WO2010059778A1 - Procédés et compositions pour adhésion cellulaire et culture sur des substrats plans - Google Patents
Procédés et compositions pour adhésion cellulaire et culture sur des substrats plans Download PDFInfo
- Publication number
- WO2010059778A1 WO2010059778A1 PCT/US2009/065067 US2009065067W WO2010059778A1 WO 2010059778 A1 WO2010059778 A1 WO 2010059778A1 US 2009065067 W US2009065067 W US 2009065067W WO 2010059778 A1 WO2010059778 A1 WO 2010059778A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- cell
- stem cells
- membrane
- culture
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims abstract description 61
- 239000000203 mixture Substances 0.000 title description 9
- 210000004027 cell Anatomy 0.000 claims abstract description 383
- 210000001778 pluripotent stem cell Anatomy 0.000 claims abstract description 59
- 239000002099 adlayer Substances 0.000 claims abstract description 17
- 230000000694 effects Effects 0.000 claims description 28
- 102000000568 rho-Associated Kinases Human genes 0.000 claims description 28
- 108010041788 rho-Associated Kinases Proteins 0.000 claims description 28
- 229910052760 oxygen Inorganic materials 0.000 claims description 17
- 230000002401 inhibitory effect Effects 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 9
- IYOZTVGMEWJPKR-IJLUTSLNSA-N Y-27632 Chemical compound C1C[C@@H]([C@H](N)C)CC[C@@H]1C(=O)NC1=CC=NC=C1 IYOZTVGMEWJPKR-IJLUTSLNSA-N 0.000 claims description 4
- 239000006285 cell suspension Substances 0.000 claims description 4
- NGOGFTYYXHNFQH-UHFFFAOYSA-N fasudil Chemical compound C=1C=CC2=CN=CC=C2C=1S(=O)(=O)N1CCCNCC1 NGOGFTYYXHNFQH-UHFFFAOYSA-N 0.000 claims description 3
- 229960002435 fasudil Drugs 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims description 3
- ZAVGJDAFCZAWSZ-UHFFFAOYSA-N hydroxyfasudil Chemical compound C1=CC=C2C(O)=NC=CC2=C1S(=O)(=O)N1CCCNCC1 ZAVGJDAFCZAWSZ-UHFFFAOYSA-N 0.000 claims description 2
- 230000004069 differentiation Effects 0.000 abstract description 31
- 230000012010 growth Effects 0.000 abstract description 14
- 239000012528 membrane Substances 0.000 description 113
- 210000001671 embryonic stem cell Anatomy 0.000 description 61
- AWDORCFLUJZUQS-ZDUSSCGKSA-N (S)-2-methyl-1-(4-methylisoquinoline-5-sulfonyl)-1,4-diazepane Chemical compound C[C@H]1CNCCCN1S(=O)(=O)C1=CC=CC2=CN=CC(C)=C12 AWDORCFLUJZUQS-ZDUSSCGKSA-N 0.000 description 33
- 239000002609 medium Substances 0.000 description 33
- 210000000130 stem cell Anatomy 0.000 description 30
- 210000001900 endoderm Anatomy 0.000 description 29
- 239000004417 polycarbonate Substances 0.000 description 26
- 229920000515 polycarbonate Polymers 0.000 description 26
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 25
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 25
- 239000003636 conditioned culture medium Substances 0.000 description 22
- 239000001963 growth medium Substances 0.000 description 22
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 22
- 239000006143 cell culture medium Substances 0.000 description 19
- 229920002678 cellulose Polymers 0.000 description 19
- 239000003590 rho kinase inhibitor Substances 0.000 description 17
- 238000011282 treatment Methods 0.000 description 17
- 230000014509 gene expression Effects 0.000 description 16
- -1 for example Polymers 0.000 description 15
- 239000007787 solid Substances 0.000 description 15
- 230000009996 pancreatic endocrine effect Effects 0.000 description 14
- 108010082117 matrigel Proteins 0.000 description 13
- 238000012258 culturing Methods 0.000 description 12
- 210000001519 tissue Anatomy 0.000 description 12
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 11
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 11
- 102000004877 Insulin Human genes 0.000 description 11
- 108090001061 Insulin Proteins 0.000 description 11
- 229940126864 fibroblast growth factor Drugs 0.000 description 11
- 229940125396 insulin Drugs 0.000 description 11
- 210000002966 serum Anatomy 0.000 description 11
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 10
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 10
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 10
- 230000006907 apoptotic process Effects 0.000 description 9
- 239000013078 crystal Substances 0.000 description 9
- 210000002950 fibroblast Anatomy 0.000 description 9
- 238000000684 flow cytometry Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 8
- 229930040373 Paraformaldehyde Natural products 0.000 description 8
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 8
- 229920002866 paraformaldehyde Polymers 0.000 description 8
- 230000035755 proliferation Effects 0.000 description 8
- 210000000349 chromosome Anatomy 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 230000000644 propagated effect Effects 0.000 description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- 101710201246 Eomesodermin Proteins 0.000 description 6
- 102100030751 Eomesodermin homolog Human genes 0.000 description 6
- 241000288906 Primates Species 0.000 description 6
- 230000001143 conditioned effect Effects 0.000 description 6
- 238000010494 dissociation reaction Methods 0.000 description 6
- 230000005593 dissociations Effects 0.000 description 6
- 210000002242 embryoid body Anatomy 0.000 description 6
- 210000003890 endocrine cell Anatomy 0.000 description 6
- 239000003102 growth factor Substances 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000000386 microscopy Methods 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000004630 atomic force microscopy Methods 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 210000004039 endoderm cell Anatomy 0.000 description 5
- 210000001654 germ layer Anatomy 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 239000012583 B-27 Supplement Substances 0.000 description 4
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 4
- 102000024905 CD99 Human genes 0.000 description 4
- 108060001253 CD99 Proteins 0.000 description 4
- 102100028096 Homeobox protein Nkx-6.2 Human genes 0.000 description 4
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 4
- 101000578254 Homo sapiens Homeobox protein Nkx-6.1 Proteins 0.000 description 4
- 101000578258 Homo sapiens Homeobox protein Nkx-6.2 Proteins 0.000 description 4
- 101000603702 Homo sapiens Neurogenin-3 Proteins 0.000 description 4
- 102100038553 Neurogenin-3 Human genes 0.000 description 4
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 4
- 102000052651 Pancreatic hormone Human genes 0.000 description 4
- 101800001268 Pancreatic hormone Proteins 0.000 description 4
- 108010023082 activin A Proteins 0.000 description 4
- 229940098773 bovine serum albumin Drugs 0.000 description 4
- 229920002301 cellulose acetate Polymers 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 210000003494 hepatocyte Anatomy 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 230000001537 neural effect Effects 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 239000004025 pancreas hormone Substances 0.000 description 4
- 229940032957 pancreatic hormone Drugs 0.000 description 4
- 210000001811 primitive streak Anatomy 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- 238000002054 transplantation Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- HFDKKNHCYWNNNQ-YOGANYHLSA-N 75976-10-2 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](C)N)C(C)C)[C@@H](C)O)C1=CC=C(O)C=C1 HFDKKNHCYWNNNQ-YOGANYHLSA-N 0.000 description 3
- 108010049931 Bone Morphogenetic Protein 2 Proteins 0.000 description 3
- 102100024506 Bone morphogenetic protein 2 Human genes 0.000 description 3
- 102100036008 CD48 antigen Human genes 0.000 description 3
- 102100037986 Dickkopf-related protein 4 Human genes 0.000 description 3
- 102100028072 Fibroblast growth factor 4 Human genes 0.000 description 3
- 102100037680 Fibroblast growth factor 8 Human genes 0.000 description 3
- 102000051325 Glucagon Human genes 0.000 description 3
- 108060003199 Glucagon Proteins 0.000 description 3
- 108010090293 Growth Differentiation Factor 3 Proteins 0.000 description 3
- 102100035364 Growth/differentiation factor 3 Human genes 0.000 description 3
- 108010048671 Homeodomain Proteins Proteins 0.000 description 3
- 102000009331 Homeodomain Proteins Human genes 0.000 description 3
- 101000716130 Homo sapiens CD48 antigen Proteins 0.000 description 3
- 101000951340 Homo sapiens Dickkopf-related protein 4 Proteins 0.000 description 3
- 101001060274 Homo sapiens Fibroblast growth factor 4 Proteins 0.000 description 3
- 101001027382 Homo sapiens Fibroblast growth factor 8 Proteins 0.000 description 3
- 101000613495 Homo sapiens Paired box protein Pax-4 Proteins 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 101150079937 NEUROD1 gene Proteins 0.000 description 3
- 102100032063 Neurogenic differentiation factor 1 Human genes 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 102100040909 Paired box protein Pax-4 Human genes 0.000 description 3
- 102000018886 Pancreatic Polypeptide Human genes 0.000 description 3
- 102000005157 Somatostatin Human genes 0.000 description 3
- 108010056088 Somatostatin Proteins 0.000 description 3
- 101000983124 Sus scrofa Pancreatic prohormone precursor Proteins 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 210000002459 blastocyst Anatomy 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 230000002559 cytogenic effect Effects 0.000 description 3
- 230000002354 daily effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 3
- 229960004666 glucagon Drugs 0.000 description 3
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229920000768 polyamine Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000035935 pregnancy Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 230000003248 secreting effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 3
- 229960000553 somatostatin Drugs 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 101800001318 Capsid protein VP4 Proteins 0.000 description 2
- 108060005980 Collagenase Proteins 0.000 description 2
- 102000029816 Collagenase Human genes 0.000 description 2
- 101100518002 Danio rerio nkx2.2a gene Proteins 0.000 description 2
- 102100028071 Fibroblast growth factor 7 Human genes 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 102100029087 Hepatocyte nuclear factor 6 Human genes 0.000 description 2
- 108700014808 Homeobox Protein Nkx-2.2 Proteins 0.000 description 2
- 102100027886 Homeobox protein Nkx-2.2 Human genes 0.000 description 2
- 102100030634 Homeobox protein OTX2 Human genes 0.000 description 2
- 101001060261 Homo sapiens Fibroblast growth factor 7 Proteins 0.000 description 2
- 101000988619 Homo sapiens Hepatocyte nuclear factor 6 Proteins 0.000 description 2
- 101000584400 Homo sapiens Homeobox protein OTX2 Proteins 0.000 description 2
- 101000971533 Homo sapiens Killer cell lectin-like receptor subfamily G member 1 Proteins 0.000 description 2
- 101000576323 Homo sapiens Motor neuron and pancreas homeobox protein 1 Proteins 0.000 description 2
- 101100460496 Homo sapiens NKX2-2 gene Proteins 0.000 description 2
- 101000819074 Homo sapiens Transcription factor GATA-4 Proteins 0.000 description 2
- 101000819088 Homo sapiens Transcription factor GATA-6 Proteins 0.000 description 2
- 101000979205 Homo sapiens Transcription factor MafA Proteins 0.000 description 2
- 101000652324 Homo sapiens Transcription factor SOX-17 Proteins 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 102100021457 Killer cell lectin-like receptor subfamily G member 1 Human genes 0.000 description 2
- 108010052014 Liberase Proteins 0.000 description 2
- 102100027754 Mast/stem cell growth factor receptor Kit Human genes 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 101100005911 Mus musculus Cer1 gene Proteins 0.000 description 2
- 101100310648 Mus musculus Sox17 gene Proteins 0.000 description 2
- 108010032788 PAX6 Transcription Factor Proteins 0.000 description 2
- 102100037506 Paired box protein Pax-6 Human genes 0.000 description 2
- 102100027609 Rho-related GTP-binding protein RhoD Human genes 0.000 description 2
- 102100021380 Transcription factor GATA-4 Human genes 0.000 description 2
- 102100021382 Transcription factor GATA-6 Human genes 0.000 description 2
- 102100030243 Transcription factor SOX-17 Human genes 0.000 description 2
- 102000004338 Transferrin Human genes 0.000 description 2
- 108090000901 Transferrin Proteins 0.000 description 2
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 239000007640 basal medium Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000032823 cell division Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 210000003981 ectoderm Anatomy 0.000 description 2
- 210000002308 embryonic cell Anatomy 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000005660 hydrophilic surface Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- OGQSCIYDJSNCMY-UHFFFAOYSA-H iron(3+);methyl-dioxido-oxo-$l^{5}-arsane Chemical compound [Fe+3].[Fe+3].C[As]([O-])([O-])=O.C[As]([O-])([O-])=O.C[As]([O-])([O-])=O OGQSCIYDJSNCMY-UHFFFAOYSA-H 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 210000003716 mesoderm Anatomy 0.000 description 2
- WDHRPWOAMDJICD-FOAQWNCLSA-N n-[2-[(3'r,3'as,6's,6as,6bs,7'ar,9r,11as,11br)-3',6',10,11b-tetramethyl-3-oxospiro[1,2,4,6,6a,6b,7,8,11,11a-decahydrobenzo[a]fluorene-9,2'-3,3a,5,6,7,7a-hexahydrofuro[3,2-b]pyridine]-4'-yl]ethyl]-6-(3-phenylpropanoylamino)hexanamide Chemical compound C([C@@H](C)C[C@@H]1[C@@H]2[C@H]([C@]3(C(=C4C[C@@H]5[C@@]6(C)CCC(=O)CC6=CC[C@H]5[C@@H]4CC3)C)O1)C)N2CCNC(=O)CCCCCNC(=O)CCC1=CC=CC=C1 WDHRPWOAMDJICD-FOAQWNCLSA-N 0.000 description 2
- 239000002121 nanofiber Substances 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 229960003966 nicotinamide Drugs 0.000 description 2
- 235000005152 nicotinamide Nutrition 0.000 description 2
- 239000011570 nicotinamide Substances 0.000 description 2
- 102000045246 noggin Human genes 0.000 description 2
- 108700007229 noggin Proteins 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 229930002330 retinoic acid Natural products 0.000 description 2
- 238000003757 reverse transcription PCR Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 2
- 239000012581 transferrin Substances 0.000 description 2
- 229960001727 tretinoin Drugs 0.000 description 2
- IDDDVXIUIXWAGJ-DDSAHXNVSA-N 4-[(1r)-1-aminoethyl]-n-pyridin-4-ylcyclohexane-1-carboxamide;dihydrochloride Chemical compound Cl.Cl.C1CC([C@H](N)C)CCC1C(=O)NC1=CC=NC=C1 IDDDVXIUIXWAGJ-DDSAHXNVSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102000003952 Caspase 3 Human genes 0.000 description 1
- 108090000397 Caspase 3 Proteins 0.000 description 1
- 102100025051 Cell division control protein 42 homolog Human genes 0.000 description 1
- 241000202252 Cerberus Species 0.000 description 1
- 102100025745 Cerberus Human genes 0.000 description 1
- 101710010675 Cerberus Proteins 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 102100030497 Cytochrome c Human genes 0.000 description 1
- 108010075031 Cytochromes c Proteins 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- DWJXYEABWRJFSP-XOBRGWDASA-N DAPT Chemical compound N([C@@H](C)C(=O)N[C@H](C(=O)OC(C)(C)C)C=1C=CC=CC=1)C(=O)CC1=CC(F)=CC(F)=C1 DWJXYEABWRJFSP-XOBRGWDASA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108010011459 Exenatide Proteins 0.000 description 1
- 102100023374 Forkhead box protein M1 Human genes 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 108700031316 Goosecoid Proteins 0.000 description 1
- 102000050057 Goosecoid Human genes 0.000 description 1
- 101150094793 Hes3 gene Proteins 0.000 description 1
- 101000907578 Homo sapiens Forkhead box protein M1 Proteins 0.000 description 1
- 101000642523 Homo sapiens Transcription factor SOX-7 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- 102100025170 Motor neuron and pancreas homeobox protein 1 Human genes 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000015336 Nerve Growth Factor Human genes 0.000 description 1
- 102100034388 Netrin-4 Human genes 0.000 description 1
- 101710121532 Netrin-4 Proteins 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 238000010240 RT-PCR analysis Methods 0.000 description 1
- 206010043276 Teratoma Diseases 0.000 description 1
- 102100036730 Transcription factor SOX-7 Human genes 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 206010063092 Trisomy 12 Diseases 0.000 description 1
- 206010053925 Trisomy 17 Diseases 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 102000044880 Wnt3A Human genes 0.000 description 1
- 108700013515 Wnt3A Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 208000036878 aneuploidy Diseases 0.000 description 1
- 230000025164 anoikis Effects 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- JUFFVKRROAPVBI-PVOYSMBESA-N chembl1210015 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(=O)N[C@H]1[C@@H]([C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@]3(O[C@@H](C[C@H](O)[C@H](O)CO)[C@H](NC(C)=O)[C@@H](O)C3)C(O)=O)O2)O)[C@@H](CO)O1)NC(C)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 JUFFVKRROAPVBI-PVOYSMBESA-N 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 108010007093 dispase Proteins 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 238000011977 dual antiplatelet therapy Methods 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 229960001519 exenatide Drugs 0.000 description 1
- 210000000646 extraembryonic cell Anatomy 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 210000001647 gastrula Anatomy 0.000 description 1
- 230000007045 gastrulation Effects 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000002064 heart cell Anatomy 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 108010069764 helospectin I Proteins 0.000 description 1
- HTMVMVKJOPFRMK-OYZAELBCSA-N helospectin i Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=C(O)C=C1 HTMVMVKJOPFRMK-OYZAELBCSA-N 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 230000006623 intrinsic pathway Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007775 late Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000002894 multi-fate stem cell Anatomy 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 210000003061 neural cell Anatomy 0.000 description 1
- 125000004355 nitrogen functional group Chemical group 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 150000004728 pyruvic acid derivatives Chemical class 0.000 description 1
- 238000011536 re-plating Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000009256 replacement therapy Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 108010033674 rho GTP-Binding Proteins Proteins 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 102000035025 signaling receptors Human genes 0.000 description 1
- 108091005475 signaling receptors Proteins 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000000920 spermatogeneic effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000023895 stem cell maintenance Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012090 tissue culture technique Methods 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 210000002438 upper gastrointestinal tract Anatomy 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0603—Embryonic cells ; Embryoid bodies
- C12N5/0606—Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/38—Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/70—Enzymes
- C12N2501/72—Transferases [EC 2.]
- C12N2501/727—Kinases (EC 2.7.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/999—Small molecules not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/30—Synthetic polymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/50—Proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/70—Polysaccharides
- C12N2533/78—Cellulose
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/90—Substrates of biological origin, e.g. extracellular matrix, decellularised tissue
Definitions
- the present invention is directed to methods for the growth, expansion and differentiation of pluripotent stem cells on planar substrates lacking an adlayer and a feeder cell layer.
- Vessels for mammalian cell culture and analysis involving anchorage- dependent cells are often made of glass or a polymer, such as, for example, polystyrene, that frequently requires additional surface treatment to allow the cells to attach to the surface of the vessel.
- Such treatments may include applying an adlayer on the surface, for example, by adsorption, grafting or plasma polymerization techniques.
- the surface treatment may be via chemical modification of the vessel surface itself, which can be achieved by, for example, atmospheric corona, radio frequency vacuum plasma, DC glow discharge, and microwave plasma treatments.
- ES cells embryonic stem cells
- Culture systems that employ these methods often use feeder cells or extracellular matrix proteins obtained from a different species than that of the stem cells being cultivated (xenogeneic material).
- Media obtained by exposure to feeder cells that is, media conditioned by cells other than undifferentiated ES cells, may be used to culture the ES cells, and media may be supplemented with animal serum.
- Reubinoff et a (Nature Biotechnol. 18:399-404, 2000) and Thompson et a (Science 282: 1145-1147, 1998) disclose the culture of ES cell lines from human blastocysts using a mouse embryonic fibroblast feeder cell layer.
- Xu et a (Nature Biotechnology 19: 971-974, 2001) discloses the use of MATRIGEL ® and laminin for treating solid substrate surfaces before feeder-cell free cultivation of human ES cells without differentiation.
- Valuer et a (J. Cell Sci. 118:4495-4509, 2005) discloses the use of fetal bovine serum for treating solid substrate surfaces before feeder-cell free cultivation of human ES cells without differentiation.
- WO2005014799 discloses conditioned medium for the maintenance, proliferation and differentiation of mammalian cells.
- Wanatabe et a (Nature Biotechnol. 35:681-686, 2007) state "a ROCK inhibitor permits survival of dissociated human embryonic stem cells", and demonstrate reduced dissociation-induced apoptosis, increases cloning efficiency (from approximately 1% to approximately 27%) and facilitation of subcloning after gene transfer, using mouse embryonic fibroblasts as feeder cells, collagen and MATRIGEL ® as extracellular matrix protein, and Y-27632 or Fasudil for inhibition of ROCK. Furthermore, dissociated human ES cells treated with Y-27632 were protected from apoptosis in serum-free suspension culture.
- Peerani et a (EMBO Journal 26:4744-4755, 2007) state "Complexity in the spatial organization of human embryonic stem cell (hESC) cultures creates heterogeneous microenvironments (niches) that influence hESC fate.
- hESC human embryonic stem cell
- niches microenvironments
- Niche size and composition regulate the balance between differentiation-inducing and -inhibiting factors.
- a niche size-dependent spatial gradient of Smadl signaling is generated as a result of antagonistic interactions between hESCs and hESC-derived extra-embryonic endoderm (ExE).
- Rho-GTPase has been implicated in the apoptosis of many cell types, including neurons, but the mechanism by which it acts is not fully understood.
- Rho and ROCK in apoptosis during transplantation of embryonic stem cell-derived neural precursor cells.
- dissociation of neural precursors activates Rho and induces apoptosis.
- Treatment with the Rho inhibitor C3 exoenzyme and/or the ROCK inhibitor Y-27632 decreases the amount of dissociation-induced apoptosis (anoikis) by 20-30%.
- Membrane blebbing which is an early morphological sign of apoptosis; cleavage of caspase-3; and release of cytochrome c from the mitochondria are also reduced by ROCK inhibition.
- xenogeneic material may be unsuitable for certain applications utilizing pluripotent stem cells.
- Alternative materials may be used.
- Stojkovic et al. (Stem Cells 23:895-902, 2005) discloses the use of human serum for treating solid substrate surfaces before feeder-cell free cultivation of human ES cells without differentiation.
- An alternative culture system employs serum- free medium supplemented with growth factors capable of promoting the proliferation of embryonic stem cells.
- Cheon et al. disclose a feeder-cell free, serum-free culture system in which ES cells are maintained in unconditioned serum replacement medium supplemented with different growth factors capable of triggering ES cell self-renewal.
- Levenstein et al. disclose methods for the long-term culture of human ES cells in the absence of fibroblasts or conditioned medium, using media supplemented with basic fibroblast growth factor (FGF).
- FGF basic fibroblast growth factor
- US20050148070 discloses a method of culturing human ES cells in defined media without serum and without fibroblast feeder cells, the method comprising: culturing the stem cells in a culture medium containing albumin, amino acids, vitamins, minerals, at least one transferrin or transferrin substitute, at least one insulin or insulin substitute, the culture medium essentially free of mammalian fetal serum and containing at least about 100 ng/ml of a FGF capable of activating a FGF signaling receptor, wherein the growth factor is supplied from a source other than just a fibroblast feeder layer, the medium supported the proliferation of stem cells in an undifferentiated state without feeder cells or conditioned medium.
- US20050233446 discloses a defined media useful in culturing stem cells, including undifferentiated primate primordial stem cells.
- the media is substantially isotonic as compared to the stem cells being cultured.
- the particular medium comprises a base medium and an amount of each of basic FGF, insulin, and ascorbic acid necessary to support substantially undifferentiated growth of the primordial stem cells.
- a cell culture medium for growing primate-derived primordial stem cells in a substantially undifferentiated state which includes a low osmotic pressure, low endotoxin basic medium that is effective to support the growth of primate-derived primordial stem cells.
- the basic medium is combined with a nutrient serum effective to support the growth of primate-derived primordial stem cells and a substrate selected from the group consisting of feeder cells and an extracellular matrix component derived from feeder cells.
- the medium further includes nonessential amino acids, an anti-oxidant, and a first growth factor selected from the group consisting of nucleosides and a pyruvate salt.”
- US20050244962 states: "In one aspect the invention provides a method of culturing primate embryonic stem cells. One cultures the stem cells in a culture essentially free of mammalian fetal serum (preferably also essentially free of any animal serum) and in the presence of fibroblast growth factor that is supplied from a source other than just a fibroblast feeder layer. In a preferred form, the fibroblast feeder layer, previously required to sustain a stem cell culture, is rendered unnecessary by the addition of sufficient fibroblast growth factor.”
- WO2005065354 discloses a defined, isotonic culture medium that is essentially feeder-free and serum-free, comprising: a. a basal medium; b. an amount of basic fibroblast growth factor sufficient to support growth of substantially undifferentiated mammalian stem cells; c. an amount of insulin sufficient to support growth of substantially undifferentiated mammalian stem cells; and d. an amount of ascorbic acid sufficient to support growth of substantially undifferentiated mammalian stem cells.
- WO2005086845 discloses a method for maintenance of an undifferentiated stem cell, said method comprising exposing a stem cell to a member of the transforming growth factor-beta (TGF ⁇ ) family of proteins, a member of the fibroblast growth factor (FGF) family of proteins, or nicotinamide (NIC) in an amount sufficient to maintain the cell in an undifferentiated state for a sufficient amount of time to achieve a desired result.
- TGF ⁇ transforming growth factor-beta
- FGF fibroblast growth factor
- NIC nicotinamide
- Pluripotent stem cells provide a potential resource for research and drug screening.
- large-scale culturing of human ES cell lines is problematic and provides substantial challenges.
- a possible solution to these challenges is to passage and culture the human ES cells as single cells.
- Single cells are more amenable to standard tissue culture techniques, such as, for example, counting, transfection, and the like.
- Nicolas et al. provide a method for producing and expanding human ES cell lines from single cells that have been isolated by fluorescence-activated cell sorting following genetic modification by lentivirus vectors (Stem Cells Dev. 16: 109- 118, 2007).
- US patent application US2005158852 discloses a method "for improving growth and survival of single human embryonic stem cells. The method includes the step of obtaining a single undifferentiated hES cell; mixing the single undifferentiated cell with an extracellular matrix to encompass the cell; and inoculating the mixture onto feeder cells with a nutrient medium in a growth environment".
- Sidhu et al. (Stem Cells Dev. 15:61-69, 2006) describe the first report of three human ES cell clones, hES 3.1, 3.2 and 3.3, derived from the parent line hES3 by sorting of single-cell preparations by flow cytometry.
- passage and culture of human ES cells as single cells leads to genetic abnormalities and the loss of pluripotency. Culture conditions are important in the maintenance of pluripotency and genetic stability. Generally, passage of human ES cell lines is conducted manually or with enzymatic agents such as collagenase, liberase or dispase.
- Draper et al. note the presence of "karyotypic changes involving the gain of chromosome 17q in three independent human embryonic stem cell lines on five independent occasions.” (Nature Biotechnol. 22:53-54, 2004).
- Mitalipova et al. state "bulk passage methods... can perpetuate aneuploid cell populations after extended passage in culture, but may be used for shorter periods (up to at least 15 passages) without compromising the karyotypes...it may be possible to maintain a normal karyotype in hES cells under long-term manual propagation conditions followed by limited bulk passaging in experiments requiring greater quantities of hES cells than manual passage methods, alone, can provide". (Nature Biotechnol. 23: 19-20, 2005).
- Heng et al. state "the results demonstrated that the second protocol (trypsinization with gentle pipetting) is much less detrimental to cellular viability than is the first protocol (collagenase treatment with scratching). This in turn translated to higher freeze-thaw survival rates.” (Biotechnology and Applied Biochemistry 47:33-37, 2007).
- Hasegawa et al. state "we have established hESC sublines tolerant of complete dissociation. These cells exhibit high replating efficiency and also high cloning efficiency and they maintain their ability to differentiate into the three germ layers.” (Stem Cells 24:2649-2660, 2006).
- US Patent application 61/030,544 provides methods and compositions for cell attachment to, cultivation on and detachment from a solid substrate surface containing from at least about 0.9% nitrogen to about at least 11% nitrogen and from at least about 12% oxygen to at least about 30% oxygen, and lacking an adlayer and feeder cells.
- the cells are treated with a compound capable of inhibiting Rho kinase activity.
- the present invention provides methods for the growth, expansion and differentiation of pluripotent stem cells on planar substrates lacking an adlayer and a feeder cell layer, wherein the cells do not require treatment with a compound capable of inhibiting Rho kinase activity in order to bind to the planar substrate.
- the present invention provides methods for the attachment, cultivation and differentiation of pluripotent stem cells to a planar substrate containing up to about 12% N, from at least about 12% O to at least about 55% O, a contact angle from about 18 degrees to about 32 degrees, and lacking an adlayer and a feeder cell layer.
- Figure 1 shows the effect of the Rho kinase inhibitor H-1152 on the attachment of the human embryonic stem cell line Hl to planar substrates.
- Panel a) depicts cell attachment on mixed cellulose ester membranes (membrane No. 2 in Table 1).
- Panel b) depicts cell attachment on nylon membranes (membrane No. 4 in Table 1).
- Panel c) depicts cell attachment on cellulose acetate membranes (membrane No. 5 in Table 1).
- Panel d) depicts cell attachment on polycarbonate membranes (membrane No. 7 in Table 1).
- Panel e) depicts cell attachment on polyethylene terephthalate membranes (membrane No. 12 in Table 1).
- Figure 2 shows the effect of the Rho kinase inhibitor Y-26732 on the attachment of the human embryonic stem cell line H9 to mixed cellulose ester membrane (membrane No. 1 in Table 1).
- Panel a) depicts cell attachment in a control well.
- Panel b) depicts cell attachment for cells treated with lO ⁇ M Y-26732.
- Panel c) depicts cell attachment for cells treated with 20 ⁇ M Y-26732.
- Figure 3 shows the proliferation curves of the human embryonic stem cell line Hl on MATRIGEL ® coated surface (solid line) and on mixed cellulose ester membranes (membrane No. 1 in Table 1) (dashed line).
- Figure 4 shows the G-banded chromosomes from representative cells of the human embryonic stem cells of the line Hl.
- Panel a) depicts the chromosomes from a cell cultured on MATRIGEL ® coated surface for 10 passages.
- Panel b) depicts the chromosomes from a cell cultured on mixed cellulose ester membranes (membrane No.1 in Table 1) for 10 passages.
- Figure 5 shows the effect of the Rho kinase inhibitor Y26732 on cells of the human embryonic stem cell line H9 on the attachment to polycarbonate membranes (membrane No. 7 in Table 1).
- Panel a) depicts cell attachment in a control well.
- Panel b) depicts cell attachment following treatment with lO ⁇ M Y-26732.
- Panel c) depicts cell attachment following treatment with 20 ⁇ M Y-26732.
- Figure 6 shows the effect of the Rho kinase inhibitor H-1152 on the attachment of cells of the human embryonic stem cell line Hl to polycarbonate membranes (membrane No. 7 in Table 1).
- Panel a) depicts cell attachment in a control well.
- Figure 7 shows the detachment of cells of the human embryonic stem cell line Hl from polycarbonate membranes (membrane No. 9 in Table 1) following the removal of Rho kinase inhibitor H-1152 from the cell culture medium.
- Figure 8 shows the effect of membrane pore size and Rho kinase inhibitor treatment on the attachment of the human embryonic stem cell line Hl to the planar substrates comprising the following: polycarbonate membrane No. 10 in Table 1 in panel a and c; and polycarbonate membrane No. 11 in Table 1 in panel b and d).
- Panels c and d) depicts the detachment of cells when H-1152 was removed from the culture medium.
- Figure 9 shows the maintenance of the expression of markers associated with pluripotency in cells of the human embryonic stem cell line Hl cultured on polycarbonate membranes (membrane No. 8 in Table 1) for three passages. Expression of the genes indicated in the figure was determined by real-time PCR.
- the solid bars represent data obtained from the undifferentiated human embryonic stem cell line Hl.
- Hashed bars represent data obtained from the cells cultured on polycarbonate membranes.
- Figure 10 shows the ability of cells of the human embryonic stem cell line Hl to form embryoid bodies following culture for 12 passages on polycarbonate membranes (membrane No. 8 in Table 1). The figure shows representative data from a single experiment.
- Figure 11 shows scanning electron micrographs of the planar substrates of the present invention.
- Figure 12 shows scanning electron micrographs of the ULTRA WEBTM planar substrate.
- Figure 13 shows the effect of the defined medium mTESRTM on the binding of cells of the human embryonic stem cell line Hl to various planar substrates.
- Adlayer refers to a layer that is formed on a surface of a solid substrate, by attaching molecules to the surface by either covalent (also known as grafting) or non-covalent (also known as adsorption) bonds.
- Molecules used in making an adlayer can, for example, be proteinaceous molecules, which may include, for example, extracellular matrix proteins, amino acids and the like, and non- biological molecules, such as, for example, polyethyleneimine.
- ⁇ -cell lineage refers to cells with positive gene expression for the transcription factor PDX-I and at least one of the following transcription factors: NGN3, NKX2.2, NKX6.1, NEUROD, ISLl, HNF-3 beta, MAFA, PAX4, or PAX6.
- Cells expressing markers characteristic of the ⁇ cell lineage include ⁇ cells.
- Cells expressing markers characteristic of the definitive endoderm lineage refers to cells expressing at least one of the following markers: SOX17, GATA4, HNF3 beta, GSC, CERl, Nodal, FGF8, Brachyury, Mix-like homeobox protein, FGF4 CD48, eomesodermin (EOMES), DKK4, FGF 17, GATA6, CXCR4, C- Kit, CD99, or 0TX2.
- Cells expressing markers characteristic of the definitive endoderm lineage include primitive streak precursor cells, primitive streak cells, mesendoderm cells and definitive endoderm cells.
- Cells expressing markers characteristic of the pancreatic endoderm lineage refers to cells expressing at least one of the following markers: PDXl, HNFl beta, PTFl alpha, HNF6, NKX6.1, or HB9.
- Cells expressing markers characteristic of the pancreatic endoderm lineage include pancreatic endoderm cells, primitive gut tube cells, and posterior foregut cells.
- Definitive endoderm refers to cells which bear the characteristics of cells arising from the epiblast during gastrulation and which form the gastrointestinal tract and its derivatives. Definitive endoderm cells express the following markers: HNF3 beta, GAT A4, SOX 17, Cerberus, OTX2, goosecoid, C-Kit, CD99, and MIXLl.
- Pantendocrine cell or “pancreatic hormone expressing cell”, as used herein, refers to a cell capable of expressing at least one of the following hormones: insulin, glucagon, somatostatin, and pancreatic polypeptide.
- Extraembryonic endoderm refers to a population of cells expressing at least one of the following markers: SOX7, AFP, or SPARC.
- Extracellular matrix proteins refers to proteinaceous molecules normally found between cells in the body or in the placenta. Extracellular matrix proteins can be derived from tissue, body fluids, such as, for example, blood, or media conditioned by non-recombinant cells or recombinant cells or bacteria.
- Markers are nucleic acid or polypeptide molecules that are differentially expressed in a cell of interest.
- differential expression means an increased level for a positive marker and a decreased level for a negative marker.
- the detectable level of the marker nucleic acid or polypeptide is sufficiently higher or lower in the cells of interest compared to other cells, such that the cell of interest can be identified and distinguished from other cells using any of a variety of methods known in the art.
- Mesendoderm cell refers to a cell expressing at least one of the following markers: CD48, eomesodermin (EOMES), SOX- 17, DKK4, HNF3 beta, GSC, FGF 17, or GATA ⁇ .
- Pantencreatic hormone secreting cell refers to a cell capable of secreting at least one of the following hormones: insulin, glucagon, somatostatin, and pancreatic polypeptide.
- Pre-primitive streak cell refers to a cell expressing at least one of the following markers: Nodal, or FGF8.
- Primary streak cell refers to a cell expressing at least one of the following markers: Brachyury, Mix-like homeobox protein, or FGF4.
- Stem cells are undifferentiated cells defined by their ability at the single cell level to both self-renew and differentiate to produce progeny cells, including self-renewing progenitors, non-renewing progenitors, and terminally differentiated cells. Stem cells are also characterized by their ability to differentiate in vitro into functional cells of various cell lineages from multiple germ layers (endoderm, mesoderm and ectoderm), as well as to give rise to tissues of multiple germ layers following transplantation and to contribute substantially to most, if not all, tissues following injection into blastocysts.
- Stem cells are classified by their developmental potential as: (1) totipotent, meaning able to give rise to all embryonic and extraembryonic cell types; (2) pluripotent, meaning able to give rise to all embryonic cell types; (3) multipotent, meaning able to give rise to a subset of cell lineages, but all within a particular tissue, organ, or physiological system (for example, hematopoietic stem cells (HSC) can produce progeny that include HSC (self- renewal), blood cell restricted oligopotent progenitors and all cell types and elements (e.g., platelets) that are normal components of the blood); (4) oligopotent, meaning able to give rise to a more restricted subset of cell lineages than multipotent stem cells; and (5) unipotent, meaning able to give rise to a single cell lineage (e.g. , spermatogenic stem cells).
- HSC hematopoietic stem cells
- Differentiation is the process by which an unspecialized ("uncommitted") or less specialized cell acquires the features of a specialized cell such as, for example, a nerve cell or a muscle cell.
- a differentiated or differentiation-induced cell is one that has taken on a more specialized ("committed") position within the lineage of a cell.
- the term "committed”, when applied to the process of differentiation, refers to a cell that has proceeded in the differentiation pathway to a point where, under normal circumstances, it will continue to differentiate into a specific cell type or subset of cell types, and cannot, under normal circumstances, differentiate into a different cell type or revert to a less differentiated cell type.
- De-differentiation refers to the process by which a cell reverts to a less specialized (or committed) position within the lineage of a cell.
- the lineage of a cell defines the heredity of the cell, i.e., which cells it came from and what cells it can give rise to.
- the lineage of a cell places the cell within a hereditary scheme of development and differentiation.
- a lineage- specific marker refers to a characteristic specifically associated with the phenotype of cells of a lineage of interest and can be used to assess the differentiation of an uncommitted cell to the lineage of interest.
- “Surface” as used herein refers to the outermost layer of molecules of a solid substrate vessel or matrix intended for use in cell culture or analysis.
- the elemental composition, the roughness, and the wettability of the surface can be analyzed by X- Ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), and contact angle measurement, respectively.
- Maintenance refers generally to cells placed in a growth medium under conditions that facilitate cell growth and/or division that may or may not result in a larger population of the cells.
- Passaging refers to the process of removing the cells from one culture vessel and placing them in a second culture vessel under conditions that facilitate cell growth and/or division.
- a specific population of cells, or a cell line is sometimes referred to or characterized by the number of times it has been passaged.
- a cultured cell population that has been passaged ten times may be referred to as a PlO culture.
- the primary culture i.e., the first culture following the isolation of cells from tissue, is designated PO.
- the cells are described as a secondary culture (Pl or passage 1).
- P2 or passage 2 After the second subculture, the cells become a tertiary culture (P2 or passage 2), and so on.
- P2 or passage 2 tertiary culture
- the expansion of cells (i.e., the number of population doublings) during the period between passaging depends on many factors, including but not limited to the seeding density, substrate, medium, growth conditions, and time between passaging.
- Planar substrates suitable for use in the present invention may be comprised of any material that is capable of providing a support onto which pluripotent cells may attach.
- the planar substrate may be comprised of polycarbonate.
- the planar substrate may be comprised of polyethylene terephthalate (PETE).
- PETE polyethylene terephthalate
- the planar substrate may be comprised of nylon.
- the planar substrate may be comprised of cellulose acetate.
- the planar substrate may be comprised of a mixed cellulose ester. Examples of planar substrates suitable for use in the present invention may be found in Table 1.
- the present invention provides methods for the attachment, cultivation and differentiation of pluripotent stem cells to a planar substrate containing up to about 12% N, from at least about 12% O to at least about 55% O, a contact angle from about 18 degrees to about 32 degrees, and lacking an adlayer and a feeder cell layer.
- the planar substrate containing from at least about 8% N to at least about 12% N, and from at least about 12% O to at least about 55% O may be a rough fibrous surface, or, alternatively, a smooth surface.
- the present invention provides a method to attach pluripotent stem cells to a planar substrate containing up to about 12% N, from at least about 12% O to at least about 55% O, a contact angle from about 18 degrees to about 32 degrees, and lacking an adlayer and a feeder cell layer, comprising the steps of:
- the pluripotent stem cells are maintained in culture after the cells attach to the surface. In one embodiment, the pluripotent stem cells are differentiated on the planar substrate after the cells attach to the surface.
- the attachment of pluripotent stem cells to a planar substrate containing up to about 12% N, from at least about 12% O to at least about 55% O, a contact angle from about 18 degrees to about 32 degrees, and lacking an adlayer and a feeder cell layer is enhanced by treating the cells with a capable of inhibiting Rho kinase activity.
- the compound capable of inhibiting Rho kinase activity may be removed from the cells after they have attached.
- the compound capable of inhibiting Rho kinase activity is selected from the group consisting of: Y-27632, Fasudil, H-1152 and Hydroxyfasudil.
- the compound capable of inhibiting Rho kinase activity may be used at a concentration from about 0.1 ⁇ M to about lOO ⁇ M. In one embodiment, the at least one compound capable of inhibiting Rho kinase activity is used at a concentration of about lO ⁇ M.
- the elemental composition of the surface of the planar substrates of the present invention may be analysed by X-Ray Photoelectron Spectroscopy (XPS).
- XPS also known as Electron Spectroscopy for Chemical Analysis (ESCA)
- ESA Electron Spectroscopy for Chemical Analysis
- the roughness of the surface of the planar substrates of the present invention may be analyzed by Atomic Force Microscopy (AFM).
- AFM Atomic Force Microscopy
- Surface atoms or molecules with a lateral resolution down to 1 A and a vertical resolution down to 0.1 A can be imaged by AFM.
- the wettability of the surface of the planar substrates of the present invention may be analyzed by measuring the contact angle.
- contact angle measurement by the static sessile drop method provides information on the interaction between the surface of a solid substrate and a liquid.
- the contact angle describes the shape of a liquid drop resting on the surface of the solid substrate, and is the angle of contact of the liquid on the surface of the solid substrate, measured within the liquid at the contact line where liquid, solid, and gas meet.
- a surface with a water contact angle larger than 90° is termed hydrophobic, and a surface with water contact angle less than 90° is termed hydrophilic.
- hydrophilic On extremely hydrophilic surfaces, that is, surfaces that have a high affinity for water, a water droplet will completely spread (an effective contact angle of 0°).
- the negative charge density of the surface of the planar substrates of the present invention may be analyzed by measuring the reactivity of the surface with crystal violet.
- Crystal violet carries a positive charge, which enables it to bind to negatively charged molecules and parts of molecules, for example, negatively charged functional groups present on a polymer surface.
- a surface with a high crystal violet reactivity has a higher density of negative charges than a surface with a low crystal violet reactivity, given that the surfaces have the same roughness and thus area.
- Pluripotent stem cells may express one or more of the stage-specific embryonic antigens (SSEA) 3 and 4, and markers detectable using antibodies designated Tra-1- 60 and Tra-1-81 (Thomson et ah, Science 282: 1145, 1998). Differentiation of pluripotent stem cells in vitro results in the loss of SSEA-4, Tra- 1-60, and Tra-1-81 expression and increased expression of SSEA-I.
- SSEA stage-specific embryonic antigens
- Undifferentiated pluripotent stem cells typically have alkaline phosphatase activity, which can be detected by fixing the cells with 4% paraformaldehyde and then developing with Vector Red as a substrate, as described by the manufacturer (Vector Laboratories, Burlingame Calif.) Undifferentiated pluripotent stem cells also typically express OCT-4 and TERT, as detected by RT-PCR.
- pluripotent stem cells Another desirable phenotype of propagated pluripotent stem cells is a potential to differentiate into cells of all three germinal layers: endoderm, mesoderm, and ectoderm tissues. Pluripotency of stem cells can be confirmed, for example, by injecting cells into severe combined immunodeficient (SCID) mice, fixing the teratomas that form using 4% paraformaldehyde, and then examining them histologically for evidence of cell types from the three germ layers. Alternatively, pluripotency may be determined by the creation of embryoid bodies and assessing the embryoid bodies for the presence of markers associated with the three germinal layers.
- SCID severe combined immunodeficient
- Propagated pluripotent stem cell lines may be karyotyped using a standard G-banding technique and compared to published karyotypes of the corresponding primate species. It is desirable to obtain cells that have a "normal karyotype,” which means that the cells are euploid, wherein all human chromosomes are present and not noticeably altered.
- pluripotent stem cells include established lines of pluripotent cells derived from tissue formed after gestation, including pre-embryonic tissue (such as, for example, a blastocyst), embryonic tissue, or fetal tissue taken any time during gestation, typically but not necessarily before approximately 10 to 12 weeks gestation.
- pre-embryonic tissue such as, for example, a blastocyst
- embryonic tissue or fetal tissue taken any time during gestation, typically but not necessarily before approximately 10 to 12 weeks gestation.
- Non-limiting examples are established lines of human embryonic stem cells or human embryonic germ cells, such as, for example the human embryonic stem cell lines Hl, H7, and H9 (WiCeIl).
- Hl, H7, and H9 WiCeIl
- Also contemplated is use of the compositions of this disclosure during the initial establishment or stabilization of such cells, in which case the source cells would be primary pluripotent cells taken directly from the source tissues.
- pluripotent stem cell population already cultured in the absence of feeder cells.
- mutant human embryonic stem cell lines such as, for example, BGOIv (BresaGen, Athens, GA).
- pluripotent stem cells derived from non-pluripotent cells such as, for example, an adult somatic cell.
- human embryonic stem cells are prepared as described by Thomson et al. (U.S. Pat. No. 5,843,780; Science 282: 1145, 1998; Curr. Top. Dev. Biol. 38: 133 ff., 1998; Proc. Natl. Acad. ScL U.S.A. 92:7844, 1995).
- pluripotent stem cells are cultured on a layer of feeder cells or extracellular matrix protein that support the pluripotent stem cells in various ways, prior to culturing according to the methods of the present invention.
- pluripotent stem cells are cultured on a feeder cell layer that supports proliferation of pluripotent stem cells without undergoing substantial differentiation.
- the growth of pluripotent stem cells on a feeder cell layer without differentiation is supported using (i) Obtaining a culture vessel containing a feeder cell layer; and (ii) a medium conditioned by culturing previously with another cell type, or a non-conditioned medium, for example, free of serum or even chemically defined.
- pluripotent stem cells are cultured in a culture system that is essentially free of feeder cells, but nonetheless supports proliferation of pluripotent stem cells without undergoing substantial differentiation.
- the growth of pluripotent stem cells in feeder-cell free culture without differentiation is supported using (i) an adlayer on a solid substrate surface with one or more extracellular matrix proteins; and (ii) a medium conditioned by culturing previously with another cell type, or a non-conditioned medium, for example, free of serum or even chemically defined.
- pluripotent stem cells are cultured on a planar surface comprising a mixed cellulose ester in a medium conditioned by culturing previously with another cell type, or a non-conditioned medium, for example, free of serum or even chemically defined.
- Culture medium An example of cell culture medium suitable for use in the present invention may be found in US20020072117. Another example of cell culture medium suitable for use in the present invention may be found in US6642048. Another example of cell culture medium suitable for use in the present invention may be found in WO2005014799. Another example of cell culture medium suitable for use in the present invention may be found in Xu et al (Stem Cells 22: 972-980, 2004). Another example of cell culture medium suitable for use in the present invention may be found in US20070010011. Another example of cell culture medium suitable for use in the present invention may be found in Cheon et al. (BioReprod
- Another example of cell culture medium suitable for use in the present invention may be found in Levenstein et al. (Stem Cells 24: 568-574, 2006).
- Another example of cell culture medium suitable for use in the present invention may be found in US20050148070.
- Another example of cell culture medium suitable for use in the present invention may be found in US20050233446.
- Another example of cell culture medium suitable for use in the present invention may be found in US6800480.
- Another example of cell culture medium suitable for use in the present invention may be found in US20050244962.
- Another example of cell culture medium suitable for use in the present invention may be found in WO2005065354.
- Another example of cell culture medium suitable for use in the present invention may be found in WO2005086845.
- Suitable culture media may also be made from the following components, such as, for example, Dulbecco's modified Eagle's medium (DMEM), Gibco # 11965-092; Knockout Dulbecco's modified Eagle's medium (KO DMEM), Gibco # 10829-018; Ham's F12/50% DMEM basal medium; 200 mM L-glutamine, Gibco # 15039-027; non-essential amino acid solution, Gibco 11140-050; ⁇ -mercaptoethanol, Sigma # M7522; human recombinant basic fibroblast growth factor (bFGF), Gibco # 13256- 029.
- DMEM Dulbecco's modified Eagle's medium
- KO DMEM Knockout Dulbecco's modified Eagle's medium
- Ham's F12/50% DMEM basal medium 200 mM L-glutamine, Gibco # 15039-027; non-essential amino acid solution, Gibco 11140-050; ⁇ -mercapto
- pluripotent stem cells are propagated in culture, while maintaining their pluripotency. Changes in pluripotency of the cells with time can be determined by detecting changes in the levels of expression of markers associated with pluripotency. Alternatively, changes in pluripotency can be monitored by detecting changes in the levels of expression of markers associated with differentiation or markers associated with another cell type.
- pluripotent stem cells are propagated in culture and then treated in a manner that promotes their differentiation into another cell type.
- the other cell type may be a cell expressing markers characteristic of the definitive endoderm lineage.
- the cell type may be a cell expressing markers characteristic of the pancreatic endoderm lineage.
- the cell type may be a cell expressing markers characteristic of the pancreatic endocrine lineage.
- the cell type may be a cell expressing markers characteristic of the ⁇ - cell lineage.
- Pluripotent stem cells treated in accordance with the methods of the present invention may be differentiated into a variety of other cell types by any suitable method in the art.
- pluripotent stem cells treated in accordance with the methods of the present invention may be differentiated into neural cells, cardiac cells, hepatocytes, and the like.
- pluripotent stem cells treated in accordance with the methods of the present invention may be differentiated into neural progenitors and cardiomyocytes according to the methods disclosed in WO2007030870.
- pluripotent stem cells treated in accordance with the methods of the present invention may be differentiated into hepatocytes according to the methods disclosed in US patent 6,458,589.
- pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage according to the methods disclosed in D'Amour et ah, Nature Biotechnol. 23: 1534-1541, 2005.
- pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage according to the methods disclosed in Shinozaki et ah, Development 131 : 1651-1662, 2004.
- pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage according to the methods disclosed in McLean et ah, Stem Cells 25:29-38, 2007.
- pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage according to the methods disclosed in D'Amour et ah, Nature Biotechnol. 24: 1392-1401, 2006.
- Markers characteristic of the definitive endoderm lineage are selected from the group consisting of SOX17, GATA4, HNF3 beta, GSC, CERl, Nodal, FGF8, Brachyury, Mix-like homeobox protein, FGF4 CD48, eomesodermin (EOMES), DKK4, FGF 17, GATA6, CXCR4, C-Kit, CD99, and OTX2.
- Suitable for use in the present invention is a cell that expresses at least one of the markers characteristic of the definitive endoderm lineage.
- a cell expressing markers characteristic of the definitive endoderm lineage is a primitive streak precursor cell.
- a cell expressing markers characteristic of the definitive endoderm lineage is a mesendoderm cell.
- a cell expressing markers characteristic of the definitive endoderm lineage is a definitive endoderm cell.
- pluripotent stem cells may be differentiated into cells expressing markers characteristic of the pancreatic endoderm lineage according to the methods disclosed in D'Amour et ah, Nature Biotechnol. 24: 1392-1401, 2006.
- Markers characteristic of the pancreatic endoderm lineage are selected from the group consisting of PDXl, HNFl beta, PTFl alpha, HNF6, HB9 and PROXl.
- Suitable for use in the present invention is a cell that expresses at least one of the markers characteristic of the pancreatic endoderm lineage.
- a cell expressing markers characteristic of the pancreatic endoderm lineage is a pancreatic endoderm cell.
- Pluripotent stem cells may be differentiated into cells expressing markers characteristic of the pancreatic endocrine lineage by any method in the art.
- pluripotent stem cells may be differentiated into cells expressing markers characteristic of the pancreatic endocrine lineage according to the methods disclosed in D'Amour et ah, Nature Biotechnol. 24: 1392-1401, 2006.
- pluripotent stem cells may be differentiated into cells expressing markers characteristic of the pancreatic endocrine lineage, by the methods disclosed in D'Amour et a ⁇ ., Nature Biotechnol. 24: 1392-1401, 2006.
- a pancreatic endocrine cell is capable of expressing at least one of the following hormones: insulin, glucagon, somatostatin, and pancreatic polypeptide.
- Suitable for use in the present invention is a cell that expresses at least one of the markers characteristic of the pancreatic endocrine lineage.
- a cell expressing markers characteristic of the pancreatic endocrine lineage is a pancreatic endocrine cell.
- the pancreatic endocrine cell may be a pancreatic hormone-expressing cell.
- the pancreatic endocrine cell may be a pancreatic hormone-secreting cell.
- the pancreatic endocrine cell is a cell expressing markers characteristic of the ⁇ cell lineage.
- a cell expressing markers characteristic of the ⁇ cell lineage expresses PDXl and at least one of the following transcription factors: NGN3, NKX2.2, NKX6.1, NEUROD, ISLl, HNF3 beta, MAFA, PAX4, and PAX6.
- a cell expressing markers characteristic of the ⁇ cell lineage is a ⁇ cell.
- Example 1 Attachment of Human Embryonic Stem Cells to the Planar Substrates of the Present Invention.
- Rho kinase inhibitor Y26732 has been shown to enhance the attachment of human embryonic stem cells on surface modified plates (see U.S. Patent Application No. 61/030,544).
- the purpose of the studies of the present invention was to determine the ability of human embryonic stem cells to attach to other planar surfaces.
- the planar surfaces tested in the present invention are shown in Table 1.
- cells of the human embryonic stem cell line Hl cells were expanded on tissue culture plates coated with a 1:30 dilution of growth factor-reduced MATRIGEL ® .
- Cells were seeded onto 100 mm culture dishes in 10 ml MEF conditioned media supplemented with 20 ng/ml bFGF (MEF-CM/bFGF).
- MEF-CM/bFGF 20 ng/ml bFGF
- the cells were cultured at 37°C in a humidified with a 5% CO2 atmosphere.
- the media was changed everyday with fresh MEF-CM/bFGF.
- the cells were passaged by treatment with lmg/ml LIBERASE for 5 minutes at 37°C.
- the digestion was stopped by removing enzyme from the dish and rinsing the cells with MEF-CM/bFGF.
- the cells were collected by manual scraping in 10 ml MEF-CM/bFGF and transferred to a 50-ml conical tube.
- the cells were centrifuged at 20Ox g (lOOOrpm) on a tabletop centrifuge to form a pellet. After the supernatant was removed, the cells were re-suspended in 40 ml MEF-CM/bFGF and evenly distributed in four 100 mm culture dished coated with a 1 :30 dilution of growth factor-reduced MATRIGEL ® .
- Cells of the human embryonic stem cell line Hl were seeded onto the various planar substrates set forth in Table 1, at a density of 100,000 cells/ cm 2 .
- the planar substrates lacked an adlayer and a fibroblast feeder cell layer.
- the cells were cultured in MEF-CM/bFGF as described above.
- the effect of the Rho kinase inhibitor H-1152 on the attachment of the cells to the planar substrates was determined. 3 ⁇ M H-1152 was added to the medium used to seed the cells.
- Cells were allowed to attach for 24 hrs. After this time, the cells were fixed with 4% paraformaldehyde for 5 minutes at room temperature. The cells were then stained with 1% hematoxylin, and the number of cells was determined via light microscopy. Wells containing vehicle were included as a control.
- the cells of the human embryonic stem cell line Hl attached to the following membranes in a Rho kinase inhibitor independent manner: mixed cellulose ester membrane (membrane No. 2, Figure 1, panel a); nylon membrane (membrane No. 4, Figure 1, panel b), and cellulose acetate membrane (membrane No. 5, Figure 1, panel c).
- the attachment of cells to these membranes was enhanced by addition of 3 ⁇ M H- 1152 (See Figure 1, panels a-c).
- H-1152 Cells of the human embryonic stem cell line Hl required the presence of 3 ⁇ M H-1152 to attach to the following planar substrates: Polycarbonate membrane (membrane No. 7, Figure 1, panel d) and Polyethylene terephthalate membrane (membrane No. 12, Figure 1 , panel e). Removal of H- 1152 from the culture medium led to detachment of Hl cells from both types of membranes. No attachment was observed to these membranes in the absence of H-1152.
- Example 2 The Effect of Rho Kinase Treatment on the Attachment of Human Embryonic Stem Cells to Planar Substrates Comprising Mixed Cellulose Esters
- Cells of the human embryonic stem cell line H9 were cultured on MATRIGEL ® coated dishes prior to experimental manipulation.
- Cells were seeded a mixed cellulose ester membrane (membrane No. 1) at a density of 150,000 cells/ cm 2 in MEF conditioned medium.
- the planar substrate lacked an adlayer and a fibroblast feeder cell layer.
- the effect of the Rho Kinase inhibitor treatment on the attachment to the planar substrate was examined.
- Cells were treated with 0, 10, or 20 ⁇ M Y26732. After 24 hours, the cells were fixed with 4% paraformaldehyde, rinsed with PBS, air dried, stained with crystal violet dye. The number of cells was determined via light microscopy. Wells containing vehicle were included as a control.
- Example 3 The Effect of Culture on Planar Substrate Membrane No. 1 on the Proliferation Rate of Human Embryonic Stem Cells.
- the proliferation rate of cells of the human embryonic stem cell line cultured on MATRIGEL ® coated dished and cells cultured on Membrane No. 1 was compared. Cells were seeded at equal densities on both substrates. Cells were released from the substrates by TrypLE treatment to create a single cell suspension to determine cell number. Samples of cells were taken at the times indicated in Figure 3. Cells were observed to proliferate at comparable rates. The doubling time is about 1.151 day and 1.138 day on MATRIGEL ® and on Membrane No. 1, respectively.
- Example 4 Human Embryonic Stem Cells Maintain their Pluripotency for Three Passages on Planar Substrates Comprising Mixed Cellulose Esters
- Cells of the human embryonic stem cell line Hl were seeded on a planar substrate comprising mixed cellulose ester membranes (membrane No. 1) at a density of 75,000 cells/cm 2 in MEF-CM containing 20ng/ml bFGF.
- the cells were cultured for 5 or 6 days before passaging to reach approximately 75 to 90% confluency according to the methods described above. The culture medium was changed everyday. After culturing for 3 passages, the cells were collected and the expression of markers associated with pluripotency was determined by flow cytometry. As shown in Table 2, over 95% of cells maintained expression of cell surface markers associated with pluripotency, including Tral-60, Tral-81, SSEA-3, and SSEA-4, indicating the cells were still pluripotent.
- Example 5 Human Embryonic Stem Cells Maintain a Stable Karyotype for Ten Passages on Planar Substrates Comprising Mixed Cellulose Esters (Membrane).
- Cells of the human embryonic stem cell line Hl were cultured either on MATRIGEL ® coated culture plates or on mixed cellulose esters membrane for 10 passages. The cells were cultured according to the methods described above. The karyotype was determined by cytogenetic analysis by analyzing twenty G-banded metaphase cells. As shown in Figure 4, the G-banded chromosomes of a representative cell cultured on MATRIGEL ® coated culture plates ( Figure 4, panel a) and those of another cell cultured on mixed cellulose membrane ( Figure 4, panel b) demonstrate a normal male karyotype.
- the karyotype was also determined by examining two hundred interphase nuclei by fluorescence in situ hybridization (FISH) using a chromosome 12p probe and a 17q probe to identify very small populations of cells with changes in chromosome 12 and 17 copy number that can not be detected by routine cytogenetics. In cells cultured on MATRIGEL ® and on mixed cellulose esters membranes, no abnormal cells with trisomy 12 and/or 17 were detected.
- FISH fluorescence in situ hybridization
- Example 6 Human Embryonic Stem Cells Are Able To Differentiate To Insulin- Producing Cells on Planar Substrates Comprising Mixed Cellulose Esters
- Cells of the human embryonic stem cell line Hl were seeded on a planar substrate comprising mixed cellulose esters (Membrane No. 1) at a density of 150,000 cells/ cm 2 in MEF conditioned medium containing 20ng/ml bFGF.
- the cells were differentiated to insulin-producing cells by treating the cells according to the differentiation protocol outlined in Table 3.
- the cells were cultured in MEF conditioned medium containing 20ng/ml bFGF for 3 to 4 days to reach approximately 75 to 90% confluency.
- the cells were treated in DMEM-F 12 medium containing 2% Fatty-Acid Free Bovine Serum Albumin (FAF-BSA), 100 ng/ml activin A, and 20 ng/ml Wnt3A for two days, followed by treatment with DMEM-F 12 medium, 2% Fatty -Acid Free Bovine Serum Albumin (FAF-BSA), and 100 ng/ml activin A for another two days.
- F-BSA Fatty-Acid Free Bovine Serum Albumin
- FAF-BSA Fatty-Acid Free Bovine Serum Albumin
- the cells were treated in DMEM-F 12 medium containing 2% BSA, 20 ng/ml FGF7, and 250 nM Cyclopamine-KAAD for three days, followed the treatment in DMEM-F 12 medium containing 1% B27 supplement, 20 ng/ml FGF7, 250 nM Cyclopamine-KAAD, 2 ⁇ M retinoic acid (RA), and 100 ng/ml Noggin for 4 days.
- the cells were treated in DMEM-F 12 medium containing 1% B27 supplement, 1 ⁇ M ALK5 inhibitor 2 (Axxora Cat.
- RNA samples were collected to determine the expression of markers characteristic of the pancreatic endocrine lineage.
- a CT number for insulin of about 17 was observed.
- the corresponding CT value for GAPDH was about 19; these data suggests that the cells expressed high levels of insulin following treatment.
- Example 7 Human Embryonic Stem Cells Attach to Planar Substrates Comprising Polycarbonate Membranes in a Rho Kinase Inhibitor Dependent
- Rho Kinase inhibitor Y26732 was added to the culture medium at concentration of 0, 10, or 20 ⁇ M. After 24 hours, the cells on the membrane were fixed with 4% paraformaldehyde at room temperature, rinsed with PBS, air dried, stained with crystal violet dye. The number of cells was determined via light microscopy. Wells containing vehicle were included as a control.
- the cells do not attach to the membrane in control dishes ( Figure 5, panel a). Addition of Y26732 resulted in the attachment of the cells on the membranes ( Figure 5, panels b and c).
- the effect of the Rho kinase inhibitor H-1152 on the attachment of cells of the human embryonic stem cell line Hl to Membrane No. 7 was determined.
- the cells were seeded on a planar substrate comprising polycarbonate membranes (membrane No. 7) at a density of 150,000 cells/cm 2 in MEF-CM containing 20ng/ml bFGF.
- the Rho Kinase inhibitor H-1152 was added to the culture medium at concentration of 0, 0.03, 0.1, 0.3, 1, and 3 ⁇ M. After 24 hours, the cells on the membrane were fixed with 4% paraformaldehyde, rinsed with PBS, air dried, stained with crystal violet dye. The number of cells was determined via light microscopy. Wells containing vehicle were included as a control.
- Cells of the human embryonic stem cell line Hl were seeded on to a planar substrate comprising polycarbonate (Membrane No. 9) at a density of 100,000 cells/ cm 2 , in MEF conditioned medium containing 20ng/ml bFGF and 3 ⁇ M of the Rho kinase inhibitor H-1152.
- the cells were cultured for 24 hr. After this time, the culture medium was replaced with MEF conditioned medium containing 20ng/ml bFGF, lacking H-1152. After 24 hours, the cells on the membrane were fixed with 4% paraformaldehyde, rinsed with PBS, air dried, stained with crystal violet dye. The number of cells was determined via light microscopy. Wells containing H- 1152 were included as a control. Removal of H-1152 from the culture medium resulted in the detachment of cells from the planar substrate ( Figure 7).
- Cells of the human embryonic stem cell line Hl at passage 42 were seeded onto the following planar substrates: Membrane No. 10 (pore size 0.4 ⁇ m); and Membrane No. 11 (pore size 3 ⁇ m). Cells were seeded at a density of 100,000 cells/cm 2 , in MEF conditioned medium containing 20ng/ml bFGF. The effect of Rho kinase inhibition on the attachment of the cells to the planar substrates was also examined. The cell culture medium was supplemented with .3 ⁇ M H-1152. After 24 hours, the culture medium was replaced with MEF conditioned medium containing 20ng/ml bFGF, lacking H-1152.
- the cells on the membrane were fixed with 4% paraformaldehyde, rinsed with PBS, air dried, stained with crystal violet dye.
- Wells containing l ⁇ M H-1152 were included as a control. The number of cells was determined via light microscopy. Wells containing vehicle were included as a control.
- Example 10 Human Embryonic Stem Cells Maintain their Pluripotency After Multiple Passages on Planar Substrates Comprising Polycarbonate Membranes.
- Cells of the human embryonic stem cell line Hl were seeded on to a planar substrate comprising polycarbonate membrane (Membrane No. 8). Cells were cultured in MEF conditioned medium containing 20ng/ml bFGF, supplemented with 3 ⁇ M H- 1152. The cell culture medium was changed daily. Cells were passaged by the removal of H- 1152 from the medium, and the cells were removed from the planar substrate by gentle swirling. The cells were cultured for 3 passages and collected for flow cytometry and quantitative RT-PCR analysis. As shown in Table 4, over 95% of the cells expressed cell surface markers associated with pluripotency, including Tral- 60, Tral-81, SSEA-3, and SSEA-4, as determined by flow cytometry.
- Figure 9 shows the results of quantitative RT-PCR, indicating multiple genes expressed in the Hl cultured on polycarbonate membranes for 3 passages are at comparable levels as in undifferentiated Hl cells.
- cells of the human embryonic stem cell line Hl were seeded on to a planar substrate comprising polycarbonate membrane (Membrane No. 8).
- Cells were cultured in MEF conditioned medium containing 20ng/ml bFGF, supplemented with l ⁇ M H-1152. The cell culture medium was changed daily.
- Cells were passaged by the removal of H-1152 from the medium, and the cells were removed from the planar substrate by gentle swirling.
- the cells were cultured for 9 passages and collected for flow cytometry. As shown in Table 5, over 95% of the cells express cell surface markers associated with pluripotency, including Tral-60, Tral-81, SSEA-3, and SSEA-4.
- An alternative method to assess pluripotency is via the ability of the cells to form embryoid bodies.
- Cells of the human embryonic stem cell line Hl were seeded on to planar substrates comprising polycarbonate membranes (Membrane No. 8).
- the cells were cultured in MEF conditioned medium containing 20ng/ml bFGF, supplemented with 3 ⁇ M H-1152.
- the cell culture medium was changed daily.
- Cells were passaged by the removal of H-1152 from the medium, and the cells were removed from the planar substrate by gentle swirling. The cells were cultured for 12 passages.
- Embryoid body formation was achieved by the following protocol.
- the Hl cells were collected and cultured in DMEM/F12 medium supplemented with 20% fetal bovine serum in Ultra Low Cluster Plate (Corning Cat. No: 3471).
- the cells were fed every other day by changing 50% of the medium.
- Embryoid bodies were formed after 14 days ( Figure 10).
- Example 11 Human Embryonic Stem Cells are Capable of Forming Definitive Endoderm after Cultured on Planar Substrates Comprising Polycarbonate
- Cells of the human embryonic stem cell line Hl were seeded on to a planar substrate comprising polycarbonate (Membrane No. 8).
- the cells were initially cultured in MEF conditioned medium containing 20ng/ml bFGF, supplemented with 3 ⁇ M H- 1152.
- the cells were then cultured in MEF conditioned medium containing 20ng/ml bFGF, supplemented with l ⁇ M H-1152 for 10 passages prior to experimental manipulation.
- the cells were then seeded onto 100 mm tissue culture plates, coated with a 1 :30 dilution of MATRIGEL ® .
- the cells were cultured in MEF conditioned medium containing 20ng/ml bFGF for 3 days.
- the cells were treated in DMEM/F12, supplemented with 2% fatty acid free Bovine Serum Albumin, 100ng/ml activin A, and 20ng/ml Wnt3a for two days and then treated with DMEM/F12, supplemented with 2% fatty acid free Bovine Serum Albumin, and 100ng/ml activin A for another two days. After this time, the cells were released by TRYPLE treatment to form a single cell suspension and the expression of markers characteristic of the definitive endoderm lineage was determined by flow cytometry.
- the surface chemistry was determined on the planar substrates of the present invention.
- Tables 7-10 depict the X-ray Photoelectron spectroscopy (XPS) analysis and contact angle.
- XPS X-ray Photoelectron spectroscopy
- Membranes 1 -3 contained similar concentrations of oxygen, carbon (mainly as C-O, and C-(C 5 H), probably 0-C-O), and nitrogen (as NO 3 , NO 2 , and possibly C-N, and R 4 -N + ).
- Membrane 3 also contained trace concentrations OfNa + and SO x and a higher concentration of C-(C 5 H).
- the surface of membrane 6 may also contain a trace concentration of chlorine. Trace concentrations of chromium were detected only on membranes 10 and 11 5 while Na + was detected on membranes 6 - 9.
- Figure 11 shows the scanning electron micrographs of the planar substrates of the present invention. Two types of morphologies were observed. One type was characterized by an open network of fibers. The second type was characterized by a smooth sheet with circular holes dispersed across the surface.
- Table 10 shows the contact angle measurements from the surfaces of the present invention. Surfaces 1 through 5 had contact angle measurements from about 18° to about 32°. Pluripotent stem cells did not require the presence of an inhibitor of Rho kinase activity in order to attach to surfaces 1-5.
- planar substrate consisting of polyamine was manufactured according to the methods disclosed in US6743273, and Schindler M et al, Biomaterials 26(28): 5624- 5631 ; 2005.
- the planar substrate is available commercially, sold under the trademark ULTRA WEBTM.
- ULTRA WEBTM synthetic surfaces are composed of randomly orientated electrospun polyamide nanofibers with an average fiber diameter of 280nm. The fiber size distribution is between 200 and 400nm.
- the first ULTRA WEBTM surface tested had a slightly hydrophilic surface (catalogue #3870XXl) while the second surface, surface (catalogue #3871XX1) was slightly hydrophilic and was coated with a polyamine material which providedthe nanofibers with a free amine groups for a net positive charge. Both surfaces are highly effective at protein absorption through hydrophobic interactions. 5 micron resolution and 10,000X magnification scanning electron micrographs are shown in Figure 12. However, cells of the human embryonic stem cell line Hl were unable to attach to either of the UTRA WEBTM surfaces tested.
- Example 14 The Effect of the use of Defined Medium on the Attachment of Pluripotent Stem Cells to the Planar Substrates of the Present Invention.
- Cells of the human embryonic stem cell line Hl were seeded onto the following planar substrates: Membrane 1 (mixed cellulose ester), Membrane 4 (nylon), Membrane 5 (cellulose acetate) and nitrocellulose.
- Cells were seeded at a 1:3 dilution in the defined medium mTESRTM and cultured for 24 hours. Parallel cultures un MEF-conditioned medium were included as controls. Culture of the cells in mTESRTM did not affect the ability of the cells to attach to the planar surfaces. Cells were able to attach to membranes 1, 4, and 5, and nitrocellulose.
- the membrane that showed the greatest binding of cells using mTESRTM was Membrane 4, followed by Membrane 5, which was equal to nitrocellulose, followed by Membrane 1.
- Table 1 Characterization of membranes suitable for use in the present invention.
- Table 2 Expression of cell surface markers associated with pluripotency on human embryonic stem cell line Hl after propagated on mixed cellulose esters membranes for 3 passages, as determined by flow cytometry.
- Table 3 Protocol to treat human embryonic stem cells to induce differentiation to insulin-producing cells.
- Table 4 Expression of cell surface markers associated with pluripotency on human embryonic stem cell line Hl after cultured on polycarbonate membranes for 3 passages, as determined by flow cytometry.
- Table 5 Expression of cell surface markers associated with pluripotency on human embryonic stem cell line Hl after propagated on polycarbonate membranes for 9 passages, as determined by flow cytometry.
- Table 6 Expression of cell surface markers associated with definitive endoderm on human embryonic stem cell line Hl. The cells were propagated on polycarbonate membranes for 10 passages and treated for definitive endoderm differentiation.
- Table 7 Surface Chemistry (atomic concentration in %).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Reproductive Health (AREA)
- Gynecology & Obstetrics (AREA)
- Developmental Biology & Embryology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Chemical & Material Sciences (AREA)
- Virology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980147112.7A CN102257132B (zh) | 2008-11-20 | 2009-11-19 | 用于在平面基底上进行细胞附着和培养的方法和组合物 |
KR1020117013831A KR101687344B1 (ko) | 2008-11-20 | 2009-11-19 | 평면 기재상의 세포 부착 및 배양을 위한 방법 및 조성물 |
ES09764380.3T ES2584053T3 (es) | 2008-11-20 | 2009-11-19 | Métodos y composiciones para la unión de células y cultivo en sustratos planos |
JP2011537604A JP5719305B2 (ja) | 2008-11-20 | 2009-11-19 | 平面支持体上での細胞付着及び培養のための方法及び組成物 |
CA2744227A CA2744227C (fr) | 2008-11-20 | 2009-11-19 | Procedes et compositions pour adhesion cellulaire et culture sur des substrats plans |
EP09764380.3A EP2366022B1 (fr) | 2008-11-20 | 2009-11-19 | Procédés et compositions pour adhésion cellulaire et culture sur des substrats plans |
BRPI0921996-0A BRPI0921996A2 (pt) | 2008-11-20 | 2009-11-19 | Métodos e composições para cultura e ligação de células em substratos planos. |
AU2009316583A AU2009316583B2 (en) | 2008-11-20 | 2009-11-19 | Methods and compositions for cell attachment and cultivation on planar substrates |
MX2011005289A MX2011005289A (es) | 2008-11-20 | 2009-11-19 | Metodos y composiciones para union y cultivo celular sobre sustratos planares. |
RU2011124902/10A RU2547925C2 (ru) | 2008-11-20 | 2009-11-19 | Способы и композиции для закрепления и культивирования клеток на плоских носителях |
ZA2011/04507A ZA201104507B (en) | 2008-11-20 | 2011-06-17 | Methods and compositions for cell attachment and cultivation on planar substrates |
HK12101972.6A HK1162191A1 (zh) | 2008-11-20 | 2012-02-27 | 用於在平面基底上進行細胞附著和培養的方法和組合物 |
AU2016206314A AU2016206314B2 (en) | 2008-11-20 | 2016-07-21 | Methods and compositions for cell attachment and cultivation on planar substrates |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11645208P | 2008-11-20 | 2008-11-20 | |
US61/116,452 | 2008-11-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010059778A1 true WO2010059778A1 (fr) | 2010-05-27 |
Family
ID=41510797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/065067 WO2010059778A1 (fr) | 2008-11-20 | 2009-11-19 | Procédés et compositions pour adhésion cellulaire et culture sur des substrats plans |
Country Status (15)
Country | Link |
---|---|
US (2) | US9969973B2 (fr) |
EP (1) | EP2366022B1 (fr) |
JP (1) | JP5719305B2 (fr) |
KR (1) | KR101687344B1 (fr) |
CN (1) | CN102257132B (fr) |
AU (2) | AU2009316583B2 (fr) |
BR (1) | BRPI0921996A2 (fr) |
CA (1) | CA2744227C (fr) |
ES (1) | ES2584053T3 (fr) |
HK (1) | HK1162191A1 (fr) |
MX (1) | MX2011005289A (fr) |
PL (1) | PL2366022T3 (fr) |
RU (1) | RU2547925C2 (fr) |
WO (1) | WO2010059778A1 (fr) |
ZA (1) | ZA201104507B (fr) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014027176A2 (fr) * | 2012-08-17 | 2014-02-20 | Keele University | Procédé de culture de cellules souches |
US9345486B2 (en) | 2009-03-16 | 2016-05-24 | University Of Washington | Nanofibrous conduits for nerve regeneration |
US10190096B2 (en) | 2014-12-18 | 2019-01-29 | President And Fellows Of Harvard College | Methods for generating stem cell-derived β cells and uses thereof |
US10253298B2 (en) | 2014-12-18 | 2019-04-09 | President And Fellows Of Harvard College | Methods for generating stem cell-derived beta cells and methods of use thereof |
US10443042B2 (en) | 2014-12-18 | 2019-10-15 | President And Fellows Of Harvard College | Serum-free in vitro directed differentiation protocol for generating stem cell-derived beta cells and uses thereof |
US10655106B2 (en) | 2013-06-11 | 2020-05-19 | President And Fellows Of Harvard College | SC-beta cells and compositions and methods for generating the same |
US11466256B2 (en) | 2018-08-10 | 2022-10-11 | Vertex Pharmaceuticals Incorporated | Stem cell derived islet differentiation |
US11945795B2 (en) | 2017-11-15 | 2024-04-02 | Vertex Pharmaceuticals Incorporated | Islet cell manufacturing compositions and methods of use |
US12123023B2 (en) | 2021-10-15 | 2024-10-22 | President And Fellows Of Harvard College | Methods for generating stem cell-derived β cells and methods of use thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI125965B (en) * | 2012-09-25 | 2016-04-29 | Upm Kymmene Corp | Three-dimensional cell culture |
CN103031270A (zh) * | 2013-01-05 | 2013-04-10 | 绍兴文理学院 | 胆管上皮细胞的高效扩增和培养方法 |
WO2019102593A1 (fr) * | 2017-11-24 | 2019-05-31 | 株式会社Ihi | Dispositif de culture cellulaire |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008035110A1 (fr) * | 2006-09-22 | 2008-03-27 | Riken | Milieu de culture de cellules souches et procédé |
WO2009105570A2 (fr) * | 2008-02-21 | 2009-08-27 | Centocor Ortho Biotech Inc. | Procédés, plaques à surface modifiée et compositions permettant la fixation, la culture et le détachement de cellules |
Family Cites Families (249)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3209652A (en) * | 1961-03-30 | 1965-10-05 | Burgsmueller Karl | Thread whirling method |
AT326803B (de) * | 1968-08-26 | 1975-12-29 | Binder Fa G | Maschenware sowie verfahren zur herstellung derselben |
US3935067A (en) * | 1974-11-22 | 1976-01-27 | Wyo-Ben Products, Inc. | Inorganic support for culture media |
CA1201400A (fr) | 1982-04-16 | 1986-03-04 | Joel L. Williams | Surfaces chimiquement specifiques pour influencer l'activite cellulaire pendant la culture |
US4499802A (en) * | 1982-09-29 | 1985-02-19 | Container Graphics Corporation | Rotary cutting die with scrap ejection |
US4537773A (en) * | 1983-12-05 | 1985-08-27 | E. I. Du Pont De Nemours And Company | α-Aminoboronic acid derivatives |
US4557264A (en) * | 1984-04-09 | 1985-12-10 | Ethicon Inc. | Surgical filament from polypropylene blended with polyethylene |
US5215893A (en) * | 1985-10-03 | 1993-06-01 | Genentech, Inc. | Nucleic acid encoding the ba chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid |
US5089396A (en) * | 1985-10-03 | 1992-02-18 | Genentech, Inc. | Nucleic acid encoding β chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid |
US4737578A (en) * | 1986-02-10 | 1988-04-12 | The Salk Institute For Biological Studies | Human inhibin |
US5863531A (en) * | 1986-04-18 | 1999-01-26 | Advanced Tissue Sciences, Inc. | In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework |
CA1340581C (fr) * | 1986-11-20 | 1999-06-08 | Joseph P. Vacanti | Neomorphogenese chimerique d'organes par implatation cellulaire controlee, utilisant des matrices artificielles |
US5759830A (en) * | 1986-11-20 | 1998-06-02 | Massachusetts Institute Of Technology | Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo |
US5567612A (en) * | 1986-11-20 | 1996-10-22 | Massachusetts Institute Of Technology | Genitourinary cell-matrix structure for implantation into a human and a method of making |
NZ229354A (en) | 1988-07-01 | 1990-09-26 | Becton Dickinson Co | Treating polymer surfaces with a gas plasma and then applying a layer of endothelial cells to the surface |
EP0363125A3 (fr) | 1988-10-03 | 1990-08-16 | Hana Biologics Inc. | Produit contenant des cellules pancréatiques endocrines aptes à proliférer et procédé |
US5837539A (en) * | 1990-11-16 | 1998-11-17 | Osiris Therapeutics, Inc. | Monoclonal antibodies for human mesenchymal stem cells |
DK0628639T3 (da) | 1991-04-25 | 2000-01-24 | Chugai Pharmaceutical Co Ltd | Rekonstitueret humant antistof mod human interleukin-6-receptor |
US5449383A (en) * | 1992-03-18 | 1995-09-12 | Chatelier; Ronald C. | Cell growth substrates |
GB9206861D0 (en) * | 1992-03-28 | 1992-05-13 | Univ Manchester | Wound healing and treatment of fibrotic disorders |
CA2114282A1 (fr) * | 1993-01-28 | 1994-07-29 | Lothar Schilder | Implant multi-couches |
JP3525221B2 (ja) | 1993-02-17 | 2004-05-10 | 味の素株式会社 | 免疫抑制剤 |
JP2813467B2 (ja) | 1993-04-08 | 1998-10-22 | ヒューマン・セル・カルチャーズ・インコーポレーテッド | 細胞培養法および培地 |
US5523226A (en) * | 1993-05-14 | 1996-06-04 | Biotechnology Research And Development Corp. | Transgenic swine compositions and methods |
GB9310557D0 (en) * | 1993-05-21 | 1993-07-07 | Smithkline Beecham Plc | Novel process and apparatus |
TW257671B (fr) * | 1993-11-19 | 1995-09-21 | Ciba Geigy | |
US6703017B1 (en) * | 1994-04-28 | 2004-03-09 | Ixion Biotechnology, Inc. | Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures |
US5834308A (en) * | 1994-04-28 | 1998-11-10 | University Of Florida Research Foundation, Inc. | In vitro growth of functional islets of Langerhans |
US6001647A (en) * | 1994-04-28 | 1999-12-14 | Ixion Biotechnology, Inc. | In vitro growth of functional islets of Langerhans and in vivo uses thereof |
US6083903A (en) * | 1994-10-28 | 2000-07-04 | Leukosite, Inc. | Boronic ester and acid compounds, synthesis and uses |
JP4079461B2 (ja) | 1994-12-29 | 2008-04-23 | 中外製薬株式会社 | Il−6アンタゴニストを含んでなる抗腫瘍剤の作用増強剤 |
US5843780A (en) * | 1995-01-20 | 1998-12-01 | Wisconsin Alumni Research Foundation | Primate embryonic stem cells |
US5718922A (en) * | 1995-05-31 | 1998-02-17 | Schepens Eye Research Institute, Inc. | Intravitreal microsphere drug delivery and method of preparation |
US5908782A (en) * | 1995-06-05 | 1999-06-01 | Osiris Therapeutics, Inc. | Chemically defined medium for human mesenchymal stem cells |
US5681561A (en) | 1995-06-07 | 1997-10-28 | Life Medical Sciences, Inc. | Compositions and methods for improving autologous fat grafting |
UA65572C2 (en) | 1997-04-24 | 2004-04-15 | Ortho Mcneil Pharm Inc | Substituted imidazoles, intermediate compounds for the preparation thereof, a method for the preparation of substituted imidazoles and a method for the treatment of inflammatory diseases |
DK1028737T3 (da) * | 1997-07-03 | 2007-08-13 | Osiris Therapeutics Inc | Humane mesenchymale stamceller fra perifert blod |
US6670127B2 (en) * | 1997-09-16 | 2003-12-30 | Egea Biosciences, Inc. | Method for assembly of a polynucleotide encoding a target polypeptide |
WO1999014318A1 (fr) * | 1997-09-16 | 1999-03-25 | Board Of Regents, The University Of Texas System | Synthese chimique complete et synthese de genes et de genomes |
JP3880795B2 (ja) | 1997-10-23 | 2007-02-14 | ジェロン・コーポレーション | フィーダー細胞を含まない培養物中で、霊長類由来始原幹細胞を増殖させるための方法 |
AR014195A1 (es) * | 1997-12-29 | 2001-02-07 | Ortho Mcneil Pharm Inc | Compuestos de trifenilpropanamida utiles para el tratamiento de procesos inflamatorios, composiciones anti-inflamatorias que los comprenden, ymetodos para prepararlos |
US6328960B1 (en) * | 1998-03-18 | 2001-12-11 | Osiris Therapeutics, Inc. | Mesenchymal stem cells for prevention and treatment of immune responses in transplantation |
MY132496A (en) * | 1998-05-11 | 2007-10-31 | Vertex Pharma | Inhibitors of p38 |
US6413773B1 (en) | 1998-06-01 | 2002-07-02 | The Regents Of The University Of California | Phosphatidylinositol 3-kinase inhibitors as stimulators of endocrine differentiation |
US6667176B1 (en) * | 2000-01-11 | 2003-12-23 | Geron Corporation | cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells |
US7410798B2 (en) | 2001-01-10 | 2008-08-12 | Geron Corporation | Culture system for rapid expansion of human embryonic stem cells |
US6610540B1 (en) | 1998-11-18 | 2003-08-26 | California Institute Of Technology | Low oxygen culturing of central nervous system progenitor cells |
US6413556B1 (en) * | 1999-01-08 | 2002-07-02 | Sky High, Llc | Aqueous anti-apoptotic compositions |
EP1144597A2 (fr) * | 1999-01-21 | 2001-10-17 | Vitro Diagnostics, Inc. | Lignees de cellules immortalisees et procede de production de ces dernieres |
US6815203B1 (en) * | 1999-06-23 | 2004-11-09 | Joslin Diabetes Center, Inc. | Methods of making pancreatic islet cells |
US6333029B1 (en) * | 1999-06-30 | 2001-12-25 | Ethicon, Inc. | Porous tissue scaffoldings for the repair of regeneration of tissue |
US6306424B1 (en) * | 1999-06-30 | 2001-10-23 | Ethicon, Inc. | Foam composite for the repair or regeneration of tissue |
EP1224259A4 (fr) | 1999-09-27 | 2005-04-27 | Univ Florida | Inversion de diabetes dependant de l'insuline par des cellules souches insulaires, des cellules insulaires progenitrices et des structures de type insulaire |
US6685936B2 (en) * | 1999-10-12 | 2004-02-03 | Osiris Therapeutics, Inc. | Suppressor cells induced by culture with mesenchymal stem cells for treatment of immune responses in transplantation |
US20030082155A1 (en) | 1999-12-06 | 2003-05-01 | Habener Joel F. | Stem cells of the islets of langerhans and their use in treating diabetes mellitus |
US6753153B2 (en) * | 1999-12-13 | 2004-06-22 | The Scripps Research Institute | Markers for identification and isolation of pancreatic islet α and β progenitors |
US7439064B2 (en) * | 2000-03-09 | 2008-10-21 | Wicell Research Institute, Inc. | Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium |
US7005252B1 (en) * | 2000-03-09 | 2006-02-28 | Wisconsin Alumni Research Foundation | Serum free cultivation of primate embryonic stem cells |
US6436704B1 (en) * | 2000-04-10 | 2002-08-20 | Raven Biotechnologies, Inc. | Human pancreatic epithelial progenitor cells and methods of isolation and use thereof |
US6458589B1 (en) * | 2000-04-27 | 2002-10-01 | Geron Corporation | Hepatocyte lineage cells derived from pluripotent stem cells |
KR100947577B1 (ko) * | 2000-06-26 | 2010-03-15 | 엔씨 메디컬 리서치 가부시키가이샤 | 신경계 세포로 분화할 수 있는 세포를 포함하는 세포분획 |
DK1333833T3 (da) * | 2000-10-23 | 2011-12-12 | Glaxosmithkline Llc | Ny trisubstitueret 8H-pyridol[2,3-d]pyrimidin-7-on-forbindelse til behandling af CSBP/RK/p38-kinnasemedierede sygdomme |
ES2263681T3 (es) | 2000-12-08 | 2006-12-16 | Ortho-Mcneil Pharmaceutical, Inc. | Compuestos de pirrolina indazolil-substituidos como inhibidores de la kinasa. |
AU2737102A (en) | 2000-12-08 | 2002-06-18 | Ortho Mcneil Pharm Inc | Macroheterocylic compounds useful as kinase inhibitors |
US6599323B2 (en) * | 2000-12-21 | 2003-07-29 | Ethicon, Inc. | Reinforced tissue implants and methods of manufacture and use |
CA2435826A1 (fr) * | 2001-01-24 | 2002-08-01 | The Government Of The United States Of America | Differenciation de cellules souches par rapport aux ilots pancreatiques |
CA2435124A1 (fr) * | 2001-01-25 | 2002-08-01 | Millennium Pharmaceuticals, Inc. | Formulation de composes d'acide boronique |
US6656488B2 (en) * | 2001-04-11 | 2003-12-02 | Ethicon Endo-Surgery, Inc. | Bioabsorbable bag containing bioabsorbable materials of different bioabsorption rates for tissue engineering |
EP1379626A2 (fr) * | 2001-04-19 | 2004-01-14 | DeveloGen Aktiengesellschaft für entwicklungsbiologische Forschung | Procede pour differencier des cellules embryonnaires dans des cellules produisant de l'insuline |
WO2002088335A1 (fr) | 2001-04-24 | 2002-11-07 | Ajinomoto Co., Inc. | Cellules souches et procede d'extraction de ces cellules |
CA2447015A1 (fr) | 2001-05-15 | 2002-11-21 | Rappaport Family Institute For Research In The Medical Sciences | Cellules produisant de l'insuline derivees de cellules souches embryonnaires humaines |
US6626950B2 (en) * | 2001-06-28 | 2003-09-30 | Ethicon, Inc. | Composite scaffold with post anchor for the repair and regeneration of tissue |
KR100418195B1 (ko) | 2001-07-05 | 2004-02-11 | 주식회사 우리기술 | 전력케이블의 다중절연진단장치 및 그 방법 |
GB0117583D0 (en) * | 2001-07-19 | 2001-09-12 | Astrazeneca Ab | Novel compounds |
WO2003014313A2 (fr) * | 2001-08-06 | 2003-02-20 | Bresagen, Ltd. | Compositions et procedes de substitution pour la culture de cellules souches |
US6617152B2 (en) * | 2001-09-04 | 2003-09-09 | Corning Inc | Method for creating a cell growth surface on a polymeric substrate |
EP1298201A1 (fr) | 2001-09-27 | 2003-04-02 | Cardion AG | Procédé de production de cellules présentant un état similaire à celui d'une cellule beta d'ilot pancréatique |
US20030138951A1 (en) * | 2001-10-18 | 2003-07-24 | Li Yin | Conversion of liver stem and progenitor cells to pancreatic functional cells |
JP4330995B2 (ja) | 2001-11-15 | 2009-09-16 | チルドレンズ メディカル センター コーポレーション | 絨毛膜絨毛、羊水、および胎盤からの胎児性幹細胞を単離、増殖、および分化させる方法、ならびにその治療的使用方法 |
KR100930139B1 (ko) * | 2001-12-07 | 2009-12-07 | 사이토리 테라퓨틱스, 인크. | 처리된 리포애스퍼레이트 세포로 환자를 치료하기 위한시스템 및 방법 |
WO2003050249A2 (fr) | 2001-12-07 | 2003-06-19 | Geron Corporation | Cellules d'ilots pancreatiques provenant de cellules souches embryonnaires humaines |
WO2003054169A1 (fr) | 2001-12-21 | 2003-07-03 | Thromb-X Nv | Compositions pour la derivation et la culture in vitro de cellules souches embryonnaires avec transmission de lignee germinale |
EP1461421A2 (fr) | 2001-12-28 | 2004-09-29 | Cellartis AB | Methode permettant d'etablir une lignee de cellules souches hematopoietiques multipotentes humaines derivees du blastocyste |
US20030162290A1 (en) | 2002-01-25 | 2003-08-28 | Kazutomo Inoue | Method for inducing differentiation of embryonic stem cells into functioning cells |
US20030180268A1 (en) | 2002-02-05 | 2003-09-25 | Anthony Atala | Tissue engineered construct for supplementing or replacing a damaged organ |
JPWO2003087349A1 (ja) * | 2002-04-17 | 2005-08-18 | 大塚製薬株式会社 | 間葉系細胞から膵β細胞を形成する方法 |
US20040161419A1 (en) * | 2002-04-19 | 2004-08-19 | Strom Stephen C. | Placental stem cells and uses thereof |
EP1506192B1 (fr) | 2002-05-08 | 2008-02-27 | Janssen Pharmaceutica N.V. | Inhibiteurs substitues de la pyrroline kinase |
US20060003446A1 (en) * | 2002-05-17 | 2006-01-05 | Gordon Keller | Mesoderm and definitive endoderm cell populations |
BR0311360A (pt) | 2002-05-28 | 2006-06-06 | Becton Dickinson Co | métodos para expansão e transdiferenciação in vitro de células acinares pancreáticas humanas em células produtoras de insulina |
JP2005531609A (ja) * | 2002-06-05 | 2005-10-20 | ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ | キナーゼ阻害剤としてのシスインドリル−マレイミド誘導体 |
GB0212976D0 (en) | 2002-06-06 | 2002-07-17 | Tonejet Corp Pty Ltd | Ejection method and apparatus |
CN1171991C (zh) | 2002-07-08 | 2004-10-20 | 徐如祥 | 人神经干细胞的培养方法 |
US6877147B2 (en) * | 2002-07-22 | 2005-04-05 | Broadcom Corporation | Technique to assess timing delay by use of layout quality analyzer comparison |
US7838290B2 (en) * | 2002-07-25 | 2010-11-23 | The Scripps Research Institute | Hematopoietic stem cells and methods of treatment of neovascular eye diseases therewith |
CA2494040A1 (fr) | 2002-07-29 | 2004-02-05 | Es Cell International Pte Ltd. | Procede en plusieurs etapes de differenciation des cellules sensibles a l'insuline positive, au glucose |
AU2003262628A1 (en) | 2002-08-14 | 2004-03-03 | University Of Florida | Bone marrow cell differentiation |
AU2003268534A1 (en) | 2002-09-06 | 2004-03-29 | Amcyte Inc. | Cd56 positive human adult pancreatic endocrine progenitor cells |
US9969977B2 (en) * | 2002-09-20 | 2018-05-15 | Garnet Biotherapeutics | Cell populations which co-express CD49c and CD90 |
US20040062753A1 (en) * | 2002-09-27 | 2004-04-01 | Alireza Rezania | Composite scaffolds seeded with mammalian cells |
US20040078090A1 (en) * | 2002-10-18 | 2004-04-22 | Francois Binette | Biocompatible scaffolds with tissue fragments |
AU2003285172A1 (en) | 2002-11-08 | 2004-06-03 | The Johns Hopkins University | Human embryonic stem cell cultures, and compositions and methods for growing same |
US7144999B2 (en) * | 2002-11-23 | 2006-12-05 | Isis Pharmaceuticals, Inc. | Modulation of hypoxia-inducible factor 1 alpha expression |
WO2004050827A2 (fr) | 2002-12-05 | 2004-06-17 | Technion Research & Development Foundation Ltd. | Culture d'ilots pancreatiques humains et leurs utilisations |
JP4613069B2 (ja) | 2002-12-16 | 2011-01-12 | テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド | 支持細胞非含有、異種非含有のヒト胚性幹細胞の調製方法およびこれらを使用して調製された幹細胞培養物 |
RU2359671C2 (ru) | 2003-01-29 | 2009-06-27 | Такеда Фармасьютикал Компани Лимитед | Способ получения препарата с покрытием |
EP1588708A4 (fr) | 2003-01-29 | 2006-03-01 | Takeda Pharmaceutical | Procede pour realiser une preparation enrobee |
WO2004073633A2 (fr) | 2003-02-14 | 2004-09-02 | The Board Of Trustees Of The Leland Stanford Junior University | Methodes et compositions permettant de moduler le developpement de cellules souches |
US20070154981A1 (en) | 2003-02-14 | 2007-07-05 | The Board Of Trustees Of The Leland Stanford Junior University | Insulin-producing cells derived from stem cells |
CA2520861A1 (fr) | 2003-03-27 | 2004-10-14 | Ixion Biotechnology, Inc. | Methode de transdifferentiation de cellules souches non pancreatiques dans la voie de differentiation du pancreas |
WO2004090110A2 (fr) | 2003-03-31 | 2004-10-21 | Bresagen Inc. | Compositions et procedes pour la regulation, la differenciation et/ou la manipulation de cellules multipotentes par l'intermediaire d'une voie de signalisation de gamma-secretase |
US20090203141A1 (en) | 2003-05-15 | 2009-08-13 | Shi-Lung Lin | Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant RNA agents |
PL1641914T3 (pl) * | 2003-06-27 | 2017-01-31 | DePuy Synthes Products, Inc. | Komórki pochodzące z poporodowej tkanki łożyska oraz sposoby uzyskiwania i zastosowania tych komórek |
IL161903A0 (en) | 2003-07-17 | 2005-11-20 | Gamida Cell Ltd | Ex vivo progenitor and stem cell expansion for usein the treatment of disease of endodermally- deri ved organs |
ITRM20030395A1 (it) | 2003-08-12 | 2005-02-13 | Istituto Naz Per Le Malattie Infettive Lazz | Terreno di coltura per il mantenimento, la proliferazione e il differenziamento di cellule di mammifero. |
US20050042595A1 (en) * | 2003-08-14 | 2005-02-24 | Martin Haas | Banking of multipotent amniotic fetal stem cells |
US7157275B2 (en) | 2003-08-15 | 2007-01-02 | Becton, Dickinson And Company | Peptides for enhanced cell attachment and growth |
US20060205072A1 (en) | 2003-08-27 | 2006-09-14 | Nobuko Uchida | Enriched pancreatic stem cell and progenitor cell populations, and methods for identifying, isolating and enriching for such populations |
EP1696899A1 (fr) * | 2003-12-17 | 2006-09-06 | Allergan, Inc. | Procedes permettant de traiter des troubles sensibles au retinoide au moyen d'inhibiteurs selectifs de cyp26a et de cyp26b |
US20060030042A1 (en) * | 2003-12-19 | 2006-02-09 | Ali Brivanlou | Maintenance of embryonic stem cells by the GSK-3 inhibitor 6-bromoindirubin-3'-oxime |
US20050266554A1 (en) * | 2004-04-27 | 2005-12-01 | D Amour Kevin A | PDX1 expressing endoderm |
CN103898045B (zh) | 2003-12-23 | 2019-02-01 | 维亚希特公司 | 定形内胚层 |
CN109628371B (zh) | 2003-12-23 | 2021-02-19 | 维亚希特公司 | 定形内胚层 |
US7625753B2 (en) * | 2003-12-23 | 2009-12-01 | Cythera, Inc. | Expansion of definitive endoderm cells |
TWI334443B (en) * | 2003-12-31 | 2010-12-11 | Ind Tech Res Inst | Method of single cell culture of undifferentiated human embryonic stem cells |
WO2005065354A2 (fr) * | 2003-12-31 | 2005-07-21 | The Burnham Institute | Milieu défini pour culture de cellules souches pluripotentes |
WO2005071066A1 (fr) | 2004-01-23 | 2005-08-04 | Board Of Regents, The University Of Texas System | Methodes et compositions de preparation de cellules de secretion de l'insuline pancreatique |
US7794704B2 (en) | 2004-01-23 | 2010-09-14 | Advanced Cell Technology, Inc. | Methods for producing enriched populations of human retinal pigment epithelium cells for treatment of retinal degeneration |
US20070298453A1 (en) | 2004-02-12 | 2007-12-27 | University Of Newcastle Upon Tyne | Stem Cells |
WO2005080598A1 (fr) | 2004-02-19 | 2005-09-01 | Dainippon Sumitomo Pharma Co., Ltd. | Methode de criblage d'amorceurs de noyaux de cellules somatiques |
US20060281174A1 (en) | 2004-03-09 | 2006-12-14 | Gang Xu | Methods for generating insulin-producing cells |
EP1730261A4 (fr) | 2004-03-10 | 2007-11-28 | Univ California | Compositions et procedes pour faire croitre des cellules souches embryonnaires |
CN1934245B (zh) | 2004-03-23 | 2012-07-04 | 第一三共株式会社 | 多能干细胞的增殖方法 |
WO2005097980A2 (fr) | 2004-03-26 | 2005-10-20 | Geron Corporation | Nouveau protocole de preparation d'hepatocytes a partir de cellules souches embryonnaires |
AU2005230832B2 (en) * | 2004-04-01 | 2010-11-11 | Wisconsin Alumni Research Foundation | Differentiation of stem cells to endoderm and pancreatic lineage |
DK2377922T3 (da) | 2004-04-27 | 2020-05-04 | Viacyte Inc | PDX1-eksprimerende endoderm |
CN102925406B (zh) | 2004-07-09 | 2019-11-22 | 维亚希特公司 | 鉴定用于分化定型内胚层的因子的方法 |
WO2006020919A2 (fr) | 2004-08-13 | 2006-02-23 | University Of Georgia Research Foundation, Inc. | Compositions et procedes d'auto-renouvellement et de differentiation dans des cellules souches embryonnaires humaines |
US20080268533A1 (en) | 2004-08-25 | 2008-10-30 | University Of Georgia Research Foundation, Inc. | Methods and Compositions Utilizing Myc and Gsk3Beta to Manipulate the Pluripotency of Embryonic Stem Cells |
DE102004043256B4 (de) | 2004-09-07 | 2013-09-19 | Rheinische Friedrich-Wilhelms-Universität Bonn | Skalierbarer Prozess zur Kultivierung undifferenzierter Stammzellen in Suspension |
JP5420837B2 (ja) | 2004-09-08 | 2014-02-19 | ウィスコンシン アラムニ リサーチ ファンデーション | 胚幹細胞の培地及び培養 |
KR20070058584A (ko) | 2004-09-08 | 2007-06-08 | 위스콘신 얼럼나이 리서어치 화운데이션 | 인간 배아 줄기 세포의 배양 |
US7273756B2 (en) * | 2004-10-01 | 2007-09-25 | Isto Technologies, Inc. | Method for chondrocyte expansion with phenotype retention |
WO2006079854A1 (fr) | 2005-01-28 | 2006-08-03 | Novathera Ltd | Méthodes de culture de cellules souches embryonnaires |
JP2008528038A (ja) | 2005-01-31 | 2008-07-31 | エス セル インターナショナル ピーティーイー リミテッド | 胚性幹細胞の指示された分化及びその利用 |
WO2006088867A2 (fr) | 2005-02-15 | 2006-08-24 | Medistem Laboratories, Incorporated | Procede pour l'expansion de cellules souches |
ES2627419T3 (es) | 2005-03-04 | 2017-07-28 | Lifescan, Inc. | Células estromales adultas derivadas del páncreas |
GB0505970D0 (en) | 2005-03-23 | 2005-04-27 | Univ Edinburgh | Culture medium containing kinase inhibitor, and uses thereof |
CN100425694C (zh) | 2005-04-15 | 2008-10-15 | 北京大学 | 诱导胚胎干细胞向胰腺细胞分化的方法 |
WO2006113470A2 (fr) | 2005-04-15 | 2006-10-26 | Geron Corporation | Procede pour traiter un cancer grace a l'inhibition combinee d'activites de proteasome et de telomerase |
US20080208351A1 (en) | 2005-04-26 | 2008-08-28 | Aarhus Universitet | Biocompatible Material for Surgical Implants and Cell Guiding Tissue Culture Surfaces |
JP5092124B2 (ja) | 2005-05-24 | 2012-12-05 | 国立大学法人 熊本大学 | Es細胞の分化誘導方法 |
AU2006202209B2 (en) | 2005-05-27 | 2011-04-14 | Lifescan, Inc. | Amniotic fluid derived cells |
US20100234400A1 (en) | 2005-06-10 | 2010-09-16 | Irm Llc | Compounds that maintain pluripotency of embryonic stem cells |
WO2006138433A2 (fr) | 2005-06-14 | 2006-12-28 | The Regents Of The University Of California | Induction de differenciation cellulaire par des polypeptides bhlh de classe i |
EP1931764A1 (fr) | 2005-06-21 | 2008-06-18 | GE Healthcare Bio-Sciences AB | Méthode de culture cellulaire |
CN101233226B (zh) | 2005-06-22 | 2017-08-11 | 阿斯特利亚斯生物治疗股份公司 | 人胚胎干细胞的悬浮培养物 |
NZ564179A (en) | 2005-06-30 | 2010-09-30 | Janssen Pharmaceutica Nv | Cyclic anilino - pyridinotriazines as GSK-3 inhibitors |
US20080194021A1 (en) | 2005-07-29 | 2008-08-14 | Mays Robert W | Use of a Gsk-3 Inhibitor to Maintain Potency of Culture Cells |
US20090087907A1 (en) | 2005-07-29 | 2009-04-02 | Alice Pebay | Compositions and Methods for Growth of Pluripotent Cells |
WO2007025234A2 (fr) | 2005-08-26 | 2007-03-01 | The Trustees Of Columbia University In The City Of New York | Generation de cellules endocrines pancreatiques a partir de cultures cellulaires de conduit primaire, et procedes d'utilisation pour le traitement de diabetes |
EP3354723B1 (fr) | 2005-08-29 | 2023-12-13 | Technion Research & Development Foundation Ltd. | Milieux de culture de cellules souches |
KR20080056182A (ko) | 2005-09-02 | 2008-06-20 | 에이전시 포 사이언스, 테크놀로지 앤드 리서치 | 간엽 줄기 세포의 유도 방법 |
GB2444686B (en) | 2005-09-12 | 2010-08-25 | Es Cell Int Pte Ltd | Differentiation of pluripotent stem cells using p38 MAPK inhibitors or prostaglandins |
EP1941032A2 (fr) | 2005-10-14 | 2008-07-09 | Regents Of The University Of Minnesota | Differenciation de cellules souches non-embryonnaires avec des cellules possedant un phenotype pancreatique |
EP1957636B1 (fr) | 2005-10-27 | 2018-07-04 | Viacyte, Inc. | Endoderme d'intestin anterieur dorsal et ventral exprimant pdx1 |
EP3418297B1 (fr) | 2005-12-13 | 2023-04-05 | Kyoto University | Facteur de reprogrammation nucléaire |
WO2007082963A1 (fr) | 2006-01-18 | 2007-07-26 | Fundación Instituto Valenciano De Infertilidad | Lignées de cellules souches embryonnaires humaines et leurs méthodes d'utilisation |
SG170021A1 (en) | 2006-02-23 | 2011-04-29 | Novocell Inc | Compositions and methods useful for culturing differentiable cells |
US7695965B2 (en) | 2006-03-02 | 2010-04-13 | Cythera, Inc. | Methods of producing pancreatic hormones |
EP2650359B1 (fr) | 2006-03-02 | 2022-05-04 | Viacyte, Inc. | Cellules précurseurs endocrines, cellules exprimant des hormones pancréatiques et procédés de production |
US8741643B2 (en) | 2006-04-28 | 2014-06-03 | Lifescan, Inc. | Differentiation of pluripotent stem cells to definitive endoderm lineage |
EP4438720A2 (fr) | 2006-04-28 | 2024-10-02 | Janssen Biotech, Inc. | Differenciation de cellules souches embryonnaires humaines |
US8685730B2 (en) | 2006-05-02 | 2014-04-01 | Wisconsin Alumni Research Foundation | Methods and devices for differentiating pluripotent stem cells into cells of the pancreatic lineage |
US20070259423A1 (en) | 2006-05-02 | 2007-11-08 | Jon Odorico | Method of differentiating stem cells into cells of the endoderm and pancreatic lineage |
US7964402B2 (en) | 2006-05-25 | 2011-06-21 | Sanford-Burnham Medical Research Institute | Methods for culture and production of single cell populations of human embryonic stem cells |
CN101541953A (zh) | 2006-06-02 | 2009-09-23 | 佐治亚大学研究基金会 | 通过从人胚胎干细胞获得的定形内胚层细胞的分化得到胰和肝内胚层细胞及组织 |
WO2007143193A1 (fr) | 2006-06-02 | 2007-12-13 | University Of Georgia Research Foundation, Inc. | Cellules et tissu de l'endoderme pancréatique et hépatique obtenus par différenciation de cellules endodermiques définitives issues de cellules souches embryonnaires humaines |
US8415153B2 (en) | 2006-06-19 | 2013-04-09 | Geron Corporation | Differentiation and enrichment of islet-like cells from human pluripotent stem cells |
CN100494359C (zh) | 2006-06-23 | 2009-06-03 | 中日友好医院 | 神经干细胞三维立体培养体外扩增的方法 |
WO2008036447A2 (fr) | 2006-06-26 | 2008-03-27 | Lifescan, Inc. | Culture de cellules souches pluripotentes |
US20080003676A1 (en) | 2006-06-26 | 2008-01-03 | Millipore Corporation | Growth of embryonic stem cells |
WO2008004990A2 (fr) | 2006-07-06 | 2008-01-10 | Es Cell International Pte Ltd | Procédé de culture de cellules souches et cellules souches ainsi obtenues |
WO2008013664A2 (fr) | 2006-07-26 | 2008-01-31 | Cythera, Inc. | Procédés de production d'hormones pancréatiques |
EP2733203B1 (fr) | 2006-08-02 | 2018-10-10 | Technion Research & Development Foundation Ltd. | Procédés d'expansion de cellules souches embryonnaires dans une culture en suspension |
KR101331510B1 (ko) | 2006-08-30 | 2013-11-20 | 재단법인서울대학교산학협력재단 | 저농도의 포도당을 함유하는 인간 배아줄기세포용 배지조성물 및 이를 이용한 인간 배아 줄기세포로부터 인슐린생산 세포 또는 세포괴로 분화시키는 방법, 그리고그로부터 유도된 인슐린 생산 세포 또는 세포괴 |
WO2008039521A2 (fr) | 2006-09-26 | 2008-04-03 | Nmt Medical, Inc. | Procédé modifiant la surface d'un implant médical pour promouvoir la croissance tissulaire |
WO2008048647A1 (fr) | 2006-10-17 | 2008-04-24 | Cythera, Inc. | Modulation de la voie de la phosphatidylinositol-3-kinase dans la différentiation des cellules souches embryonnaires humaines |
BRPI0718310A2 (pt) | 2006-10-17 | 2013-11-19 | Stiefel Laboratories | Metabólitos de talarozol |
CA2666789C (fr) | 2006-10-18 | 2016-11-22 | Yong Zhao | Cellules souches de type embryonnaire derivees du sang peripherique d'un etre humain adulte et procedes d'utilisation associes |
RU2323252C1 (ru) * | 2006-10-25 | 2008-04-27 | Антонина Ивановна Колесникова | Способ культивирования мезенхимальных стволовых клеток человека ex vivo |
EP2088190A4 (fr) | 2006-11-09 | 2011-01-05 | Japan Government | Procédé destiné à la culture et au passage d'une cellule souche embryonnaire de primate, et procédé destiné à induire la différenciation de la cellule souche embryonnaire |
WO2008086005A1 (fr) | 2007-01-09 | 2008-07-17 | University Of South Florida | Compositions contenant de la triciribine et du bortézomib et des dérivés de ces derniers, procédés d'utilisation correspondants |
WO2008094597A2 (fr) | 2007-01-30 | 2008-08-07 | University Of Georgia Research Foundation, Inc. | Cellules mésodermiques précoces, une population stable de cellules mésendodermiques qui a une utilité pour la génération de lignées endodermiques et mésodermiques et de cellules migratoires multipotentes (mmc) |
GB0703188D0 (en) | 2007-02-19 | 2007-03-28 | Roger Land Building | Large scale production of stem cells |
US20090053182A1 (en) | 2007-05-25 | 2009-02-26 | Medistem Laboratories, Inc. | Endometrial stem cells and methods of making and using same |
JP5991796B2 (ja) | 2007-06-29 | 2016-09-14 | セルラー ダイナミクス インターナショナル, インコーポレイテッド | 胚性幹細胞培養のための自動化された方法および装置 |
BRPI0814425A2 (pt) | 2007-07-18 | 2014-10-21 | Lifescan Inc | Diferenciação de células-tronco embrionárias humanas |
KR101617243B1 (ko) | 2007-07-31 | 2016-05-02 | 라이프스캔, 인코포레이티드 | 인간 배아 줄기 세포의 분화 |
ES2665434T3 (es) | 2007-07-31 | 2018-04-25 | Lifescan, Inc. | Diferenciación de células madre pluripotentes usando células alimentadoras humanas |
KR101544498B1 (ko) | 2007-08-24 | 2015-08-17 | 스티칭 허트 네덜란드 칸커 인스티튜트 | 종양성 질환의 치료를 위한 조성물 |
WO2009061442A1 (fr) | 2007-11-06 | 2009-05-14 | Children's Medical Center Corporation | Procédé de production de cellules souches pluripotentes induites (ips) à partir de cellules humaines non embryonnaires |
EP2229434B1 (fr) | 2007-11-27 | 2011-09-07 | Lifescan, Inc. | Différentiation des cellules souches embryonnaires humaines |
SG154367A1 (en) | 2008-01-31 | 2009-08-28 | Es Cell Int Pte Ltd | Method of differentiating stem cells |
WO2009096049A1 (fr) | 2008-02-01 | 2009-08-06 | Kyoto University | Cellules différenciées ayant pour origine des cellules souches pluripotentes artificielles |
EP2250252A2 (fr) | 2008-02-11 | 2010-11-17 | Cambridge Enterprise Limited | Reprogrammation perfectionnée de cellules de mammifère et cellules ainsi obtenues |
JPWO2009110215A1 (ja) | 2008-03-03 | 2011-07-14 | 独立行政法人科学技術振興機構 | 繊毛細胞の分化誘導方法 |
SG188918A1 (fr) | 2008-03-17 | 2013-04-30 | Agency Science Tech & Res | |
RU2359030C1 (ru) | 2008-03-19 | 2009-06-20 | Общество С Ограниченной Ответственностью "Лаборатория Клеточных Технологий" | Способ получения эндотелиальных клеток из эмбриональных стволовых клеток человека (варианты) |
WO2009131568A1 (fr) | 2008-04-21 | 2009-10-29 | Cythera, Inc. | Procédés pour la purification de cellules endodermiques et endodermiques pancréatiques issues de cellules souches embryonnaires humaines |
US8338170B2 (en) | 2008-04-21 | 2012-12-25 | Viacyte, Inc. | Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells |
WO2009132083A2 (fr) | 2008-04-22 | 2009-10-29 | President And Fellows Of Harvard College | Compositions et méthodes permettant de favoriser la production de cellules pancréatiques pdx1+ |
US8623648B2 (en) | 2008-04-24 | 2014-01-07 | Janssen Biotech, Inc. | Treatment of pluripotent cells |
US7939322B2 (en) | 2008-04-24 | 2011-05-10 | Centocor Ortho Biotech Inc. | Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm |
US20090298178A1 (en) | 2008-06-03 | 2009-12-03 | D Amour Kevin Allen | Growth factors for production of definitive endoderm |
EP2993226B1 (fr) | 2008-06-03 | 2020-12-16 | Viacyte, Inc. | Facteurs de croissance pour la production d'un endoderme définitif |
DE102008032236A1 (de) | 2008-06-30 | 2010-04-01 | Eberhard-Karls-Universität Tübingen | Isolierung und/oder Identifizierung von Stammzellen mit adipozytärem, chondrozytärem und pankreatischem Differenzierungspotential |
PL2310492T3 (pl) | 2008-06-30 | 2015-12-31 | Janssen Biotech Inc | Różnocowanie pluripotencjalnych komórek macierzystych |
US20100028307A1 (en) | 2008-07-31 | 2010-02-04 | O'neil John J | Pluripotent stem cell differentiation |
US9683215B2 (en) | 2008-08-22 | 2017-06-20 | President And Fellows Of Harvard College | Methods of reprogramming cells |
AU2009308967C1 (en) | 2008-10-31 | 2017-04-20 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells to the pancreatic endocrine lineage |
KR102025158B1 (ko) | 2008-10-31 | 2019-09-25 | 얀센 바이오테크 인코포레이티드 | 인간 배아 줄기 세포의 췌장 내분비 계통으로의 분화 |
US8008075B2 (en) | 2008-11-04 | 2011-08-30 | Viacyte, Inc. | Stem cell aggregate suspension compositions and methods of differentiation thereof |
CN102361970B (zh) | 2008-11-04 | 2018-03-27 | 韦尔赛特公司 | 干细胞聚集体悬浮组合物及其分化方法 |
EP4176888A1 (fr) | 2008-11-14 | 2023-05-10 | ViaCyte, Inc. | Encapsulation de cellules pancréatiques dérivées de cellules souches pluripotentes humaines |
MX356756B (es) | 2008-11-20 | 2018-06-11 | Centocor Ortho Biotech Inc | Células madre pluripotentes en microportadores. |
WO2010063848A1 (fr) | 2008-12-05 | 2010-06-10 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Procédé et milieu pour la différenciation neurale de cellules pluripotentes |
EP2456862A4 (fr) | 2009-07-20 | 2013-02-27 | Janssen Biotech Inc | Différentiation de cellules souches embryonnaires humaines |
SG177416A1 (en) | 2009-07-20 | 2012-02-28 | Janssen Biotech Inc | Differentiation of human embryonic stem cells |
CN107058389A (zh) | 2009-10-29 | 2017-08-18 | 詹森生物科技公司 | 多能干细胞 |
FI20096288A0 (fi) | 2009-12-04 | 2009-12-04 | Kristiina Rajala | Formulations and methods for culturing stem cells |
CN102712902B (zh) | 2009-12-23 | 2019-01-08 | 詹森生物科技公司 | 人胚胎干细胞的分化 |
CN102741395B (zh) | 2009-12-23 | 2016-03-16 | 詹森生物科技公司 | 人胚胎干细胞的分化 |
CA2791846A1 (fr) | 2010-03-02 | 2011-09-09 | National University Of Singapore | Adjuvants de culture pour favoriser la proliferation des cellules souches et la reponse de differenciation |
JP5909482B2 (ja) | 2010-03-31 | 2016-04-26 | ザ スクリプス リサーチ インスティテュート | 細胞の再プログラム |
EP2563908B1 (fr) | 2010-04-25 | 2019-01-09 | Icahn School of Medicine at Mount Sinai | Génération d'endoderme de l'intestin antérieur à partir de cellules pluripotentes |
RU2587634C2 (ru) | 2010-05-12 | 2016-06-20 | Янссен Байотек, Инк. | Дифференцирование эмбриональных стволовых клеток человека |
CA2807418C (fr) | 2010-08-05 | 2017-04-04 | Wisconsin Alumni Research Foundation | Milieux basiques simplifies destines a la culture de cellules pluripotentes humaines |
BR112013004614A2 (pt) | 2010-08-31 | 2024-01-16 | Janssen Biotech Inc | Diferenciação de células-tronco pluripotentes |
MY177150A (en) | 2011-02-28 | 2020-09-08 | Stempeutics Res Malaysia Sdn Bhd | Isolation and expansion of adult stem cells, their therapeutic composition and uses thereof |
US20130274184A1 (en) | 2011-10-11 | 2013-10-17 | The Trustees Of Columbia University In The City Of New York | Er stress relievers in beta cell protection |
EP2766474B1 (fr) | 2011-10-14 | 2020-10-07 | Children's Medical Center Corporation | Inhibition et amélioration de la re-programmation par des enzymes de modification de la chromatine |
KR102203056B1 (ko) | 2011-12-22 | 2021-01-14 | 얀센 바이오테크 인코포레이티드 | 인간 배아 줄기 세포의 단일 인슐린 호르몬 양성 세포로의 분화 |
US10519422B2 (en) | 2012-02-29 | 2019-12-31 | Riken | Method of producing human retinal pigment epithelial cells |
CN108034633B (zh) | 2012-06-08 | 2022-08-02 | 詹森生物科技公司 | 人胚胎干细胞向胰腺内分泌细胞的分化 |
US20150247123A1 (en) | 2012-09-03 | 2015-09-03 | Novo Nordisk A/S | Generation of pancreatic endoderm from Pluripotent Stem cells using small molecules |
AU2013368224B2 (en) | 2012-12-31 | 2018-09-27 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells using HB9 regulators |
US8859286B2 (en) | 2013-03-14 | 2014-10-14 | Viacyte, Inc. | In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells |
EP2970892A1 (fr) | 2013-03-15 | 2016-01-20 | The Jackson Laboratory | Isolement de cellules souches non embryonnaires et leurs utilisations |
-
2009
- 2009-11-19 AU AU2009316583A patent/AU2009316583B2/en not_active Ceased
- 2009-11-19 CA CA2744227A patent/CA2744227C/fr not_active Expired - Fee Related
- 2009-11-19 JP JP2011537604A patent/JP5719305B2/ja not_active Expired - Fee Related
- 2009-11-19 CN CN200980147112.7A patent/CN102257132B/zh not_active Expired - Fee Related
- 2009-11-19 US US12/621,702 patent/US9969973B2/en not_active Expired - Fee Related
- 2009-11-19 PL PL09764380.3T patent/PL2366022T3/pl unknown
- 2009-11-19 EP EP09764380.3A patent/EP2366022B1/fr not_active Not-in-force
- 2009-11-19 MX MX2011005289A patent/MX2011005289A/es active IP Right Grant
- 2009-11-19 KR KR1020117013831A patent/KR101687344B1/ko active IP Right Grant
- 2009-11-19 ES ES09764380.3T patent/ES2584053T3/es active Active
- 2009-11-19 RU RU2011124902/10A patent/RU2547925C2/ru not_active IP Right Cessation
- 2009-11-19 BR BRPI0921996-0A patent/BRPI0921996A2/pt not_active Application Discontinuation
- 2009-11-19 WO PCT/US2009/065067 patent/WO2010059778A1/fr active Application Filing
-
2011
- 2011-06-17 ZA ZA2011/04507A patent/ZA201104507B/en unknown
-
2012
- 2012-02-27 HK HK12101972.6A patent/HK1162191A1/zh not_active IP Right Cessation
-
2016
- 2016-07-21 AU AU2016206314A patent/AU2016206314B2/en not_active Ceased
-
2018
- 2018-05-11 US US15/977,774 patent/US20180258387A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008035110A1 (fr) * | 2006-09-22 | 2008-03-27 | Riken | Milieu de culture de cellules souches et procédé |
WO2009105570A2 (fr) * | 2008-02-21 | 2009-08-27 | Centocor Ortho Biotech Inc. | Procédés, plaques à surface modifiée et compositions permettant la fixation, la culture et le détachement de cellules |
Non-Patent Citations (4)
Title |
---|
HARB NICOLE ET AL: "The Rho-Rock-Myosin Signaling Axis Determines Cell-Cell Integrity of Self-Renewing Pluripotent Stem Cells", PLOS ONE, PUBLIC LIBRARY OF SCIENCE, SAN FRANCISCO, CA, US, vol. 3, no. 8, 1 August 2008 (2008-08-01), pages E3001 - 1, XP002530386, ISSN: 1932-6203, [retrieved on 20080801] * |
KOYANAGI MASAOMI ET AL: "Inhibition of the Rho/ROCK pathway reduces apoptosis during transplantation of embryonic stem cell-derived neural precursors", JOURNAL OF NEUROSCIENCE RESEARCH, WILEY-LISS, US, vol. 86, no. 2, 1 February 2008 (2008-02-01), pages 270 - 280, XP002530383, ISSN: 0360-4012 * |
PARDO A M ET AL: "Corning TM CellBIND TM Surface: An Improved Surface for Enhanced Cell Attachment(CORNING TECHNICAL REPORT 2005)", LIFE SCIENCES, PERGAMON PRESS, OXFORD, GB, 1 January 2005 (2005-01-01), pages 1 - 8, XP002530385, ISSN: 0024-3205 * |
VAN KOOTEN T G ET AL: "Plasma-treated polystyrene surfaces: model surfaces for studying cell-biomaterial interactions", BIOMATERIALS, ELSEVIER SCIENCE PUBLISHERS BV., BARKING, GB, vol. 25, no. 10, 1 May 2004 (2004-05-01), pages 1735 - 1747, XP004485087, ISSN: 0142-9612 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9345486B2 (en) | 2009-03-16 | 2016-05-24 | University Of Washington | Nanofibrous conduits for nerve regeneration |
WO2014027176A3 (fr) * | 2012-08-17 | 2014-05-08 | Keele University | Procédé de culture de cellules souches |
US9005607B2 (en) | 2012-08-17 | 2015-04-14 | Keele University | Stem cell culture method |
WO2014027176A2 (fr) * | 2012-08-17 | 2014-02-20 | Keele University | Procédé de culture de cellules souches |
US11104883B2 (en) | 2013-06-11 | 2021-08-31 | President And Fellows Of Harvard College | SC-beta cells and compositions and methods for generating the same |
US12054745B2 (en) | 2013-06-11 | 2024-08-06 | President And Fellows Of Harvard College | SC-beta cells and compositions and methods for generating the same |
US12049646B2 (en) | 2013-06-11 | 2024-07-30 | President And Fellows Of Harvard College | SC-beta cells and compositions and methods for generating the same |
US10655106B2 (en) | 2013-06-11 | 2020-05-19 | President And Fellows Of Harvard College | SC-beta cells and compositions and methods for generating the same |
US11162078B2 (en) | 2013-06-11 | 2021-11-02 | President And Fellows Of Harvard College | SC-beta cells and compositions and methods for generating the same |
US11078463B2 (en) | 2013-06-11 | 2021-08-03 | President And Fellows Of Harvard College | SC-beta cells and compositions and methods for generating the same |
US10253298B2 (en) | 2014-12-18 | 2019-04-09 | President And Fellows Of Harvard College | Methods for generating stem cell-derived beta cells and methods of use thereof |
US11085027B2 (en) | 2014-12-18 | 2021-08-10 | President And Fellows Of Harvard College | Serum-free in vitro directed differentiation protocol for generating stem cell-derived beta cells and uses thereof |
US11085025B2 (en) | 2014-12-18 | 2021-08-10 | President And Fellows Of Harvard College | Serum-free in vitro directed differentiation protocol for generating stem cell-derived beta cells and uses thereof |
US11085026B2 (en) | 2014-12-18 | 2021-08-10 | President And Fellows Of Harvard College | Serum-free in vitro directed differentiation protocol for generating stem cell-derived beta cells and uses thereof |
US11155787B2 (en) | 2014-12-18 | 2021-10-26 | President And Fellows Of Harvard College | Methods for generating stem cell-derived beta cells and methods of use thereof |
US10927350B2 (en) | 2014-12-18 | 2021-02-23 | President And Fellows Of Harvard College | Methods for generating stem cell-derived beta cells and uses thereof |
US10443042B2 (en) | 2014-12-18 | 2019-10-15 | President And Fellows Of Harvard College | Serum-free in vitro directed differentiation protocol for generating stem cell-derived beta cells and uses thereof |
US10190096B2 (en) | 2014-12-18 | 2019-01-29 | President And Fellows Of Harvard College | Methods for generating stem cell-derived β cells and uses thereof |
US11945795B2 (en) | 2017-11-15 | 2024-04-02 | Vertex Pharmaceuticals Incorporated | Islet cell manufacturing compositions and methods of use |
US11466256B2 (en) | 2018-08-10 | 2022-10-11 | Vertex Pharmaceuticals Incorporated | Stem cell derived islet differentiation |
US11525120B2 (en) | 2018-08-10 | 2022-12-13 | Vertex Pharmaceuticals Incorporated | Stem cell derived islet differentiation |
US11999971B2 (en) | 2018-08-10 | 2024-06-04 | Vertex Pharmaceuticals Incorporated | Stem cell derived islet differentiation |
US12123023B2 (en) | 2021-10-15 | 2024-10-22 | President And Fellows Of Harvard College | Methods for generating stem cell-derived β cells and methods of use thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102257132B (zh) | 2014-09-03 |
US20100124783A1 (en) | 2010-05-20 |
JP2012509086A (ja) | 2012-04-19 |
RU2547925C2 (ru) | 2015-04-10 |
CN102257132A (zh) | 2011-11-23 |
AU2016206314B2 (en) | 2018-03-01 |
AU2009316583B2 (en) | 2016-04-21 |
KR101687344B1 (ko) | 2016-12-16 |
ES2584053T3 (es) | 2016-09-23 |
JP5719305B2 (ja) | 2015-05-13 |
AU2009316583A1 (en) | 2010-05-27 |
PL2366022T3 (pl) | 2016-11-30 |
US20180258387A1 (en) | 2018-09-13 |
AU2016206314A1 (en) | 2016-08-04 |
MX2011005289A (es) | 2011-06-01 |
BRPI0921996A2 (pt) | 2015-08-18 |
CA2744227C (fr) | 2018-10-02 |
EP2366022B1 (fr) | 2016-04-27 |
ZA201104507B (en) | 2018-11-28 |
HK1162191A1 (zh) | 2012-08-24 |
US9969973B2 (en) | 2018-05-15 |
CA2744227A1 (fr) | 2010-05-27 |
KR20110089426A (ko) | 2011-08-08 |
EP2366022A1 (fr) | 2011-09-21 |
RU2011124902A (ru) | 2012-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11001802B2 (en) | Surface of a vessel with polystyrene, nitrogen, oxygen and a static sessile contact angle for attachment and cultivation of cells | |
US20180258387A1 (en) | Methods and compositions for cell attachment and cultivation on planar substrates | |
CA2691975C (fr) | Culture de cellule souche pluripotente unique | |
US10316293B2 (en) | Methods for producing single pluripotent stem cells and differentiation thereof | |
US20100087002A1 (en) | Methods, Surface Modified Plates and Compositions for Cell Attachment, Cultivation and Detachment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980147112.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09764380 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009316583 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2744227 Country of ref document: CA Ref document number: 12011500971 Country of ref document: PH Ref document number: MX/A/2011/005289 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011537604 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2280/KOLNP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2009316583 Country of ref document: AU Date of ref document: 20091119 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20117013831 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009764380 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011124902 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0921996 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110520 |