WO2010035748A1 - 1,3,3,3-テトラフルオロプロペンの製造方法 - Google Patents

1,3,3,3-テトラフルオロプロペンの製造方法 Download PDF

Info

Publication number
WO2010035748A1
WO2010035748A1 PCT/JP2009/066528 JP2009066528W WO2010035748A1 WO 2010035748 A1 WO2010035748 A1 WO 2010035748A1 JP 2009066528 W JP2009066528 W JP 2009066528W WO 2010035748 A1 WO2010035748 A1 WO 2010035748A1
Authority
WO
WIPO (PCT)
Prior art keywords
tetrafluoropropene
reaction
hydrogen fluoride
chloro
trifluoropropene
Prior art date
Application number
PCT/JP2009/066528
Other languages
English (en)
French (fr)
Inventor
冬彦 佐久
吉川 悟
覚 岡本
日比野 泰雄
祥雄 西口
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008255666A external-priority patent/JP2010083818A/ja
Priority claimed from JP2009217660A external-priority patent/JP5515555B2/ja
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CN200980137581.0A priority Critical patent/CN102164881B/zh
Priority to EP09816163.1A priority patent/EP2341040B1/en
Priority to US13/119,658 priority patent/US9051231B2/en
Priority to MX2011003147A priority patent/MX2011003147A/es
Publication of WO2010035748A1 publication Critical patent/WO2010035748A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives

Definitions

  • the present invention relates to a method for producing 1,3,3,3-tetrafluoropropene useful as medical and agricultural chemicals, intermediate raw materials for functional materials, propellant, protective gas for producing magnesium, a foaming agent or a refrigerant, and a dehydration method thereof. .
  • Patent Document 1 1,3,3,3-pentafluoropropane is dehydrofluorinated with a chromium / activated carbon catalyst.
  • Patent Document 2 1,1,1 is obtained by contact with a chromium-based catalyst.
  • a method for obtaining 1,3,3,3-tetrafluoropropene from 3,3-pentafluoropropane is disclosed.
  • Patent Document 3 discloses activated carbon or 1,1,1,3,3,3-hexafluoropropane in a gas state.
  • a method for producing a corresponding propene by contacting with a chromium oxide catalyst and a method for thermally decomposing fluoroethane by contacting with activated carbon are disclosed in Patent Document 4.
  • Patent Document 5 discloses a method for producing 1,1,1,3,3-pentafluoropropane.
  • 1,1,1,3,3-pentachloropropane is reacted with hydrogen fluoride in the gas phase to produce 1,1,1-trifluoro-3-chloro-2-propene (1-chloro-3 , 3,3-trifluoropropene) is disclosed.
  • Patent Document 6 as the first step in the process for producing 1,1,1,3,3-pentafluoropropane, 1,1,1,3,3-pentachloropropane is reacted with hydrogen fluoride without catalyst.
  • a method for obtaining 1,1,1-trifluoro-3-chloro-2-propene (1-chloro-3,3,3-trifluoropropene) is disclosed.
  • Patent Document 7 as a method for producing 1-chloro-3,3,3-trifluoropropene, 1,1,1,3,3-pentachloropropane is mixed in a reaction vessel with a Lewis acid catalyst or a mixture of Lewis acid catalysts. Reacting in the liquid phase in the presence at a temperature below 150 ° C., continuously removing hydrogen chloride and 1-chloro-3,3,3-trifluoropropene formed in the reaction vessel, and 1-chloro A method for isolating -3,3,3-trifluoropropene is disclosed.
  • Patent Document 8 reports a method of fluorinating 1,1-dichloro-3,3,3-trifluoropropene with hydrogen fluoride in the presence of a fluorination catalyst as a fluorination of a halogenated olefin. Has been.
  • Patent Document 9 discloses a method of obtaining 1,3,3,3-tetrafluoropropene by reacting 1-chloro-3,3,3-trifluoropropene with hydrogen fluoride.
  • the product taken out from the reaction process for producing 1,3,3,3-tetraflupropene contains an acidic component, and thus a process of washing with water and / or a basic aqueous solution is required. .
  • Patent Document 10 In dehydration of 1,1,1,3,3-pentafluoropropane, which is a fluorinated hydrocarbon, a method of contacting with a specific zeolite is disclosed (Patent Document 10).
  • olefins having a trifluoromethyl group may be desorbed in the vinyl position in the presence of a base.
  • 1,3,3,3-tetrafluoropropene is not stable when a basic compound such as an amine coexists.
  • Zeolite is known to be used as a catalyst for olefin hydration reaction, and it is disclosed that alcohol is produced by the reaction of olefin and water (Patent Document 11).
  • Non-Patent Document 1 and Non-Patent Document 2 The method of dehalogenating with potassium hydroxide as described above in Non-Patent Document 1 and Non-Patent Document 2 is a method excellent in reaction rate and selectivity, but must use a solvent, potassium hydroxide However, there are many points that are difficult to apply industrially due to the necessity of more than the stoichiometric amount and the large amount of potassium salt generated as a result of the reaction.
  • Patent Document 3 is a method in which 1,1,1,3,3,3-hexafluoropropane is converted into a gas state using activated carbon or a chromium oxide catalyst, but the selectivity is almost quantitative. The conversion was about 4% to 50%.
  • Patent Document 4 thermal decomposition is performed at a considerably high temperature of about 750 to 900 ° C., but the conversion rate is about 40% even in this method.
  • the reaction conditions must be made more severe in order to improve the conversion rate, and since the reaction is performed at a high temperature, the product is tarned, carbonized, It is expected that the industrial production such as the durability of the reactor will be considerably difficult.
  • a fluorination reaction of a substrate having a trifluoromethyl group (CF 3 group) in the skeleton of a halogenated olefin has been conventionally known.
  • the fluorination reactivity also differs greatly compared to substrates without fluorine atoms.
  • the target product is obtained, but at the same time, a higher-order fluorination product obtained by further progressing fluorination, that is, 1,1,1,3,3-pentafluoropropane (HFC- 245fa) was produced as a by-product, and the selectivity sometimes decreased (see below).
  • Patent Document 5 has a safety problem in that it is necessary to use hydrogen fluoride which is dangerous to handle, low selectivity, hydrogen chloride to be produced, 1,1,1,3,3-
  • a safety problem in that it is necessary to use hydrogen fluoride which is dangerous to handle, low selectivity, hydrogen chloride to be produced, 1,1,1,3,3-
  • there are points to be improved such as separation and purification of pentafluoropropane, unreacted 1-chloro-3,3,3-trifluoropropene, and hydrogen fluoride are difficult. Is not necessarily preferred.
  • gas phase fluorination catalysts for fluorinated or chlorinated fluorinated hydrocarbons aluminum or chromium oxyfluoride prepared by fluorinating alumina and chromia, and supported catalysts supporting various metals are known.
  • hydrogen fluoride is added to 1,1,2,2-tetrachloroethane using a catalyst in which antimony pentachloride is adsorbed on activated carbon.
  • chlorine at 200 ° C. to obtain 1,1,2-trichloro-1,2,2-trifluoroethane in a yield of 65%.
  • EP712826 discloses that a catalyst in which antimony pentachloride is supported on activated carbon can fluorinate 1-chloro-1,1-difluoroethane with hydrogen fluoride to 1,1,1-trifluoroethane. Is disclosed. These can be said to provide antimony pentachloride-supported activated carbon as one of the effective catalysts for fluorination of chlorinated ethanes.
  • Fluoroolefin is a fluorine-containing hydrocarbon and a compound having a double bond, and has higher reactivity than a saturated hydrofluorocarbon.
  • 1,3,3,3-tetrafluoropropene is a highly reactive compound having a trifluoromethyl group having a strong electron-withdrawing property.
  • the cis isomer proceeds in the presence of a base.
  • zeolite is known to exhibit basicity in the presence of water, and is well known to be accompanied by intense heat generation in the early stage of water adsorption. Therefore, it can be easily inferred that some reaction can proceed when zeolite is allowed to act on 1,3,3,3-tetrafluoropropene.
  • zeolite is also known to be useful as a catalyst for olefin hydration reaction, and an effective method for dehydrating 1,3,3,3-tetrafluoropropene is not known.
  • the present inventors have made 1,1,1,3,3-pentachloropropane as a raw material and passed through the following two steps to obtain the conversion rate and the purpose. Has been found to increase the selectivity of 1,3,3,3-tetrafluoropropene to be produced and, as a result, to significantly reduce the content of unsaturated compounds that are raw materials or intermediate products that are difficult to distill from the target product.
  • the present invention has been achieved.
  • a method for producing 1,3,3,3-tetrafluoropropene including the following invention 1 to invention 10. This solves the first problem.
  • 1-chloro-3,3,3-trifluoropropene obtained in the first step includes a second step of reacting hydrogen fluoride in the presence of a fluorination catalyst in the gas phase,
  • a method for producing 3-tetrafluoropropene is
  • Step A Excess hydrogen fluoride (HF) and 1-chloro-3,3,3-trifluoropropene from the reaction mixture containing 1,3,3,3-tetrafluoropropene obtained in Step 2 Removing 1,1,1,3,3-pentafluoropropane.
  • Step B Step of removing remaining hydrogen fluoride (HF) after Step A.
  • Step C A step of removing hydrogen chloride (HCl) from 1,3,3,3-tetrafluoropropene obtained in Step B.
  • the fluorination catalyst is activated carbon, or chromium, titanium, aluminum Supports oxide, fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride, oxyfluoride of one or more metals selected from manganese, nickel, cobalt, and zirconium Process according to invention 1, characterized in that it is activated carbon, alumina, fluorinated alumina, aluminum fluoride, zirconia or fluorinated zirconia.
  • invention 9 A process for producing trans-1,3,3,3-tetrafluoropropene comprising purifying 1,3,3,3-tetrafluoropropene obtained by any one of the inventions 1 to 8 .
  • Invention 10 1-Chloro-3,3,3-triol contained in 1,3,3,3-tetrafluoropropene isolated from trans-1,3,3,3-tetrafluoropropene obtained in Invention 9
  • Invention 1 characterized in that it is carried out by reusing fluoropropene, cis-1,3,3,3-tetrafluoropropene, 1,1,1,3,3-pentafluoropropane as a raw material for the second step. The method as described in any one of thru
  • 1,1,1,3,3-pentachloropropane is reacted with hydrogen fluoride to produce 1-chloro-3,3,3-trifluoropropene.
  • Patent Documents 5-7 there are many methods, but 1,1,1,3,3-pentachloropropane is reacted with hydrogen fluoride to give 1-chloro- 3,3,3-trifluoropropene is obtained and subsequently reacted with hydrogen fluoride in the gas phase in the presence of a fluorination catalyst using the propene to give 1,3,3,3-tetrafluoropropene.
  • the example which manufactures efficiently on an industrial scale was not known until now.
  • 1-chloro-3,3,3-trifluoropropene is obtained by reacting in the absence of a fluorination catalyst (also referred to herein as “non-catalyst”).
  • a fluorination catalyst also referred to herein as “non-catalyst”. The knowledge obtained with a high yield was also obtained.
  • the production method of the present invention can produce the target compound in a higher yield than the conventional technique under the easy reaction conditions that can be industrially implemented.
  • the target 1,3,3,3-tetrafluoropropene can be produced with high productivity and no environmental burden.
  • a method for dehydrating 1,3,3,3-tetrafluoropropene comprising contacting 1,3,3,3-tetrafluoropropene containing at least water with zeolite.
  • the first feature and the second feature may be combined. That is, the 1,3,3,3-tetraflupropene produced according to the first feature of the present invention may be dehydrated according to the second feature of the present invention.
  • 1,1,1,3,3-pentachloropropane which is industrially available, is used as a raw material, and each step is performed under suitable reaction conditions. It progresses well and produces the effect that 1,3,3,3-tetrafluoropropene can be produced in a good yield.
  • 1,1,1,3,3-pentachloropropane is reacted with hydrogen fluoride to obtain 1-chloro-3,3,3-trifluoropropene (first step)
  • first step By reacting 1-chloro-3,3,3-trifluoropropene obtained in the first step with hydrogen fluoride in the presence of a fluorination catalyst in the gas phase, 1,3,3,3-tetra It consists of a step of obtaining fluoropropene (second step).
  • the first step is a step of obtaining 1-chloro-3,3,3-trifluoropropene by reacting 1,1,1,3,3-pentachloropropane with hydrogen fluoride.
  • 1,1,1,3,3-pentachloropropane which is a starting material in the first step, can be produced by a known method.
  • 1,1,1,3,3-pentachloropropane is chlorinated.
  • a method of reacting vinylidene and chloroform in the presence of a copper amine catalyst (M. Kotora et al., React. Kinet. Catal. Lett., 44, 2, 1991, 415.), carbon tetrachloride and vinyl chloride with a copper amine catalyst
  • a method of reacting in the presence (M. Kotora et al., J. Mol.
  • the molar ratio of hydrogen fluoride to 1,1,1,3,3-pentachloropropane must be greater than the stoichiometric amount, and is usually 1 mole of 1,1,1,3,3-pentachloropropane. If the amount of hydrogen fluoride is 3 mol or more, the amount is sufficient for the production of 1-chloro-3,3,3-trifluoropropene, but 6 mol or more is preferable to prevent the formation of tar.
  • this step can be performed in the presence of a fluorination catalyst
  • one of the major features of the present invention is that the reaction is performed in the absence of a fluorination catalyst (also referred to as no catalyst).
  • a fluorination catalyst also referred to as no catalyst.
  • the fluorination catalyst used is used with a metal compound supported on a carrier.
  • fluorinated alumina, titania, stainless steel or the like (for example, fluorinated alumina) or activated carbon can be used as the fluorination catalyst.
  • the supported catalyst include a catalyst in which at least one metal selected from the group consisting of aluminum, chromium, manganese, nickel, and cobalt is supported on a carrier.
  • alumina, fluorinated alumina, aluminum fluoride, activated carbon or the like is used as the carrier.
  • the method for preparing the catalyst is not particularly limited, but after impregnating the carrier with a solution in which a soluble compound such as nitrate or chloride is dissolved, or spraying and then drying, the carrier on which the metal salt is supported is heated under heating. It can be obtained by halogen-modifying a part of or all of the supported metal or carrier by contacting with hydrogen fluoride, hydrogen chloride, chlorofluorocarbon or the like.
  • fluorinated alumina can be used in the vapor phase to circulate hydrogen fluoride while heating to commercially available alumina for drying or catalyst support, or at room temperature. It can be prepared by spraying an aqueous solution of hydrogen fluoride in the vicinity, immersing in the aqueous solution, and then drying.
  • Activated carbon used as a catalyst or carrier is a plant based on wood, charcoal, coconut shell charcoal, palm kernel, ash, etc., coal based on peat, lignite, lignite, bituminous coal, anthracite, etc., petroleum residue, There are petroleum-based or synthetic resin-based such as carbonized polyvinylidene chloride using oil carbon as a raw material. These activated carbons can be selected and used.
  • activated carbon manufactured from bituminous coal (BPL granular activated carbon manufactured by Mitsubishi Chemical Calgon), coconut shell charcoal (G2c, G2x, GS3c, GS3x, C2c, C2x manufactured by Nippon Environmental Chemicals) , X2M, Mitsubishi Chemical Calgon PCB), and the like.
  • the shape and size are usually used in a granular form, but can be used within a normal knowledge range as long as it is suitable for a reactor such as a sphere, fiber, powder, or honeycomb.
  • the activated carbon used in the present invention is preferably activated carbon having a large specific surface area.
  • the specific surface area and pore volume of the activated carbon are sufficient within the range of the specifications of commercially available products, but are desirably larger than 400 m 2 / g and larger than 0.1 cm 3 / g, respectively. Further, they may be 800 to 3000 m 2 / g and 0.2 to 1.0 cm 3 / g, respectively.
  • a basic aqueous solution such as ammonium hydroxide, sodium hydroxide or potassium hydroxide for about 10 hours or more at normal temperature or when activated carbon is used as a catalyst support. It is desirable to perform a pretreatment with an acid such as nitric acid, hydrochloric acid, hydrofluoric acid, etc., to activate the carrier surface and remove ash in advance.
  • a catalyst having a high valent metal halide shown below as a separate catalyst, or a catalyst supported on a carrier, or activated carbon can be used.
  • the high valent metal examples include antimony, tantalum, niobium, molybdenum, tin, and titanium. Antimony and tantalum are preferable, and antimony is most preferable.
  • the supported high-valent metal halide is represented by SbQ 5 (Q independently represents fluorine, chlorine, bromine, iodine; the same shall apply hereinafter), TaQ 5 , NbQ 5 , MoQ 5 , SnQ 4 , TiQ 4, etc. Must not be oxyhalides, and containing oxygen must be avoided as it will reduce activity.
  • Preparation method is not particularly limited as long as the metal halide adheres to the activated carbon.
  • a compound that is liquid near room temperature such as antimony pentachloride, tin tetrachloride, or titanium tetrachloride
  • the activated carbon is immersed in a solution in which the compound is dissolved in a solvent, or impregnated, or attached to the activated carbon by a method such as spraying.
  • the activated carbon attached with the metal compound thus obtained is dried by heating or / and decompressing, and then the activated carbon attached with the metal halide is heated under hydrogen fluoride, chlorine, hydrogen chloride, chlorofluoride.
  • the catalyst is prepared by contacting with a hydrocarbon or the like. In particular, when antimony pentachloride is supported, treatment with 1 equivalent or more of chlorine at 100 ° C. or higher is desirable for the activation of the catalyst.
  • the reaction can be carried out by adding a solvent.
  • a solvent since the starting material 1,1,1,3,3-pentachloropropane is a liquid at normal temperature and normal pressure, it also serves as a solvent itself. Is also possible. When a separate solvent is added, any solvent that does not decompose the metal halide may be used.
  • lower alcohols such as methanol, ethanol and isopropanol
  • ethers such as methyl cellosolve, ethyl cellosolve and diethyl ether, ketones such as acetone and methyl ethyl ketone, aromatic compounds such as benzene, toluene and xylene
  • Esters such as ethyl acetate and butyl acetate
  • chlorinated solvents such as methylene chloride, chloroform, tetrachloroethylene and tetrachloroethane, 1,1-dichloro-1-fluoroethane, 3,3-dichloro-1,1,2,2,
  • Fluorinated solvents such as 3-pentafluoropropane, 1,3-bis (trifluoromethyl) benzene, trifluoromethylbenzene, and 3-chloro-1,1,1,3-tetrafluoropropane, 3,3-dichloro -1,1,1
  • solvents such as antimony pentachloride, niobium pentachloride, tantalum pentachloride, molybdenum pentachloride, 3-chloro-1,1,1,3-tetrafluoropropane, 3,3-dichloro-1,1,1- Fluorine solvents such as trifluoropropane, 1,3-bis (trifluoromethyl) benzene, trifluoromethylbenzene, etc. are preferred. Even when these solvents are used or when no solvent is used, it is preferable to remove substances having reactivity with halides such as water from the solvent and the treatment system and to carry them substantially in the absence of water.
  • a halide having the highest possible valence As the high-valent metal halide used for preparing the catalyst, a halide having the highest possible valence can be used. Therefore, specifically, antimony (V: an oxidation number; hereinafter the same), tin (IV), titanium (IV), niobium (V), tantalum (V), and molybdenum (V) are preferable. However, after supporting the metal halide on the support, it is oxidized with chlorine or the like to the highest possible oxidation number, and further, the metal compound is supported and then halogenated and / or higher-order oxidized to achieve a high valence. A catalyst carrying a metal halide may be used.
  • the metal halide used for the catalyst preparation includes antimony compounds such as antimony pentachloride, antimony trichloride, antimony trichloride, antimony trichloride, antimony pentabromide, antimony tribromide, antimony pentafluoride, three Examples thereof include antimony halides such as antimony fluoride and antimony triiodide, and antimony pentachloride is most preferable.
  • antimony compounds such as antimony pentachloride, antimony trichloride, antimony trichloride, antimony trichloride, antimony pentabromide, antimony tribromide, antimony pentafluoride, three Examples thereof include antimony halides such as antimony fluoride and antimony triiodide, and antimony pentachloride is most preferable.
  • tin compounds tin tetrachloride, tin dichloride, titanium compounds, titanium tetrachloride, titanium trichloride, niobium compounds, niobium pentachloride, tantalum compounds, tantalum pentachloride, molybdenum compounds And molybdenum pentachloride.
  • the amount of the high-valent metal halide used for preparing the catalyst used is 0.1 to 500 parts by weight, preferably 1 to 250 parts by weight, based on 100 parts by weight of the activated carbon. It is also preferable to adjust the catalytic activity by combining two or more metals. In that case, antimony halide (especially antimony pentachloride) as the main component, other niobium compounds (especially niobium pentachloride) or tantalum compounds (especially tantalum pentachloride), tin, titanium, niobium, tantalum, molybdenum halides. It is preferable to combine them.
  • the atomic ratio of the minor component metal / major component metal may be 50/50 to 0/100, and preferably 30/70 to 0/100, since the minor component metal may not contain the minor component metal.
  • the contact time of the reaction for this step is usually 0.1 to 300 seconds, and preferably 1 to 60 seconds from the viewpoint of productivity.
  • the reaction temperature in this step is usually 100 to 450 ° C., but the preferred temperature range in this step is preferably 100 to 200 ° C. for liquid phase reaction and 150 to 350 ° C. for gas phase reaction. When the reaction temperature is less than 100 ° C., the reaction rate is low.
  • the above-mentioned temperature range is mentioned as a preferred range.
  • the reaction pressure in this step is usually in the range of 0.1 to 6.0 MPa, but the preferable reaction range in this step is that in the liquid phase reaction, the raw material organic substance, intermediate substance and hydrogen fluoride are contained in the reaction system. Since it is preferable to liquefy, 0.5 to 6.0 MPa is preferable, and in the gas phase reaction, the range is 0.1 to 5.0 MPa. In practice, the gas phase reaction is preferably performed at about 0.1 to 1.0 MPa.
  • this process is a liquid phase reaction and it is preferable that it is a flow type or a semi-flow type, it may be a batch type.
  • the reactor may be made of a material that can withstand pressure when the reaction is performed at normal pressure or under pressure, and that has heat resistance and corrosion resistance to hydrogen fluoride, hydrogen chloride, etc., and is made of iron, stainless steel, hastelloy, monel Platinum or the like is preferable. It can also be made from materials lined with these metals.
  • the presence of hydrogen chloride has a demerit that the volume of the reactor must be increased more than necessary from the viewpoint of the space velocity or contact time of the reaction substrate.
  • the first step when it is difficult to completely separate hydrogen chloride, it can be easily separated from the target product in the post-treatment step of the second step described later.
  • reaction product itself is taken out from a reactor in the pressurized state.
  • This step is performed at normal pressure because the cooling temperature required for condensation increases when the hydrogen chloride and components other than hydrogen chloride contained in the reaction product are separated from each other by gas-liquid separation or distillation.
  • the means is not particularly limited, for example, a method such as adsorption with activated carbon, absorption with sulfuric acid, solvent absorption, or liquefaction separation by cooling can be appropriately employed.
  • the purification method of 1-chloro-3,3,3-trifluoropropene in this step is not particularly limited.
  • the product is first washed with water or an alkaline aqueous solution, and then an acidic substance such as hydrogen chloride or hydrogen fluoride. Is removed, and after drying, it is subjected to distillation to remove organic impurities.
  • the organic impurities and hydrogen chloride can be distilled and separated as they are without washing with water or an alkaline aqueous solution, and used as a raw material for the second step together with a small amount of hydrogen fluoride.
  • the starting material in this step is a compound having a double bond, and there are cis and trans isomers that are structural isomers. Even in the case of a cis isomer, or a trans isomer, or a mixture of a cis isomer and a trans isomer, the reaction proceeds satisfactorily without any particular problem.
  • the activated carbon used as the fluorination catalyst in this process is vegetation based on wood, sawdust, charcoal, coconut shell charcoal, palm kernel charcoal, raw ash, etc., peat, lignite, lignite, bituminous coal, anthracite, etc.
  • coal-based raw materials there are coal-based raw materials, petroleum residues, sulfuric acid sludge, oil-based carbon materials, and synthetic resin materials. Since such activated carbon is commercially available, it can be selected from among them.
  • activated carbon manufactured from bituminous coal such as Calgon granular activated carbon BPL (manufactured by Mitsubishi Chemical Calgon)), coconut shell charcoal (PCB (manufactured by Mitsubishi Chemical Calgon)), G2x (manufactured by Nippon Enviro Chemicals)
  • bituminous coal such as Calgon granular activated carbon BPL (manufactured by Mitsubishi Chemical Calgon)
  • PCB coconut shell charcoal
  • G2x manufactured by Nippon Enviro Chemicals
  • bituminous coal such as Calgon granular activated carbon BPL (manufactured by Mitsubishi Chemical Calgon)
  • PCB coconut shell charcoal
  • G2x manufactured by Nippon Enviro Chemicals
  • the metal used as the fluorination catalyst in this step is a metal belonging to Group 4, Group 5, Group 6, Group 8, Group 8, Group 10, Group 11, Group 13, Group 14 or Group 15 of the Periodic Table Chosen from.
  • the fluorination catalyst is preferably an oxide, fluoride, chloride, fluoride of one or more metals selected from chromium, titanium, aluminum, manganese, nickel, cobalt, and zirconium. Activated carbon carrying chlorinated chloride, oxyfluoride, oxychloride, oxyfluoride chloride.
  • alumina, fluorinated alumina, aluminum fluoride, zirconia, or fluorinated zirconia can also be used as the carrier.
  • the method for preparing these metal-supported activated carbon catalysts is not limited, but the activated carbon itself, or activated carbon modified in advance with a halogen such as hydrogen fluoride, hydrogen chloride, chlorinated fluorinated hydrocarbon, chromium, titanium, manganese, nickel, It is prepared by impregnating or spraying a solution in which a soluble compound of one or more metals selected from cobalt is dissolved.
  • a halogen such as hydrogen fluoride, hydrogen chloride, chlorinated fluorinated hydrocarbon, chromium, titanium, manganese, nickel
  • the metal loading is 0.1 to 80 wt%, preferably 1 to 40 wt%.
  • the soluble compound of the metal supported on the activated carbon include nitrates, chlorides, oxides, and the like of the corresponding metal that dissolves in a solvent such as water, ethanol, and acetone.
  • chromium nitrate, chromium trichloride, chromium trioxide, potassium dichromate, titanium trichloride, manganese nitrate, manganese chloride, manganese dioxide, nickel nitrate, nickel chloride, cobalt nitrate, cobalt chloride, etc. may be used. it can.
  • a catalyst carrying a metal by any method is treated with a fluorinating agent such as hydrogen fluoride, fluorinated (and chlorinated) hydrocarbon in advance at a temperature equal to or higher than a predetermined reaction temperature before use, and the catalyst in the reaction It is effective to prevent changes in the composition.
  • a fluorinating agent such as hydrogen fluoride, fluorinated (and chlorinated) hydrocarbon in advance
  • supplying oxygen, chlorine, fluorinated or chlorinated hydrocarbons into the reactor during the reaction is effective for extending the catalyst life, improving the reaction rate, and the reaction yield.
  • the reaction temperature is 200 to 600 ° C., preferably 300 to 500 ° C. If the reaction temperature is lower than 200 ° C., the reaction is slow and not practical. When the reaction temperature exceeds 600 ° C., the catalyst life is shortened, and the reaction proceeds rapidly, but decomposition products and the like are generated, and the selectivity for 1,3,3,3-tetrafluoropropene decreases, which is not preferable. .
  • a catalyst activation method a usual method used for regeneration of a fluorination catalyst can be adopted, and it can be reactivated by appropriately bringing dry air, chlorine, hydrogen fluoride, etc. into contact with a catalyst whose activity has been reduced. .
  • the reaction pressure is not particularly limited, but is preferably 0.1 to 1.0 MPa from the viewpoint of the apparatus. It is desirable to select conditions so that the raw organic substances, intermediate substances and hydrogen fluoride present in the system do not liquefy in the reaction system.
  • the contact time is usually 0.1 to 300 seconds, preferably 5 to 60 seconds.
  • the reactor may be made of a material having heat resistance and corrosion resistance to hydrogen fluoride, hydrogen chloride, etc., and stainless steel, hastelloy, monel, platinum, etc. are preferable. It can also be made from materials lined with these metals.
  • the molar ratio of 1-chloro-3,3,3-trifluoropropene / hydrogen fluoride supplied to the reaction zone may vary depending on the reaction temperature, but is 1/1 to 1/60, preferably 1/1. ⁇ 1/30.
  • the hydrogen fluoride exceeds 60 moles of 1-chloro-3,3,3-trifluoropropene, the amount of organic matter treated in the same reactor is reduced and the unreacted hydrogen fluoride discharged from the reaction system and the product On the other hand, the separation of the mixture is hindered.
  • the amount of hydrogen fluoride is less than 1 mole, the reaction rate is lowered and the selectivity is lowered, which is not preferable.
  • the 1,3,3,3-tetrafluoropropene obtained in this step is a compound having a double bond, and there are structural isomers of cis and trans isomers. In this step, these are obtained as a mixture thereof. It is done. In addition, 1-chloro-3,3,3-trifluoropropene (cis isomer and trans isomer), 1,1,1,3,3-pentafluoropropane, excess hydrogen fluoride, hydrogen chloride, etc. Often obtained as a reaction mixture comprising
  • Step A Excess hydrogen fluoride (HF) and 1-chloro-3,3,3-trifluoropropene from the reaction mixture containing 1,3,3,3-tetrafluoropropene obtained in Step 2 Removing 1,1,1,3,3-pentafluoropropane;
  • Step B Step of removing remaining hydrogen fluoride (HF) after Step A and
  • Step C Step of removing hydrogen chloride (HCl) from 1,3,3,3-tetrafluoropropene obtained in Step B Go through.
  • hydrogen fluoride can be efficiently separated from an organic substance containing 1,3,3,3-tetrafluoropropene, and further, the first propene contained in the propene.
  • the purity of the propene can be improved by removing hydrogen chloride derived from the process.
  • step A 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene, 1,1,1,3,3-pentafluoropropane, excess hydrogen fluoride Then, the reaction mixture containing hydrogen chloride and the like is subjected to an operation such as distillation separation, whereby 1,3,3,3-tetrafluoropropene containing hydrogen chloride having a low boiling point and an excessive amount of hydrogen fluoride are unreacted. Of 1-chloro-3,3,3-trifluoropropene, 1,1,1,3,3-pentafluoropropane and other high boiling components. The high-boiling component separated here can be directly returned to the second step and reused as a raw material.
  • the reagent used when removing hydrogen fluoride in the step B is not particularly limited, and can be separated by forming a complex of hydrogen fluoride with potassium fluoride, sodium fluoride or the like, for example, calcium chloride, By reacting with calcium salts such as calcium hydroxide, calcium oxide, calcium carbonate or an aqueous solution thereof, immobilization treatment can be performed as calcium fluoride (CaF 2 ), and hydrogen fluoride can be removed from the propene.
  • calcium salts such as calcium hydroxide, calcium oxide, calcium carbonate or an aqueous solution thereof
  • hydrogen fluoride can be removed from the propene by reacting hydrogen fluoride with alkali metal salts such as sodium chloride and potassium chloride, respectively, to carry out immobilization treatment as corresponding metal fluoride salts.
  • alkali metal salts such as sodium chloride and potassium chloride
  • the amount of sulfuric acid depends on the amount of hydrogen fluoride contained in the reaction mixture, and thus can be appropriately adjusted by those skilled in the art. For example, using the graph of solubility versus temperature, the minimum amount of sulfuric acid required can be determined from the solubility of hydrogen fluoride in 100% sulfuric acid (eg, at 30 ° C., about 34 g of hydrogen fluoride is 100 g. In 100% sulfuric acid).
  • the purity of sulfuric acid is not particularly limited, but it is preferably 50% or more, more preferably about 98% to 100%. Usually, commercially available industrial sulfuric acid (98%) can be used.
  • This treatment may be performed at a temperature at which the reaction product does not liquefy, and is usually performed at about 20 ° C. to about 100 ° C., preferably about 25 ° C. to about 50 ° C., more preferably about 25 ° C. to about 40 ° C.
  • the hydrogen fluoride removed during the treatment with sulfuric acid and the sulfuric acid used in the step A can be separated, recovered and reused again. That is, this hydrogen fluoride can be used as a starting material for another reaction and sulfuric acid can be reused for use in the extraction step.
  • Hydrogen chloride (HCl) contained in the propene can be removed from the 1,3,3,3-tetrafluoropropene obtained in Step B (Step C). And any method for removing hydrogen chloride contained in the organic compound (distillation, washing with water, extractive distillation, etc.). It is also possible to remove hydrogen chloride by combining these. For example, when water is used, there is no particular limitation, and the temperature, amount, and contact method when using water can be appropriately adjusted by those skilled in the art. .
  • saturated hydrochloric acid can be used.
  • hydrogen fluoride is recovered as an aqueous solution, and thus it is necessary to separate it by distillation or the like to make it anhydrous.
  • 1,3,3,3-tetrafluoropropene can be obtained with high purity by going through Steps A to C.
  • 1,3,3,3-tetrafluoroethylene is obtained.
  • Trans-1,3,3,3-tetrafluoropropene which is a trans form selectively from fluoropropene, can be obtained with extremely high purity.
  • the purification operation is not particularly limited, but after deoxidation, neutralization, washing with water, dehydration drying with zeolite or the like, and purification by distillation or the like.
  • the distillation operation is particularly preferable because trans-1,3,3,3-tetrafluoropropene can be obtained with high purity.
  • a filler can also be packed in the distillation column. Distillation is preferred because it can be achieved at a relatively low temperature when performed under reduced pressure.
  • the number of distillation columns required for this distillation is not limited, but is preferably 5 to 100, more preferably 10 to 50.
  • trans-1,3,3,3-tetrafluoropropene is obtained.
  • cis-1,3,3,3-tetrafluoropropene which is a cis isomer
  • 1-chloro-3,3,3-trifluoropropene is obtained as a high-boiling component.
  • These high boiling components can be used again as a raw material for the second step. Reuse of high boiling point is also a very useful method because waste can be reduced.
  • % of the composition analysis value represents “area%” of the composition obtained by directly measuring the reaction mixture by gas chromatography (the detector is FID unless otherwise specified).
  • Preparation Example 1 100 g of coconut shell crushed charcoal made by Mitsubishi Chemical Calgon (PCB 4 ⁇ 10 mesh) is immersed in 150 g of pure water, 40 g of special grade reagent CrCl 3 ⁇ 6H 2 O is separately dissolved in 100 g of pure water, and mixed and stirred. I left it all day and night. Next, it filtered and took out activated carbon, it maintained at 200 degreeC in the electric furnace, and baked for 2 hours. When the obtained chromium-supported activated carbon was filled in a cylindrical SUS316L reaction tube having a diameter of 5 cm and a length of 30 cm equipped with an electric furnace, the temperature was raised to 200 ° C. while flowing nitrogen gas, and no outflow of water was observed.
  • Example 1 [ First Step: Production of 1-chloro-3,3,3-trifluoropropene ]
  • a pressure-resistant vessel with a capacity of 2000 ml equipped with a reflux condenser and a pressure sensor is charged with 217 g of 1,1,1,3,3-pentachloropropane (240fa), and subsequently with 370 g of hydrogen fluoride to control the reactor control temperature.
  • the temperature was raised to 160 ° C.
  • the pressure in the system increases due to the generation of hydrogen chloride.
  • the pressure exceeds 4.0 MPa after about 30 minutes the reflux is adjusted to 100 ° C. and the back pressure valve provided at the rear of the reflux is adjusted.
  • the reactor internal pressure was controlled to 4 to 4.2 MPa.
  • a gas phase reactor (made of SUS316L, 1 inch in diameter and 30 cm in length) composed of a cylindrical reaction tube equipped with an electric furnace was filled with 150 ml of the catalyst prepared in Preparation Example 1 as a gas phase fluorination catalyst. While flowing nitrogen gas at a flow rate of about 100 ml / min, the temperature of the reaction tube was raised to 200 ° C., and hydrogen fluoride was entrained with nitrogen gas at a rate of about 0.10 g / min. The temperature of the reaction tube was raised to 500 ° C. and kept for 1 hour.
  • the temperature of the reaction tube is lowered to 400 ° C.
  • hydrogen fluoride is supplied at a feed rate of 0.15 g / min
  • 1-chloro-3,3,3-trifluoropropene obtained in the first step is vaporized in advance.
  • the supply to the reactor was started at a rate of 0.06 g / min. Since the reaction was stable 1 hour after the start of the reaction, the product gas flowing out from the reactor was blown into the water for 2 hours to remove the acidic gas, and then 6.0 g of organic matter was captured with a dry ice-acetone trap. Gathered. Table 2 shows the results of analyzing the collected organic matter by gas chromatography.
  • Example 2 [ First Step: Production of 1-chloro-3,3,3-trifluoropropene ] Except for adjusting the reflux temperature to 95 ° C., the same reaction operation, recovery operation and analysis as in Example 1 were performed under the conditions shown in Table 1 after the same preparation stage as in Example 1. The results are shown in Table 1. [ Second Step: Production of 1,3,3,3-tetrafluoropropene ] For the 1-chloro-3,3,3-trifluoropropene obtained in the first step, the catalyst prepared in Preparation Example 2 was used, and after the same preparation steps as in Example 1, the conditions shown in Table 2 were used. The same reaction operation, recovery operation and analysis as in Example 1 were performed. The results are shown in Table 2.
  • Example 3 [ First Step: Production of 1-chloro-3,3,3-trifluoropropene ] The embodiment was carried out under the conditions shown in Table 1 after the same preparation steps as in Example 1, except that the reflux temperature was adjusted to 85 ° C., and 240 fa was changed to 1.7 g / min and hydrogen fluoride was changed to 0.94 g / min. The same reaction operation, recovery operation, and analysis as in 1 were performed. The results are shown in Table 1.
  • Example 4 [ Second Step: Production of 1,3,3,3-tetrafluoropropene ]
  • the catalyst obtained in Preparation Example 3 was used and the examples were conducted under the conditions shown in Table 2. The same reaction operation, recovery operation, and analysis as in 1 were performed. The results are shown in Table 2.
  • Example 5 Production of 1,3,3,3-tetrafluoropropene ] 25 mol% of 1,1,1,3,3-pentafluoropropane was mixed with 1-chloro-3,3,3-trifluoropropene obtained in the same manner as in the first step of Example 1. Used as raw material. Using the catalyst obtained in Preparation Example 3, the same reaction operation, recovery operation and analysis as in Example 1 were performed under the conditions shown in Table 2. The results are shown in Table 2.
  • the temperature was raised, the supply rate of hydrogen fluoride was 0.75 g / min, and 1,1,1,3,3-pentachloropropane was supplied to the reactor at a rate of 0.42 g / min.
  • the pressure in the system was set to 0.8 MPa by a back pressure valve provided at the rear of the reactor. Since the reaction was stable 2 hours after the start of the reaction, the product gas flowing out from the reactor was blown into water to remove the acidic gas, and then collected with a dry ice-acetone trap.
  • Table 3 The results of analyzing the collected organic matter by gas chromatography are shown in Table 3 (in this example, the second step was not performed).
  • Example 8 [ First Step: Production of 1-chloro-3,3,3-trifluoropropene ] The same reaction operation, recovery operation, and analysis as in Example 1 were performed without using a catalyst in the reactor. The results of analysis by gas chromatography are shown in Table 3 (in this example, the second step was not performed).
  • Examples of the zeolite used for removing water in the present invention include those belonging to the genus faujasite, chabasite, and mordenite.
  • natural zeolite such as faujasite, A type such as 3A, 4A, 5A, etc.
  • Synthetic zeolite such as X type and Y type such as 10X, 13X, etc.
  • natural zeolite such as erionite and levinite, R-type, S-type or T-type synthetic zeolite and mordenite genus include natural or synthetic mordenite and clinoptilolite.
  • each type of zeolite has various modified products such as acid-resistant grades, heat-resistant grades obtained by changing the Si / Al ratio, or by post-treatment after zeolite synthesis or after firing.
  • modified products such as acid-resistant grades, heat-resistant grades obtained by changing the Si / Al ratio, or by post-treatment after zeolite synthesis or after firing.
  • acid-resistant grades heat-resistant grades obtained by changing the Si / Al ratio
  • post-treatment after zeolite synthesis or after firing are commercially available, but these can also be selected and used.
  • synthetic zeolites belonging to the faujasite genus are preferable, and readily available synthetic zeolites 3A, 4A, 10X, 13X and the like are particularly preferable.
  • the zeolite used in the present invention may have any shape such as powder, granule, granulated product, etc., but when used in a packed tower format, it is a spherical shape molded and calcined with a granulating agent such as clay and CMC. Or a rod-shaped thing is easy to handle and is preferable.
  • the method for contacting 1,3,3,3-tetrafluoropropene with zeolite is not limited, but the zeolite is charged into 1,3,3,3-tetrafluoropropene in a container and contacted for a predetermined time with or without stirring. Examples thereof include a batch method and a flow method in which 1,3,3,3-tetrafluoropropene is passed through a container filled with zeolite.
  • the treatment temperature is not particularly limited, but it is not preferable to perform the treatment under conditions where the temperature is too high from the viewpoint of suppressing decomposition and side reactions. Such temperature is ⁇ 50 to 60 ° C., preferably ⁇ 40 to 50 ° C.
  • the treatment When the treatment is performed near normal pressure, it is most preferable to carry out the treatment at -30 to 40 ° C. from the viewpoint of the apparatus and the quality maintenance of 1,3,3,3-tetrafluoropropene. If it exceeds 60 ° C., it is not preferable because the water adsorption ability of zeolite is lowered and 1,3,3,3-tetrafluoropropene may be decomposed.
  • the treatment pressure can be selected depending on whether the object to be treated is liquid or gaseous, and is usually 0.05 to 1 MPa.
  • the linear velocity of the liquid is about 1 cm / hr to 10 m / hr, and preferably 2 cm / hr to 5 m / hr. If the linear velocity is slower than 1 cm / hr, the treatment time becomes longer, which is not preferable, and if it exceeds 10 m / hr, the breakthrough time is shortened.
  • the treatment time depends on the water content, the amount of zeolite added to 1,3,3,3-tetrafluoropropene, and the treatment temperature, but it is 1 minute to 100 hours, and 2 minutes to 50 hours. Time is preferred, and 10 minutes to 10 hours is more preferred.
  • the amount of zeolite added is not particularly limited, but the weight ratio of zeolite / 1,3,3,3-tetrafluoropropene is preferably 0.001 to 10. If it is 0.001 or less, it takes a long time for the treatment, and if it is 10 or more, there is no special technical disadvantage, but it is not economically preferable because the organic matter recovery rate decreases.
  • the temperature needs to be higher than the boiling point of 1,3,3,3-tetrafluoropropene, and is carried out at -19 ° C. or higher, preferably 0 to 50 ° C. at normal pressure.
  • the 1,3,3,3-tetrafluoropropene to which the method of the present invention is applied contains at least water and may be accompanied by water at the same time.
  • the water content after washing with water is usually about 300 to 700 ppm, and the total amount of water and entrained water is 3000 ppm to 10%. However, if there is a water separation step such as a mist separator, the amount is about 2000 ppm. Since there is a large difference depending on whether or not there is no particular limitation. In the method of the present invention, the water content can be reduced to 100 ppm or less.
  • the product taken out from the reaction step contains an acidic component as described below
  • the product is washed with water and / or with a basic aqueous solution and does not contain an acidic component. Is preferred.
  • the product from which the acidic component has been removed is subjected to the dehydration step of the present invention so that it does not solidify or clog when condensed at a low temperature.
  • the water content can be reduced to 1 to 50 ppm by further applying this dehydration method after the distillation step as the final step of the purification step.
  • the method for producing 1,3,3,3-tetrafluoropropene to which the method of the present invention is applied is not particularly limited.
  • chlorohydropropene examples include 1-chloro-3,3,3-trifluoropropene (CF 3 CH ⁇ CHCl), CF 2 ClCHCHF, CFCl 2 CH ⁇ CHF, and the like.
  • a method of fluorinating 3,3-trifluoropropene with hydrogen fluoride in the presence of a catalyst is known.
  • It can also be produced by a method of dehydrofluorination from 1,1,1,3,3-pentafluoropropane, a method by thermal decomposition, a method of dehydrofluorination in the presence of an alkali metal hydroxide. Can be mentioned. (See the method described in the background section of the invention).
  • 1,3,3,3-tetrafluoropropene is a compound having a double bond, and there are structural isomers of cis isomer and trans isomer.
  • the production method of reacting 1-chloro-3,3,3-trifluoropropene with hydrogen fluoride can be carried out either in the liquid phase or in the gas phase, but in the presence of a fluorination catalyst in the gas phase.
  • a fluorination catalyst is activated carbon carrying activated carbon or a metal compound such as a chromium compound is exemplified below.
  • Activated carbon which is a fluorination catalyst, is made from vegetation based on wood, sawdust, charcoal, coconut shell charcoal, palm kernel charcoal, raw ash, etc., peat, lignite, lignite, bituminous coal, anthracite, etc. Oil, petroleum residue, sulfuric acid sludge, oil carbon and the like as raw materials, and those using synthetic resin as raw materials. Since such activated carbon is commercially available, it can be selected from among them. For example, activated carbon manufactured from bituminous coal (for example, Calgon granular activated carbon CAL (manufactured by Toyo Calgon Co., Ltd.), coconut shell charcoal (eg, manufactured by Takeda Pharmaceutical Co., Ltd.), etc. can be mentioned. However, these activated carbons are usually used in granular form, but the shape and size are not particularly limited, and can be determined based on the size of the reactor with ordinary knowledge. it can.
  • bituminous coal for example, Calgon granular activated carbon CAL (
  • the activated carbon is an oxide, fluoride, chloride, fluorinated chloride, oxyfluoride, oxyfluoride of one or more metals selected from aluminum, chromium, manganese, nickel, cobalt, and titanium.
  • Activated carbon carrying chloride, oxyfluoride chloride or the like may be used.
  • the method for preparing these metal-supported activated carbon catalysts is not limited, but the activated carbon itself, or activated carbon modified in advance with a halogen such as hydrogen fluoride, hydrogen chloride, chlorinated fluorinated hydrocarbon, chromium, titanium, manganese, nickel, It is prepared by impregnating or spraying a solution in which a soluble compound of one or more metals selected from cobalt is dissolved.
  • a halogen such as hydrogen fluoride, hydrogen chloride, chlorinated fluorinated hydrocarbon, chromium, titanium, manganese, nickel
  • the metal loading is 0.1 to 80 wt%, preferably 1 to 40 wt%.
  • the soluble compound of the metal supported on the activated carbon include nitrates, chlorides, oxides, and the like of the corresponding metal that dissolves in a solvent such as water, ethanol, and acetone.
  • chromium nitrate, chromium trichloride, chromium trioxide, potassium dichromate, titanium trichloride, manganese nitrate, manganese chloride, manganese dioxide, nickel nitrate, nickel chloride, cobalt nitrate, cobalt chloride, etc. may be used. it can.
  • a catalyst carrying a metal by any method is treated with a fluorinating agent such as hydrogen fluoride, fluorinated (and chlorinated) hydrocarbon in advance at a temperature equal to or higher than a predetermined reaction temperature before use, and the catalyst in the reaction It is effective to prevent changes in the composition.
  • a fluorinating agent such as hydrogen fluoride, fluorinated (and chlorinated) hydrocarbon in advance
  • supplying oxygen, chlorine, fluorinated or chlorinated hydrocarbons into the reactor during the reaction is effective for extending the catalyst life, improving the reaction rate, and the reaction yield.
  • the reaction temperature is 200 to 600 ° C., preferably 300 to 500 ° C. If the reaction temperature is lower than 200 ° C., the reaction is slow and not practical. When the reaction temperature exceeds 600 ° C., the catalyst life is shortened, and the reaction proceeds rapidly, but decomposition products and the like are generated, and the selectivity for 1,3,3,3-tetrafluoropropene decreases, which is not preferable. .
  • the molar ratio of 1-chloro-3,3,3-trifluoropropene / hydrogen fluoride supplied to the reaction zone can vary depending on the reaction temperature, but is 1/1 to 1/60, preferably 1 / 1 to 1/30.
  • the hydrogen fluoride exceeds 60 moles of 1-chloro-3,3,3-trifluoropropene, the amount of organic matter treated in the same reactor is reduced and the unreacted hydrogen fluoride discharged from the reaction system and the product On the other hand, the separation of the mixture is hindered.
  • the amount of hydrogen fluoride is less than 1 mole, the reaction rate is lowered and the selectivity is lowered, which is not preferable.
  • the reaction pressure is not particularly limited, but it is preferably 1 to 10 kg / cm 2 from the viewpoint of the apparatus. It is desirable to select conditions so that the raw organic substances, intermediate substances and hydrogen fluoride present in the system do not liquefy in the reaction system.
  • the contact time is usually 0.1 to 300 seconds, preferably 5 to 60 seconds.
  • the reactor may be made of a material having heat resistance and corrosion resistance to hydrogen fluoride, hydrogen chloride, etc., and stainless steel, hastelloy, monel, platinum, etc. are preferable. It can also be made from materials lined with these metals.
  • the reaction product obtained by the above production method is 1,3,3,3-tetrafluoropropene (cis isomer and trans isomer), the starting material 1-chloro-3,3,3-trifluoropropene (cis isomer and trans isomer). Body), excess hydrogen fluoride, and hydrogen chloride produced by the reaction.
  • this reaction product contains an acidic component
  • an operation for removing the acidic component is required in the purification step. That is, the reaction product is taken out from the reactor in a liquid or gaseous state together with, for example, hydrogen chloride and unreacted hydrogen fluoride, and then excess hydrogen fluoride is removed by an operation such as liquid phase separation.
  • the acidic component is removed by passing water or a basic aqueous solution. This reaction product is subjected to a dehydration step.
  • 1,3,3,3-tetrafluoropropene can be produced by dehydrofluorination of 1,1,1,3,3-pentafluoropropane.
  • Such reactions include catalytic pyrolysis reactions and dehydrofluorination in the presence of alkali hydroxides.
  • thermal decomposition reaction examples include, but are not limited to, thermal decomposition or catalytic decomposition using alumina, zirconia, carbon, or a catalyst in which aluminum, chromium, or the like is supported. These thermal decomposition reactions can be usually carried out in the gas phase, under elevated temperature, under pressure or under reduced pressure. It can also be performed using a solvent inert to hydrogen fluoride such as fluorocarbon, hydrofluorocarbon, and hydrocarbon, or an inert gas such as argon or nitrogen.
  • a solvent inert to hydrogen fluoride such as fluorocarbon, hydrofluorocarbon, and hydrocarbon
  • an inert gas such as argon or nitrogen.
  • 1,1,1,3,3-pentafluoropropane is passed through activated carbon carrying chromium at a temperature of 200 to 600 ° C.
  • 1,3,3,3-tetrafluoropropene and hydrogen fluoride there is one in which a mixed gas is obtained as a reaction product (Japanese Patent Laid-Open No. 11-140002).
  • 1,3,3,3-tetrafluoropropene can be obtained as a mixture with a cis isomer mainly composed of a trans isomer, but in the present invention, even if it is a mixture, there is no particular difference.
  • the reaction product obtained by the above production method is obtained as a reaction mixture containing 1,3,3,3-tetrafluoropropene (cis isomer and trans isomer) and hydrogen fluoride produced by the reaction.
  • Acidic components are removed by passing water or a basic aqueous solution.
  • the reaction product excluding the acidic component is subjected to a dehydration step.
  • the reaction product comes into contact with water or a basic aqueous solution, and therefore contains appropriate moisture.
  • the water content varies depending on the components of the reaction product, the temperature, the contact method, etc., but is generally 300 to 700 ppm, and becomes higher when accompanied by water.
  • the dehydration method of the present invention can be used in such a system, but it is desirable that excess entrained water be dehydrated in advance by a preliminary dehydration step such as a mist separator.
  • a mist separator removes excess moisture above the saturated moisture accompanying the product by passing the reaction product containing water through a double tube filled with metal, resin, inorganic filler, etc. at low temperature. It is. By this operation, the water content of the reaction product can be set to 2000 to 2500 ppm.
  • the water content can be reduced to about 10 to 100 ppm.
  • any isomer (cis isomer or trans isomer) of 1,3,3,3-tetrafluoropropene can be selectively obtained.
  • trans-1,3 , 3,3-tetrafluoropropene is obtained with high purity (99% or more) (see Preparation Example 2).
  • distillation column There are no restrictions on the material of the distillation column in the distillation operation, and glass, stainless steel, tetrafluoroethylene resin, chlorotrifluoroethylene resin, vinylidene fluoride resin, PFA resin, glass, etc. are lined inside. Things can be used. A filler can also be packed in the distillation column. Distillation is preferred because it can be achieved at a relatively low temperature when performed under reduced pressure.
  • the number of distillation columns required for this distillation is not limited, but is preferably 5 to 100, more preferably 10 to 50.
  • the dehydration method of the present invention can be further applied to 1,3,3,3-tetrafluoropropene after distillation.
  • the water content of the reaction product can be reduced to 1 to 50 ppm or less.
  • the dehydration method of the present invention can be carried out either in the liquid phase or in the gas phase, but when carried out at normal pressure, it is preferably carried out in the gas phase where water does not solidify.
  • it is preferable to perform the treatment in a liquid phase because the size, shape, processing amount, etc. of the dehydrating apparatus are advantageous.
  • the method of the present invention can naturally be a method using a batch-type apparatus, but is more preferably a flow-type method.
  • the object can be achieved by circulating a liquid or gas containing at least 1,3,3,3-tetrafluoropropene through a tubular container filled with zeolite. It goes without saying that it is possible to take an applied form.
  • Preparation Example 1 A SUS-316 reaction tube (inner diameter: 23 mm, length: 300 mm) that can be heated by a ribbon heater is filled with 50 ml of Cr / C as a catalyst, and hydrogen fluoride is added at 0.2 g / min at a temperature range of 200 to 400 ° C. The catalyst was activated by introducing into the time reactor.
  • the temperature of the reaction tube was set to 320 ° C., 1,1,1,3,3-pentafluoropropane was continuously introduced into the reactor at a rate of 0.80 g / min, and the reaction was continued for 10 hours.
  • the reaction product was obtained.
  • Example 1 The reaction product obtained in Preparation Example 1 was gasified by a vaporizer, bubbled into water at a rate of 2.19 g / min, and then cooled with a refrigerant at 5 ° C. (previously SUS-316 The product-made packing was introduced. By this operation, water accompanying the reaction product was removed. When the organic gas at the outlet was collected and the water content was measured by the Karl Fischer method, the water content was 2100 ppm.
  • the reaction product after passing through the mist separator was put into a SUS-316 dehydration tube (inner diameter 23 mm, length 350 mm) filled with 100 ml of spherical synthetic zeolite A3 having a diameter of 2 mm at a speed of 2.19 g / min (linear velocity 6.0 m). / Min).
  • the organic gas at the outlet was collected and the water content was measured by the Karl Fischer method. Further, the composition ratio of the pure organic substance was equivalent to the value in Table 1 by gas chromatography, and no new organic substance was found.
  • Example 2 The reaction product dehydrated by the method of Example 1 was distilled to isolate trans-1,3,3,3-tetrafluoropropene. Most of the water distilled with the trans-1,3,3,3-tetrafluoropropene. The water content measured by the Karl Fischer method was 80 ppm, and the purity measured by gas chromatography was trans-1,3,3,3-tetrafluoropropene purity of 99.9%.
  • Example 2 A dehydration tube (inner diameter: 23 mm, length: 350 mm) made of SUS-316 was filled with 100 ml of spherical synthetic zeolite A3 having a diameter of 2 mm.
  • the purified trans-1,3,3,3-tetrafluoropropene (water content 100 ppm) obtained in Preparation Example 2 was pressurized at 25 ° C. and 0.5 MPaG at a linear velocity of 1.0 m / h. Circulated.
  • the purity of trans-1,3,3,3-tetrafluoropropene at the outlet of the dehydrating tube was measured by gas chromatography and the moisture was measured by the Karl Fischer method. As a result, the water content was 10 ppm and the purity of trans-1,3,3,3-tetrafluoropropene was 99.9%. New organic matter was not found.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明の第1の特徴に依れば、1,1,1,3,3-ペンタクロロプロパンに、フッ化水素を反応させることにより、1-クロロ-3,3,3-トリフルオロプロペンを得る第1工程と、第1工程で得られた1-クロロ-3,3,3-トリフルオロプロペンに、気相中、フッ素化触媒存在下、フッ化水素を反応させることにより、1,3,3,3-テトラフルオロプロペンを得る第2工程を含む、1,3,3,3-テトラフルオロプロペンの製造方法が提供される。本発明の第2の特徴に依れば、少なくとも水を含む1,3,3,3-テトラフルオロプロペンをゼオライトと接触させることを含む、1,3,3,3-テトラフルオロプロペンの脱水方法が提供される。

Description

1,3,3,3-テトラフルオロプロペンの製造方法
本発明は、医農薬、機能性材料の中間原料、プロペラント、マグネシウム製造の保護ガス、発泡剤あるいは冷媒等として有用な1,3,3,3-テトラフルオロプロペンの製造方法及びその脱水方法に関する。
発明の背景
 1,3,3,3-テトラフルオロプロペンの製造方法としては、従来、1,3,3,3-テトラフルオロ-1-ヨウ化プロパンをアルコール性水酸化カリウムにより脱ヨウ化水素する方法(非特許文献1)、または1,1,1,3,3-ペンタフルオロプロパンをジブチルエーテル中で水酸化カリウムにより脱フッ化水素する方法(非特許文献2)などが知られている。また、特許文献1では1,1,1,3,3-ペンタフルオロプロパンをクロム/活性炭触媒で脱フッ化水素する方法が、特許文献2ではクロムベースの触媒との接触により1,1,1,3,3-ペンタフルオロプロパンから1,3,3,3-テトラフルオロプロペンを得る方法が開示されている。
 一方、一般的なフルオロアルカン化合物における、気相中での脱フッ化水素反応の例として、特許文献3に1,1,1,3,3,3-ヘキサフルオロプロパンをガス状態にして活性炭又は酸化クロム触媒と接触させることで、対応するプロペンを製造する方法、そして特許文献4ではフルオロエタンを活性炭と接触させて熱分解する方法が開示されている。
 一方、本発明の中間体である1-クロロ-3,3,3-トリフルオロプロペンの製造方法としては、特許文献5に、1,1,1,3,3-ペンタフルオロプロパンの製造方法における第1工程として、気相で1,1,1,3,3-ペンタクロロプロパンをフッ化水素と反応させて1,1,1-トリフルオロ-3-クロロ-2-プロペン(1-クロロ-3,3,3-トリフルオロプロペン)を得る方法が開示されている。また、特許文献6に1,1,1,3,3-ペンタフルオロプロパンの製造方法における第1工程として、1,1,1,3,3-ペンタクロロプロパンを無触媒でフッ化水素と反応させて1,1,1-トリフルオロ-3-クロロ-2-プロペン(1-クロロ-3,3,3-トリフルオロプロペン)を得る方法が開示されている。特許文献7では、1-クロロ-3,3,3-トリフルオロプロペンの製造方法として、1,1,1,3,3-ペンタクロロプロパンを反応容器中、ルイス酸触媒またはルイス酸触媒の混合物の存在下、150℃より低い温度で、液相で反応させること、反応容器中で生成した塩化水素及び1-クロロ-3,3,3-トリフルオロプロペンを連続的に取り出すこと、及び1-クロロ-3,3,3-トリフルオロプロペンを単離する方法が開示されている。
 また、特許文献8には、ハロゲン化オレフィンのフッ素化として、気相で1,1-ジクロロ-3,3,3-トリフルオロプロペンをフッ素化触媒存在下フッ化水素によりフッ素化させる方法が報告されている。
 また、特許文献9では、1-クロロ-3,3,3-トリフルオロプロペンをフッ化水素と反応させ、1,3,3,3-テトラフルオロプロペンを得る方法が開示されている。
通常、1,3,3,3-テトラフルプロペンを製造するための反応工程から取り出された生成物は酸性成分を含むので、水洗浄および/または塩基性水溶液での洗浄する工程が必要となる。
 フッ素化炭化水素である1,1,1,3,3-ペンタフルオロプロパンの脱水においては、特定のゼオライトと接触させる方法が開示されている(特許文献10)。
 一方、フルオロオレフィンに関しては、トリフルオロメチル基を有するオレフィンは、塩基の存在下ではビニル位フッ素が脱離する場合があることが知られている。事実、1,3,3,3-テトラフルオロプロペンはアミンのような塩基性化合物が共存する場合、安定ではない。
また、ゼオライトは、オレフィン水和反応の触媒として使用されることが知られており、オレフィンと水との反応によりアルコールが生成することが開示されている(特許文献11)。
特開平11-140002号公報 特開2000-63300号公報 特開平9-67281号公報 米国特許2480560号明細書 特開平9-183740号公報 特開平11-180908号公報 国際公開2005-014512号公報 特開昭48-72105号公報 特開平10-7604号公報 特開平9-241189号公報 特開平7-171402号公報
R.N.Haszeldineら,J.Chem.Soc.1953,1199-1206; CA 48 5787f I.L.Knunyantsら,Izvest.Akad.Nauk S.S.S.R.,Otdel.Khim.Nauk.1960,1412-18;CA 55,349f
 上記、非特許文献1や非特許文献2のような水酸化カリウムにより脱ハロゲン化水素する方法は、反応率および選択率に優れた方法ではあるが、溶媒を用いなければならないこと、水酸化カリウムが化学量論量以上必要であること、また反応の結果生成するカリウム塩が多大となること等から工業的に適用するには困難な点が多かった。
 また、気相中でのフルオロアルカン化合物の脱フッ化水素反応は、反応条件が過酷である割には、転化率がそれほど高くないのが一般的であった。例えば特許文献3の方法は、1,1,1,3,3,3-ヘキサフルオロプロパンを、ガス状態にして活性炭または酸化クロム触媒によって行う方法であるが、選択率はほぼ定量的であるが、転化率が4%~50%程度であった。
Figure JPOXMLDOC01-appb-C000001
 また、特許文献4では、750~900℃程度の、かなりの高温にて熱分解を行っているが、この方法でも転化率も40%程度である。
Figure JPOXMLDOC01-appb-C000002
 上述のような脱ハロゲン化水素において、転化率を向上させるには反応条件をさらに過酷なものにしなければならず、また、高温での反応であることからも、生成物のタール化、炭化、反応器の耐久性等、工業的に製造することは相当な困難を強いられることが予想される。
 一方、ハロゲン化オレフィンの選択的なフッ素化は、以前から制御の面で難があった。例えば特許文献8の方法では、フッ素化は良好に進行し、該目的物を得る一方、フッ素原子の異なる副生成物が生成するために選択性が低下することがあった(以下参照)。
Figure JPOXMLDOC01-appb-C000003
 また、従来よりハロゲン化オレフィンの骨格にトリフルオロメチル基(CF3基)を持つ基質のフッ素化反応も知られている。しかしながら、フッ素原子の強い電子求引性の為、フッ素化の反応性に関してもフッ素原子のない基質と比べて大きく異なってくる。特許文献9での方法は、該目的物は得られるが、同時にフッ素化が更に進行して得られる高次フッ素化生成物、すなわち1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa)が副生し、選択性が低下することがあった(以下参照)。
Figure JPOXMLDOC01-appb-C000004
 また、特許文献5の方法は、取り扱いが危険なフッ化水素を用いる必要があるという安全上の問題のほか、選択性が低いこと、生成する塩化水素、1,1,1,3,3-ペンタフルオロプロパン、未反応1-クロロ-3,3,3-トリフルオロプロペン、フッ化水素との分離精製が難しく装置的な負荷が大きくなる等、改良すべき点があり工業的な製造方法としては必ずしも好ましくない。
 フッ素化または塩素化フッ素化炭化水素の気相フッ素化触媒としては、アルミナ、クロミアをフッ素化して調製したアルミニウムまたはクロムのオキシフルオリドや、各種の金属を担持した担持触媒が知られている。文献(Chemistry of Organic Fluorine Compounds: 2nd Ed.(1976) Milos Hudlicky,p99)には、五塩化アンチモンを活性炭に吸着させた触媒を用いて、1,1,2,2-テトラクロロエタンにフッ化水素と塩素を200℃で反応させ、1,1,2-トリクロロ-1,2,2-トリフルオロエタンを65%の収率で得られることが記載されている。また、EP712826号公開公報には五塩化アンチモンを活性炭に担持した触媒が、1-クロロ-1,1-ジフルオロエタンをフッ化水素でフッ素化して1,1,1-トリフルオロエタンとすることができることが開示されている。これらは何れも塩素化エタン類のフッ素化に有効な触媒の一つとして五塩化アンチモン担持活性炭を提供するものということができる。
 ところが、ハロゲン化プロパン類をフッ素化触媒存在下フッ化水素でフッ素化する際には、特許文献5に開示された、フッ素化活性が顕著であるとされているクロムを触媒とした気相反応の場合においても見られるように、フッ素化プロペン類の生成または原料フッ素化プロペンが未反応のまま残ることによる、目的物の収率の低下という問題が生じる。
 これらのことから、本発明の目的物である1,3,3,3-テトラフルオロプロペンを、工業的規模で効率的かつ高収率で得る製造方法の確立が望まれていた。これを本発明の第1の課題とする。
 フルオロオレフィンは、含フッ素炭化水素であって、且つ、二重結合を有する化合物であり、飽和ハイドロフルオロカーボンよりも反応性が高い。その中でも1,3,3,3-テトラフルオロプロペンは、電子吸引性の強いトリフルオロメチル基を有する反応性が高い化合物であり、特にシス体は塩基存在下分解が進行する。一方、ゼオライトは水の存在下塩基性を示すことは知られており、水吸着の初期においては激しい発熱を伴うことはよく知られている。したがって、1,3,3,3-テトラフルオロプロペンにゼオライトを作用させた場合、何らかの反応が進行しうることは、容易に類推できる。
 さらに、特許文献11に示すようにゼオライトはオレフィン水和反応の触媒として有用であることも公知であり、1,3,3,3-テトラフルオロプロペンの脱水方法として有効な方法は知られていない。従って、1,3,3,3-テトラフルオロプロペンの脱水において、分解や水和反応が進行しない脱水方法を提供することを本発明の第2の課題とする。
 本発明者らは、第1の課題を解決するため、鋭意検討した結果、1,1,1,3,3-ペンタクロロプロパンを原料とし、以下の2工程を経ることにより、変換率ならびに目的とする1,3,3,3-テトラフルオロプロペンの選択率を高め、その結果、目的生成物から蒸留分離し難い原料または中間生成物である不飽和化合物の含有量を著しく低減させ得ることを見出し、本発明に到達したものである。
 さらに、本発明者らは第2の課題を解決するために鋭意検討を加えたところ、多量に水を含む1,3,3,3-テトラフルオロプロペンであっても、特定のゼオライトと接触させることで、水分をほとんど含有しないようにできることを見いだし本発明を完成させた。
 本発明の第1の特徴に依れば、以下の発明1~発明10を含む、1,3,3,3-テトラフルオロプロペンの製造方法が提供される。これによって、第1の課題が解決される。
[発明1]
1,1,1,3,3-ペンタクロロプロパンに、フッ化水素を反応させることにより、1-クロロ-3,3,3-トリフルオロプロペンを得る第1工程と、
 第1工程で得られた1-クロロ-3,3,3-トリフルオロプロペンに、気相中、フッ素化触媒存在下、フッ化水素を反応させる第2工程を含む、1,3,3,3-テトラフルオロプロペンの製造方法。
[発明2]
第2工程で得られた1,3,3,3-テトラフルオロプロペンを、更に以下の工程を経由することを特徴とする、発明1に記載の方法。
A工程:第2工程で得られた1,3,3,3-テトラフルオロプロペンを含む反応混合物から過剰量のフッ化水素(HF)、及び1-クロロ-3,3,3-トリフルオロプロペン、及び1,1,1,3,3-ペンタフルオロプロパンを取り除く工程。
B工程:A工程の後に、さらに残りのフッ化水素(HF)を取り除く工程。
C工程:B工程で得られた1,3,3,3-テトラフルオロプロペンから塩化水素(HCl)を取り除く工程。
[発明3]
1,1,1,3,3-ペンタクロロプロパンに、フッ化水素を反応させることにより、1-クロロ-3,3,3-トリフルオロプロペンを得る(第1工程)際、気相中、フッ素化触媒の非存在下で反応を行うことを特徴とする、発明1に記載の方法。
[発明4]
反応圧力として0.1~1.0MPaの範囲で、かつ反応温度として150~350℃の範囲で反応を行うことを特徴とする、発明3に記載の方法。
[発明5]
1,1,1,3,3-ペンタクロロプロパンに、フッ化水素を反応させることにより、1-クロロ-3,3,3-トリフルオロプロペンを得る(第1工程)際、液相中、フッ素化触媒の非存在下で反応を行うことを特徴とする、発明1に記載の方法。
[発明6]
反応圧力として0.5~6.0MPaの範囲で、かつ反応温度として100~200℃の範囲で反応を行うことを特徴とする、発明5に記載の方法。
[発明7]
1-クロロ-3,3,3-トリフルオロプロペンを、気相中、フッ素化触媒存在下、フッ化水素と反応させる(第2工程)際、フッ素化触媒が活性炭、又はクロム、チタン、アルミニウム、マンガン、ニッケル、コバルト、ジルコニウムの中から選ばれる1種または2種以上の金属の酸化物、フッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、オキシフッ化塩化物を担持した活性炭、アルミナ、フッ素化アルミナ、フッ化アルミニウム、ジルコニア又はフッ素化ジルコニアであることを特徴とする、発明1に記載の方法。
[発明8]
反応圧力として0.1~1.0MPaの範囲で、かつ反応温度として200~600℃の範囲で反応を行うことを特徴とする、発明7に記載の方法。
[発明9]
発明1乃至8の何れか1つの方法で得られた1,3,3,3-テトラフルオロプロペンを精製することを特徴とする、トランス-1,3,3,3-テトラフルオロプロペンの製造方法。
[発明10]
発明9で得られたトランス-1,3,3,3-テトラフルオロプロペンより分離された、1,3,3,3-テトラフルオロプロペン中に含まれる1-クロロ-3,3,3-トリフルオロプロペン、シス-1,3,3,3-テトラフルオロプロペン、1,1,1,3,3-ペンタフルオロプロパンを第2工程の原料に再び用いることにより行うことを特徴とする、発明1乃至9の何れか1つに記載の方法。
 これまでに、本発明の第1工程のように、1,1,1,3,3-ペンタクロロプロパンにフッ化水素を反応させて1-クロロ-3,3,3-トリフルオロプロペンを製造する方法は、特許文献5-7に挙げられているように、数多くの文献が存在するが、1,1,1,3,3-ペンタクロロプロパンに対し、フッ化水素を反応させて1-クロロ-3,3,3-トリフルオロプロペンを得、続いて該プロペンを用いて気相中、フッ素化触媒存在下、フッ化水素と反応させることにより、1,3,3,3-テトラフルオロプロペンを工業スケールで効率良く製造する例はこれまで知られていなかった。
 また、本発明の第1工程において、フッ素化触媒の非存在下(本明細書では「無触媒」とも言う)で反応を行うことにより、1-クロロ-3,3,3-トリフルオロプロペンを高い収率で得る知見も得た。
 また、第1工程では反応が進むにつれて、反応系内に塩化水素(HCl)が副生するが、本発明では、ここで副生する塩化水素を取り除くことで、1-クロロ-3,3,3-トリフルオロプロペンの変換率及び選択率を向上させ、さらに第2工程においても高選択率かつ高収率で目的物である1,3,3,3-テトラフルオロプロペンを得る知見も得た。
 また、第2工程については、特定の金属を用いることが好ましい知見も得た。
このように、本発明の製造方法は工業的に実施可能な容易な反応条件において、従来技術よりも高い収率で目的化合物が製造可能である。環境負荷がかからず、高い生産性で目的とする1,3,3,3-テトラフルオロプロペンを製造できることとなった。
 本発明の第2の特徴に依れば、以下の(1)~(7)を含む、1,3,3,3-テトラフルオロプロペンの脱水方法が提供される。これによって、第2の課題が解決される。
(1)少なくとも水を含む1,3,3,3-テトラフルオロプロペンをゼオライトと接触させることを特徴とする、1,3,3,3-テトラフルオロプロペンの脱水方法。
(2)ゼオライトがフォージャサイト属のゼオライトである(1)に記載の1,3,3,3-テトラフルオロプロペンの脱水方法。
(3)ゼオライトが合成ゼオライト3A、4A、5A、10Xまたは13Xである(1)または(2)に記載の1,3,3,3-テトラフルオロプロペンの脱水方法。
(4)1,3,3,3-テトラフルオロプロペンが、一般式
   CFYCl3-YCH=CHFWCl1-W
(式中、Wは0または1、Yは0~3の整数を表す。但し、W=1で且つY=3の場合を除く)をフッ化水素でフッ素化して得られた1,3,3,3-ペンタフルオロプロペンであることを特徴とする(1)乃至(3)いずれか1つに記載の脱水方法。
(5)1,3,3,3-テトラフルオロプロペンが、1-クロロ-3,3,3-トリフルオロプロペンをフッ化水素でフッ素化して得られた1,3,3,3-テトラフルオロプロペンであることを特徴とする(1)乃至(4)のいずれか1つに記載の脱水方法。
(6)1,3,3,3-テトラフルオロプロペンが、1,1,1,3,3-ペンタフオロプロパンより脱フッ化水素して得られた1,3,3,3-テトラフルオロプロペンであることを特徴とする(1)乃至(3)のいずれか1つに記載の脱水方法。
(7)1,3,3,3-テトラフルオロプロペンが、シス体、トランス体またはその混合物のいずれか1つである(1)乃至(6)いずれか1つに記載の脱水方法。
である。
 本発明において、第1の特徴と第2の特徴を組み合わせてもよい。すなわち、本発明の第1の特徴によって製造された1,3,3,3-テトラフルプロペンを、本発明の第2の特徴によって脱水してもよい。
詳細な説明
 本発明の1,3,3,3-テトラフルオロプロペンの製造方法により、工業的に入手可能な1,1,1,3,3-ペンタクロロプロパンを原料とし、好適な反応条件下で各工程が良好に進行し、良好な収率で1,3,3,3-テトラフルオロプロペンを製造できるという効果を奏する。
 以下、本発明の第1の特徴を、さらに詳細に説明する。ただし、以下の説明においては、簡略化のために、第1の特徴と明記することを省略する。
本発明では、1,1,1,3,3-ペンタクロロプロパンに、フッ化水素を反応させることにより、1-クロロ-3,3,3-トリフルオロプロペンを得(第1工程)、続いて第1工程で得られた1-クロロ-3,3,3-トリフルオロプロペンに、気相中、フッ素化触媒存在下、フッ化水素を反応させることにより、1,3,3,3-テトラフルオロプロペンを得る(第2工程)工程によってなる。
 スキーム1として以下にまとめる。
Figure JPOXMLDOC01-appb-C000005
 まず、第1工程について説明する。第1工程は1,1,1,3,3-ペンタクロロプロパンに、フッ化水素を反応させることにより、1-クロロ-3,3,3-トリフルオロプロペンを得る工程である。
 第1工程の出発原料である1,1,1,3,3-ペンタクロロプロパンは、公知の方法で製造することができるが、例えば、1,1,1,3,3-ペンタクロロプロパンは、塩化ビニリデンとクロロホルムとを銅アミン触媒存在下に反応させる方法(M.Kotoraら、React.Kinet.Catal.Lett.,44,2、1991,415.)、四塩化炭素と塩化ビニルとを銅アミン触媒存在下に反応させる方法(M.Kotoraら、J.Mol.Catal.,77,1992,51.)、四塩化炭素と塩化ビニルとを塩化第一鉄触媒存在下に反応させる方法(J.Org.Chem.USSR,第3巻,1969,2101頁)、特開平8-239333号公報等で得ることができる。
 本工程において、1,1,1,3,3-ペンタクロロプロパンに対するフッ化水素のモル比は化学量論以上必要であり、通常、1,1,1,3,3-ペンタクロロプロパン1モルに対してフッ化水素は3モル以上であれば1-クロロ-3,3,3-トリフルオロプロペンの生成に十分な量であるが、タールの生成を防ぐためには6モル以上が好ましい。
 本工程はフッ素化触媒の存在下で行うこともできるが、フッ素化触媒の非存在下(無触媒とも言う)で当該反応を行うことが、本発明における大きな特徴の一つである。無触媒でフッ化水素を反応させることにより、問題となっていた触媒の廃棄又はリサイクル、反応容器の腐食、そして経済性という問題がなくなり、工業的なスケールで容易に製造できることとなった。なお、本工程においては、液相または気相にて実施することができる。
 本工程はフッ素化触媒の存在下で行う際、詳細は後述するが、本工程における反応条件(液相又は気相)により、用いる触媒が異なってくる。
 本工程において、気相中で反応を行う場合には、用いるフッ素化触媒は、金属化合物を担体に担持して使用される。またアルミナ、チタニア、ステンレス鋼等をフッ素化したもの(例えば、フッ素化アルミナ)や活性炭もフッ素化触媒として使用できる。担持触媒としては、例えばアルミニウム、クロム、マンガン、ニッケル、コバルトからなる群より選ばれる少なくとも1種の金属を担体に担持した触媒が挙げられる。担体としてはアルミナ、フッ素化アルミナ、フッ化アルミニウム、活性炭などが使用される。この触媒の調製方法は特に限定されないが、硝酸塩、塩化物等の可溶性化合物を溶解した溶液を担体に含浸させるか、スプレーし、次いで乾燥した後、金属塩が担持された担体を加熱下においてフッ化水素、塩化水素、塩化フッ化炭化水素等と接触させることで、担持させた金属または担体の一部または全部をハロゲン修飾させることで得られる。
 担体をフッ素化する方法はどの様な方法でも良いが、例えば、フッ素化アルミナは乾燥用や触媒担体用として市販されているアルミナに加熱しながら気相でフッ化水素を流通させたり、または常温付近でフッ化水素水溶液をスプレーしたり、その水溶液に浸漬し、次いで乾燥することで調製することができる。
 触媒または担体として用いる活性炭は、木材、木炭、椰子殻炭、パーム核炭、素灰等を原料とする植物系、泥炭、亜炭、褐炭、瀝青炭、無煙炭等を原料とする石炭系、石油残滓、オイルカーボン等を原料とする石油系または炭化ポリ塩化ビニリデン等の合成樹脂系がある。これら市販の活性炭から選択し使用することができ、例えば、瀝青炭から製造された活性炭(三菱化学カルゴン製BPL粒状活性炭)、椰子殻炭(日本エンバイロケミカルズ製G2c、G2x、GS3c、GS3x、C2c、C2x、X2M、三菱化学カルゴン製PCB)等が挙げられるが、これらに限定されない。形状、大きさも通常粒状で用いられるが、球状、繊維状、粉体状、ハニカム状等反応器に適合すれば通常の知識範囲の中で使用することができる。本発明において使用する活性炭は比表面積の大きな活性炭が好ましい。活性炭の比表面積ならびに細孔容積は、市販品の規格の範囲で十分であるが、それぞれ400m2/gより大きく、0.1cm3/gより大きいことが望ましい。またそれぞれ800~3000m2/g、0.2~1.0cm3/gであればよい。さらに活性炭を担体に用いる場合、水酸化アンモニウム、水酸化ナトリウム、水酸化カリウム等の塩基性水溶液に常温付近で10時間程度またはそれ以上の時間浸漬するか、活性炭を触媒担体に使用する際に慣用的に行われる硝酸、塩酸、フッ酸等の酸による前処理を施し、予め担体表面の活性化ならびに灰分の除去を行うことが望ましい。
 第1工程を液相で行う場合は、別途触媒として下に示す高原子価金属ハロゲン化物をそのまま、又は担体に担持した触媒、又は活性炭が使用できる。
 高原子価金属としては、アンチモン、タンタル、ニオブ、モリブデン、スズ、チタンなどが挙げられ、アンチモン、タンタルは好ましく、アンチモンが最も好ましい。担持された高原子価金属ハロゲン化物は、SbQ5(Qはそれぞれ独立にフッ素、塩素、臭素、ヨウ素を表す。以下同じ)、TaQ5、NbQ5、MoQ5、SnQ4、TiQ4などで表されるハロゲン化物であって、オキシハロゲン化物であってはならず、酸素を含有することは活性を低下させることとなるので避けなければならない。
 調製方法としては特に限定されず金属ハロゲン化物が活性炭に付着しておればよい。常温付近で液体である化合物、例えば、五塩化アンチモン、四塩化スズまたは四塩化チタンなどの場合、後に述べるような塩基性物質、酸または熱水による処理や脱水処理の前処理を必要に応じて施した活性炭にそのまま滴下、スプレー、浸漬等の方法で直接付着させることができる。また、常温で液体または固体の化合物である場合には、化合物を溶媒に溶解した溶液へ活性炭を浸漬し含浸させるか、スプレーなどの方法で活性炭に付着させる。次いで、このようにして得られた金属化合物の付着した活性炭を加熱または/および減圧して乾燥した後、金属ハロゲン化物の付着した活性炭を加熱下においてフッ化水素、塩素、塩化水素、塩化フッ化炭化水素等と接触させることで触媒は調製される。特に五塩化アンチモンを担持した場合、100℃以上で1当量以上の塩素により処理することが触媒の活性化に望ましい。
 本工程では、溶媒を加えて反応を行うこともできる。しかしながら、出発原料の1,1,1,3,3-ペンタクロロプロパンは、常温・常圧下で液体であるため、それ自身溶媒も兼ねることから、反応系に溶媒を共存させない条件下で反応させることも可能である。別途溶媒を加える場合には金属ハロゲン化物を分解しない溶媒であればよい。具体的には、例えば、メタノール、エタノール、イソプロパノールなどの低級アルコール類、メチルセロソルブ、エチルセロソルブ、ジエチルエーテルなどのエーテル類、アセトン、メチルエチルケトンなどのケトン類、ベンゼン、トルエン、キシレンなどの芳香族化合物、酢酸エチル、酢酸ブチルなどのエステル類、塩化メチレン、クロロホルム、テトラクロロエチレン、テトラクロロエタンなどの塩素系溶剤、1,1-ジクロロ-1-フルオロエタン、3,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1,3-ビス(トリフルオロメチル)ベンゼン、トリフルオロメチルベンゼンなどのフッ素系溶剤、および3-クロロ-1,1,1,3-テトラフルオロプロパン、3,3-ジクロロ-1,1,1-トリフルオロプロパンなどの本発明の方法における出発原料、中間体もしくは生成物であるフッ素化プロパンなどが挙げられる。
 例えば、五塩化アンチモン、五塩化ニオブ、五塩化タンタル、五塩化モリブデンなどの溶剤としては3-クロロ-1,1,1,3-テトラフルオロプロパン、3,3-ジクロロ-1,1,1-トリフルオロプロパン、1,3-ビス(トリフルオロメチル)ベンゼン、トリフルオロメチルベンゼンなど、フッ素系溶剤は好適である。これらの溶媒を使用する際または溶媒を用いない場合でも水などのハロゲン化物と反応性を有する物質を溶媒および処理系から除去し、実質的に水の不存在下において担持させるのが好ましい。
 触媒調製に用いる高原子価金属ハロゲン化物としては通常取りうる最高の原子価を有するハロゲン化物が好ましい。したがって、具体的にはアンチモン(V:酸化数をいう。以下同じ))、スズ(IV)、チタン(IV)、ニオブ(V)、タンタル(V)、モリブテン(V)であるのが好ましい。しかしながら、金属ハロゲン化物を担体に担持した後に、通常取りうる最高の酸化数に塩素などで酸化すること、さらには、金属化合物を担持し次いでハロゲン化および/または高次酸化することで高原子価金属ハロゲン化物を担持した触媒としてもよい。
 触媒調製に用いる金属ハロゲン化物は、具体的には、アンチモン化合物としては、五塩化アンチモン、三塩化二フッ化アンチモン、三塩化アンチモン、五臭化アンチモン、三臭化アンチモン、五フッ化アンチモン、三フッ化アンチモン、三沃化アンチモン等のハロゲン化アンチモンが挙げられ、五塩化アンチモンが最も好ましいものとして挙げることができる。同様にスズ化合物としては、四塩化スズ、二塩化スズ、チタン化合物としては、四塩化チタン、三塩化チタン、ニオブ化合物としては、五塩化ニオブ、タンタル化合物としては、五塩化タンタル、モリブテン化合物としては、五塩化モリブデンが挙げられる。
 使用する触媒調製に用いる高原子価金属ハロゲン化物の担持量は活性炭100重量部に対し0.1~500重量部であり、好ましくは1~250重量部である。また、二種以上の金属を併せて触媒活性を調節することも好ましい。その場合、アンチモンハロゲン化物(特に五塩化アンチモン)を主成分として、他のニオブ化合物(特に五塩化ニオブ)またはタンタル化合物(特に五塩化タンタル)、スズ、チタン、ニオブ、タンタル、モリブテンのハロゲン化物を組み合わせるのが好ましい。副成分金属/主成分金属の原子比は、副成分金属を含まない場合でもよいので50/50~0/100とすることができ、30/70~0/100が好ましい。
 本工程にかかる反応の接触時間は、通常0.1~300秒であり、生産性の面から好ましくは1~60秒である。
 本工程の反応温度は通常、100~450℃であるが、本工程における好ましい温度範囲については、液相反応では100~200℃が好ましく、気相反応では150~350℃が好ましい。反応温度が100℃未満では反応速度が小さい。液相中又は気相中の反応については、上述の温度範囲が好ましい範囲として挙げられる。
 本工程における反応圧力としては、通常、0.1~6.0MPaの範囲であるが、本工程における好ましい反応範囲については、液相反応では原料有機物、中間物質およびフッ化水素が反応系内で液化するのが好ましいことから0.5~6.0MPaが好ましく、気相反応では0.1~5.0MPaの範囲である。なお、気相反応においては、実際上は0.1~1.0MPa程度で行うのが好ましい。
 なお、本工程は液相反応であり、流通式または半流通式であることが好ましいが、バッチ式であってもかまわない。
 反応器は、常圧又は加圧下で反応を行う際、圧力に耐えるもの、また耐熱性とフッ化水素、塩化水素等に対する耐食性を有する材質で作られれば良く、鉄、ステンレス鋼、ハステロイ、モネル、白金などが好ましい。また、これらの金属でライニングされた材料で作ることもできる。
 なお、本工程の反応が進行していくにつれて、反応系内に塩化水素(HCl)が徐々に発生する為、生成する塩化水素及び目的物である1-クロロ-3,3,3-トリフルオロプロペンを反応系より抜き出す方法が、本工程において好ましい態様の一つである。第1工程において、反応後に1-クロロ-3,3,3-トリフルオロプロペンが得られるが、当該プロペンとさらにフッ化水素が反応して、第2工程の目的物である1,3,3,3-テトラフルオロプロペンが生成することがある。ここで前述した塩化水素を取り除くことは、後段の1,3,3,3-テトラフルオロプロペンの生成を促進することにつながり、収率を向上させることができる。
 また、塩化水素の存在は、反応基質の空間速度または接触時間の観点から見ると、反応器の容積を必要以上に大きくしなければならないというデメリットがある。
 また、第1工程では、塩化水素を完全に分離することが困難な場合には、後述する第2工程の後処理工程にて、目的物から容易に分離することが可能である。
 なお、本工程において常圧以上の圧力で反応させる場合には、反応生成物(反応ガス)自体が加圧された状態で反応器から取り出される。反応生成物に含まれる塩化水素、及び塩化水素以外の成分を気液分離または蒸留分離する際、凝縮に要する冷却エネルギーを、加圧状態では凝縮温度が上昇するため、本工程を常圧で行う場合に比べ著しく軽減できるという利点がある。
 一方、本工程で生成する微量の高沸点有機化合物は第2工程におけるフッ素化触媒の活性低下の原因となることがあるので、一部の有機化合物を除去することは好ましく、比較的沸点の高い有機化合物を除去する工程を加えることは好ましい。その手段は特に限定されないが、例えば、活性炭による吸着、硫酸での吸収、溶媒吸収、または冷却して液化分離するなどの方法が適宜採用できる。
 本工程における1-クロロ-3,3,3-トリフルオロプロペンの精製方法は特に限定されないが、例えば、生成物は最初に水又はアルカリ性水溶液で洗浄されて塩化水素、フッ化水素などの酸性物質が除去され、乾燥の後、蒸留に付されて有機不純物が除かれる。簡便には、水又はアルカリ性水溶液による洗浄をせずにそのまま有機不純物および塩化水素を蒸留分離し、微量のフッ化水素とともに第2工程の原料として使用することができる。
 また、本工程の反応により反応器から生成物とともに排出される過剰のフッ化水素は、塩化水素を蒸留等により分離後、冷却凝縮した有機物/フッ化水素の2層から分離回収し、再度反応に用いることができる。
 次に第2工程について説明する。第2工程は、第1工程で得られた1-クロロ-3,3,3-トリフルオロプロペンを、気相中、フッ素化触媒存在下、フッ化水素と反応させることにより、1,3,3,3-テトラフルオロプロペンを得る工程である。
 本工程における出発原料である1-クロロ-3,3,3-トリフルオロプロペンは、二重結合を有する化合物であり、構造異性体であるシス体、トランス体が存在するが、第2工程において、シス体、あるいはトランス体、又はシス体及びトランス体の混合物であっても反応に特に問題なく、良好に進行する。
 本工程でフッ素化触媒として用いる活性炭は、木材、のこくず、木炭、椰子殻炭、パーム核炭、素灰などを原料とする植物質系、泥炭、亜炭、褐炭、瀝青単、無煙炭などを原料とする石炭系、石油残渣、硫酸スラッジ、オイルカーボンなどを原料とする石油系あるいは合成樹脂を原料とするものなどがある。このような活性炭は、各種のものが市販されているのでそれらのうちから選んで使用すればよい。例えば、瀝青炭から製造された活性炭(カルゴン粒状活性炭BPL(三菱化学カルゴン(株)製)など)や椰子殻炭(PCB(三菱化学カルゴン(株)製)、G2x(日本エンバイロケミカルズ(株)製など)を挙げることができるが、当然これらの種類、製造業者に限られることはない。また、これらの活性炭は通常粒状で使用するが、その形状、大きさは特に限定されず、通常の知識をもって反応器の大きさを基準に決定することができる。
 本工程でフッ素化触媒として用いる金属は、周期律表の4族、5族、6族、7族、8族、9族、10族、11族、13族、14族あるいは15族に属する金属から選ばれる。これらの金属のうち、フッ素化触媒は、好ましくはクロム、チタン、アルミニウム、マンガン、ニッケル、コバルト、ジルコニウムの中から選ばれる1種または2種以上の金属の酸化物、フッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、オキシフッ化塩化物を担持した活性炭である。また、担体として、アルミナ、フッ素化アルミナ、フッ化アルミニウム、ジルコニア又はフッ素化ジルコニアも使用できる。
 これらの金属担持活性炭触媒を調製する方法は限定されないが、活性炭そのまま、または予めフッ化水素、塩化水素、塩素化フッ素化炭化水素などによりハロゲンで修飾された活性炭にクロム、チタン、マンガン、ニッケル、コバルトの中から選ばれる1種または2種以上の金属の可溶性化合物を溶解した溶液を含浸するか、スプレーすることで調製される。
 金属担持量は0.1~80wt%、好ましくは1~40wt%が適当である。活性炭に担持させる金属の可溶性化合物としては、水、エタノール、アセトンなどの溶媒に溶解する該当金属の硝酸塩、塩化物、酸化物などが挙げられる。具体的には、硝酸クロム、三塩化クロム、三酸化クロム、重クロム酸カリウム、三塩化チタン、硝酸マンガン、塩化マンガン、二酸化マンガン、硝酸ニッケル、塩化ニッケル、硝酸コバルト、塩化コバルトなどを用いることができる。
 何れの方法で金属を担持した触媒も、使用の前に所定の反応温度以上の温度で予めフッ化水素、フッ素化(および塩素化)炭化水素などのフッ素化剤で処理し、反応中の触媒の組成変化を防止することが有効である。また、反応中に酸素、塩素、フッ素化または塩素化炭化水素などを反応器中に供給することは触媒寿命の延長、反応率、反応収率の向上に有効である。
 反応温度は200~600℃、好ましくは300~500℃であり、反応温度200℃よりも低ければ反応は遅く実用的ではない。反応温度が600℃を超えると触媒寿命が短くなり、また、反応は速く進行するが分解生成物等が生成し、1,3,3,3-テトラフルオロプロペンの選択率が低下するので好ましくない。
 触媒の賦活法はフッ素化触媒の再生に用いられる通常の方法を採用することができ、乾燥空気、塩素、フッ化水素等を活性低下した触媒と適宜接触させることにより再活性化することができる。
 反応圧力は特に限定されないが、装置の面から0.1~1.0MPaで行うのが好ましい。系内に存在する原料有機物、中間物質およびフッ化水素が、反応系内で液化しないような条件を選ぶことが望ましい。接触時間は、通常0.1~300秒、好ましくは5~60秒である。
 反応器は、耐熱性とフッ化水素、塩化水素等に対する耐食性を有する材質で作られれば良く、ステンレス鋼、ハステロイ、モネル、白金などが好ましい。また、これらの金属でライニングされた材料で作ることもできる。
 本工程において、反応領域へ供給する1-クロロ-3,3,3-トリフルオロプロペン/フッ化水素のモル比は反応温度により変わりうるが、1/1~1/60、好ましくは1/1~1/30である。フッ化水素が1-クロロ-3,3,3-トリフルオロプロペンの60モル倍を超えると同一反応器における有機物処理量の減少ならびに反応系から排出された未反応フッ化水素と生成物との混合物の分離に支障をきたし、一方、フッ化水素が1モル倍よりも少ないと反応率が低下し、選択率が低下するので好ましくない。
 本工程においては、化学量論よりも過剰量のフッ化水素を使用することが好ましいので、未反応のフッ化水素は未反応有機物および生成物から分離し、反応系へリサイクルする。フッ化水素と有機物の分離は、公知の手段で行うことができるが、以下に詳細に説明する。
 本工程で得られた1,3,3,3-テトラフルオロプロペンは、二重結合を有する化合物であり、シス体、及びトランス体の構造異性体が存在し、本工程ではこれらの混合物として得られる。この他に、1-クロロ-3,3,3-トリフルオロプロペン(シス体及びトランス体)、1,1,1,3,3-ペンタフルオロプロパン、過剰量のフッ化水素、そして塩化水素等を含む反応混合物として得られることが多い。
 また、1,3,3,3-テトラフルオロプロペンは、フッ化水素とは共沸組成を示すことがある為、これらの混合物から、特にフッ化水素を取り除くことは、非常に困難であった。
 ここで本工程では、以下の工程、すなわち、
A工程:第2工程で得られた1,3,3,3-テトラフルオロプロペンを含む反応混合物から過剰量のフッ化水素(HF)、及び1-クロロ-3,3,3-トリフルオロプロペン、及び1,1,1,3,3-ペンタフルオロプロパンを取り除く工程、
B工程:A工程後に、さらに残りのフッ化水素(HF)を取り除く工程、及び
C工程:B工程で得られた1,3,3,3-テトラフルオロプロペンから塩化水素(HCl)を取り除く工程を経る。
 以上のとおり、A工程~C工程を経ることで、1,3,3,3-テトラフルオロプロペンを含む有機物からフッ化水素を効率よく分離することができ、さらに該プロペンに含まれる、第1工程由来の塩化水素も取り除くことで、該プロペンの純度を向上させることが可能である。
 A工程では、1,3,3,3-テトラフルオロプロペン、1-クロロ-3,3,3-トリフルオロプロペン、1,1,1,3,3-ペンタフルオロプロパン、過剰量のフッ化水素、そして塩化水素等を含む反応混合物を蒸留分離等の操作を行うことにより、低沸分の塩化水素を含む1,3,3,3-テトラフルオロプロペンと、過剰量のフッ化水素を未反応の1-クロロ-3,3,3-トリフルオロプロペン、1,1,1,3,3-ペンタフルオロプロパン等の高沸成分とともに分離する。
ここで分離した高沸成分は、そのまま第2工程に戻し原料として再使用することができる。
B工程にてフッ化水素を取り除く際に用いる試剤としては、特に制限はなく、例えば、フッ化カリウム、フッ化ナトリウム等とフッ化水素の錯体を形成させて分離することができ、塩化カルシウム、水酸化カルシウム、酸化カルシウム、炭酸カルシウム等のカルシウム塩又はこれらの水溶液と反応させることにより、フッ化カルシウム(CaF2)として固定化処理を行い、該プロペンからフッ化水素を取り除くことができる。
 また、塩化ナトリウム、塩化カリウム等のアルカリ金属塩等とフッ化水素を反応させることで、それぞれ対応するフッ化金属塩として固定化処理を行い、該プロペンからフッ化水素を取り除くこともできる。
 一方、硫酸を用いることでも、該プロペンからフッ化水素を良好に取り除くことが可能である。硫酸を用いる場合、硫酸の量は、上記反応混合物に含まれるフッ化水素の量に依存する為、当業者が適宜調整することができる。例えば、溶解度の温度に対するグラフを用いて、100%硫酸中のフッ化水素の溶解度から、必要とされる硫酸の最小量を決めることができる(例えば30℃では、約34gのフッ化水素が100gの100%硫酸に溶解する)。
 硫酸の純度は特に限定されないが、好ましくは50%以上の純度であり、約98%~100%の純度を有するものがさらに好ましい。通常は市販されている工業用硫酸(98%)が使用できる。
 この処理は、反応生成物が液化しない温度であればよく、通常約20℃~約100℃、好ましくは約25℃~約50℃、より好ましくは約25℃~約40℃で行われる。
 例えば、硫酸で処理する際、取り除いたフッ化水素や、A工程で用いた硫酸は、それぞれ分離し、回収して再び再利用することも可能である。すなわち、このフッ化水素を別の反応の出発原料として使用し、硫酸を抽出工程での使用に再利用することができる。
 次に、C工程について説明する。B工程で得られた1,3,3,3-テトラフルオロプロペンから、該プロペン中に含まれる塩化水素(HCl)を取り除く(C工程)ことができ、塩化水素ガスを取り除く方法については、通常、有機化合物中に含まれる塩化水素を取り除く任意の方法(蒸留や水洗、抽出蒸留等)が挙げられる。また、これらを組み合わせて塩化水素を除去することも可能であり、例えば、水を用いる際は、特に制限はなく、用いる際の温度や量、接触方法については当業者が適宜調整することができる。
 なお、フッ化水素の分離工程では、飽和塩酸を用いることができ、この場合フッ化水素は水溶液として回収されるので、無水にするには蒸留等により分離する必要がある。
以上、A工程~C工程を経由することにより、1,3,3,3-テトラフルオロプロペンが高い純度で得られるが、ここで精製操作を行うことで、1,3,3,3-テトラフルオロプロペンから選択的にトランス体である、トランス-1,3,3,3-テトラフルオロプロペンを極めて高純度で得ることができる。精製操作としては、特に制限はないが、脱酸後、中和、水洗し、ゼオライト等により脱水乾燥後蒸留等により精製を行う。
蒸留操作が、トランス-1,3,3,3-テトラフルオロプロペンを高純度で得ることができることからも、特に好ましい態様として挙げられる。蒸留操作における蒸留塔の材質には制限はなく、ガラス製のもの、ステンレス製のもの、四フッ化エチレン樹脂、クロロトリフルオロエチレン樹脂、フッ化ビニリデン樹脂、PFA樹脂、ガラスなどを内部にライニングしたもの等を、用いることができる。蒸留塔中には、充填剤を詰めることもできる。蒸留は、減圧条件下で行うと、比較的低い温度で達成できるため、簡便であり、好ましい。この蒸留に要求される蒸留搭の段数に制限はないが、5~100段が好ましく、さらに好ましくは10~50段である。
このように、蒸留操作を行うことで、トランス-1,3,3,3-テトラフルオロプロペンが得られるが、ここでシス体である、シス-1,3,3,3-テトラフルオロプロペンや、1-クロロ-3,3,3-トリフルオロプロペン(シス体及びトランス体)が高沸分として得られる。これらの高沸成分は第2工程の原料として再び用いることができる。廃棄物を削減できることからも、高沸分の再使用は極めて有用な方法である。
 以下に実施例を挙げて本発明の第1の特徴を更に詳細に説明するが、本発明はこれらにより限定されない。ここで、組成分析値の「%」とは、反応混合物を直接ガスクロマトグラフィー(特に記述のない場合、検出器はFID)によって測定して得られた組成の「面積%」を表す。
[調製例1]
 三菱化学カルゴン製椰子殻破砕炭100g(PCB 4×10メッシュ)を純水150gに浸漬し、別途40gの特級試薬CrCl3・6H2Oを100gの純水に溶かし調製した溶液と混合攪拌し、一昼夜放置した。次に濾過して活性炭を取り出し、電気炉中で200℃に保ち、2時間焼成した。得られたクロム担持活性炭を、電気炉を備えた直径5cm長さ30cmの円筒形SUS316L製反応管に充填し、窒素ガスを流しながら200℃まで昇温し、水の流出が見られなくなった時点で、窒素ガスにフッ化水素を同伴させその濃度を徐々に高めた。充填されたクロム担持活性炭へのフッ化水素の吸着によるホットスポットが反応管出口端に達したところで反応器温度を400℃に上げ、その状態を2時間保ち触媒の調製を行った。
[調製例2]
 三菱化学カルゴン製椰子殻破砕炭100g(PCB 4×10メッシュ)を純水150gに浸漬し、別途200gの20%TiCl3水溶液と混合攪拌し、一昼夜放置した。次に濾過して活性炭を取り出し、電気炉中で200℃に保ち、2時間焼成した。得られたチタン担持活性炭を電気炉を備えた直径5cm長さ30cmの円筒形SUS316L製反応管に充填し、窒素ガスを流しながら200℃まで昇温し、水の流出が見られなくなった時点で、窒素ガスにフッ化水素を同伴させその濃度を徐々に高めた。充填されたチタン担持活性炭へのフッ化水素の吸着によるホットスポットが反応管出口端に達したところで反応器温度を400℃に上げ、その状態を2時間保ち触媒の調製を行った。
[調製例3]
 336gの特級試薬CrCl3・6H2Oを純水に溶かして1Lとした。この溶液に直径5mm、表面積340m2の粒状γ-アルミナ250mlを浸漬し、一昼夜放置した。次に濾過してγ-アルミナを取り出し、熱風循環式乾燥器中で100℃に保ち、さらに一昼夜乾燥した。得られたクロム担持アルミナを、電気炉を備えた直径5cm長さ30cmの円筒形SUS316L製反応管に充填し、窒素ガスを流しながら300℃まで昇温し、水の流出が見られなくなった時点で、窒素ガスにフッ化水素を同伴させその濃度を徐々に高めた。充填されたクロム担持アルミナのフッ素化によるホットスポットが反応管出口端に達したところで反応器温度を450℃に上げ、その状態を1時間保ち触媒の調製を行った。
[調製例4]
1リットルガラス製フラスコに、表面積1200m2/g、細孔径18オングストロームの粒状椰子殻炭(日本エンバイロケミカルズ(株)製粒状白鷺G2X、4~6メッシュ)0.2リットルを入れ130~150℃に加温した後真空ポンプにより水分を除去した。水分の留出が認められなくなった時点でフラスコ内に窒素を導入して常圧とした。
[実施例1]
第1工程:1-クロロ-3,3,3-トリフルオロプロペンの製造
 還流冷却管および圧力センサー等を設けた容量2000mlの耐圧容器に、1,1,1,3,3-ペンタクロロプロパン(240fa)を217g仕込み、続いてフッ化水素を370g仕込んで反応器制御温度を160℃に設定し昇温した。反応の進行とともに塩化水素の発生により系内の圧力が上昇してきて、約30分後に4.0MPaを超えたところで、還流器を100℃に調整し、還流器後部に備えた背圧弁を調節して反応器内圧を4~4.2MPaに制御した。
 系内圧力を一定に保ちながら原料240faを1g/minおよびフッ化水素を0.74g/min導入しながら、反応生成物および副成塩化水素等を、背圧弁を経由して系外に捕集した。酸性ガスを除去した後、ドライアイス-アセトン-トラップに回収し、有機物をガスクロマトグラフィーで分析した結果を表1に示した。
Figure JPOXMLDOC01-appb-T000006
第2工程:1,3,3,3-テトラフルオロプロペンの製造
 電気炉を備えた円筒形反応管からなる気相反応装置(SUS316L製、直径1インチ・長さ30cm)に気相フッ素化触媒として調製例1で調製した触媒を150ml充填した。約100ml/分の流量で窒素ガスを流しながら反応管の温度を200℃に上げ、フッ化水素を約0.10g/分の速度で窒素ガスに同伴させた。そのまま反応管の温度を500℃まで昇温し1時間保った。次に反応管の温度を400℃に下げ、フッ化水素を0.15g/分の供給速度とし、第1工程で得られた1-クロロ-3,3,3-トリフルオロプロペンを予め気化させて0.06g/分の速度で反応器へ供給開始した。反応開始1時間後には反応は安定したので、その時から2時間にわたって、反応器から流出する生成ガスを水中に吹き込み酸性ガスを除去した後、ドライアイス-アセトン-トラップで6.0gの有機物を捕集した。捕集した有機物をガスクロマトグラフィーで分析した結果を表2に示した。
Figure JPOXMLDOC01-appb-T000007
[実施例2]
第1工程:1-クロロ-3,3,3-トリフルオロプロペンの製造
還流器温度を95℃に調整した以外は実施例1と同様の準備段階の後、表1に示す条件で実施例1と同様の反応操作、回収操作、分析を行った。結果を表1に示す。
第2工程:1,3,3,3-テトラフルオロプロペンの製造
第1工程で得られた1-クロロ-3,3,3-トリフルオロプロペンに対し、調製例2で調製した触媒を用い、実施例1と同様の準備段階の後、表2に示す条件で実施例1と同様の反応操作、回収操作、分析を行った。結果を表2に示す。
[実施例3]
第1工程:1-クロロ-3,3,3-トリフルオロプロペンの製造
還流器温度を85℃に調整し、240faを1.7g/minおよびフッ化水素を0.94g/minとした以外は実施例1と同様の準備段階の後、表1に示す条件で実施例1と同様の反応操作、回収操作、分析を行った。結果を表1に示す。
第2工程:1,3,3,3-テトラフルオロプロペンの製造
第1工程で得られた1-クロロ-3,3,3-トリフルオロプロペンに対し、活性炭を単独で用い、表2に示す条件で実施例1と同様の反応操作、回収操作、分析を行った。結果を表2に示す。
[実施例4]
第2工程:1,3,3,3-テトラフルオロプロペンの製造
実施例1の第1工程と同様の操作で得られた1-クロロ-3,3,3-トリフルオロプロペンに対し、調製例3で得られた触媒を用い、表2に示す条件で実施例1と同様の反応操作、回収操作、分析を行った。結果を表2に示す。
[実施例5]
第2工程:1,3,3,3-テトラフルオロプロペンの製造
実施例1の第1工程と同様の操作で得られた1-クロロ-3,3,3-トリフルオロプロペンに対し、1,1,1,3,3-ペンタフルオロプロパンを25モル%混合し原料とした。調製例3で得られた触媒を用い、表2に示す条件で実施例1と同様の反応操作、回収操作、分析を行った。結果を表2に示す。
[実施例6]
第1工程:1-クロロ-3,3,3-トリフルオロプロペンの製造
 電気炉を備えた円筒形反応管からなる気相反応装置(第一反応器:SUS316L製、直径2.5cm、長さ30cm)に気相フッ素化触媒として触媒調製例4で調製した活性炭を150ミリリットル充填した。約160ミリリットル/分の流量で窒素ガスを流しながら反応管の温度を200℃に上げ、フッ化水素を約0.2g/分の速度で窒素ガスに同伴し、そのまま反応管温度を250℃まで昇温し、フッ化水素の供給速度を0.75g/分とし、1,1,1,3,3-ペンタクロロプロパンを0.42g/分の速度で反応器に供給した。系内の圧力は反応器後部に備えた背圧弁により0.8MPaとした。反応開始2時間後には反応は安定したので、反応器から流出する生成ガスを水中に吹き込み酸性ガスを除去した後、ドライアイス-アセトン-トラップで捕集した。捕集した有機物をガスクロマトグラフィーで分析した結果を表3に示した(なお、本実施例においては、第2工程までは行っていない)。
Figure JPOXMLDOC01-appb-T000008
[実施例7]
第1工程:1-クロロ-3,3,3-トリフルオロプロペンの製造
 還流冷却器と攪拌機を備えたSUS316L製1リットルオートクレーブに、調製例4に示した活性炭100ミリリットル、1,1,2,2-テトラクロロエタン0.3モル(50.4g)を仕込み、攪拌しながら温度を180℃に保ち、フッ化水素の供給速度を0.75g/分、1,1,1,3,3-ペンタクロロプロパンを0.42g/分の速度で反応器に供給した。反応の進行とともに塩化水素の発生により系内の圧力は上昇するが、反応器後部に備えた背圧弁により1MPaとした。
 反応開始3時間後には反応は安定したので、反応器から流出する生成ガスを水中に吹き込み酸性ガスを除去した後、ドライアイス-アセトン-トラップで捕集した。捕集した有機物をガスクロマトグラフィーで分析した結果を表3に示した(なお、本実施例においては、第2工程までは行っていない)。
[実施例8]
第1工程:1-クロロ-3,3,3-トリフルオロプロペンの製造
反応器に触媒を用いずに実施例1と同様の反応操作、回収操作、そして分析を行った。ガスクロマトグラフィーで分析した結果を表3に示した(なお、本実施例においては、第2工程までは行っていない)。
 以下、本発明の第2の特徴を、さらに詳細に説明する。ただし、以下の説明においては、簡略化のために、第2の特徴と明記することを省略する。
本発明の方法によると、分解や水和反応を進行することなく1,3,3,3-テトラフルオロプロペンに含まれる水を除去できるという効果がある。
 本発明において水分を除去するために使用するゼオライトは、フォージャサイト属、シャバサイト属、モルデナイト属などのものが挙げられる。フォージャサイト属としては、フォージャサイトなどの天然ゼオライト、3A、4A、5AなどのA型、10X、13XなどのX型、Y型などの合成ゼオライト、シャバサイト属としては、シャバサイト、グメリナイト、エリオナイト、レビナイトなどの天然ゼオライト、R型、S型、またはT型の合成ゼオライト、モルデナイト属としては、天然産または合成品のモルデナイト、クリノプチロライトなどを挙げることができる。
 また、各型のゼオライトには、各種の変成品、例えば、Si/Al比を変えたり、ゼオライト合成に続いてまたは焼成後に後処理を施すなどの方法で得られた、耐酸グレード、耐熱グレードなどが市販されているがこれらを選択して使用することもできる。
 これらのうちフォージャサイト属の合成ゼオライトが好ましく、入手の容易な合成ゼオライト3A、4A、10X、13Xなどが特に好ましい。本発明に使用するゼオライトは、粉末、顆粒、造粒品などの何れの形状のものでもよいが、特に充填塔形式で使用する時は、粘土、CMCなどの造粒剤とともに成形・焼成した球状または棒状のものが取り扱い易く好ましい。
 1,3,3,3-テトラフルオロプロペンとゼオライトの接触方法は限定されないが、容器中の1,3,3,3-テトラフルオロプロペンにゼオライトを投入し、攪拌または無攪拌で所定時間接触させる回分式方法、ゼオライトを充填した容器に1,3,3,3-テトラフルオロプロペンを通過させる流通式方法などが挙げられる。処理温度は、特に限定されないが、分解や副反応を抑える観点から、温度が高すぎる条件で処理することは好ましくない。かかる温度としては、-50~60℃であり、-40~50℃が好ましい。常圧付近で処理を行う場合、-30~40℃で行うのが装置上の点、および1,3,3,3-テトラフルオロプロペンの品質保持の点で最も好ましい。60℃を超えると、ゼオライトの水分吸着能力が低下することや、1,3,3,3-テトラフルオロプロペンが分解することがあるので好ましくない。処理圧力は処理対象を液体にするか、または、気体の状態にするかにより選択することができ、通常0.05~1MPaで行う。
 流通式方法では液の線速は1cm/hr~10m/hr程度であり、2cm/hr~5m/hrが好ましい。線速が1cm/hrより遅いと処理時間が長くなるため好ましくなく、10m/hrを越えると破過時間が短くなり好ましくない。
 回分式方法では、処理時間は水の含有量、1,3,3,3-テトラフルオロプロペンへのゼオライトの添加量、処理温度に依存するが、1分~100時間であり、2分~50時間が好ましく、10分~10時間がより好ましい。ゼオライトの添加量は特に限定されないが、ゼオライト/1,3,3,3-テトラフルオロプロペンの重量比を0.001~10とするのが好ましい。0.001以下では処理に長時間を要し、また、10以上であることには特別技術上の不利益はないが、有機物の回収率が低下するため経済的に好ましくない。
 また、気体状態で処理する場合は、温度を1,3,3,3-テトラフルオロプロペンの沸点以上とすることが必要で、常圧で-19℃以上、好ましくは0~50℃で行う。
 本発明の方法を適用する1,3,3,3-テトラフルオロプロペンは、少なくとも水を含むものであって、同時に水を伴っていてもよい。水洗浄後の含有水は通常300~700ppm程度であり、含有水と同伴水との合計量は3000ppm~10%であるが、ミストセパレーター等の水分分離工程があれば、2000ppm程度となり、該工程のありなしにより大きく異なるため特に限定されない。本発明の方法では水の含有量を100ppm以下に減少させることができる。
 本発明の方法を適用する際には、後述のように反応工程から取り出された生成物が酸性成分を含む場合、水洗浄および/または塩基性水溶液での洗浄を行い、酸性成分を含まないものが好ましい。酸性成分が除去された生成物は、低温で凝縮される際に固化、閉塞しないように、本発明の脱水工程に供される。精製工程の最終段階として蒸留工程の後にさらに本脱水方法を適用することにより水分量を1~50ppmに低減することが可能である。
 本発明の方法を適用する1,3,3,3-テトラフルオロプロペンの製造方法は特に限定されない。
 例えば、一般式CFYCl3-YCH=CHFWCl1-W(式中、Wは0または1、Yは0~3の整数を表す。但し、W=1で且つY=3の場合を除く)で表されるクロロヒドロプロぺンをフッ化水素でフッ素化することにより製造することができる。かかるクロロヒドロプロぺンには、1-クロロ-3,3,3-トリフルオロプロペン(CF3CH=CHCl)、CF2ClCHCHF、CFCl2CH=CHF等が挙げられ、1-クロロ-3,3,3-トリフルオロプロペンを触媒の存在下フッ化水素でフッ素化する方法が知られている。
 また、1,1,1,3,3-ペンタフルオロプロパンから脱フッ化水素する方法でも製造することができ、熱分解による方法や、アルカリ金属の水酸化物存在下、脱フッ化水素する方法によって製造したものを挙げることができる。(発明の背景の欄において述べた方法参照)。
 1,3,3,3-テトラフルオロプロペンは、二重結合を有する化合物であり、シス体、及びトランス体の構造異性体が存在する。上記で例示した「1-クロロ-3,3,3-トリフルオロプロペンのフッ素化」、「1,1,1,3,3-ペンタフルオロプロパンの脱フッ化水素」のどちらの製造方法で製造した場合でも、1,3,3,3-テトラフルオロプロペンはシス体及びトランス体の混合物として得られる。
 1-クロロ-3,3,3-トリフルオロプロペンをフッ化水素と反応させる製造方法は、液相でも気相でも可能であるが、フッ素化触媒存在下、気相中において製造する場合であって、該フッ素化触媒が活性炭またはクロム化合物等の金属化合物を担持した活性炭である製造法を以下に例示する。
 フッ素化触媒である活性炭は、木材、のこくず、木炭、椰子殻炭、パーム核炭、素灰などを原料とする植物質系、泥炭、亜炭、褐炭、瀝青炭、無煙炭などを原料とする石炭系、石油残渣、硫酸スラッジ、オイルカーボンなどを原料とする石油系あるいは合成樹脂を原料とするものなどがある。このような活性炭は、各種のものが市販されているのでそれらのうちから選んで使用すればよい。例えば、瀝青炭から製造された活性炭(例えば、カルゴン粒状活性炭CAL(東洋カルゴン(株)製)、椰子殻炭(例えば、武田薬品工業(株)製)などを挙げることができるが、当然これらの種類、製造業者に限られることはない。また、これらの活性炭は通常粒状で使用するが、その形状、大きさは特に限定されず、通常の知識をもって反応器の大きさを基準に決定することができる。
 また、上記の活性炭は、アルミニウム、クロム、マンガン、ニッケル、コバルト、チタンの中から選ばれる1種または2種以上の金属の酸化物、フッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、オキシフッ化塩化物等を担持した活性炭であってもよい。
 これらの金属担持活性炭触媒を調製する方法は限定されないが、活性炭そのまま、または予めフッ化水素、塩化水素、塩素化フッ素化炭化水素などによりハロゲンで修飾された活性炭にクロム、チタン、マンガン、ニッケル、コバルトの中から選ばれる1種または2種以上の金属の可溶性化合物を溶解した溶液を含浸するか、スプレーすることで調製される。
 金属担持量は0.1~80wt%、好ましくは1~40wt%が適当である。活性炭に担持させる金属の可溶性化合物としては、水、エタノール、アセトンなどの溶媒に溶解する該当金属の硝酸塩、塩化物、酸化物などが挙げられる。具体的には、硝酸クロム、三塩化クロム、三酸化クロム、重クロム酸カリウム、三塩化チタン、硝酸マンガン、塩化マンガン、二酸化マンガン、硝酸ニッケル、塩化ニッケル、硝酸コバルト、塩化コバルトなどを用いることができる。
 何れの方法で金属を担持した触媒も、使用の前に所定の反応温度以上の温度で予めフッ化水素、フッ素化(および塩素化)炭化水素などのフッ素化剤で処理し、反応中の触媒の組成変化を防止することが有効である。また、反応中に酸素、塩素、フッ素化または塩素化炭化水素などを反応器中に供給することは触媒寿命の延長、反応率、反応収率の向上に有効である。
 反応温度は200~600℃、好ましくは300~500℃であり、反応温度200℃よりも低ければ反応は遅く実用的ではない。反応温度が600℃を超えると触媒寿命が短くなり、また、反応は速く進行するが分解生成物等が生成し、1,3,3,3-テトラフルオロプロペンの選択率が低下するので好ましくない。
 この製造方法において、反応領域へ供給する1-クロロ-3,3,3-トリフルオロプロペン/フッ化水素のモル比は反応温度により変わりうるが、1/1~1/60、好ましくは1/1~1/30である。フッ化水素が1-クロロ-3,3,3-トリフルオロプロペンの60モル倍を超えると同一反応器における有機物処理量の減少ならびに反応系から排出された未反応フッ化水素と生成物との混合物の分離に支障をきたし、一方、フッ化水素が1モル倍よりも少ないと反応率が低下し、選択率が低下するので好ましくない。
 この製造方法においては、過剰量のフッ化水素を使用することが好ましいので、未反応のフッ化水素は未反応有機物および生成物から分離し、反応系へリサイクルする。フッ化水素と有機物の分離は、公知の手段で行うことができる。
 反応圧力は特に限定されないが、装置の面から1~10kg/cm2で行うのが好ましい。系内に存在する原料有機物、中間物質およびフッ化水素が、反応系内で液化しないような条件を選ぶことが望ましい。接触時間は、通常0.1~300秒、好ましくは5~60秒である。
 反応器は、耐熱性とフッ化水素、塩化水素等に対する耐食性を有する材質で作られれば良く、ステンレス鋼、ハステロイ、モネル、白金などが好ましい。また、これらの金属でライニングされた材料で作ることもできる。
 上記製造方法で得られた反応生成物は1,3,3,3-テトラフルオロプロペン(シス体及びトランス体)、原料の1-クロロ-3,3,3-トリフルオロプロペン(シス体及びトランス体)、過剰量のフッ化水素および反応により生成する塩化水素を含む反応混合物として得られる。
 この反応生成物は酸性成分を含むので、精製の工程において酸性成分を除去する操作が必要となる。すなわち、反応生成物は、例えば、塩化水素、未反応のフッ化水素とともに反応器から液体または気体状態で取り出された後、過剰のフッ化水素が液相分離などの操作で除去され、ついで、水または塩基性水溶液を通すことにより酸性成分が除かれる。この反応生成物は脱水工程に供される。
 一方、1,3,3,3-テトラフルオロプロペンは1,1,1,3,3-ペンタフルオロプロパンを脱フッ化水素することにより製造できる。かかる反応としては、触媒的熱分解反応や、アルカリ水酸化物の存在下の脱フッ化水素が挙げられる。
 熱分解反応としては、熱分解又はアルミナ、ジルコニア、炭素又はそれらにアルミニウム、クロムなどを担持された触媒を使用した接触分解が挙げられるがこれらに限られない。これらの熱分解反応は通常気相で、また、温度を高めた状態、加圧もしくは減圧下で行うことができる。フルオロカーボン、ハイドロフルオロカーボン、ハイドロカーボンなどのフッ化水素に対して不活性な溶媒やアルゴン、窒素などの不活性ガスを用いても行うこともできる。
 具体的には、1,1,1,3,3-ペンタフルオロプロパンを200~600℃の温度でクロムを担持した活性炭に通じると1,3,3,3-テトラフルオロプロペンとフッ化水素の混合ガスが反応生成物として得られる(特開平11-140002号公報)ものがある。反応により1,3,3,3-テトラフルオロプロペンは、トランス体を主体としたシス体との混合物で得られるが、本発明では混合物であっても特段差し支えない。また、1,1,1,2,3,3-ヘキサフルオロプロパンを430℃の温度で活性炭に通じると1,1,1,2,3-ペンタフルオロプロペンとフッ化水素の混合ガスが反応生成物として得られる(日本特許第3158440号)。
 上記製造方法で得られた反応生成物は1,3,3,3-テトラフルオロプロペン(シス体及びトランス体)および反応により生成するフッ化水素を含む反応混合物として得られる。酸性成分は水または塩基性水溶液を通すことにより除かれる。酸性成分を除いた反応生成物は脱水工程に供される。
 上記に例示したどちらの方法で製造した場合であっても、反応生成物は水または塩基性水溶液と接触するので、相応の水分を含有する。含水量は反応生成物の成分、温度、接触方法等により違ってくるが、概ね300~700ppmであり、水の同伴を伴う場合は更に高くなる。本発明の脱水方法は、このような系においても使用可能であるが、過剰の同伴水はミストセパレーター等の予備脱水工程により予め脱水しておくことが望ましい。
 ミストセパレーターは、金属、樹脂、無機充填剤などを充填した二重管に水を含んだ反応生成物を低温下に通過させることにより生成物に同伴される飽和水分以上の過剰水分を除去するものである。この操作により反応生成物の水分量を2000~2500ppmにすることが可能である。
 過剰の水分量を低減した反応生成物に対して、本発明の脱水方法を適応することにより、10~100ppm程度にまで水分量を低減できる。
ついで、上記反応生成物を蒸留することにより、1,3,3,3-テトラフルオロプロペンの任意の異性体(シス体またはトランス体)を選択的に得ることができ、例えばトランス-1,3,3,3-テトラフルオロプロペンを高純度(99%以上)で得られる(調製例2参照)。
 蒸留操作における蒸留塔の材質には制限はなく、ガラス製のもの、ステンレス製のもの、四フッ化エチレン樹脂、クロロトリフルオロエチレン樹脂、フッ化ビニリデン樹脂、PFA樹脂、ガラスなどを内部にライニングしたもの等を、用いることができる。蒸留塔中には、充填剤を詰めることもできる。蒸留は、減圧条件下で行うと、比較的低い温度で達成できるため、簡便であり、好ましい。この蒸留に要求される蒸留搭の段数に制限はないが、5~100段が好ましく、さらに好ましくは10~50段である。
 蒸留生成後の1,3,3,3-テトラフルオロプロペンにさらに本発明の脱水方法を適応することも可能である。本発明の脱水方法により、反応生成物の水分量は、1~50ppm以下にまで低減できる。
本発明の脱水方法は液相でも気相でも実施できるが、常圧で行う場合には、水が固化しない気相で行うことが望ましい。また、加圧下で行う場合には、脱水装置の大きさ、形状、処理量などが有利になるため液相で処理することが好ましい。
 また、本発明の方法は、回分式装置による方法は当然可能であるが、より好ましくは流通式による方法である。例えば、ゼオライトを充填した管状容器に少なくとも1,3,3,3-テトラフルオロプロペンを含む液体または気体を流通することで目的を達成することはできるが、かかる吸着装置に適用されている通常の応用形式を取ることも可能であるのは言うまでもない。
 以下、実施例により本発明の第2の特徴を詳細に説明する。実施例は、別に指示がない限り約20℃の室温で行った。
[調製例1]
 リボンヒーターにより加熱ができるSUS-316製反応管(内径23mm、長さ300mm)に触媒としてCr/Cを50ml充填し、200~400℃の温度範囲でフッ化水素を0.2g/minで8時間反応器に導入し、触媒の活性化を行った。
 反応管の温度を320℃になるように設定し、1,1,1,3,3-ペンタフルオロプロパンを0.80g/minの速度で反応器に連続導入して、10時間反応を継続し、反応生成物を得た。
 上記反応生成物をサンプリングし、酸吸収用水トラップにて未反応HFを吸収除去した後にガスクロマトグラフィーにて分析を行ったところ表1の結果を得た。
Figure JPOXMLDOC01-appb-T000009
 [実施例1]
 調製例1で得られた反応生成物を気化器によりガス化し、2.19g/minの速度で水にバブリングさせた後、5℃の冷媒で冷却したSUS-316製ミストセパレーター(予めSUS-316製充填物を充填)に導入した。この操作により、反応生成物に同伴する水分を除去した。出口の有機物ガスを捕集し、カールフィッシャー法で水分の測定したところ、水分量は2100ppmであった。 ミストセパレーター通過後の反応生成物を、直径2mmの球状の合成ゼオライトA3を100ml充填したSUS-316製脱水管(内径23mm、長さ350mm)に2.19g/minの速度(線速度6.0m/min)で通過させた。出口の有機物ガスを捕集し、カールフィッシャー法で水分を測定したところ、水分50ppmであった。また、ガスクロマトグラフィーで純度有機物の組成比は表1の値と同等であり、新たな有機物は見出されなかった。
 [調製例2]
 実施例1の方法で脱水した反応生成物を蒸留し、トランス-1,3,3,3-テトラフルオロプロペンを単離した。水分は殆どトランス-1,3,3,3-テトラフルオロプロペンとともに留出した。カールフィッシャー法で測定した水分は80ppm、ガスクロマトグラフィーで測定した純度は、トランス-1,3,3,3-テトラフルオロプロペン純度99.9%であった。
 [実施例2]
 SUS-316製脱水管(内径23mm、長さ350mm)に直径2mmの球状の合成ゼオライトA3を100ml充填した。調製例2で得られた精製後のトランス-1,3,3,3-テトラフルオロプロペン(水分100ppm)を、25℃、0.5MPaGに加圧した条件で、線速度1.0m/hで流通させた。脱水管出口のトランス-1,3,3,3-テトラフルオロプロペンを、ガスクロマトグラフィーで純度、カールフィッシャー法で水分を測定した。その結果、水分10ppm、トランス-1,3,3,3-テトラフルオロプロペン純度99.9%であった。新たな有機物は見出されなかった。

Claims (20)

  1. 1,1,1,3,3-ペンタクロロプロパンに、フッ化水素を反応させることにより、1-クロロ-3,3,3-トリフルオロプロペンを得る第1工程と、
     第1工程で得られた1-クロロ-3,3,3-トリフルオロプロペンに、気相中、フッ素化触媒存在下、フッ化水素を反応させる第2工程を含む、1,3,3,3-テトラフルオロプロペンの製造方法。
  2. 第2工程で得られた1,3,3,3-テトラフルオロプロペンを、更に以下の工程を経由することを特徴とする、請求項1に記載の方法。
    A工程:第2工程で得られた1,3,3,3-テトラフルオロプロペンを含む反応混合物から過剰量のフッ化水素(HF)、及び1-クロロ-3,3,3-トリフルオロプロペン、及び1,1,1,3,3-ペンタフルオロプロパンを取り除く工程。
    B工程:A工程の後に、さらに残りのフッ化水素(HF)を取り除く工程。
    C工程:B工程で得られた1,3,3,3-テトラフルオロプロペンから塩化水素(HCl)を取り除く工程。
  3. 1,1,1,3,3-ペンタクロロプロパンに、フッ化水素を反応させることにより、1-クロロ-3,3,3-トリフルオロプロペンを得る(第1工程)際、気相中、フッ素化触媒の非存在下で反応を行うことを特徴とする、請求項1に記載の方法。
  4. 反応圧力として0.1~1.0MPaの範囲で、かつ反応温度として150~350℃の範囲で反応を行うことを特徴とする、請求項3に記載の方法。
  5. 1,1,1,3,3-ペンタクロロプロパンに、フッ化水素を反応させることにより、1-クロロ-3,3,3-トリフルオロプロペンを得る(第1工程)際、液相中、フッ素化触媒の非存在下で反応を行うことを特徴とする、請求項1に記載の方法。
  6. 反応圧力として0.5~3.0MPaの範囲で、かつ反応温度として100~200℃の範囲で反応を行うことを特徴とする、請求項5に記載の方法。
  7. 1-クロロ-3,3,3-トリフルオロプロペンを、気相中、フッ素化触媒存在下、フッ素化剤と反応させる(第2工程)際、フッ素化触媒が活性炭、又はクロム、チタン、アルミニウム、マンガン、ニッケル、コバルト、ジルコニウムの中から選ばれる1種または2種以上の金属の酸化物、フッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、オキシフッ化塩化物を担持した活性炭、アルミナ、フッ素化アルミナ、フッ化アルミニウム、ジルコニア又はフッ素化ジルコニアであることを特徴とする、請求項1に記載の方法。
  8. 反応圧力として0.1~1.0MPaの範囲で、かつ反応温度として200~600℃の範囲で反応を行うことを特徴とする、請求項7に記載の方法。
  9. 請求項1乃至8の何れか1つの方法で得られた1,3,3,3-テトラフルオロプロペンを精製することを特徴とする、トランス-1,3,3,3-テトラフルオロプロペンの製造方法。
  10. 請求項9で得られたトランス-1,3,3,3-テトラフルオロプロペンより分離された、1,3,3,3-テトラフルオロプロペン中に含まれる1-クロロ-3,3,3-トリフルオロプロペン、シス-1,3,3,3-テトラフルオロプロペン、1,1,1,3,3-ペンタフルオロプロパンを第2工程の原料に再び用いることにより行うことを特徴とする、請求項1乃至9の何れか1つに記載の方法。
  11. 請求項1乃至8の何れか1つの方法で得られた1,3,3,3-テトラフルオロプロペンをゼオライトと接触させることによって、1,3,3,3-テトラフルオロプロペンを脱水することを特徴とする、請求項1乃至8の何れか1つに記載の方法。
  12. ゼオライトがフォージャサイト属のゼオライトである請求項11に記載の方法。
  13. ゼオライトが合成ゼオライト3A、4A、5A、10Xまたは13Xである請求項11または請求項12に記載の方法。
  14. 少なくとも水を含む1,3,3,3-テトラフルオロプロペンをゼオライトと接触させることを特徴とする、1,3,3,3-テトラフルオロプロペンの脱水方法。
  15. ゼオライトがフォージャサイト属のゼオライトである請求項14記載の1,3,3,3-テトラフルオロプロペンの脱水方法。
  16. ゼオライトが合成ゼオライト3A、4A、5A、10Xまたは13Xである請求項14または請求項15に記載の1,3,3,3-テトラフルオロプロペンの脱水方法。
  17. 1,3,3,3-テトラフルオロプロペンが、一般式
     CFYCl3-YCH=CHFWCl1-W
    (式中、Wは0または1、Yは0~3の整数を表す。但し、W=1で且つY=3の場合を除く)をフッ化水素でフッ素化して得られた1,3,3,3-ペンタフルオロプロペンであることを特徴とする請求項14乃至16のいずれか1つに記載の脱水方法。
  18. 1,3,3,3-テトラフルオロプロペンが、1-クロロ-3,3,3-トリフルオロプロペンをフッ化水素でフッ素化して得られた1,3,3,3-テトラフルオロプロペンであることを特徴とする請求項14乃至17のいずれか1つに記載の脱水方法。
  19. 1,3,3,3-テトラフルオロプロペンが、1,1,1,3,3-ペンタフルオロプロパンを脱フッ化水素して得られた1,3,3,3-テトラフルオロプロペンであることを特徴とする請求項14乃至16のいずれか1つに記載の脱水方法。
  20. 1,3,3,3-テトラフルオロプロペンが、シス体、トランス体またはその混合物の何れかである請求項14乃至請求項19のいずれか1つに記載の脱水方法。
PCT/JP2009/066528 2008-09-25 2009-09-24 1,3,3,3-テトラフルオロプロペンの製造方法 WO2010035748A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980137581.0A CN102164881B (zh) 2008-09-25 2009-09-24 1,3,3,3-四氟丙烯的制造方法
EP09816163.1A EP2341040B1 (en) 2008-09-25 2009-09-24 Process for producing 1,3,3,3-tetrafluoropropene
US13/119,658 US9051231B2 (en) 2008-09-25 2009-09-24 Process for producing 1,3,3,3-tetrafluoropropene
MX2011003147A MX2011003147A (es) 2008-09-25 2009-09-24 Proceso para producir 1,3,3,3-tetrafluoropropeno.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-246880 2008-09-25
JP2008246880 2008-09-25
JP2008-255666 2008-09-30
JP2008255666A JP2010083818A (ja) 2008-09-30 2008-09-30 1,3,3,3−テトラフルオロプロペンの脱水方法
JP2009-217660 2009-09-18
JP2009217660A JP5515555B2 (ja) 2008-09-25 2009-09-18 1,3,3,3−テトラフルオロプロペンの製造方法

Publications (1)

Publication Number Publication Date
WO2010035748A1 true WO2010035748A1 (ja) 2010-04-01

Family

ID=44070504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066528 WO2010035748A1 (ja) 2008-09-25 2009-09-24 1,3,3,3-テトラフルオロプロペンの製造方法

Country Status (5)

Country Link
US (1) US9051231B2 (ja)
EP (1) EP2341040B1 (ja)
CN (1) CN102164881B (ja)
MX (1) MX2011003147A (ja)
WO (1) WO2010035748A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110275723A1 (en) * 2010-05-06 2011-11-10 Honeywell International Inc. Azeotrope-Like Compositions Of Tetrafluoropropene And Water
JP2012500185A (ja) * 2008-08-26 2012-01-05 ダイキン工業株式会社 共沸又は共沸様組成物、及び2,3,3,3−テトラフルオロプロペンの製造方法
WO2011126692A3 (en) * 2010-04-05 2012-01-05 Honeywell International Inc. Integrated process to co-produce trans-1-chloro-3,3,3-trifluoropropene and trans-1,3,3,3-tetrafluoropropene
JP2012020992A (ja) * 2010-06-16 2012-02-02 Daikin Industries Ltd 含フッ素プロペンの製造方法
US20120059200A1 (en) * 2010-09-03 2012-03-08 Pokrovski Konstantin A Integrated Process to Coproduce Trans-1-Chloro-3,3,3-Trifluoropropene, Trans-1,3,3,3-Tetrafluoropropene, and 1,1,1,3,3-Pentafluoropropane
JP2012082189A (ja) * 2010-09-14 2012-04-26 Central Glass Co Ltd ヒドロフルオロカーボンまたはヒドロクロロフルオロカーボンの脱水方法、および該脱水方法を用いた1,3,3,3−テトラフルオロプロペンの製造方法
WO2012063566A1 (ja) * 2010-11-10 2012-05-18 セントラル硝子株式会社 トランス-1,3,3,3-テトラフルオロプロペンの製造方法
WO2012135208A2 (en) * 2011-04-01 2012-10-04 Honeywell International Inc. Use of low global warming potential (lgwp) solvents for finger print development applications
US8436217B2 (en) 2011-04-25 2013-05-07 Honeywell International Inc. Integrated process to co-produce 1,1,1,3,3-pentafluoropropane, trans-1-chloro-3,3,3-trifluoropropene and trans-1,3,3,3-tetrafluoropropene
JP2013520421A (ja) * 2010-02-18 2013-06-06 ハネウェル・インターナショナル・インコーポレーテッド (e)−1−クロロ−3,3,3−トリフルオロプロペンを製造する統合プロセス及び方法
WO2013161692A1 (ja) * 2012-04-26 2013-10-31 セントラル硝子株式会社 トランス-1,3,3,3-テトラフルオロプロペンと1,1,1,3,3-ペンタフルオロプロパンとの並産方法
WO2014010750A1 (en) * 2012-07-10 2014-01-16 Daikin Industries, Ltd. Process for producing fluorine-containing olefin
WO2014010530A1 (ja) * 2012-07-11 2014-01-16 セントラル硝子株式会社 1-クロロ-3,3,3-トリフルオロプロペンとフッ化水素の分離方法およびそれを用いた1-クロロ-3,3,3-トリフルオロプロペンの製造方法
US8664456B2 (en) 2012-03-28 2014-03-04 Honeywell International Inc. Integrated process for the co-production of trans-1-chloro-3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoropropane
JP2015511946A (ja) * 2012-02-15 2015-04-23 ハネウェル・インターナショナル・インコーポレーテッド HCFC−1233zdの生産方法
JP2016505578A (ja) * 2012-12-19 2016-02-25 中化近代環保化工(西安)有限公司Sinochem Modern Environmental Protection Chemicals (Xi’An) Co.,Ltd. 1,3,3,3−テトラフルオロプロペンの製法
CN106000075A (zh) * 2016-07-08 2016-10-12 浙江闰土新材料有限公司 苯氯化工艺中氯化尾气的净化吸收及循环利用方法和装置
JP2017124997A (ja) * 2016-01-15 2017-07-20 セントラル硝子株式会社 トランス−1−クロロ−3,3,3−トリフルオロプロペンの製造方法
JP2017531009A (ja) * 2014-10-16 2017-10-19 アルケマ フランス 1,1,1,3,3−ペンタクロロプロパンを含有する組成物

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540296B2 (en) * 2015-03-19 2017-01-10 Honeywell International Inc. Process for drying HCFO-1233zd
US9926244B2 (en) 2008-10-28 2018-03-27 Honeywell International Inc. Process for drying HCFO-1233zd
EP2485996B1 (en) 2009-10-09 2016-06-15 Blue Cube IP LLC Process for the production of chlorinated and/or fluorinated propenes
EP2485997B1 (en) 2009-10-09 2015-09-09 Dow Global Technologies LLC Process for the production of chlorinated and/or fluorinated propenes and higher alkenes
US8558041B2 (en) 2009-10-09 2013-10-15 Dow Global Technologies, Llc Isothermal multitube reactors and processes incorporating the same
US8951431B2 (en) * 2010-05-06 2015-02-10 E I Du Pont De Nemours And Company Azeotrope-like compositions of pentafluoropropene and water
CA2836493A1 (en) 2011-05-31 2012-12-06 Max Markus Tirtowidjojo Process for the production of chlorinated propenes
EP2714631B1 (en) 2011-05-31 2020-05-13 Blue Cube IP LLC Process for the production of chlorinated propenes
BR112013031230A2 (pt) 2011-06-08 2017-01-31 Dow Agrosciences Llc processo para produção de propenos clorados e/ou fluorados
CN103717559A (zh) 2011-08-07 2014-04-09 陶氏环球技术有限责任公司 生产氯化的丙烯的方法
JP6166261B2 (ja) 2011-08-07 2017-07-19 ブルー キューブ アイピー エルエルシー 塩素化プロペンの製造方法
ES2674149T3 (es) * 2011-10-12 2018-06-27 Bayer Intellectual Property Gmbh Fluoración catalítica en fase gaseosa de 1,1,2-tricloroetano y/o 1,2-dicloroeteno para producir 1-cloro-2,2-difluoroetano
JP5834791B2 (ja) * 2011-11-11 2015-12-24 セントラル硝子株式会社 (e)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法
WO2013074394A1 (en) * 2011-11-18 2013-05-23 Dow Global Technologies, Llc Process for the production of chlorinated propanes and/or propenes
JP6050372B2 (ja) 2011-11-21 2016-12-21 ブルー キューブ アイピー エルエルシー クロロアルカンの製造方法
CN104024187B (zh) 2011-12-02 2017-04-12 蓝立方知识产权有限责任公司 生产氯化烷烃的方法
CA2856545A1 (en) 2011-12-02 2013-06-06 Dow Global Technologies Llc Process for the production of chlorinated alkanes
JP6170068B2 (ja) 2011-12-13 2017-07-26 ブルー キューブ アイピー エルエルシー 塩素化プロパン及びプロペンの製造方法
EP2794528B1 (en) 2011-12-22 2020-02-26 Blue Cube IP LLC Process for the production of tetrachloromethane
WO2013096706A1 (en) 2011-12-23 2013-06-27 Dow Global Technologies, Llc Process for the production of alkenes and/or aromatic compounds
EP2897932A1 (en) 2012-09-20 2015-07-29 Dow Global Technologies LLC Process for the production of chlorinated propenes
WO2014046970A1 (en) 2012-09-20 2014-03-27 Dow Global Technologies, Llc Process for the production of chlorinated propenes
EP2900364B1 (en) 2012-09-30 2018-06-13 Blue Cube IP LLC Weir quench and processes incorporating the same
CA2887559A1 (en) 2012-10-26 2014-05-01 Dow Global Technologies Llc Mixer and reactor and process incorporating the same
CA2893841C (en) 2012-12-18 2018-07-24 Dow Global Technologies Llc Process for the production of chlorinated propenes
CN103880589B (zh) * 2012-12-19 2015-07-29 中化蓝天集团有限公司 一种联产制备HFO-1234ze和HFC-245fa的工艺
JP6251286B2 (ja) 2012-12-19 2017-12-20 ブルー キューブ アイピー エルエルシー 塩素化プロペン生成のための方法
US8907146B2 (en) * 2013-02-04 2014-12-09 Honeywell International Inc. Process for the preparation of 1-chloro-3,3,3-trifluoropropene using a phase transfer catalyst
WO2014134233A2 (en) 2013-02-27 2014-09-04 Dow Global Technologies Llc Process for the production of chlorinated propenes
CN105026348A (zh) 2013-03-09 2015-11-04 蓝立方知识产权有限责任公司 用于生产氯化烷烃的方法
CN106660907B (zh) 2014-07-15 2019-01-22 中央硝子株式会社 反式-1-氯-3,3,3-三氟丙烯的制造方法
CN110845295A (zh) 2014-08-14 2020-02-28 科慕埃弗西有限公司 通过脱氟化氢来制备E-1,3,3,3-四氟丙烯(HFC-1234ze)的方法
ES2774378T3 (es) 2014-09-26 2020-07-20 Daikin Ind Ltd Composición basada en haloolefina
CN116042183A (zh) 2014-09-26 2023-05-02 大金工业株式会社 卤代烯类组合物及其使用
EP3009097A1 (en) * 2014-10-17 2016-04-20 Imactis Method for navigating a surgical instrument
CN105753640B (zh) * 2014-12-13 2018-07-31 西安近代化学研究所 一种1,3,3,3-四氟丙烯的制备方法
CN105753641B (zh) * 2014-12-13 2018-08-31 西安近代化学研究所 1,3,3,3-四氟丙烯的制备方法
JP2016222647A (ja) 2015-06-02 2016-12-28 セントラル硝子株式会社 ハイドロハロフルオロオレフィンの製造方法
US9938213B2 (en) * 2015-08-19 2018-04-10 Honeywell International Inc. Methods for removing acidic impurities from halogenated propenes
CN105251524B (zh) * 2015-10-15 2017-12-08 广东石油化工学院 生物质液化油催化裂化脱氧催化剂
CN109937196B (zh) * 2016-11-15 2022-08-16 Agc株式会社 1-氯-2,3,3-三氟丙烯的制造方法
CN107324968B (zh) * 2017-07-24 2020-08-04 浙江衢化氟化学有限公司 一种联产低碳发泡剂的方法
CN112624897A (zh) * 2019-09-24 2021-04-09 江西天宇化工有限公司 同时生产反式-1-氯-3,3,3-三氟丙烯和反式-1,3,3,3-四氟丙烯的方法
CN116143583B (zh) * 2023-04-19 2023-07-07 山东澳帆新材料有限公司 一种2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的联产制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA55349A (en) 1897-02-04 1897-03-22 Charles E. Case Lantern lighter
US2480560A (en) 1945-12-06 1949-08-30 Kinetic Chemicals Inc Method for pyrolyzing polyfluoroalkanes
CA485787A (en) 1952-08-12 R. Edwards Walter Gas scrubbing device
JPS4872105A (ja) 1971-12-29 1973-09-29
JPH07171402A (ja) 1993-12-22 1995-07-11 Mitsubishi Chem Corp ゼオライト再生触媒
EP0712828A1 (en) 1994-11-17 1996-05-22 Dsm N.V. Process for preparing an aldehyde
JPH08239333A (ja) 1995-03-03 1996-09-17 Central Glass Co Ltd 1,1,1,3,3−ペンタクロロプロパンの製造方法
JPH0967281A (ja) 1995-09-01 1997-03-11 Daikin Ind Ltd 1,1,1,3,3−ペンタフルオロプロペンの製造方法及び1,1,1,3,3−ペンタフルオロプロパンの製造方法
JPH09183740A (ja) 1995-12-29 1997-07-15 Daikin Ind Ltd 1,1,1,3,3−ペンタフルオロプロパンの製造方法
JPH09194404A (ja) * 1996-01-17 1997-07-29 Central Glass Co Ltd 1−クロロ−3,3,3−トリフルオロプロペンの製造法
JPH09241189A (ja) 1996-03-07 1997-09-16 Central Glass Co Ltd 1,1,1,3,3−ペンタフルオロプロパンの脱水方法
JPH107604A (ja) 1996-06-20 1998-01-13 Central Glass Co Ltd 1,3,3,3−テトラフルオロプロペンの製造法
JPH11140002A (ja) 1997-11-11 1999-05-25 Central Glass Co Ltd 1,3,3,3−テトラフルオロプロペンの製造法
JPH11180908A (ja) 1997-12-19 1999-07-06 Daikin Ind Ltd 1,1,1,3,3−ペンタフルオロプロパンの製造方法及びその製造中間体の製造方法
JP2000063300A (ja) 1998-07-21 2000-02-29 Elf Atochem North America Inc 1234ze調製
JP3158440B2 (ja) 1992-06-05 2001-04-23 ダイキン工業株式会社 1,1,1,2,3−ペンタフルオロプロペンの製造方法及び1,1,1,2,3−ペンタフルオロプロパンの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158440A (ja) 1989-11-17 1991-07-08 Kawatetsu Techno Res Corp 磁気ヘッドコア用磁性合金およびその製造方法
JPH0872105A (ja) 1994-09-08 1996-03-19 Otix:Kk 樹脂アキュムレータピストンのアンダーカット部成形方法及び成形用金型
US6235951B1 (en) * 1996-01-17 2001-05-22 Central Glass Company, Limited Method for producing 1,1,1,3,3-pentafluoropropane
US6111150A (en) * 1996-06-20 2000-08-29 Central Glass Company, Limited Method for producing 1,1,1,3,3,-pentafluoropropane
US5895825A (en) 1997-12-01 1999-04-20 Elf Atochem North America, Inc. Preparation of 1,1,1,3,3-pentafluoropropane
US6362382B1 (en) * 2001-07-20 2002-03-26 Atofina Chemicals, Inc. Uncatalyzed fluorination of 240fa
US6844475B1 (en) * 2003-08-08 2005-01-18 Honeywell International Business Machines Low temperature production of 1-chloro-3,3,3-trifluoropropene (HCFC-1233zd)
GB0611742D0 (en) 2006-06-14 2006-07-26 Ineos Fluor Holdings Ltd Desiccants for fluids
CN100488925C (zh) * 2007-04-11 2009-05-20 西安近代化学研究所 1,3,3,3-四氟丙烯的制备方法
CN100488926C (zh) 2007-04-11 2009-05-20 西安近代化学研究所 1,1,1,3,3-五氟丙烷的制备方法
CN101215220A (zh) 2008-01-16 2008-07-09 西安近代化学研究所 1,1,1,3-四氟丙烯的制备方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA485787A (en) 1952-08-12 R. Edwards Walter Gas scrubbing device
CA55349A (en) 1897-02-04 1897-03-22 Charles E. Case Lantern lighter
US2480560A (en) 1945-12-06 1949-08-30 Kinetic Chemicals Inc Method for pyrolyzing polyfluoroalkanes
JPS4872105A (ja) 1971-12-29 1973-09-29
JP3158440B2 (ja) 1992-06-05 2001-04-23 ダイキン工業株式会社 1,1,1,2,3−ペンタフルオロプロペンの製造方法及び1,1,1,2,3−ペンタフルオロプロパンの製造方法
JPH07171402A (ja) 1993-12-22 1995-07-11 Mitsubishi Chem Corp ゼオライト再生触媒
EP0712828A1 (en) 1994-11-17 1996-05-22 Dsm N.V. Process for preparing an aldehyde
JPH08239333A (ja) 1995-03-03 1996-09-17 Central Glass Co Ltd 1,1,1,3,3−ペンタクロロプロパンの製造方法
JPH0967281A (ja) 1995-09-01 1997-03-11 Daikin Ind Ltd 1,1,1,3,3−ペンタフルオロプロペンの製造方法及び1,1,1,3,3−ペンタフルオロプロパンの製造方法
JPH09183740A (ja) 1995-12-29 1997-07-15 Daikin Ind Ltd 1,1,1,3,3−ペンタフルオロプロパンの製造方法
JPH09194404A (ja) * 1996-01-17 1997-07-29 Central Glass Co Ltd 1−クロロ−3,3,3−トリフルオロプロペンの製造法
JPH09241189A (ja) 1996-03-07 1997-09-16 Central Glass Co Ltd 1,1,1,3,3−ペンタフルオロプロパンの脱水方法
JPH107604A (ja) 1996-06-20 1998-01-13 Central Glass Co Ltd 1,3,3,3−テトラフルオロプロペンの製造法
JPH11140002A (ja) 1997-11-11 1999-05-25 Central Glass Co Ltd 1,3,3,3−テトラフルオロプロペンの製造法
JPH11180908A (ja) 1997-12-19 1999-07-06 Daikin Ind Ltd 1,1,1,3,3−ペンタフルオロプロパンの製造方法及びその製造中間体の製造方法
JP2000063300A (ja) 1998-07-21 2000-02-29 Elf Atochem North America Inc 1234ze調製

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Chemistry of Organic Fluorine Compounds", 1976, MILOS HUDLICKY, pages: 99
I. L. KNUNYANTS ET AL., IZVEST. AKAD. NAUK S.S.S.R., OTDEL. KHIM. NAUK., 1960, pages 1412 - 18
J. ORG. CHEM. USSR, vol. 3, 1969, pages 2101
M. KOTORA ET AL., J. MOL. CATAL., vol. 77, 1992, pages 51
M. KOTORA ET AL., REACT. KINET. CATAL. LETT., vol. 44, no. 2, 1991, pages 415
R. N. HASZELDINE ET AL., J. CHEM. SOC., 1953, pages 1199 - 1206
See also references of EP2341040A4 *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500185A (ja) * 2008-08-26 2012-01-05 ダイキン工業株式会社 共沸又は共沸様組成物、及び2,3,3,3−テトラフルオロプロペンの製造方法
JP2014001393A (ja) * 2008-08-26 2014-01-09 Daikin Ind Ltd 共沸又は共沸様組成物、及び2,3,3,3−テトラフルオロプロペンの製造方法
JP2013520421A (ja) * 2010-02-18 2013-06-06 ハネウェル・インターナショナル・インコーポレーテッド (e)−1−クロロ−3,3,3−トリフルオロプロペンを製造する統合プロセス及び方法
WO2011126692A3 (en) * 2010-04-05 2012-01-05 Honeywell International Inc. Integrated process to co-produce trans-1-chloro-3,3,3-trifluoropropene and trans-1,3,3,3-tetrafluoropropene
JP2013523812A (ja) * 2010-04-05 2013-06-17 ハネウェル・インターナショナル・インコーポレーテッド トランス−1−クロロ−3,3,3−トリフルオロプロペンおよびトランス−1,3,3,3−テトラフルオロプロペンを同時生産するための統合されたプロセス
US8426656B2 (en) 2010-04-05 2013-04-23 Honeywell International Inc. Integrated process to co-produce trans-1-chloro-3,3,3-trifluoropropene and trans-1,3,3,3-tetrafluoropropene
US20110275723A1 (en) * 2010-05-06 2011-11-10 Honeywell International Inc. Azeotrope-Like Compositions Of Tetrafluoropropene And Water
EP2566929B2 (en) 2010-05-06 2020-03-18 Honeywell International Inc. Azeotropic and azeotrope-like composition of trans-1,3,3,3-tetrafluoropropene and water
EP2566929B1 (en) 2010-05-06 2016-08-10 Honeywell International Inc. AZEOTROPiC AND AZEOTROPE-LIKE COMPOSITION OF TRANS-1,3,3,3-TETRAFLUOROPROPENE AND WATER
US8747691B2 (en) * 2010-05-06 2014-06-10 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and water
JP2012020992A (ja) * 2010-06-16 2012-02-02 Daikin Industries Ltd 含フッ素プロペンの製造方法
US9334207B2 (en) * 2010-09-03 2016-05-10 Honeywell International Inc. Integrated process to coproduce trans-1-chloro-3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoropropane
JP2013540718A (ja) * 2010-09-03 2013-11-07 ハネウェル・インターナショナル・インコーポレーテッド トランス−1−クロロ−3,3,3−トリフルオロプロペン、トランス−1,3,3,3−テトラフルオロプロペン、及び1,1,1,3,3−ペンタフルオロプロパンを共製造するための統合方法
EP2611760A4 (en) * 2010-09-03 2015-05-20 Honeywell Int Inc INTEGRATED COPRODUCTION PROCESS OF TRANS-1-CHLORO-3,3,3-TRIFLUOROPROPENE, TRANS-1,3,3,3-TETRAFLUOROPROPENE, AND 1,1,1,3,3-PENTAFLUOROPROPANE
US20120059200A1 (en) * 2010-09-03 2012-03-08 Pokrovski Konstantin A Integrated Process to Coproduce Trans-1-Chloro-3,3,3-Trifluoropropene, Trans-1,3,3,3-Tetrafluoropropene, and 1,1,1,3,3-Pentafluoropropane
CN103097325A (zh) * 2010-09-14 2013-05-08 中央硝子株式会社 氢氟碳化合物或氢氯氟碳化合物的脱水方法、以及使用了该脱水方法的1,3,3,3-四氟丙烯的制造方法
JP2012082189A (ja) * 2010-09-14 2012-04-26 Central Glass Co Ltd ヒドロフルオロカーボンまたはヒドロクロロフルオロカーボンの脱水方法、および該脱水方法を用いた1,3,3,3−テトラフルオロプロペンの製造方法
US8877989B2 (en) 2010-09-14 2014-11-04 Central Glass Company, Limited Dehydration process of hydrofluorocarbon or hydrochlorofluorocarbon and production method of 1,3,3,3-tetrafluoropropene using the dehydration process
CN103209942A (zh) * 2010-11-10 2013-07-17 中央硝子株式会社 反式-1,3,3,3-四氟丙烯的制造方法
JP2012116830A (ja) * 2010-11-10 2012-06-21 Central Glass Co Ltd トランス−1,3,3,3−テトラフルオロプロペンの製造方法
WO2012063566A1 (ja) * 2010-11-10 2012-05-18 セントラル硝子株式会社 トランス-1,3,3,3-テトラフルオロプロペンの製造方法
WO2012135208A3 (en) * 2011-04-01 2012-12-06 Honeywell International Inc. Use of low global warming potential (lgwp) solvents for finger print development applications
WO2012135208A2 (en) * 2011-04-01 2012-10-04 Honeywell International Inc. Use of low global warming potential (lgwp) solvents for finger print development applications
US8652244B2 (en) 2011-04-01 2014-02-18 Honeywell International Inc. Use of low global warming potential (LGWP) solvents for finger print development applications
US8436217B2 (en) 2011-04-25 2013-05-07 Honeywell International Inc. Integrated process to co-produce 1,1,1,3,3-pentafluoropropane, trans-1-chloro-3,3,3-trifluoropropene and trans-1,3,3,3-tetrafluoropropene
EP2702018A2 (en) * 2011-04-25 2014-03-05 Honeywell International Inc. INTEGRATED PROCESS TO CO-PRODUCE 1,1,1,3,3-PENTAFLUOROPROPANE, TRANS-1-CHLORO-3,3,3-TRIFLUOROPROPENE and TRANS-1,3,3,3-TETRAFLUOROPROPENE
EP2702018A4 (en) * 2011-04-25 2014-11-26 Honeywell Int Inc INTEGRATED PROCESS FOR THE SIMULTANEOUS PREPARATION OF 1,1,1,3,3-PENTAFLUORO PROPANE, TRANS-1-CHLORO-3,3,3-TRIFLUORPROPENE AND TRANS-1,3,3,3-TETRAFLUORPROPENE
JP2015511946A (ja) * 2012-02-15 2015-04-23 ハネウェル・インターナショナル・インコーポレーテッド HCFC−1233zdの生産方法
US8664456B2 (en) 2012-03-28 2014-03-04 Honeywell International Inc. Integrated process for the co-production of trans-1-chloro-3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoropropane
JP2013241395A (ja) * 2012-04-26 2013-12-05 Central Glass Co Ltd トランス−1,3,3,3−テトラフルオロプロペンと1,1,1,3,3−ペンタフルオロプロパンとの並産方法
WO2013161692A1 (ja) * 2012-04-26 2013-10-31 セントラル硝子株式会社 トランス-1,3,3,3-テトラフルオロプロペンと1,1,1,3,3-ペンタフルオロプロパンとの並産方法
WO2014010750A1 (en) * 2012-07-10 2014-01-16 Daikin Industries, Ltd. Process for producing fluorine-containing olefin
JP2015525201A (ja) * 2012-07-10 2015-09-03 ダイキン工業株式会社 含フッ素オレフィンの製造方法
US9708234B2 (en) 2012-07-10 2017-07-18 Daikin Industries, Ltd. Process for producing fluorine-containing olefin
JP2014051485A (ja) * 2012-07-11 2014-03-20 Central Glass Co Ltd 1−クロロ−3,3,3−トリフルオロプロペンとフッ化水素の分離方法およびそれを用いた1−クロロ−3,3,3−トリフルオロプロペンの製造方法
WO2014010530A1 (ja) * 2012-07-11 2014-01-16 セントラル硝子株式会社 1-クロロ-3,3,3-トリフルオロプロペンとフッ化水素の分離方法およびそれを用いた1-クロロ-3,3,3-トリフルオロプロペンの製造方法
US9221732B2 (en) 2012-07-11 2015-12-29 Central Glass Company, Limited Method for separating 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride, and method for producing 1-chloro-3,3,3-trifluoropropene by using same
CN104520260A (zh) * 2012-07-11 2015-04-15 中央硝子株式会社 1-氯-3,3,3-三氟丙烯与氟化氢的分离方法和使用其的1-氯-3,3,3-三氟丙烯的制造方法
JP2016505578A (ja) * 2012-12-19 2016-02-25 中化近代環保化工(西安)有限公司Sinochem Modern Environmental Protection Chemicals (Xi’An) Co.,Ltd. 1,3,3,3−テトラフルオロプロペンの製法
JP2017531009A (ja) * 2014-10-16 2017-10-19 アルケマ フランス 1,1,1,3,3−ペンタクロロプロパンを含有する組成物
US10494319B2 (en) 2014-10-16 2019-12-03 Arkema France Compositions containing 1,1,1,3,3-pentachloropropane
JP7252709B2 (ja) 2014-10-16 2023-04-05 アルケマ フランス 1,1,1,3,3-ペンタクロロプロパンを含有する組成物
JP2017124997A (ja) * 2016-01-15 2017-07-20 セントラル硝子株式会社 トランス−1−クロロ−3,3,3−トリフルオロプロペンの製造方法
CN106000075A (zh) * 2016-07-08 2016-10-12 浙江闰土新材料有限公司 苯氯化工艺中氯化尾气的净化吸收及循环利用方法和装置
CN106000075B (zh) * 2016-07-08 2018-10-26 浙江闰土新材料有限公司 苯氯化工艺中氯化尾气的净化吸收及循环利用方法和装置

Also Published As

Publication number Publication date
MX2011003147A (es) 2011-05-25
US20110172472A1 (en) 2011-07-14
EP2341040A1 (en) 2011-07-06
EP2341040A4 (en) 2014-03-05
US9051231B2 (en) 2015-06-09
CN102164881A (zh) 2011-08-24
EP2341040B1 (en) 2017-09-06
CN102164881B (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2010035748A1 (ja) 1,3,3,3-テトラフルオロプロペンの製造方法
JP5827628B2 (ja) (e)−1−クロロ−3,3,3−トリフルオロプロペンを製造する統合プロセス及び方法
JP5515555B2 (ja) 1,3,3,3−テトラフルオロプロペンの製造方法
JP6084168B2 (ja) トランス−1−クロロ−3,3,3−トリフルオロプロペン、トランス−1,3,3,3−テトラフルオロプロペン、及び1,1,1,3,3−ペンタフルオロプロパンを共に製造するための統合方法
US8487144B2 (en) Process for producing fluorinated propene
JP6245013B2 (ja) 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
JP2014509310A (ja) 高純度e−1−クロロ−3,3,3−トリフルオロプロペン及びその製造方法
JP2010083818A (ja) 1,3,3,3−テトラフルオロプロペンの脱水方法
JP6688383B2 (ja) 2,3,3,3−テトラフルオロプロペン(1234yf)の調製プロセス
JP5187212B2 (ja) 1,3,3,3−テトラフルオロプロペンの製造方法
JP3031465B2 (ja) 1,1,1,3,3−ペンタフルオロプロパンの製造方法
JP3031464B2 (ja) 1,1,1,3,3−ペンタフルオロプロパンの製造方法
JP2000063301A (ja) フッ素化プロパンの製造方法
JP5990990B2 (ja) シス−1,3,3,3−テトラフルオロプロペンの製造方法
JP4079482B2 (ja) ハロゲン化プロパンの製造法
JP3154702B2 (ja) 1,1,1,3,3−ペンタフルオロプロパンの製造方法
JP7315856B2 (ja) 1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137581.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816163

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13119658

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009816163

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009816163

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/003147

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE