WO2010043154A1 - 一种镍钴锰多元掺杂锂离子电池正极材料及其制备方法 - Google Patents

一种镍钴锰多元掺杂锂离子电池正极材料及其制备方法 Download PDF

Info

Publication number
WO2010043154A1
WO2010043154A1 PCT/CN2009/074301 CN2009074301W WO2010043154A1 WO 2010043154 A1 WO2010043154 A1 WO 2010043154A1 CN 2009074301 W CN2009074301 W CN 2009074301W WO 2010043154 A1 WO2010043154 A1 WO 2010043154A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
nickel
manganese
ion battery
lithium ion
Prior art date
Application number
PCT/CN2009/074301
Other languages
English (en)
French (fr)
Inventor
王家祥
吴开平
尤小兵
徐频
王宇
卢云
廖如兰
Original Assignee
成都晶元新材料技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都晶元新材料技术有限公司 filed Critical 成都晶元新材料技术有限公司
Priority to US13/124,664 priority Critical patent/US8709301B2/en
Priority to JP2011531336A priority patent/JP5702289B2/ja
Publication of WO2010043154A1 publication Critical patent/WO2010043154A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention discloses a nickel-cobalt-manganese multi-doped lithium ion battery cathode material and a preparation method thereof, and belongs to the technical field of energy materials.
  • the cathode material of lithium ion batteries used in mobile phones and notebook computers is lithium cobaltate.
  • Lithium cobaltate has an initial discharge capacity of 140 to 145 mAh/g and has good cycle performance. It has been widely used as a positive electrode material for lithium ion batteries since 1992.
  • lithium cobalt oxide materials are expensive, and there are also defects such as low capacity and poor safety performance.
  • the preparation of cathode materials such as lithium manganate and lithium nickelate has been extensively studied in recent years. Lithium manganate has a low capacity, and its cycle performance, especially high temperature cycle performance, is poor, which limits its application.
  • Lithium nickelate is difficult to synthesize and is still in the experimental stage.
  • Nickel-cobalt-manganese lithium multi-component cathode material (hereinafter referred to as multi-element cathode material) is a new type of high-capacity lithium ion battery cathode material.
  • the material has good safety performance, relatively low price, good compatibility with electrolyte, and excellent cycle performance. .
  • the synthesis of the material is difficult, the material produced is less stable, and the density of the material is lower than that of lithium cobaltate, which hinders the practical application of the material.
  • Multi-component cathode materials with polycrystalline particles (mostly spheroidal) have been developed.
  • the single particles of the multi-element cathode material are observed under the microscope. a plurality of aggregated particles (or binding) is made, a tap density of the positive electrode material up to a polyhydric 2. 0 ⁇ 2. 5g / cm 3, initial discharge capacity 140 ⁇ 145mAh / g 0 at home and abroad manufacturers lithium ion battery positive electrode material
  • the lithium-cobalt-manganese-lithium multi-component positive electrode material, which is trial-produced, is developed and has a shape of a composite crystal.
  • the preparation process of lithium nickel cobalt manganate multi-component cathode material with complex crystal particles is complicated, and the prepared composite crystal lithium nickel cobalt manganate multi-electrode cathode material has high tap density, and its compaction density can reach 3 2 ⁇ 3. 4 g/cm 3 , but it is difficult to improve. And the composite crystal particles formed by combining a plurality of particles are difficult to be uniform in particle size, and the particle size distribution is wide. In the process of preparing the battery pole piece, some fine particles are easily detached from the surface of the polycrystalline particles, and the stability of the product is poor. And the spheroidal compound particles have greater hygroscopicity and are easily absorbed by moisture when exposed to air, which affects the performance of the product. Summary of the invention
  • the object of the present invention is to overcome the above-mentioned deficiencies in the prior art and to provide a nickel-cobalt-manganese multi-doped lithium ion battery cathode material having a high compaction density, a low hygroscopicity, and a more stable structure.
  • Another object of the present invention is to provide a method for preparing the nickel-cobalt-manganese multi-doped lithium ion battery positive electrode material.
  • the present invention provides the following technical solutions:
  • a nickel-cobalt-manganese multi-doped lithium ion battery cathode material having a chemical formula of LiNixCoy Mn Z M (1 - x - y - z) 0 2 , wherein M is molybdenum, chromium, bismuth, indium, antimony, bismuth, magnesium Or one or more of the rare earth elements, the range of values of x, y, and z is: 0. 3 ⁇ x ⁇ 0. 4, 0. 29 ⁇ y ⁇ 0. 35, 0. 3 ⁇ z ⁇ 0. 4. 5-30 ⁇ ⁇ The granules of the non-agglomerated single crystal grains having a particle size of 0. 5-30 ⁇ ⁇ .
  • the total amount of nickel-cobalt-manganese is 0. 13-0. 3%.
  • the mass fraction of cerium is the molar mass fraction of other doping metal elements other than nickel-cobalt-manganese in the total metal element of the positive electrode material of the battery of the present invention.
  • the preparation method of the above nickel-cobalt-manganese lithium battery positive electrode material comprises the following steps:
  • the nickel, cobalt, manganese sulfate or nitrate is formulated into an aqueous solution, and one or more of molybdenum, chromium, bismuth, indium, antimony, bismuth, magnesium or a rare earth element salt is added to the solution, and stirred and dissolved. 5) ⁇
  • the content of the total amount of the total mass of the nickel, cobalt and manganese elements is 0. 13-0. 3%;
  • the mixed alkaline The molar concentration of the NaOH is 0. 02-0. 9mol / L, the molar concentration of ammonia is 0. 01-0. 9mol / L, the amount of alkaline solution is calculated according to the chemical reaction formula The theoretical amount of 1. 04-1. 07 times; the oxalate solution is a molar concentration of 0. 8-1. 2mol / L of ammonium oxalate or sodium oxalate solution, the amount of oxalate is calculated according to the chemical reaction formula The theoretical amount of 1. 05-1. 1 times;
  • the mixture is stirred for l_2h, aged (that is, allowed to stand) l-4h, filtered to obtain a solid matter, and the solid matter is washed with deionized water.
  • the amount of washing water is 7-13 times the weight of the intermediate, so that the solid matter after washing is obtained.
  • the mass percentage of the medium Na element is less than 0.01%, and the washed solid matter is dried at 105-12 CTC for 3-5 hours to obtain a nickel-cobalt-manganese multi-component intermediate.
  • the molar ratio of Li: (Ni+Co+Mn) 1. 05-1.
  • the above 400 mesh sieve is placed in a ceramic dish, placed in a baking furnace, calcined at a temperature of 700-80 CTC for 5-8 h, taken out, cooled to 45-55 ° C, pulverized, passed through a 400 mesh sieve.
  • the obtained undersize material is a non-agglomerated single crystal multi-component positive electrode material.
  • the non-agglomerated single-grain multi-element positive electrode material may have a shape of a square, a rectangle, a rhombus or an irregular polygon.
  • the preparation method of the nickel-cobalt-manganese multi-doped lithium ion battery cathode material of the invention has the advantages of easier operation control and the like compared with the prior art method.
  • the addition of polyethylene glycol 6000 to the process can provide a good dispersion effect.
  • the addition of polyvinyl alcohol facilitates the press forming of the material.
  • the nickel-cobalt-manganese multi-doped lithium ion battery cathode material prepared by the invention has a shape of non-agglomerated single crystal grains having a particle diameter of 0.5 to 30 ⁇ ⁇ , and the cathode material has a high compaction density.
  • the invention breaks the fixed format of long-term imprisonment in people's minds, overcomes the above-mentioned constraints on the crystal structure, and develops a nickel-cobalt-manganese multi-doped which is more stable than the polycrystalline particles and has a non-agglomerated single crystal grain.
  • a lithium ion battery cathode material which has a high compaction density (3.4 g/cm 3 ), low hygroscopicity, and a first discharge capacity of 145 to 152 mAh/g, and has excellent cycle performance and higher. Security performance.
  • Figure 1 is a process flow diagram of the method of the present invention.
  • Example 3 is a scanning electron microscope topography of a positive electrode material of a nickel-cobalt-manganese multi-doped lithium ion battery according to the present invention. detailed description Example 1
  • Ni: Co: Mn 0.9: 1: 0.9, content of lanthanum, cerium, lanthanum It is 0.136% of the total mass of nickel-cobalt-manganese.
  • the above multi-metal salt solution was heated to about 70. C, 1.2L multi-metal salt solution is added to a temperature of about 45 ° C at a rate of 5 ⁇ : LOmL / min, containing 1.7g of polyethylene glycol 6000 (polyethylene glycol 6000 is the total amount of nickel cobalt manganese metal 1.44%) of 2 liters of alkaline solution (the NH 3 content of the alkaline solution is 0.73 mol / L, Na0H content of 0.73 mol / L), then add 58.4g of NaOH to the reactor, and add under stirring
  • the remaining multi-metal salt solution was stirred for 1 hour after the addition, and then allowed to stand for 4 hours, filtered to obtain a solid matter, and the solid matter was washed with 2 liters of pure water to make the mass percentage of sodium element in the solid content ⁇ 0.01%. Then, the washed solid matter was dried in an oven at 115 ° C for 5 hours to obtain 189.9 g
  • the obtained nickel-cobalt-manganese multi-component intermediate was mixed with 89.6 g of LiOHH*H 2 0, ground for 2 h, pretreated at 520 ° C for 2 h, and the mixture was uniformly mixed with 2.3 g of polyvinyl alcohol and pressed into a cake. (The amount of polyvinyl alcohol used is 1.95% of the total mass of nickel-cobalt-manganese).
  • the cake was placed in a baking furnace, calcined at 82 CTC for 16 hours, then heated to 93 CTC and calcined for 6 hours, baked, cooled to about 50 ° C, pulverized, and passed through a 400 mesh sieve.
  • the undersize is placed in a ceramic dish, placed in a baking furnace, calcined at 800 for 5 hours, baked, cooled to 50 ° C, pulverized, passed through a 400 mesh sieve, and packaged under a sieve to obtain a non-agglomerated single-grain layer.
  • the structure of nickel-cobalt-manganese multi-doped lithium ion battery cathode material 192g.
  • the multi-component positive electrode material having a non-agglomerated single crystal grain and a layered structure has a particle diameter of 0.5 to 15 ⁇ m and a compact density of 3.4 g/cm 3 .
  • the multi-component positive electrode material is mixed, dried, pressed, formed, weighed, assembled, and sealed to form a battery.
  • the positive electrode coating film of the battery is: PVDF 3.5%, multi-component positive electrode material 93.6%, conductive carbon black 2.9%; Negative film coating formula: PVDF 6.5%, artificial graphite, 93.5%, positive and negative pole piece area 7cm 2 .
  • PCBT-138-4D battery produced by Wuhan Lixing Testing Equipment Co., Ltd. 5% ⁇ The battery has a capacity of 149.
  • the existing polycrystalline particle positive electrode material was made into a battery in the same proportion, and tested under the same conditions, and its initial discharge capacity was 142 mAh/go.
  • the solution was heated to about 60 ° C, and a 1 L multi-metal salt solution was added to a 2 liter alkaline solution containing 1. lg of polyethylene glycol 6000 at a rate of 6 to 9 mL/min (the amount of polyethylene glycol 6000).
  • the amount of the nickel-cobalt-manganese metal is 0.92%, the alkaline solution (temperature is about 45 °C), the NH 3 content is 0. 73 mol / L, the NaOH content is 0. 73 mol / L, stirring reaction 2 5 ⁇ , Then add NaOH 58. 6g to the reactor, continue to add the remaining multi-metal salt solution under stirring to carry out the reaction.
  • the polyhydric intermediate is mixed with 92. lgLi0H * H 2 0, fully ground, pretreated at 500 ° C for 2 hours, and then the above pretreated material and 1.8 g of polyvinyl alcohol (the amount of polyvinyl alcohol is nickel cobalt manganese 1.5% of the total mass is uniformly mixed and pressed into a block.
  • the block is then placed in a baking furnace, calcined at 800 ° C for 15 h, then heated to 900 ° C for 7 h, baked, cooled to 45 ° C, crushed, passed through a 400 mesh sieve.
  • the undersize is placed in a ceramic dish, calcined in a roaster at 70 CTC for 7 hours, baked, cooled to about 45 ° C, pulverized, sieved, and packaged to obtain a multi-positive non-agglomerated single-grain, layered structure.
  • the first discharge capacity is 150. 3 mAh / g, cycle charge and discharge, the first embodiment has a particle size of 0. 7- 12 um, a compact density of 3.45 g / cm 3 , a first discharge capacity of 150. 3 mAh / g, cycle charge and discharge 55% ⁇ Its capacity decay is only 1. 5 %.
  • Example 3 207.5 g of nickel sulfate (the weight percentage of Ni element is 21.2%), 179.0 g of cobalt sulfate (weight ratio of Co ⁇ is 20.56%), and 127.6 g of manganese sulfate (32.2% by weight of Mn element) are dissolved. In 1.3 liters of pure water, dissolved, filtered, and then added to the filtrate, cerium nitrate (containing La element 0.
  • the above materials were uniformly mixed with 1.2 g of polyvinyl alcohol (the amount of polyvinyl alcohol used was 0.98% of the total mass of nickel, cobalt and manganese), and pressed into a cake.
  • the block was placed in a baking furnace, calcined at 800 ° C for 10 h, heated to 900 ° C for 6 h, and baked, pulverized, and passed through a 400 mesh sieve.
  • the undersize is placed in a ceramic dish, calcined at 700 ° C for 8 h, baked, cooled to about 55 ° C, pulverized, sieved through 400 mesh, and packaged under the sieve to obtain a non-agglomerated single crystal grain, layered structure.
  • Multi-component positive electrode material (199.5 g) 0
  • the direct recovery rates of Ni, Co, and Mn in this example were 97.5%, respectively.
  • the multi-component positive electrode material having a non-agglomerated single-grain layered structure has a particle diameter of 0.8 to 16 ⁇ m, a compact density of 3.4 g/cm 3 , and an initial discharge capacity of 149.9 mAh/g (4.2 V) and 176 mAh/g ( 4.5V), 100 times of cyclic charge and discharge, its capacitance decay is only 2.1%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

一种镍钴锰多元掺杂锂离子电池正极材料及其制备方法 技术领域
本发明公开了一种镍钴锰多元掺杂锂离子电池正极材料及其制备方法,属 于能源材料技术领域。
背景技术
目前, 手机、 笔记本电脑所用锂离子电池的正极材料为钴酸锂。 钴酸锂的 初始放电容量为 140〜145mAh/g,并具有良好的循环性能, 自 1992年以来被广 泛地用作锂离子电池正极材料。 但由于钴资源短缺, 钴酸锂材料价格昂贵, 而 且还存在容量较低、 安全性能较差等缺陷。 为寻找质优价廉的锂离子电池正极 材料, 国内外近年来对锰酸锂、 镍酸锂等正极材料的制备进行了广泛的研究。 锰酸锂电容量较低, 循环性能、 特别是高温循环性能较差, 使其应用受到较大 的限制, 目前主要在小型动力电池方面得到使用。 镍酸锂合成较困难, 仍处于 试验研究阶段。
镍钴锰酸锂多元正极材料(以下简称多元正极材料)是一种新型高容量锂 离子电池正极材料,该材料安全性能好,价格相对较低,与电解液的相容性好, 循环性能优异。 但该材料的合成较困难, 产出的材料稳定性较差, 材料的密度 较钴酸锂低, 阻碍了该材料的实际应用。 近年来, 经过广泛深入的研究, 多元 正极材料的制备获得了大的进展, 已研制出复晶颗粒(多数为类球形)状的多 元正极材料,镜下观察该多元正极材料的单个颗粒是由多个微粒聚集(或结合) 而成, 该多元正极材料的振实密度可达 2. 0〜2. 5g/cm3, 首次放电容量 140〜 145mAh/g0 目前国内外锂离子电池正极材料厂家研发试生产的镍钴锰酸锂多元 正极材料, 其外形为复晶颗粒。外形为复晶颗粒的镍钴锰酸锂多元正极材料的 制备工艺较复杂,制备出的复晶颗粒镍钴锰酸锂多元正极材料虽然具有较高的 振实密度, 其压实密度可达 3. 2〜3. 4 g/cm3, 但难以进一歩提高。 并且由于多 个微粒结合而成的复晶颗粒其粒径难以均一, 粒度分布较宽, 在制备电池极片 的过程中, 一些细小微粒还容易从复晶颗粒表面脱落, 产品的稳定性较差; 并 且类球形复晶颗粒具有较大的吸湿性, 暴露在空气中容易吸湿, 影响产品的使 用性能。 发明内容
本发明的目的在于克服现有技术中存在的上述不足,提供一种具有较高的 压实密度、 较低吸湿性、 结构更稳定的镍钴锰多元掺杂锂离子电池正极材料。 本发明的另一目的在于提供该镍钴锰多元掺杂锂离子电池正极材料的制备方 法。
为了实现上述目的, 本发明提供了以下技术方案:
一种镍钴锰多元掺杂锂离子电池正极材料, 其化学式为 LiNixCoy MnZM(1-x-y-z)02,式中 M为钼、 铬、 锗、 铟、 锶、 钽、 镁或稀土元素中的一种或几 种, x、 y、 z的取值范围为: 0. 3〈x〈0. 4, 0. 29〈y〈0. 35, 0. 3〈z〈0. 4。 该电池正 极材料的颗粒为非团聚单晶粒, 粒径为 0. 5-30 μ ιη。 Μ的含量为镍钴锰质量总 量的 0. 13-0. 3%。 Μ的质量分数为除镍钴锰外其他掺杂金属元素在本发明电池 正极材料的总金属元素中所占的摩尔质量分数。
上述镍钴锰酸锂电池正极材料的制备方法包括以下歩骤:
( 1 ) 制备镍钴锰多元中间体:
将镍、 钴、 锰的硫酸盐或硝酸盐配制成水溶液, 向该溶液中加入钼、 铬、 锗、 铟、 锶、 钽、 镁或稀土元素的盐中的一种或几种, 搅拌溶解, 配制成总金 属摩尔浓度为 0. 8-1. 3mol/L的多元金属盐溶液, 该多元金属盐溶液中镍钴锰 的摩尔比为 Ni: Co: Mn= (0. 9-1. 2) : 1: (0. 9-1. 2), 钼、 铬、 锗、 铟、 锶、 钽、 镁或稀土元素等掺杂元素的含量为镍钴锰元素质量总量的 0. 13-0. 3%;
在 40-7CTC的温度下以 5-30mL/min的速度将上述多元金属盐溶液加入到 含有聚乙二醇 6000的 NaOH、 NH3混合碱性溶液或草酸盐溶液中,所述混合碱性 溶液的 Ph值〉 8, 其中 NaOH的摩尔浓度为 0. 02-0. 9mol/L, 氨的摩尔浓度为 0. 01-0. 9mol/L, 碱性溶液的用量为按化学反应式计算的理论量的 1. 04-1. 07 倍; 所述草酸盐溶液为摩尔浓度为 0. 8-1. 2mol/L的草酸铵或草酸钠溶液, 草 酸盐的用量为按化学反应式计算的理论量的 1. 05-1. 1倍;
加料完毕继续搅拌 l_2h, 陈化(即静置) l-4h, 过滤, 得固形物, 用去离 子水洗涤固形物, 洗水用量为中间体重量的 7-13倍, 使洗涤后的固形物中 Na 元素的质量百分含量 <0. 01%, 洗涤后的固形物在 105-12CTC干燥 3-5h, 得镍 钴锰多元中间体。 ( 2 ) 按摩尔比为 Li : (Ni+Co+Mn) =1. 05-1. 1: 1 的比例, 将镍钴锰多元 中间体与锂盐混合均匀,将混合物研磨 2-8h,在 500-52CTC的温度下预处理 2h, 向预处理后的物料中加入聚乙烯醇, 混合均匀, 将混合物压制成块状物料, 其 中聚乙烯醇的用量为镍钴锰质量总量的 0. 98-2%
( 3 )将上述块状物料置于焙烧炉中, 于 800-93CTC的温度下焙烧 16-22h, 出炉, 冷却至 45-55 °C, 粉碎, 过 400目筛;
( 4)将上述 400目筛下物装入陶瓷盘中, 置于焙烧炉中, 于 700-80CTC的 温度下焙烧 5-8h, 取出, 冷却至 45-55 °C, 粉碎、 过 400目筛, 所得筛下物即 为非团聚单晶粒的多元正极材料。
上述非团聚单晶粒的多元正极材料的外形可为正方形、 长方形、 菱形或不 规则多边形等形状。
制备镍钴锰多元中间体歩骤中聚乙二醇 6000的用量为镍钴锰金属质量总 量的 0. 4-1. 5
与现有技术相比, 本发明的有益效果: 本发明镍钴锰多元掺杂锂离子电池 正极材料的制备方法与现有的方法相比, 具有操作控制较为容易等优点。在工 艺中加入聚乙二醇 6000可以起到好的分散效果, 加入聚乙烯醇有利于物料的 压制成型。 本发明制备的镍钴锰多元掺杂锂离子电池正极材料, 其外型为粒经 为 0. 5〜30 μ ιη 的非团聚单晶粒, 该正极材料具有较高的压实密度
3. 4g/cm3),在压制电池极片的过程中可避免产生细小微粒而出现微粒脱落。本 发明打破了长期禁锢在人们思想上的固定格式, 克服了上述晶体结构上的约 束, 研发制备出了一种比复晶颗粒更稳定, 外型为非团聚单晶粒的镍钴锰多元 掺杂锂离子电池正极材料, 该材料具有较高的压实密度( 3. 4g/cm3)、较低吸 湿性, 其首次放电容量达 145〜152mAh/g, 且具有优良的循环性能和更高的安 全性能。
附图说明
附图 1为本发明方法的工艺流程图。
附图 2为现有镍钴锰三元材料的扫描电镜形貌象。
附图 3为本发明镍钴锰多元掺杂锂离子电池正极材料的扫描电镜形貌象。 具体实施方式 实施例 1
将 182.4g硫酸镍(Ni元素的重量百分含量为 21.2%)、 210.0g硫酸钴 (Co jm &Wjt m} 20.56%), II2.4g硫酸锰( 7¾¾的»:百 «32.2%)溶 于 2.2L纯水中, 搅拌溶解、 过滤, 然后向上述滤液中加入硝酸铕(含 Eu元素 0.03g)、 硝酸镝 (含 Dy元素 0.06g)、 钽酸钾 (含 Ta元素 0.07g), 搅拌溶解, 配制成总金属摩尔浓度为 0.82mol/L的多元金属盐溶液 (2.5L), 该溶液中镍 钴锰的摩尔比为 Ni: Co: Mn=0.9: 1: 0.9, 镝、 铕、 钽的含量为镍钴锰元素 质量总量的 0.136%。
将上述多元金属盐溶液升温至约 70。C, 以 5〜: LOmL/min的速率将 1.2L多 元金属盐溶液加入到温度约 45°C、 含有 1.7g聚乙二醇 6000 (聚乙二醇 6000 的用量为镍钴锰金属质量总量的 1.44%) 的 2升碱性溶液 (该碱性溶液中 NH3 含量为 0.73mol/L,Na0H含量为 0.73mol/L)中,再向反应器中加入 NaOH 58.4g, 在搅拌条件下加入剩余的多元金属盐溶液, 加料完毕继续搅拌 1小时, 然后静 置 4小时, 过滤, 得固形物, 以 2升纯水洗涤该固形物, 使固形物中钠元素的 质量百分含量 <0.01%, 然后将洗涤后的固形物置于烘箱于 115°C下干燥 5h, 得镍钴锰多元中间体 189.9g。
将所得全部镍钴锰多元中间体与 89.6g Li0H * H20混合、 研磨 2h, 于 520 °C温度下预处理 2h, 将上述混合物料与 2.3g聚乙烯醇混合均匀、 压制成块状 物 (聚乙烯醇的用量为镍钴锰质量总量的 1.95%)。
将该块状物置于焙烧炉中, 于 82CTC下焙烧 16h,然后升温至 93CTC继续焙 烧 6小时, 出炉、 冷却至 50°C左右、 粉碎、 过 400目筛。将筛下物置于陶瓷盘 中, 置于焙烧炉, 于 800下焙烧 5h, 出炉、 冷却至 50°C、 粉碎、 过 400目筛、 筛下物包装即得外形为非团聚单晶粒层状结构的镍钴锰多元掺杂锂离子电池 正极材料 192g。
该外形为非团聚单晶粒、 层状结构的多元正极材料其粒径为 0.5— 15 μιη, 压实密度为 3.4g/cm3。 将该多元正极材料经拌胶、 烘干、 压制、 成型、 称重、 装配、 封口, 制成电池, 该电池正极塗膜配方: 粘胶剂 PVDF 3.5%, 多元正极 材料 93.6%, 导电碳黑 2.9%; 负极塗膜配方: PVDF 6.5%, 人工石墨, 93.5%, 正负极极片面积 7cm2。用武汉力兴测试设备有限公司生产的 PCBT-138-4D电池 程控测试仪对该电池进行测试,该电池首次放电容量为 149. lmAh/g,循环充放 电 100次电容量衰减仅 2. 5 %。按相同比例将现有复晶颗粒正极材料制成电池, 在相同条件下对其进行测试, 其首次放电容量为 142 mAh/g o
实施例 2
将含 Ni元素 40. 8g的硝酸镍、含 Co元素 40. 9g的硝酸钴、含 Mn元素 38. 2g 的硝酸锰溶于 1. 7L纯水中, 配制成体积为 2. 09L的溶液, 然后向上述溶液中 加入含 0. 02g钕的硝酸钕、含 0. 06g铕的硝酸铕、含 0. 12g镝的硝酸镝、含 0. lg 钽的钽酸钾, 搅拌溶解, 配制成总金属摩尔浓度为 l. Omol/L的多元金属盐溶 液(2. 1升), 该溶液中镍钴锰的摩尔比为 Ni : Co: Mn=l : 1: 1, 钕、 镝、 钽、 铕的含量为镍钴锰元素质量总量的 0. 25%。
将上述溶液升温至约 60°C,以 6〜9mL/min的速率将 1L多元金属盐溶液加 入到含有 1. lg聚乙二醇 6000的 2升碱性溶液中 (聚乙二醇 6000的用量为镍 钴锰金属质量总量的 0. 92% ) , 该碱性溶液 (温度为 45 °C左右) NH3含量为 0. 73mol/L、 NaOH含量为 0. 73 mol/L, 搅拌反应 2. 5小时, 再向反应器中加入 NaOH 58. 6g, 在搅拌条件下继续加入剩余的多元金属盐溶液, 进行反应。 加料 毕, 继续搅拌 2小时, 然后静置 2小时左右, 过滤, 得固形物, 以 1. 8升纯水 洗涤中间物料, 然后将其置于烘箱于 105-115°C干燥 4h, 得镍钴锰多元中间体 191. 5g0
将所得多元中间体与 92. lgLi0H * H20混合, 充分研磨, 于 500°C预处理 2 小时, 再将上述预处理物料与 1. 8g聚乙烯醇 (聚乙烯醇的用量为镍钴锰质量 总用的 1. 5%)混合均匀、 压制成块状物, 然后将该块料置于焙烧炉中, 于 800 °C下焙烧 15h, 再升温至 900°C焙烧 7h, 出炉、 冷却至 45 °C、 粉碎、 过 400目 筛。 将筛下物置于陶瓷盘中, 加入焙烧炉于 70CTC下焙烧 7小时, 出炉, 冷却 至 45°C左右, 粉碎, 筛分, 包装即得颗粒为非团聚单晶粒、层状结构的多元正 极材料 (195. lg)。
该外形为非团聚单晶粒、 层状结构的多元正极材料其粒度为 0. 7- 12 u m, 压实密度为 3. 45g/cm3, 首次放电容量为 150. 3mAh/g, 循环充放电 100次其电 容量衰减仅 1. 5 %。
实施例 3 将 207.5g硫酸镍(Ni元素的重量百分含量为 21.2%)、 179.0g硫酸钴 (Co ^的重量百分含量为 20.56%)、 127.6g硫酸锰(Mn元素的重量百分 32.2%)溶于 1.3 升纯水中,搅拌溶解、过滤,然后向上述滤液中加入硝酸镧(含 La元素 0. llg)、 硝酸镝 (含 Dy元素 0.08g)、 钼酸钠 (含 Mo元素 0.07g)、 钽酸钾 (含 Ta元素 0.08g), 搅拌溶解, 配制成总金属摩尔浓度为 1.25mol/L 的多元金属盐溶液 1.7L, 该溶液中镍钴锰的摩尔比为 Ni: Co: Mn=l.2: 1: 1.2, 镧、 镝、 钼、 钽的含量为镍钴锰元素质量总量的 0.28%。
将上述溶液升温至 40°C,以 25— 30mL/min左右的速率将其加入到 2L草酸 钠溶液中, 该草酸钠溶液 (温度为 50°C左右) 的摩尔浓度为 1. lmol/L, 加有 0.5g聚乙二醇 6000 (聚乙二醇 6000的用量为镍钴锰质量总量的 0.41%, 草酸 钠的用量为理论量的 105%), 加料毕, 继续搅拌 1小时, 静置 lh, 过滤, 得固 形物, 以 1.5升纯水洗涤该固形物, 于 12CTC干燥 3h, 得镍钴锰多元中间体 310.6g0
将所得镍钴锰多元中间体与 93.9gLi0H *H20混合, 研磨, 并于 52CTC左右 预烧 2小时。 然后将上述物料与 1.2g聚乙烯醇 (聚乙烯醇的用量为镍钴锰质 量总用的 0.98%) 混合均匀、 压制成块状物。 将该块物置于焙烧炉中, 于 800 °C下焙烧 10h, 再升温至 900°C焙烧 6h, 出炉、 粉碎、 过 400目筛。 将筛下物 置于陶瓷盘中, 于 700°C下焙烧 8h, 出炉、 冷却至 55°C左右、 粉碎、 过 400 目筛、 筛下物包装即得外形为非团聚单晶粒、 层状结构的多元正极材料 (199.5g)0 本例中 Ni、 Co、 Mn的直接回收率分别为 97.5%。
该外形为非团聚单晶粒层状结构的多元正极材料其粒径为 0.8〜16μιη,压 实密度为 3.4g/cm3, 首次放电容量为 149.9mAh/g (4.2V)、 176mAh/g (4.5V), 循环充放电 100次其电容量衰减仅 2.1%。

Claims

权 利 要 求 书
1、 一种镍钴锰多元掺杂锂离子电池正极材料, 其特征在于: 该电池正极 材料的颗粒为非团聚单晶粒, 粒径为 0. 5-30 μ ιη, 其化学式为 LiNixCoy MnzM(1-x-y-z)02,式中 M为钼、铬、锗、铟、锶、钽、镁或稀土元素中的一种或几种, x、 y、 z的取值范围为: 0. 3〈x〈0. 4, 0. 29<y<0. 35, 0. 3<z<0. 4, M的含量为镍 钴锰质量总量的 0. 13-0. 3%。
2、 一种镍钴锰多元掺杂锂离子电池正极材料的制备方法, 其特征在于包 括以下歩骤:
( 1 ) 制备镍钴锰多元中间体:
将镍、 钴、 锰的硫酸盐或硝酸盐配制成水溶液, 向该溶液中加入钼、 铬、 锗、 铟、 锶、 钽、 镁或稀土元素的盐中的任意一种或几种, 搅拌溶解, 配制成 总金属摩尔浓度为 0. 8-1. 3mol/L的多元金属盐溶液, 该多元金属盐溶液中镍 钴锰元素的摩尔比为 Ni: Co: Mn= (0. 9-1. 2) : 1: (0. 9-1. 2 ), 钼、 铬、 锗、 铟、 锶、 钽、 镁或稀土元素的含量为镍钴锰质量总量的 0. 13-0. 3%;
在 40-7CTC的温度下以 5-30mL/min的速度将上述多元金属盐溶液加入到 含有聚乙二醇 6000的 NaOH、 NH3混合碱性溶液或草酸盐溶液中进行反应; 加料 完毕继续搅拌 l_2h, 静置 l-4h, 过滤, 得固形物, 用去离子水洗涤洗涤固形 物, 使洗涤后的固形物中钠元素的质量百分含量<0. 01%, 洗涤后的固形物在 105-120°C干燥 3〜5h, 得镍钴锰多元中间体;
(2) 按摩尔比为 Li: (Ni+Co+Mn) =1. 05-1. 1: 1 的比例, 将镍钴锰多元 中间体与锂盐混合均匀, 研磨 2-8h, 于 500-520°C的温度下预处理 2h, 向预处 理后的物料中加入聚乙烯醇,混合均匀, 将混合物压制成块状物料, 所加聚乙 烯醇的质量为镍钴锰质量总量的 0. 98-2%;
(3)将上述块状物料置于焙烧炉中, 于 800-93CTC的温度下焙烧 16-22h, 出炉, 冷却至 45〜55°C, 粉碎, 过 400目筛;
(4)将上述 400目筛下物装入陶瓷盘中, 置于焙烧炉中, 于 700-80CTC的 温度下焙烧 5-8h, 取出, 冷却至 45〜55°C, 粉碎, 过 400 目筛, 筛下物即为 非团聚单晶粒的多元正极材料。
3、 根据权利要求 2所述的镍钴锰多元掺杂锂离子电池正极材料的制备方 法, 其特征在于: 制备镍钴锰多元中间体歩骤中聚乙二醇 6000的用量为镍钴 锰元素总质量的 0. 4-1. 5%。
4、 根据权利要求 2所述的镍钴锰多元掺杂锂离子电池正极材料的制备方 法, 其特征在于: 所述 NaOH、 NH3混合碱性溶液中氢氧化钠的摩尔浓度为
0. 02-0. 9mol/L, 氨的摩尔浓度为 0. 01-0. 9mol/L。
5、 根据权利要求 2或 4所述的镍钴锰多元掺杂锂离子电池正极材料的制 备方法, 其特征在于: 所述混合碱性溶液的用量为按化学反应式计算的理论量 的 1. 04- 1. 07倍。
6、 根据权利要求 2所述的镍钴锰多元掺杂锂离子电池正极材料的制备方 法, 其特征在于: 所述草酸盐溶液为摩尔浓度为 0. 8-1. 2mol/L的草酸铵或草 酸钠溶液。
7、 根据权利要求 2或 6所述的镍钴锰多元掺杂锂离子电池正极材料的制 备方法, 其特征在于: 所述草酸盐的用量为按化学反应式计算的理论量的
1. 05-1. 1倍。
PCT/CN2009/074301 2008-10-17 2009-09-29 一种镍钴锰多元掺杂锂离子电池正极材料及其制备方法 WO2010043154A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/124,664 US8709301B2 (en) 2008-10-17 2009-09-29 Ni-, Co-, and Mn- multi-element doped positive electrode material for lithium battery and its preparation method
JP2011531336A JP5702289B2 (ja) 2008-10-17 2009-09-29 ニッケル・コバルト・マンガン系多元素ドーピングしたリチウムイオン電池用正極材料の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810046300.8 2008-10-17
CN2008100463008A CN101626080B (zh) 2008-10-17 2008-10-17 一种镍钴锰多元掺杂锂离子电池正极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2010043154A1 true WO2010043154A1 (zh) 2010-04-22

Family

ID=41521823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074301 WO2010043154A1 (zh) 2008-10-17 2009-09-29 一种镍钴锰多元掺杂锂离子电池正极材料及其制备方法

Country Status (5)

Country Link
US (1) US8709301B2 (zh)
JP (1) JP5702289B2 (zh)
KR (1) KR101604509B1 (zh)
CN (1) CN101626080B (zh)
WO (1) WO2010043154A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013012336A (ja) * 2011-06-28 2013-01-17 Toyota Industries Corp 二次電池およびその充電方法
CN112680791A (zh) * 2020-12-09 2021-04-20 北京理工大学重庆创新中心 单晶型iv-vi-viii族富锂无序岩盐结构正极材料及其制备方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621125B (zh) * 2009-02-13 2011-03-30 成都晶元新材料技术有限公司 一种镍钴锰多元掺杂锂离子电池正极材料及其制备方法
CN101707252B (zh) * 2009-11-09 2012-01-25 深圳市振华新材料股份有限公司 多晶钴镍锰三元正极材料及其制备方法、二次锂离子电池
CN101908621B (zh) * 2010-07-14 2013-03-27 白洁明 一种锂离子电池正极活性材料的改性方法
CN102332585A (zh) * 2011-10-20 2012-01-25 中国科学院过程工程研究所 一种掺杂金属元素的锂镍钴锰氧/氧化锡复合正极材料及其制备方法
CN102842709B (zh) * 2012-09-12 2015-10-28 成都晶元新材料技术有限公司 一种高性能的多元正极锂电材料及其制备方法
CN103545505B (zh) 2013-10-22 2017-02-08 江苏华东锂电技术研究院有限公司 锂离子电池正极活性材料及其制备方法
CN103647070B (zh) * 2013-12-07 2018-06-19 江西省钨与稀土产品质量监督检验中心(江西省钨与稀土研究院) 一种稀土钐改性三元正极材料的制备方法
CN104134791B (zh) * 2014-07-10 2017-01-25 宁波金和锂电材料有限公司 一种高电压单晶镍钴锰酸锂正极材料及其制备方法
CN116169284A (zh) * 2016-01-04 2023-05-26 上海钜领科技有限公司 制备锂离子电池阴极材料的方法
CN105514418A (zh) * 2016-03-03 2016-04-20 浙江新时代海创锂电科技有限公司 一种正极材料及其制备方法以及一种锂离子电池
CN106784787A (zh) * 2016-12-02 2017-05-31 河北绿草地新能源股份有限公司 稀土掺杂镍钴锰三元材料宽温锂离子电池及其生产方法
CN106784686A (zh) * 2016-12-21 2017-05-31 烟台卓能电池材料股份有限公司 一种掺杂型锂离子电池类单晶多元材料及其制备方法
TWI645607B (zh) 2016-12-30 2018-12-21 財團法人工業技術研究院 鋰電池高電壓正極材料及其製備方法
CN109428060A (zh) * 2017-08-28 2019-03-05 中国科学院宁波材料技术与工程研究所 一种包覆型多层前驱体的制备方法及应用
CN107634195B (zh) * 2017-08-31 2020-12-04 福建师范大学 掺一价阳离子的镍钴锰三元材料的制备方法
WO2019112279A2 (ko) 2017-12-04 2019-06-13 삼성에스디아이 주식회사 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
KR102424398B1 (ko) 2020-09-24 2022-07-21 삼성에스디아이 주식회사 리튬 이차 전지용 양극, 그 제조 방법, 및 이를 포함한 리튬 이차 전지
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11670754B2 (en) 2017-12-04 2023-06-06 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11522189B2 (en) 2017-12-04 2022-12-06 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
US11949096B2 (en) 2018-03-02 2024-04-02 Umicore Positive electrode material for rechargeable lithium ion batteries
CN108832121B (zh) * 2018-06-04 2020-12-04 安徽潜川动力锂电科技有限公司 一种高镍正极材料及其制备方法
KR102288292B1 (ko) * 2018-06-07 2021-08-10 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
CN108878828B (zh) * 2018-06-26 2021-01-15 天能帅福得能源股份有限公司 一种碳包覆的高镍三元正极材料及其制备方法
CN110660961B (zh) * 2018-06-28 2021-09-21 宁德时代新能源科技股份有限公司 正极片及锂离子电池
KR102436308B1 (ko) 2018-10-18 2022-08-24 에스케이온 주식회사 리튬 이차 전지
KR20200065856A (ko) * 2018-11-30 2020-06-09 주식회사 엘지화학 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
CN109817901B (zh) * 2018-12-25 2022-05-17 河南科隆新能源股份有限公司 一种镍钴铝掺杂的球形前驱体的制备方法
CN109888250A (zh) * 2019-03-29 2019-06-14 荆门市格林美新材料有限公司 一种常温碳包覆单晶镍钴锰三元正极材料及制备方法
EP4160736A4 (en) 2020-05-26 2023-07-26 Nissan Motor Co., Ltd. SECONDARY BATTERY POSITIVE ELECTRODE
CN113046819B (zh) * 2021-03-09 2024-02-06 高点(深圳)科技有限公司 一种单晶锰酸锂的制备方法、单晶锰酸锂及其应用
CN113540434B (zh) * 2021-07-12 2022-09-13 浙江帕瓦新能源股份有限公司 一种硼酸锂修饰的双掺杂正极材料及其制备方法
CN114464789B (zh) * 2022-01-19 2023-03-10 华中科技大学 一种储能二次电池层状正极材料及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199127A (ja) * 1996-01-19 1997-07-31 Matsushita Electric Ind Co Ltd 非水電解液電池
JP2004196579A (ja) * 2002-12-18 2004-07-15 National Institute Of Advanced Industrial & Technology 多元系遷移金属複合酸化物の単結晶及びその製造方法
CN1514502A (zh) * 2003-07-15 2004-07-21 新乡无氧铜材总厂 一种高容量锂离子电池锂钴锰镍氧化物正极材料的制备方法
JP2005025975A (ja) * 2003-06-30 2005-01-27 Mitsubishi Chemicals Corp リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物及びそれを用いたリチウム二次電池用正極、並びにリチウム二次電池
CN1787258A (zh) * 2004-12-07 2006-06-14 深圳市比克电池有限公司 含锰钴镍的锂复合氧化物及其制备方法以及在锂离子二次电池中的应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330118A (ja) * 1997-05-29 1998-12-15 Showa Denko Kk 急冷法によるリチウム−マンガン酸化物の製造方法
JP4109847B2 (ja) 2001-08-24 2008-07-02 Agcセイミケミカル株式会社 リチウム含有遷移金属複合酸化物およびその製造方法
DE10244486A1 (de) * 2002-09-24 2004-04-01 Gkn Sinter Metals Gmbh Mischung zur Herstellung von gesinterten Formteilen
JP4539816B2 (ja) 2004-02-20 2010-09-08 日本電気株式会社 リチウム二次電池用正極及びリチウム二次電池
CN1763996A (zh) * 2004-10-20 2006-04-26 中国科学院成都有机化学有限公司 一种锂离子蓄电池正极材料Liy (NiCoMn) 1/3-xM3xO2及其制造方法
JP2007063033A (ja) 2005-08-29 2007-03-15 Tosoh Corp リチウム−ニッケル−マンガン−コバルト複合酸化物、及びその製造法、並びに用途
JP2008140747A (ja) 2006-12-05 2008-06-19 Sony Corp 非水電解質二次電池用正極活物質およびその製造方法、ならびに非水電解質二次電池
CN101510603A (zh) * 2009-03-20 2009-08-19 吉林吉恩镍业股份有限公司 一种锂离子电池正极材料镍钴锰酸锂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199127A (ja) * 1996-01-19 1997-07-31 Matsushita Electric Ind Co Ltd 非水電解液電池
JP2004196579A (ja) * 2002-12-18 2004-07-15 National Institute Of Advanced Industrial & Technology 多元系遷移金属複合酸化物の単結晶及びその製造方法
JP2005025975A (ja) * 2003-06-30 2005-01-27 Mitsubishi Chemicals Corp リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物及びそれを用いたリチウム二次電池用正極、並びにリチウム二次電池
CN1514502A (zh) * 2003-07-15 2004-07-21 新乡无氧铜材总厂 一种高容量锂离子电池锂钴锰镍氧化物正极材料的制备方法
CN1787258A (zh) * 2004-12-07 2006-06-14 深圳市比克电池有限公司 含锰钴镍的锂复合氧化物及其制备方法以及在锂离子二次电池中的应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013012336A (ja) * 2011-06-28 2013-01-17 Toyota Industries Corp 二次電池およびその充電方法
CN112680791A (zh) * 2020-12-09 2021-04-20 北京理工大学重庆创新中心 单晶型iv-vi-viii族富锂无序岩盐结构正极材料及其制备方法

Also Published As

Publication number Publication date
CN101626080B (zh) 2011-02-09
JP5702289B2 (ja) 2015-04-15
KR101604509B1 (ko) 2016-03-25
US20110226986A1 (en) 2011-09-22
JP2012506110A (ja) 2012-03-08
US8709301B2 (en) 2014-04-29
KR20110086817A (ko) 2011-08-01
CN101626080A (zh) 2010-01-13

Similar Documents

Publication Publication Date Title
WO2010043154A1 (zh) 一种镍钴锰多元掺杂锂离子电池正极材料及其制备方法
WO2010091611A1 (zh) 一种镍钴锰多元掺杂锂离子电池正极材料及其制备方法
CN102983326B (zh) 一种球形锂镍钴复合氧化物正极材料的制备方法
JP2012517675A5 (zh)
CN102891309B (zh) 一种浓度渐变的球形富锂正极材料的制备方法
CN101941685B (zh) 一种球形磷酸铁锂材料制备和采用该材料的锂离子电池
CN107004851A (zh) 锂离子电池用梯度结构的多元材料、其制备方法、锂离子电池正极以及锂离子电池
CN107978751A (zh) 一种高电化学活性三元正极材料及其制备方法
CN104300145A (zh) 一种高振实改性镍钴锰酸锂正极材料的制备方法
CN110391417B (zh) 一种类单晶富锂锰基正极材料的制备方法
CN107528064A (zh) 一种高电压型类单晶三元正极材料及其制备方法
WO2023137859A1 (zh) 一种钠离子电池正极活性物质及其制备方法、应用
WO2014190662A1 (zh) 一种双掺杂富锂固溶体正极复合材料及其制备方法、锂离子电池正极片和锂离子电池
WO2022089205A1 (zh) 一种掺杂型高镍三元材料及其制备方法
CN105280898A (zh) 钒掺杂锂镍钴锰氧化物纳米材料及其制备方法和应用
CN110504447A (zh) 一种氟掺杂的镍钴锰前驱体及其制备方法与应用
CN103855372B (zh) 一种高锰复合正极材料及其制备方法
CN103178252A (zh) 一种锂离子电池正极材料及其制备方法
CN104868110A (zh) 石墨烯导向的介孔Co2V2O7纳米片材料及其制备方法和应用
CN106684350B (zh) 一种高电压正极材料镍锰酸锂的制备方法
CN114804235A (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
CN108470893A (zh) 一种形状记忆合金框架基高镍三元锂电池材料及制备方法
TWI392134B (zh) Nickel - cobalt - manganese multicomponent lithium - ion battery cathode material and its preparation method
CN111682200B (zh) 用于锂离子电池的正极材料及其制备方法
WO2023207248A1 (zh) 核壳结构nca正极材料前驱体及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011531336

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117010947

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3373/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13124664

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09820230

Country of ref document: EP

Kind code of ref document: A1