WO2010074118A1 - 繊維処理用水分散体 - Google Patents

繊維処理用水分散体 Download PDF

Info

Publication number
WO2010074118A1
WO2010074118A1 PCT/JP2009/071388 JP2009071388W WO2010074118A1 WO 2010074118 A1 WO2010074118 A1 WO 2010074118A1 JP 2009071388 W JP2009071388 W JP 2009071388W WO 2010074118 A1 WO2010074118 A1 WO 2010074118A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
resin
weight
aqueous dispersion
fiber treatment
Prior art date
Application number
PCT/JP2009/071388
Other languages
English (en)
French (fr)
Inventor
浅見 啓一
本間 雅登
土谷 敦岐
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN2009801508653A priority Critical patent/CN102257209B/zh
Priority to KR1020117017322A priority patent/KR101288676B1/ko
Priority to US13/141,670 priority patent/US20110257325A1/en
Priority to EP09834916.0A priority patent/EP2372018B1/en
Priority to JP2010544096A priority patent/JP5430583B2/ja
Publication of WO2010074118A1 publication Critical patent/WO2010074118A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/14Chemical after-treatment of artificial filaments or the like during manufacture of carbon with organic compounds, e.g. macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Definitions

  • the present invention relates to an aqueous dispersion for fiber treatment.
  • water dispersion used to treat fibers such as glass fiber, carbon fiber, alumina fiber, ceramic fiber or boron fiber, and fiber such as polyolefin fiber, ABS fiber, nylon fiber, polyester fiber, etc. It is related with the water dispersion used in order to do.
  • fibers are processed by a sizing agent as fiber bundles after melt spinning.
  • sizing agents include emulsions of starch aqueous solution, paraffin wax, vegetable oil and the like.
  • the fibers are treated with a silane coupling agent, urethane, epoxy, acrylic emulsion or the like in order to improve the adhesion between the matrix resin and the fibers.
  • the fiber treated with the above emulsion has insufficient adhesion to the matrix resin, the strength of the fiber reinforced resin is not improved, and a more suitable emulsion appears. It is desired.
  • Patent Document 1 discloses an aqueous emulsion containing a polypropylene resin modified with an unsaturated dicarboxylic acid or a salt thereof as an essential component
  • Patent Document 2 discloses an aqueous suspension composed of two acid-modified propylene resins.
  • these fiber sizing agents have polar groups in the main chain, they do not exhibit sufficient adhesion to both the fiber surface and the matrix resin, and the handleability of the fiber bundle is not sufficient.
  • Patent Document 3 discloses a laminated mat having a layer comprising 40 to 95% by weight of pulp fibers and 5 to 60% by weight of a fibrous or granular thermoplastic resin, and a low melting point component of the composite fiber.
  • the above publication has a heat treatment step, and the resin used is limited.
  • the present invention is an improvement of the above-mentioned problems, and is an excellent dispersion property of fibers, and an aqueous dispersion for fiber treatment that improves the adhesion between the fibers and the matrix resin, and between various fibers by heat treatment at low temperature.
  • An object of the present invention is to provide an aqueous dispersion for fiber treatment having excellent binding properties and excellent fiber flexibility.
  • the present inventors have found that a specific first propylene resin, a second propylene resin containing at least a carboxylate group bonded to a polymer chain, an anionic type, and / or Alternatively, the present inventors have found that an aqueous dispersion for fiber treatment containing a nonionic surfactant and water has excellent fiber convergence and improves the adhesion between the fiber and the matrix resin, thereby completing the present invention.
  • the present invention relates to the following [1] to [20], for example.
  • the weight average molecular weight of (A) (hereinafter also referred to as “Mw (a)”) is different from the weight average molecular weight of (B) (hereinafter also referred to as “Mw (b)”)
  • Mw (a) An aqueous dispersion for fiber treatment, characterized in that is larger than Mw (b) and the average particle size of resin solids derived from (A) and (B) is 0.03 to 3 ⁇ m.
  • the above (A) is the above (A-1), the weight average molecular weight Mw is 150,000 or more and 500,000 or less, and the structural unit derived from propylene of the olefin component is 50 to 99 mol%.
  • the weight ratio [(A-1) :( A-2)] of (A-1) to (A-2) is 100: 0 to 30:70
  • the above (B) is characterized in that the weight average molecular weight Mw is 1,000 to 50,000, and the structural unit derived from propylene of the olefin component is 50 to 100 mol% [2]
  • the above (A) is the above (A-1), the weight average molecular weight Mw is 150,000 or more and 500,000 or less, and the structural unit derived from propylene of the olefin component is 50 to 99 mol%.
  • the weight ratio [(A-1) :( A-2)] of (A-1) to (A-2) is 100: 0 to 30:70 [ 10]
  • the above (B) is characterized in that the weight average molecular weight Mw is 1,000 to 50,000, and the structural unit derived from propylene of the olefin component is 50 to 100 mol% [8]
  • composition (A-1) has a weight average molecular weight Mw of more than 50,000 and less than 150,000, at least a carboxylate bonded to a polymer chain, and derived from propylene as an olefin component A propylene-based resin having a unit of 50 to 99 mol%, and a formula (1) per gram of the resin
  • A-3 propylene-based resin
  • the structural unit (A-2) has a weight average molecular weight Mw of 150,000 or more and 500,000 or less, contains at least a carboxylate bonded to a polymer chain, and is derived from propylene as an olefin component. 50 to 99 mol% of a propylene resin having the formula (1) per gram of resin
  • A-4 propylene-based resin
  • the aqueous dispersion for fiber treatment of the present invention it is excellent in fiber convergence and can improve the adhesion between the fiber and the matrix resin. As a result, it is possible to obtain a fiber reinforced resin having excellent handleability and excellent mechanical strength. Moreover, since it is excellent in the binding property of the fibers by low-temperature heat treatment, a resin excellent in fiber flexibility can be obtained.
  • FIG. 1 is a schematic view of a yarn path used in the method for evaluating the number of fluffs.
  • the aqueous dispersion for fiber treatment of the present invention comprises: (A) a first propylene-based resin in which a structural unit derived from propylene of an olefin component is 50 to 99 mol%; and (B) a carboxylate bonded to a polymer chain.
  • a second propylene-based resin containing a total amount of 0.05 to 5 millimole equivalents, (C) an anionic and / or nonionic surfactant, and (D) water.
  • the aqueous dispersion for fiber treatment of the present invention contains the above components in a specific quantitative range. That is, with respect to 100 parts by weight of the above (A), the amount of (B) is 0.3 to 45 parts by weight, preferably 0.5 to 40 parts by weight in terms of adhesion with the polar material, The amount is preferably 0.7 to 35 parts by weight. The amount of (C) is 0.5 to 40 parts by weight, preferably 0.8 to 30 parts by weight, and more preferably 1 to 20 parts by weight from the viewpoint of dispersibility in water. The content of (D) water is 3 to 90% by weight in the aqueous dispersion.
  • the weight average molecular weight of (A) (hereinafter also referred to as “Mw (a)”) is different from the weight average molecular weight of (B) (hereinafter also referred to as “Mw (b)”), and Mw ( a) is larger than Mw (b).
  • the difference between Mw (a) and Mw (b) (Mw (a) ⁇ Mw (b)) is preferably 1,000 or more, more preferably 3,000 or more, and 5,000 or more. More preferably it is.
  • Mw (a) is larger than Mw (b)
  • the above (B) that contributes to the close contact with the fiber easily moves to the fiber surface.
  • the aqueous dispersion for fiber treatment of the present invention is an aqueous dispersion for fiber treatment in which the resin solid content derived from the above (A) and (B) is dispersed in water.
  • the average particle diameter of the resin solid content derived from the above (A) and (B) is 0.03 to 3 ⁇ m, preferably 0.05 to 2 ⁇ m, more preferably 0.08 to 1 ⁇ m. When the average particle diameter is within the above range, it is preferable in terms of adhesion to fibers.
  • first propylene resin (A) in which the structural unit derived from propylene of the olefin component is 50 to 99 mol% examples include a copolymer of propylene and at least one ⁇ -olefin. It is done.
  • the content of ⁇ -olefin is usually 1 to 50 mol%, preferably 3 to 50 mol%, more preferably 5 to 45 mol% from the viewpoint of carbon fiber dispersibility during molding.
  • ⁇ -olefins include ethylene, 1-butene, 3-methyl-1-butene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-hexene, 1-heptene and 1-octene.
  • ⁇ -olefins having 2 to 12 carbon atoms excluding propylene such as 1-decene and 1-dodecene from the viewpoint of compatibility with polypropylene used for the matrix resin and compatibility with the second propylene resin (B), ethylene / propylene copolymer, propylene / 1-butene copolymer, ethylene / propylene / A 1-butene copolymer is preferable.
  • the weight average molecular weight (hereinafter also abbreviated as Mw) is preferably in the range of 30,000 to 500,000, more preferably in the range of 35,000 to 450,000. preferable.
  • the weight average molecular weight Mw can be measured, for example, by gel permeation chromatography (GPC) using polystyrene as a standard.
  • the above (A) may contain a carboxylate bonded to a polymer chain, and may further contain an unsaturated vinyl group other than an olefin. Further, the above (A) may be modified or a substantially unmodified polypropylene resin.
  • substantially unmodified means that it has not been modified at all, or even if it has been modified, the amount of modification is extremely small.
  • the trace amount means, for example, less than 0.01 mmol equivalent in terms of COO group. Preferably it is 0.005 mmol equivalent or less, More preferably, it is 0.001 mmol equivalent or less.
  • the above (A) is preferably composed of propylene resin (A-1) of MI (melt index: 230 ° C.) (hereinafter also simply referred to as “MI”): 50 or more.
  • (A) is a propylene-based resin having a weight average molecular weight Mw: 30,000 or more and less than 150,000, MI: 50 or more, and a structural unit derived from propylene: 50 to 99 mol% ( A-1) or the propylene-based resin (A-1) and a weight average molecular weight Mw of 150,000 to 500,000 and a structural unit derived from propylene of 50 to 99 mol% It is preferably composed of a mixture with a propylene resin (A-2).
  • (A-1): (A-2) is preferably 100: 0 to 30:70, more preferably 100: 0 to 35:65.
  • the weight average molecular weight Mw of the above (A) is a mixture of the propylene resin (A-1) and the propylene resin (A-2)
  • the arithmetic average of the weight average molecular weight Mw is arithmetic average of the weight average molecular weight Mw.
  • the weight average molecular weight Mw is 30,000 to less than 150,000
  • MI melt index: 230 ° C.
  • the unit derived from propylene is 50 to 99 mol%.
  • Mw is more preferably from 35,000 to 140,000
  • MI is more preferably from 60 to less than 1,000, and even more preferably from 70 to less than 900.
  • the unit derived from propylene is preferably 55 to 97 mol%, more preferably 55 to 95 mol%.
  • the resin film-forming property (coverability) on the fiber surface tends to be lowered, and the dispersibility of the fiber during molding is lowered, and the mechanical strength of the molding material is lowered.
  • the resin film-forming property (coverability) on the fiber surface tends to be lowered, and the dispersibility of the fiber during molding is lowered, and the mechanical strength of the molding material is lowered.
  • the resin film-forming property (coverability) on the fiber surface tends to be lowered, and the dispersibility of the fiber during molding is lowered, and the mechanical strength of the molding material is lowered.
  • the upper limit of the molecular weight distribution (Mw / Mn) is not particularly limited, but is preferably 50 or less, more preferably 30 or less.
  • A-1 is a propylene-based resin having a weight average molecular weight Mw of more than 50,000 and less than 150,000 and containing at least a carboxylate bonded to a polymer chain, It may be a propylene-based resin (A-3) containing a group represented by the above formula (1) at a total concentration of 0.05 to 5 mmol equivalent, and further a heavy polymer modified with an unsaturated vinyl group other than olefin.
  • a propylene-based resin (A-5) containing a coalescence may be used.
  • the content of the polymer modified with an unsaturated vinyl group other than olefin is 0.1 to 50 parts by weight with respect to 100 parts by weight of the propylene resin (A-5). It is preferable that
  • the weight average molecular weight Mw is from 150,000 to 500,000, and the unit derived from propylene is 50 to 99 mol%, preferably 50 to 97 mol%, more preferably 50 to 95 mol%. Mol%. Mw is preferably 150,000 to 450,000. When it exists in these ranges, it is preferable at the point which the adhesive strength of the fiber surface and matrix resin improves.
  • (A-2) is a propylene-based resin containing at least a carboxylate bonded to a polymer chain, and the total amount of the group represented by the above formula (1) is 0.05 to 5 mmol per gram of the resin.
  • It may be a propylene resin (A-4) contained at an equivalent concentration, or a propylene resin (A-6) containing a polymer modified with an unsaturated vinyl group other than olefin.
  • the content of the polymer modified with an unsaturated vinyl group other than olefin is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the propylene resin (A-6).
  • the raw materials of (A-3) and (A-4) can be obtained by various methods.
  • a propylene resin and an ethylenically unsaturated carboxylic acid having an unsaturated vinyl group in an organic solvent are used.
  • a method of removing the solvent after reacting in the presence of a polymerization initiator a method of reacting a carboxylic acid having an unsaturated vinyl group and a polymerization initiator with stirring to a melt obtained by heating and melting a propylene-based resin, and a method in which a mixture of a propylene-based resin, a carboxylic acid having an unsaturated vinyl group, and a polymerization initiator is supplied to an extruder and reacted while heating and kneading.
  • Ethylenically unsaturated carboxylic acids (meth) acrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, and isocrotonic acid.
  • anhydrides nadic TM Examples thereof include (endocis-bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid), maleic anhydride, citraconic anhydride and the like. These monomers can be used alone or in combination of two or more. Of these, acid anhydrides are preferable, and maleic anhydride is more preferable.
  • organic solvent examples include aromatic hydrocarbons such as xylene, toluene, and ethylbenzene, aliphatic hydrocarbons such as hexane, heptane, octane, decane, isooctane, and isodecane, and alicyclic rings such as cyclohexane, cyclohexene, methylcyclohexane, and ethylcyclohexane.
  • aromatic hydrocarbons such as xylene, toluene, and ethylbenzene
  • aliphatic hydrocarbons such as hexane, heptane, octane, decane, isooctane, and isodecane
  • alicyclic rings such as cyclohexane, cyclohexene, methylcyclohexane, and ethylcyclohexane.
  • hydrocarbons ethyl acetate, n-butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ester solvents such as 3 methoxybutyl acetate, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, etc.
  • An organic solvent can be used, and a mixture of two or more of these may be used.
  • aromatic hydrocarbons, aliphatic hydrocarbons, and alicyclic hydrocarbons are preferable, and aliphatic hydrocarbons and alicyclic hydrocarbons are more preferably used.
  • the above (A-3) and (A-4) are obtained by neutralizing or saponifying the raw materials of (A-3) and (A-4) in the production of an aqueous dispersion.
  • Basic substances used for neutralization or saponification in the production of aqueous dispersions include alkali metals such as sodium, potassium, lithium, calcium, magnesium, zinc and / or alkaline earth metals and / or other metals.
  • Inorganic amines such as hydroxylamine and ammonium hydroxide, ammonia, (tri) methylamine, (tri) ethanolamine, (tri) ethylamine, dimethylethanolamine, morpholine and other organic amines, sodium oxide, sodium peroxide, alkali Mention of metal and / or alkaline earth metal oxides and / or other metals, hydroxides, hydrides, sodium carbonates and other alkali metals and / or alkaline earth metals and / or weak salts of other metals Can do.
  • an alkali metal carboxylate such as sodium carboxylate or potassium carboxylate or ammonium carboxylate is preferred.
  • the degree of neutralization or saponification is usually 50 to 100%, preferably 70 to 100%, more preferably 85 to 100%, from the viewpoint of the stability of the aqueous dispersion and the adhesion to the fibers.
  • carboxylic acid groups in the above (A-3) and (A-4) are all neutralized or saponified by the above basic substance.
  • the acid group may remain.
  • polymerization initiator used in the present invention examples include benzoyl peroxide, dichlorobenzoyl peroxide, dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di (peroxybenzoate) hexyne- 3,1,4-bis (tert-butylperoxyisopropyl) benzene and the like. These can be used alone or in admixture of two or more.
  • the above (A-5) and (A-6) can be obtained by various methods.
  • a polymerization initiator is used to polymerize an ethylenically unsaturated carboxylic acid having an unsaturated vinyl group and a propylene resin in an organic solvent. After the reaction in the presence of olefin, and further by reacting a monomer having an unsaturated vinyl group other than olefin in the presence of a polymerization initiator, or by removing the solvent in an organic solvent.
  • a method of removing a solvent after reacting a monomer having an unsaturated vinyl group other than an olefin and an unsaturated vinyl group other than an olefin in the presence of a polymerization initiator, or a propylene resin and an unsaturated vinyl in an organic solvent An ethylene-based unsaturated carboxylic acid having a group, a method of removing a solvent after reacting a polymer of a monomer having an unsaturated vinyl group other than an olefin in the presence of a polymerization initiator, or propylene
  • the melt obtained by heating and melting the resin is reacted with the carboxylic acid having an unsaturated vinyl group and a polymerization initiator under stirring, and the monomer having an unsaturated vinyl group other than the olefin is further reacted in the presence of the polymerization initiator.
  • a polymer of a monomer having an unsaturated vinyl group other than olefin, a carboxylic acid having an unsaturated vinyl group in a melt obtained by heating and melting a propylene-based resin and A method of reacting in the presence of a polymerization initiator or a mixture of a propylene-based resin, a carboxylic acid having an unsaturated vinyl group, and a polymerization initiator is supplied to an extruder and reacted while heating and kneading.
  • a method of supplying a mixture of a monomer having an unsaturated vinyl group and a polymerization initiator to an extruder and reacting while heating and kneading, a carboxylic acid having an unsaturated vinyl group and a carboxylic acid other than an olefin A mixture of a monomer having an unsaturated vinyl group and a polymerization initiator is supplied to an extruder and reacted while heating and kneading, or a propylene-based resin and a carboxylic acid having an unsaturated vinyl group and an olefin other than olefin are reacted. Examples thereof include a method in which a mixture of a monomer polymer having a saturated vinyl group and a polymerization initiator is supplied to an extruder and reacted while heating and kneading.
  • Examples of the monomer having an unsaturated vinyl group other than olefin used in the present invention include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) ) Acrylate, tert-butyl (meth) acrylate, n-amyl (meth) acrylate, isoamyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, decyl (meth) ) Acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate, stearyl (meth) acrylate, tridecyl (meth) acrylate, lauroyl (meth)
  • Alkyl (meth) acrylates Alkyl (meth) acrylates, styrene sulfonic acid, styrene sulfonic acid soda, unsaturated sulfonic acids such as 2-acrylamido-2-methylpropane sulfonic acid, mono (2-methacryloyloxyethyl) acid phosphate, mono (2-acrylic acid) And unsaturated phosphoric acid such as leuoxyethyl) acid phosphate.
  • These can be used alone or in admixture of two or more. Using these monomers having an unsaturated vinyl group other than olefin, a polymer modified with an unsaturated vinyl group other than olefin can be obtained.
  • (A-1), (A-3), and (A-5) are (A-1) -based resins
  • (A-2), (A-4), and (A -6) is an (A-2) resin
  • the (A) may be the (A-1) resin alone, the (A-1) resin and the (A-2) It may be a mixture with a resin.
  • the (A-1) resin may be the above (A-3), the above (A-5), (A-1) and (A-3) May be a mixture of (A-1) and (A-5), a mixture of (A-3) and (A-5), and ( A mixture of (A-1), (A-3) and (A-5) may also be used.
  • the (A-2) resin may be the above (A-4), the above (A-6), (A-2) and (A-4) May be a mixture of (A-2) and (A-6), a mixture of (A-4) and (A-6), and ( A mixture of (A-2), (A-4) and (A-6) may be used.
  • (A-1) resin and (A-2) resin are used in combination, the dispersibility of the fiber and the physical properties of the molding material are improved at the time of molding.
  • (A-1) resin: (A-2) resin is preferably 100: 0 to 30:70, from the viewpoint of improving the mechanical strength of the molding material and 100: 0. More preferably, it is ⁇ 35: 65.
  • the (B) second propylene-based resin used in the present invention is a propylene-based resin containing at least a carboxylate bonded to a polymer chain, and is represented by the formula (1) per gram of the resin.
  • a monomer having a neutralized or non-neutralized carboxylic acid group and / or a monomer having a saponified or unsaponified carboxylic acid ester in a copolymer of two or more types Can be obtained by graft polymerization.
  • Examples of the monomer having a neutralized or non-neutralized carboxylic acid group and the monomer having a saponified or non-saponified carboxylic acid ester group include, for example, ethylenically unsaturated carboxylic acid , Anhydrides thereof, and esters thereof.
  • the total amount of the group represented by is 0.05 to 5 mmol equivalent, preferably 0.1 to 4 mmol equivalent, more preferably 0.3 to 3 mmol equivalent.
  • Ethylenically unsaturated carboxylic acids (meth) acrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, nadic TM (Endoshisu as its anhydride - Bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid), maleic anhydride, citraconic anhydride, etc., as unsaturated carboxylic acid esters, methyl and ethyl of the above ethylenically unsaturated carboxylic acids Alternatively, monoesters or diesters such as propyl can be exemplified. These monomers can be used alone or in combination of two or more. Of these, acid anhydrides are preferable, and maleic anhydride is more preferable.
  • the above (B) can be obtained by neutralizing or saponifying the above raw material (B) during the production of the aqueous dispersion.
  • the above (B) can be obtained by the same method as the above (A-3).
  • the (B) used here has a weight average molecular weight Mw of 1,000 or more and less than 50,000, preferably 1,200 or more and less than 48,000, and a phase with the first propylene-based resin (A).
  • the structural unit derived from propylene is usually composed of a propylene-based resin (B) in an amount of 50 to 100 mol%, preferably 70 to 100 mol%, more preferably 85 to 100 mol%.
  • These propylene resins may be used alone or in combination of two or more, and those having different Mw may be used in combination.
  • the range of Mw in the above (B) is an optimal range in which the above (B) easily moves to the fiber surface during molding and the above (A) and molecules are entangled with each other.
  • weight average molecular weight Mw (b) in (B) is different from the weight average molecular weight Mw (a) in (A), and Mw (a) is larger than Mw (b).
  • the above-mentioned (B) may be a propylene resin (B-1) containing a polymer modified with an unsaturated vinyl group other than olefin.
  • the content of the polymer modified with an unsaturated vinyl group other than olefin is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the propylene resin (B-1).
  • the above (B-1) can be obtained by the same method as the above (A-5).
  • anionic surfactant and nonionic surfactant As the anionic surfactant and nonionic surfactant used in the present invention, known ones are used without limitation.
  • anionic surfactants can be used.
  • primary higher fatty acid salts secondary higher fatty acid salts, primary higher alcohol sulfates, and secondary higher alcohol sulfates.
  • Salt primary higher alkyl sulfonate, secondary higher alkyl sulfonate, higher alkyl disulfonate, sulfonated higher fatty acid salt, higher fatty acid sulfate ester salt, higher fatty acid sulfate sulfonate salt, higher alcohol ether
  • sulfuric acid sulfonates higher alcohol ether sulfonates, higher fatty acid amide alkylol sulfates, alkylbenzene sulfonates, alkylphenol sulfonates, alkylnaphthalene sulfonates, and alkylbenzimidazole sulfonates. .
  • higher fatty acid salts particularly alkali metal salts of saturated or unsaturated higher fatty acids having 10 to 20 carbon atoms, such as capric acid, Unsaturated fatty acids such as undecanoic acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, etc. Mention may be made of fatty acids or their alkali metal salts or mixtures thereof.
  • nonionic surfactant known ones can be used.
  • polyoxyethylene alkyl ether polyoxyethylene alkylphenyl ether, polyoxyethylene fatty acid ester, polyoxyethylene fatty acid amide ether, polyhydric alcohol fatty acid
  • esters polyoxyethylene polyhydric alcohol fatty acid esters, fatty acid sucrose esters, alkylolamides, polyoxyalkylene block copolymers, and the like.
  • an anionic surfactant and a nonionic surfactant can be used alone, or two or more types can be used in combination.
  • Method for producing aqueous dispersion for fiber treatment In the method for producing an aqueous dispersion for fiber treatment of the present invention, methods for dispersing the above components (A) to (C) in water are, for example, Japanese Patent Publication No. 7-008933, Japanese Patent Publication No. 7-096647, Japanese Patent Publication No. This is disclosed in No. 5-039995.
  • Basic substances used for neutralization and saponification in the production of aqueous dispersions include alkali metals such as sodium, potassium, lithium, calcium, magnesium, zinc and / or alkaline earth metals and / or other metals.
  • Inorganic amines such as hydroxylamine and ammonium hydroxide, ammonia, (tri) methylamine, (tri) ethanolamine, (tri) ethylamine, dimethylethanolamine, morpholine and other organic amines, sodium oxide, sodium peroxide, alkali Mention of metal and / or alkaline earth metal oxides and / or other metals, hydroxides, hydrides, sodium carbonates and other alkali metals and / or alkaline earth metals and / or weak salts of other metals Can do.
  • carboxylic acid group or carboxylic acid ester group neutralized or saponified with a basic substance a carboxylic acid alkali metal salt such as sodium carboxylate or potassium carboxylate or ammonium carboxylate is preferred.
  • the degree of neutralization or saponification is usually 50 to 100%, preferably 70 to 100%, more preferably 85 to 100%, from the viewpoint of the stability of the aqueous dispersion and the adhesion to the fibers.
  • the aqueous dispersion for fiber treatment of the present invention obtained as described above contains, as necessary, organic pigments such as azo pigments and phthalocyanine blue; dyes such as azo dyes and anthraquinone dyes; aluminum oxide, calcium carbonate, calcium hydroxide, Components such as binder resins such as inorganic chemicals such as magnesium hydroxide, silica and barium titanate; colorants such as inorganic pigments such as titanium oxide, molybdenum and carbon black can be included.
  • organic pigments such as azo pigments and phthalocyanine blue
  • dyes such as azo dyes and anthraquinone dyes
  • colorants such as inorganic pigments such as titanium oxide, molybdenum and carbon black can be included.
  • the above-mentioned aqueous dispersion for fiber treatment of the present invention obtained further comprises various stabilizers such as antioxidants, weathering stabilizers and heat stabilizers; antifoaming agents, thickeners, dispersing agents, surfactants, antifungal agents.
  • Components such as an agent, an antibacterial agent, an antiseptic, a catalyst, a filler, a wax, an antiblocking agent, a plasticizer, and a leveling agent can be contained.
  • an antioxidant or a heat stabilizer Etc. are preferably used.
  • a phenol-based antioxidant and a phosphorus-based processing stabilizer in combination.
  • the addition amount is preferably 5% or less, more preferably 2% or less, based on the resin.
  • the aqueous dispersion for fiber treatment of the present invention can be used as a fiber treatment agent, can be blended in a fiber reinforced resin, and used as a fiber binding.
  • Fibers to be treated with the fiber treatment agent comprising the aqueous dispersion for fiber treatment of the present invention are not particularly limited, but glass fiber, carbon fiber, alumina fiber, ceramic fiber, rock fiber, slug fiber, metal fiber It can be widely used for inorganic fibers conventionally known as resin reinforcing materials. Among the inorganic fibers, carbon fibers and glass fibers are preferable.
  • the carbon fiber has a surface oxygen concentration ratio [O / C] that is a ratio of the number of atoms of oxygen (O) and carbon (C) on the fiber surface measured by X-ray photoelectron spectroscopy of 0.05 to 0.5. Is preferable, more preferably 0.08 to 0.4, and still more preferably 0.1 to 0.3.
  • the surface oxygen concentration ratio is 0.05 or more, the functional group amount on the surface of the carbon fiber can be ensured, and a stronger adhesion to the thermoplastic resin can be obtained.
  • limiting in particular in the upper limit of surface oxygen concentration ratio Generally it can be illustrated to 0.5 or less from the balance of the handleability of carbon fiber, and productivity.
  • the surface oxygen concentration ratio of the carbon fiber is determined by X-ray photoelectron spectroscopy according to the following procedure. First, after cutting the carbon fiber bundle from which the sizing agent and the like adhering to the carbon fiber surface with a solvent were cut to 20 mm and spreading and arranging on a copper sample support base, using AlK ⁇ 1, 2 as the X-ray source, The sample chamber was maintained at 1 ⁇ 10 8 Torr.
  • the kinetic energy value (KE) of the main peak of C 1s is set to 1202 eV as a peak correction value associated with charging during measurement.
  • O 1s peak area E Is obtained by drawing a straight base line in the range of 947 to 959 eV.
  • the surface oxygen concentration ratio is calculated as an atomic ratio by using a sensitivity correction value unique to the apparatus from the ratio of the O 1s peak area to the C 1s peak area.
  • a sensitivity correction value unique to the apparatus from the ratio of the O 1s peak area to the C 1s peak area.
  • model ES-200 manufactured by Kokusai Electric Inc. is used, and the sensitivity correction value is set to 1.74.
  • Means for controlling the surface oxygen concentration ratio [O / C] to 0.05 to 0.5 is not particularly limited, and examples thereof include techniques such as electrolytic oxidation, chemical oxidation, and vapor phase oxidation. Among these, electrolytic oxidation treatment is preferable.
  • the average fiber diameter of the reinforcing fibers is not particularly limited, but is preferably in the range of 1 to 20 ⁇ m and preferably in the range of 3 to 15 ⁇ m from the viewpoint of the mechanical properties and surface appearance of the obtained molded product. More preferred.
  • the number of single yarns of the reinforcing fiber bundle is not particularly limited, and can be used within a range of 100 to 350,000, and particularly preferably within a range of 1,000 to 250,000. Further, from the viewpoint of productivity of reinforcing fibers, those having a large number of single yarns are preferable, and it is preferable to use them within the range of 20,000 to 100,000.
  • polyolefin fibers such as polyolefin fibers, nylon fibers, vinylon fibers, acrylic fibers, polyester fibers, polyurethane fibers and the like.
  • polyolefin fibers are preferred, and specific examples include ethylene fibers and propylene fibers.
  • the treatment agent is attached to the fiber by a method such as a dipping method, a spray method, a roller coating method, and then dried at 50 to 300 ° C. for about 1 minute to 10 hours.
  • a method such as a dipping method, a spray method, a roller coating method, and then dried at 50 to 300 ° C. for about 1 minute to 10 hours.
  • the amount of the treatment agent attached is 0.1 to 40% by weight, preferably 0.3 to 37% by weight, more preferably 0.5 to 35% by weight based on the fiber in that the fiber is easily dispersed. It is.
  • the single fiber forming the reinforcing fiber bundle of the present invention is coated with a mixture containing the first propylene resin and the second propylene resin on at least 60% of the surface of the single fiber in order to exhibit stronger adhesiveness. It is preferable that The uncoated portion cannot exhibit adhesiveness, and becomes a starting point of peeling, resulting in a decrease in adhesiveness. Preferably, 70% or more is covered, and more preferably 80% or more. Examples of the coating state include a scanning electron microscope (SEM) or a technique of tracing the metal element of the carboxylate by elemental analysis of the fiber surface.
  • SEM scanning electron microscope
  • the number of fluffs measured by the fuzzing fluff evaluation method is preferably 10 or less, more preferably It is 8 or less, more preferably 5 or less.
  • the bobbin of the reinforcing fiber bundle is allowed to stand for 30 minutes or more in a temperature control room controlled at a temperature of 23 ⁇ 5 ° C. and a relative humidity of 60 ⁇ 20%.
  • a fuzzing fluff apparatus in a temperature control room where the temperature and humidity conditions are set, in accordance with the yarn path diagram shown in FIG.
  • the reinforcing fiber bundle is put on a clean 1 incorporating a powder clutch, Make a yarn path.
  • the reinforcing fiber bundle is applied to four of the flaw pins 2 having a fixed surface having a diameter of 10 mm and mirror-finished, and passed through the fluff counter 3.
  • the fluff counter detects the number of fluff with a phototransistor while irradiating the running yarn from the lamp light and collecting the irradiated light with a lens.
  • the detection accuracy can detect fuzz having a yarn length of 2 mm or more and a single fiber diameter of the reinforcing fiber of 3 ⁇ m or more.
  • the reinforcing fiber bundle is wound around the drive roller 4 five times or more and wound around the winder 5 so that slip does not occur during traveling.
  • the yarn speed is set to 3 m / min, and the running of the reinforcing fiber bundle is started on the yarn path via the roller 6 shown in FIG.
  • the initial tension is adjusted with the powder clutch so that the tension of the reinforcing fiber bundle during traveling measured between the fluff counter 3 and the driving roller 4 becomes 6 gf / tex.
  • the fluff counter is operated, and the evaluation of the fuzz in the running state is repeated three times for each sample for 1 minute.
  • the number of rubbing fluffs X (pieces / m) is calculated from the following equation, where X1, X2, and X3 represent the number of fluffing feathers counted for 1 minute.
  • the matrix resin includes polyolefins such as polyethylene and polypropylene, nylon, polyester, polycarbonate, polyphenylene sulfide resin, polyacetal, polyimide, polyetheretherketone, polyvinyl chloride, and acrylic.
  • the fiber treatment agent of the present invention can be particularly suitably used when the matrix resin is a propylene resin.
  • the amount of fibers treated with these fiber treatment agents is usually 2 to 70 parts by weight, preferably 3 to 50 parts by weight, with respect to 100 parts by weight of the matrix resin.
  • the fiber treated with the above fiber treating agent can also be blended with cement materials such as Portland cement and alumina cement, ceramic materials such as Al 2 O 3 , SiO 2 , B 4 C, TiB 2 and ZnBr.
  • cement materials such as Portland cement and alumina cement
  • ceramic materials such as Al 2 O 3 , SiO 2 , B 4 C, TiB 2 and ZnBr.
  • the above-mentioned fiber treatment agent is excellent in fiber convergence, can improve the adhesion between the fiber and the matrix resin, and can uniformly disperse the fiber in the matrix resin, so that high physical properties can be expressed.
  • ⁇ Amount of carbon fiber treated material About 5 g of the reinforcing fiber bundle to which the propylene resin was adhered was taken, dried at 120 ° C. for 3 hours, and its weight W1 (g) was measured. Next, the reinforcing fiber bundle was heated at 450 ° C. for 15 minutes in a nitrogen atmosphere, then cooled to room temperature, and its weight W2 (g) was measured. The adhesion amount was calculated by the following formula.
  • Adhesion amount (%) (W1-W2) / W2 ⁇ 100
  • the reinforcing fiber bundle to which the propylene-based resin was adhered was observed with a scanning electron microscope, and the fiber surface coverage was calculated from the area ratio between the resin-coated portion and the reinforcing fiber surface exposed portion.
  • the single fibers of the reinforcing fiber bundle were observed at five arbitrary positions in the fiber axis direction for a length of 10 times the single fiber diameter. Select 5 single fibers arbitrarily and observe each of them at 5 arbitrary locations. The average of the total 25 locations is the fiber surface coverage, and 90% or more is A, 70% or more and less than 90% is B, 40% or more and less than 70% is C, and less than 40% is D.
  • Fiber surface coverage resin coated part / (resin coated part + fiber surface exposed part)
  • the reinforcing fiber bundle was wound around the drive roller 4 five times or more and wound around the winder 5 so that no slip occurred during traveling.
  • the yarn speed was set to 3 m / min, and the running of the reinforcing fiber bundle was started on the yarn path via the roller 6 shown in FIG. After confirming that the yarn path was stable, the initial tension was adjusted with a powder clutch so that the tension of the reinforcing fiber bundle during running measured between the fluff counter 3 and the driving roller 4 was 6 gf / tex.
  • the number of rubbing fluffs X (number / m) is calculated from the following formula, with the number of rubbing fluff counted in 1 minute being X1, X2, and X3, and those with 0-2 / m are calculated as A, 3-5 / B was m, C was 6-10 pieces / m, D was 11 pieces / m or more, and A, B, and C were acceptable.
  • test pieces were produced in the same manner as described above.
  • the test piece was set to a test length of 25 mm using a normal tensile test jig and measured at a strain rate of 0.5 mm / min.
  • the average broken fiber length (l) when no reinforcing fiber breakage occurred was measured with a transmission microscope.
  • l is an average value of the breaking length ( ⁇ m) of the final fiber
  • ⁇ f is the tensile strength (MPa) of the fiber
  • d is the diameter ( ⁇ m) of the fiber.
  • ⁇ f was determined by the following method assuming that the tensile strength distribution of the reinforcing fiber follows the Weibull distribution. That is, using a single fiber, a relational expression between the sample length and the average tensile strength is obtained from the average tensile strength obtained at a sample length of 5, 25, 50 mm by the least square method, and the average tensile strength at the sample length lc is obtained. Was calculated.
  • A is 16 MPa or more
  • B is 14 MPa or more and less than 16 MPa
  • B is 12 MPa or more and less than 14 MPa
  • B is 10 MPa or more and less than 12 MPa
  • C is D or less than 10 MPa.
  • A propylene-based resin
  • A-1 consisttituent unit derived from propylene (hereinafter also referred
  • This mixture was put into a pressure kneader and melt-kneaded at 180 ° C. for 30 minutes.
  • a 20% potassium hydroxide aqueous solution was poured into the kneader in an amount necessary for neutralizing all carboxylic acids, and kneaded for 30 minutes. This was taken out, put into warm water and stirred sufficiently to obtain an aqueous dispersion.
  • the obtained aqueous dispersion had a solid content concentration of 45%, a pH of 12, and an average particle size of 0.4 ⁇ m (measured by Microtrac).
  • the surface oxygen concentration ratio was determined by X-ray photoelectron spectroscopy according to the following procedure using the carbon fiber after the surface oxidation treatment. First, the carbon fiber bundle was cut to 20 mm, spread and arranged on a copper sample support, and then AlK ⁇ 1 and 2 were used as an X-ray source, and the inside of the sample chamber was kept at 1 ⁇ 10 8 Torr.
  • the kinetic energy value (KE) of the main peak of C 1s was adjusted to 1,202 eV as a peak correction value associated with charging during measurement.
  • C 1s peak area E It was obtained by drawing a straight base line in the range of 1,191 to 1,205 eV.
  • O 1s peak area E It was obtained by drawing a straight base line in the range of 947 to 959 eV.
  • the atomic ratio was calculated from the ratio between the O 1s peak area and the C 1s peak area using a sensitivity correction value unique to the apparatus.
  • a model ES-200 manufactured by Kokusai Electric Inc. was used as the X-ray photoelectron spectroscopy apparatus, and the sensitivity correction value was set to 1.74.
  • the water dispersion obtained in the above (1) is adjusted to a solid content concentration of 6% and adhered by a roller impregnation method, and dried online at 210 ° C. for 2 minutes to remove moisture. Then, a test piece was prepared. About the created test piece, [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1. In addition, the adhesion amount of resin was 3%.
  • a 20% aqueous potassium hydroxide solution was continuously supplied at a rate of 90 g / hour and continuously extruded at a heating temperature of 210 ° C.
  • the extruded resin mixture was cooled to 110 ° C. with a jacketed static mixer installed at the extruder port, and further poured into warm water at 80 ° C. to obtain an aqueous dispersion.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.4 ⁇ m (measured by Microtrac).
  • test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.4 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.4 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.4 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • An aqueous dispersion was obtained in the same manner. The obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.4 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • a water dispersion was obtained in the same manner as above. The obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.4 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 12 Except that the amount of the propylene / butene / ethylene copolymer was changed from 91 parts by weight to 70 parts by weight and the amount of the maleic anhydride-modified propylene / ethylene copolymer was changed from 9 parts by weight to 30 parts by weight.
  • an aqueous dispersion was obtained.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.3 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 13 Except that the amount of the propylene / butene / ethylene copolymer was changed from 91 parts by weight to 85 parts by weight and the amount of the maleic anhydride-modified propylene / ethylene copolymer was changed from 9 parts by weight to 15 parts by weight.
  • an aqueous dispersion was obtained.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.3 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 14 Except that the amount of the propylene / butene / ethylene copolymer was changed from 91 parts by weight to 95 parts by weight and the amount of the maleic anhydride-modified propylene / ethylene copolymer was changed from 9 parts by weight to 5 parts by weight.
  • an aqueous dispersion was obtained.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.5 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 15 An aqueous dispersion was obtained in the same manner as in Example 2 except that the amount of potassium oleate was changed from 3 parts by weight to 10 parts by weight.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.3 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.4 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 18 Except that the 20% aqueous potassium hydroxide solution was changed to a 1: 1 (weight ratio) mixed solution of 20% aqueous potassium hydroxide and 20% aqueous ammonia, and the supply rate was changed from 90 g / hour to 110 g / hour.
  • An aqueous dispersion was obtained in the same manner as in Example 2. The obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.4 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 19 An aqueous dispersion was obtained in the same manner as in Example 2 except that the 20% aqueous potassium hydroxide solution was changed to a 20% aqueous sodium hydroxide solution and the supply rate was changed from 90 g / hour to 70 g / hour.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.4 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 20 An aqueous dispersion was obtained in the same manner as in Example 2, except that the 20% aqueous potassium hydroxide solution was changed to 20% aqueous ammonia and the supply rate was changed from 90 g / hour to 150 g / hour.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.4 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 21 An aqueous dispersion was obtained in the same manner as in Example 2, except that the 20% aqueous potassium hydroxide solution was changed to a 20% aqueous dimethylethanolamine solution and the supply rate was changed from 90 g / hour to 120 g / hour.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.4 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 22 An aqueous dispersion was obtained in the same manner as in Example 2 except that the supply amount of the 20% aqueous potassium hydroxide solution was changed from 90 g / hour to 55 g / hour.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.4 ⁇ m (measured by Microtrac).
  • the degree of neutralization of all carboxylic acids was 90%.
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 23 An aqueous dispersion was obtained in the same manner as in Example 2, except that the supply amount of the 20% aqueous potassium hydroxide solution was changed from 90 g / hour to 43 g / hour.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.6 ⁇ m (measured by Microtrac).
  • the degree of neutralization of all carboxylic acids was 70%.
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 27 The composition of the monomer having an unsaturated vinyl group was changed to 4 parts by weight of maleic anhydride, 2 parts by weight of styrene, and 4 parts by weight of ethyl methacrylate, and styrene / (meth) acrylic acid ester / maleic anhydride modified propylene / butene /
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.4 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • An aqueous dispersion was obtained in the same manner as in Example 2 except that 5 parts by weight of the mixed resin was used. The obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.4 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Toluene was removed from the solution to obtain a styrene / (meth) acrylic acid ester / maleic anhydride copolymer.
  • Example 32 Tested by the method described in Example 1 (2) except that the amount of propylene-based resin adhered to the carbon fiber was changed to 1.0% by weight and the aqueous dispersion was changed to that obtained in Example 2. Create a piece, [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 33 Except for changing the amount of propylene-based resin attached to the carbon fiber to 20% by weight and changing the aqueous dispersion to that obtained in Example 2, the test piece was prepared by the method described in Example 1 (2). Create [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 34 [Example 34] [1. Evaluation was performed in the same manner as in Example 2 except that the carbon fiber used for the evaluation by the method described in [Method for evaluating carbon fiber treated material] was changed to the following continuous carbon fiber. The results are shown in Table 1.
  • Spinning, baking treatment, and surface acid value treatment were performed from a copolymer containing polyacrylonitrile as a main component to obtain continuous carbon fibers having a total number of single yarns of 24,000.
  • the characteristics of this continuous carbon fiber are as follows.
  • the surface oxygen concentration ratio was determined by the method described in Example 1.
  • a sample of 130 MPa or more was designated as A, 100 MPa or more and less than 130 MPa was designated as B, 70 MPa or more and less than 100 MPa was designated as C, and one less than 70 MPa was designated as D.
  • Example 36 A test piece for evaluating physical properties was prepared by the method described in Example 35 except that the aqueous dispersion obtained in Example 16 was used, and a physical property test was performed. The results are shown in Table 1.
  • Example 37 A test piece for evaluating physical properties was prepared by the method described in Example 35 except that the aqueous dispersion obtained in Example 25 was used, and a physical property test was performed. The results are shown in Table 1.
  • Example 38 Except for using the aqueous dispersion obtained in Example 26, a test piece for evaluating physical properties was prepared by the method described in Example 35, and the physical property test was performed. The results are shown in Table 1.
  • Example 39 A test piece for evaluating physical properties was prepared by the method described in Example 35 except that the aqueous dispersion obtained in Example 28 was used, and a physical property test was performed. The results are shown in Table 1.
  • Example 40 The water dispersion obtained in Example 2 was matted with 80 parts by weight of synthetic pulp SWP Y600 (manufactured by Mitsui Chemicals Co., Ltd.) and 20 parts by weight of natural pulp with a batch tester, and the solid content was 15 It impregnated by spraying with a spray so as to be part by weight.
  • a polyolefin-based nonwoven fabric was prepared by adjusting the thickness with a spacer of 1.5 mm with a hot press at 100 ° C. About the produced polyolefin-type nonwoven fabric, [3. The physical property test was performed by the method described in Evaluation method of polyolefin fiber-containing molding material]. The results are shown in Table 1.
  • Example 41 A polyolefin-based nonwoven fabric was prepared in the same manner as in Example 40 except that the aqueous dispersion obtained in Example 16 was used, and a physical property test was performed. The results are shown in Table 1.
  • Example 42 A polyolefin-based nonwoven fabric was prepared in the same manner as in Example 40 except that the aqueous dispersion obtained in Example 25 was used, and a physical property test was performed. The results are shown in Table 1.
  • Example 43 A polyolefin-based non-woven fabric was prepared in the same manner as in Example 40 except that the water dispersion obtained in Example 26 was used, and a physical property test was performed. The results are shown in Table 1.
  • Example 44 A polyolefin-based nonwoven fabric was prepared in the same manner as in Example 40 except that the aqueous dispersion obtained in Example 28 was used, and a physical property test was performed. The results are shown in Table 1.
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • a 15% aqueous potassium hydroxide solution was continuously supplied at a rate of 250 g / hour and continuously extruded at a heating temperature of 210 ° C.
  • the extruded resin mixture was cooled to 110 ° C. with a jacketed static mixer installed at the extruder port, and further poured into warm water at 80 ° C. to obtain an aqueous dispersion.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 35%, a pH of 12, and an average particle size of 0.2 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 47 A test piece for evaluating physical properties was prepared by the method described in Example 35 except that the aqueous dispersion described in Example 46 was used, and [2. The physical property test was carried out by the method described in “Evaluation method of glass fiber-containing molding material”. The results are shown in Table 1.
  • Example 48 A polyolefin-based nonwoven fabric was prepared in the same manner as in Example 40 except that the aqueous dispersion described in Example 46 was used, and [3. The physical property test was performed by the method described in Evaluation method of polyolefin fiber-containing molding material]. The results are shown in Table 1.
  • a 15% aqueous potassium hydroxide solution was continuously supplied at a rate of 250 g / hour and continuously extruded at a heating temperature of 210 ° C.
  • the extruded resin mixture was cooled to 110 ° C. with a jacketed static mixer installed at the extruder port, and further poured into warm water at 80 ° C. to obtain an aqueous dispersion.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 35%, a pH of 12, and an average particle size of 0.2 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 50 A test piece for evaluating physical properties was prepared by the method described in Example 35 except that the aqueous dispersion described in Example 49 was used, and [2. The physical property test was carried out by the method described in “Evaluation method of glass fiber-containing molding material”. The results are shown in Table 1.
  • Example 51 A polyolefin-based nonwoven fabric was prepared in the same manner as in Example 40 except that the aqueous dispersion described in Example 49 was used, and [3. The physical property test was performed by the method described in Evaluation method of polyolefin fiber-containing molding material]. The results are shown in Table 1.
  • styrene / (meth) acrylic acid ester / maleic anhydride modified propylene / butene / ethylene copolymer (A-5) (C3 66 mol%,
  • a 15% aqueous potassium hydroxide solution was continuously supplied at a rate of 250 g / hour and continuously extruded at a heating temperature of 210 ° C.
  • the extruded resin mixture was cooled to 110 ° C. with a jacketed static mixer installed at the extruder port, and further poured into warm water at 80 ° C. to obtain an aqueous dispersion.
  • the obtained aqueous dispersion had a yield of 99%, a solid content concentration of 35%, a pH of 12, and an average particle size of 0.2 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 53 A test piece for evaluating physical properties was prepared by the method described in Example 35 except that the aqueous dispersion described in Example 52 was used, and [2. The physical property test was carried out by the method described in “Evaluation method of glass fiber-containing molding material”. The results are shown in Table 1.
  • Example 54 A polyolefin-based nonwoven fabric was prepared in the same manner as in Example 40 except that the aqueous dispersion described in Example 52 was used, and [3. The physical property test was performed by the method described in Evaluation method of polyolefin fiber-containing molding material]. The results are shown in Table 1.
  • Example 1 The continuous carbon fiber bundle used in Example 1 was used as it was [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 2 The same method as in Example 2, except that 91 parts by weight of the propylene / butene / ethylene copolymer described in Example 1 was changed to 91 parts by weight of the maleic anhydride-modified propylene / ethylene polymer described in Example 1. A water dispersion was obtained. The obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 0.4 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1.
  • the physical property test was conducted by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 3 Except that the amount of the maleic anhydride-modified propylene / ethylene copolymer described in Example 1 was changed from 9 parts by weight to 5 parts by weight and the amount of potassium oleate was changed from 3 parts by weight to 2 parts by weight.
  • An aqueous dispersion was obtained in the same manner as in Example 2. The obtained aqueous dispersion had a yield of 99%, a solid content concentration of 45%, a pH of 12, and an average particle size of 5 ⁇ m (measured by Microtrac).
  • a test piece was prepared by the method described in (2) of Example 1, and [1.
  • the physical property test was conducted by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • a test piece was prepared by the method described in (2) of Example 1, and [1. Evaluation was performed by the method described in “Method for evaluating carbon fiber treated material”. The results are shown in Table 1.
  • Example 5 A test piece for evaluating physical properties was prepared by the method described in Example 35 except that the aqueous dispersion described in Comparative Example 2 was used, and the physical property test was performed. The results are shown in Table 1.
  • Example 6 A test piece for evaluating physical properties was prepared by the method described in Example 35 except that the aqueous dispersion described in Comparative Example 3 was used, and a physical property test was performed. The results are shown in Table 1.
  • Example 7 A test piece for evaluating physical properties was prepared by the method described in Example 35 except that the aqueous dispersion described in Comparative Example 4 was used, and the physical property test was performed. The results are shown in Table 1.
  • Example 8 A polyolefin-based nonwoven fabric was prepared in the same manner as in Example 40 except that the aqueous dispersion described in Comparative Example 2 was used, and a physical property test was performed. The results are shown in Table 1.
  • Example 9 A polyolefin-based nonwoven fabric was prepared in the same manner as in Example 40 except that the aqueous dispersion described in Comparative Example 3 was used, and a physical property test was performed. The results are shown in Table 1.
  • Example 10 A polyolefin-based nonwoven fabric was prepared in the same manner as in Example 40 except that the aqueous dispersion described in Comparative Example 4 was used, and a physical property test was performed. The results are shown in Table 1.

Abstract

[課題]本発明は、繊維の集束性に優れ、かつ繊維とマトリックス樹脂との密着性を向上させる繊維処理用水分散体を提供する。 [解決手段]本発明の繊維処理用水分散体は、特定の(A)第1のプロピレン系樹脂、特定の(B)第2のプロピレン系樹脂、(C)アニオン型および/またはノニオン型界面活性剤、ならびに(D)水を、特定の量比の範囲で含有し、前記(A)および前記(B)に由来する樹脂固形分が水に分散した炭素繊維処理用水分散体であって、前記(A)の重量平均分子量Mw(a)と前記(B)の重量平均分子量Mw(b)とが異なり、かつMw(a)の方がMw(b)より大きく、前記樹脂固形分の平均粒子径が0.03~3μmであることを特徴とする。

Description

繊維処理用水分散体
 本発明は、繊維処理用水分散体に関する。詳細には、ガラス繊維、炭素繊維、アルミナ繊維、セラミック繊維またはボロン繊維等の繊維を処理するために用いられる水分散体、また、ポリオレフィン繊維、ABS繊維、ナイロン繊維、ポリエステル繊維等の繊維を処理するために用いられる水分散体に関する。
 従来から、繊維は溶融紡糸した後、繊維束として集束剤によって処理している。一般的に使用される集束剤としては、デンプン水溶液、パラフィンワックス、植物油等のエマルジョンが使用されている。また、樹脂補強用に繊維が用いられる場合には、マトリックス樹脂と繊維との密着性を向上させるために、繊維をシランカップリング剤、ウレタン、エポキシ、アクリルエマルジョン等で処理している。
 しかし、特にマトリックス樹脂がポリオレフィンの場合には、上記エマルジョンで処理した繊維ではマトリックス樹脂との間の密着性が不十分であり、繊維強化樹脂の強度が向上せず、さらに好適なエマルジョンの出現が望まれている。
 ところで、特許文献1には、不飽和ジカルボン酸で変性されたポリプロピレン系樹脂またはその塩を必須成分とする水性エマルジョンが、特許文献2には、2種の酸変性プロピレン系樹脂からなる水系サスペンジョンが記載されている。しかし、これらの繊維用集束剤は主鎖に極性基を有する為、繊維表面とマトリックス樹脂の双方に十分な密着を発現せず、繊維束の取扱い性も十分ではなかった。
 また、特許文献3には、パルプ繊維40~95重量%と繊維状または粒形状の熱可塑性樹脂5~60重量%からなる層を有する積層マットであって、且つ前記複合繊維の低融点成分の融点および熱可塑性樹脂の融点より高く複合繊維の高融点成分の融点よりも低い温度で前記積層マットが熱処理され、各層内及び層間の繊維間が結合された3層一体構造の積層乾式不織布が記載されている。しかし上記公報には、熱処理工程があり、用いられる樹脂に制限がある。
特開平6-107442号公報 国際公開第2006-101269号パンフレット 特開昭56-91052号公報
 本発明は、上記問題点を改良したものであって、繊維の集束性に優れ、かつ繊維とマトリックス樹脂との密着性を向上させる繊維処理用水分散体と、低温での熱処理による各種繊維同士の結着性に優れ、かつ繊維の柔軟性に優れた繊維処理用水分散体を提供することを目的とする。
 本発明者らは、上記課題について鋭意研究した結果、特定の第1のプロピレン系樹脂と、重合体鎖に結合したカルボン酸塩の基を少なくとも含む第2のプロピレン系樹脂と、アニオン型および/またはノニオン型界面活性剤と、水とを含む繊維処理用水分散体が、繊維の集束性に優れ、かつ繊維とマトリックス樹脂との密着性を向上させることを見出し、本発明を完成させた。
 すなわち、本発明は、たとえば以下の[1]から[20]に関する。
 [1](A)オレフィン成分のプロピレンから導かれる構成単位が50~99モル%である第1のプロピレン系樹脂、
(B)重合体鎖に結合したカルボン酸塩を少なくとも含むプロピレン系樹脂であって、樹脂1グラム当り、式(1)
Figure JPOXMLDOC01-appb-C000004
で表される基換算を総量0.05~5ミリモル当量の濃度で含む第2のプロピレン系樹脂、
(C)アニオン型および/またはノニオン型界面活性剤、ならびに
(D)水を含有し、
(A)および(B)に由来する樹脂固形分が水に分散した繊維処理用水分散体であって、
(A)100重量部に対して、(B)0.3~45重量部と、(C)0.5~40重量部とを含有し、水分含有量が3~90重量%であり、
(A)の重量平均分子量(以下「Mw(a)」とも記す。)と(B)の重量平均分子量(以下「Mw(b)」とも記す。)とが異なり、かつMw(a)の方がMw(b)より大きく、(A)および(B)に由来する樹脂固形分の平均粒子径が0.03~3μmであることを特徴とする繊維処理用水分散体。
 [2]前記(A)が実質的に未変性のプロピレン系樹脂であることを特徴とする[1]に記載の繊維処理用水分散体。
 [3]前記(A)が、MI(メルトインデックス:230℃)が50以上のプロピレン系樹脂(A-1)を含むことを特徴とする[2]に記載の繊維処理用水分散体。
 [4]前記(A-1)が、重量平均分子量Mwが30,000以上150,000未満であることを特徴とする[3]に記載の繊維処理用水分散体。
 [5]前記(A)が、前記(A-1)と、重量平均分子量Mwが150,000以上500,000以下であり、かつオレフィン成分のプロピレンから導かれる構成単位が50~99モル%であるプロピレン系樹脂(A-2)とを含むことを特徴とする[3]または[4]に記載の繊維処理用水分散体。
 [6]前記(A-1)と前記(A-2)との重量比〔(A-1):(A-2)〕が、100:0~30:70であることを特徴とする[5]に記載の繊維処理用水分散体。
 [7]前記(B)が、重量平均分子量Mwが1,000~50,000であり、かつオレフィン成分のプロピレンから導かれる構成単位が50~100モル%であることを特徴とする[2]~[6]のいずれか1項に記載の繊維処理用水分散体。
 [8]前記(A)が、MI(メルトインデックス:230℃)が50以上のプロピレン系樹脂(A-1)を含むことを特徴とする[1]に記載の繊維処理用水分散体。
 [9]前記(A-1)が、重量平均分子量Mwが30,000以上150,000未満であることを特徴とする[8]に記載の繊維処理用水分散体。
 [10]前記(A)が、前記(A-1)と、重量平均分子量Mwが150,000以上500,000以下であり、かつオレフィン成分のプロピレンから導かれる構成単位が50~99モル%であるプロピレン系樹脂(A-2)とを含むことを特徴とする[8]または[9]に記載の繊維処理用水分散体。
 [11]前記(A-1)と前記(A-2)との重量比〔(A-1):(A-2)〕が、100:0~30:70であることを特徴とする[10]に記載の繊維処理用水分散体。
 [12]前記(B)が、重量平均分子量Mwが1,000~50,000であり、かつオレフィン成分のプロピレンから導かれる構成単位が50~100モル%であることを特徴とする[8]~[11]のいずれか1項に記載の繊維処理用水分散体。
 [13]前記(A-1)が、重量平均分子量Mwが50,000を超えて150,000未満であり、重合体鎖に結合したカルボン酸塩を少なくとも含み、オレフィン成分のプロピレンから導かれる構成単位が50~99モル%であるプロピレン系樹脂であって、樹脂1グラム当り、式(1)
Figure JPOXMLDOC01-appb-C000005
で表される基換算を総量0.05~5ミリモル当量の濃度で含むプロピレン系樹脂(A-3)であることを特徴とする[8]~[12]のいずれか1項に記載の繊維処理用水分散体。
 [14]前記(A-2)が、重量平均分子量Mwが150,000以上500,000以下であり、重合体鎖に結合したカルボン酸塩を少なくとも含み、オレフィン成分のプロピレンから導かれる構成単位が50~99モル%であるプロピレン系樹脂であって、樹脂1グラム当り、式(1)
Figure JPOXMLDOC01-appb-C000006
で表される基換算を総量0.05~5ミリモル当量の濃度で含むプロピレン系樹脂(A-4)であることを特徴とする[10]~[13]のいずれか1項に記載の繊維処理用水分散体。
 [15]前記(B)が、オレフィン以外の不飽和ビニル基で変性された重合体をさらに含むプロピレン系樹脂(B-1)であることを特徴とする[1]~[14]のいずれか1項に記載の繊維処理用水分散体。
 [16]前記(A-3)が、オレフィン以外の不飽和ビニル基で変性された重合体をさらに含むプロピレン系樹脂(A-5)であることを特徴とする[13]に記載の繊維処理用水分散体。
 [17]前記(A-4)が、オレフィン以外の不飽和ビニル基で変性された重合体をさらに含むプロピレン系樹脂(A-6)であることを特徴とする[14]に記載の繊維処理用水分散体。
 [18]炭素繊維処理用であることを特徴とする[1]~[17]のいずれか1項に記載の繊維処理用水分散体。
 [19]ガラス繊維処理用であることを特徴とする[1]~[17]のいずれか1項に記載の繊維処理用水分散体。
 [20]ポリオレフィン繊維処理用であることを特徴とする[1]~[17]のいずれか1項に記載の繊維処理用水分散体。
 本発明の繊維処理用水分散体によれば、繊維の集束性に優れ、かつ繊維とマトリックス樹脂との密着性を向上させることができる。その結果、取扱い性に優れ、機械的強度に優れた繊維強化樹脂を得ることができる。また、低温の熱処理による繊維同士の結着性に優れるため、繊維の柔軟性に優れた樹脂を得ることができる。
図1は擦過毛羽数評価方法に用いられる糸道の概略図である。
 以下に本発明の詳細を説明する。
 本発明の繊維処理用水分散体は、(A)オレフィン成分のプロピレンから導かれる構成単位が50~99モル%である第1のプロピレン系樹脂、(B)重合体鎖に結合したカルボン酸塩を少なくとも含むプロピレン系樹脂であって、樹脂1グラム当り、式(1)
Figure JPOXMLDOC01-appb-C000007
で表される基を総量0.05~5ミリモル当量の濃度で含む第2のプロピレン系樹脂、(C)アニオン型および/またはノニオン型界面活性剤、ならびに(D)水を含有している。
 本発明の繊維処理用水分散体は、前記各成分を特定の量比の範囲で含有する。すなわち、上記(A)100重量部に対して、上記(B)の量は、極性材料との密着の点で0.3~45重量部であり、0.5~40重量部が好ましく、さらに好ましくは0.7~35重量部である。また、上記(C)の量は、水への分散性の点から0.5~40重量部であり、0.8~30重量部が好ましく、さらに好ましくは1~20重量部である。また、(D)水の含有量は、当該水分散体中、3~90重量%である。
 また、前記(A)の重量平均分子量(以下「Mw(a)」とも記す。)と前記(B)の重量平均分子量(以下「Mw(b)」とも記す。)とが異なり、かつMw(a)の方がMw(b)より大きい。Mw(a)とMw(b)との差(Mw(a)-Mw(b))は1,000以上であることが好ましく、3,000以上であることがより好ましく、5,000以上であることがさらに好ましい。このようにMw(a)の方がMw(b)より大きいと、繊維との密着に寄与する上記(B)が繊維表面に移動しやすくなる。
 また、本発明の繊維処理用水分散体は、上記(A)および上記(B)に由来する樹脂固形分が水に分散した繊維処理用水分散体である。上記(A)および上記(B)に由来する樹脂固形分の平均粒子径は0.03~3μmであり、好ましくは0.05~2μmであり、より好ましくは0.08~1μmである。該平均粒子径が前記範囲内であると、繊維への密着の点で好ましい。
 以下、上記各成分について説明する。
 [(A)オレフィン成分のプロピレンから導かれる構成単位が50~99モル%である第1のプロピレン系樹脂]
 本発明に用いられる(A)オレフィン成分のプロピレンから導かれる構成単位が50~99モル%である第1のプロピレン系樹脂としては、プロピレンと少なくとも1種のα-オレフィンとの共重合体が挙げられる。α-オレフィンの含有量は、成形時の炭素繊維分散性の観点から、通常、1~50モル%で、好ましくは3~50モル%で、さらに好ましくは5~45モル%である。α-オレフィンの具体例としては、エチレン、1-ブテン、3-メチル-1-ブテン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン等のプロピレンを除く炭素数2~12のα-オレフィンが挙げられる。中でも、マトリックス樹脂に用いられるポリプロピレンとの相溶性、第2のプロピレン系樹脂(B)との相溶性の観点から、エチレン・プロピレン共重合体、プロピレン・1-ブテン共重合体、エチレン・プロピレン・1-ブテン共重合体などが好適なものとして挙げられる。
 上記(A)の中でも、その重量平均分子量(以下、Mwとも略記する。)が、30,000~500,000の範囲であることが好ましく、35,000~450,000の範囲であることが好ましい。なお、本発明において、重量平均分子量Mwは、例えば、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準として測定可能である。
 上記(A)は、重合体鎖に結合したカルボン酸塩を含んでもよく、さらにオレフィン以外の不飽和ビニル基を含んでもよい。また、上記(A)は変性されていても、実質的に未変性のポリピレン系樹脂であってもよい。ここで、実質的に未変性とは、全く変性されていないか、あるいは、変性されたとしても変性量が極微量であることを意味する。極微量とは、例えば、COO基換算で0.01ミリモル当量未満であることを意味する。好ましくは0.005ミリモル当量以下、より好ましくは0.001ミリモル当量以下である。
 上記(A)は、MI(メルトインデックス:230℃)(以下単に「MI」とも記す。):50以上のプロピレン系樹脂(A-1)からなることが好ましい。さらに、前記(A)は、重量平均分子量Mw:30,000以上150,000未満であり、MI:50以上であり、かつプロピレンから導かれる構成単位:50~99モル%であるプロピレン系樹脂(A-1)からなるか、または該プロピレン系樹脂(A-1)と、重量平均分子量Mw:150,000以上500,000以下であり、かつプロピレンから導かれる構成単位50~99モル%であるプロピレン系樹脂(A-2)との混合物からなることが好ましい。(A-1):(A-2)としては、100:0~30:70であることが好ましく100:0~35:65であることがより好ましい。なお、本発明において、上記(A)が、プロピレン系樹脂(A-1)とプロピレン系樹脂(A-2)との混合物の場合、上記(A)の重量平均分子量Mwは、各プロピレン系樹脂の重量平均分子量Mwの相加平均とする。
 上記(A-1)は、重量平均分子量Mw(GPC)が30,000以上150,000未満、MI(メルトインデックス:230℃)が50以上、プロピレンから導かれる単位が50~99モル%である。Mwはより好ましくは35,000~140,000であり、MIはより好ましくは60以上1,000未満であり、70以上900未満がさらに好ましい。プロピレンから導かれる単位は好ましくは55~97モル%、より好ましくは55~95モル%である。これらの範囲であると、成形時に繊維の分散性が向上する点、バインダー用途では繊維の結着および柔軟性が向上する点、得られる成型材の機械的強度が向上する点で好ましい。特に、MIが低いと繊維表面での樹脂の造膜性(被覆性)が低下する傾向にあり、また、成形時の繊維の分散性が低下し、成形材の機械的強度が低下する。なお、MI(メルトインデックス:230℃)が50以上のプロピレン系樹脂としては、分子量分布(Mw/Mn)が2.5以上であるものが好ましい。該分子量分布(Mw/Mn)の上限は、特に制限はないが、好ましくは50以下、さらに好ましくは30以下である。
 上記(A-1)は、重量平均分子量Mwが50,000を超えて150,000未満であり、重合体鎖に結合したカルボン酸塩を少なくとも含むプロピレン系樹脂であって、樹脂1グラム当り、上記式(1)で表される基を総量0.05~5ミリモル当量の濃度で含むプロピレン系樹脂(A-3)であってもよく、さらにオレフィン以外の不飽和ビニル基で変性された重合体を含むプロピレン系樹脂(A-5)でもよい。プロピレン系樹脂(A-5)において、オレフィン以外の不飽和ビニル基で変性された重合体の含有量は、プロピレン系樹脂(A-5)100重量部に対して、0.1~50重量部であることが好ましい。
 上記(A-2)は、重量平均分子量Mwが150,000以上500,000以下でありプロピレンから導かれる単位が50~99モル%で、好ましくは50~97モル%、より好ましくは50~95モル%である。Mwは好ましくは150,000~450,000である。これらの範囲にあると、繊維表面とマトリックス樹脂の密着強度が向上する点で好ましい。上記(A-2)は、重合体鎖に結合したカルボン酸塩を少なくとも含むプロピレン系樹脂であって、樹脂1グラム当り、上記式(1)で表される基を総量0.05~5ミリモル当量の濃度で含むプロピレン系樹脂(A-4)であってもよく、さらにオレフィン以外の不飽和ビニル基で変性された重合体を含むプロピレン系樹脂(A-6)でもよい。オレフィン以外の不飽和ビニル基で変性された重合体の含有量は、プロピレン系樹脂(A-6)100重量部に対して、0.1~50重量部であることが好ましい。
 上記(A-3)および上記(A-4)の原料は、種々の方法で得ることできるが、例えば、有機溶剤中でプロピレン系樹脂と不飽和ビニル基を有するエチレン系不飽和カルボン酸とを重合開始剤の存在下で反応させた後に脱溶剤する方法や、プロピレン系樹脂を加熱溶融し得られた溶融物に不飽和ビニル基を有するカルボン酸および重合開始剤を攪拌下で反応させる方法や、プロピレン系樹脂と不飽和ビニル基を有するカルボン酸と重合開始剤とを混合したものを押出機に供給して加熱混練しながら反応させる方法等挙げることができる。
 エチレン系不飽和カルボン酸としては、(メタ)アクリル酸、マレイン酸、フマール酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸などが例示され、その無水物としては、ナジック酸TM(エンドシス-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボン酸)、無水マレイン酸、無水シトラコン酸などが例示できる。これらの単量体は単独で用いることもできるし、また2種類以上のものを用いることもできる。また、これらの中でも、酸無水物類が好ましく、さらには無水マレイン酸が好ましい。
 ここで有機溶剤としては、キシレン、トルエン、エチルベンゼン等の芳香族炭化水素、ヘキサン、ヘプタン、オクタン、デカン、イソオクタン、イソデカン等の脂肪族炭化水素、シクロヘキサン、シクロヘキセン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素、酢酸エチル、n-酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、3メトキシブチルアセテート等のエステル系溶媒、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒等の有機溶剤を用いることができ、またこれらの2種以上からなる混合物であっても構わない。これらの中でも、芳香族炭化水素、脂肪族炭化水素、及び脂環式炭化水素が好ましく、脂肪族炭化水素、脂環式炭化水素がより好適に用いられる。
 上記(A-3)および上記(A-4)は、上記(A-3)および上記(A-4)の原料を、水分散体の製造の際に、中和又はケン化することにより得ることができる。水分散体の製造の際に、中和又はケン化に用いる塩基性物質としては、ナトリウム、カリウム、リチウム、カルシウム、マグネシウム、亜鉛等のアルカリ金属および/またはアルカリ土類金属および/またはその他金属類、ヒドロキシルアミン、水酸化アンモニウム等の無機アミン、アンモニア、(トリ)メチルアミン、(トリ)エタノールアミン、(トリ)エチルアミン、ジメチルエタノールアミン、モルフォリン等の有機アミン、酸化ナトリウム、過酸化ナトリウム、アルカリ金属および/またはアルカリ土類金属の酸化物および/またはその他金属類、水酸化物、水素化物、炭酸ナトリウム等のアルカリ金属および/またはアルカリ土類金属および/またはその他金属類の弱酸塩を挙げることができる。
 塩基物質により中和又はケン化されたカルボン酸塩の基あるいはカルボン酸エステル基としては、カルボン酸ナトリウム、カルボン酸カリウム等のカルボン酸アルカリ金属塩又はカルボン酸アンモニウムが好適である。
 また、中和度又はけん化度は、水分散体の安定性と、繊維との密着性の観点より、通常50~100%、好ましくは70~100%、更に好ましくは85~100%である。
 したがって、上記(A-3)および上記(A-4)におけるカルボン酸基は、上記塩基物質によりすべて中和又はケン化されていることが望ましいが、中和又はケン化されずに一部カルボン酸基が残存していてもよい。
 本発明に用いる重合開始剤としては、ベンゾイルパーオキサイド、ジクロルベンゾイルパーオキサイド、ジクミルパーオキサイド、ジ-tert-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(ペルオキシベンゾエート)ヘキシン-3、1,4-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン等が挙げられる。これらは、単独あるいは2種以上を混合して用いることができる。
 上記(A-5)および上記(A-6)は、種々の方法で得ることできるが、例えば、有機溶剤中でプロピレン系樹脂と不飽和ビニル基を有するエチレン系不飽和カルボン酸を重合開始剤の存在下で反応させた後に、さらにオレフィン以外の不飽和ビニル基を有する単量体を重合開始剤存在下で反応させた後に脱溶剤する方法や、有機溶剤中でプロピレン系樹脂と不飽和ビニル基を有するエチレン系不飽和カルボン酸、オレフィン以外の不飽和ビニル基を有する単量体を重合開始剤存在下で反応させた後に脱溶剤する方法や、有機溶剤中でプロピレン系樹脂と不飽和ビニル基を有するエチレン系不飽和カルボン酸、オレフィン以外の不飽和ビニル基を有する単量体の重合体を重合開始剤存在下で反応させた後に脱溶剤する方法や、プロピレン系樹脂を加熱溶融し得られた溶融物に不飽和ビニル基を有するカルボン酸および重合開始剤を攪拌下で反応させ、さらにオレフィン以外の不飽和ビニル基を有する単量体を重合開始剤の存在下で反応させる方法や、プロピレン系樹脂を加熱溶融し得られた溶融物に不飽和ビニル基を有するカルボン酸、オレフィン以外の不飽和ビニル基を有する単量体および重合開始剤の存在下で反応させる方法や、プロピレン系樹脂を加熱溶融し得られた溶融物に不飽和ビニル基を有するカルボン酸、オレフィン以外の不飽和ビニル基を有する単量体の共重合体を重合開始剤の存在下で反応させる方法や、プロピレン系樹脂を加熱溶融し得られた溶融物に不飽和ビニル基を有するカルボン酸、オレフィン以外の不飽和ビニル基を有する単量体の重合体および重合開始剤の存在下で反応させる方法や、プロピレン系樹脂と不飽和ビニル基を有するカルボン酸と重合開始剤を混合したものを押出機に供給して加熱混練しながら反応させ、これにオレフィン以外の不飽和ビニル基を有する単量体と重合開始剤を混合したものを押出機に供給して加熱混練しながら反応させる方法や、プロピレン系樹脂と不飽和ビニル基を有するカルボン酸、オレフィン以外の不飽和ビニル基を有する単量体と重合開始剤を混合したものを押出機に供給して加熱混練しながら反応させる方法や、プロピレン系樹脂と不飽和ビニル基を有するカルボン酸、オレフィン以外の不飽和ビニル基を有する単量体の重合体と重合開始剤を混合したものを押出機に供給して加熱混練しながら反応させる方法等を挙げることができる。
 本発明に用いるオレフィン以外の不飽和ビニル基を有する単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ラウロイル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、イソボロニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等の(メタ)アクリル酸エステル類、ヒドロキシエチルアクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチルアクリレート、ラクトン変性ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート等の水酸基含有ビニル類、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート等のエポキシ基含有ビニル類、ビニルイソシアナート、イソプロペニルイソシアナート等のイソシアナート基含有ビニル類、スチレン、α-メチルスチレン、ビニルトルエン、t-ブチルスチレン等の芳香族ビニル類、アクリルアミド、メタクリルアミド、N-メチロールメタクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド、マレイン酸アミド等のアミド類、酢酸ビニル、プロピオン酸ビニル等のビニルエステル類、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタアクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジプロピルアミノエチル(メタ)アクリレート、N,N-ジブチルアミノエチル(メタ)アクリレート、N,N-ジヒドロキシエチルアミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレート類、スチレンスルホン酸、スチレンスルホン酸ソーダ、2-アクリルアミド-2-メチルプロパンスルホン酸等の不飽和スルホン酸類、モノ(2-メタクリロイロキシエチル)アシッドホスフェート、モノ(2-アクリロイロキシエチル)アシッドホスフェート等の不飽和リン酸類等が挙げられる。これらは、単独あるいは2種以上を混合して用いることができる。こられのオレフィン以外の不飽和ビニル基を有する単量体を用いて、オレフィン以外の不飽和ビニル基で変性された重合体が得られる。
 また、上記(A-1)、上記(A-3)、上記(A-5)を、(A-1)系樹脂とし、上記(A-2)、上記(A-4)、上記(A-6)を、(A-2)系樹脂とした場合、上記(A)としては、(A-1)系樹脂単独であってもよく、(A-1)系樹脂と(A-2)系樹脂との混合物であってもよい。また、(A-1)系樹脂としては、上記(A-3)であってもよく、上記(A-5)であってもよく、また、(A-1)と(A-3)との混合物であってもよく、(A-1)と(A-5)との混合物であってもよく、(A-3)と(A-5)との混合物であってもよく、さらに(A-1)と(A-3)と(A-5)との混合物であってもよい。また、(A-2)系樹脂としては、上記(A-4)であってもよく、上記(A-6)であってもよく、また、(A-2)と(A-4)との混合物であってもよく、(A-2)と(A-6)との混合物であってもよく、(A-4)と(A-6)との混合物であってもよく、さらに(A-2)と(A-4)と(A-6)との混合物であってもよい。(A-1)系樹脂と(A-2)系樹脂とを併用する場合の割合は、成形時に繊維の分散性と成形材の物性が向上する点、バインダー用途では繊維の結着および柔軟性が向上する点、成形材の機械的強度が向上する点から、(A-1)系樹脂:(A-2)系樹脂が、100:0~30:70であることが好ましく、100:0~35:65であることがより好ましい。
 [(B)第2のプロピレン系樹脂]
 本発明で用いられる(B)第2のプロピレン系樹脂とは、重合体鎖に結合したカルボン酸塩を少なくとも含むプロピレン系樹脂であって、樹脂1グラム当り、式(1)
Figure JPOXMLDOC01-appb-C000008
で表される基を総量0.05~5ミリモル当量の濃度で含むプロピレン系樹脂である。
 上記(B)の原料としては、ポリプロピレン、エチレン・プロピレン共重合体、プロピレン・1-ブテン共重合体、エチレン・プロピレン・1-ブテン共重合体で代表される、プロピレンとα-オレフィンの単独または2種類以上との共重合体に、中和されているか中和されていないカルボン酸基を有する単量体、および/又はケン化されているかケン化されていないカルボン酸エステルを有する単量体を、グラフト重合することにより得ることができる。
 中和されているか中和されていないカルボン酸基を有する単量体、およびケン化されているかケン化されていないカルボン酸エステル基を有する単量体としては、たとえば、エチレン系不飽和カルボン酸、その無水物が挙げられ、またこれらのエステルなども挙げられる。
 上記(B)の樹脂1グラム当り、式(1)
Figure JPOXMLDOC01-appb-C000009
で表される基の総量は0.05~5ミリモル当量であり、好ましくは0.1~4ミリモル当量で、さらに好ましくは0.3~3ミリモル当量である。
 エチレン系不飽和カルボン酸としては、(メタ)アクリル酸、マレイン酸、フマール酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸などが、その無水物としてはナジック酸TM(エンドシス-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボン酸)、無水マレイン酸、無水シトラコン酸などが、不飽和カルボン酸エステルとしては上記エチレン系不飽和カルボン酸のメチル、エチルもしくはプロピルなどのモノエステル又はジエステルなどが例示できる。これらの単量体は単独で用いることもできるし、また2種類以上のものを用いることもできる。また、これらの中でも、酸無水物類が好ましく、さらには無水マレイン酸が好ましい。
 上記(B)は、上記(B)の原料を、水分散体の製造の際に、中和又はケン化することにより得ることができる。上記(B)は、上記(A-3)と同様の方法で得ることできる。
 ここで用いられる上記(B)は、重量平均分子量Mw:1,000以上50,000未満、好ましくは1,200以上48,000未満であり、かつ第1のプロピレン系樹脂(A)との相溶性の観点より、プロピレンから導かれる構成単位は通常、50~100モル%、好ましくは70~100モル%、更に好ましくは85~100モル%であるプロピレン系樹脂(B)からなる。これらのプロピレン系樹脂は、単独または2種類以上のものを用いてよく、Mwの異なるものを併用することもできる。上記(B)のMwの範囲は、成形時に上記(B)が繊維の表面に移動しやすく、かつ上記(A)と分子同士が絡み合いを生じるのに最適な範囲である。
 但し、ここで上記(B)の重量平均分子量Mw(b)は上記(A)の重量平均分子量Mw(a)と異なり、かつMw(a)の方がMw(b)より大きい。
 また、上記(B)に、オレフィン以外の不飽和ビニル基で変性された重合体を含むプロピレン系樹脂(B-1)でもよい。オレフィン以外の不飽和ビニル基で変性された重合体の含有量は、プロピレン系樹脂(B-1)100重量部に対して、0.1~50重量部であることが好ましい。上記(B-1)は、上記(A-5)と同様の方法で得ることできる。
 [(C)アニオン型および/またはノニオン型界面活性剤]
 本発明に用いられる、アニオン型界面活性剤、ノニオン型界面活性剤は、限定なく公知のものが用いられる。
 アニオン型界面活性剤としては、公知のものを用いることができるが、例えば、第一級高級脂肪酸塩、第二級高級脂肪酸塩、第一級高級アルコール硫酸エステル塩、第二級高級アルコール硫酸エステル塩、第一級高級アルキルスルホン酸塩、第二級高級アルキルスルホン酸塩、高級アルキルジスルホン酸塩、スルホン化高級脂肪酸塩、高級脂肪酸硫酸エステル塩、高級脂肪酸硫酸エステルスルホン酸塩、高級アルコールエーテルの硫酸スルホン酸塩、高級アルコールエーテルのスルホン酸塩、高級脂肪酸アミドのアルキロール化硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルフェノールスルホン酸塩、アルキルナフタリンスルホン酸塩、アルキルベンゾイミダゾールスルホン酸塩等が挙げられる。
 これらのアニオン型界面活性剤の中で特に好適なものとしては、高級脂肪酸塩、特に炭素原子数が10~20の飽和または不飽和の高級脂肪酸のアルカリ金属塩を挙げることができ、カプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マーガリン酸、ステアリン酸、アラキン酸等の飽和脂肪酸、リンデン酸、ツズ酸、ペトロセリン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸、或いはこれらのアルカリ金属塩もしくはその混合物を挙げることができる。
 ノニオン型界面活性剤としては、公知のものを用いることができるが、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン脂肪酸アミドエーテル、多価アルコール脂肪酸エステル、ポリオキシエチレン多価アルコール脂肪酸エステル、脂肪酸ショ糖エステル、アルキロールアミド、ポリオキシアルキレンブロックコポリマー等を挙げることができる。
 界面活性剤としては、アニオン型界面活性剤、ノニオン型界面活性剤をそれぞれ単独で使用することができるし、2種類以上のものを併用することもできる。
 [繊維処理用水分散体の製造方法]
 本発明の繊維処理用水分散体の製造方法において、上記(A)~(C)成分を水に分散する方法は、例えば、特公平7-008933号報、特公平7-096647号報、特公平5-039975号報等に開示されている。
 水分散体の製造の際に、中和及びケン化に用いる塩基性物質としては、ナトリウム、カリウム、リチウム、カルシウム、マグネシウム、亜鉛等のアルカリ金属および/またはアルカリ土類金属および/またはその他金属類、ヒドロキシルアミン、水酸化アンモニウム等の無機アミン、アンモニア、(トリ)メチルアミン、(トリ)エタノールアミン、(トリ)エチルアミン、ジメチルエタノールアミン、モルフォリン等の有機アミン、酸化ナトリウム、過酸化ナトリウム、アルカリ金属および/またはアルカリ土類金属の酸化物および/またはその他金属類、水酸化物、水素化物、炭酸ナトリウム等のアルカリ金属および/またはアルカリ土類金属および/またはその他金属類の弱酸塩を挙げることができる。
 塩基物質により中和又はケン化されたカルボン酸基あるいはカルボン酸エステル基としては、カルボン酸ナトリウム、カルボン酸カリウム等のカルボン酸アルカリ金属塩又はカルボン酸アンモニウムが好適である。
 また、中和度又はけん化度は、水分散体の安定性と、繊維との密着性の観点より、通常50~100%、好ましくは70~100%、更に好ましくは85~100%である。
 上記で得られた本発明の繊維処理用水分散体は、必要に応じて、アゾ顔料およびフタロシアニンブルー等の有機顔料;アゾ染料およびアントラキノン系染料等の染料;酸化アルミニウム、炭酸カルシウム、水酸化カルシウム、水酸化マグネシウム、シリカおよびチタン酸バリウム等の無機薬品等のバインダー樹脂;酸化チタン、モリブデンおよびカーボンブラック等の無機顔料等の着色剤等の成分を含有させることができる。
 上記で得られた本発明の繊維処理用水分散体は、さらに酸化防止剤、耐候安定剤および耐熱安定剤等の各種安定剤;消泡剤、増粘剤、分散剤、界面活性剤、防カビ剤、抗菌剤、防腐剤、触媒、充填剤、ワックス、ブロッキング防止剤、可塑剤、レベリング剤等の成分を含有させることができる。特に、本発明の繊維処理用水分散体を繊維処理する際に温度がかかる工程を含む場合や、処理したものを成形やする際に熱がかかる工程を含む場合は、酸化防止剤や耐熱安定剤等を用いる事が好ましい。特に、加工、長期安定性の点から、フェノール系酸化防止剤とリン系加工安定剤を併用して用いる事が好ましい。添加量としては、樹脂に対して5%以下が好ましく、さらには2%以下が好ましい。
 本発明の繊維処理用水分散体は、繊維処理剤として用いることができ、繊維強化樹脂に配合、繊維の結着として使用することができる。
 本発明の繊維処理用水分散体からなる繊維処理剤で処理の対象となる繊維は特に限定されるものではないが、ガラス繊維、炭素繊維、アルミナ繊維、セラミック繊維、岩石繊維、スラッグ繊維、金属繊維など、従来樹脂補強用材料として知られている無機繊維に広く用いることができる。上記無機繊維の中でも炭素繊維、ガラス繊維が好ましい。
 炭素繊維としては、X線光電子分光法により測定される繊維表面の酸素(O)と炭素(C)の原子数の比である表面酸素濃度比[O/C]が0.05~0.5であるものが好ましく、より好ましくは0.08~0.4であり、さらに好ましくは0.1~0.3である。表面酸素濃度比が0.05以上であることにより、炭素繊維表面の官能基量が確保でき、熱可塑性樹脂とより強固な接着を得る事ができる。また、表面酸素濃度比の上限には特に制限はないが、炭素繊維の取扱い性、生産性のバランスから一般的に0.5以下とすることが例示できる。
 炭素繊維の表面酸素濃度比は、X線光電子分光法により、次の手順に従って求めるものである。まず、溶剤で炭素繊維表面に付着しているサイジング剤などを除去した炭素繊維束を20mmにカットして、銅製の試料支持台に広げて並べた後、X線源としてAlKα1、2を用い、試料チャンバー中を1×108Torrに保った。測定時の帯電に伴うピークの補正値としてC1sの主ピークの運動エネルギー値(K.E.)を1202eVに合せる。C1sピーク面積をK.E.として1191~1205eVの範囲で直線のベースラインを引く事により求める。O1sピーク面積をK.E.として947~959eVの範囲で直線のベースラインを引く事により求める。
 ここで、表面酸素濃度比とは、上記O1sピーク面積とC1sピーク面積との比から装置固有の感度補正値を用いて原子数比として算出する。X線光電子分光法装置として、国際電気社製モデルES-200を用い、感度補正値を1.74とする。
 表面酸素濃度比[O/C]が0.05~0.5に制御する手段としては、特に限定されるものではないが、例えば、電解酸化処理、薬液酸化処理および気相酸化処理などの手法をとる事ができ、中でも電解酸化処理が好ましい。
 また、強化繊維の平均繊維径は特に限定されないが、得られる成形品の力学特性と表面外観の観点から、1~20μmの範囲内であることが好ましく、3~15μmの範囲内であることがより好ましい。強化繊維束の単糸数には特に制限はなく、100~350,000本の範囲内で使用することができ、とりわけ、1,000~250,000本の範囲で使用することが好ましい。また、強化繊維の生産性の観点からは、単糸数が多いものが好ましく、20,000~100,000本の範囲内で使用することが好ましい。
 また、その他、ポリオレフィン繊維、ナイロン繊維、ビニロン繊維、アクリル繊維、ポリエステル繊維、ポリウレタン繊維などの繊維の結着剤として広く用いることができる。上記繊維の中でも、ポリオレフィン繊維が好ましく、具体的にはエチレン系繊維、プロピレン系繊維等が挙げられる。
 上記繊維処理剤で繊維を処理する方法としては、浸漬法、スプレー法、ローラーコート法等の方法で、前記処理剤を繊維に付着させ、次いで50~300℃で1分~10時間程度乾燥する方法などがあるが、特に限定されるものではない。また、前記処理剤の付着量は繊維が分散しやすいという点で、繊維に対して0.1~40重量%、好ましくは0.3~37重量%、更に好ましくは0.5~35重量%である。
 本発明の強化繊維束を形成する単繊維は、より強い接着性を発揮する為に、単繊維表面の60%以上が第1のプロピレン系樹脂と第2のプロピレン系樹脂とを含む混合物で被覆されていることが好ましい。被覆されていない部分は接着性を発揮することができず、剥離の起点となり結果として接着性を低下させる。好ましくは70%以上を被覆した状態であり、さらに好ましくは80%以上を被覆した状態である。被覆状態は、走査型電子顕微鏡(SEM)または繊維表面の元素分析でカルボン酸塩の金属元素をトレースする手法などがある。
 また、本発明の強化繊維束は、取扱い性および強化繊維束の品位を良好とするために擦過毛羽評価方法で測定される擦過毛羽数が1mあたり10個以下であることが好ましく、より好ましくは8個以下、さらに好ましくは5個以下である。ここで擦過毛羽の評価方法は、強化繊維束のボビンを、温度23±5℃、相対湿度60±20%に管理された温調室に30分以上放置する。次に、上記温度と湿度条件が設定されている温調室内にある擦過毛羽装置を用いて、図1に示した糸道図に従い、強化繊維束をパウダークラッチを内臓したクリーン1に仕掛けて、糸道を作製する。まず、擦過毛羽を発生させるために、直径10mmの固定した表面が鏡面加工された擦過ピン2の4個に強化繊維素束をかけ、毛羽カウンター3を通過させる。毛羽カウンターは、ランプ光から走行糸に照射し、その照射光をレンズで集光した状態で、フォトトランジスタで毛羽数を検出するものである。検出精度は糸長2mm以上で、かつ強化繊維の単繊維径が3μm以上の毛羽を検出することができる。走行時にスリップが発生しないように駆動ローラー4に強化繊維束を5回以上巻いて、ワインダー5に巻きつける。糸速を3m/分に設定して、図1に示したローラー6を介した糸道で強化繊維束の走行を開始する。糸道が安定した事を確認し、毛羽カウンター3から駆動ローラー4の間で測定した走行時の強化繊維束の張力が6gf/texになるように、パウダークラッチで初期張力を調整する。その後、毛羽カウンターを作動させて、走行状態での擦過毛羽の評価を、サンプル毎に1分間の測定を3回繰り返す。それぞれ1分間でカウントされた擦過毛羽数をX1、X2、X3として、下式から擦過毛羽数X(個/m)を算出する。
  X=(X1+X2+X3)/9
 上記擦過毛羽数が少ない場合は、強化繊維束の毛羽立ちが少ないことを意味し、強化繊維束としては良好となる傾向にある。
 上記繊維処理剤が樹脂の補強剤として用いられる場合のマトリックス樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィン、ナイロン、ポリエステル、ポリカーボネート、ポリフェニレンスルフィド樹脂、ポリアセタール、ポリイミド、ポリエーテルエーテルケトン、ポリ塩化ビニル、アクリル系樹脂、セルロース系樹脂、ポリスチレン、アクリロニトリル・スチレン共重合体、アクリロニトリル・スチレン・ブタジエン共重合体等の熱可塑性樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル、シアリルフタレート樹脂、ウレタン樹脂、メラミン樹脂、ユリア樹脂等の熱硬化性樹脂等を挙げることができる。本発明の繊維処理剤は、マトリックス樹脂がプロピレン系樹脂の場合に特に好適に用いることができる。
 これら繊維処理剤で処理された繊維の配合量は、マトリックス樹脂100重量部に対して、通常2~70重量部、好ましくは3~50重量部である。
 上記繊維処理剤で処理した繊維は、ポルトランドセメント、アルミナセメント等のセメント材料、Al23、SiO2、B4C、TiB2、ZnBr等のセラミックス材料などにも配合することができる。
 上記繊維処理剤は、繊維の集束性に優れ、かつ繊維とマトリックス樹脂との密着性を向上させることができ、繊維がマトリックス樹脂に均一に分散できるため、高い物性を発現できる。
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
 [1.炭素繊維処理材の評価方法]
 炭素繊維処理材の付着量、繊維表面被覆率、擦過毛羽数、および界面剪断強度を以下のように評価した。
 <炭素繊維処理材の付着量>
 プロピレン系樹脂が付着した強化繊維束を約5g取り、120℃で3時間乾燥し、その重量W1(g)を測定した。次いで、強化繊維束を窒素雰囲気中450℃で15分間加熱後、室温まで冷却しその重量W2(g)を測定した。付着量は下式で算出した。
  付着量(%)=(W1-W2)/W2×100
 <炭素繊維表面被覆率>
 プロピレン系樹脂が付着した強化繊維束を走査型電子顕微鏡で観察し、樹脂被覆部分と強化繊維表面露出部分の面積比より繊維表面被覆率を算出した。観察範囲は強化繊維束の単繊維を繊維軸方向に単繊維径の10倍の長さ分について任意の5ヶ所で観察した。単繊維を任意で5本選択し、それぞれ任意の5ヶ所で観察し、合計25ヶ所の平均を繊維表面被覆率とし、90%以上のものをA、70%以上90%未満のものをB、40%以上70%未満のものをC、40%未満のものをDとした。
  繊維表面被覆率=樹脂被覆部分/(樹脂被覆部分+繊維表面露出部分)
 <擦過毛羽数>
 プロピレン系樹脂が付着した強化繊維束を、温度23±5℃、相対湿度60±20%に管理された温調室に30分以上放置した。次に、上記温度と湿度条件が設定されている温調室内にある擦過毛羽装置を用いて、図1に示した糸道図に従い、強化繊維束をパウダークラッチを内臓したクリーン1に仕掛けて、糸道を作製した。まず、擦過毛羽を発生させるために、直径10mmの固定した表面が鏡面加工された擦過ピン2の4個に強化繊維素束をかけ、毛羽カウンター3を通過させた。走行時にスリップが発生しないように駆動ローラー4に強化繊維束を5回以上巻いて、ワインダー5に巻きつけた。糸速を3m/分に設定して、図1に示したローラー6を介した糸道で強化繊維束の走行を開始した。糸道が安定した事を確認し、毛羽カウンター3から駆動ローラー4の間で測定した走行時の強化繊維束の張力が6gf/texになるように、パウダークラッチで初期張力を調整した。
 その後、毛羽カウンターを作動させて、走行状態での擦過毛羽の評価を、サンプル毎に1分間の測定を3回繰り返した。それぞれ1分間でカウントされた擦過毛羽数をX1、X2、X3として、下式から擦過毛羽数X(個/m)を算出し、0~2個/mのものをA、3~5個/mのものをB、6~10個/mのものをC、11個/m以上のものをDとし、A、B、Cを合格とした。
  X=(X1+X2+X3)/9
 <界面剪断強度>
 プロピレン系樹脂が付着した強化繊維束から長さ20cmの単繊維1本を取出し、続いて未変性プロピレン樹脂(商品名:プライムポリプロJ105G、プライムポリマー(株)製)50重量%と、酸変性プロピレン樹脂(商品名:アドマーQB850、三井化学(株)製)50重量%とからなる厚み150μmの樹脂フィルムを20cmD20cm角の大きさで2枚作製し、前記取出した単繊維を1枚目の樹脂フィルム上に直線状に配置した。もう1枚の樹脂フィルムで単繊維を挟むように重ねて配置し、200℃で3分間、0.5MPaの圧力で加圧プレスし、単繊維が樹脂に埋め込まれたサンプルを作製した。得られたサンプルを切出し、単繊維が中央に埋没した厚さ0.2mm、幅10mm、長さ70mmの試験片を得た。上記と同様にして試験片を10個作製した。
 この試験片を通常の引張試験治具を用いて、試験長25mmに設定し、歪速度0.5mm/minで測定した。強化繊維破断が起こらなくなった時の平均破断繊維長(l)を透過型顕微鏡で測定した。
 界面剪断強度(τ)(MPa)は下式より求めた。
  τ=(σf・d)/2lc、  lc=(4/3)・l
 ここで、lは最終的な繊維の破断長さ(μm)の平均値、σfは繊維の引張り強さ(MPa)、dは繊維の直径(μm)である。σfは強化繊維の引張強度分布がワイブル分布に従うとして次の方法で求めた。即ち、単繊維を用い、試料長が5、25、50mmで得られた平均引張強度から最小2乗法により、試料長と平均引張強度との関係式を求め、試料長lcの時の平均引張強度を算出した。
 界面剪断強度の結果については、16MPa以上のものをA、14MPa以上16MPa未満のものをB、12MPa以上14MPa未満のものをBC、10MPa以上12MPa未満のものをC、10MPa未満のものをDとした。
 尚、評価詳細については、次の文献を参考にした。
 Drzal, L.T., Mater. Sci. Eng. A126, 289(1990)
 [実施例1]
 (1)水分散体の作成
 プロピレン系樹脂(A)として、プロピレン・ブテン・エチレン共重合体(A-1)(プロピレンから導かれる構成単位(以下「C3」とも記す。)=66モル%、重量平均分子量(以下「Mw」とも記す。)=9万、MI(メルトインデックス:230℃)(以下単に「MI」とも記す。)=700)91重量部、プロピレン系樹脂(B)の原料として、無水マレイン酸変性プロピレン・エチレン共重合体(C3=98モル%、Mw=2.5万、酸含有量=0.81ミリモル)9重量部、界面活性剤(C)として、オレイン酸カリウム3重量部を混合した。この混合物を加圧型ニーダー中に投入し、180℃、30分間溶融混練した。このニーダー内に20%水酸化カリウム水溶液を、全カルボン酸を中和するのに必要な量注入し、30分間混練をした。これを取出し、温水中に投入して十分撹拌して水分散体を得た。得られた水分散体は、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 尚、無水マレイン酸変性プロピレン・エチレン共重合体(C3=98モル%、Mw=2.5万、酸含有量=0.81ミリモル)は、プロピレン・エチレン共重合体 96重量部、無水マレイン酸 4重量部、および重合開始剤としてパーヘキシ25B(日本油脂(株)製)0.4重量部を混合し、加熱温度160℃、2時間で変性を行って得られた。
 (2)試験片の作成及び評価
 ポリアクリロニトリルを主成分とする共重合体から、紡糸、焼成処理、表面酸価処理を行い、総単糸数24,000本の連続炭素繊維を得た。この連続炭素繊維の特性は以下のとおりである。
 短繊維径:7μm
 単位長さあたりの質量:1.6g/m
 比重:1.8
 表面酸素濃度比[O/C]:0.06
 引張強度:4600MPa
 引張弾性率:220GPa
 ここで表面酸素濃度比は、表面酸化処理を行った後の炭素繊維を用いて、X線光電子分光法により次の手順に従って求めた。まず、炭素繊維束を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてAlKα1、2を用い、試料チャンバー中を1×108Torrに保った。測定時の帯電に伴うピークの補正値としてC1sの主ピークの運動エネルギー値(K.E.)を1,202eVに合せた。C1sピーク面積をK.E.として1,191~1,205eVの範囲で直線のベースラインを引く事により求めた。O1sピーク面積をK.E.として947~959eVの範囲で直線のベースラインを引く事により求めた。O1sピーク面積とC1sピーク面積との比から装置固有の感度補正値を用いて原子数比として算出した。X線光電子分光法装置として、国際電気社製モデルES-200を用い、感度補正値を1.74とした。
 この連続炭素繊維束に、前記(1)で得られた水分散体を固形分濃度6%に調整してローラー含浸法にて付着させ、オンラインで210℃、2分で乾燥して水分を除去し、試験片を作成した。作成した試験片について、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。なお、樹脂の付着量は3%であった。
 [実施例2]
 (1)水分散体の作成
 プロピレン系樹脂(A)として、プロピレン・ブテン・エチレン共重合体(A-1)(C3=66モル%、Mw=9万、MI=700)91重量部、プロピレン系樹脂(B)の原料として、無水マレイン酸変性プロピレン・エチレン共重合体(C3=98モル%、Mw=2.5万、酸含有量=0.81ミリモル)9重量部、界面活性剤(C)として、オレイン酸カリウム3重量部を混合した。この混合物を2軸スクリュー押出機(池貝鉄工株式会社製、PCM-30、L/D=40)のホッパーより3,000g/時間の速度で供給し、同押出機のベント部に設けた供給口より、20%の水酸化カリウム水溶液を90g/時間の割合で連続的に供給し、加熱温度210℃で連続的に押出した。押出した樹脂混合物を、同押出機口に設置したジャケット付きスタティックミキサーで110℃まで冷却し、さらに80℃の温水中に投入して水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 尚、無水マレイン酸変性プロピレン・エチレン共重合体(C3=98モル%、Mw=2.5万、酸含有量=0.81ミリモル)は、プロピレン・エチレン共重合体 96重量部、無水マレイン酸 4重量部、および重合開始剤としてパーヘキシ25B(日本油脂(株)製)0.4重量部を混合し、加熱温度160℃、2時間で変性を行って得られた。
 (2)試験片の作成および評価
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例3]
 プロピレン系樹脂(A-1)として、プロピレン・エチレン共重合体(C3=70モル%、Mw=13万、MI=80)を用いた以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例4]
 プロピレン系樹脂(A-1)として、プロピレン・エチレン共重合体(C3=95モル%、Mw=13万、MI=200)を用いた以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例5]
 プロピレン系樹脂(A-1)として、プロピレン・エチレン共重合体(C3=70モル%、Mw=6万、MI=800)を用いた以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例6]
 プロピレン系樹脂(B)の原料として、無水マレイン酸変性プロピレン・エチレン重合体(C3=95モル%、Mw=4万、酸含有量=0.81ミリモル)を用いた以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例7]
 プロピレン系樹脂(B)の原料として、無水マレイン酸変性プロピレン・エチレン重合体(C3=98モル%、Mw=1万、酸含有量=0.81ミリモル)を用いた以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例8]
 プロピレン系樹脂(B)の原料として、無水マレイン酸変性プロピレン・エチレン重合体(C3=98モル%、Mw=0.5万、酸含有量=0.81ミリモル)を用いた以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例9]
 プロピレン系樹脂(B)の原料として、無水マレイン酸変性プロピレン・エチレン重合体(C3=87モル%、Mw=2万、酸含有量=0.81ミリモル)を用いた以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例10]
 プロピレン系樹脂(B)の原料として、無水マレイン酸変性プロピレン・エチレン重合体(C3=98モル%、Mw=2.5万、酸含有量=1.02ミリモル)を用いた以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 尚、無水マレイン酸変性プロピレン・エチレン共重合体(C3=98モル%、Mw=2.5万、酸含有量=1.02ミリモル)は、プロピレン・エチレン共重合体 96重量部、無水マレイン酸 5重量部、および重合開始剤としてパーヘキシ25B(日本油脂(株)製)0.5重量部を混合し、加熱温度160℃、2時間で変性を行って得られた。
 [実施例11]
 プロピレン系樹脂(B)の原料として、メタクリル酸変性プロピレン・エチレン重合体(C3=98モル%、Mw=2.5万、酸含有量=0.93ミリモル)を用いた以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 尚、メタクリル酸変性プロピレン・エチレン重合体(C3=98モル%、Mw=2.5万、酸含有量=0.93ミリモル)は、プロピレン・エチレン共重合体を92重量部に、メタクリル酸8重量部、および重合開始剤としてパーヘキシ25B(日本油脂(株)製)0.6重量部を混合し、加熱温度160℃、2時間で変性を行って得られた。
 [実施例12]
 プロピレン・ブテン・エチレン共重合体の量を91重量部から70重量部に変更し、無水マレイン酸変性プロピレン・エチレン共重合体の量を9重量部から30重量部に変更した以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.3μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例13]
 プロピレン・ブテン・エチレン共重合体の量を91重量部から85重量部に変更し、無水マレイン酸変性プロピレン・エチレン共重合体の量を9重量部から15重量部に変更した以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.3μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例14]
 プロピレン・ブテン・エチレン共重合体の量を91重量部から95重量部に変更し、無水マレイン酸変性プロピレン・エチレン共重合体の量を9重量部から5重量部に変更した以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.5μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例15]
 オレイン酸カリウムの量を3重量部から10重量部に変更した以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.3μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例16]
 プロピレン系樹脂(A)として、プロピレン・ブテン・エチレン共重合体(A-1)(C3=66モル%、Mw=9万、MI=700)45.5重量部と、プロピレン・ブテン共重合体(A-2)(C3=81モル%、Mw=30万、MI=7)45.5重量部との混合樹脂を用いた以外は実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例17]
 プロピレン系樹脂(A)として、プロピレン・ブテン・エチレン共重合体(C3=66モル%、Mw=30万、MI=7)90重量部を用いた以外は実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例18]
 20%水酸化カリウム水溶液を、20%水酸化カリウム水溶液および20%アンモニア水の1:1(重量比)混合液に変更し、供給量を90g/時間から110g/時間に変更した以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例19]
 20%水酸化カリウム水溶液を20%水酸化ナトリウム水溶液に変更し、供給量を90g/時間から70g/時間に変更した以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例20]
 20%水酸化カリウム水溶液を20%アンモニア水に変更し、供給量を90g/時間から150g/時間に変更した以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例21]
 20%水酸化カリウム水溶液を20%のジメチルエタノールアミン水溶液に変更し、供給量を90g/時間から120g/時間に変更した以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例22]
 20%水酸化カリウム水溶液の供給量を90g/時間から55g/時間に変更した以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。全カルボン酸の中和度は90%であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例23]
 20%水酸化カリウム水溶液の供給量を90g/時間から43g/時間に変更した以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.6μm(マイクロトラックの測定)であった。全カルボン酸の中和度は70%であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例24]
 無水マレイン酸変性プロピレン・エチレン共重合体を、スチレン・(メタ)アクリル酸エステル・無水マレイン酸変性プロピレン・エチレン共重合体(C3=95モル%、Mw=2.5万、スチレン・(メタ)アクリル酸エステル・無水マレイン酸含有量:10重量%、酸含有量=0.81ミリモル)に変更した以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.6μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 尚、スチレン・(メタ)アクリル酸エステル・無水マレイン酸変性プロピレン・エチレン共重合体(C3=95モル%、Mw=2.5万、スチレン・(メタ)アクリル酸エステル・無水マレイン酸含有量:10重量%、酸含有量=0.81ミリモル)は、プロピレン・エチレン共重合体 96重量部に、不飽和ビニル基を有する単量体として、無水マレイン酸 4重量部、スチレン 2重量部、エチルメタクリレート 4重量部および重合開始剤としてパーヘキシ25B(日本油脂(株)製)0.5重量部を混合し、加熱温度160℃、2時間で変性を行って得られた。
 [実施例25]
 プロピレン系樹脂(A)として、無水マレイン酸変性プロピレン・ブテン・エチレン共重合体(A-3)(C3=66モル%、Mw=7万、MI=750、酸含有量=0.81ミリモル)を用いた以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.3μm(マイクロトラックの測定)であった。
 尚、無水マレイン酸変性プロピレン・ブテン・エチレン共重合体(C3=66モル%、Mw=7万、MI=750、酸含有量=0.81ミリモル)は、プロピレン・ブテン・エチレン共重合体96重量部、無水マレイン酸 4重量部、および重合開始剤としてパーヘキシ25B(日本油脂(株)製)0.4重量部を混合し、加熱温度160℃、2時間で変性を行って得られた。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例26]
 プロピレン系樹脂(A)として、スチレン・(メタ)アクリル酸エステル・無水マレイン酸変性プロピレン・ブテン・エチレン共重合体(A-5)(C3=66モル%、Mw=7万、MI=800、スチレン・(メタ)アクリル酸エステル・無水マレイン酸含有量:30重量%、酸含有量=0.81ミリモル)を用いた以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 尚、スチレン・(メタ)アクリル酸エステル・無水マレイン酸変性プロピレン・ブテン・エチレン共重合体(C3=66モル%、Mw=7万、MI=800、スチレン・(メタ)アクリル酸エステル・無水マレイン酸含有量:30重量%、酸含有量=0.81ミリモル)は、プロピレン・ブテン・エチレン共重合体 70重量部に、不飽和ビニル基を有する単量体として、無水マレイン酸 4重量部、スチレン 5重量部、エチルメタクリレート 12重量部、メチルメタクリレート 9重量部および重合開始剤としてパーヘキシ25B(日本油脂(株)製)0.8重量部を混合し、加熱温度140℃、2時間で変性を行って得られた。
 [実施例27]
 不飽和ビニル基を有する単量体の組成を無水マレイン酸 4重量部、スチレン 2重量部、エチルメタクリレート 4重量部に変更し、スチレン・(メタ)アクリル酸エステル・無水マレイン酸変性プロピレン・ブテン・エチレン共重合体のスチレン・(メタ)アクリル酸エステル・無水マレイン酸含有量を10重量%(酸含有量=0.81ミリモル)に変更した以外は、実施例24と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例28]
 プロピレン系樹脂(A)として、プロピレン・ブテン・エチレン共重合体(A-1)(C3=66モル%、Mw=9万、MI=700)45.5重量部と、スチレン・(メタ)アクリル酸エステル・無水マレイン酸変性プロピレン・ブテン・エチレン共重合体(A-5)(C3=66モル%、Mw=7万、MI=800、スチレン・(メタ)アクリル酸エステル・無水マレイン酸含有量:10重量%、酸含有量=0.81ミリモル)45.5重量部との混合樹脂を用いた以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例29]
 プロピレン系樹脂(A)として、無水マレイン酸変性プロピレン・ブテン・エチレン共重合体(A-3)(C3=66モル%、Mw=7万、MI=750、酸含有量=0.81ミリモル)45.5重量部と、無水マレイン酸変性プロピレン・ブテン共重合体(A-4)(C3=81モル%、Mw=20万、MI=9、無水マレイン酸含有量:4重量%)45.5重量部との混合樹脂を用いた以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 尚、無水マレイン酸変性プロピレン・ブテン共重合体(A-4)(C3=81モル%、Mw=20万、MI=9、無水マレイン酸含有量:4重量%)は、実施例16に記載のプロピレン・ブテン共重合体96重量部、無水マレイン酸4重量部、および重合開始剤としてパーヘキシ25B(日本油脂(株)製)0.4重量部を混合したものを2軸スクリュー押出機(池貝鉄工株式会社製、PCM-30,L/D=40)を用いて加熱温度220℃、16kg/時間で変性を行って得られた。
 [実施例30]
 プロピレン系樹脂(A)として、スチレン・(メタ)アクリル酸エステル・無水マレイン酸変性プロピレン・ブテン・エチレン共重合体(A-5)(C3=66モル%、Mw=7万、MI=800、スチレン・(メタ)アクリル酸エステル・無水マレイン酸含有量:10重量%、酸含有量=0.81ミリモル)45.5重量部と、スチレン・(メタ)アクリル酸エステル・無水マレイン酸変性プロピレン・ブテン重合体(A-6)(C3=81モル%、Mw=20万、MI=10、スチレン・(メタ)アクリル酸エステル・無水マレイン酸含有量:10重量%)45.5重量部との混合樹脂を用いた以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 尚、スチレン・(メタ)アクリル酸エステル・無水マレイン酸変性プロピレン・ブテン重合体(A-6)(C3=81モル%、Mw=20万、MI=10、スチレン・(メタ)アクリル酸エステル・無水マレイン酸含有量:10重量%)は、実施例16に記載のプロピレン・ブテン共重合体90重量部に、不飽和ビニル基を有する単量体として、無水マレイン酸 4重量部、スチレン 2重量部、エチルメタクリレート 4重量部および重合開始剤としてパーヘキシ25B 0.6重量部を混合したものを2軸スクリュー押出機(池貝鉄工株式会社製、PCM-30、L/D=40)を用いて加熱温度220℃、16kg/時間で変性を行って得られた。
 [実施例31]
 プロピレン系樹脂(A)として、スチレン・(メタ)アクリル酸エステル・無水マレイン酸変性プロピレン・ブテン・エチレン共重合体(A-5)(C3=66モル%、Mw=7万、MI=800、スチレン・(メタ)アクリル酸エステル・無水マレイン酸含有量:30重量%、酸含有量=0.81ミリモル)45.5重量部と、スチレン・(メタ)アクリル酸エステル・無水マレイン酸変性プロピレン・ブテン重合体(A-6)(C3=81モル%、Mw=20万、MI=10、スチレン・(メタ)アクリル酸エステル・無水マレイン酸含有量:30重量%、酸含有量=0.81ミリモル)45.5重量部との混合樹脂を用いた以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 尚、スチレン・(メタ)アクリル酸エステル・無水マレイン酸変性プロピレン・ブテン重合体(A-6)(C3=81モル%、Mw=20万、MI=10、スチレン・(メタ)アクリル酸エステル・無水マレイン酸含有量:30重量%、酸含有量=0.81ミリモル)は、以下の方法で得たものを用いた。まず、トルエン100重量部中で無水マレイン酸 12重量部、スチレン 15重量部、エチルメタクリレート 36重量部、メチルメタクリレート 27重量部および重合開始剤としてパーブチルO 0.5重量部を溶液重合し、この樹脂溶液からトルエンを脱溶剤してスチレン・(メタ)アクリル酸エステル・無水マレイン酸共重合体を得た。次に、実施例16に記載のプロピレン・ブテン共重合体70重量部に、前記スチレン・(メタ)アクリル酸エステル・無水マレイン酸共重合体を30重量部混合したものを2軸スクリュー押出機(池貝鉄工株式会社製、PCM-30、L/D=40)を用いて加熱温度220℃、16kg/時間で変性を行った。
 [実施例32]
 炭素繊維に付着させるプロピレン系樹脂量を1.0重量%に変更し、水分散体を実施例2で得られたものに変更した以外は、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例33]
 炭素繊維に付着させるプロピレン系樹脂量を20重量%に変更し、水分散体を実施例2で得られたものに変更した以外は、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例34]
 [1.炭素繊維処理材の評価方法]に記載の方法で評価に用いる炭素繊維を、下記の連続炭素繊維に変更した以外は、実施例2と同様の方法で評価を行った。結果を表1に示す。
 ポリアクリロニトリルを主成分とする共重合体から、紡糸、焼成処理、表面酸価処理を行い、総単糸数24,000本の連続炭素繊維を得た。この連続炭素繊維の特性は以下のとおりである。尚、表面酸素濃度比は実施例1に記載の方法で求めた。
 短繊維径:7μm
 単位長さあたりの質量:1.6g/m
 比重:1.8
 表面酸素濃度比[O/C]:0.12
 引張強度:4600MPa
 引張弾性率:220GPa
 [2.ガラス繊維含有成型材の評価方法]
 <成型材の外観>
 ガラス繊維の分散状態を目視にて評価し、分散状態の良いものをA、繊維束が残っているものをDとした。
 <成型材の物性>
 (i)引張り強度:ASTM D638号の方法に準じて評価した。
 130MPa以上のものをA、100MPa以上130MPa未満のものをB、70MPa以上100MPa未満のものをC、70MPa未満のものをDとした。
 [実施例35]
 実施例2で得られた水分散体を、直径13μmのガラス繊維の固形分に対して1重量%添加し、1,000本のガラス繊維を集束してストランドとした。このストランドを3mmの長さで切断して、チョップドストランドを得た。ここで得られたチョップドストランド43重量部と、ポリプロピレン([η]=1.8dl/g、融点=160℃)100重量部とを混合し、タンブラーミキサーで撹拌後、40mmΦの押出機でペレットを得た。このペレットを用いて射出成型し、物性評価用の試験片を作成した。この試験片について、[2.ガラス繊維含有成型材の評価方法]に記載の方法で物性試験を行った。結果を表1に示す。
 [実施例36]
 実施例16で得られた水分散体を用いた以外は、実施例35に記載の方法で物性評価用の試験片を作成し、物性試験を行った。結果を表1に示す。
 [実施例37]
 実施例25で得られた水分散体を用いた以外は、実施例35に記載の方法で物性評価用の試験片を作成し、物性試験を行った。結果を表1に示す。
 [実施例38]
 実施例26で得られた水分散体用いた以外は、実施例35に記載の方法で物性評価用の試験片を作成し、物性試験を行った。結果を表1に示す。
 [実施例39]
 実施例28で得られた水分散体を用いた以外は、実施例35に記載の方法で物性評価用の試験片を作成し、物性試験を行った。結果を表1に示す。
 [3.ポリオレフィン繊維含有成型材の評価方法]
 <ポリオレフィン系不織布の形態>
 フィブリル構造の有無を顕微鏡で評価し、構造が残っているものをA、構造が崩れているものをDとした。
 <ポリオレフィン系不織布の性能>
 不織布の両端を引張り、紙粉が発生するか評価し、紙粉が発生しないものをA、紙粉が発生するものをDとした。
 [実施例40]
 実施例2で得られた水分散体を、合成パルプSWP Y600(三井化学(株)製)80重量部と天然パルプ20重量部とをバッチ式試験機でマット化したものに、固形分で15重量部となるようにスプレーにて吹き付けて含浸させた。これを100℃のホットプレスにて1.5mmのスペーサーで厚みを調整しながらポリオレフィン系不織布を作成した。作成したポリオレフィン系不織布について、[3.ポリオレフィン繊維含有成型材の評価方法]に記載の方法で物性試験を行った。結果を表1に示す。
 [実施例41]
 実施例16で得られた水分散体を用いた以外は、実施例40と同様にしてポリオレフィン系不織布を作成し、物性試験を行った。結果を表1に示す。
 [実施例42]
 実施例25で得られた水分散体を用いた以外は、実施例40と同様にしてポリオレフィン系不織布を作成し、物性試験を行った。結果を表1に示す。
 [実施例43]
 実施例26で得られた水分散体を用いた以外は、実施例40と同様にしてポリオレフィン系不織布を作成し、物性試験を行った。結果を表1に示す。
 [実施例44]
 実施例28で得られた水分散体を用いた以外は、実施例40と同様にしてポリオレフィン系不織布を作成し、物性試験を行った。結果を表1に示す。
 [実施例45]
 プロピレン系樹脂(A)として、無水マレイン酸変性プロピレン・ブテン・エチレン共重合体(A-4)(C3=70モル%、Mw=20万、MI=20、酸含有量=0.81ミリモル)90重量部を用いた以外は実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.3μm(マイクロトラックの測定)であった。
 尚、無水マレイン酸変性プロピレン・ブテン・エチレン共重合体(C3=70モル%、Mw=20万、MI=20、酸含有量=0.81ミリモル)は、プロピレン・ブテン・エチレン共重合体96重量部、無水マレイン酸 4重量部、および重合開始剤としてパーヘキシ25B(日本油脂(株)製)0.4重量部を混合し、加熱温度160℃、2時間で変性を行って得られた。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例46]
 プロピレン系樹脂(A)として、無水マレイン酸変性プロピレン・ブテン共重合体(A-4)(C3=70モル%、Mw=8万、MI=500、酸含有量=0.2ミリモル)75重量部、プロピレン系樹脂(B)の原料として、無水マレイン酸変性プロピレン・エチレン共重合体(C3=98モル%、Mw=2.5万、酸含有量=0.81ミリモル)25重量部、界面活性剤(C)として、オレイン酸カリウム7重量部を混合した。この混合物を2軸スクリュー押出機(池貝鉄工株式会社製、PCM-30、L/D=40)のホッパーより3,000g/時間の速度で供給し、同押出機のベント部に設けた供給口より、15%の水酸化カリウム水溶液を250g/時間の割合で連続的に供給し、加熱温度210℃で連続的に押出した。押出した樹脂混合物を、同押出機口に設置したジャケット付きスタティックミキサーで110℃まで冷却し、さらに80℃の温水中に投入して水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:35%、pH:12で、平均粒子径:0.2μm(マイクロトラックの測定)であった。
 尚、無水マレイン酸変性プロピレン・ブテン共重合体(C3=70モル%、Mw=8万、MI=500、酸含有量=0.2ミリモル)は、プロピレン・ブテン共重合体99重量部、無水マレイン酸 1重量部、および重合開始剤としてパーヘキシ25B(日本油脂(株)製)0.3重量部を混合し、加熱温度160℃、2時間で変性を行って得られた。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例47]
 実施例46に記載の水分散体を用いた以外は、実施例35に記載の方法で物性評価用の試験片を作成し、[2.ガラス繊維含有成型材の評価方法]に記載の方法で物性試験を行った。結果を表1に示す。
 [実施例48]
 実施例46に記載の水分散体を用いた以外は、実施例40と同様にしてポリオレフィン系不織布を作成し、[3.ポリオレフィン繊維含有成型材の評価方法]に記載の方法で物性試験を行った。結果を表1に示す。
 [実施例49]
 プロピレン系樹脂(A)として、無水マレイン酸変性プロピレン・ブテン・エチレン共重合体(A-4)(C3=66モル%、Mw=7万、MI=750、酸含有量=0.2ミリモル)75重量部、プロピレン系樹脂(B)の原料として、無水マレイン酸変性プロピレン・エチレン共重合体(C3=98モル%、Mw=2.5万、酸含有量=0.81ミリモル)25重量部、界面活性剤(C)として、オレイン酸カリウム7重量部を混合した。この混合物を2軸スクリュー押出機(池貝鉄工株式会社製、PCM-30、L/D=40)のホッパーより3,000g/時間の速度で供給し、同押出機のベント部に設けた供給口より、15%の水酸化カリウム水溶液を250g/時間の割合で連続的に供給し、加熱温度210℃で連続的に押出した。押出した樹脂混合物を、同押出機口に設置したジャケット付きスタティックミキサーで110℃まで冷却し、さらに80℃の温水中に投入して水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:35%、pH:12で、平均粒子径:0.2μm(マイクロトラックの測定)であった。
 尚、無水マレイン酸変性プロピレン・ブテン・エチレン共重合体(C3=66モル%、Mw=7万、MI=750、酸含有量=0.2ミリモル)は、プロピレン・ブテン・エチレン共重合体99重量部、無水マレイン酸 1重量部、および重合開始剤としてパーヘキシ25B(日本油脂(株)製)0.3重量部を混合し、加熱温度160℃、2時間で変性を行って得られた。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例50]
 実施例49に記載の水分散体を用いた以外は、実施例35に記載の方法で物性評価用の試験片を作成し、[2.ガラス繊維含有成型材の評価方法]に記載の方法で物性試験を行った。結果を表1に示す。
 [実施例51]
 実施例49に記載の水分散体を用いた以外は、実施例40と同様にしてポリオレフィン系不織布を作成し、[3.ポリオレフィン繊維含有成型材の評価方法]に記載の方法で物性試験を行った。結果を表1に示す。
 [実施例52]
 プロピレン系樹脂(A)として、スチレン・(メタ)アクリル酸エステル・無水マレイン酸変性プロピレン・ブテン・エチレン共重合体(A-5)(C3=66モル%、Mw=7万、MI=800、スチレン・(メタ)アクリル酸エステル・無水マレイン酸含有量:30重量%、酸含有量=0.81ミリモル)75重量部、プロピレン系樹脂(B)の原料として、無水マレイン酸変性プロピレン・エチレン共重合体(C3=98モル%、Mw=2.5万、酸含有量=0.81ミリモル)25重量部、界面活性剤(C)として、オレイン酸カリウム7重量部を混合した。この混合物を2軸スクリュー押出機(池貝鉄工株式会社製、PCM-30、L/D=40)のホッパーより3,000g/時間の速度で供給し、同押出機のベント部に設けた供給口より、15%の水酸化カリウム水溶液を250g/時間の割合で連続的に供給し、加熱温度210℃で連続的に押出した。押出した樹脂混合物を、同押出機口に設置したジャケット付きスタティックミキサーで110℃まで冷却し、さらに80℃の温水中に投入して水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:35%、pH:12で、平均粒子径:0.2μm(マイクロトラックの測定)であった。
 尚、スチレン・(メタ)アクリル酸エステル・無水マレイン酸変性プロピレン・ブテン・エチレン共重合体(C3=66モル%、Mw=7万、MI=800、スチレン・(メタ)アクリル酸エステル・無水マレイン酸含有量:30重量%、酸含有量=0.81ミリモル)は、プロピレン・ブテン・エチレン共重合体 70重量部に、不飽和ビニル基を有する単量体として、無水マレイン酸 4重量部、スチレン 5重量部、エチルメタクリレート 12重量部、メチルメタクリレート 9重量部および重合開始剤としてパーヘキシ25B(日本油脂(株)製)0.8重量部を混合し、加熱温度140℃、2時間で変性を行って得られた。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [実施例53]
 実施例52に記載の水分散体を用いた以外は、実施例35に記載の方法で物性評価用の試験片を作成し、[2.ガラス繊維含有成型材の評価方法]に記載の方法で物性試験を行った。結果を表1に示す。
 [実施例54]
 実施例52に記載の水分散体を用いた以外は、実施例40と同様にしてポリオレフィン系不織布を作成し、[3.ポリオレフィン繊維含有成型材の評価方法]に記載の方法で物性試験を行った。結果を表1に示す。
 [比較例1]
 実施例1で用いた連続炭素繊維束をそのまま[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [比較例2]
 実施例1に記載のプロピレン・ブテン・エチレン共重合体91重量部を、実施例1に記載の無水マレイン酸変性プロピレン・エチレン重合体91重量部に変更した以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で物性試験を行った。結果を表1に示す。
 [比較例3]
 実施例1に記載の無水マレイン酸変性プロピレン・エチレン共重合体の量を9重量部から5重量部に変更し、オレイン酸カリウムの量を3重量部から2重量部に変更した以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:5μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で物性試験を行った。結果を表1に示す。
 [比較例4]
 プロピレン系樹脂(A)として、無水マレイン酸変性ポリプロピレン(A-3)(C3=66モル%、Mw=5万、MI=300、酸含有量=0.81ミリモル)33重量部、プロピレン系樹脂(B)の原料として、無水マレイン酸変性プロピレン重合体(C3=100モル%、Mw=2.5万、酸含有量=0.81ミリモル)67重量部を用いた以外は、実施例2と同様の方法で水分散体を得た。得られた水分散体は、収率:99%、固形分濃度:45%、pH:12で、平均粒子径:0.4μm(マイクロトラックの測定)であった。
 得られた水分散体を用いて、実施例1の(2)に記載の方法で試験片を作成し、[1.炭素繊維処理材の評価方法]に記載の方法で評価を行った。結果を表1に示す。
 [比較例5]
 比較例2に記載の水分散体を用いた以外は、実施例35に記載の方法で物性評価用の試験片を作成し、物性試験を行った。結果を表1に示す。
 [比較例6]
 比較例3に記載の水分散体を用いた以外は、実施例35に記載の方法で物性評価用の試験片を作成し、物性試験を行った。結果を表1に示す。
 [比較例7]
 比較例4に記載の水分散体を用いた以外は、実施例35に記載の方法で物性評価用の試験片を作成し、物性試験を行った。結果を表1に示す。
 [比較例8]
 比較例2に記載の水分散体を用いた以外は、実施例40と同様にしてポリオレフィン系不織布を作成し、物性試験を行った。結果を表1に示す。
 [比較例9]
 比較例3に記載の水分散体を用いた以外は、実施例40と同様にしてポリオレフィン系不織布を作成し、物性試験を行った。結果を表1に示す。
 [比較例10]
 比較例4に記載の水分散体を用いた以外は、実施例40と同様にしてポリオレフィン系不織布を作成し、物性試験を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000010
 1 パウダークラッチを内蔵したクリール
 2 表面が鏡面加工された擦過ピン
 3 毛羽カウンター
 4 駆動ローラー
 5 ワインダー
 6 ローラー
 7 炭素繊維走行方向

Claims (20)

  1.  (A)オレフィン成分のプロピレンから導かれる構成単位が50~99モル%である第1のプロピレン系樹脂、
    (B)重合体鎖に結合したカルボン酸塩を少なくとも含むプロピレン系樹脂であって、樹脂1グラム当り、式(1)
    Figure JPOXMLDOC01-appb-C000001
    で表される基換算を総量0.05~5ミリモル当量の濃度で含む第2のプロピレン系樹脂、
    (C)アニオン型および/またはノニオン型界面活性剤、ならびに
    (D)水を含有し、
    (A)および(B)に由来する樹脂固形分が水に分散した繊維処理用水分散体であって、
    (A)100重量部に対して、(B)0.3~45重量部と、(C)0.5~40重量部とを含有し、水分含有量が3~90重量%であり、
    (A)の重量平均分子量(以下「Mw(a)」とも記す。)と(B)の重量平均分子量(以下「Mw(b)」とも記す。)とが異なり、かつMw(a)の方がMw(b)より大きく、(A)および(B)に由来する樹脂固形分の平均粒子径が0.03~3μmであることを特徴とする繊維処理用水分散体。
  2.  前記(A)が実質的に未変性のプロピレン系樹脂であることを特徴とする請求項1に記載の繊維処理用水分散体。
  3.  前記(A)が、MI(メルトインデックス:230℃)が50以上のプロピレン系樹脂(A-1)を含むことを特徴とする請求項2に記載の繊維処理用水分散体。
  4.  前記(A-1)が、重量平均分子量Mwが30,000以上150,000未満であることを特徴とする請求項3に記載の繊維処理用水分散体。
  5.  前記(A)が、前記(A-1)と、重量平均分子量Mwが150,000以上500,000以下であり、かつオレフィン成分のプロピレンから導かれる構成単位が50~99モル%であるプロピレン系樹脂(A-2)とを含むことを特徴とする請求項3または4に記載の繊維処理用水分散体。
  6.  前記(A-1)と前記(A-2)との重量比〔(A-1):(A-2)〕が、100:0~30:70であることを特徴とする請求項5に記載の繊維処理用水分散体。
  7.  前記(B)が、重量平均分子量Mwが1,000~50,000であり、かつオレフィン成分のプロピレンから導かれる構成単位が50~100モル%であることを特徴とする請求項2~6のいずれか1項に記載の繊維処理用水分散体。
  8.  前記(A)が、MI(メルトインデックス:230℃)が50以上のプロピレン系樹脂(A-1)を含むことを特徴とする請求項1に記載の繊維処理用水分散体。
  9.  前記(A-1)が、重量平均分子量Mwが30,000以上150,000未満であることを特徴とする請求項8に記載の繊維処理用水分散体。
  10.  前記(A)が、前記(A-1)と、重量平均分子量Mwが150,000以上500,000以下であり、かつオレフィン成分のプロピレンから導かれる構成単位が50~99モル%であるプロピレン系樹脂(A-2)とを含むことを特徴とする請求項8または9に記載の繊維処理用水分散体。
  11.  前記(A-1)と前記(A-2)との重量比〔(A-1):(A-2)〕が、100:0~30:70であることを特徴とする請求項10に記載の繊維処理用水分散体。
  12.  前記(B)が、重量平均分子量Mwが1,000~50,000であり、かつオレフィン成分のプロピレンから導かれる構成単位が50~100モル%であることを特徴とする請求項8~11のいずれか1項に記載の繊維処理用水分散体。
  13.  前記(A-1)が、重量平均分子量Mwが50,000を超えて150,000未満であり、重合体鎖に結合したカルボン酸塩を少なくとも含み、オレフィン成分のプロピレンから導かれる構成単位が50~99モル%であるプロピレン系樹脂であって、樹脂1グラム当り、式(1)
    Figure JPOXMLDOC01-appb-C000002
    で表される基換算を総量0.05~5ミリモル当量の濃度で含むプロピレン系樹脂(A-3)であることを特徴とする請求項8~12のいずれか1項に記載の繊維処理用水分散体。
  14.  前記(A-2)が、重量平均分子量Mwが150,000以上500,000以下であり、重合体鎖に結合したカルボン酸塩を少なくとも含み、オレフィン成分のプロピレンから導かれる構成単位が50~99モル%であるプロピレン系樹脂であって、樹脂1グラム当り、式(1)
    Figure JPOXMLDOC01-appb-C000003
    で表される基換算を総量0.05~5ミリモル当量の濃度で含むプロピレン系樹脂(A-4)であることを特徴とする請求項10~13のいずれか1項に記載の繊維処理用水分散体。
  15.  前記(B)が、オレフィン以外の不飽和ビニル基で変性された重合体をさらに含むプロピレン系樹脂(B-1)であることを特徴とする請求項1~14のいずれか1項に記載の繊維処理用水分散体。
  16.  前記(A-3)が、オレフィン以外の不飽和ビニル基で変性された重合体をさらに含むプロピレン系樹脂(A-5)であることを特徴とする請求項13に記載の繊維処理用水分散体。
  17.  前記(A-4)が、オレフィン以外の不飽和ビニル基で変性された重合体をさらに含むプロピレン系樹脂(A-6)であることを特徴とする請求項14に記載の繊維処理用水分散体。
  18.  炭素繊維処理用であることを特徴とする請求項1~17のいずれか1項に記載の繊維処理用水分散体。
  19.  ガラス繊維処理用であることを特徴とする請求項1~17のいずれか1項に記載の繊維処理用水分散体。
  20.  ポリオレフィン繊維処理用であることを特徴とする請求項1~17のいずれか1項に記載の繊維処理用水分散体。
PCT/JP2009/071388 2008-12-05 2009-12-24 繊維処理用水分散体 WO2010074118A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801508653A CN102257209B (zh) 2008-12-25 2009-12-24 纤维处理用水分散体
KR1020117017322A KR101288676B1 (ko) 2008-12-25 2009-12-24 섬유 처리용 수분산체
US13/141,670 US20110257325A1 (en) 2008-12-05 2009-12-24 Aqueous dispersion for fiber treatment
EP09834916.0A EP2372018B1 (en) 2008-12-25 2009-12-24 Aqueous dispersion for treatment of fibers
JP2010544096A JP5430583B2 (ja) 2008-12-25 2009-12-24 繊維処理用水分散体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-330516 2008-12-25
JP2008330516 2008-12-25

Publications (1)

Publication Number Publication Date
WO2010074118A1 true WO2010074118A1 (ja) 2010-07-01

Family

ID=42287725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071388 WO2010074118A1 (ja) 2008-12-05 2009-12-24 繊維処理用水分散体

Country Status (7)

Country Link
US (1) US20110257325A1 (ja)
EP (1) EP2372018B1 (ja)
JP (1) JP5430583B2 (ja)
KR (1) KR101288676B1 (ja)
CN (1) CN102257209B (ja)
TW (1) TW201035411A (ja)
WO (1) WO2010074118A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207167A (ja) * 2011-03-30 2012-10-25 Nippon Paper Chemicals Co Ltd 変性ポリオレフィン樹脂分散組成物
WO2014038574A1 (ja) * 2012-09-06 2014-03-13 三菱レイヨン株式会社 樹脂強化用炭素繊維束およびその製造方法、並びに炭素繊維強化熱可塑性樹脂組成物およびその成形品
WO2015133569A1 (ja) * 2014-03-05 2015-09-11 三菱レイヨン株式会社 樹脂強化用炭素繊維束、並びに、樹脂強化用炭素繊維束、炭素繊維強化熱可塑性樹脂組成物及び成形体の製造方法
JPWO2016114352A1 (ja) * 2015-01-16 2017-08-10 三井化学株式会社 強化繊維束及びそれを用いた炭素繊維強化熱可塑性樹脂成形体、並びに強化繊維束の製造方法
WO2017183672A1 (ja) * 2016-04-20 2017-10-26 三井化学株式会社 強化繊維束および成形材料
WO2022244879A1 (ja) * 2021-05-20 2022-11-24 三井化学株式会社 樹脂組成物及びその用途ならびに製造方法
WO2024071064A1 (ja) * 2022-09-28 2024-04-04 三井化学株式会社 水分散体、炭素繊維束および一方向材

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150042829A (ko) 2012-08-15 2015-04-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 가호된 알루미나계 무기 산화물 단섬유, 이의 제조방법, 및 이를 포함하는 조성물
CN102926205B (zh) * 2012-11-16 2014-06-11 金发科技股份有限公司 一种乳液型碳纤维用上浆剂及其制备方法和应用
CN102926204B (zh) * 2012-11-16 2014-06-11 金发科技股份有限公司 一种乳液型碳纤维用上浆剂及其制备方法和用途
EP3525269B1 (en) * 2016-10-07 2021-04-07 Showa Denko Materials Co., Ltd. Cladding tube, clad electrode, lead storage battery, production method for these, and electric car
EP3677639B1 (en) * 2017-08-29 2023-11-15 Mitsui Chemicals, Inc. Fiber-sizing agent, inorganic reinforcement material, resin composition, and molded article
CN109722743B (zh) * 2017-10-27 2022-02-11 中国石油化工股份有限公司 一种聚烯烃树脂基复合材料用碳纤维及其制备方法
FR3073850B1 (fr) * 2017-11-22 2019-11-08 Irt Antoine De Saint-Exupery Dispersion aqueuse de polymere thermoplastique, applications pour l'impregnation de fibres de renforts
JP2020158921A (ja) * 2019-03-27 2020-10-01 三井化学株式会社 強化繊維束及び成形材料

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691052A (en) 1979-12-26 1981-07-23 Honshu Paper Co Ltd Dry nonwoven laminate containing high water absorbing polymer
JPH06107442A (ja) 1991-12-17 1994-04-19 Sanyo Chem Ind Ltd 無機繊維用集束剤
JPH078933B2 (ja) 1984-07-26 1995-02-01 三井石油化学工業株式会社 水性分散体およびその製法
JPH0796647B2 (ja) 1986-04-24 1995-10-18 三井石油化学工業株式会社 水性分散体及びその製法
WO2005012604A2 (ja) * 2003-07-31 2005-02-10 Mitsubishi Rayon Co., Ltd. 炭素繊維束及びその製造方法、並びに熱可塑性樹脂組成物及びその成形品
JP2005170691A (ja) * 2003-12-08 2005-06-30 Nippon Electric Glass Co Ltd ガラス繊維集束剤及びガラス繊維
JP2005289698A (ja) * 2004-03-31 2005-10-20 Asahi Fiber Glass Co Ltd 長繊維強化ポリプロピレン樹脂成形材料用ガラス繊維、及び長繊維強化ポリプロピレン樹脂成形材料
JP2006124847A (ja) * 2004-10-26 2006-05-18 Toho Tenax Co Ltd 熱可塑性樹脂強化用炭素繊維ストランドの製造方法
WO2006101269A1 (ja) 2005-03-25 2006-09-28 Teijin Techno Products Limited 熱可塑性樹脂強化用炭素繊維ストランド及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3749591B2 (ja) * 1997-03-31 2006-03-01 三井化学株式会社 水分散体及び水分散型接着剤
TW593533B (en) * 1999-07-02 2004-06-21 Mitsui Chemicals Inc Aqueous polyester dispersion and process for producing the same
US6960635B2 (en) * 2001-11-06 2005-11-01 Dow Global Technologies Inc. Isotactic propylene copolymers, their preparation and use
US20050124753A1 (en) * 2002-04-26 2005-06-09 Mitsubishi Chemical Corporation Polypropylene type aqueous dispersion, polypropylene type composite aqueous emulsion composition and its use
WO2003091330A1 (fr) * 2002-04-26 2003-11-06 Mitsubishi Chemical Corporation Dispersion de polypropylene aqueuse, composition d'emulsion composite de polypropylene aqueuse et son utilisation
US7803865B2 (en) * 2003-08-25 2010-09-28 Dow Global Technologies Inc. Aqueous dispersion, its production method, and its use
JP2005126615A (ja) * 2003-10-24 2005-05-19 Mitsubishi Chemicals Corp 変性プロピレン系重合体水性分散体及びその用途
CN101189284B (zh) * 2005-06-03 2011-12-21 三菱化学株式会社 水性树脂分散体及其制造方法、涂料和层积体
US8173744B2 (en) * 2006-02-16 2012-05-08 Kansai Paint Co., Ltd. Water-based primer composition and coating method of plastic shaped articles using the composition
JP5493239B2 (ja) * 2006-07-31 2014-05-14 三菱化学株式会社 水性樹脂分散体及びその製造方法
JP5085151B2 (ja) * 2007-02-13 2012-11-28 ユーエムジー・エービーエス株式会社 水性分散体およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691052A (en) 1979-12-26 1981-07-23 Honshu Paper Co Ltd Dry nonwoven laminate containing high water absorbing polymer
JPH078933B2 (ja) 1984-07-26 1995-02-01 三井石油化学工業株式会社 水性分散体およびその製法
JPH0796647B2 (ja) 1986-04-24 1995-10-18 三井石油化学工業株式会社 水性分散体及びその製法
JPH06107442A (ja) 1991-12-17 1994-04-19 Sanyo Chem Ind Ltd 無機繊維用集束剤
WO2005012604A2 (ja) * 2003-07-31 2005-02-10 Mitsubishi Rayon Co., Ltd. 炭素繊維束及びその製造方法、並びに熱可塑性樹脂組成物及びその成形品
JP2005170691A (ja) * 2003-12-08 2005-06-30 Nippon Electric Glass Co Ltd ガラス繊維集束剤及びガラス繊維
JP2005289698A (ja) * 2004-03-31 2005-10-20 Asahi Fiber Glass Co Ltd 長繊維強化ポリプロピレン樹脂成形材料用ガラス繊維、及び長繊維強化ポリプロピレン樹脂成形材料
JP2006124847A (ja) * 2004-10-26 2006-05-18 Toho Tenax Co Ltd 熱可塑性樹脂強化用炭素繊維ストランドの製造方法
WO2006101269A1 (ja) 2005-03-25 2006-09-28 Teijin Techno Products Limited 熱可塑性樹脂強化用炭素繊維ストランド及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2372018A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207167A (ja) * 2011-03-30 2012-10-25 Nippon Paper Chemicals Co Ltd 変性ポリオレフィン樹脂分散組成物
KR101669377B1 (ko) * 2012-09-06 2016-10-25 미쯔비시 레이온 가부시끼가이샤 수지 강화용 탄소 섬유속 및 그의 제조 방법, 및 탄소 섬유 강화 열가소성 수지 조성물 및 그의 성형품
WO2014038574A1 (ja) * 2012-09-06 2014-03-13 三菱レイヨン株式会社 樹脂強化用炭素繊維束およびその製造方法、並びに炭素繊維強化熱可塑性樹脂組成物およびその成形品
US9777127B2 (en) 2012-09-06 2017-10-03 Mitsubishi Chemical Corporation Carbon fiber bundle for resin reinforcement purposes and method for producing same, and carbon-fiber-reinforced thermoplastic resin composition and molded product thereof
US9834650B2 (en) 2014-03-05 2017-12-05 Mitsubishi Chemical Corporation Carbon fiber bundle for resin reinforcement, and method for manufacturing carbon fiber bundle for resin reinforcement, carbon-fiber-reinforced thermoplastic resin composition, and molded body
JP2015180785A (ja) * 2014-03-05 2015-10-15 三菱レイヨン株式会社 樹脂強化用炭素繊維束、並びに、樹脂強化用炭素繊維束、炭素繊維強化熱可塑性樹脂組成物及び成形体の製造方法
WO2015133569A1 (ja) * 2014-03-05 2015-09-11 三菱レイヨン株式会社 樹脂強化用炭素繊維束、並びに、樹脂強化用炭素繊維束、炭素繊維強化熱可塑性樹脂組成物及び成形体の製造方法
US10414884B2 (en) 2014-03-05 2019-09-17 Mitsubishi Chemical Corporation Carbon fiber bundle for resin reinforcement, and method for manufacturing carbon fiber bundle for resin reinforcement, carbon-fiber-reinforced thermoplastic resin composition, and molded body
JP2020073750A (ja) * 2014-03-05 2020-05-14 三菱ケミカル株式会社 炭素繊維束、並びに、炭素繊維束、炭素繊維強化熱可塑性樹脂組成物及び成形体の製造方法
JP2021073389A (ja) * 2014-03-05 2021-05-13 三菱ケミカル株式会社 炭素繊維束
JP7020571B2 (ja) 2014-03-05 2022-02-16 三菱ケミカル株式会社 炭素繊維束
JPWO2016114352A1 (ja) * 2015-01-16 2017-08-10 三井化学株式会社 強化繊維束及びそれを用いた炭素繊維強化熱可塑性樹脂成形体、並びに強化繊維束の製造方法
WO2017183672A1 (ja) * 2016-04-20 2017-10-26 三井化学株式会社 強化繊維束および成形材料
JPWO2017183672A1 (ja) * 2016-04-20 2019-02-21 三井化学株式会社 強化繊維束および成形材料
US10899896B2 (en) 2016-04-20 2021-01-26 Mitsui Chemicals, Inc. Reinforcing fiber bundle and molding material
WO2022244879A1 (ja) * 2021-05-20 2022-11-24 三井化学株式会社 樹脂組成物及びその用途ならびに製造方法
WO2024071064A1 (ja) * 2022-09-28 2024-04-04 三井化学株式会社 水分散体、炭素繊維束および一方向材

Also Published As

Publication number Publication date
KR101288676B1 (ko) 2013-07-22
EP2372018A4 (en) 2012-07-25
US20110257325A1 (en) 2011-10-20
CN102257209B (zh) 2013-04-10
KR20110104977A (ko) 2011-09-23
TW201035411A (en) 2010-10-01
EP2372018A1 (en) 2011-10-05
CN102257209A (zh) 2011-11-23
JPWO2010074118A1 (ja) 2012-06-21
EP2372018B1 (en) 2013-09-04
JP5430583B2 (ja) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5430583B2 (ja) 繊維処理用水分散体
WO2010074108A1 (ja) 成形材料および樹脂付着強化繊維束
CN104066783B (zh) 纤维增强聚丙烯树脂组合物、成型材料及预浸料坯
TWI532767B (zh) Fiber-reinforced acrylic resin composition
JP5584977B2 (ja) 強化繊維束
KR101837219B1 (ko) 탄소섬유다발 및 그 제조 방법, 및 그로부터의 성형품
JP6881936B2 (ja) テープワインディング成形法、テープワインディング成形用繊維強化樹脂組成物
JP7021857B2 (ja) 射出成形体およびその製造方法
JP5584978B2 (ja) 成形材料
JP2013119685A (ja) 開繊された炭素繊維束及びその製造方法
JP6921584B2 (ja) 強化繊維束、成型材料及び成形体
JP2013119684A (ja) 開繊された炭素繊維束及びその製造方法
JP2019202435A (ja) 樹脂成形体付きテープワインディングパイプ、自動車部品、建築資材、及び樹脂成形体付きテープワインディングパイプの製造方法。
JPH07330398A (ja) セメント補強用繊維およびその製造方法
JP6795369B2 (ja) テープワインディング成形法、テープワインディング成形用繊維強化樹脂組成物
JP2012184377A (ja) 炭素繊維束及びその製造方法、並びに熱可塑性樹脂組成物及びその製造方法
JP2010150359A (ja) 繊維強化成形品
JP5924848B1 (ja) 強化繊維用サイジング剤の水性液、強化繊維及び繊維強化複合材料
JP2022153077A (ja) ガラス繊維収束剤、ガラス繊維束、繊維強化樹脂組成物および成形体
JP2018206812A (ja) 電磁波遮蔽体、電磁波遮蔽体の製造方法及び用途
JP2012202002A (ja) 熱可塑性樹脂強化用繊維および繊維強化熱可塑性樹脂組成物
JP2014185278A (ja) 炭素繊維熱可塑性樹脂複合材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150865.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834916

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13141670

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2010544096

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009834916

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117017322

Country of ref document: KR

Kind code of ref document: A