WO2010026920A1 - キシリレンジアミンの製造方法 - Google Patents

キシリレンジアミンの製造方法 Download PDF

Info

Publication number
WO2010026920A1
WO2010026920A1 PCT/JP2009/064989 JP2009064989W WO2010026920A1 WO 2010026920 A1 WO2010026920 A1 WO 2010026920A1 JP 2009064989 W JP2009064989 W JP 2009064989W WO 2010026920 A1 WO2010026920 A1 WO 2010026920A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
mass
hydrogenation reaction
liquid
xylylenediamine
Prior art date
Application number
PCT/JP2009/064989
Other languages
English (en)
French (fr)
Inventor
伸一 長尾
達之 熊野
憲次 中屋
隆助 重松
金司 加藤
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP09811446.5A priority Critical patent/EP2325162B1/en
Priority to US13/062,334 priority patent/US8759588B2/en
Priority to CN200980137104.4A priority patent/CN102159532B/zh
Priority to JP2010527769A priority patent/JP5531961B2/ja
Publication of WO2010026920A1 publication Critical patent/WO2010026920A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles

Definitions

  • the present invention may be abbreviated as a catalytic hydrogenation reaction (hereinafter referred to as a hydrogenation reaction) of phthalonitriles in a reactor filled with a catalytic hydrogenation catalyst (hereinafter also referred to as a hydrogenation catalyst, a catalyst or a catalyst layer). ) To xylylenediamine production method.
  • a catalytic hydrogenation reaction hereinafter referred to as a hydrogenation reaction
  • a catalytic hydrogenation catalyst hereinafter also referred to as a hydrogenation catalyst, a catalyst or a catalyst layer.
  • a method for producing xylylenediamine by hydrogenating phthalonitriles by a flow system (a trickle bed system) using a heterogeneous catalyst is known.
  • phthalonitriles are reduced by catalytic hydrogenation reaction with hydrogen in a gas-liquid solid three-phase by using a heterogeneous nickel-copper-molybdenum catalyst.
  • Patent Document 1 In the method of producing xylylenediamine by hydrogenating phthalonitriles by a fixed bed system using a heterogeneous catalyst, there is a drawback that the activity of the hydrogenation catalyst which is a heterogeneous catalyst is rapidly reduced.
  • hydrocracking As a method for regenerating and activating a catalyst in a conventionally known method for producing xylylenediamine, hydrocracking can be mentioned.
  • a contact hydrogenation catalyst having reduced activity by being used in a hydrogenation reaction of dicyanobenzene (phthalonitriles) is brought into contact with a hydrogen-containing gas at 200 to 500 ° C. and between the contact with the hydrogen-containing gas.
  • a method is known in which catalyst regeneration is improved and the catalyst layer differential pressure is improved by controlling the rate of temperature increase of the catalytic hydrogenation catalyst to 40 ° C./min or less, and then reused in the hydrogenation reaction of dicyanobenzene (Patent Document). 2).
  • an object of the present invention is to regenerate / activate a hydrogenation catalyst in which the catalytic activity is reduced or the catalyst layer differential pressure is increased in the hydrogenation reaction in which xylylenediamine is produced by hydrogenating phthalonitriles and the catalyst layer difference.
  • An object of the present invention is to provide a method for producing xylylenediamine which continuously uses a catalyst while improving the pressure.
  • the present inventors once interrupted the supply of a solution in which phthalonitriles were dissolved in a solvent, during which the phthalonitrile content was 3% by mass or less and xylylenediamine
  • the present inventors have found that the above problems can be solved by bringing a cleaning liquid having a content of 1% by mass or more into contact with the catalyst, and have reached the present invention.
  • the present invention is a method for producing xylylenediamine as described in [A] to [H] below.
  • a method for producing xylylenediamine by hydrogenation by supplying a solution in which phthalonitriles are dissolved in a solvent to a reactor filled with a catalyst, (1) interrupting the supply of the solution; (2) A cleaning liquid having a phthalonitrile content of 3% by mass or less and a xylylenediamine content of 1% by mass or more is brought into contact with the catalyst, (3) A method for producing xylylenediamine, wherein the supply of the solution is resumed after contact and the catalyst is continuously used for the hydrogenation reaction.
  • [D] The method for producing xylylenediamine according to any one of [A] to [C] above, wherein in (2), at least a part of the cleaning liquid is contacted with the catalyst by a circulation flow method or a one-pass flow method.
  • [E] The method for producing xylylenediamine according to any one of [A] to [D] above, wherein, in (2), the cleaning liquid is contacted with the catalyst in a hydrogen and / or nitrogen atmosphere.
  • [F] The method for producing xylylenediamine according to any one of [A] to [E] above, wherein the phthalonitrile is isophthalonitrile.
  • [G] The method for producing xylylenediamine according to any one of [A] to [F] above, wherein the solvent is liquid ammonia.
  • [H] The solvent according to any one of the above [C] to [F], wherein the solvent is liquid ammonia, and in (2), a hydrogenation reaction liquid from which part or all of the liquid ammonia is removed is used as a cleaning liquid.
  • the activity of the catalyst which has been lowered by being used in the hydrogenation reaction is recovered, and further, generated in the catalyst layer in the fixed bed system. It is possible to improve the differential pressure, regenerate the catalyst to a reusable state, and continue to use it as a hydrogenation catalyst for phthalonitriles.
  • a hydrogenation catalyst having a reduced catalytic activity due to a hydrogenation reaction is circulated through a one-pass distribution system or a one-pass distribution system, and the phthalonitrile content is 3% by mass or less and the xylylenediamine content is 1% by mass.
  • cleaning liquid (hereinafter sometimes simply referred to as “cleaning liquid”) is passed through and brought into contact with the catalyst for cleaning, which is an extremely simple operation and can be easily performed while the reactor is filled with the catalyst. , Industrially useful. Furthermore, compared with the hydrocracking described in Patent Document 2, etc., the catalyst can be regenerated at a lower temperature, and the apparatus cannot be controlled or the catalyst deteriorates due to a rapid rise in the catalyst temperature (catalyst sintering, pulverization, etc.). And safe, effective and effective reproduction is possible. Therefore, the catalyst can be used continuously for a long time, and the catalyst cost can be greatly reduced.
  • phthalonitriles examples of the phthalonitriles used in the raw material of the present invention (hereinafter sometimes referred to as raw material phthalonitriles) include orthophthalonitrile, isophthalonitrile, and terephthalonitrile.
  • the phthalonitriles one kind may be used alone, or two or more kinds may be mixed and used.
  • isophthalonitrile can be preferably used as a raw material.
  • the isophthalonitrile can be preferably used even if it is a mixture in which orthophthalonitrile or terephthalonitrile is mixed in a proportion of preferably 10% by mass or less (more preferably 6% by mass or less) of all phthalonitriles.
  • Examples of the method for producing phthalonitriles include a method of ammoxidation of alkyl-substituted benzene such as xylene, a method of reacting dichlorobenzene and hydrogen cyanide, a method of reacting phthalic acids and ammonia, and the like. Industrially, it is mainly produced by ammoxidation of alkyl-substituted benzene such as xylene.
  • ammoxidation of xylene is described in JP-B-49-45860, JP-A-49-13141, JP-A-63-190646, JP-A-5-170724, JP-A-1-275551, It can be carried out by known catalysts and known methods described in JP-A-5-170724 and JP-A-9-71561.
  • a solution in which phthalonitriles are dissolved in a solvent is supplied to a reactor filled with a catalyst and subjected to a hydrogenation reaction to obtain xylylenediamine.
  • the xylylenediamine obtained by the production method of the present invention includes three isomers of orthoxylylenediamine, metaxylylenediamine, and paraxylylenediamine.
  • metaxylylenediamine is the main product.
  • the method disclosed in Patent Document 1 can be used. That is, it is possible to use a flow system (trickle bed system) in which a heterogeneous catalyst is charged into a reactor and a phthalonitrile solution obtained by dissolving phthalonitrile in a solvent and hydrogen are supplied to the reactor.
  • This method is a method in which a phthalonitrile is reduced by a continuous catalytic hydrogenation reaction under a gas-liquid solid three-phase using a heterogeneous catalyst.
  • a continuous catalytic hydrogenation reaction by a trickle bed system using a heterogeneous catalyst is employed, the catalyst regeneration / activation effect by the catalyst washing operation described later appears more remarkably.
  • the reaction mode of hydrogenation of phthalonitriles may be not only a fixed bed but also a suspended bed, but a fixed bed is preferred.
  • the hydrogenation reaction is performed using a continuous flow reactor.
  • the fixed bed heterogeneous catalyst a known supported metal catalyst, non-supported metal catalyst, Raney catalyst, noble metal catalyst, or the like can be used.
  • the metal is preferably nickel, cobalt, or palladium, and the metal concentration is preferably 10 to 95% by mass, more preferably 20 to 80% by mass, and further preferably 30 to 70% by mass.
  • the carrier diatomaceous earth, silica, alumina, silica / alumina, magnesia, zirconia, titania, and activated carbon are preferable.
  • the reaction temperature in the hydrogenation of phthalonitriles is preferably 20 to 200 ° C, more preferably 30 to 160 ° C, still more preferably 40 to 120 ° C.
  • the reaction pressure (hydrogen pressure) in hydrogenation of phthalonitriles is preferably 1 to 30 MPa, more preferably 2 to 20 MPa, and further preferably 3 to 15 MPa.
  • liquid ammonia for example, liquid ammonia and various solvents that are stable under hydrogenation reaction conditions are used.
  • Specific solvents other than liquid ammonia include aromatic hydrocarbon solvents such as toluene, xylene and trimethylbenzene; ether solvents such as tetrahydrofuran and dioxane; alcohol solvents such as methanol, ethanol and propanol; benzylamine and methyl Examples include aromatic monoamine solvents such as benzylamine.
  • liquid ammonia and aromatic hydrocarbon solvents are preferable, and liquid ammonia is more preferable.
  • the catalyst is deactivated or permanently poisoned by the poisoning action of the catalyst due to the sintering due to the thermal load of the active component of the catalyst or the mixing of the active component and / or component of the catalyst which can be a catalyst poison. It is conceivable. "Deactivation" does not mean that the function as a catalyst is completely lost for the target hydrogenation reaction, but is in a state where it cannot be used industrially in terms of practical aspects such as productivity, utility and cost. .
  • reaction intermediate CBA 3-cyanobenzylamine
  • the hydrogenation catalyst layer differential pressure increases as the hydrogenation reaction continues. Therefore, in (1), the interruption of the supply of the raw material phthalonitrile solution can be determined using the concentration of the reaction intermediate CBA or the catalyst layer differential pressure as an index. Specifically, when the concentration of the reaction intermediate CBA is preferably 13% by mass or more, more preferably 10% by mass or more, and further preferably 6% by mass or more, the supply of the raw material phthalonitrile solution is interrupted. That's fine.
  • the supply of the raw material phthalonitrile solution should be interrupted in a timely manner, and from the viewpoint of stably producing xylylenediamine, the supply of the raw material phthalonitrile solution becomes impossible. It is preferable to interrupt the supply of the raw material phthalonitrile solution before.
  • the catalyst layer differential pressure is a value determined by the method described in the examples. Also effective is a method in which the supply is interrupted at regular intervals such that the catalyst activity does not decrease excessively and the catalyst layer differential pressure does not increase excessively without using the concentration of the reaction intermediate CBA or the catalyst layer differential pressure as an index. It is.
  • the cleaning liquid used in the operation (2) is a cleaning liquid having a phthalonitrile content of 3% by mass or less and a xylylenediamine content of 1% by mass or more.
  • the concentration of xylylenediamine in the cleaning liquid is important to be 1 to 100% by mass, preferably 3 to 100% by mass, from the viewpoint of regeneration / activation of the catalyst and reduction of the catalyst layer differential pressure, and is preferably 5 to 100% by mass. % Is more preferable, 10 to 100% by mass is more preferable, 50 to 100% by mass is more preferable, 90 to 100% by mass is more preferable, 95 to 100% by mass is more preferable, and 99 to 100% by mass is further preferable.
  • the reaction target is metaxylylenediamine
  • the reaction target metaxylylenediamine can be used as the cleaning liquid.
  • the reaction target is the isomeric orthoxylylenediamine or paraxylylenediamine.
  • orthoxylylenediamine or paraxylylenediamine which is a reaction target, can be used as a washing solution.
  • isomers such as orthoxylylenediamine or paraxylylenediamine can be mixed and used as a cleaning liquid.
  • an operation and an apparatus for separating and collecting the isomers from the mixed solution by distillation are required.
  • the concentration of the raw material phthalonitriles in the cleaning liquid is important to be 3% by mass or less from the viewpoint of regeneration / activation of the catalyst and reduction of the catalyst layer differential pressure, preferably 1% by mass or less, It is more preferably at most mass%, further preferably at most 0.005 mass%.
  • the xylylenediamine that is industrially available and the xylylenediamine obtained by the production method of the present invention may contain raw material phthalonitriles. It is necessary to adjust the range before use.
  • the hydrogenation reaction liquid that has passed through the reaction zone (catalyst layer) of the reactor is appropriately treated with phthalonitriles.
  • the concentration can be adjusted to the above range and used as the cleaning liquid.
  • This method is simple and industrially particularly preferable.
  • a liquid obtained by removing part or all of a solvent such as liquid ammonia from the hydrogenation reaction liquid can also be used as the cleaning liquid.
  • the concentration of the reaction intermediate CBA and the concentration of high boiling byproducts (including high boiling byproduct precursors) in the cleaning solution depend on the catalyst cleaning effect. From the viewpoint, each is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 2% by mass or less, and particularly preferably substantially 0% by mass.
  • a solvent for dissolving the raw material phthalonitriles described above may be mixed with the cleaning liquid to reduce the viscosity.
  • the solvent for reducing the viscosity liquid ammonia and aromatic hydrocarbon solvents are preferable, and liquid ammonia is more preferable.
  • the temperature conditions for performing the cleaning (contact) in the operation (2) can be selected in a wide range. As long as the temperature can hold the liquid phase under the pressure, the higher the temperature, the more effective the effect, but there is a risk that the solvent and the like may be altered by heat, so near the normal hydrogenation reaction temperature, specifically 20 to 180 ° C is preferable, 40 to 140 ° C is more preferable, 60 to 120 ° C is more preferable, and 60 to 110 ° C is still more preferable.
  • the washing (contacting) time is preferably 30 minutes or more, and more preferably 1 to 20 hours, from the viewpoint of regeneration and activation of the catalyst and reduction of the catalyst layer differential pressure.
  • the raw material phthalonitrile adsorbed on the catalyst, reaction products, high-boiling by-products (polymerization products, condensates, etc.) and high-boiling by-products adsorbed on the catalyst by passing the cleaning liquid through and contacting the catalyst (washing) It is considered that at least a part of the precursor or the like can be washed away. While maintaining the pressure in the reactor before stopping the reaction, the contact temperature between the catalyst and the cleaning liquid is maintained in the above temperature range, or the cleaning operation is performed in the state where the cleaning liquid is maintained in the above temperature range, whereby a high boiling byproduct precursor is obtained. The amount of the body dissolved in the washing liquid increases and becomes effective.
  • the pressure in the reactor during the catalyst cleaning is preferably 1 to 30 MPa, more preferably 3 to 20 MPa, and further preferably 3 to 15 MPa.
  • the operation of passing the cleaning liquid and bringing it into contact with the catalyst can also be performed in a hydrogen and / or nitrogen atmosphere.
  • the operation for bringing the cleaning liquid into contact with the catalyst is not particularly limited.
  • the reactor is filled with the cleaning liquid and the method of contacting the catalyst with at least a part of the cleaning liquid is circulated. Examples thereof include a method in which the catalyst is brought into contact with the reactor by being distributed to the reactor by a distribution method or a one-pass distribution method.
  • the circulation flow method is a circulation method in which at least a part of the cleaning liquid from the outlet of the continuous flow reactor is circulated and used at the inlet of the reactor, and the one-pass flow method is a reactor of the continuous flow method.
  • the temperature, pressure, time, and amount of cleaning liquid are not fixed, but change at least one of these values throughout the operation, and at least one of these values depends on the situation.
  • the above can be changed.
  • values such as hydrogen gas flow rate, nitrogen gas flow rate, and hydrogen concentration used during a cleaning operation to form a trickle flow are not fixed, but at least one or more of these values throughout the operation. And at least one of these values can be changed depending on the situation.
  • metaxylylenediamine having a GC purity of about 99.95% by mass can be usually obtained.
  • Metaxylylenediamine can also be obtained by distillation from the cleaning liquid used in the cleaning operation.
  • metaxylylenediamine may be referred to as MXDA.
  • the gas chromatography (GC) analysis method of the hydrogenation reaction liquid performed in each example and the measuring method of a catalyst layer differential pressure are as follows.
  • the timing which samples a hydrogenation reaction liquid and performs a gas chromatography (GC) analysis may differ.
  • a digital pressure measuring device (VALCOM pressure sensor) was installed at the inlet and outlet of the reactor, and the difference between the values was defined as the catalyst layer differential pressure. The higher the value, the worse the liquid flow situation.
  • Example 1 (Hydrogenation reaction) An SUS reactor having an inner diameter of 25 mm ⁇ was charged with 120 mL of a nickel / diatomite support catalyst (columnar, diameter 3 mm ⁇ , height 3 mm) having a nickel content of 50% by mass, and reduced at 200 ° C. in a hydrogen stream to reduce the catalyst. Activated. After cooling, hydrogen gas was injected into the reactor and the piping connecting them to maintain a constant pressure of 8 MPa, and the inside of the reactor was maintained at 70 ° C. by external heating. Hydrogen gas supply was started at 13 L / h from the inlet of the reactor.
  • a nickel / diatomite support catalyst columnumnar, diameter 3 mm ⁇ , height 3 mm
  • Example 1 Continuous hydrogenation was carried out in the same manner as in Example 1, except that the hydrogenation reaction was not stopped [operation (1)] and the catalyst washing [operation (2)] was not performed, and the hydrogenation reaction was continued as it was. The reaction was carried out. After initiation of the reaction, the hydrogenation reaction liquid extracted from the outlet of the reactor was sampled at an appropriate time and analyzed by gas chromatography. When 600 hours have elapsed from the start of the reaction, the conversion rate of raw material isophthalonitrile is 100% by mass, the selectivity of MXDA which is the reaction target is 78.1% by mass, and the selectivity of reaction intermediate CBA is 18.1% by mass. A decrease in catalyst activity was observed, and the catalyst layer differential pressure increased to 0.14 MPa. Table 1 shows changes in selectivity of MXDA and reaction intermediate CBA, and catalyst layer differential pressure in the reactor.
  • Example 2 ⁇ Comparative example 2>
  • the hydrogenation reaction temperature was changed from 70 ° C. to 80 ° C., and the hydrogenation reaction was continued as it was without stopping the reaction [operation (1)] and catalyst washing [operation (2)].
  • a continuous hydrogenation reaction was performed.
  • the hydrogenation reaction liquid extracted from the outlet of the reactor was sampled at an appropriate time and analyzed by gas chromatography.
  • the catalyst layer differential pressure has increased to 0.29 MPa, and when 850 hours have elapsed from the start of the hydrogenation reaction, it has become difficult to continue the supply of the raw material liquid and the hydrogenation reaction has been stopped.
  • Table 1 shows changes in selectivity of MXDA and reaction intermediate CBA, and catalyst layer differential pressure in the reactor.
  • Example 3 the washing liquid was a mixture of 768 g of MXDA (GC purity 99.9 mass%, isophthalonitrile about 10 mass ppm or less (GC detection limit or less)) and 32 g of isophthalonitrile manufactured by Mitsubishi Gas Chemical Co., Ltd. The experiment and analysis were performed in the same manner as in Example 1 except that the concentration was changed to 800 g (isophthalonitrile concentration: 4% by mass). From the washing liquid used in the washing operation, a high boiling by-product precursor considered to be derived from MXDA was confirmed by liquid chromatography.
  • MXDA GC purity 99.9 mass%, isophthalonitrile about 10 mass ppm or less (GC detection limit or less)
  • isophthalonitrile manufactured by Mitsubishi Gas Chemical Co., Ltd The experiment and analysis were performed in the same manner as in Example 1 except that the concentration was changed to 800 g (isophthalonitrile concentration: 4% by mass). From the washing liquid used in the washing operation, a high boiling by-product precursor considered to be
  • Example 4 In Example 1, experiments and analyzes were performed in the same manner as in Example 1 except that the cleaning liquid was changed to liquid ammonia. From the washing solution used in the washing operation, a high boiling by-product precursor that was considered to be derived from MXDA was confirmed by liquid chromatography. When 300 hours have elapsed after resuming the hydrogenation reaction, the conversion rate of the raw material isophthalonitrile is 100% by mass, the selectivity of the reaction product MXDA is 78.8% by mass, and the selectivity of the reaction intermediate CBA is 17.3% by mass. A decrease in the catalytic catalyst activity was observed, and the catalyst layer differential pressure increased to 0.12 MPa. Table 1 shows changes in selectivity of MXDA and reaction intermediate CBA, and catalyst layer differential pressure in the reactor.
  • Example 2 In Example 1, except that the cleaning liquid was changed to a hydrogenation reaction liquid from which liquid ammonia was removed [MXDA GC purity 94 mass%, isophthalonitrile about 10 mass ppm or less (GC detection limit or less)]. Experiments and analyzes were conducted in the same manner as in 1. From the washing solution used in the washing operation, a high boiling by-product precursor that was considered to be derived from MXDA was confirmed by liquid chromatography. Table 2 shows the transition of selectivity of MXDA and reaction intermediate CBA and catalyst layer differential pressure in the reactor.
  • Example 3 the cleaning liquid was MXDA [GC purity 99.9% by mass, isophthalonitrile about 10 ppm or less (below GC detection limit)] 128 g and liquid ammonia 800 g (MXDA) manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • MXDA GC purity 99.9% by mass, isophthalonitrile about 10 ppm or less (below GC detection limit)] 128 g and liquid ammonia 800 g (MXDA) manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • MXDA liquid ammonia 800 g
  • Table 2 shows the transition of selectivity of MXDA and reaction intermediate CBA and catalyst layer differential pressure in the reactor.
  • Example 4 In Example 1, the cleaning liquid was MXDA [GC purity 99.9% by mass, isophthalonitrile about 10 ppm or less (below GC detection limit)] 40 g and liquid ammonia 800 g (MXDA) manufactured by Mitsubishi Gas Chemical Co., Ltd. The experiment and analysis were performed in the same manner as in Example 1 except that the concentration was changed to 5% by mass. From the washing solution used in the washing operation, a high boiling by-product precursor that was considered to be derived from MXDA was confirmed by liquid chromatography. Table 2 shows the transition of selectivity of MXDA and reaction intermediate CBA and catalyst layer differential pressure in the reactor.
  • Example 5 In Example 1, the initial hydrogenation reaction temperature and the hydrogenation reaction temperature in the hydrogenation reaction restart [operation (3)] were changed from 70 ° C. to 80 ° C., and in operation (1), the raw material was 800 hours after the start of the reaction. The experiment and analysis were performed in the same manner as in Example 1 except that only the liquid supply was stopped and the temperature of the catalyst cleaning [operation (2)] was changed from 70 ° C to 110 ° C. From the washing solution used in the washing operation, a high boiling by-product precursor that was considered to be derived from MXDA was confirmed by liquid chromatography. Table 2 shows the transition of selectivity of MXDA and reaction intermediate CBA and catalyst layer differential pressure in the reactor.
  • Example 6 In Example 1, experiments and analyzes were performed in the same manner as in Example 1 except that the temperature of the catalyst washing [operation (2)] was changed from 70 ° C to 20 ° C. From the washing solution used in the washing operation, a high boiling by-product precursor that was considered to be derived from MXDA was confirmed by liquid chromatography. Table 2 shows the transition of selectivity of MXDA and reaction intermediate CBA and catalyst layer differential pressure in the reactor.
  • Example 7 (Hydrogenation reaction)
  • the hydrogenation reaction was performed in the same manner except that the hydrogenation reaction temperature was changed from 70 ° C to 80 ° C.
  • Hydrogenation stop-1 Operation (1)
  • Catalyst cleaning-1 Operation (2)
  • the temperature inside the reactor was raised from 80 ° C. to 90 ° C., and MXDA manufactured by Mitsubishi Gas Chemical Co., Ltd. [GC purity 99.9% by mass, isophthalonitrile about 10 ppm or less (GC detection limit) Below)] 800 g was fed at 139 g / h.
  • Comparative Example 3 Even when the catalyst is washed, the concentration of isophthalonitrile in the cleaning solution exceeds 3% by mass (Comparative Example 3), or the concentration of MXDA is less than 1% by mass (Comparative Example). In 4), a sufficient catalyst regeneration / activation effect was not obtained, and the effect of improving the catalyst layer differential pressure was insufficient, making it difficult to implement industrially.
  • the results of Comparative Example 3 are used after reducing the concentration of isophthalonitrile in the hydrogenation reaction liquid to 3% by mass or less even when the hydrogenation reaction liquid obtained by the hydrogenation reaction is used as a cleaning liquid. Indicates that it is necessary. When the result of 300 hours after restarting the hydrogenation reaction of Example 1 and the result of 600 hours after the start of the hydrogenation reaction of Comparative Examples 1 to 4 are compared, it can be seen that the effects of the present invention are remarkably exhibited.
  • the xylylenediamine obtained by the production method of the present invention is useful as a starting material useful for the synthesis of, for example, polyamides and epoxy curing agents, or as an intermediate in the production of isocyanate resins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 フタロニトリル類を溶媒に溶解した溶液を、触媒を充填した反応器に供給し、水素化反応によりキシリレンジアミンを得る製造方法であって、前記溶液の供給を中断し、フタロニトリル類の含有量が3質量%以下であり、且つキシリレンジアミン含有量が1質量%以上である洗浄液を前記触媒に接触させ、接触後に前記溶液の供給を再開し、前記触媒を継続して水素化反応に使用することを特徴とするキシリレンジアミンの製造方法を提供する。当該製造方法により、触媒を長期間継続使用することが可能となり、触媒費用の大幅な削減が可能となる。

Description

キシリレンジアミンの製造方法
 本発明は、接触水素化触媒(以下、水素化触媒、触媒又は触媒層と称することもある)を充填した反応器におけるフタロニトリル類の接触水素化反応(以下、水素化反応と略すこともある)によるキシリレンジアミンの製造方法に関する。
 不均一系触媒を用いた流通方式(トリクルベッド方式)によりフタロニトリル類を水素化してキシリレンジアミンを製造する方法は公知である。
 例えば、不均一系触媒のニッケル-銅-モリブデン系触媒により、フタロニトリル類を気液固三相下で水素により接触水素化反応により還元することが開示されており、固定床方式による連続接触水素化反応が開示されている(特許文献1参照)。
 不均一系触媒を用いた固定床方式により、フタロニトリル類を水素化してキシリレンジアミンを製造する方法においては、不均一系触媒である水素化触媒の活性の低下が速いという欠点がある。このため、固定床方式によるフタロニトリル類の水素化反応を長期間実施するには、触媒を再生・賦活させることが必要となる。
 工業的に触媒を使用する場合、通常少なくとも1年以上の触媒寿命が必要である。触媒活性等の性能が低下する原因としては、多くの要因が複雑に関係しあっていると考えられる。フタロニトリル類の水素化によりキシリレンジアミンを製造する際に使用する水素化触媒の場合も、使用中の触媒活性の低下は複数の要因が関係していると考えられるが、その主要因は、重合や縮合で生じた高沸副生物の炭素含有の有機物が触媒表面上に蓄積することなどが考えられる。なお、ここでいう触媒寿命とは、触媒活性が全く無くなるまでの時間ということではなく、工業的に連続使用可能かどうかという尺度で判断される触媒寿命の時間のことである。
 不均一系触媒を用いた固定床方式により、フタロニトリル類を水素化してキシリレンジアミンを製造する方法においては、触媒活性の低下のみならず、触媒層に高沸副生物が部分閉塞し、反応器の内圧損(触媒層差圧)が上昇し、原料のフタロニトリル類溶液が供給不能となり、運転継続できなくなるという欠点がある。触媒層への高沸副生物の付着により運転継続ができなくなるため、触媒層の高沸副生物を除去することが必要とされる。
 従来知られているキシリレンジアミンの製造方法における触媒の再生・賦活の方法としては、水素化分解が挙げられる。例えば、ジシアノベンゼン(フタロニトリル類)の水素化反応に使用されることによって活性が低下した接触水素化触媒を、200~500℃で水素含有ガスに接触させ、且つ水素含有ガスに接触させる間の接触水素化触媒の温度上昇速度を40℃/分以下にコントロールすることにより触媒再生と触媒層差圧を改善した後、ジシアノベンゼンの水素化反応に再使用する方法が知られている(特許文献2参照)。
特公昭53-20969号公報 特開2004-107327号公報
 特許文献2に記載の触媒の水素化分解を行なう方法では、水素化分解の操作が非常に煩雑で、手間を要する。また、別途水素化分解で用いるガスを加熱する装置等が必要となり、さらに、高温で処理するため、触媒のシンタリングや粉化が起こりやすくなると考えられる。よって、水素化分解の代替方法の開発が望まれていた。
 そこで、本発明の課題は、フタロニトリル類を水素化させてキシリレンジアミンを製造する水素化反応において、触媒活性の低下又は触媒層差圧が増加した水素化触媒の再生・賦活及び触媒層差圧を改善しながら触媒を継続使用するキシリレンジアミンの製造方法を提供することにある。
 本発明者らは、鋭意検討を行った結果、フタロニトリル類を溶媒に溶解した溶液の供給を一旦中断し、その間に、フタロニトリル類の含有量が3質量%以下であり、且つキシリレンジアミン含有量が1質量%以上である洗浄液を触媒に接触させることにより上記課題を解決できることを見出し、本発明に至った。
 即ち、本発明は下記[A]~[H]に記載のキシリレンジアミンの製造方法である。
[A]フタロニトリル類を溶媒に溶解した溶液を、触媒を充填した反応器に供給し、水素化反応によりキシリレンジアミンを得る製造方法であって、
(1)前記溶液の供給を中断し、
(2)フタロニトリル類の含有量が3質量%以下であり、且つキシリレンジアミン含有量が1質量%以上である洗浄液を前記触媒に接触させ、
(3)接触後に前記溶液の供給を再開し、前記触媒を継続して水素化反応に使用する
ことを特徴とするキシリレンジアミンの製造方法。
[B]前記(2)において、洗浄液を20~180℃で前記触媒に接触させる、上記[A]に記載のキシリレンジアミンの製造方法。
[C]前記(2)において使用する洗浄液が、フタロニトリル類の水素化反応によって得られた水素化反応液である、上記[A]又は[B]に記載のキシリレンジアミンの製造方法。
[D]前記(2)において、洗浄液の少なくとも一部を、循環流通方式又はワンパス流通方式により触媒に接触させる、上記[A]~[C]のいずれかに記載のキシリレンジアミンの製造方法。
[E]前記(2)において、洗浄液を、水素及び/又は窒素雰囲気下で触媒に接触させる、上記[A]~[D]のいずれかに記載のキシリレンジアミンの製造方法。
[F]前記フタロニトリル類がイソフタロニトリルである、上記[A]~[E]のいずれかに記載のキシリレンジアミンの製造方法。
[G]前記溶媒が液体アンモニアである、上記[A]~[F]のいずれかに記載のキシリレンジアミンの製造方法。
[H]前記溶媒が液体アンモニアであり、前記(2)において、該液体アンモニアの一部又は全部を除いた水素化反応液を洗浄液として用いる、上記[C]~[F]のいずれかに記載のキシリレンジアミンの製造方法。
 本発明によれば、フタロニトリル類の水素化によりキシリレンジアミンを製造するに際して、水素化反応に使用されることにより低下した触媒の活性を回復させ、さらに固定床方式においては触媒層に発生した差圧を改善して触媒を再使用可能な状態に再生し、フタロニトリル類の水素化触媒として継続使用することが可能となる。
 また、水素化反応により触媒活性の低下した水素化触媒を、循環流通方式又はワンパス流通方式により、フタロニトリル類の含有量が3質量%以下であり、かつ、キシリレンジアミン含有量が1質量%以上である洗浄液(以下、単に洗浄液と略すこともある)を通液し、触媒に接触させて洗浄する操作は極めて簡単な操作であり、反応器に触媒を充填したまま容易に行うこともでき、工業的に有用である。
 さらに、特許文献2等に記載の水素化分解に比べて、より低温で触媒の再生処理をすることができ、触媒温度の急上昇による装置制御不能や触媒劣化(触媒のシンタリングや粉化等)を回避し、安全かつ有効で効果的な再生が可能である。従って、触媒を長期間継続使用することが可能となり、触媒費用の大幅な削減が可能となる。
(フタロニトリル類)
 本発明の原料に用いられるフタロニトリル類(以下、原料フタロニトリル類と称することもある)としては、オルトフタロニトリル、イソフタロニトリル、テレフタロニトリルが挙げられる。本発明では、フタロニトリル類として、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。
 本発明の製造方法においては、イソフタロニトリルを原料として好ましく用いることができる。該イソフタロニトリルは、オルトフタロニトリルやテレフタロニトリルが全フタロニトリル類の好ましくは10質量%以下(より好ましくは6質量%以下)の割合で混入した混合物であっても好ましく用いることができる。
 フタロニトリル類の製造方法としては、キシレン等のアルキル置換ベンゼンのアンモ酸化による方法、ジクロロベンゼン類とシアン化水素を反応させる方法、フタル酸類とアンモニアを反応させる方法等が挙げられる。工業的には、主に、キシレン等のアルキル置換ベンゼンのアンモ酸化によって製造される。
 例えば、キシレンのアンモ酸化は、特公昭49-45860号公報、特開昭49-13141号公報、特開昭63-190646号公報、特開平5-170724号公報、特開平1-275551号公報、特開平5-170724号公報、特開平9-71561号公報等に記載の、公知触媒及び公知方法で実施することができる。
<キシリレンジアミンの製造方法>
 本発明では、フタロニトリル類を溶媒に溶解した溶液を、触媒を充填した反応器に供給し、水素化反応に付すことによりキシリレンジアミンを得る。
 本発明の製造方法により得られるキシリレンジアミンとしては、オルトキシリレンジアミン、メタキシリレンジアミン、パラキシリレンジアミンの3つの異性体が挙げられる。原料としてイソフタロニトリルを用いた場合には、メタキシリレンジアミンが主生成物となる。
 フタロニトリル類を水素化する方法としては、特許文献1に開示された方法を利用できる。つまり、不均一系触媒を反応器に充填し、フタロニトリル類を溶媒に溶解して得られるフタロニトリル類溶液及び水素を反応器へ供給する流通方式(トリクルベッド方式)を利用できる。該方法は、不均一系触媒により、フタロニトリル類を気液固三相下で連続接触水素化反応により還元する方法である。不均一系触媒を用いたトリクルベッド方式による連続接触水素化反応を採用する場合に、後述する触媒洗浄操作による触媒再生・賦活効果がより顕著に現れる。
 本発明では、フタロニトリル類の水素化の反応形式は、固定床のみならず、懸濁床でもよいが、固定床が好ましい。なお、水素化反応は、連続流通式の反応器を使用して行う。
 固定床の不均一系触媒としては、公知の担持金属触媒、非担持金属触媒、ラネー触媒、貴金属触媒等を使用できる。金属としてはニッケル、コバルト、パラジウムが好適であり、金属濃度は10~95質量%が好ましく、20~80質量%がより好ましく、30~70質量%がさらに好ましい。担体としては、珪藻土、シリカ、アルミナ、シリカ・アルミナ、マグネシア、ジルコニア、チタニア、活性炭が好ましい。
 フタロニトリル類の水素化における反応温度は、好ましくは20~200℃、より好ましくは30~160℃、さらに好ましくは40~120℃である。フタロニトリル類の水素化における反応圧力(水素圧)は、好ましくは1~30MPa、より好ましくは2~20MPa、さらに好ましくは3~15MPaである。
 原料フタロニトリル類を溶解するための前記溶媒としては、例えば液体アンモニアをはじめ、水素化反応条件下で安定な種々の溶媒が用いられる。液体アンモニア以外の具体的な溶媒としては、トルエン、キシレン、トリメチルベンゼン等の芳香族炭化水素系溶媒;テトラヒドロフラン、ジオキサン等のエーテル系溶媒;メタノール、エタノール、プロパノール等のアルコール系溶媒;ベンジルアミン、メチルベンジルアミン等の芳香族モノアミン系溶媒等が挙げられる。上記の溶媒の中でも、液体アンモニアと芳香族炭化水素系溶媒が好ましく、液体アンモニアがより好ましい。
(触媒洗浄操作)
 同一触媒を用いてフタロニトリル類の水素化反応を長期間連続的に実施していると、触媒の活性が低下し、且つ触媒層差圧が増加してくるため、キシリレンジアミンの製造の継続が困難となる。
 そこで、本発明では、以下の操作(1)~(3)を実施することにより、触媒のシンタリングや粉化を抑制しつつ、効果的に触媒を再生・賦活し、且つ触媒層差圧を低減することを可能にした。
 (1)前記原料フタロニトリル類溶液の供給を中断する。
 (2)次いで、フタロニトリル類の含有量が3質量%以下であり、且つキシリレンジアミン含有量が1質量%以上である洗浄液を前記触媒に接触させる。
 (3)接触後に前記溶液の供給を再開し、前記触媒を継続して水素化反応に使用する。
 水素化反応に使用される触媒の失活の原因としてはいくつかの要因が考えらえる。例えば、触媒の活性成分の熱的負荷によるシンタリングや、触媒の活性成分及び/又は構成成分に対し触媒毒となり得る成分の混入等による触媒の被毒作用によって触媒失活や永久被毒を受けること等が考えられる。
 なお、「失活」とは、目的の水素化反応に対して触媒としての機能を完全に失うということではなく、生産性、ユーティリティー及びコスト等の実用面からみて工業的に使用できない状態である。
-操作(1)-
 触媒活性が低下するに伴って反応液中の反応中間体である3-シアノベンジルアミン(以下、反応中間体CBAと称する)の濃度が高まり、水素化反応を継続するに従って水素化触媒層差圧が上昇してくるため、前記(1)において、原料フタロニトリル類溶液の供給の中断は、反応中間体CBAの濃度や触媒層差圧を指標として判断することができる。
 具体的には、反応中間体CBAの濃度が好ましくは13質量%以上、より好ましくは10質量%以上、さらに好ましくは6質量%以上となった時点で、原料フタロニトリル類溶液の供給を中断すればよい。また、触媒層差圧の上昇がみられた時点で適時原料フタロニトリル類溶液の供給を中断すればよく、安定してキシリレンジアミンを製造する観点から、原料フタロニトリル類溶液の供給不能となる前に原料フタロニトリル類溶液の供給を中断することが好ましい。なお、触媒層差圧は、実施例に記載の方法により求めた値である。
 また、反応中間体CBAの濃度や触媒層差圧を指標とせずに、触媒活性が低下し過ぎず、且つ触媒層差圧が増大し過ぎない程度の一定時間間隔により供給を中断する方法も有効である。
-操作(2)-
 原料フタロニトリル類溶液の供給を中断した後、触媒が充填された反応器へ洗浄液を通液して、洗浄液を触媒と接触させる。この操作(2)により、触媒の再生・賦活効果及び触媒層差圧の改善効果がある。これは、既に重合あるいは縮合反応等で高沸副生物に変化しつつある有機物(以下、高沸副生物前駆体と称する)を触媒表面から脱離させることができたためと考えられる。
 すなわち、前記操作(1)においては、反応中間体CBAの濃度の上昇がほとんどなく、触媒層差圧もみられない時点で原料フタロニトリル類溶液の供給を止めることが、操作(2)による効果発現の観点から好ましい。触媒表面上への上記高沸副生物前駆体の吸着による活性点(水素化反応が起きるスポット)の減少が失活の主原因たるものである場合には、上記のように、吸着した高沸副生物前駆体を触媒表面上から脱離させ除去することができれば触媒活性が再生される。
 操作(2)で使用する前記洗浄液は、フタロニトリル類の含有量が3質量%以下であり、且つキシリレンジアミン含有量が1質量%以上である洗浄液である。
 該洗浄液中のキシリレンジアミン濃度は、触媒の再生・賦活及び触媒層差圧低減の観点から、1~100質量%であることが重要であり、3~100質量%が好ましく、5~100質量%がより好ましく、10~100質量%がより好ましく、50~100質量%がより好ましく、90~100質量%がより好ましく、95~100質量%がより好ましく、99~100質量%がさらに好ましい。
 反応目的物がメタキシリレンジアミンである場合は、洗浄液として反応目的物のメタキシリレンジアミンを洗浄液として使用でき、同様にして、反応目的物が異性体のオルトキシリレンジアミン又はパラキシリレンジアミンである場合は、反応目的物であるオルトキシリレンジアミン又はパラキシリレンジアミンを洗浄液として使用できる。
 なお、反応目的物がメタキシリレンジアミンである場合、反応目的物のメタキシレンジアミンの他に、異性体であるオルトキシリレンジアミン又はパラキシリレンジアミンを混合して洗浄液として使用できる。但し、異性体を混合して使用する場合は、別途、混合液から異性体を蒸留により分離回収する操作や装置が必要になる。
 一方、洗浄液中の原料フタロニトリル類の濃度は、触媒の再生・賦活及び触媒層差圧低減の観点から、3質量%以下であることが重要であり、1質量%以下が好ましく、0.1質量%以下がより好ましく、0.005質量%以下がさらに好ましい。工業的に入手可能なキシリレンジアミンや、本発明の製造方法により得られるキシリレンジアミンには、原料フタロニトリル類が含有されていることもあるため、場合によっては、フタロニトリル類の濃度を前記範囲に調整してから使用する必要がある。
 不均一系触媒の存在下、原料フタロニトリル類を溶媒に溶解し、キシリレンジアミンを製造する方法においては、反応器の反応帯(触媒層)を通過した水素化反応液を、適宜フタロニトリル類の濃度を前記範囲に調整してから前記洗浄液として使用することができ、この方法が簡便であり、工業的に特に好ましい。また、該水素化反応液から、例えば液体アンモニア等の溶媒を一部又は全部除去した液を前記洗浄液として使用することもできる。
 なお、上記の様に、洗浄液として水素化反応液を利用する場合、洗浄液中の反応中間体CBA濃度および高沸副生物(高沸副生物前駆体を含む。)の濃度は、触媒洗浄効果の観点から、それぞれ、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下であり、実質的に0質量%であることが特に好ましい。
 洗浄液の粘度が高い場合、前記した原料フタロニトリル類を溶解するための溶媒を洗浄液に混合して粘度を低減してもよい。粘度を低減するための溶媒としては、液体アンモニアと芳香族炭化水素系溶媒が好ましく、液体アンモニアがより好ましい。
 操作(2)の洗浄(接触)を実施する温度条件は広範囲に選ぶことができる。その圧力下で液相を保持できる温度であれば高い温度ほど効果はあるが、必要以上の温度は溶媒等が熱により変質する恐れもあるので、通常の水素化反応温度付近、具体的には20~180℃が好ましく、40~140℃がより好ましく、60~120℃がより好ましく、60~110℃がさらに好ましい。
 洗浄(接触)時間は、触媒の再生・賦活及び触媒層差圧低減の観点から、30分以上が好ましく、1~20時間がより好ましい。
 洗浄液を通液させて触媒に接触させる(洗浄する)ことにより、触媒上に吸着した原料フタロニトリル類、反応生成物、高沸副生成物(重合物、縮合物等)及び高沸副生成物前駆体等の少なくとも一部を洗浄して脱離させることができているものと考えられる。
 反応停止前の反応器内圧力を保持したまま、触媒と洗浄液の接触温度を前記温度範囲に保持、又は洗浄液を前記温度範囲に保持した状態で洗浄操作を実施することにより、高沸副生物前駆体の洗浄液への溶解量が多くなり、効果的となる。
 洗浄終了後、水素化反応をすぐに再開するためには、触媒洗浄中の反応器内の圧力は1~30MPaが好ましく、3~20MPaがより好ましく、3~15MPaがさらに好ましい。
 洗浄液を通液させ触媒に接触させる操作については、水素及び/又は窒素雰囲気下で行うこともできる。
 洗浄液を触媒に接触させる操作については特に制限は無いが、例えば原料フタロニトリル類溶液の供給停止後、反応器内を洗浄液で満たすことにより触媒に接触させる方法や、洗浄液の少なくとも一部を、循環流通方式又はワンパス流通方式により反応器へ流通させることにより触媒に接触させる方法等が挙げられる。
 ここで、循環流通方式とは、連続流通式の反応器の出口からの洗浄液の少なくとも一部を反応器の入口に循環使用する流通方式であり、ワンパス流通方式とは、連続流通方式の反応器の出口からの洗浄液を再使用しない流通方式を意味する。
 操作(2)では、温度、圧力、時間及び洗浄液の量は、固定化されたものではなく、操作を通してこれらの値の少なくとも1つ以上を変化させ、状況に応じてこれらの値の少なくとも1つ以上を変更できる。
 同様に、トリクル流れを形成するために洗浄操作時に使用する水素のガス流量、窒素のガス流量、及び水素濃度等の値も固定化されたものではなく、操作を通してこれらの値の少なくとも1つ以上を変化させ、状況に応じてこれらの値の少なくとも1つ以上を変更できる。
-操作(3)-
 操作(2)の後に、原料フタロニトリル類溶液の供給を再開し、洗浄操作に付された触媒により、フタロニトリル類の水素化反応を再開する。
 その後、前記操作(1)~(3)を必要に応じて繰り返すことにより、フタロニトリル類の水素化反応を長期間連続的に実施することも可能である。
(キシリレンジアミンの取得方法)
 フタロニトリル類の水素化反応によって得られるキシリレンジアミンの取得方法に特に制限は無く、公知の方法を採用すればよい。
 例えば、触媒を充填した反応器を流通してきた水素化反応液から、高沸副生物、高沸副生物前駆体及び低沸物等を蒸留によって除去することにより、ガスクロマトグラフィー(以下、GCと称する)純度99質量%以上のキシリレンジアミンを得ることができる。例えばイソフタロニトリルの水素化反応であれば、通常、GC純度99.95質量%程度のメタキシリレンジアミンを得ることもできる。洗浄操作で使用した洗浄液からも、メタキシリレンジアミンを蒸留により得ることができる。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 以下の各例においては、メタキシリレンジアミンをMXDAと称することがある。
 また、各例において行った水素化反応液のガスクロマトグラフィー(GC)分析方法及び触媒層差圧の測定方法は、以下の通りである。なお、各例において、水素化反応液をサンプリングしてガスクロマトグラフィー(GC)分析を行うタイミングが異なることもある。
[ガスクロマトグラフィー分析(定性・定量分析)]
装置:Agilent 6890(Agilent Technologies社製)
注入口温度:230℃
カラム:Agilent J&W GCカラム「DB-1」(Agilent Technologies社製)
カラム温度:100℃~280℃
検出器:水素炎イオン化検出器(FID)
注入:原料あるいはサンプリング液を、溶媒以外の成分が1~5質量%になる様にメタノールあるいはテトラヒドロフランで希釈したものを注入した。
[触媒層差圧の測定]
 デジタル式圧力測定器(VALCOM製圧力センサー)を反応器の入口及び出口に設置し、各値の差を触媒層差圧とした。数値が高い程、通液状況が悪化していることを示す。
<実施例1>
(水素化反応)
 内径25mmφのSUS製の反応器に、ニッケル含量50質量%であるニッケル/珪藻土担体の触媒(円柱状、直径3mmφ、高さ3mm)を120mL充填し、水素気流下200℃で還元して触媒を活性化させた。冷却後、反応器及びそれらをつなぐ配管内に水素ガスを圧入して一定圧力8MPaに保ち、外部加熱により反応器内を70℃に維持した。
 反応器の入口より13L/hで水素ガスの供給を開始した。水素ガスの流通状態を保ちながら、原料イソフタロニトリル(三菱瓦斯化学株式会社製、メタキシレンのアンモ酸化反応により得られた製品、純度94質量%以上)を1質量部、液体アンモニア(三菱化学株式会社製、純度99.9質量%)を9質量部の割合で混合した原料液を139g/hで反応器の入口より供給し、反応器内の温度70℃にて、トリクルベッド方式の連続的な水素化反応を行い、反応器の出口からは、水素化反応によって得られた水素化反応液を抜出した。反応開始後、適時、反応器の出口より抜出した水素化反応液をサンプリングし、ガスクロマトグラフィーで分析した。
(水素化反応停止:操作(1))
 水素化反応を開始してから300時間後、原料液の供給のみを停止した。
(触媒洗浄:操作(2))
 反応器内の温度を70℃に維持し、反応器の入口から洗浄液として三菱瓦斯化学株式会社製のMXDA[GC純度99.9質量%、イソフタロニトリル約10質量ppm以下(GC検出限界以下)]800gを139g/hで反応器へ供給した(洗浄時間約6時間、ワンパス流通方式)。
 洗浄操作を行なった後の洗浄液からは、MXDA由来と考えられる高沸副生物前駆体が液体クロマトグラフィーで確認された。
(水素化反応再開:操作(3))
 洗浄終了後、水素ガスの流通状態を保ちながら、原料イソフタロニトリル1質量部及び液体アンモニア9質量部の割合で混合した原料液を139g/hで反応器の入口より供給し、反応器内の温度70℃にて連続的な水素化反応を再開した。
 水素化反応再開後、適時、反応器の出口より抜出した水素化反応液をサンプリングし、ガスクロマトグラフィーで分析した。
 MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表1に示す。
<比較例1>
 実施例1において、水素化反応停止[操作(1)]及び触媒洗浄[操作(2)]を行わず、そのまま水素化反応を継続したこと以外は実施例1と同様にして、連続的な水素化反応を行った。反応開始後、適時、反応器の出口より抜出した水素化反応液をサンプリングし、ガスクロマトグラフィーで分析した。
 反応開始から600時間経過した時点で原料イソフタロニトリルの転化率100質量%、反応目的物であるMXDAの選択率78.1質量%、反応中間体CBAの選択率18.1質量%となり水素化触媒活性の低下が認められ、触媒層差圧も0.14MPaとなり増大した。
 MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表1に示す。
<比較例2>
 実施例1において、水素化反応温度を70℃から80℃に変更し、反応停止[操作(1)]及び触媒洗浄[操作(2)]を行わず、そのまま水素化反応を継続したこと以外は実施例1と同様にして、連続的な水素化反応を行った。反応開始後、適時、反応器の出口より抜き出した水素化反応液をサンプリングし、ガスクロマトグラフィーで分析した。
 水素化反応開始から800時間経過した時点で触媒層差圧は0.29MPaに増大し、更に水素化反応開始から850時間経過した時点で原料液の供給の継続が難しくなり水素化反応を停止した。
 MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表1に示す。
<比較例3>
 実施例1において、洗浄液を、三菱瓦斯化学株式会社製のMXDA(GC純度99.9質量%、イソフタロニトリル約10質量ppm以下(GC検出限界以下))768gとイソフタロニトリル32gを混合した液800g(イソフタロニトリル濃度:4質量%)に変更したこと以外は、実施例1と同様にして実験及び分析を行った。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体が液体クロマトグラフィーで確認された。
 水素化反応再開から300時間経過した時点で原料イソフタロニトリルの転化率100質量%、反応目的物MXDAの選択率77.3質量%、反応中間体CBAの選択率16.7質量%となり、水素化触媒活性の低下が認められ、触媒層差圧も0.13MPaとなり増大した。
 MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表1に示す。
<比較例4>
 実施例1において、洗浄液を液体アンモニアに変更したこと以外は、実施例1と同様にして実験及び分析を行った。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体が液体クロマトグラフィーで確認された。
 水素化反応再開から300時間経過した時点で原料イソフタロニトリルの転化率100質量%、反応目的物MXDAの選択率78.8質量%、反応中間体CBAの選択率17.3質量%となり、水素化触媒活性の低下が認められ、触媒層差圧も0.12MPaとなり増大した。
 MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表1に示す。
<実施例2>
 実施例1において、洗浄液を、液体アンモニアを除去した水素化反応液[MXDAのGC純度94質量%、イソフタロニトリル約10質量ppm以下(GC検出限界以下)]に変更したこと以外は、実施例1と同様に実験及び分析を行った。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体が液体クロマトグラフィーで確認された。
 MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表2に示す。
<実施例3>
 実施例1において、洗浄液を、三菱瓦斯化学株式会社製のMXDA[GC純度99.9質量%、イソフタロニトリル約10ppm以下(GC検出限界以下)]128gと液体アンモニアを672g混合した液800g(MXDA濃度:16質量%)に変更したこと以外は、実施例1と同様に実験及び分析を行った。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体が液体クロマトグラフィーで確認された。
 MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表2に示す。
<実施例4>
 実施例1において、洗浄液を、三菱瓦斯化学株式会社製のMXDA[GC純度99.9質量%、イソフタロニトリル約10ppm以下(GC検出限界以下)]40gと液体アンモニアを760g混合した液800g(MXDA濃度:5質量%)に変更したこと以外は、実施例1と同様に実験及び分析を行った。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体が液体クロマトグラフィーで確認された。
 MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表2に示す。
<実施例5>
 実施例1において、初めの水素化反応温度及び水素化反応再開[操作(3)]における水素化反応温度を70℃から80℃に変更し、操作(1)において、反応開始から800時間後に原料液の供給のみを停止し、触媒洗浄[操作(2)]の温度を70℃から110℃に変更したこと以外は、実施例1と同様に実験及び分析を行った。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体が液体クロマトグラフィーで確認された。
 MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表2に示す。
<実施例6>
 実施例1において、触媒洗浄[操作(2)]の温度を70℃から20℃に変更したこと以外は、実施例1と同様に実験及び分析を行った。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体が液体クロマトグラフィーで確認された。
 MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表2に示す。
<実施例7>
(水素化反応)
 実施例1において、水素化反応温度を70℃から80℃に変更したこと以外は同様にして水素化反応を行った。
(水素化反応停止-1:操作(1))
 水素化反応開始から100時間後、原料液の供給のみを停止した。
(触媒洗浄-1:操作(2))
 反応器内の温度を80℃から90℃に昇温し、反応器の入口から洗浄液として三菱瓦斯化学株式会社製のMXDA[GC純度99.9質量%、イソフタロニトリル約10ppm以下(GC検出限界以下)]800gを139g/hで供給した。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体がわずかながら液体クロマトグラフィーで確認された。
(水素化反応再開-1:操作(3))
 洗浄後、水素ガスの流通状態を保ちながら、原料イソフタロニトリル1質量部及び液体アンモニア9質量部の割合で混合した原料液を139g/hで反応器の入口より供給し、反応器内温度80℃にて連続的な水素化反応を再開した。
(水素化反応停止-2:操作(1))
 前記水素化反応の再開から100時間後、原料液の供給のみを再び停止した。
(触媒洗浄-2:操作(2))
 反応器内の温度を80℃から90℃に昇温し、反応器の入口から洗浄液として三菱瓦斯化学株式会社製のMXDA[GC純度99.9質量%、イソフタロニトリル約10ppm以下(GC検出限界以下)]800gを139g/hで供給した。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体がわずかながら液体クロマトグラフィーで確認された。
(水素化反応再開-2:操作(3))
 洗浄後、水素ガスの流通状態を保ちながら、原料イソフタロニトリル1質量部及び液体アンモニア9質量部の割合で混合した原料液を139g/hで反応器の入口より供給し、反応器内温度80℃にて連続的な水素化反応を再開した。
 MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~7において、水素化反応再開直後又は水素化反応再開から50時間後の反応中間体CBAの濃度及び触媒層差圧より、触媒再生・賦活効果と触媒層差圧改善効果が認められた。
 一方、触媒の洗浄操作を行わなかった比較例1及び比較例2では、反応中間体CBAの濃度及び触媒層差圧が増加し続け、特に比較例2のように長時間反応を実施すると、原料の供給不能に陥り、水素化反応の継続が不可能となり、工業的に長期間実施するには耐えない方法であることがわかった。
 また、触媒の洗浄操作を行ったとしても、洗浄液中のイソフタロニトリルの濃度が3質量%を超えている場合(比較例3)や、MXDAの濃度が1質量%に満たない場合(比較例4)では、十分な触媒再生・賦活効果を得られず、また触媒層差圧改善効果も不十分であり、工業的に実施するのは困難であった。なお、比較例3の結果は、水素化反応により得られる水素化反応液を洗浄液として用いる場合にも、水素化反応液中のイソフタロニトリルの濃度を3質量%以下に低減してから使用する必要があることを示している。
 実施例1の水素化反応再開後300時間の結果と、比較例1~4の水素化反応開始後600時間の結果とを比較すると、本発明の効果が顕著に現れていることがわかる。
 本発明の製造方法により得られるキシリレンジアミンは、例えばポリアミド、エポキシ硬化剤の合成のために有用な出発物質又はイソシアネート樹脂の製造における中間体として有用である。

Claims (8)

  1.  フタロニトリル類を溶媒に溶解した溶液を、触媒を充填した反応器に供給し、水素化反応によりキシリレンジアミンを得る製造方法であって、
    (1)前記溶液の供給を中断し、
    (2)フタロニトリル類の含有量が3質量%以下であり、且つキシリレンジアミン含有量が1質量%以上である洗浄液を前記触媒に接触させ、
    (3)接触後に前記溶液の供給を再開し、前記触媒を継続して水素化反応に使用する
    ことを特徴とするキシリレンジアミンの製造方法。
  2.  前記(2)において、洗浄液を20~180℃で前記触媒に接触させる、請求項1に記載のキシリレンジアミンの製造方法。
  3.  前記(2)において使用する洗浄液が、フタロニトリル類の水素化反応によって得られた水素化反応液である、請求項1又は2に記載のキシリレンジアミンの製造方法。
  4.  前記(2)において、洗浄液の少なくとも一部を、循環流通方式又はワンパス流通方式により触媒に接触させる、請求項1~3のいずれかに記載のキシリレンジアミンの製造方法。
  5.  前記(2)において、洗浄液を、水素及び/又は窒素雰囲気下で触媒に接触させる、請求項1~4のいずれかに記載のキシリレンジアミンの製造方法。
  6.  前記フタロニトリル類がイソフタロニトリルである、請求項1~5のいずれかに記載のキシリレンジアミンの製造方法。
  7.  前記溶媒が液体アンモニアである、請求項1~6のいずれかに記載のキシリレンジアミンの製造方法。
  8.  前記溶媒が液体アンモニアであり、前記(2)において、該液体アンモニアの一部又は全部を除いた水素化反応液を洗浄液として用いる、請求項3~6のいずれかに記載のキシリレンジアミンの製造方法。
PCT/JP2009/064989 2008-09-08 2009-08-27 キシリレンジアミンの製造方法 WO2010026920A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09811446.5A EP2325162B1 (en) 2008-09-08 2009-08-27 Process for producing xylylenediamine
US13/062,334 US8759588B2 (en) 2008-09-08 2009-08-27 Process for producing xylylenediamine
CN200980137104.4A CN102159532B (zh) 2008-09-08 2009-08-27 苯二甲胺的制备方法
JP2010527769A JP5531961B2 (ja) 2008-09-08 2009-08-27 キシリレンジアミンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-230164 2008-09-08
JP2008230164 2008-09-08

Publications (1)

Publication Number Publication Date
WO2010026920A1 true WO2010026920A1 (ja) 2010-03-11

Family

ID=41797088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064989 WO2010026920A1 (ja) 2008-09-08 2009-08-27 キシリレンジアミンの製造方法

Country Status (6)

Country Link
US (1) US8759588B2 (ja)
EP (1) EP2325162B1 (ja)
JP (1) JP5531961B2 (ja)
KR (1) KR101614563B1 (ja)
CN (1) CN102159532B (ja)
WO (1) WO2010026920A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884738B2 (ja) * 2011-01-31 2016-03-15 三菱瓦斯化学株式会社 キシリレンジアミンの製造方法
WO2020189227A1 (ja) * 2019-03-20 2020-09-24 三菱瓦斯化学株式会社 キシリレンジアミンの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671769A (zh) * 2022-04-24 2022-06-28 河南尤尼特化工新材料有限公司 一种连续式生产间苯二甲胺的工艺

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913141A (ja) 1972-03-27 1974-02-05
JPS5320969B2 (ja) 1973-05-02 1978-06-29
JPS63190646A (ja) 1987-02-03 1988-08-08 Nitto Chem Ind Co Ltd ニトリル類製造用バナジウム・アンチモン含有酸化物触媒の製法
JPH01275551A (ja) 1988-04-26 1989-11-06 Mitsubishi Gas Chem Co Inc 芳香族ニトリルの製造法
JPH05170724A (ja) 1991-07-10 1993-07-09 Mitsubishi Gas Chem Co Inc ニトリル化合物の製造法および製造用触媒
JPH0971561A (ja) 1995-09-05 1997-03-18 Nitto Chem Ind Co Ltd ジシアノベンゼンの製造法
JPH09271675A (ja) * 1996-04-02 1997-10-21 Intevep Sa 劣化した水素添加触媒の再生方法
JP2003038956A (ja) * 2001-05-22 2003-02-12 Mitsubishi Gas Chem Co Inc 芳香族アミン製造触媒および芳香族アミンの製造方法
JP2003038958A (ja) * 2001-05-22 2003-02-12 Mitsubishi Gas Chem Co Inc 芳香族アミン製造触媒の製法
JP2004508928A (ja) * 2000-09-25 2004-03-25 ビーエーエスエフ アクチェンゲゼルシャフト 触媒の再生
JP2004107327A (ja) 2002-08-26 2004-04-08 Mitsubishi Gas Chem Co Inc キシリレンジアミンの製造方法
WO2007104663A1 (de) * 2006-03-10 2007-09-20 Basf Se Mischoxid-katalysatoren
JP2008531521A (ja) * 2005-02-24 2008-08-14 ビーエーエスエフ ソシエタス・ヨーロピア キシリレンジアミンの製造方法
JP4945860B2 (ja) 2001-07-24 2012-06-06 凸版印刷株式会社 バリア性チューブ状容器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2970170A (en) * 1957-03-22 1961-01-31 California Research Corp Preparation of xylylenediamines
US5877364A (en) 1994-12-13 1999-03-02 Intevep, S.A. Process for the simultaneous selective hydrogenation of diolefins and nitriles in multiple reactor units
US7468342B2 (en) 2001-05-22 2008-12-23 Mitsubishi Gas Chemical Company, Inc. Catalysts and process for producing aromatic amines
DE602004019000D1 (de) * 2003-02-20 2009-03-05 Mitsubishi Gas Chemical Co Hoch-selektives Herstellungsverfahren von Di(aminomethyl)-substituierten aromatischen Verbindungen
US6881864B2 (en) * 2003-03-07 2005-04-19 Mitsubishi Gas Chemical Company, Inc. Production method of xylylenediamine
GB2431068B (en) 2005-10-05 2010-05-05 Agilent Technologies Inc Method of building a database, system for populating a database, and method of delivering location-relevant information
DE102006006625A1 (de) * 2006-02-14 2007-08-16 Degussa Gmbh Verfahren zur Herstellung von Aminen durch Konditionierung des Katalysators mit Ammoniak
US8212080B2 (en) 2008-12-26 2012-07-03 Mitsubishi Gas Chemical Company, Inc. Production method of xylylenediamine

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913141A (ja) 1972-03-27 1974-02-05
JPS5320969B2 (ja) 1973-05-02 1978-06-29
JPS63190646A (ja) 1987-02-03 1988-08-08 Nitto Chem Ind Co Ltd ニトリル類製造用バナジウム・アンチモン含有酸化物触媒の製法
JPH01275551A (ja) 1988-04-26 1989-11-06 Mitsubishi Gas Chem Co Inc 芳香族ニトリルの製造法
JPH05170724A (ja) 1991-07-10 1993-07-09 Mitsubishi Gas Chem Co Inc ニトリル化合物の製造法および製造用触媒
JPH0971561A (ja) 1995-09-05 1997-03-18 Nitto Chem Ind Co Ltd ジシアノベンゼンの製造法
JPH09271675A (ja) * 1996-04-02 1997-10-21 Intevep Sa 劣化した水素添加触媒の再生方法
JP2004508928A (ja) * 2000-09-25 2004-03-25 ビーエーエスエフ アクチェンゲゼルシャフト 触媒の再生
JP2003038956A (ja) * 2001-05-22 2003-02-12 Mitsubishi Gas Chem Co Inc 芳香族アミン製造触媒および芳香族アミンの製造方法
JP2003038958A (ja) * 2001-05-22 2003-02-12 Mitsubishi Gas Chem Co Inc 芳香族アミン製造触媒の製法
JP4945860B2 (ja) 2001-07-24 2012-06-06 凸版印刷株式会社 バリア性チューブ状容器
JP2004107327A (ja) 2002-08-26 2004-04-08 Mitsubishi Gas Chem Co Inc キシリレンジアミンの製造方法
JP2008531521A (ja) * 2005-02-24 2008-08-14 ビーエーエスエフ ソシエタス・ヨーロピア キシリレンジアミンの製造方法
WO2007104663A1 (de) * 2006-03-10 2007-09-20 Basf Se Mischoxid-katalysatoren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2325162A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884738B2 (ja) * 2011-01-31 2016-03-15 三菱瓦斯化学株式会社 キシリレンジアミンの製造方法
KR101614007B1 (ko) 2011-01-31 2016-04-20 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 자일릴렌디아민의 제조 방법
WO2020189227A1 (ja) * 2019-03-20 2020-09-24 三菱瓦斯化学株式会社 キシリレンジアミンの製造方法

Also Published As

Publication number Publication date
CN102159532B (zh) 2014-09-17
EP2325162A1 (en) 2011-05-25
KR20110085970A (ko) 2011-07-27
JPWO2010026920A1 (ja) 2012-02-02
JP5531961B2 (ja) 2014-06-25
CN102159532A (zh) 2011-08-17
US20110245540A1 (en) 2011-10-06
KR101614563B1 (ko) 2016-04-21
EP2325162A4 (en) 2012-11-21
US8759588B2 (en) 2014-06-24
EP2325162B1 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
US5874607A (en) Coproduction of 6-aminocapronitrile and hexamethylenediamine
EP3523272B1 (en) Process for hydrogenating toluenediamine (tda) tar
JP2010168374A (ja) キシリレンジアミンの製造方法
JP5531961B2 (ja) キシリレンジアミンの製造方法
TWI394739B (zh) 伸茬基二胺之製法
EP1857434B1 (en) Method for producing xylylenediamine
JP2022040373A (ja) ビス(アミノメチル)シクロヘキサンの製造方法
JP2013177345A (ja) キシリレンジアミンの製造方法
RU2467951C2 (ru) Способ получения нитрилов
US9333493B2 (en) Regeneration of aldehyde decarbonylation catalysts
JP2013177346A (ja) メタキシリレンジアミンの製造方法
KR20190059281A (ko) 1,4-디시아노시클로헥산, 1,4-비스(아미노메틸)시클로헥산, 및 1,4-시클로헥산디카르본산의 제조방법
JP5040460B2 (ja) キシリレンジアミンの製造方法
JP4556466B2 (ja) 1,3−ビス(アミノメチル)シクロヘキサンの蒸留方法
JP2011225502A5 (ja)
US6521791B1 (en) Process for regenerating a monolith hydrogenation catalytic reactor
JP2007332135A (ja) キシリレンジアミンの製造方法
JP4561063B2 (ja) キシリレンジアミンの製造方法
TW202102468A (zh) 亞二甲苯二胺之製造方法
KR20030034205A (ko) 촉매의 재생 방법
RU2482104C2 (ru) Способ переработки углеводородных соединений, содержащих нитрильные или аминные функциональные группы
Lanini et al. Synthesis of β-picoline from 2-methylglutaronitrile over supported noble metal catalysts I. Catalyst activity and selectivity
WO2014147161A1 (en) Method for preparation of acetonitrile from ethanol and ammonia by amination-dehydrogenation
JP6183014B2 (ja) 高収率なキシリレンジアミンの回収方法
RU2164222C1 (ru) Способ каталитического жидкофазного восстановления ароматических нитросоединений

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137104.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811446

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009811446

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117006112

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2010527769

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13062334

Country of ref document: US