿わせ、その周囲に光ファイバを捲回することにより実現することができる。
捲回角度をコントロールすることにより抗伸張糸状体を配置する場合は、外部被覆を兼ねることもでき、複数本を用いることにより、合計破断強度を10000cN以上にすることもできる。高強度繊維に加え、ポリエステル繊維や、ナイロン繊維、アクリル繊維、レーヨン繊維、キュプラ繊維、ポリラクトロン繊維、コットン、シルクなどの公知の繊維を用いることができる。
導体線は、弛緩状態における伸縮性光信号伝送ケーブル1m当たり、導体線の電気抵抗は100Ω/m以下であることが好ましい。より好ましくは10Ω/m以下である。特に好ましくは5Ω/m以下である。
信号線を構成する導体線として細線を単独で用いることもできるが、電気抵抗が大きくなると、伝送性が低下する。このため、細線を2本以上集合して1つの導体線として用いることが好ましい。集合本数の上限は特に無いが、柔軟性と、電気抵抗を勘案して任意に決めることができる。集合本数を増やすと生産性が低下するため、10000本以下が好ましい。より好ましくは1000本以下である。
絶縁材は、絶縁性、伝送性および柔軟性を加味して選択される。絶縁材は、公知の絶縁材料から任意に選ぶことができる。伝送性の観点からは、誘電率の低い素材が好ましく、フッ素系およびポリオレフィン系等の絶縁材が挙げられる。柔軟性の点からは、塩化ビニール系およびゴム系等の絶縁材が挙げられる。
絶縁性の繊維の集合体により、導体線を覆うことにより、空気を含んだ絶縁層を形成することもできる。絶縁性の繊維は特に限定されるものでは無いが、安価で、強度が強く、取り扱い性に優れるものとして、ポリエステル繊維およびナイロン繊維が挙げられる。送性を高めるために、誘電率の低いフッ素繊維、ポリプロピレン繊維を用いることもできる。
水分の影響を受けにくくするために、撥水加工を施した繊維を用いることもできる。
(1)弾性円筒体を供給する機構、
(2)弾性円筒体を把持し、一定速度でフィードする機構(好ましくはニップせずに把持して一定速度でフィードする機構、例えば複数のV溝を有する2連のロールのV溝に8の字掛けに沿わせて把持し、フィードする機構)、
(3)弾性円筒体を把持し、一定速度で巻き取る機構(好ましくはニップせずに把持して一定速度で巻き取る機構、例えば複数のV溝を有する2連のロールのV溝に8の字掛けに沿わせて把持し、巻き取る機構か、または、V溝を持った直径の大きなドラムのV溝に複数回巻き付けて巻き取る機構)、
(4)弾性円筒体を伸張した状態で、少なくとも1本以上の光ファイバを含む伝送線を弾性円筒体に並列に捲回する機構(例えば光ファイバまたは糸状体を巻いたボビンを把持された弾性円筒体の周囲を旋回させる機構、把持された弾性円筒体を回転させて光ファイバまたは糸状体を弾性円筒体の周囲に捲回する機構、または、光ファイバまたは糸状体を巻いた複数の中空ボビンを直列に配置し、弾性円筒体を中空ボビンの中空部を通過させつつ、中空ボビンを回転させる機構)、
(5)弾性円筒体を伸張した状態で、拘束糸状体を光ファイバの捲回方向と逆方向に弾性円筒体に並列に捲回する機構、特に好ましくは、弾性円筒体を伸張した状態で、光ファイバの捲回方向と逆方向に光ファイバの内側と外側を交互に通って拘束糸状体を捲回する機構(例えば、光ファイバを巻いた1本以上のボビンと絶縁性糸状体を巻いた1本以上のボビンが、前後または上下に移動し、相互に逆方向に弾性円筒体の回りを旋回する機構)。
本発明で用いた評価方法は以下の通りであった。
伸縮性光信号伝送ケーブルに20cm間隔で印をつける。その外側を手で持ち印の位置が、22cmになるまで引き伸ばしたのち、弛緩して長さを測定する。下記基準で区別し、22cmまで引き伸ばすことができ、かつ弛緩後21cm未満に回復したもの(A)を10%以上の伸縮性があると判断した:
A:22cmまで伸張させることができ、弛緩させると21cm未満に回復したもの、
B:22cmまで伸張させることができないか、または、22cmまで伸張させることができたが、弛緩しても21cm未満に回復しないもの。
光ファイバ捲回後、弛緩状態で、ノギスにより3箇所の捲回外径を測定し、その平均値を求めDoとした。また、光ファイバの外径をノギスにより3箇所測定し平均値を求めdとし、次式:
D=Do-d
により捲回径D(mm)を求めた。
同一光ファイバの任意のピッチの距離を、定規をあて測定し、ピッチ間隔P(mm)とした。
次式:
R=(√(P2+(πD)2)/π
により求めた。
長さ1mの光ファイバをオプトパワーメータ(Photom 205A クレイテクノス株式会社製)につなぎ、曲げ前の光出力を検出し、この値を基準にする。
次ぎに、所定の直径の鉄心に、光ファイバを隙間がないように、10回巻きつけ、ビニールテープで固定し、オプトパワーメータにより、基準対比の伝送ロスを測定する。伝送ロスが、3dB未満の場合、鉄心を細いものに変え、再度伝送ロスを測定する。
鉄心直径が5mm以上の場合は1mm刻み、5mm未満2mm以上の場合は0.5mm刻み、2mm未満は0.2mm刻みで、太いものから細いものへ変更してゆき、3~5dBの伝送ロスを示した直径又は、最初に破断した直径のいずれか大きい方の直径をDeとした。このDeに光ファイバの直径dを加えた値をReとした。
標準状態(温度20℃、相対湿度65%)に試料を2時間以上静置した後、標準状態下でテンシロン万能試験機((株)エーアンドディ社製)を用い、試料を把持長100mm、引張り速度100mm/minで引張り、20%伸張時の荷重T20(cN)を求めた。
標準状態(温度20℃、相対湿度65%)に試料を2時間以上静置した後、標準状態下でテンシロン万能試験機((株)エーアンドディ社製)を用い、試料を把持長100mm、引張り速度100mm/minで引張り、所定伸張率伸張後リターンし、荷重がゼロになる距離(Amm(伸張ゼロ位置から当該位置までの距離))を求め、次式:
回復率(%)=((100-A)/100)×100
により、回復率を求めた。回復性は下記基準により、判定した:
A:回復率≧80%
B:80%>回復率≧50%
C:50%>回復率。
10%刻みで上記伸張回復率を測定し80%未満となった伸張率(E80)を求め、下記式:
伸張限界=0.8×E80
により伸張限界を求めた。
標準状態(温度20℃、相対湿度65%)に試料を2時間以上静置した後、標準状態下でテンシロン万能試験機((株)エーアンドディ社製)を用い、試料を把持長100mm、引張り速度100mm/minで引張り、30%まで伸張した時点で停止させ、次のデータを採取した。
1)伸長時捲回径 Dx(mm):ノギスより光ファイバの捲回外径を測定し、上記(2)と同様にして捲回径を求めた。
2)伸長時ピッチPx(mm):定規をあて、ピッチ間隔を測定した。
3)伸長時曲げ直径Rx(mm):捲回径とピッチより(4)と同様にして、曲げ直径を求めた。
図6に示すデマッチャー試験機((株)大栄科学精機製作所製)のチャック部(21)およびチャック部(22)を試料(20)の長さ20cmにセットした。あらかじめコネクターを両端に装着した50cmの試料の中央部をチャック部(21)およびチャック部(22)にセットし、ピッチ間隔を測定してピッチ間ばらつきPr1を求めた。次に、図6に示すようにチャック部(21)およびチャック部(22)の中間に直径1.27cmのステンレス棒(23)を配置した。この状態でオプトパワーメーター(photom205A、光源650nm)に両端を接続し、出力P1を測定した。
次に、チャック部(22)の可動位置を試料の伸張時である26cmに設定し、室温で、初期伸張11%および引っ張り時伸張40%で100回/minで10万回伸縮を繰り返した後、初期伸張位置で停止させ、出力P2を測定した。次に、ステンレス棒を取り外し、光ファイバのピッチ間隔のばらつきPr2を測定した。耐繰り返し伸縮性を下記基準によって評価した。
ピッチ間隔のばらつき 伝送性の低下
(Pr2-Pr1) 伝送ロス(dB)
A 0.1以下 かつ 3dB以下
B 0.1より大きく0.5以下 または 3dBより大きく10dB以下
C 0.5より大 または 10dBより大
なお、伝送ロス(dB)は下式:
伝送ロス(dB)=10×(Log(P2/P1))
によって求めた。
把持長100mmで試料の両端を把持し、一方を右に135°回転し、他方を左に135°回転する捩りを1分間に175回繰り返す捩り試験を10分間行なった後、形体異常(ピッチの偏り、光ファイバの飛び出し)を目視によって観察し、捩り試験前後での伝送性の低下を上記(10)と同様の方法で測定し、耐捩り性を次の基準で評価した。
耐捩り性 形体異常 伝送性の低下
A : 無し かつ 3dB以下
B : 無し かつ 3dBより大きく10dB以下
C : 有り または 10dBより大
長さ50cmの試料の一端に荷重5kgを結びつけ、他端を100cmの高さに固定し、荷重を取りつけた側を自由落下させた。落下後の状態を観察し、耐落下性を下記基準によって評価した。
A:光ファイバの断線が無く、長さの伸びが10%未満。
B:光ファイバの断線が無く、長さの伸びが10%以上。
C:光ファイバが断線。
弛緩状態で、あらかじめ両端にコネクターを取りつけた長さ1mの試料の中央200mmの両側に印を取りつけた(ビニールテープを巻く)。この状態で、両端のコネクターをオプトパワーメータ(photom205A(グレイテクノス株式会社製)、光源 650nm 310-065CF(グレイテクノス株式会社製))に取り付け、W/dBmボタンを押し、出力P0(μW)を測定した。
次ぎに、印部を手で持ち、210mm、220mm・・・と10mm刻みで伸ばし、出力Ps10、Ps20、・・・を測定する。伸張限界まで伸張した後、10mm刻みで縮めながら、・・・、Pr20、Pr10の出力を測定する。伸縮時伝送性Iを下式:
I=(Pmax-Pmin)/Pave
{式中、Pmax:最大出力、Pmin:最小出力、Pave:平均出力。なお、Pave=(Ps10+Ps20+・・・+Pr20+Pr10)/測定点数である。}によって求め、下記基準によって伸縮時伝送性を評価した。
A : 0<I≦0.3
B : 0.3<I≦3
C : 3<I
測定装置:オプトパワーメータ:photom205A(グレイテクノス(株)製)
光源:650nm 310-065CF(グレイテクノス株式会社製)
コネクタアダプタ:180-HTL
測定方法:カットバック法
(弛緩時長さL1(m)の伸縮性光信号伝送ケーブルを測定装置に装着し、出力P1を測定した。次ぎに光源からL2(m)のところで該ケーブルを切断し、測定装置に装着し、出力P2を測定した。次式:
伝送ロス(dB/m)=10×(Log(P2/P1))/(L1-L2))
により伝送ロスを求めた。
弛緩状態において、長さ1mの試料を切り取り、その両端の導体線の先端を約5mm引き出し、先端約3mmをハンダ浴に浸漬し細線間の導通を高めた後、ミリオームハイテスター3540(日置電機(株))により電気抵抗(Ω)を測定した。
(16)残留トルク率
標標準状態(温度20℃、相対湿度65%)に試料を2時間以上静置した後、試料より10ターン(1ターンは1ピッチのことをいう)の光ファイバを切り出し、光ファイバを引き伸ばすこと無く、捲回を解き、標準状態下に静置した。
10分後、ターンの数(N)を測定し、次式より残留トルク率を求めた:
残留トルク率=100*(10-N)/10 (%)
1)弾性円筒体の作製
940dtexのポリウレタン弾性長繊維(旭化成せんい(株)製、商品名:ロイカ)を芯にして、伸張倍率を4.2倍下で、230dtexのウーリーナイロン(黒染め糸)を700T/Mの下撚りおよび500T/Mの上撚りで捲回し、ダブルカバー糸を得た。得られたダブルカバー糸を製紐用ボビンに巻き取り、当該ボビン4本を、8本打ち製紐機((有)桜井鉄工製)のS方向に2本、Z方向に2本、均等に配置して組み紐を作製し、直径1.8mmの弾性円筒体(A)を得た。
上記弾性円筒体を、特殊製紐機((1)弾性円筒体を芯部として供給する機構、(2)弾性円筒体を、複数のV溝を有する2連のロールのV溝に8の字掛けに沿わせて把持し、フィードする機構、(3)弾性円筒体を、複数のV溝を有する2連のロールのV溝に8の字掛けに沿わせて把持し、巻き取る機構、(4)弾性円筒体を伸張した状態で、光ファイバを弾性円筒体に並列に捲回する機構、および(5)弾性円筒体を伸張した状態で、光ファイバの捲回方向と逆方向に光ファイバの内側と外側を交互に通って糸状体を捲回する機構を備えた特殊製紐機)により、2.0倍伸張下で、弾性円筒体に光ファイバ(ルミナスTM 品名 SMCN-400P-6 旭化成エレクトロニクス(株)社製、直径0.4mm、0.05~0.06mmφ×37本)1本とエステルウーリー(330dtex)3本をS方向に、エステルウーリー(330dtex)4本をZ方向に、相互に内側と外側通して捲回して本発明の伸縮性光信号伝送ケーブルを得た。得られた伸縮性光信号伝送ケーブルの構成および評価結果を、以下の表1に示す。
特殊カバーリングマシーン(有限会社カタオカテクノ社製型式SP-D-400:(1)弾性円筒体を芯部として供給する機構、(2)弾性円筒体を、複数のV溝を有する2連のロールのV溝に8の字掛けに沿わせて把持し、フィードする機構、(3)弾性円筒体を、複数のV溝を有する2連のロールのV溝に8の字掛けに沿わせて把持し、巻き取る機構、(4)弾性円筒体を伸張した状態で、光ファイバを弾性円筒体に並列に捲回する機構、および(5)弾性円筒体を伸張した状態で、光ファイバの捲回方向と逆方向に拘束糸状体を捲回する機構を備えたカバーリング装置)の下段に光ファイバを前巻きしたボビンをセットした。弾性円筒体Bを芯部として、当該特殊カバーリングマシーンを用いて、当該芯部を3倍に伸張しつつ、光ファイバを下撚りZ方向に160T/Mで捲回した。次いで、弛緩率70%で連続的に紙管に巻き取り、紙管に巻かれた状態のまま、熱風乾燥機に入れ、85℃、5分間熱処理を行った。放冷後、紙管から取り外し、本発明の伸縮性光信号伝送ケーブルを得た。得られた伸縮性光信号伝送ケーブルの構成および評価結果を、以下の表1に併せて示す。
実施例6と同様に、弾性円筒体Bを芯にして光ファイバ下撚りZ方向に130T/M、上撚りS方向に、エステルウーリー330dtexを170T/Mで捲回した。次いで、これを、弛緩率70%で連続的に紙管に巻き取り、紙管に巻かれた状態のまま、熱風乾燥機に入れ、85℃、5分間熱処理を行った。放冷後、これを、紙管から取り外し、本発明の伸縮性光信号伝送ケーブルを得た。
熱処理前後の残留トルク率を調べた結果、熱処理前は70%、熱処理後は20%であった。このことから、残留トルク率を大幅に下げるためには熱処理が有効であることが分かる。
実施例1に記載の特殊製紐機を用いて、実施例2で得られた伸縮性光信号伝送ケーブルを芯部にし、1.2倍伸張下で、エステルウーリー300dtexにて、90T/m(m当り捲回数90回)で外部被覆を行い、外部被覆層を持った伸縮性光信号伝送ケーブルを得た。当該ケーブルを100mmきり出し、分解し、光ファイバとエステルウーリーの長さを調べた。光ファイバは171mm、エステルウーリーは155mmであった。なお、該エステルウーリー1本の10%(100×(171-155)/155)伸張時の荷重は1800Nであった。従って、16本の合計荷重は28800Nであった。
弾性円筒体Bを、実施例1に記載の特殊製紐機を用いて、1.6倍伸張し、該伸張状態の芯部へアラミド繊維(ケブラーType961 440dtex)を3本沿わせて、給糸し、弾性円筒体とアラミド繊維を合わせて芯部とし、該芯部の周囲に、実施例1と同様にして、光ファイバおよびエステル繊維を捲回し本発明の伸縮性光信号伝送ケーブルを得た。該ケーブルを100mm切り出し、分解し、光ファイバとアラミド繊維の長さを調べた。光ファイバは174mm、アラミド繊維は151mmであった。アラミド繊維は光ファイバより9%短いことが分かる。なお、該アラミド繊維は破断伸度5%で、破断荷重は8300cNであった。3本の5%破断荷重は24900cNであった。従って、光ファイバに伸張荷重が及ぶ前に、アラミド繊維に伸張荷重がかかり、抗伸張効果を発揮していることが分かる。
実施例7~9の試料の耐落下伸張性の評価結果を、以下の表2に示す。
所定の弾性円筒体を芯部にして、実施例1に記載の特殊製紐機を用いて1.6倍伸長下で、所定本数の光ファイバとエステルウーリー330dtexを均等にS方向に、エステルウーリー330dtex4本を均等にZ方向に、交互に上、下を通って捲回し、本発明の伸縮性光信号伝送ケーブルを得た。
得られた伸縮性光信号伝送ケーブルの評価結果を、以下の表3に示す。
所定の弾性円筒体を芯部にして、実施例1に記載の特殊製紐機を用いて1.6倍伸長下で、所定本数の光ファイバと所定本数の導体線((有)竜野電線製2USTC(30μ*90本)、所定本数のエステルウーリー330dtexを光ファイバ、導体腺、エステルウーリー、導体線の順にS方向に、エステルウーリー4本をZ方向に、交互に上下を通って捲回し、本発明の伸縮性光信号伝送ケーブルを得た。光信号と電力及び電気信号を同時に供給できる伸縮性光信号伝送ケーブルが得られた。
得られた伸縮性光信号伝送ケーブルの評価結果を、以下の表4に示す。
2 光ファイバ
3 光ファイバ
4 拘束糸状体
20 試料
21 チャック部
22 チャック部
Claims (16)
- 10%以上の伸縮性を有し、光伝送ロスが弛緩状態において20dB/m未満である伸縮性光信号伝送ケーブルであって、10%以上の伸縮性を有する弾性円筒体および該弾性円筒体の周囲に捲回された少なくとも1本の光ファイバを含み、該光ファイバの曲げ直径Rが限界曲げ直径Re以上であることを特徴とする伸縮性光信号伝送ケーブル。
- 光ファイバの外側に光ファイバと逆方向に捲回されている拘束糸状体をさらに含む、請求項1に記載の伸縮性光信号伝送ケーブル。
- 光ファイバの外側と内側(弾性円筒体側)を交互に通って、光ファイバと逆方向に捲回されている拘束糸状体をさらに含み、曲げ直径のばらつきRr(Rr=Rmax-Rmin)が0≦Rr≦Raveである、請求項1に記載の伸縮性光信号伝送ケーブル。
- 光ファイバの残留トルク率が70%以下である、請求項1に記載の伸縮性光信号伝送ケーブル。
- 限界伸張までの任意の伸張状態において、Rmin>Reであり、かつ0≦Rr≦Raveである、請求項1に記載の伸縮性光信号伝送ケーブル。
- 光ファイバの捲回径が0.5~30mmであり、光ファイバの捲回ピッチが0.5~50mmである、請求項1に記載の伸縮性光信号伝送ケーブル。
- 少なくとも1本の導体線をさらに含む、請求項1に記載の伸縮性光信号伝送ケーブル。
- 少なくとも1本以上の導体線がさらに捲回されている、請求項1に記載の伸縮性光信号伝送ケーブル。
- 少なくとも1本以上の光ファイバと、少なくとも1本以上の導体線とが、同心円状に捲回されている、請求項8に記載の伸縮性光信号伝送ケーブル。
項。 - 少なくとも1本以上の光ファイバと、少なくとも1本以上の導体線とが、同一円周上に、かつ、並列に、捲回されている、請求項8に記載の伸縮性光信号伝送ケーブル。
- 光ファイバの外周に繊維からなる外部被覆層をさらに有する、請求項1に記載の伸縮性光信号伝送ケーブル。
- 光ファイバの外周にゴム弾性を持つ樹脂からなる外部被覆層をさらに有する、請求項1に記載の伸縮性光信号伝送ケーブル。
- 全長が光ファイバよりも短い抗伸張糸状体を1本以上含み、該糸状体を、下記式:
100×(L0-Lk)/Lk[%]
{式中、L0は、光ファイバの全長であり、そしてLkは、抗伸張糸状体の全長である。}で定義される値まで伸張した時の、該糸状体合計の破断強度が10000cN以上である、請求項1に記載の伸縮性光信号伝送ケーブル。 - 20%伸張荷重が5000cN未満であり、かつ、20%伸張回復率が80%以上である、請求項1に記載の伸縮性光信号伝送ケーブル。
- 弾性円筒体を伸張する機能と、その周囲に複数の伝送線を並列に捲回する機能と、伝送線の捲回方向と逆方向に糸状体を捲回する機能を有する装置により、伸張した状態の弾性円筒体に少なくとも1本以上の光ファイバを捲回し、該光ファイバと反対方向に拘束糸状体を該光ファイバの外側に捲回することを特徴とする、請求項2~14のいずれか一項に記載の伸縮性光信号伝送ケーブルの製造方法。
- 弾性円筒体を伸張する機能と、該弾性円筒体の周囲に少なくとも1本の伝送線と少なくとも1本の糸状体とを同一方向に捲回する機能と、少なくとも1本の拘束糸状体を前記方向と逆方向に捲回する機能とを有する装置により、弾性円筒体を伸張した状態で、該弾性円筒体の周囲に少なくとも1本の光ファイバと少なくとも1本の糸状体とを同一方向に捲回し、さらに該光ファイバと逆方向に1本または複数本の光ファイバの外側と内側(弾性円筒体側)を交互に通って少なくとも1本の拘束糸条体を捲回することを特徴とする、請求項3~15のいずれか一項に記載の伸縮性光信号伝送ケーブルの製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801525803A CN102265199B (zh) | 2008-12-26 | 2009-12-25 | 伸缩性光信号传输缆线 |
EP15178922.9A EP2963468B1 (en) | 2008-12-26 | 2009-12-25 | Extensible optical signal transmission cable |
EP09835055.6A EP2372423B1 (en) | 2008-12-26 | 2009-12-25 | Extensible optical signal transmission cable |
US13/142,233 US8693829B2 (en) | 2008-12-26 | 2009-12-25 | Extensible optical signal transmission cable |
KR1020127024253A KR101332961B1 (ko) | 2008-12-26 | 2009-12-25 | 신축성 광신호 전송 케이블 |
KR1020117008671A KR101227745B1 (ko) | 2008-12-26 | 2009-12-25 | 신축성 광신호 전송 케이블 |
JP2010544176A JP5270695B2 (ja) | 2008-12-26 | 2009-12-25 | 伸縮性光信号伝送ケーブル |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008335322 | 2008-12-26 | ||
JP2008-335322 | 2008-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010074259A1 true WO2010074259A1 (ja) | 2010-07-01 |
Family
ID=42287863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/071665 WO2010074259A1 (ja) | 2008-12-26 | 2009-12-25 | 伸縮性光信号伝送ケーブル |
Country Status (6)
Country | Link |
---|---|
US (1) | US8693829B2 (ja) |
EP (2) | EP2963468B1 (ja) |
JP (2) | JP5270695B2 (ja) |
KR (2) | KR101332961B1 (ja) |
CN (1) | CN102265199B (ja) |
WO (1) | WO2010074259A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014040906A (ja) * | 2012-07-26 | 2014-03-06 | Tatsuta Electric Wire & Cable Co Ltd | チューブケーブル |
JP2016144352A (ja) * | 2015-02-04 | 2016-08-08 | 株式会社フジクラ | 浮遊ケーブル |
JP2017187659A (ja) * | 2016-04-07 | 2017-10-12 | 住友電気工業株式会社 | 光ファイバテープ心線、光ファイバケーブル |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9167331B2 (en) * | 2013-03-26 | 2015-10-20 | Google Inc. | Bendable cord for controlling an electronic device |
GB201318254D0 (en) | 2013-10-15 | 2013-11-27 | Silixa Ltd | Optical fiber cable |
US20170025800A1 (en) * | 2015-05-22 | 2017-01-26 | Charles E. Melino, Jr. | Extension Cord |
CA3015906A1 (en) * | 2016-02-25 | 2017-08-31 | Cornell University | Waveguides for use in sensors or displays |
CN105928603B (zh) * | 2016-04-28 | 2019-03-19 | 河南丹江大观苑旅游有限公司 | 一种基于光纤传感的景区山体监测系统 |
CN106483617A (zh) * | 2016-12-12 | 2017-03-08 | 海鹰企业集团有限责任公司 | 光纤余长产生方法 |
US11791067B2 (en) * | 2019-08-29 | 2023-10-17 | Corning Research & Development Corporation | Methods for bonding stranded cable subunits to central member |
CN113130118A (zh) * | 2019-12-31 | 2021-07-16 | 龙岩岳凯科技有限公司 | 一种耐弯折的光纤线及其制作方法 |
CN112327440B (zh) * | 2020-11-27 | 2022-12-09 | 安徽长荣光纤光缆科技有限公司 | 一种高强度耐挤压复合型光缆 |
CN113009656A (zh) * | 2021-02-10 | 2021-06-22 | 龙岩岳凯科技有限公司 | 一种柔性光纤线 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5553806A (en) * | 1978-10-16 | 1980-04-19 | Sumitomo Electric Industries | Composite power cable |
JPS5982210U (ja) * | 1982-11-27 | 1984-06-02 | 東北電力株式会社 | 難着雪形光フアイバ複合架空地線 |
JPS59168703U (ja) * | 1983-04-27 | 1984-11-12 | 古河電気工業株式会社 | ダム付光ケ−ブルの端末部 |
JPS616814U (ja) * | 1984-06-19 | 1986-01-16 | 古河電気工業株式会社 | 光学繊維束カ−ルコ−ド |
JPS61163513A (ja) * | 1985-01-14 | 1986-07-24 | 丸一産業株式会社 | 通信ケ−ブル |
JP4116935B2 (ja) | 2003-07-01 | 2008-07-09 | 日立電線株式会社 | 光ファイバカールコード |
JP2009054312A (ja) * | 2007-08-23 | 2009-03-12 | Asahi Kasei Fibers Corp | 伸縮性光ファイバー複合ケーブル及びその製造方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5927177B2 (ja) * | 1979-07-26 | 1984-07-04 | 株式会社東芝 | 交流電気車用相数変換機 |
JPS5982210A (ja) | 1982-10-30 | 1984-05-12 | Mazda Motor Corp | 搬送装置 |
JPS59168703A (ja) | 1983-03-14 | 1984-09-22 | Mitsubishi Chem Ind Ltd | 高電波反射性を有する合成樹脂製パラボラアンテナ |
JPS6045212A (ja) * | 1983-08-23 | 1985-03-11 | Sumitomo Electric Ind Ltd | 光フアイバケ−ブル |
JPS60119013A (ja) * | 1983-11-30 | 1985-06-26 | 丸一産業株式会社 | 信号伝送用条体 |
JPS60141020U (ja) * | 1984-02-29 | 1985-09-18 | 沖電気工業株式会社 | カ−ルケ−ブル |
JPS60189113A (ja) * | 1984-03-07 | 1985-09-26 | 日本電気株式会社 | 伸縮性電線・ケ−ブル |
JPS616814A (ja) | 1984-06-21 | 1986-01-13 | Toshiba Corp | 変圧器 |
JPS6126012A (ja) * | 1984-07-17 | 1986-02-05 | Sumitomo Electric Ind Ltd | 光フアイバ−コ−ドの製造方法および光フアイバ−コ−ド |
JPS6218917U (ja) * | 1985-07-17 | 1987-02-04 | ||
EP0300775B1 (en) | 1987-07-21 | 1995-05-31 | Matsushita Electric Industrial Co., Ltd. | Signal encoding and decoding method and device |
JPH01270015A (ja) * | 1988-04-22 | 1989-10-27 | Fujitsu Ltd | カールコード型光ファイバ |
JPH04116935A (ja) | 1990-09-07 | 1992-04-17 | Fujitsu Ltd | 半導体装置の製造方法 |
DE4109147A1 (de) * | 1991-03-20 | 1992-09-24 | Siemens Ag | Verfahren zur herstellung eines optischen kabels |
US5339378A (en) * | 1993-10-06 | 1994-08-16 | The United States Of America As Represented By The Secretary Of The Navy | Torque-balanced extendable fiber optic cable |
US6415085B1 (en) | 1995-08-01 | 2002-07-02 | At&T Corp. | Sub-miniature optical fiber cables, and apparatuses and methods for making the sub-miniature optical fiber cables |
JP2000243156A (ja) * | 1999-02-23 | 2000-09-08 | Fujikura Ltd | 給電線複合型光ファイバケーブル |
JP2002075083A (ja) * | 2000-08-28 | 2002-03-15 | Nisshin Denki Kk | 伸縮性コードの製造方法 |
JP4634635B2 (ja) | 2001-04-12 | 2011-02-16 | 旭化成テクノプラス株式会社 | 伸縮電線及びその製造方法 |
JP3585465B2 (ja) * | 2002-01-18 | 2004-11-04 | エス・ディ・ケイ株式会社 | 伸縮性コード |
CN100349026C (zh) * | 2002-10-04 | 2007-11-14 | 萨比欧斯光学公司 | 耐用的光纤阵列 |
CN2831160Y (zh) * | 2005-05-11 | 2006-10-25 | 覃小惕 | 一种用于光纤传感器的光纤组件 |
KR20120005569A (ko) * | 2006-12-26 | 2012-01-16 | 아사히 가세이 셍이 가부시키가이샤 | 신축 전선 및 그 제조 방법 |
KR20100000036A (ko) * | 2008-06-24 | 2010-01-06 | 엘에스전선 주식회사 | 광섬유 케이블 |
-
2009
- 2009-12-25 EP EP15178922.9A patent/EP2963468B1/en not_active Not-in-force
- 2009-12-25 EP EP09835055.6A patent/EP2372423B1/en not_active Not-in-force
- 2009-12-25 WO PCT/JP2009/071665 patent/WO2010074259A1/ja active Application Filing
- 2009-12-25 CN CN2009801525803A patent/CN102265199B/zh active Active
- 2009-12-25 JP JP2010544176A patent/JP5270695B2/ja active Active
- 2009-12-25 KR KR1020127024253A patent/KR101332961B1/ko active IP Right Grant
- 2009-12-25 KR KR1020117008671A patent/KR101227745B1/ko active IP Right Grant
- 2009-12-25 US US13/142,233 patent/US8693829B2/en active Active
-
2013
- 2013-04-12 JP JP2013084073A patent/JP5576961B2/ja not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5553806A (en) * | 1978-10-16 | 1980-04-19 | Sumitomo Electric Industries | Composite power cable |
JPS5982210U (ja) * | 1982-11-27 | 1984-06-02 | 東北電力株式会社 | 難着雪形光フアイバ複合架空地線 |
JPS59168703U (ja) * | 1983-04-27 | 1984-11-12 | 古河電気工業株式会社 | ダム付光ケ−ブルの端末部 |
JPS616814U (ja) * | 1984-06-19 | 1986-01-16 | 古河電気工業株式会社 | 光学繊維束カ−ルコ−ド |
JPS61163513A (ja) * | 1985-01-14 | 1986-07-24 | 丸一産業株式会社 | 通信ケ−ブル |
JP4116935B2 (ja) | 2003-07-01 | 2008-07-09 | 日立電線株式会社 | 光ファイバカールコード |
JP2009054312A (ja) * | 2007-08-23 | 2009-03-12 | Asahi Kasei Fibers Corp | 伸縮性光ファイバー複合ケーブル及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2372423A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014040906A (ja) * | 2012-07-26 | 2014-03-06 | Tatsuta Electric Wire & Cable Co Ltd | チューブケーブル |
JP2016144352A (ja) * | 2015-02-04 | 2016-08-08 | 株式会社フジクラ | 浮遊ケーブル |
JP2017187659A (ja) * | 2016-04-07 | 2017-10-12 | 住友電気工業株式会社 | 光ファイバテープ心線、光ファイバケーブル |
Also Published As
Publication number | Publication date |
---|---|
KR101227745B1 (ko) | 2013-01-30 |
EP2372423A4 (en) | 2012-07-04 |
KR101332961B1 (ko) | 2013-11-25 |
JP5576961B2 (ja) | 2014-08-20 |
US8693829B2 (en) | 2014-04-08 |
JPWO2010074259A1 (ja) | 2012-06-21 |
CN102265199B (zh) | 2013-12-18 |
EP2963468B1 (en) | 2019-05-29 |
JP2013178541A (ja) | 2013-09-09 |
JP5270695B2 (ja) | 2013-08-21 |
EP2963468A1 (en) | 2016-01-06 |
EP2372423B1 (en) | 2015-08-26 |
EP2372423A1 (en) | 2011-10-05 |
KR20110055737A (ko) | 2011-05-25 |
KR20120113289A (ko) | 2012-10-12 |
US20110262086A1 (en) | 2011-10-27 |
CN102265199A (zh) | 2011-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5576961B2 (ja) | 伸縮性光信号伝送ケーブル | |
WO2009157070A1 (ja) | 伸縮性信号伝送ケーブル | |
US8294029B2 (en) | Expandable electric cord and production method thereof | |
JP5828743B2 (ja) | 耐屈曲ケーブル | |
JP2011082050A (ja) | 伸縮電線 | |
JP5872787B2 (ja) | 信号伝送用多芯型伸縮ケーブル | |
JP2015026476A (ja) | 多層型伸縮伝送線 | |
JP6345521B2 (ja) | 端末加工された伸縮性伝送体 | |
JP2010040337A (ja) | 高耐久性伸縮電線 | |
JP2009054312A (ja) | 伸縮性光ファイバー複合ケーブル及びその製造方法 | |
JP5465856B2 (ja) | 伸縮性ワイヤーハーネス | |
JP5339798B2 (ja) | 伸縮電線 | |
JP6600494B2 (ja) | 耐捻回性に優れる伸縮ケーブル | |
JP2019067709A (ja) | 伸縮電線 | |
JP2010040339A (ja) | 伸縮電線 | |
JP2012216469A (ja) | 電装用ケーブル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980152580.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09835055 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010544176 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20117008671 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009835055 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2386/KOLNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13142233 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |