WO2010067546A1 - 半導体封止用樹脂組成物、半導体装置の製造方法及び半導体装置 - Google Patents

半導体封止用樹脂組成物、半導体装置の製造方法及び半導体装置 Download PDF

Info

Publication number
WO2010067546A1
WO2010067546A1 PCT/JP2009/006562 JP2009006562W WO2010067546A1 WO 2010067546 A1 WO2010067546 A1 WO 2010067546A1 JP 2009006562 W JP2009006562 W JP 2009006562W WO 2010067546 A1 WO2010067546 A1 WO 2010067546A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
semiconductor
less
semiconductor device
measurement
Prior art date
Application number
PCT/JP2009/006562
Other languages
English (en)
French (fr)
Inventor
作道慶一
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to US13/133,752 priority Critical patent/US8546959B2/en
Priority to KR1020117015968A priority patent/KR101712216B1/ko
Priority to SG2011041852A priority patent/SG172036A1/en
Priority to CN200980149798.3A priority patent/CN102246296B/zh
Publication of WO2010067546A1 publication Critical patent/WO2010067546A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20751Diameter ranges larger or equal to 10 microns less than 20 microns
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a granular semiconductor sealing resin composition suitable for sealing a semiconductor element by compression molding, a method for manufacturing a semiconductor device using the same, and a semiconductor device obtained thereby.
  • the compression molding technology Compared with transfer molding, which is widely used for semiconductor encapsulation, the compression molding technology has a significantly lower resin flow rate and less lateral flow, so that the wire flow is less likely to occur, and is a powerful tool for the fine pitch. It is a correspondence method. Furthermore, with regard to filling the narrow gap portion directly above the chip, it is an excellent molding method in which welds are less likely to occur than the molding method, and it is a molding method suitable for fine pitch and thinning of semiconductor devices that will advance in the future. Future expansion is expected.
  • the resin composition is transported and weighed before the granular resin composition is put into the cavity of the compression mold installed in the compression molding apparatus.
  • the method described in Patent Document 1 has a relatively large granular shape of about 2 mm, so that weighing accuracy may be insufficient.
  • the granular resin composition placed in the cavity of the compression molding mold installed in the compression molding apparatus is melted in the cavity when the mold is closed by the compression molding apparatus, and the entire cavity is filled. At this time, depending on the melt viscosity of the molten resin composition and the progress of curing, the degree of wire flow and the filling property of the narrow gap portion immediately above the chip are affected.
  • Patent Document 3 proposes that the melt viscosity and gel time of the resin be in a specific range for the purpose of reducing the wire flow, but this method relates to a method of processing and using the resin into a sheet shape.
  • this method relates to a method of processing and using the resin into a sheet shape.
  • compression molding using a granular resin composition there has been no proposal regarding the melt viscosity of the molten resin composition and the way of curing.
  • the present invention when a semiconductor device is obtained by encapsulating a semiconductor element by compression molding using a granular resin composition for encapsulating a semiconductor, a good filling property is obtained and a short-circuit failure of a wire is unlikely to occur.
  • the present invention provides a resin composition for encapsulating a semiconductor capable of improving the yield during compression molding and the quality of a semiconductor device, and a method for producing a semiconductor device using the same.
  • the resin composition for encapsulating a semiconductor of the present invention is a granular resin composition for encapsulating a semiconductor used for a semiconductor device obtained by encapsulating a semiconductor element by compression molding, and measured at a temperature of 175 using a dielectric analyzer. It is characterized in that the following a) to c) are satisfied when measured under the conditions of ° C and a measurement frequency of 100 Hz. a) The time from the start of measurement to the minimum ion viscosity is 20 seconds or less. b) The minimum ionic viscosity value is 6.5 or less. c) The interval between the time from the start of measurement until reaching the lowest ion viscosity and the time until the ion viscosity value of 90% of the ion viscosity value after 300 seconds from the start of measurement is 10 seconds or more.
  • the resin composition for semiconductor encapsulation of the present invention is a ratio of 5% by mass or less of fine powder having a particle size of less than 106 ⁇ m in the particle size distribution measured by sieving using a JIS standard sieve. It can be included.
  • the resin composition for encapsulating a semiconductor of the present invention comprises a coarse particle having a particle size of 2 mm or more in a particle size distribution measured by sieving using a JIS standard sieve, which is 3% by mass or less of the entire semiconductor encapsulating resin composition. It can be included in proportions.
  • the resin composition for semiconductor encapsulation of the present invention is melted on the inner side of a rotor composed of a cylindrical outer peripheral portion having a plurality of small holes whose temperature is adjusted by direct or indirect heating means and a disc-shaped bottom surface.
  • the kneaded resin composition for encapsulating a semiconductor is supplied in a molten state, and the resin composition for encapsulating a semiconductor is obtained by passing the small holes by centrifugal force obtained by rotating the rotor. Can be.
  • the method for producing a semiconductor device of the present invention is characterized in that a semiconductor element is encapsulated by compression molding using the granular resin composition for encapsulating a semiconductor.
  • the step of transporting and weighing the granular resin composition for encapsulating a semiconductor can be performed immediately before the compression molding step.
  • the semiconductor device manufacturing method of the present invention can perform compression molding while degassing the air in the cavity of the compression molding die.
  • a semiconductor element is bonded and fixed on a die pad of a lead frame or a substrate, and the wire bonding pad of the semiconductor element and the inner lead of the lead frame or the wire bonding pad on the substrate are connected by a wire.
  • the cured product of the semiconductor sealing resin composition on the semiconductor element may have a thickness of 150 ⁇ m or less.
  • a resin composition for semiconductor sealing that can improve the yield during compression molding and the quality of the semiconductor device.
  • the resin composition for encapsulating a semiconductor of the present invention is a granular resin composition for encapsulating a semiconductor used for a semiconductor device obtained by encapsulating a semiconductor element by compression molding, and measured at a temperature of 175 using a dielectric analyzer.
  • a dielectric analyzer When measured under the conditions of °C and measurement frequency 100 Hz, the time from the start of measurement until reaching the minimum ion viscosity is 20 seconds or less, the minimum ion viscosity value is 6.5 or less, and the minimum ion viscosity from the start of measurement.
  • the interval between the time to reach the viscosity and the time to reach the ion viscosity value of 90% of the ion viscosity value after 300 seconds from the start of the measurement is 10 seconds or more.
  • the manufacturing method of the semiconductor device of this invention is characterized by sealing a semiconductor element by compression molding using the above-mentioned granular resin composition for semiconductor sealing. With these configurations, when a semiconductor device is obtained by sealing a semiconductor element by compression molding using a granular semiconductor sealing resin composition, a good filling property is obtained, and a short circuit failure of the wire occurs.
  • a certain amount of the product 103 is conveyed to prepare a resin material supply container 102 in which the granular resin composition 103 is placed (see FIG. 1).
  • the granular resin composition 103 in the resin material supply container 102 can be measured by a measuring means installed under the resin material supply container 102.
  • a resin material supply container 102 in which a granular resin composition 103 is placed is placed between an upper mold and a lower mold of a compression mold, and a lead frame or a circuit board on which a semiconductor element is mounted is installed. It is fixed to the upper mold of the compression molding die by a fixing means such as clamp and suction (not shown) so that the semiconductor element mounting surface is on the lower side.
  • a resin material supply mechanism such as a shutter constituting the bottom surface of the resin material supply container 102 (see FIG.
  • the granular shape is obtained.
  • the resin composition 103 is melted at a predetermined temperature in the lower mold cavity 104.
  • the mold is clamped by a compression molding machine while reducing the pressure inside the cavity as necessary so that the molten resin composition surrounds the semiconductor element.
  • the semiconductor element is encapsulated by filling the cavity and further curing the resin composition for a predetermined time. After a predetermined time has elapsed, the mold is opened and the semiconductor device is taken out. It is not essential to perform deaeration molding under reduced pressure in the cavity, but it is preferable because voids in the cured product of the resin composition can be reduced.
  • the semiconductor element mounted on the lead frame or the circuit board may be plural, and may be stacked or mounted in parallel.
  • the granular resin composition used has a yield in compression molding and quality in a semiconductor device.
  • a conveying means such as a vibration feeder
  • the granular resin composition is uniformly fed out by vibration (hereinafter referred to as “conveyability”). Called).
  • compression molding is a molding method that does not require much shearing force to the resin composition due to kneading, flow, etc., and when the material used is a granular resin composition, The viscosity and curability will also change depending on the particle size distribution.
  • the time to reach the minimum ion viscosity, the minimum ion viscosity, as measured by a dielectric analyzer Time until reaching the minimum ion viscosity and the maximum value of the ion viscosity value after 300 seconds from the start of measurement (hereinafter sometimes referred to simply as the maximum value) until reaching the ion viscosity value of 90% Use time interval.
  • any of the evaluation means is a means for showing the resin viscosity behavior during the flow, and it cannot express the viscosity behavior in compression molding substantially or without shearing, that is, the shear force applied to the resin, The reaction was accelerated due to the collision of the resin and the curing was delayed due to the molecular cutting, so that the state in the compression molding could not be grasped correctly.
  • the ionic viscosity characteristic when the resin composition for semiconductor encapsulation is measured with a dielectric analyzer is a characteristic representing the viscosity characteristic and curing behavior of the granular resin composition for semiconductor encapsulation, and molding in compression molding. It is suitable for evaluating the viscosity characteristics and curing behavior of a granular resin composition in a substantially no-shear state close to the situation at the time.
  • FIG. 3 is a diagram showing ion viscosity and slope profiles when the semiconductor sealing resin composition according to the present invention is measured with a dielectric analyzer. When the entire resin is in a melted state, the ionic viscosity becomes the minimum value, and the ionic viscosity increases as curing proceeds.
  • the time to reach the minimum ionic viscosity (hereinafter, also referred to as “minimum ionic viscosity arrival time”) represents the ease of dissolution as a granular resin composition, and the value of the minimum ionic viscosity is the granular value.
  • the resin composition represents the minimum viscosity.
  • the interval between the time to reach the minimum ionic viscosity and the time to reach the 90% ionic viscosity value with respect to the maximum value (hereinafter also referred to as “stable time”) is a granular resin. It represents the time width during which the composition has fluidity.
  • the resin composition for encapsulating a semiconductor of the present invention has a time of 20 seconds or less from the start of measurement to the minimum ion viscosity when measured with a dielectric analyzer at a measurement temperature of 175 ° C. and a measurement frequency of 100 Hz. It is preferable that it is 15 seconds or less. Even when the wire diameter is 18 ⁇ m or less due to the sufficiently low resin viscosity when the resin comes into contact with the wire of the semiconductor device when the time to reach the minimum ion viscosity is less than the above upper limit value The wire flow hardly occurs (the wire flow rate is 2.5% or less), and as a result, the occurrence of short-circuit defects in the fine pitch wire can be suppressed.
  • the lower limit value of the time to reach the minimum ionic viscosity is not particularly limited, but only the resin in the part in contact with the cavity of the compression mold is melted and cured in advance. Accordingly, in consideration of the occurrence of partial gel and uneven curing, it is preferably 2 seconds or more, and more preferably 5 seconds or more.
  • the resin composition for encapsulating a semiconductor of the present invention preferably has a minimum ion viscosity value of 6.5 or less when measured with a dielectric analyzer at a measurement temperature of 175 ° C. and a measurement frequency of 100 Hz. .3 or less is more preferable.
  • the minimum ion viscosity value is less than or equal to the above upper limit, even when the wire diameter is 18 ⁇ m or less, there is almost no wire flow (wire flow rate is 2.5% or less), and as a result, the fine pitch wire is shorted. The occurrence of defects can be suppressed.
  • the lower limit value of the minimum ion viscosity value is not particularly limited, but it is 1 or more considering that burrs are generated in the air vent part or parting line due to the resin viscosity becoming too low. It is preferable that it is 3 or more.
  • the minimum ionic viscosity value refers to the minimum ionic viscosity value from 300 seconds after the start of measurement.
  • the resin composition for encapsulating a semiconductor of the present invention is measured with a dielectric analyzer at a measurement temperature of 175 ° C. and a measurement frequency of 100 Hz. Is preferably 10 seconds or more, and more preferably 14 seconds or more, until the time to reach an ion viscosity value of 90% of the ion viscosity value after 300 seconds.
  • a dielectric analyzer at a measurement temperature of 175 ° C. and a measurement frequency of 100 Hz.
  • the upper limit of the interval between the time from the start of measurement until reaching the lowest ion viscosity and the time until the ion viscosity value reaches 90% of the ion viscosity value after 300 seconds from the start of measurement is particularly limited.
  • the mold stains become severe, resulting in a decrease in productivity due to an increase in the number of cleanings, and a decrease in the heat resistance and moisture resistance of the cured product. Taking this into consideration, it is preferably 120 seconds or shorter, and more preferably 60 seconds or shorter.
  • DEA231 / 1 cure analyzer manufactured by NETZSCH can be used as the dielectric analyzer main body, and MP235 Mini-Press manufactured by NETZSCH can be used as the press. Moreover, as a measuring method, it can measure based on ASTM E2039.
  • the time from the start of measurement until reaching the minimum ion viscosity is 20 seconds or less.
  • the minimum ionic viscosity value is 6.5 or less, the time from the start of measurement until reaching the minimum ionic viscosity, and the time until the ionic viscosity value reaches 90% of the ionic viscosity value after 300 seconds from the start of measurement.
  • the types and blending ratios of the epoxy resin, the curing agent and the curing accelerator, and the particle size distribution of the granular semiconductor sealing resin composition are adjusted. Is achieved.
  • the granular semiconductor sealing resin composition of the present invention contains fine powder having a particle size of less than 106 ⁇ m in a particle size distribution measured by sieving using a JIS standard sieve in a proportion of 5% by mass or less of the entire resin composition. It is preferable that it is contained at a ratio of 3% by mass or less. If the proportion of fine powder having a particle size of less than 106 ⁇ m is not more than the above upper limit value, it will not agglomerate or adhere to the conveying path of the conveying means such as a vibration feeder or adhere to the conveying means in the conveying and weighing stages. Stable transportability and good weighing accuracy can be obtained.
  • the dielectric analyzer uses a measurement temperature of 175 ° C. and a measurement frequency of 100 Hz. It is easy to make the interval between the time to reach the minimum ionic viscosity and the time to reach the ionic viscosity value of 90% with respect to the maximum value within an appropriate range when measured by However, it is preferable.
  • the proportion of fine powder having a particle size of less than 106 ⁇ m is equal to or less than the above upper limit value, partial gel and unevenness of curing may occur in the molding stage as melting and curing of the fine powder having a particle size of less than 106 ⁇ m are relatively preceded. Less likely to occur.
  • the lower limit value of the proportion of fine powder having a particle size of less than 106 ⁇ m is not particularly limited, and may be 0% by mass.
  • the proportion of coarse particles of 2 mm or more in the particle size distribution measured by sieving using a JIS standard sieve is 3% by mass or less based on the entire resin composition. It is preferable that it is 2% by mass or less. If the ratio of coarse particles of 2 mm or more is less than the above upper limit value, there is no variation in weighing due to mixing of large particles in the conveying and weighing stages, and good weighing accuracy can be obtained. The quality of the semiconductor device after molding can be stabilized.
  • the dielectric analyzer uses a measurement temperature of 175 ° C. and a measurement frequency of 100 Hz. It is also preferable that the time from the start of measurement until reaching the minimum ion viscosity can be easily adjusted to an appropriate range. Further, if the ratio of coarse particles of 2 mm or more is equal to or less than the above upper limit value, curing unevenness and partial wire flow are caused in the forming stage as melting and hardening of coarse particles of 2 mm or more are relatively delayed. Is less likely to occur. Moreover, about the lower limit of the ratio of the coarse particle of 2 mm or more, it is not specifically limited, 0 mass% may be sufficient.
  • each of the granular resin compositions of the present invention has a mass% of components classified under the above-mentioned certain conditions. Defined as particle size distribution.
  • the resin composition for semiconductor molding for compression molding that has been conventionally used is prepared by pre-mixing each raw material component with a mixer, followed by heating and kneading with a kneader such as a roll, kneader, or extruder, followed by cooling and pulverization steps. It is a pulverized product, and in the particle size distribution measured by sieving using a JIS standard sieve, the amount of fine powder of less than 106 ⁇ m exceeds 10% by mass, and coarse particles of 2 mm or more. The amount was about 4 to 6% by mass and had a wide particle size distribution.
  • the granular resin composition for encapsulating a semiconductor has, for example, an almost spherical shape having an average particle diameter of about 2 mm, a pulverized product, and a fine powder having a particle size of 1 mm or less. Was cut into coarse powder having an average particle size of about 3 mm.
  • the epoxy resin molding material described in Patent Document 1 contains a considerable amount of coarse particles of 2 mm or more.
  • the document does not include a description of cutting coarse particles of 2 mm or more, and it is considered that this cutting step is not added from the viewpoint of productivity.
  • the time to reach the value is 15 seconds or less, the minimum ion viscosity value is 6.3 or less, and the time to reach the minimum ion viscosity and the ion viscosity value of 90% with respect to the maximum value are reached. It is more preferable to use one having an interval of 14 seconds or more. When the gap on the chip is 80 ⁇ m or less, the wire may be exposed.
  • an epoxy resin is used in the resin composition for semiconductor encapsulation of the present invention.
  • the epoxy resin used in the resin composition of the present invention is a monomer, oligomer or polymer in general having two or more epoxy groups in one molecule, and its molecular weight and molecular structure are not particularly limited.
  • Crystalline epoxy resins such as biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, stilbene type epoxy resin, hydroquinone type epoxy resin; cresol novolac type epoxy resin, phenol novolac type epoxy resin, naphthol novolak type epoxy resin
  • Novolak type epoxy resins such as: phenylene skeleton-containing phenol aralkyl type epoxy resins, biphenylene skeleton containing phenol aralkyl type epoxy resins, phenylene skeleton containing naphthol aralkyl type epoxy resins, etc.
  • Lukyle type epoxy resin Trifunctional methane type epoxy resin and trifunctional type epoxy resin such as alkyl modified triphenol methane type epoxy resin; Modified phenol type epoxy resin such as dicyclopentadiene modified phenol type epoxy resin and terpene modified phenol type epoxy resin A heterocyclic ring-containing epoxy resin such as a triazine nucleus-containing epoxy resin, and the like, and these may be used alone or in combination of two or more.
  • biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, biphenylene skeleton-containing phenol aralkyl type epoxy resins, and dicyclopentadiene-modified phenol type epoxy resins are preferably used.
  • the time from the start of measurement until reaching the minimum ion viscosity is 20 seconds or less, and the minimum ion viscosity The value is 6.5 or less, and the interval between the time until reaching the ion viscosity value of 90% of the ion viscosity value after 300 seconds from the start of measurement and the time until reaching the lowest ion viscosity from the start of measurement is From the viewpoint of satisfying the range of 10 seconds or more, it is preferable to use a molecular structure having a biphenyl skeleton and an epoxy equivalent of 180 or more.
  • the lower limit of the blending ratio of the entire epoxy resin is not particularly limited, but is preferably 2% by mass or more, and more preferably 4% by mass or more in the total resin composition. When the lower limit of the blending ratio is within the above range, there is little possibility of causing a decrease in fluidity.
  • the upper limit of the blending ratio of the entire epoxy resin is not particularly limited, but is preferably 15% by mass or less, and more preferably 13% by mass or less in the entire resin composition. When the upper limit of the blending ratio is within the above range, there is little possibility of causing a decrease in solder resistance.
  • the time to reach the minimum ion viscosity, the minimum ion viscosity, and the time to reach 90% of the ion viscosity value with respect to the maximum value and the minimum ion viscosity as measured by the dielectric analyzer In consideration of the interval from the time until the completion, it is desirable to appropriately adjust the blending ratio according to the type of epoxy resin used.
  • a curing agent is used in the resin composition for encapsulating a semiconductor of the present invention.
  • the curing agent used in the resin composition of the present invention is not particularly limited as long as it is cured by reacting with an epoxy resin.
  • an epoxy resin For example, the number of carbon atoms such as ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine and the like.
  • phenol novolac resins phenol aralkyl resins having a phenylene skeleton, phenol aralkyl resins having a biphenylene skeleton, and the like are preferably used.
  • the resin composition is measured with a dielectric analyzer at a measurement temperature of 175 ° C.
  • the time from the start of measurement until reaching the minimum ion viscosity is 20 seconds or less, and the minimum ion viscosity The value is 6.5 or less, and the interval between the time until reaching the ion viscosity value of 90% of the ion viscosity value after 300 seconds from the start of measurement and the time until reaching the lowest ion viscosity from the start of measurement is From the viewpoint of achieving a range satisfying 10 seconds or more, it is preferable to use a molecular structure having a phenylene and / or biphenyl skeleton and having a hydroxyl group equivalent of 160 or more.
  • the lower limit of the blending ratio of the entire curing agent is not particularly limited, but is preferably 0.8% by mass or more and more preferably 1.5% by mass or more in the entire resin composition. When the lower limit value of the blending ratio is within the above range, sufficient fluidity can be obtained.
  • the upper limit of the blending ratio of the entire curing agent is not particularly limited, but is preferably 10% by mass or less, and more preferably 8% by mass or less in the entire resin composition. When the upper limit of the blending ratio is within the above range, good solder resistance can be obtained.
  • the time to reach the minimum ion viscosity, the minimum ion viscosity, and the time to reach 90% of the ion viscosity value with respect to the maximum value and the minimum ion viscosity as measured by the dielectric analyzer In consideration of the interval from the time until the completion, it is desirable to appropriately adjust the blending ratio according to the type of the curing agent to be used.
  • the blending ratio of the entire epoxy resin and the entire phenol resin curing agent is the number of epoxy groups (EP) of the entire epoxy resin and the entire phenol resin curing agent.
  • the equivalent ratio (EP) / (OH) to the number of phenolic hydroxyl groups (OH) is preferably 0.8 or more and 1.3 or less. When the equivalent ratio is within this range, sufficient curability can be obtained during molding of the resin composition. Moreover, when the equivalent ratio is within this range, good physical properties in the cured resin can be obtained.
  • the curing accelerator used is used so that the curability of the resin composition and the glass transition temperature or the thermal elastic modulus of the cured resin can be increased. It is desirable to adjust the equivalent ratio (Ep / Ph) between the number of epoxy groups (Ep) of the entire epoxy resin and the number of phenolic hydroxyl groups (Ph) of the entire curing agent according to the kind of the epoxy resin.
  • the time to reach the minimum ion viscosity, the minimum ion viscosity, and the time to reach 90% of the ion viscosity value with respect to the maximum value and the minimum ion viscosity as measured by the dielectric analyzer In consideration of the interval from the time until the setting, it is desirable to appropriately adjust the equivalent ratio according to the type of epoxy resin and phenol resin curing agent to be used.
  • a curing accelerator is used in the resin composition for semiconductor encapsulation of the present invention.
  • a hardening accelerator used for the resin composition for semiconductor sealing of this invention what is necessary is just to accelerate the hardening reaction of an epoxy group and a phenolic hydroxyl group, and what is generally used for a sealing material is used. it can.
  • diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof; amine compounds such as tributylamine and benzyldimethylamine; imidazole compounds such as 2-methylimidazole; Organic phosphines such as phosphine and methyldiphenylphosphine; tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / tetrabenzoic acid borate, tetraphenylphosphonium / tetranaphthoic acid borate, tetraphenylphosphonium / tetranaphthoyloxyborate, tetraphenyl Tetra-substituted phosphonium / tetra-substituted borate such as phosphonium / tetranaphthyloxyborate; tripheny
  • phosphorus atom-containing compounds such as tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds are preferably used.
  • a dielectric analyzer at a measurement temperature of 175 ° C.
  • the time from the start of measurement until reaching the minimum ion viscosity is 20 seconds or less, and the minimum ion viscosity The value is 6.5 or less, and the interval between the time until reaching the ion viscosity value of 90% of the ion viscosity value after 300 seconds from the start of measurement and the time until reaching the lowest ion viscosity from the start of measurement is From the viewpoint of achieving a range that satisfies 10 seconds or more, it is preferable to use a curing accelerator having a latent property that provides a good balance between low viscosity, thermal stability and curability.
  • the lower limit of the blending ratio of the entire curing accelerator is preferably 0.1% by mass or more based on the total resin composition. Sufficient curability can be obtained when the lower limit of the blending ratio of the entire curing accelerator is within the above range. Moreover, it is preferable that the upper limit of the mixture ratio of the whole hardening accelerator is 1 mass% or less in all the resin compositions. Sufficient fluidity can be obtained when the upper limit of the blending ratio of the entire curing accelerator is within the above range.
  • the time to reach the minimum ion viscosity, the minimum ion viscosity, and the time to reach 90% of the ion viscosity value with respect to the maximum value and the minimum ion viscosity as measured by the dielectric analyzer In consideration of the interval from the time until completion, it is desirable to appropriately adjust the blending ratio according to the type of curing accelerator to be used.
  • an inorganic filler is used in the semiconductor sealing resin composition of the present invention.
  • the inorganic filler used in the semiconductor sealing resin composition of the present invention is not particularly limited as long as it is generally used in semiconductor sealing materials, and includes fused fracture silica, fused spherical silica, crystalline silica, Silica such as secondary agglomerated silica; alumina, titanium white, aluminum hydroxide, talc, clay, mica, glass fiber and the like.
  • fused spherical silica is particularly preferable.
  • the shape of the particles is preferably infinitely spherical, and the amount of filling can be increased by mixing particles having different particle sizes.
  • the time from the start of measurement until reaching the minimum ion viscosity is 20 seconds or less, and the minimum ion viscosity The value is 6.5 or less, and the interval between the time until reaching the ion viscosity value of 90% of the ion viscosity value after 300 seconds from the start of measurement and the time until reaching the lowest ion viscosity from the start of measurement is From the viewpoint of achieving a range satisfying 10 seconds or more, it is preferable to use fused spherical silica.
  • the lower limit of the content of the inorganic filler is preferably 78% by mass or more, more preferably 80% by mass or more, and particularly preferably 83% by mass or more based on the entire resin composition.
  • the lower limit of the content of the inorganic filler is within the above range, the cured product physical properties of the resin composition do not increase moisture absorption or decrease strength, and have good solder crack resistance. Obtainable.
  • an upper limit of the content rate of an inorganic filler it is preferable that it is 93 mass% or less of the whole resin composition, It is more preferable that it is 91 mass% or less, It is especially preferable that it is 90 mass% or less. .
  • the upper limit value of the content ratio of the inorganic filler is within the above range, the flowability is not impaired and good moldability can be obtained.
  • the resin composition is measured with a dielectric analyzer at a measurement temperature of 175 ° C.
  • the time from the start of measurement until reaching the minimum ion viscosity is 20 seconds or less, and the minimum ion viscosity The value is 6.5 or less, and the interval between the time until reaching the ion viscosity value of 90% of the ion viscosity value after 300 seconds from the start of measurement and the time until reaching the lowest ion viscosity from the start of measurement is From the viewpoint of satisfying the range of 10 seconds or more, it is preferable to set the content of the inorganic filler low within a range in which good solder resistance is obtained.
  • the resin composition for semiconductor encapsulation of the present invention includes a coupling agent such as ⁇ -glycidoxypropyltrimethoxysilane; a colorant such as carbon black; a natural wax; Molding agents such as wax, higher fats or metal salts thereof, paraffin, etc .; low stress components such as silicone oil and silicone rubber; various additives such as antioxidants can be blended.
  • a coupling agent such as ⁇ -glycidoxypropyltrimethoxysilane
  • a colorant such as carbon black
  • a natural wax such as a natural wax
  • Molding agents such as wax, higher fats or metal salts thereof, paraffin, etc .
  • low stress components such as silicone oil and silicone rubber
  • various additives such as antioxidants can be blended.
  • the semiconductor sealing resin composition of the present invention is prepared by mixing the above-mentioned components and other additives uniformly at room temperature using, for example, a mixer, and kneading such as a heating roll, a kneader or an extruder. After being melt kneaded using a machine, the cooled and pulverized product is obtained by removing coarse particles and fine particles using a sieve (hereinafter also referred to as “pulverized sieving method”), and melt kneaded.
  • the resin composition can be obtained by a method of granulating the resin composition into a granular form.
  • a granulating method is preferred.
  • a method of granulating for example, using an extruder in which a die having a plurality of small diameters is installed at the tip of a screw, molten resin extruded in a strand form from small holes arranged in the die is applied to the die surface.
  • hot cut methods There are methods (hereinafter also referred to as “hot cut methods”) obtained by cutting with a cutter that slides and rotates substantially in parallel, but direct or indirect heating is considered in consideration of problems such as contamination of worn metal powder.
  • a melt-kneaded resin composition is supplied in a molten state to the inside of a rotor composed of a cylindrical outer peripheral portion having a plurality of small holes whose temperature is controlled by means and a disc-shaped bottom surface.
  • a method of obtaining a granular semiconductor sealing resin composition by passing through small holes by centrifugal force obtained by rotating the rotor (hereinafter also referred to as “centrifugal milling method”) is preferable.
  • centrifugal milling method By appropriately adjusting the production conditions in this production method, the proportion of the fine powder having a particle size of less than 106 ⁇ m in the particle size distribution measured by sieving using a JIS standard sieve is 5% by mass or less.
  • a granular semiconductor sealing resin composition having a ratio of coarse particles having a particle diameter of 2 mm or more to the entire semiconductor sealing resin composition of 3% by mass or less can be obtained.
  • FIG. 4 shows a schematic diagram of one embodiment from the melt kneading of the resin composition to the collection of the granular resin composition to obtain a granular semiconductor sealing epoxy resin composition
  • FIG. 5 shows the rotor.
  • FIG. 6 is a cross-sectional view of an embodiment of an exciting coil for heating the cylindrical outer peripheral portion of the rotor
  • FIG. 6 shows an embodiment of a double-pipe cylinder that supplies a melted and kneaded resin composition to the rotor. The cross-sectional views are respectively shown.
  • the epoxy resin composition melt-kneaded by the twin-screw extruder 209 is supplied to the inside of the rotor 201 through a double-pipe cylindrical body 205 cooled by passing a refrigerant between the inner wall and the outer wall.
  • the double-pipe cylindrical body 205 is preferably cooled using a refrigerant so that the melt-kneaded epoxy resin composition does not adhere to the wall of the double-pipe cylindrical body 205.
  • the rotor 201 is connected to the motor 210 and can be rotated at an arbitrary number of revolutions.
  • a cylindrical outer peripheral portion 202 having a plurality of small holes installed on the outer periphery of the rotor 201 is provided with a magnetic material 203, and an AC power source generated by an AC power source generator 206 in an excitation coil 204 provided in the vicinity thereof. Is heated by eddy current loss and hysteresis loss accompanying the passage of the alternating magnetic flux generated by energizing.
  • this magnetic material 203 iron material, silicon steel, etc. are mentioned, for example, One type or two or more types of magnetic materials 203 can be used in combination.
  • the vicinity of the small holes of the cylindrical outer peripheral portion 202 having a plurality of small holes may not be formed of the same material as that of the magnetic material 203.
  • it is formed of a nonmagnetic material having high thermal conductivity and is magnetically formed above and below it.
  • the vicinity of the small hole of the cylindrical outer peripheral portion 202 can be heated by heat conduction using the heated magnetic material 203 as a heat source.
  • the nonmagnetic material include copper and aluminum, and one type or two or more types of nonmagnetic materials can be used in combination.
  • the epoxy resin composition in contact with the heated cylindrical outer peripheral portion 202 having a plurality of small holes easily passes through the small holes in the cylindrical outer peripheral portion 202 and is discharged without increasing the melt viscosity.
  • the heating temperature can be arbitrarily set depending on the characteristics of the epoxy resin composition to be applied. In general, if the heating temperature is raised too much, the epoxy resin composition is hardened and the fluidity may be reduced or the small holes in the cylindrical outer peripheral portion 202 may be clogged. In this case, since the contact time between the resin composition and the cylindrical outer peripheral portion 202 is extremely short, the influence on the fluidity is extremely small. In addition, since the cylindrical outer peripheral portion 202 having a plurality of small holes is heated uniformly, there is very little local change in fluidity. The plurality of small holes in the cylindrical outer peripheral portion 202 can arbitrarily adjust the hole diameter according to the particle shape and particle size distribution of the resin composition to be used.
  • the granular resin composition discharged through the small holes in the cylindrical outer peripheral portion 202 is collected, for example, in an outer tank 208 installed around the rotor 201.
  • the outer tank 208 flies through a small hole in the cylindrical outer peripheral portion 202 in order to prevent adhesion of the granular epoxy resin composition to the inner wall and fusion between the granular epoxy resin compositions.
  • the collision surface on which the granular epoxy resin composition collides is installed with an inclination of 10 to 80 degrees, preferably 25 to 65 degrees with respect to the flight direction of the granular epoxy resin composition.
  • the collision energy of the granular epoxy resin composition can be sufficiently dispersed, and there is little possibility of causing adhesion to the wall surface.
  • the flight speed of a granular epoxy resin composition can fully be reduced when the inclination of the collision surface with respect to the flight direction of an epoxy resin composition is more than the said lower limit, secondary collision with the outer tank wall surface is possible. Even if it does, there is little fear of adhering to the exterior wall surface.
  • the inner diameter of the outer tub 208 is such that the granular epoxy resin composition is sufficiently cooled so that adhesion of the granular epoxy resin composition to the inner wall and fusion between the granular epoxy resin compositions do not occur.
  • the size is desirable. In general, an air flow is generated by the rotation of the rotor 201 and a cooling effect is obtained, but cold air may be introduced if necessary.
  • the size of the outer tub 208 depends on the amount of resin to be processed, for example, when the diameter of the rotor 201 is 20 cm, adhesion and fusion can be prevented if the inner diameter of the outer tub 208 is about 100 cm.
  • the semiconductor device of the present invention in which a semiconductor element is sealed by compression molding using a granular semiconductor sealing resin composition will be described.
  • the method for obtaining a semiconductor device by sealing a semiconductor element by compression molding using the granular resin composition of the present invention is as described above.
  • the semiconductor element sealed with the semiconductor device of the present invention is not particularly limited, and examples thereof include an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, and a diode.
  • the form of the semiconductor device of the present invention is not particularly limited, and examples thereof include a ball grid array (BGA), a MAP type BGA, and the like. Also, dual in-line package (DIP), plastic leaded chip carrier (PLCC), quad flat package (QFP), low profile quad flat package (LQFP), small outline package ( SOP), Small Outline J Lead Package (SOJ), Thin Small Outline Package (TSOP), Thin Quad Flat Package (TQFP), Tape Carrier Package (TCP), Chip Size Package ( (CSP), quad flat non-ready package (QFN), small outline non-ready package (SON), lead frame BGA (LF-BGA), and the like.
  • DIP dual in-line package
  • PLCC plastic leaded chip carrier
  • QFP quad flat package
  • LQFP low profile quad flat package
  • SOP small outline package
  • SOJ Small Outline J Lead Package
  • TSOP Thin Small Outline Package
  • TQFP Thin Quad Flat Package
  • TCP Tape Carrier Package
  • CSP Chip Size Package
  • the semiconductor device of the present invention in which the semiconductor element is encapsulated with the cured resin composition by compression molding is completely cured as it is or at a temperature of about 80 ° C. to 200 ° C. for about 10 minutes to 10 hours. Later, it is mounted on an electronic device or the like.
  • a lead frame or a circuit board one or more semiconductor elements stacked or mounted in parallel on the lead frame or the circuit board, and bonding wires for electrically connecting the lead frame or the circuit board and the semiconductor element
  • a semiconductor device including a semiconductor element and a sealing material for sealing a bonding wire will be described in detail with reference to the drawings, but the present invention is not limited to the one using a bonding wire.
  • FIG. 7 is a diagram showing a cross-sectional structure of an example of a semiconductor device obtained by sealing a semiconductor element mounted on a die pad of a lead frame using the epoxy resin composition for semiconductor sealing according to the present invention.
  • the semiconductor element 301 is fixed on the die pad 303 via the die bond material cured body 302.
  • the electrode pad of the semiconductor element 301 and the lead frame 305 are connected by a wire 304.
  • the semiconductor element 301 is sealed with a sealing material 306 formed of a cured body of a semiconductor sealing resin composition.
  • FIG. 8 is a diagram showing a cross-sectional structure of an example of a semiconductor device obtained by sealing a semiconductor element mounted on a circuit board using the epoxy resin composition for semiconductor sealing according to the present invention.
  • the semiconductor element 301 is fixed on the circuit board 308 via the die bond material cured body 302.
  • a wire 304 is connected between the electrode pad 307 of the semiconductor element 301 and the electrode pad 307 on the circuit board 308.
  • Only one side of the circuit board 308 on which the semiconductor element 301 is mounted is sealed with a sealing material 306 composed of a cured body of an epoxy resin composition for semiconductor sealing.
  • the electrode pad 307 on the circuit board 308 is bonded to the solder ball 309 on the non-sealing surface side on the circuit board 308 inside.
  • Example 1 Epoxy resin 1: phenol aralkyl type epoxy resin having a biphenylene skeleton (manufactured by Nippon Kayaku Co., Ltd., NC-3000, softening point 52 ° C., epoxy equivalent 270) 8.53 parts by mass Phenol resin 1: Phenol aralkyl resin having a biphenylene skeleton (MEH-7851, manufactured by Meiwa Kasei Co., Ltd., softening point 67 ° C., hydroxyl group equivalent 203) 6.42 parts by mass Curing accelerator 1 (manufactured by Hokuko Chemical Co., Ltd., TPPBQ) 0.55 parts by mass Spherical fused silica (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-560, average particle size 30 ⁇ m) 84 parts by mass Coupling agent (manufactured by Nippon Kayaku Co., Ltd., NC-3000, softening point 52 °
  • the mixed raw material was screw rotated at 30 RPM at 100 ° C. in a co-rotating twin screw extruder having a cylinder inner diameter of 65 mm.
  • a melt-kneaded resin composition was prepared by melt-kneading at the resin temperature.
  • a cylinder heated at 115 ° C. by centrifugal force obtained by supplying the resin composition melt-kneaded from above the rotor having a diameter of 20 cm at a rate of 2 kg / hr and rotating the rotor at 3000 RPM.
  • a granular resin composition for semiconductor encapsulation was obtained by passing a plurality of small holes (hole diameter: 2.5 mm) in the outer peripheral part.
  • Examples 2 to 4 and Comparative Examples 1 to 6 In accordance with the formulation shown in Table 1, granular semiconductor sealing resin compositions of Examples 2 to 4 and Comparative Examples 1 to 6 were obtained in the same manner as in Example 1.
  • Examples 5-7 The raw material was pulverized and mixed for 5 minutes with a super mixer after the same composition as in Example 1, and this mixed raw material was resin with a screw rotation speed of 30 RPM and 100 ° C. in a co-rotating twin screw extruder having a cylinder inner diameter of 65 mm. After melt-kneading at a temperature, the sheet formed with a sheeting roll was cooled and pulverized. Thereafter, the particle size distribution was adjusted using a sieve so that the fine powder amount and the coarse particle amount shown in Table 2 were obtained, and the granular semiconductor sealing resin compositions of Examples 5 to 7 were obtained.
  • Comparative Example 7 After blending the same ingredients as in Example 2 and pulverizing and mixing the raw materials for 5 minutes with a super mixer, the mixed raw material was resin with a screw rotation speed of 30 RPM and 100 ° C. in a co-rotating twin screw extruder having a cylinder inner diameter of 65 mm. After melt-kneading at a temperature, the sheet formed with a sheeting roll was cooled and pulverized. Then, the particle size distribution was adjusted using a sieve so that the fine powder amount and the coarse particle amount described in Table 2 were obtained, and the granular semiconductor sealing resin composition of Comparative Example 7 was obtained.
  • Epoxy resin 2 Triphenylmethane type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., 1032H60. Softening point 59 ° C., epoxy equivalent 171)
  • Epoxy resin 3 biphenyl type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YX-4000, melting point 107 ° C., epoxy equivalent 190)
  • Epoxy resin 4 dicyclopentadiene-modified epoxy resin (manufactured by DIC Corporation, HP-7200, softening point 64 ° C., epoxy equivalent 265)
  • Epoxy resin 5 Cresol novolac epoxy resin (manufactured by DIC Corporation, N660, softening point 60 ° C., epoxy equivalent 200)
  • Phenol resin 2 Triphenylmethane type phenol resin (Maywa Kasei Co., Ltd., MEH-7500. Softening point 110 ° C., hydroxyl equivalent 97)
  • Phenol resin 3 Phenol novolac resin (manufactured by Sumitomo Bakelite Co., Ltd., PR-51714, softening point 110 ° C., hydroxyl equivalent 104)
  • Phenol resin 4 Phenol aralkyl resin containing a phenylene skeleton (Mitsui Chemicals, XL-225-3L. Softening point 80 ° C., hydroxyl equivalent 175)
  • Curing accelerator 2 Curing accelerator represented by the following general formula (1)
  • Curing accelerator 3 Triphenylphosphine
  • Fine powder amount of less than 106 ⁇ m and coarse particle amount of 2 mm or more A sample obtained by weighing 40 g of the obtained granular resin composition to 1 mg was used as a sample. Using a JIS standard sieve with a mesh size of 2.00 mm and 106 ⁇ m provided in a low tap sieve vibrator (manufactured by Maruhishi Kagaku Kikai Seisakusho, Model-SS-100A), these sieves were vibrated for 20 minutes (hammer hitting number: 120 times / minute), the sample was passed through a sieve and classified.
  • the mass of the fine powder that passed through the 106 ⁇ m sieve and the mass of the coarse particles remaining on the 2 mm sieve were measured, and the fine powder amount of less than 106 ⁇ m and the coarse particle amount of 2 mm or more based on the mass of the sample before classification The mass ratio of was calculated.
  • a measuring method in accordance with ASTM E2039, about 3 g of a granular semiconductor sealing resin composition is introduced into the upper surface of an electrode part in a press at a measuring temperature of 175 ° C. and a measuring frequency of 100 Hz, and the change in ionic viscosity is pressed. was measured.
  • the table shows the interval (stable time) from the time to reach the 90% ionic viscosity value.
  • the minimum ionic viscosity attainment time is a parameter related to the ease of dissolution as a granular resin composition, and a smaller numerical value means easier dissolution.
  • the unit is seconds.
  • the minimum ionic viscosity is a parameter relating to fluidity. The smaller the numerical value, the better the fluidity. There is no unit.
  • the stabilization time is a parameter related to the time width in which the granular resin composition has fluidity, and the smaller the numerical value, the shorter the time width in which fluidity is present. The unit is seconds.
  • Adhesion and adhesion on the conveyance path After supplying 100 g of the resin composition sample to the hopper of the vibration feeder (450 mm length ⁇ 55 mm width), the vibration intensity is adjusted so that the conveyance amount is 18 g / min. After conveying 10 g, the stop was repeated for 3 minutes, and 100 g of the entire amount was conveyed. After the conveyance, the adhesion between particles and the state of adhesion to the vibration feeder were observed to confirm the presence or absence of adhesion and adhesion.
  • Wire flow rate A chip having a chip size of 7 ⁇ 7 ⁇ 0.4 mm mounted on a resin substrate (size 150 ⁇ 55 mm) and electrically connected by a ⁇ 18 ⁇ m gold wire is used as the upper mold cavity of the compression mold.
  • the resin composition that was installed and weighed using the vibration feeder was put into the lower mold cavity of the compression mold, and then the mold temperature was 175 ° C., the curing time was 120 sec, and the molding pressure was 9.8 MPa. Under these conditions, a MAPBGA semiconductor device was molded, and the panel was cut to obtain a semiconductor device.
  • the size of the semiconductor device after cutting is 22 ⁇ 22 mm, the thickness of the resin portion is 550 ⁇ m, and the thickness of the resin portion on the chip is 150 ⁇ m.
  • the obtained package was observed with a soft X-ray fluoroscope (PRO-TEST 100 manufactured by Softex Corporation), and the average flow rate of the four longest gold wires (5 mm in length) on the diagonal of the package (flow) Expressed as a ratio of (quantity) / (wire length). Units%.
  • Examples 1 to 4 and Comparative Examples 1 to 6 having the same manufacturing method are compared. Although the types and blending amounts of the epoxy resin, the curing agent, and the curing accelerator are different, the minimum ionic viscosity arrival time is 20 seconds or less, the minimum ionic viscosity is 6.5 or less, and the stabilization time is 10 seconds or more. In any of Examples 1 to 4, the wire flow rate was small, and no void was observed. In Examples 1 to 4, since the amount of fine powder of less than 106 ⁇ m is 5% by mass or less and the amount of coarse particles of 2 mm or more is 3% by mass or less, there is no sticking or adhesion on the conveyance path, and weighing accuracy Also good results were obtained.
  • Comparative Examples 1 to 3 in which the minimum ion viscosity arrival time exceeded 20 seconds and / or the minimum ion viscosity exceeded 6.5, the wire flow was inferior. In Comparative Examples 4 and 5 where the stabilization time was less than 10 seconds, generation of voids was observed.
  • Examples 5 to 7 having the same composition as Example 1 are compared with Comparative Example 7 having the same composition as Example 2.
  • the particle size distribution is slightly different, all of Examples 5 to 7 in which the minimum ionic viscosity arrival time is 20 seconds or less, the minimum ionic viscosity is 6.5 or less, and the stabilization time is 10 seconds or more, The wire flow rate was small, and no void was observed.
  • Comparative Example 7 in which the amount of coarse particles of 2 mm or more was large and the minimum ion viscosity arrival time exceeded 20 seconds the wire flow was inferior.
  • the epoxy resin molding material described in Patent Document 1 contains a considerable amount of coarse particles of 2 mm or more, as in Comparative Example 7. Therefore, even when the epoxy resin molding material described in Patent Document 1 is used, it is presumed that the wire flow is inferior similarly to Comparative Example 7.
  • the granular resin composition for encapsulating a semiconductor of the present invention has a fine pitch of wire bonding, finer wiring of a wire, thinning of a package, narrowing of a gap just above a chip due to multi-stage elements, and / or molding. It can be suitably used for a semiconductor device that has been converted to MAP.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 圧縮成形により半導体素子を封止してなる半導体装置に用いられる顆粒状の半導体封止用樹脂組成物であって、誘電分析装置にて測定温度175℃、測定周波数100Hzの条件にて測定した際に、下記a)~c)を満たすことを特徴とする半導体封止用樹脂組成物。 a)測定開始から最低イオン粘度に到達するまでの時間が20秒以下である。 b)最低イオン粘度値が6.5以下である。 c)測定開始から最低イオン粘度に到達するまでの時間と、測定開始から300秒後におけるイオン粘度値の90%のイオン粘度値に到達するまでの時間と、の間隔が10秒以上である。

Description

半導体封止用樹脂組成物、半導体装置の製造方法及び半導体装置
 本発明は、圧縮成形により半導体素子を封止するのに適した顆粒状の半導体封止用樹脂組成物、それを用いた半導体装置の製造方法及びそれにより得られる半導体装置に関するものである。
 半導体装置(以下、「パッケージ」とも称す。)のトランスファー成形による封止に於いて、ワイヤ流れの問題はこれまでも指摘されており、パッケージ形態の変遷に合わせて、成形条件の最適化、半導体封止用樹脂組成物(以下、「樹脂組成物」とも称す。)の低粘度化等の対応がなされてきた。しかし最近の状況は、一方で、半導体装置では高機能化及び低コスト化を目的とした半導体素子(以下、「素子」又は「チップ」とも称す。)の微細配線化により、ワイヤボンディングのファインピッチ化、及びワイヤの微細配線化が進展し、それに伴いこれまで以上にワイヤ流れが発生し易くなっている。他方、樹脂組成物の低粘度化は、半導体装置の信頼性向上、或いはBGA(ボール・グリッド・アレイ)に於ける反り低減を目的としたフィラー高充填化が進む中で、更なる低粘度化が困難になりつつあり、ワイヤ流れ対応がこれまで以上に困難になってきている。加えて、パッケージの薄型化、及び素子の多段化によるチップ直上の狭ギャップ化、及び成形のMAP(モールド・アレイ・パッケージ)化により、ウェルド等の成形性の不良が発生しやすくなってきている。
 圧縮成形技術は、半導体封止に広く行われているトランスファー成形に比べ、樹脂の流速が格段に低く、かつ横方向の流動が少ないため、ワイヤ流れが起こり難く、上記ファインピッチ化への有力な対応法である。さらに、チップ直上の狭ギャップ部の充填に関しても、その成形方式よりウェルドが発生し難い、優れた成形法であり、今後進展する半導体装置のファインピッチ化、薄型化に適した成形法であり、今後の適用拡大が期待される。
 半導体封止用樹脂組成物を用いて圧縮成形により半導体素子を封止して半導体装置を得る方法としては、顆粒状の樹脂組成物を用いる方法(例えば、特許文献1参照。)や、シート状とした樹脂組成物を用いる方法(例えば、特許文献2、3参照。)が提案されている。
 顆粒状の樹脂組成物を用いる方法の場合においては、圧縮成形装置内に設置された圧縮成形金型のキャビティ内に顆粒状の樹脂組成物を投入する前に、樹脂組成物の搬送、及び秤量を行う必要があるが、特許文献1に記載された方法では、2mm程度の比較的大きな顆粒状としているため、秤量精度が不十分となる場合があった。
 また、圧縮成形装置内に設置された圧縮成形金型のキャビティ内に投入された顆粒状の樹脂組成物は、圧縮成形装置により金型が閉じられることにより、キャビティ内で溶融し、キャビティ全体に充填されることとなるが、この際、溶融した樹脂組成物の溶融粘度や硬化の進み方によって、ワイヤ流れの程度や、チップ直上の狭ギャップ部の充填性が左右されることとなる。
 特許文献3には、ワイヤ流れの低減を目的として、樹脂の溶融粘度、ゲルタイムを特定範囲とすることが提案されているが、本方法は樹脂をシート状に加工して用いる方法に関するものであり、顆粒状の樹脂組成物を用いた圧縮成形において、溶融した樹脂組成物の溶融粘度や硬化の進み方について提案されたものはなかった。
特開2000-021908号公報 特開2006-216899号公報 特開2006-070197号公報
 本発明は、顆粒状の半導体封止用樹脂組成物を用いて圧縮成形により半導体素子を封止して半導体装置を得る場合において、良好な充填性が得られ、ワイヤのショート不良が発生し難いという、圧縮成形時の歩留まりや半導体装置における品質を高めることができる半導体封止用樹脂組成物及びそれを用いた半導体装置の製造方法を提供するものである。
 本発明の半導体封止用樹脂組成物は、圧縮成形により半導体素子を封止してなる半導体装置に用いられる顆粒状の半導体封止用樹脂組成物であって、誘電分析装置にて測定温度175℃、測定周波数100Hzの条件にて測定した際に、下記a)~c)を満たすことを特徴とする。
 a)測定開始から最低イオン粘度に到達するまでの時間が20秒以下である。
 b)最低イオン粘度値が6.5以下である。
 c)測定開始から最低イオン粘度に到達するまでの時間と、測定開始から300秒後におけるイオン粘度値の90%のイオン粘度値に到達するまでの時間と、の間隔が10秒以上である。
 本発明の半導体封止用樹脂組成物は、JIS標準篩を用いて篩分により測定した粒度分布における、粒径106μm未満の微粉を前記半導体封止用樹脂組成物全体の5質量%以下の割合で含むものであるものとすることができる。
 本発明の半導体封止用樹脂組成物は、JIS標準篩を用いて篩分により測定した粒度分布における、粒径2mm以上の粗粒を前記半導体封止用樹脂組成物全体の3質量%以下の割合で含むものであるものとすることができる。
 本発明の半導体封止用樹脂組成物は、直接又は間接的な加熱手段により温度調節された複数の小孔を有する円筒状外周部と円盤状の底面から構成される回転子の内側に、溶融混練された前記半導体封止用樹脂組成物を溶融状態で供給し、該半導体封止用樹脂組成物を、前記回転子を回転させて得られる遠心力によって前記小孔を通過させることで得られるものとすることができる。
 本発明の半導体装置の製造方法は、上述の顆粒状の半導体封止用樹脂組成物を用いて圧縮成形により半導体素子を封止することを特徴とする。
 本発明の半導体装置の製造方法は、顆粒状の半導体封止用樹脂組成物を搬送、秤量する工程を圧縮成形工程の直前に行うものとすることができる。
 本発明の半導体装置の製造方法は、圧縮成形金型のキャビティ内の空気を脱気しながら圧縮成形を行うものとすることができる。
 本発明の半導体装置は、リードフレームのダイパッド上や基板に半導体素子を接着固定し、前記半導体素子のワイヤボンディングパッドと前記リードフレームのインナーリード又は前記基板上のワイヤボンディングパッドとをワイヤにて接続した後、上述の半導体封止用樹脂組成物を用いて圧縮成形により半導体素子を封止してなる半導体装置であって、前記ワイヤの直径が18μm以下であり、かつ前記ワイヤの流れ率が2.5%以下であることを特徴とする。
 本発明の半導体装置は、前記半導体素子上における前記半導体封止用樹脂組成物の硬化物の厚みが150μm以下であるものとすることができる。
 本発明に従うと、圧縮成形により半導体素子を封止して半導体装置を得る場合において、圧縮成形時の歩留まりや半導体装置における品質を高めることができる半導体封止用樹脂組成物を得ることができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
顆粒状の樹脂組成物を用いて圧縮成形により半導体素子を封止して半導体装置を得る方法における、搬送から秤量までの一実施例の概略図である。 顆粒状の樹脂組成物を用いて圧縮成形により半導体素子を封止して半導体装置を得る方法における、金型の下型キャビティへの供給方法の一実施例の概略図である。 本発明に係る半導体封止用樹脂組成物を誘電分析装置にて測定した際のイオン粘度及びスロープのプロファイルを示した図である。 本発明の顆粒状の半導体封止用エポキシ樹脂組成物を得るための、樹脂組成物の溶融混練から顆粒状の樹脂組成物の捕集までの一実施例の概略図である。 本発明に使用する回転子及び回転子の円筒状外周部を加熱するための励磁コイルの一実施例の断面図である。 溶融混練された樹脂組成物を回転子に供給する2重管式円筒体の一実施例の断面図である。 本発明に係る半導体封止用エポキシ樹脂組成物を用いて、リードフレームに搭載した半導体素子を封止して得られる半導体装置の一例について、断面構造を示した図である。 本発明に係る半導体封止用エポキシ樹脂組成物を用いて、回路基板に搭載した半導体素子を封止して得られる半導体装置の一例について、断面構造を示した図である。
 本発明の半導体封止用樹脂組成物は、圧縮成形により半導体素子を封止してなる半導体装置に用いられる顆粒状の半導体封止用樹脂組成物であって、誘電分析装置にて測定温度175℃、測定周波数100Hzの条件にて測定した際に、測定開始から最低イオン粘度に到達するまでの時間が20秒以下であり、最低イオン粘度値が6.5以下であり、測定開始から最低イオン粘度に到達するまでの時間と、測定開始から300秒後におけるイオン粘度値の90%のイオン粘度値に到達するまでの時間との間隔が10秒以上であることを特徴とする。また、本発明の半導体装置の製造方法は、上述の顆粒状の半導体封止用樹脂組成物を用いて圧縮成形により半導体素子を封止することを特徴とする。これらの構成により、顆粒状の半導体封止用樹脂組成物を用いて圧縮成形により半導体素子を封止して半導体装置を得る場合において、良好な充填性が得られ、ワイヤのショート不良が発生し難いという、圧縮成形時の歩留まりや半導体装置における品質を高めることができる半導体封止用樹脂組成物及びそれを用いた半導体装置の製造方法を提供することができる。以下、本発明について詳細に説明する。
 先ず、本発明の顆粒状の樹脂組成物を用いて圧縮成形により半導体素子を封止して半導体装置を得る方法の一例について、顆粒状の樹脂組成物の秤量及び金型キャビティへの供給方法の概念図を示した図1、2を用いてより詳細に説明する。樹脂組成物を瞬時に下型キャビティ104内に供給することができるシャッター等の樹脂材料供給機構を備えた樹脂材料供給容器102上に、振動フィーダー101等の搬送手段を用いて顆粒状の樹脂組成物103を一定量搬送し、顆粒状の樹脂組成物103が入れられた樹脂材料供給容器102を準備する(図1参照。)。この際、樹脂材料供給容器102における顆粒状の樹脂組成物103の計量は、樹脂材料供給容器102の下に設置した計量手段により行うことができる。次に、圧縮成形金型の上型と下型の間に、顆粒状の樹脂組成物103が入れられた樹脂材料供給容器102を設置するとともに、半導体素子を搭載したリードフレーム又は回路基板を、クランプ、吸着等の固定手段により圧縮成形金型の上型に、半導体素子搭載面が下側になるようにして固定する(図示せず。)。次いで、樹脂材料供給容器102の底面を構成するシャッター等の樹脂材料供給機構により、秤量された顆粒状の樹脂組成物103を下型キャビティ104内へ供給すると(図2参照。)、顆粒状の樹脂組成物103は下型キャビティ104内で所定温度にて溶融される。さらに、樹脂材料供給容器102を金型外へ搬出したのち、必要に応じてキャビティ内を減圧下にしながら、圧縮成形機により型締めを行って、溶融した樹脂組成物が半導体素子を取り囲むようにキャビティ内に充填させ、さらに所定時間樹脂組成物を硬化させることにより、半導体素子を封止成形する。所定時間経過後、金型を開き、半導体装置の取り出しを行う。なお、キャビティ内を減圧下にして脱気成形することは必須ではないが、樹脂組成物の硬化物中のボイドを低減できるため好ましい。また、リードフレーム又は回路基板に搭載される半導体素子は、複数であってもよく、かつ積層又は並列して搭載されていてもよい。
 上記の例に限らず、顆粒状の樹脂組成物を用いて半導体素子を封止する圧縮成形法の場合、用いられる顆粒状の樹脂組成物には、圧縮成形時の歩留まりや半導体装置における品質を向上させるため、顆粒状の樹脂組成物の圧縮成形金型の下型キャビティへの均質な投入と、圧縮成形金型の下型キャビティに投入される顆粒状の樹脂組成物の秤量精度、並びに成形時における適正な流動性と硬化性が求められる。また、顆粒状の樹脂組成物の投入準備と秤量とを、振動フィーダー等の搬送手段により行う場合においては、振動により顆粒状の樹脂組成物が均質に送り出されること(以下、「搬送性」とも称す。)が求められる。
 圧縮成形は、射出成形や、トランスファー成形と異なり、混練や流動等による樹脂組成物への剪断力があまりかからない成形方法であり、また、用いる材料が顆粒状の樹脂組成物である場合には、粒度分布によっても粘度、硬化性が変化することとなる。このため、本発明では、半導体封止用樹脂組成物の粘度特性、流動性を評価する方法として、誘電分析装置にて測定する、最低イオン粘度に到達するまでの時間、最低イオン粘度、並びに、最低イオン粘度に到達するまでの時間と、測定開始から300秒後におけるイオン粘度値の最大値(以下、単に最大値と称することもある)に対して90%のイオン粘度値に到達するまでの時間との間隔を用いる。これにより、顆粒状の樹脂組成物を用いた圧縮成形における成形時の状況を適切に再現することができることとなる。従来、半導体封止用樹脂組成物の粘度特性、流動性を評価する方法としては、スパイラルフロー、高化式フロー、ブラベンダー、ラボプラストミル等が用いられてきた。しかしながら、いずれの評価手段も流動中の樹脂粘度挙動を示す手段であり、圧縮成形での実質、無剪断での粘度挙動を正しく表すことができないもの、即ち、樹脂に掛かる剪断力により、分子同士の衝突による反応の促進、及び分子の切断による硬化の遅延が発生し圧縮成形での状態を正しく把握できないものであった。
 半導体封止用樹脂組成物を誘電分析装置にて測定した際のイオン粘度特性は、顆粒状の半導体封止用樹脂組成物の粘度特性及び硬化挙動を表す特性であり、かつ、圧縮成形における成形時の状況に近い実質無剪断状態での顆粒状の樹脂組成物の粘度特性、硬化挙動を評価するのに適したものである。図3は、本発明に係る半導体封止用樹脂組成物を誘電分析装置にて測定した際のイオン粘度及びスロープのプロファイルを示した図である。樹脂全体が溶けた状態になった段階でイオン粘度が最低値となり、硬化が進行していくのに伴ってイオン粘度は上昇していく。最低イオン粘度に到達するまでの時間(以下、「最低イオン粘度到達時間」とも称す。)は顆粒状の樹脂組成物としての溶け易さを表すものであり、最低イオン粘度の値は顆粒状の樹脂組成物として最低粘度を表すものである。また、最低イオン粘度に到達するまでの時間と、最大値に対して90%のイオン粘度値に到達するまでの時間との間隔(以下、「安定時間」とも称す。)は、顆粒状の樹脂組成物が流動性を有している時間幅を表すものである。
 本発明の半導体封止用樹脂組成物は、誘電分析装置にて測定温度175℃、測定周波数100Hzの条件にて測定した際の、測定開始から最低イオン粘度に到達するまでの時間が20秒以下であることが好ましく、15秒以下であることがより好ましい。最低イオン粘度に到達するまでの時間が上記上限値以下であると、半導体装置のワイヤに樹脂が接触する際の樹脂粘度が充分に低くなっていることにより、ワイヤ径が18μm以下の場合においても、ワイヤ流れが殆ど生じることがなく(ワイヤ流れ率で2.5%以下)、結果としてファインピッチワイヤのショート不良の発生を抑えることができる。また、最低イオン粘度に到達するまでの時間の下限値については、特に限定されるものではないが、圧縮成形金型のキャビティに接触した部分の樹脂のみが先行して溶融、硬化すること等に伴って、部分ゲルや硬化むらが発生することを考慮すると、2秒以上であることが好ましく、5秒以上であることがより好ましい。
 本発明の半導体封止用樹脂組成物は、誘電分析装置にて測定温度175℃、測定周波数100Hzの条件にて測定した際の、最低イオン粘度値が6.5以下であることが好ましく、6.3以下であることがより好ましい。最低イオン粘度値が上記上限値以下であると、ワイヤ径が18μm以下の場合においても、ワイヤ流れが殆ど生じることがなく(ワイヤ流れ率で2.5%以下)、結果としてファインピッチワイヤのショート不良の発生を抑えることができる。また、最低イオン粘度値の下限値については、特に限定されるものではないが、樹脂粘度が低くなり過ぎることに伴って、エアベント部やパーティングラインにバリが発生することを考慮すると、1以上であることが好ましく、3以上であることがより好ましい。ここで、最低イオン粘度値とは、測定開始後から300秒後までにおけるイオン粘度値の最低値をいう。
 本発明の半導体封止用樹脂組成物は、誘電分析装置にて測定温度175℃、測定周波数100Hzの条件にて測定した際の、測定開始から最低イオン粘度に到達するまでの時間と、測定開始から300秒後におけるイオン粘度値の90%のイオン粘度値に到達するまでの時間との間隔が10秒以上であることが好ましく、14秒以上であることがより好ましい。測定開始から最低イオン粘度に到達するまでの時間と、測定開始から300秒後におけるイオン粘度値の90%のイオン粘度値に到達するまでの時間との間隔が上記下限値以上であると、成形中の樹脂増粘による充填不良やボイドが発生する恐れが殆どない。また、測定開始から最低イオン粘度に到達するまでの時間と、測定開始から300秒後におけるイオン粘度値の90%のイオン粘度値に到達するまでの時間との間隔の上限値については、特に限定されるものではないが、硬化性が低下することに伴って、金型汚れが激しくなり、クリーニング回数増による生産性の低下が発生したり、硬化物の耐熱性や耐湿性等が低下したりすることを考慮すると、120秒以下であることが好ましく、60秒以下であることがより好ましい。
 なお、誘電分析装置本体としてはNETZSCH社製のDEA231/1 cure analyzerを、プレスとしてはNETZSCH社製のMP235 Mini-Pressを使用することができる。また、測定方法としては、ASTM E2039に準拠して測定することができる。
 本発明の半導体封止用樹脂組成物が、誘電分析装置にて測定温度175℃、測定周波数100Hzの条件にて測定した際の、測定開始から最低イオン粘度に到達するまでの時間が20秒以下であり、最低イオン粘度値が6.5以下であり、測定開始から最低イオン粘度に到達するまでの時間と、測定開始から300秒後におけるイオン粘度値の90%のイオン粘度値に到達するまでの時間との間隔が10秒以上であるものとするには、エポキシ樹脂と硬化剤及び硬化促進剤の種類と配合割合、並びに顆粒状の半導体封止用樹脂組成物の粒度分布等を調整することで達成される。
 本発明の顆粒状の半導体封止用樹脂組成物は、JIS標準篩を用いて篩分により測定した粒度分布における、粒径106μm未満の微粉を樹脂組成物全体の5質量%以下の割合で含むものであることが好ましく、3質量%以下の割合で含むものであることがより好ましい。粒径106μm未満の微粉の割合が上記上限値以下であれば、搬送、秤量段階において、振動フィーダー等の搬送手段の搬送経路上で凝集又は固着したり、搬送手段へ付着したりすることがなく、安定した搬送性と良好な秤量精度を得ることができる。さらに、粒径106μm未満の微粉の割合が上記上限値以下であれば、微粉の溶融、硬化が相対的に先行することがなく、誘電分析装置にて測定温度175℃、測定周波数100Hzの条件にて測定した際の、最低イオン粘度に到達するまでの時間と、最大値に対して90%のイオン粘度値に到達するまでの時間との間隔を適正な範囲とすることが容易になるという点でも好ましい。また、粒径106μm未満の微粉の割合が上記上限値以下であれば、成形段階において、粒径106μm未満の微粉の溶融、硬化が相対的に先行することに伴って、部分ゲルや硬化むらが発生する恐れが少ない。また、粒径106μm未満の微粉の割合の下限値については、特に限定されるものではなく、0質量%であってもよい。
 本発明の顆粒状の半導体封止用樹脂組成物は、JIS標準篩を用いて篩分により測定した粒度分布における、2mm以上の粗粒の割合が樹脂組成物全体に対して3質量%以下であることが好ましく、2質量%以下であることがより好ましい。2mm以上の粗粒の割合が上記上限値以下であれば、搬送、秤量段階において、質量の大きな粒子の混入如何によって秤量バラツキが生じることがなく、良好な秤量精度を得ることができ、それより、成形後の半導体装置における品質を安定化させることができる。さらに、2mm以上の粗粒の割合が上記上限値以下であれば、粗粒の溶融、硬化が相対的に遅延することがなく、誘電分析装置にて測定温度175℃、測定周波数100Hzの条件にて測定した際の、測定開始から最低イオン粘度に到達するまでの時間を適正な範囲とすることが容易になるという点でも好ましい。また、2mm以上の粗粒の割合が上記上限値以下であれば、成形段階において、2mm以上の粗粒の溶融、硬化が相対的に遅延することに伴って、硬化むらや部分的なワイヤ流れが発生する恐れが少ない。また、2mm以上の粗粒の割合の下限値については、特に限定されるものではなく、0質量%であってもよい。
 顆粒状の樹脂組成物の粒度分布を測定する方法としては、ロータップ型篩振動機に備え付けた目開き2.00mm、1.00mm及び106μmのJIS標準篩を用い、これらの篩を20分間に亘って振動(ハンマー打数:120回/分)させながら40gの試料を篩に通して分級し、分級前の全試料質量に対し、2.00mm、1.00mmの篩に残る粒子の質量%、及び106μmの篩を通過する微粉の質量%を求める方法が、実際の圧縮成形に必要な特性を体現できるので好ましい。なおこの方法の場合、アスペクト比の高い粒子は、それぞれの篩を通過する可能性があるが、便宜上、上記一定条件により分級した成分の質量%により、本発明の顆粒状の樹脂組成物の各粒度分布と定義する。
 なお、従来用いられてきた圧縮成形用の半導体封止用樹脂組成物は、各原料成分をミキサーで予備混合後、ロール、ニーダー又は押出機等の混練機により加熱混練後、冷却、粉砕工程を経て粉砕物としたものであり、樹脂組成物全体に対して、JIS標準篩を用いて篩分により測定した粒度分布における、106μm未満の微粉量は10質量%を越えるもの、2mm以上の粗粒量は4~6質量%程度のものであって、広い粒度分布を有するものであった。また、従来の圧縮成形用半導体封止用樹脂組成物の粉砕物の一例においては、特開2000-021908(特許文献1)に示すように、「エポキシ樹脂成形材料は、粉砕して微細粉をカットした粗粒、または微細粉を固めた顆粒」であると記載されている(特許文献1の段落0010)。同文献の実施例をみると、顆粒状の半導体封止用樹脂組成物は、例えば、ほぼ球状で平均粒径が約2mmのもの、混練品を粉砕し、粉砕品の粒径1mm以下の微粉をカットして平均粒径約3mmの粗粉等であった。即ち、特許文献1に記載されたエポキシ樹脂成形材料については、2mm以上の粗粒を相当量含んでいるものであった。また、同文献には、2mm以上の粗粒をカットする記載なく、生産性の観点からも、このカット工程を追加することもないと考えられる。
 また、圧縮成形では、トランスファー成形のようにチップ上の樹脂充填のために樹脂を流動注入させる必要が無く、キャビティ内における横方向の樹脂の流動が少ないので、トランスファー成形では困難であったチップ上の樹脂厚が薄い狭ギャップ構造のパッケージ、例えば、チップ上の樹脂厚が80~150μmの狭ギャップ構造のパッケージでも、適正な圧縮成形用の樹脂組成物を選択することで、ワイヤ流れや充填不良といった不具合を生じることなく歩留まり良く成形することができる。このような狭ギャップ構造のパッケージにも適用できる圧縮成形用の樹脂組成物としては、誘電分析装置にて測定温度175℃、測定周波数100Hzの条件にて測定した際の、測定開始から最低イオン粘度に到達するまでの時間が15秒以下であり、最低イオン粘度値が6.3以下であり、かつ最低イオン粘度に到達するまでの時間と、最大値に対して90%のイオン粘度値に到達するまでの時間との間隔が14秒以上であるものを用いることがより好ましい。なお、チップ上のギャップが80μm以下の場合はワイヤが露出する恐れがある。
 本発明の半導体封止用樹脂組成物では、エポキシ樹脂を用いる。本発明の樹脂組成物に用いられるエポキシ樹脂は、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造は特に限定されるものではないが、例えば、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂等の結晶性エポキシ樹脂;クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、フェニレン骨格含有ナフトールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂及びアルキル変性トリフェノールメタン型エポキシ樹脂等の3官能型エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂、テルペン変性フェノール型エポキシ樹脂等の変性フェノール型エポキシ樹脂;トリアジン核含有エポキシ樹脂等の複素環含有エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を組み合わせて用いてもよい。これらの中では、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂が好適に用いられる。また、樹脂組成物が誘電分析装置にて測定温度175℃、測定周波数100Hzの条件にて測定した際の、測定開始から最低イオン粘度に到達するまでの時間が20秒以下であり、最低イオン粘度値が6.5以下であり、測定開始から300秒後におけるイオン粘度値の90%のイオン粘度値に到達するまでの時間と、測定開始から最低イオン粘度に到達するまでの時間との間隔が10秒以上を満たす範囲とする観点からは、分子構造にビフェニル骨格を持ちエポキシ当量が180以上であるものを用いることが好ましい。
 エポキシ樹脂全体の配合割合の下限値については、特に限定されないが、全樹脂組成物中に、2質量%以上であることが好ましく、4質量%以上であることがより好ましい。配合割合の下限値が上記範囲内であると、流動性の低下等を引き起こす恐れが少ない。また、エポキシ樹脂全体の配合割合の上限値についても、特に限定されないが、全樹脂組成物中に、15質量%以下であることが好ましく、13質量%以下であることがより好ましい。配合割合の上限値が上記範囲内であると、耐半田性の低下等を引き起こす恐れが少ない。また、誘電分析装置にて測定する、最低イオン粘度に到達するまでの時間、最低イオン粘度、並びに、最大値に対して90%のイオン粘度値に到達するまでの時間と、最低イオン粘度に到達するまでの時間との間隔を考慮すると、用いるエポキシ樹脂の種類に応じて配合割合を適宜調整することが望ましい。
 本発明の半導体封止用樹脂組成物では、硬化剤を用いる。本発明の樹脂組成物に用いられる硬化剤としては、エポキシ樹脂と反応して硬化させるものであれば特に限定されず、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等の炭素数2~20の直鎖脂肪族ジアミン、メタフェニレンジアミン、パラフェニレンジアミン、パラキシレンジアミン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルスルホン、4,4'-ジアミノジシクロヘキサン、ビス(4-アミノフェニル)フェニルメタン、1,5-ジアミノナフタレン、メタキシレンジアミン、パラキシレンジアミン、1,1-ビス(4-アミノフェニル)シクロヘキサン、ジシアノジアミド等のアミノ類;アニリン変性レゾール樹脂やジメチルエーテルレゾール樹脂等のレゾール型フェノール樹脂;フェノールノボラック樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂;ポリパラオキシスチレン等のポリオキシスチレン;フェノールアラルキル樹脂等のフェノール樹脂や酸無水物等が挙げられ、これらは1種類を単独で用いても2種類以上を組み合わせて用いてもよい。これらの中では、フェノールノボラック樹脂、フェニレン骨格を有するフェノールアラルキル樹脂、ビフェニレン骨格を有するフェノールアラルキル樹脂等が好適に用いられる。また、樹脂組成物が誘電分析装置にて測定温度175℃、測定周波数100Hzの条件にて測定した際の、測定開始から最低イオン粘度に到達するまでの時間が20秒以下であり、最低イオン粘度値が6.5以下であり、測定開始から300秒後におけるイオン粘度値の90%のイオン粘度値に到達するまでの時間と、測定開始から最低イオン粘度に到達するまでの時間との間隔が10秒以上を満たす範囲とする観点からは、分子構造にフェニレン及び又はビフェニル骨格を持ち水酸基当量が160以上であるものを用いることが好ましい。
 硬化剤全体の配合割合の下限値については、特に限定されないが、全樹脂組成物中に、0.8質量%以上であることが好ましく1.5質量%以上であることがより好ましい。配合割合の下限値が上記範囲内であると、充分な流動性を得ることができる。また、硬化剤全体の配合割合の上限値についても、特に限定されないが、全樹脂組成物中に、10質量%以下であることが好ましく、8質量%以下であることがより好ましい。配合割合の上限値が上記範囲内であると、良好な耐半田性を得ることができる。また、誘電分析装置にて測定する、最低イオン粘度に到達するまでの時間、最低イオン粘度、並びに、最大値に対して90%のイオン粘度値に到達するまでの時間と、最低イオン粘度に到達するまでの時間との間隔を考慮すると、用いる硬化剤の種類に応じて配合割合を適宜調整することが望ましい。
 また、硬化剤としてフェノール樹脂系硬化剤を用いる場合においては、エポキシ樹脂全体とフェノール樹脂系硬化剤全体との配合比率としては、エポキシ樹脂全体のエポキシ基数(EP)とフェノール樹脂系硬化剤全体のフェノール性水酸基数(OH)との当量比(EP)/(OH)が0.8以上、1.3以下であることが好ましい。当量比がこの範囲内であると、樹脂組成物の成形時に充分な硬化性を得ることができる。また、当量比がこの範囲内であると、樹脂硬化物における良好な物性を得ることができる。また、エリア表面実装型の半導体装置における反りの低減という点を考慮すると、樹脂組成物の硬化性及び樹脂硬化物のガラス転移温度又は熱時弾性率を高めることができるように、用いる硬化促進剤の種類に応じてエポキシ樹脂全体のエポキシ基数(Ep)と硬化剤全体のフェノール性水酸基数(Ph)との当量比(Ep/Ph)を調整することが望ましい。また、誘電分析装置にて測定する、最低イオン粘度に到達するまでの時間、最低イオン粘度、並びに、最大値に対して90%のイオン粘度値に到達するまでの時間と、最低イオン粘度に到達するまでの時間との間隔を考慮すると、用いるエポキシ樹脂、フェノール樹脂系硬化剤の種類に応じて当量比を適宜調整することが望ましい。
 本発明の半導体封止用樹脂組成物では、硬化促進剤を用いる。本発明の半導体封止用樹脂組成物に用いられる硬化促進剤としては、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであればよく、一般に封止材料に使用するものを用いることができる。例えば、1,8-ジアザビシクロ(5,4,0)ウンデセン-7等のジアザビシクロアルケン及びその誘導体;トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物;2-メチルイミダゾール等のイミダゾール化合物;トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類;テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、テトラフェニルホスホニウム・テトラナフトイルオキシボレート、テトラフェニルホスホニウム・テトラナフチルオキシボレート等のテトラ置換ホスホニウム・テトラ置換ボレート;ベンゾキノンをアダクトしたトリフェニルホスフィン等が挙げられ、これらは1種類を単独で用いても2種類以上を組み合わせて用いてもよい。これらの中では、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物が好適に用いられる。また、樹脂組成物が誘電分析装置にて測定温度175℃、測定周波数100Hzの条件にて測定した際の、測定開始から最低イオン粘度に到達するまでの時間が20秒以下であり、最低イオン粘度値が6.5以下であり、測定開始から300秒後におけるイオン粘度値の90%のイオン粘度値に到達するまでの時間と、測定開始から最低イオン粘度に到達するまでの時間との間隔が10秒以上を満たす範囲とする観点からは、低粘度、熱安定性と硬化性のバランスが良好となる、潜伏性を有する硬化促進剤を用いることが好ましい。
 硬化促進剤全体の配合割合の下限値は、全樹脂組成物中0.1質量%以上であることが好ましい。硬化促進剤全体の配合割合の下限値が上記範囲内であると、充分な硬化性を得ることができる。また、硬化促進剤全体の配合割合の上限値は、全樹脂組成物中1質量%以下であることが好ましい。硬化促進剤全体の配合割合の上限値が上記範囲内であると、充分な流動性を得ることができる。また、誘電分析装置にて測定する、最低イオン粘度に到達するまでの時間、最低イオン粘度、並びに、最大値に対して90%のイオン粘度値に到達するまでの時間と、最低イオン粘度に到達するまでの時間との間隔を考慮すると、用いる硬化促進剤の種類に応じて配合割合を適宜調整することが望ましい。
 本発明の半導体封止用樹脂組成物では、無機充填剤を用いる。本発明の半導体封止用樹脂組成物に用いられる無機充填剤としては、一般に半導体封止材料に用いられているものであれば、特に制限はなく、溶融破砕シリカ、溶融球状シリカ、結晶シリカ、2次凝集シリカ等のシリカ;アルミナ、チタンホワイト、水酸化アルミニウム、タルク、クレー、マイカ、ガラス繊維等が挙げられる。これらの中でも、特に溶融球状シリカが好ましい。また、粒子形状は限りなく真球状であることが好ましく、また、粒子の大きさの異なるものを混合することにより充填量を多くすることができる。また、樹脂組成物が誘電分析装置にて測定温度175℃、測定周波数100Hzの条件にて測定した際の、測定開始から最低イオン粘度に到達するまでの時間が20秒以下であり、最低イオン粘度値が6.5以下であり、測定開始から300秒後におけるイオン粘度値の90%のイオン粘度値に到達するまでの時間と、測定開始から最低イオン粘度に到達するまでの時間との間隔が10秒以上を満たす範囲とする観点からは、溶融球状シリカを用いるのが好ましい。
 無機充填剤の含有割合の下限値としては、樹脂組成物全体の78質量%以上であることが好ましく、80質量%以上であることがより好ましく、83質量%以上であることが特に好ましい。無機充填剤の含有割合の下限値が上記範囲内であると、樹脂組成物の硬化物物性として、吸湿量が増加したり、強度が低下したりすることがなく、良好な耐半田クラック性を得ることができる。また、無機充填剤の含有割合の上限値としては、樹脂組成物全体の93質量%以下であることが好ましく、91質量%以下であることがより好ましく、90質量%以下であることが特に好ましい。無機充填剤の含有割合の上限値が上記範囲内であると、流動性が損なわれることがなく、良好な成形性を得ることができる。また、樹脂組成物が誘電分析装置にて測定温度175℃、測定周波数100Hzの条件にて測定した際の、測定開始から最低イオン粘度に到達するまでの時間が20秒以下であり、最低イオン粘度値が6.5以下であり、測定開始から300秒後におけるイオン粘度値の90%のイオン粘度値に到達するまでの時間と、測定開始から最低イオン粘度に到達するまでの時間との間隔が10秒以上を満たす範囲とする観点からは、良好な耐半田性が得られる範囲内で、無機充填剤の含有量を低く設定することが好ましい。
 本発明の半導体封止用樹脂組成物には、上記の成分以外に、必要に応じて、γ-グリシドキシプロピルトリメトキシシラン等のカップリング剤;カーボンブラック等の着色剤;天然ワックス、合成ワックス、高級脂肪もしくはその金属塩類、パラフィン等の離型剤;シリコーンオイル、シリコーンゴム等の低応力成分;酸化防止剤等の各種添加剤を配合することができる。
 次に、本発明の半導体封止用樹脂組成物を得る方法について説明する。本発明の半導体封止用樹脂組成物は、上記の成分、及びその他の添加剤等を、例えば、ミキサー等を用いて常温で均一に混合したものを、加熱ロール、ニーダー又は押出機等の混練機を用いて溶融混練したのち、冷却、粉砕したものを、篩を用いて粗粒と微紛の除去を行って得る方法(以下、「粉砕篩分法」とも言う。)、溶融混練された樹脂組成物を顆粒状になるように造粒化する方法等により得ることができる。樹脂組成物の製造における歩留まり等の観点からは、造粒化する方法が好ましい。造粒化する方法としては、例えば、スクリュー先端部に小径を複数配置したダイを設置した押出機を用いて、ダイに配置された小孔からストランド状に押し出されてくる溶融樹脂をダイ面に略平行に摺動回転するカッターで切断して得る方法(以下、「ホットカット法」とも言う。)等もあるが、磨耗金属粉等の混入の問題等を考慮すると、直接又は間接的な加熱手段により温度調節された複数の小孔を有する円筒状外周部と円盤状の底面から構成される回転子の内側に、溶融混練された樹脂組成物を溶融状態で供給し、その樹脂組成物を、回転子を回転させて得られる遠心力によって小孔を通過させることで、顆粒状の半導体封止用樹脂組成物を得る方法(以下、「遠心製粉法」とも言う。)が好ましい。この製法において適宜製造条件を調整することにより、JIS標準篩を用いて篩分により測定した粒度分布における、粒径106μm未満の微粉の半導体封止用樹脂組成物全体全体に対する割合が5質量%以下であり、粒径2mm以上の粗粒の半導体封止用樹脂組成物全体全体に対する割合が3質量%以下である顆粒状の半導体封止用樹脂組成物を得ることができる。
 次に、本発明の半導体封止用エポキシ樹脂組成物を得るための製法の一例である遠心製粉法について、図面を用いてより詳細に説明する。図4に顆粒状の半導体封止用エポキシ樹脂組成物を得るための、樹脂組成物の溶融混練から顆粒状の樹脂組成物の捕集までの一実施例の概略図を、図5に回転子及び回転子の円筒状外周部を加熱するための励磁コイルの一実施例の断面図を、図6に溶融混練された樹脂組成物を回転子に供給する2重管式円筒体の一実施例の断面図を、それぞれ示す。
 二軸押出機209で溶融混練されたエポキシ樹脂組成物は、内壁と外壁の間に冷媒を通し冷却された2重管式円筒体205を通して回転子201の内側に供給される。この時、2重管式円筒体205は、溶融混練されたエポキシ樹脂組成物が2重管式円筒体205の壁に付着しないよう、冷媒を用いて冷却されていることが好ましい。2重管式円筒体205を通して、エポキシ樹脂組成物を回転子201に供給することにより、エポキシ樹脂組成物が連続した糸状で供給された場合でもあっても、回転子201が高速回転していることにより、エポキシ樹脂組成物が回転子201から溢れ出すことなく安定した供給が可能となる。
 回転子201はモーター210と接続されており、任意の回転数で回転させることができる。回転子201の外周上に設置した複数の小孔を有する円筒状外周部202は磁性材料203を備えており、その近傍に備えられた励磁コイル204に交流電源発生装置206により発生させた交流電源を通電させることによって発生する交番磁束の通過に伴う、渦電流損やヒステリシス損により加熱される。なお、この磁性材料203としては、例えば鉄材や珪素鋼等が挙げられ、1種類又は2種類以上の磁性材料203を複合して使用することができる。複数の小孔を有する円筒状外周部202の小孔付近は、磁性材料203と同一の材質で形成されていなくてもよく、たとえば熱伝導率の高い非磁性材料をもって形成され、その上下に磁性材料203を備えることにより、加熱された磁性材料203を熱源として熱伝導により円筒状外周部202の小孔付近を加熱することもできる。非磁性材料としては銅やアルミ等が挙げられ、1種類又は2種類以上の非磁性材料を複合して使用することができる。エポキシ樹脂組成物は回転子201の内側に供給された後、モーター210により回転子201を回転させて得られる遠心力によって、加熱された円筒状外周部202に飛行移動する。
 加熱された複数の小孔を有する円筒状外周部202に接触したエポキシ樹脂組成物は、溶融粘度が上昇することなく、容易に円筒状外周部202の小孔を通過し吐出される。加熱する温度は、適用するエポキシ樹脂組成物の特性により任意に設定することができる。一般的には、加熱温度を上げすぎるとエポキシ樹脂組成物の硬化が進み、流動性が低下したり、円筒状外周部202の小孔に詰まったりすることがあるが、適切な温度条件の場合においては、樹脂組成物と円筒状外周部202の接触時間が極めて短いために流動性への影響は極めて少ない。また、複数の小孔を有する円筒状外周部202は均一に加熱されているため、局所的な流動性の変化は極めて少ない。また、円筒状外周部202の複数の小孔は、使用する樹脂組成物の粒子形状や粒度分布に合わせ、孔径を任意に調整できる。
 円筒状外周部202の小孔を通過し吐出された顆粒状の樹脂組成物は、例えば、回転子201の周囲に設置した外槽208で捕集される。外槽208は顆粒状のエポキシ樹脂組成物の内壁への付着、顆粒状のエポキシ樹脂組成物同士の融着を防止するために、円筒状外周部202の小孔を通過して飛行してくる顆粒状のエポキシ樹脂組成物が衝突する衝突面が、顆粒状のエポキシ樹脂組成物の飛行方向に対して10~80度、好ましくは25~65度の傾斜をもって設置されていることが好ましい。エポキシ樹脂組成物の飛行方向に対する衝突面の傾斜が上記上限値以下であると、顆粒状のエポキシ樹脂組成物の衝突エネルギーを充分分散させることができ、壁面への付着を生じる恐れが少ない。また、エポキシ樹脂組成物の飛行方向に対する衝突面の傾斜が上記下限値以上であると、顆粒状のエポキシ樹脂組成物の飛行速度を充分に減少させることができるため、外槽壁面に2次衝突した場合でもその外装壁面に付着する恐れが少ない。
 また、顆粒状のエポキシ樹脂組成物が衝突する衝突面の温度が高くなると、顆粒状のエポキシ樹脂組成物が付着しやすくなるため、衝突面外周には冷却ジャケット207を設けて、衝突面を冷却することが好ましい。外槽208の内径は、顆粒状のエポキシ樹脂組成物が充分に冷却され、顆粒状のエポキシ樹脂組成物の内壁への付着や、顆粒状のエポキシ樹脂組成物同士の融着が生じない程度の大きさとすることが望ましい。一般には、回転子201の回転により空気の流れが生じ、冷却効果が得られるが、必要に応じて冷風を導入しても良い。外槽208の大きさは処理する樹脂量にもよるが、例えば回転子201の直径が20cmの場合、外槽208の内径は100cm程度あれば付着や融着を防ぐことができる。
 次に、顆粒状の半導体封止用樹脂組成物を用いて圧縮成形により半導体素子を封止してなる本発明の半導体装置について説明する。なお、本発明の顆粒状の樹脂組成物を用いて圧縮成形により半導体素子を封止して半導体装置を得る方法は前述したとおりである。本発明の半導体装置で封止される半導体素子としては、特に限定されるものではなく、例えば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード等が挙げられる。
 本発明の半導体装置の形態としては、特に限定されないが、例えば、ボール・グリッド・アレイ(BGA)、MAPタイプのBGA等が挙げられる。又、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリヤ(PLCC)、クワッド・フラット・パッケージ(QFP)、ロー・プロファイル・クワッド・フラット・パッケージ(LQFP)、スモール・アウトライン・パッケージ(SOP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、チップ・サイズ・パッケージ(CSP)、クワッド・フラット・ノンリーデッド・パッケージ(QFN)、スモールアウトライン・ノンリーデッド・パッケージ(SON)、リードフレーム・BGA(LF-BGA)等にも適用可能である。
 圧縮成形で樹脂組成物の硬化物により半導体素子を封止した本発明の半導体装置は、そのまま、或いは80℃から200℃程度の温度で、10分から10時間程度の時間をかけて完全硬化させた後、電子機器等に搭載される。
 以下に、リードフレーム又は回路基板と、リードフレーム又は回路基板上に積層又は並列して搭載された1以上の半導体素子と、リードフレーム又は回路基板と半導体素子とを電気的に接続するボンディングワイヤと、半導体素子とボンディングワイヤを封止する封止材とを備えた半導体装置について、図を用いて詳細に説明するが、本発明はボンディングワイヤを用いたものに限定されるものではない。
 図7は、本発明に係る半導体封止用エポキシ樹脂組成物を用いて、リードフレームのダイパッドに搭載した半導体素子を封止して得られる半導体装置の一例について、断面構造を示した図である。ダイパッド303上に、ダイボンド材硬化体302を介して半導体素子301が固定されている。半導体素子301の電極パッドとリードフレーム305との間はワイヤ304によって接続されている。半導体素子301は、半導体封止用樹脂組成物の硬化体で構成される封止材306によって封止されている。
 図8は、本発明に係る半導体封止用エポキシ樹脂組成物を用いて、回路基板に搭載した半導体素子を封止して得られる半導体装置の一例について、断面構造を示した図である。回路基板308上にダイボンド材硬化体302を介して半導体素子301が固定されている。半導体素子301の電極パッド307と回路基板308上の電極パッド307との間はワイヤ304によって接続されている。半導体封止用エポキシ樹脂組成物の硬化体で構成される封止材306によって、回路基板308の半導体素子301が搭載された片面側のみが封止されている。回路基板308上の電極パッド307は回路基板308上の非封止面側の半田ボール309と内部で接合されている。
 以下、本発明を実施例により更に詳しく説明するが、これらの実施例に限定されるものではない。
 実施例1
 エポキシ樹脂1:ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(日本化薬株式会社製、NC-3000。軟化点52℃、エポキシ当量270。)
                                8.53質量部
 フェノール樹脂1:ビフェニレン骨格を有するフェノールアラルキル樹脂(明和化成株式会社製、MEH-7851。軟化点67℃、水酸基当量203。)
                                6.42質量部
 硬化促進剤1(北興化学工業株式会社製、TPPBQ)      0.55質量部
 球状溶融シリカ(電気化学工業株式会社製、FB-560。平均粒径30μm。)
                               84質量部
 カップリング剤(信越化学工業株式会社製、KBM-803)   0.2質量部
 カルナバワックス                       0.3質量部
 上記配合の半導体封止用樹脂組成物の原材料をスーパーミキサーにより5分間粉砕混合したのち、この混合原料を直径65mmのシリンダー内径を持つ同方向回転二軸押出機にてスクリュー回転数30RPM、100℃の樹脂温度で溶融混練することで溶融混練された樹脂組成物を準備した。次に、直径20cmの回転子の上方より溶融混練された樹脂組成物を2kg/hrの割合で供給して、回転子を3000RPMで回転させて得られる遠心力によって、115℃に加熱された円筒状外周部の複数の小孔(孔径2.5mm)を通過させることで、顆粒状の半導体封止用樹脂組成物を得た。
 実施例2~4、比較例1~6
 表1に示す配合に従い、実施例1と同様な手段で実施例2~4及び比較例1~6の顆粒状の半導体封止用樹脂組成物を得た。
 実施例5~7
 実施例1と同一の配合とし、原材料をスーパーミキサーにより5分間粉砕混合したのち、この混合原料を直径65mmのシリンダー内径を持つ同方向回転二軸押出機にてスクリュー回転数30RPM、100℃の樹脂温度で溶融混練した後、シーティングロールにてシート状にしたものを、冷却後粉砕した。その後、表2に記載した微紛量と粗粒量となるように、篩を用いて粒度分布を調整して、実施例5~7の顆粒状の半導体封止用樹脂組成物を得た。
 比較例7
 実施例2と同一の配合とし、原材料をスーパーミキサーにより5分間粉砕混合したのち、この混合原料を直径65mmのシリンダー内径を持つ同方向回転二軸押出機にてスクリュー回転数30RPM、100℃の樹脂温度で溶融混練した後、シーティングロールにてシート状にしたものを、冷却後粉砕した。その後、表2に記載した微紛量と粗粒量となるように、篩を用いて粒度分布を調整して、比較例7の顆粒状の半導体封止用樹脂組成物を得た。
 実施例1以外で用いた原材料について下記に示す。
 エポキシ樹脂2:トリフェニルメタン型エポキシ樹脂(ジャパンエポキシレジン株式会社製、1032H60。軟化点59℃、エポキシ当量171。)
 エポキシ樹脂3:ビフェニル型エポキシ樹脂(ジャパンエポキシレジン株式会社製、YX-4000。融点107℃、エポキシ当量190。)
 エポキシ樹脂4:ジシクロペンタジエン変性エポキシ樹脂(DIC株式会社製、HP-7200。軟化点64℃、エポキシ当量265。)
 エポキシ樹脂5:クレゾールノボラックエポキシ樹脂(DIC株式会社製、N660。軟化点60℃、エポキシ当量200。)
 フェノール樹脂2:トリフェニルメタン型フェノール樹脂(明和化成株式会社製、MEH-7500。軟化点110℃、水酸基当量97。)
 フェノール樹脂3:フェノールノボラック樹脂(住友ベークライト株式会社製、PR-51714。軟化点110℃、水酸基当量104。)
 フェノール樹脂4:フェニレン骨格含有フェノールアラルキル樹脂(三井化学株式会社製、XL-225-3L。軟化点80℃、水酸基当量175。)
 破砕シリカ(電気化学工業株式会社製、FS-784。平均粒径13μm。)
 硬化促進剤2:下記一般式(1)で表される硬化促進剤
Figure JPOXMLDOC01-appb-C000001
 硬化促進剤3:トリフェニルホスフィン
 実施例並びに比較例における半導体封止用樹脂脂組成物を下記の方法で評価し、その評価結果を表1、表2に示した。
 評価方法
 106μm未満の微粉量及び2mm以上の粗粒量:得られた顆粒状の樹脂組成物40gを、1mgまで秤量したものを試料とした。ロータップ型篩振動機(丸菱科学機械製作所製、型式-SS-100A)に備え付けた目開き2.00mm及び106μmのJIS標準篩を用い、これらの篩を20分間に亘って振動(ハンマー打数:120回/分)させながら試料を篩に通して分級した。次いで、106μmの篩を通過した微粉の質量、及び2mmの篩上に残った粗粒の質量を測定し、分級前の試料の質量を基準にして106μm未満の微粉量及び2mm以上の粗粒量の質量比を算出した。
 スパイラルフロー:低圧トランスファー成形機(コータキ精機株式会社製、KTS-15)を用いて、EMMI-1-66に準じたスパイラルフロー測定用金型に、金型温度175℃、注入圧力6.9MPa、保圧時間120秒の条件で、樹脂組成物を注入し、流動長を測定した。スパイラルフローは、流動性のパラメータであり、数値が大きい方が、流動性が良好である。単位はcm。
 最低イオン粘度到達時間、最低イオン粘度、安定時間:誘電分析装置本体はNETZSCH社製のDEA231/1 cure analyzer、プレスはNETZSCH社製のMP235 Mini-Pressを使用した。測定方法としてはASTM E2039に準拠し、測定温度175℃、測定周波数100Hzにて顆粒状の半導体封止用樹脂組成物約3gをプレス内の電極部上面に導入し、プレスし、イオン粘度の変化を測定した。測定開始から最低イオン粘度に到達するまでの時間(最低イオン粘度到達時間)、最低イオン粘度、及び、測定開始から最低イオン粘度に到達するまでの時間と、測定開始から300秒後におけるイオン粘度値の90%のイオン粘度値に到達するまでの時間との間隔(安定時間)を表に示した。最低イオン粘度到達時間は、顆粒状の樹脂組成物としての溶け易さに係るパラメータであり、数値が小さい方が溶け易いことを意味する。単位は秒。最低イオン粘度は、流動性に係るパラメータであり、数値が小さい方が、流動性が良好となる。単位は無し。安定時間は、顆粒状の樹脂組成物が流動性を有している時間幅に係るパラメータであり、数値が小さい方が流動性を有している時間幅が短い。単位は秒。
 搬送経路上での固着、付着:樹脂組成物の試料100gを振動フィーダー(450mm長×55mm幅)のホッパーに供給した後、搬送量が18g/分となるように振動の強さを調整し、10g搬送した後、3分停止を繰返し100g全量搬送した。搬送後に、粒子同士の固着や振動フィーダーへの付着状況を観察し、固着や付着の有無を確認した。
 秤量精度:樹脂組成物の試料100gを振動フィーダー(450mm長×55mm幅)のホッパーに供給した後、搬送量が18g/分となるように振動の強さを調整し、1分搬送した後、3分停止を繰返し、各搬送量の平均値および標準偏差を求めた。
 ワイヤ流れ率:樹脂基板(サイズ150×55mm)に、チップサイズ7×7×0.4mmのチップを搭載し、φ18μmの金ワイヤにより電気的に接続したものを圧縮成形金型の上型キャビティに設置し、振動フィーダーを用いて秤量された樹脂組成物を圧縮成形金型の下型キャビティに投入した後、圧縮成形機を用いて、金型温度175℃、硬化時間120sec、成形圧力9.8MPaの条件で、MAPBGAの半導体装置を成形し、さらにパネルを切断して半導体装置を得た。切断後の半導体装置のサイズは22×22mm、樹脂部の厚みは550μm、チップ上の樹脂部の厚みは150μm。得られたパッケージを軟X線透視装置(ソフテックス株式会社製 PRO-TEST 100)で観察し、パッケージの対角線上にある最も長い金ワイヤ4本(長さ5mm)の平均の流れ率を(流れ量)/(ワイヤ長)の比率で表した。単位は%。
 ボイド:上記ワイヤ流れ率評価用の切断後の半導体装置をサンプルとした。軟X線を用いて内部ボイドを評価、サイズ0.5mm以上のボイドをカウントした。半導体装置の数n=6の平均値を求め、3.0個以下の水準を良好(○)、3.0個を超える水準を不良(×)と判定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 先ず、製法を同一とした実施例1~4と比較例1~6との対比を行う。エポキシ樹脂、硬化剤、硬化促進剤の種類及び配合量が異なるものの、いずれも最低イオン粘度到達時間が20秒以下であり、最低イオン粘度が6.5以下であり、安定時間が10秒以上である実施例1~4は、いずれも、ワイヤ流れ率が小さく、ボイドの発生も見られなかった。また、実施例1~4は、106μm未満の微粉量が5質量%以下であり、2mm以上の粗粒量が3質量%以下であるため、搬送経路上での固着や付着がなく、秤量精度も良好な結果が得られた。一方、最低イオン粘度到達時間が20秒を超えるもの、及び/又は最低イオン粘度が6.5を超えるものとなる比較例1~3、6においては、ワイヤ流れが劣る結果となった。また、安定時間が10秒を下回る比較例4、5においては、ボイドの発生が見られた。
 次に、実施例1と配合を同一とした実施例5~7と、実施例2と配合を同一とした比較例7との対比を行う。粒度分布は若干異なるものの、いずれも最低イオン粘度到達時間が20秒以下であり、最低イオン粘度が6.5以下であり、安定時間が10秒以上である実施例5~7は、いずれも、ワイヤ流れ率が小さく、ボイドの発生も見られなかった。一方、2mm以上の粗粒量が多く、最低イオン粘度到達時間が20秒を超える比較例7においては、ワイヤ流れが劣る結果となった。さらに、特許文献1に記載のエポキシ樹脂成形材料については、比較例7と同様に、2mm以上の粗粒を相当量含んでいるものであった。そのため、特許文献1に記載のエポキシ樹脂成形材料を用いた場合も、比較例7と同様にワイヤ流れが劣ると推察される。
 本発明の顆粒状の半導体封止用樹脂組成物は、ワイヤボンディングのファインピッチ化、ワイヤの微細配線化、パッケージの薄型化、素子の多段化によるチップ直上の狭ギャップ化、及び/又は成形のMAP化がなされた半導体装置に好適に用いることができる。
 この出願は、平成20年12月10日に出願された日本特許出願特願2008-314066を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (9)

  1.  圧縮成形により半導体素子を封止してなる半導体装置に用いられる顆粒状の半導体封止用樹脂組成物であって、誘電分析装置にて測定温度175℃、測定周波数100Hzの条件にて測定した際に、下記a)~c)を満たすことを特徴とする半導体封止用樹脂組成物。
     a)測定開始から最低イオン粘度に到達するまでの時間が20秒以下である。
     b)最低イオン粘度値が6.5以下である。
     c)前記測定開始から最低イオン粘度に到達するまでの時間と、測定開始から300秒後におけるイオン粘度値の90%のイオン粘度値に到達するまでの時間と、の間隔が10秒以上である。
  2.  前記半導体封止用樹脂組成物が、JIS標準篩を用いて篩分により測定した粒度分布における、粒径106μm未満の微粉を前記半導体封止用樹脂組成物全体の5質量%以下の割合で含むものであることを特徴とする請求項1に記載の半導体封止用樹脂組成物。
  3.  前記半導体封止用樹脂組成物が、JIS標準篩を用いて篩分により測定した粒度分布における、粒径2mm以上の粗粒を前記半導体封止用樹脂組成物全体の3質量%以下の割合で含むものであることを特徴とする請求項1又は請求項2に記載の半導体封止用樹脂組成物。
  4.  前記半導体封止用樹脂組成物が、直接又は間接的な加熱手段により温度調節された複数の小孔を有する円筒状外周部と円盤状の底面とから構成される回転子の内側に、溶融混練された前記半導体封止用樹脂組成物を溶融状態で供給し、該半導体封止用樹脂組成物を、前記回転子を回転させて得られる遠心力によって前記小孔を通過させることで得られることを特徴とする請求項1ないし請求項3のいずれか1項に記載の半導体封止用樹脂組成物。
  5.  請求項1ないし請求項4のいずれか1項に記載の顆粒状の半導体封止用樹脂組成物を用いて圧縮成形により半導体素子を封止することを特徴とする半導体装置の製造方法。
  6.  顆粒状の前記半導体封止用樹脂組成物を搬送、秤量する工程を圧縮成形工程の直前に行うことを特徴とする請求項5に記載の半導体装置の製造方法。
  7.  圧縮成形金型のキャビティ内の空気を脱気しながら前記圧縮成形を行うことを特徴とする請求項5又は請求項6に記載の半導体装置の製造方法。
  8.  リードフレームのダイパッド上や基板に半導体素子を接着固定し、前記半導体素子のワイヤボンディングパッドと前記リードフレームのインナーリード又は前記基板上のワイヤボンディングパッドとをワイヤにて接続した後、請求項1ないし請求項4のいずれか1項に記載の半導体封止用樹脂組成物を用いて圧縮成形により前記半導体素子を封止してなる半導体装置であって、前記ワイヤの直径が18μm以下であり、かつ前記ワイヤの流れ率が2.5%以下であることを特徴とする半導体装置。
  9.  前記半導体素子上における前記半導体封止用樹脂組成物の硬化物の厚みが150μm以下であることを特徴とする請求項8に記載の半導体装置。
PCT/JP2009/006562 2008-12-10 2009-12-02 半導体封止用樹脂組成物、半導体装置の製造方法及び半導体装置 WO2010067546A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/133,752 US8546959B2 (en) 2008-12-10 2009-12-02 Resin composition for encapsulating semiconductor, method for producing semiconductor device and semiconductor device
KR1020117015968A KR101712216B1 (ko) 2008-12-10 2009-12-02 반도체 봉지용 수지 조성물, 반도체 장치의 제조 방법 및 반도체 장치
SG2011041852A SG172036A1 (en) 2008-12-10 2009-12-02 Resin composition for encapsulating semiconductor, method for producing semiconductor device and semiconductor device
CN200980149798.3A CN102246296B (zh) 2008-12-10 2009-12-02 半导体封装用树脂组合物、半导体装置的制造方法及半导体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008314066 2008-12-10
JP2008-314066 2008-12-10

Publications (1)

Publication Number Publication Date
WO2010067546A1 true WO2010067546A1 (ja) 2010-06-17

Family

ID=42242543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006562 WO2010067546A1 (ja) 2008-12-10 2009-12-02 半導体封止用樹脂組成物、半導体装置の製造方法及び半導体装置

Country Status (8)

Country Link
US (1) US8546959B2 (ja)
JP (1) JP5736643B2 (ja)
KR (1) KR101712216B1 (ja)
CN (1) CN102246296B (ja)
MY (1) MY152389A (ja)
SG (1) SG172036A1 (ja)
TW (1) TWI477545B (ja)
WO (1) WO2010067546A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159401A (ja) * 2008-12-10 2010-07-22 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物、半導体装置の製造方法及び半導体装置
JP2013036029A (ja) * 2011-07-08 2013-02-21 Hitachi Chemical Co Ltd コンプレッション成形用半導体封止樹脂材料及び半導体装置
JP2013176875A (ja) * 2012-02-28 2013-09-09 Towa Corp 樹脂封止用材料及びその製造方法
JP2013176874A (ja) * 2012-02-28 2013-09-09 Towa Corp 樹脂封止装置及び樹脂封止体の製造方法
JP2013203928A (ja) * 2012-03-29 2013-10-07 Sumitomo Bakelite Co Ltd 封止用エポキシ樹脂組成物、電子機器、および電子機器の製造方法
JP2013234303A (ja) * 2012-05-11 2013-11-21 Panasonic Corp 半導体封止用エポキシ樹脂組成物と半導体装置
JP2014133831A (ja) * 2013-01-10 2014-07-24 Panasonic Corp 圧縮成形用エポキシ樹脂組成物と半導体装置
US20150130318A1 (en) * 2012-03-01 2015-05-14 Sumitomo Bakelite Co., Ltd. Resin composition for rotor fixing, rotor, and automotive vehicle

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG193419A1 (en) * 2011-03-10 2013-11-29 Sumitomo Bakelite Co Semiconductor device, and process for manufacturing semiconductor device
JP2012214743A (ja) * 2011-04-01 2012-11-08 Hitachi Chemical Co Ltd 圧縮成形用固形封止樹脂組成物及び半導体装置
JP5906550B2 (ja) * 2011-07-28 2016-04-20 株式会社Moresco ハイバリア性を有する封止材
CN107429041B (zh) * 2015-03-23 2021-07-06 住友电木株式会社 压缩成型用模具底部填充材料、半导体封装、结构体和半导体封装的制造方法
KR101900549B1 (ko) * 2015-06-30 2018-09-19 삼성에스디아이 주식회사 과립상 반도체 소자 봉지용 에폭시 수지 조성물 및 이를 사용하여 봉지된 반도체 소자
US9704767B1 (en) 2015-12-23 2017-07-11 Intel Corporation Mold compound with reinforced fibers
JP2018024832A (ja) * 2016-07-29 2018-02-15 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物および半導体装置
KR102545654B1 (ko) * 2016-10-07 2023-06-20 주식회사 케이씨씨 반도체 봉지용 에폭시 수지 조성물
WO2019171475A1 (ja) * 2018-03-06 2019-09-12 日立化成株式会社 樹脂組成物の流動性評価方法、樹脂組成物の選別方法及び半導体装置の製造方法
JP7089995B2 (ja) * 2018-09-14 2022-06-23 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US10896880B2 (en) 2018-11-28 2021-01-19 Shiann-Tsong Tsai Semiconductor package with in-package compartmental shielding and fabrication method thereof
TWI744572B (zh) 2018-11-28 2021-11-01 蔡憲聰 具有封裝內隔室屏蔽的半導體封裝及其製作方法
US11211340B2 (en) 2018-11-28 2021-12-28 Shiann-Tsong Tsai Semiconductor package with in-package compartmental shielding and active electro-magnetic compatibility shielding
US10923435B2 (en) 2018-11-28 2021-02-16 Shiann-Tsong Tsai Semiconductor package with in-package compartmental shielding and improved heat-dissipation performance
US20200168557A1 (en) * 2018-11-28 2020-05-28 Chung-Che Tsai Semiconductor package and fabrication method thereof
KR102577534B1 (ko) 2018-12-21 2023-09-13 교세라 가부시키가이샤 반도체 밀봉용 성형 재료, 반도체 밀봉용 성형 재료의 제조 방법 및 그것을 사용한 반도체 장치
KR102643484B1 (ko) * 2021-10-19 2024-03-06 주식회사 케이씨씨 과립형 반도체 소자 봉지용 수지 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021908A (ja) * 1998-07-03 2000-01-21 Toshiba Chem Corp 樹脂封止型電子部品の製造方法
JP3135926B2 (ja) * 1997-08-07 2001-02-19 松下電工株式会社 半導体チップをモールドするためのエポキシ樹脂封止材料及びその製造方法
JP2003285319A (ja) * 2002-03-28 2003-10-07 Sumitomo Bakelite Co Ltd 樹脂組成物の製粉装置および製粉方法
JP2006070197A (ja) * 2004-09-03 2006-03-16 Kyocera Chemical Corp 圧縮成形用樹脂組成物と樹脂封止型半導体装置およびその製造方法
JP2008266610A (ja) * 2007-03-23 2008-11-06 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物及び半導体装置
JP2008266611A (ja) * 2007-03-23 2008-11-06 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物及び半導体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246671A (ja) * 1998-02-26 1999-09-14 Shin Etsu Chem Co Ltd 顆粒状エポキシ樹脂組成物の製造方法
JP3695686B2 (ja) * 1999-04-30 2005-09-14 住友ベークライト株式会社 熱硬化性樹脂組成物の造粒装置
JP2001055432A (ja) * 1999-08-20 2001-02-27 Fujitsu Ltd 半導体装置封止用樹脂組成物及びこれを用いた半導体装置、並びに半導体装置製造方法及び製造装置
JP2004027168A (ja) * 2002-05-08 2004-01-29 Hitachi Chem Co Ltd エポキシ樹脂組成物及び電子部品装置
WO2005106942A1 (ja) * 2004-04-30 2005-11-10 Sumitomo Bakelite Co., Ltd. 樹脂封止型半導体パッケージ並びにその製造方法及び製造装置
EP1775322A4 (en) * 2004-06-25 2009-11-11 Mitsubishi Eng Plastics Corp AROMATIC POLYCARBONATE RESIN COMPOSITIONS AND SUPPORT FOR AN OPTICAL INFORMATION RECORDING MEDIUM USING THE SAME, TRANSPARENT OPTICAL PART, COVER FOR LIGHTING AND TRANSPARENT ELEMENTS FOR A VEHICLE
JP2006216899A (ja) 2005-02-07 2006-08-17 Kyocera Chemical Corp コンプレッション成形用成形材料及び樹脂封止型半導体装置
WO2007141843A1 (ja) * 2006-06-06 2007-12-13 Nitto Denko Corporation 球状焼結フェライト粒子およびそれを用いた半導体封止用樹脂組成物ならびにそれを用いて得られる半導体装置
JP2008121003A (ja) * 2006-10-17 2008-05-29 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及びこれを用いた電子部品装置
WO2008117522A1 (ja) 2007-03-23 2008-10-02 Sumitomo Bakelite Co., Ltd. 半導体封止用樹脂組成物およびこれを用いる半導体装置
MY152389A (en) * 2008-12-10 2014-09-15 Sumitomo Bakelite Co Resin composition for encapsulating semiconductor, method for producing semiconductor device and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3135926B2 (ja) * 1997-08-07 2001-02-19 松下電工株式会社 半導体チップをモールドするためのエポキシ樹脂封止材料及びその製造方法
JP2000021908A (ja) * 1998-07-03 2000-01-21 Toshiba Chem Corp 樹脂封止型電子部品の製造方法
JP2003285319A (ja) * 2002-03-28 2003-10-07 Sumitomo Bakelite Co Ltd 樹脂組成物の製粉装置および製粉方法
JP2006070197A (ja) * 2004-09-03 2006-03-16 Kyocera Chemical Corp 圧縮成形用樹脂組成物と樹脂封止型半導体装置およびその製造方法
JP2008266610A (ja) * 2007-03-23 2008-11-06 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物及び半導体装置
JP2008266611A (ja) * 2007-03-23 2008-11-06 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物及び半導体装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159401A (ja) * 2008-12-10 2010-07-22 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物、半導体装置の製造方法及び半導体装置
JP2013036029A (ja) * 2011-07-08 2013-02-21 Hitachi Chemical Co Ltd コンプレッション成形用半導体封止樹脂材料及び半導体装置
JP2013176875A (ja) * 2012-02-28 2013-09-09 Towa Corp 樹脂封止用材料及びその製造方法
JP2013176874A (ja) * 2012-02-28 2013-09-09 Towa Corp 樹脂封止装置及び樹脂封止体の製造方法
US20150130318A1 (en) * 2012-03-01 2015-05-14 Sumitomo Bakelite Co., Ltd. Resin composition for rotor fixing, rotor, and automotive vehicle
JP2013203928A (ja) * 2012-03-29 2013-10-07 Sumitomo Bakelite Co Ltd 封止用エポキシ樹脂組成物、電子機器、および電子機器の製造方法
JP2013234303A (ja) * 2012-05-11 2013-11-21 Panasonic Corp 半導体封止用エポキシ樹脂組成物と半導体装置
JP2014133831A (ja) * 2013-01-10 2014-07-24 Panasonic Corp 圧縮成形用エポキシ樹脂組成物と半導体装置

Also Published As

Publication number Publication date
CN102246296A (zh) 2011-11-16
MY152389A (en) 2014-09-15
US20110260342A1 (en) 2011-10-27
TWI477545B (zh) 2015-03-21
TW201030077A (en) 2010-08-16
JP5736643B2 (ja) 2015-06-17
KR20110094216A (ko) 2011-08-22
JP2010159401A (ja) 2010-07-22
US8546959B2 (en) 2013-10-01
SG172036A1 (en) 2011-07-28
KR101712216B1 (ko) 2017-03-03
CN102246296B (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5736643B2 (ja) 半導体封止用樹脂組成物、半導体装置の製造方法及び半導体装置
JP5672335B2 (ja) 半導体装置の製造方法
US6733901B2 (en) Process for production of epoxy resin composition for semiconductor encapsulation, epoxy resin composition for semiconductor encapsulation, and semiconductor device
JPWO2011064964A1 (ja) 流動特性測定用金型、流動特性測定方法、半導体封止用樹脂組成物及び半導体装置の製造方法
JP2007077333A (ja) 封止用エポキシ樹脂成形材料の製造方法、封止用エポキシ樹脂成形材料及び電子部品装置
US11702537B2 (en) Tablet-type epoxy resin composition for sealing semiconductor device, and semiconductor device sealed using the same
TWI692066B (zh) 半導體密封用環氧樹脂粒狀體之製造方法、半導體密封用環氧樹脂粒狀體、半導體裝置之製造方法及半導體裝置
JP6941737B2 (ja) フレーク状封止用樹脂組成物、および半導体装置
TW202225244A (zh) 半導體密封用樹脂組成物及半導體裝置
JP2002309067A (ja) 封止用エポキシ樹脂組成物及び半導体装置
JP6555000B2 (ja) 半導体封止用エポキシ樹脂粒状体の製造方法、及び、半導体装置の製造方法
JP2008303368A (ja) 半導体封止用エポキシ樹脂組成物及びそれを用いた半導体装置
JP7564618B2 (ja) 錠剤状の半導体素子密封用エポキシ樹脂組成物及びこれを用いて密封された半導体装置
JP2002134530A (ja) 半導体用樹脂ペーストの製造方法、半導体用樹脂ペースト及び半導体装置
JPH10182947A (ja) 封止材用エポキシ樹脂組成物及びそれを用いた半導体装置
JPH04188855A (ja) 半導体装置
JP2023033936A (ja) 封止用樹脂組成物および電子装置
JP2005051030A (ja) 封止材料及び半導体装置
JP4013049B2 (ja) 封止用エポキシ樹脂組成物及び樹脂封止型半導体装置
JP2005097350A (ja) 封止用エポキシ樹脂成形材料の製造方法、封止用エポキシ樹脂成形材料及び電子部品装置
JP2003206393A (ja) エポキシ樹脂成形材料及び半導体装置
JP2005336362A (ja) エポキシ樹脂組成物及び半導体装置
JP2007311821A (ja) 表面実装用樹脂封止型半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149798.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831654

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13133752

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117015968

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09831654

Country of ref document: EP

Kind code of ref document: A1