JP5531961B2 - キシリレンジアミンの製造方法 - Google Patents

キシリレンジアミンの製造方法 Download PDF

Info

Publication number
JP5531961B2
JP5531961B2 JP2010527769A JP2010527769A JP5531961B2 JP 5531961 B2 JP5531961 B2 JP 5531961B2 JP 2010527769 A JP2010527769 A JP 2010527769A JP 2010527769 A JP2010527769 A JP 2010527769A JP 5531961 B2 JP5531961 B2 JP 5531961B2
Authority
JP
Japan
Prior art keywords
catalyst
mass
hydrogenation reaction
liquid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010527769A
Other languages
English (en)
Other versions
JPWO2010026920A1 (ja
Inventor
伸一 長尾
達之 熊野
憲次 中屋
隆助 重松
金司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2010527769A priority Critical patent/JP5531961B2/ja
Publication of JPWO2010026920A1 publication Critical patent/JPWO2010026920A1/ja
Application granted granted Critical
Publication of JP5531961B2 publication Critical patent/JP5531961B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、接触水素化触媒(以下、水素化触媒、触媒又は触媒層と称することもある)を充填した反応器におけるフタロニトリル類の接触水素化反応(以下、水素化反応と略すこともある)によるキシリレンジアミンの製造方法に関する。
不均一系触媒を用いた流通方式(トリクルベッド方式)によりフタロニトリル類を水素化してキシリレンジアミンを製造する方法は公知である。
例えば、不均一系触媒のニッケル−銅−モリブデン系触媒により、フタロニトリル類を気液固三相下で水素により接触水素化反応により還元することが開示されており、固定床方式による連続接触水素化反応が開示されている(特許文献1参照)。
不均一系触媒を用いた固定床方式により、フタロニトリル類を水素化してキシリレンジアミンを製造する方法においては、不均一系触媒である水素化触媒の活性の低下が速いという欠点がある。このため、固定床方式によるフタロニトリル類の水素化反応を長期間実施するには、触媒を再生・賦活させることが必要となる。
工業的に触媒を使用する場合、通常少なくとも1年以上の触媒寿命が必要である。触媒活性等の性能が低下する原因としては、多くの要因が複雑に関係しあっていると考えられる。フタロニトリル類の水素化によりキシリレンジアミンを製造する際に使用する水素化触媒の場合も、使用中の触媒活性の低下は複数の要因が関係していると考えられるが、その主要因は、重合や縮合で生じた高沸副生物の炭素含有の有機物が触媒表面上に蓄積することなどが考えられる。なお、ここでいう触媒寿命とは、触媒活性が全く無くなるまでの時間ということではなく、工業的に連続使用可能かどうかという尺度で判断される触媒寿命の時間のことである。
不均一系触媒を用いた固定床方式により、フタロニトリル類を水素化してキシリレンジアミンを製造する方法においては、触媒活性の低下のみならず、触媒層に高沸副生物が部分閉塞し、反応器の内圧損(触媒層差圧)が上昇し、原料のフタロニトリル類溶液が供給不能となり、運転継続できなくなるという欠点がある。触媒層への高沸副生物の付着により運転継続ができなくなるため、触媒層の高沸副生物を除去することが必要とされる。
従来知られているキシリレンジアミンの製造方法における触媒の再生・賦活の方法としては、水素化分解が挙げられる。例えば、ジシアノベンゼン(フタロニトリル類)の水素化反応に使用されることによって活性が低下した接触水素化触媒を、200〜500℃で水素含有ガスに接触させ、且つ水素含有ガスに接触させる間の接触水素化触媒の温度上昇速度を40℃/分以下にコントロールすることにより触媒再生と触媒層差圧を改善した後、ジシアノベンゼンの水素化反応に再使用する方法が知られている(特許文献2参照)。
特公昭53−20969号公報 特開2004-107327号公報
特許文献2に記載の触媒の水素化分解を行なう方法では、水素化分解の操作が非常に煩雑で、手間を要する。また、別途水素化分解で用いるガスを加熱する装置等が必要となり、さらに、高温で処理するため、触媒のシンタリングや粉化が起こりやすくなると考えられる。よって、水素化分解の代替方法の開発が望まれていた。
そこで、本発明の課題は、フタロニトリル類を水素化させてキシリレンジアミンを製造する水素化反応において、触媒活性の低下又は触媒層差圧が増加した水素化触媒の再生・賦活及び触媒層差圧を改善しながら触媒を継続使用するキシリレンジアミンの製造方法を提供することにある。
本発明者らは、鋭意検討を行った結果、フタロニトリル類を溶媒に溶解した溶液の供給を一旦中断し、その間に、フタロニトリル類の含有量が3質量%以下であり、且つキシリレンジアミン含有量が1質量%以上である洗浄液を触媒に接触させることにより上記課題を解決できることを見出し、本発明に至った。
即ち、本発明は下記[A]〜[H]に記載のキシリレンジアミンの製造方法である。
[A]フタロニトリル類を溶媒に溶解した溶液を、触媒を充填した反応器に供給し、水素化反応によりキシリレンジアミンを得る製造方法であって、
(1)前記溶液の供給を中断し、
(2)フタロニトリル類の含有量が3質量%以下であり、且つキシリレンジアミン含有量が1質量%以上である洗浄液を前記触媒に接触させ、
(3)接触後に前記溶液の供給を再開し、前記触媒を継続して水素化反応に使用する
ことを特徴とするキシリレンジアミンの製造方法。
[B]前記(2)において、洗浄液を20〜180℃で前記触媒に接触させる、上記[A]に記載のキシリレンジアミンの製造方法。
[C]前記(2)において使用する洗浄液が、フタロニトリル類の水素化反応によって得られた水素化反応液である、上記[A]又は[B]に記載のキシリレンジアミンの製造方法。
[D]前記(2)において、洗浄液の少なくとも一部を、循環流通方式又はワンパス流通方式により触媒に接触させる、上記[A]〜[C]のいずれかに記載のキシリレンジアミンの製造方法。
[E]前記(2)において、洗浄液を、水素及び/又は窒素雰囲気下で触媒に接触させる、上記[A]〜[D]のいずれかに記載のキシリレンジアミンの製造方法。
[F]前記フタロニトリル類がイソフタロニトリルである、上記[A]〜[E]のいずれかに記載のキシリレンジアミンの製造方法。
[G]前記溶媒が液体アンモニアである、上記[A]〜[F]のいずれかに記載のキシリレンジアミンの製造方法。
[H]前記溶媒が液体アンモニアであり、前記(2)において、該液体アンモニアの一部又は全部を除いた水素化反応液を洗浄液として用いる、上記[C]〜[F]のいずれかに記載のキシリレンジアミンの製造方法。
本発明によれば、フタロニトリル類の水素化によりキシリレンジアミンを製造するに際して、水素化反応に使用されることにより低下した触媒の活性を回復させ、さらに固定床方式においては触媒層に発生した差圧を改善して触媒を再使用可能な状態に再生し、フタロニトリル類の水素化触媒として継続使用することが可能となる。
また、水素化反応により触媒活性の低下した水素化触媒を、循環流通方式又はワンパス流通方式により、フタロニトリル類の含有量が3質量%以下であり、かつ、キシリレンジアミン含有量が1質量%以上である洗浄液(以下、単に洗浄液と略すこともある)を通液し、触媒に接触させて洗浄する操作は極めて簡単な操作であり、反応器に触媒を充填したまま容易に行うこともでき、工業的に有用である。
さらに、特許文献2等に記載の水素化分解に比べて、より低温で触媒の再生処理をすることができ、触媒温度の急上昇による装置制御不能や触媒劣化(触媒のシンタリングや粉化等)を回避し、安全かつ有効で効果的な再生が可能である。従って、触媒を長期間継続使用することが可能となり、触媒費用の大幅な削減が可能となる。
(フタロニトリル類)
本発明の原料に用いられるフタロニトリル類(以下、原料フタロニトリル類と称することもある)としては、オルトフタロニトリル、イソフタロニトリル、テレフタロニトリルが挙げられる。本発明では、フタロニトリル類として、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。
本発明の製造方法においては、イソフタロニトリルを原料として好ましく用いることができる。該イソフタロニトリルは、オルトフタロニトリルやテレフタロニトリルが全フタロニトリル類の好ましくは10質量%以下(より好ましくは6質量%以下)の割合で混入した混合物であっても好ましく用いることができる。
フタロニトリル類の製造方法としては、キシレン等のアルキル置換ベンゼンのアンモ酸化による方法、ジクロロベンゼン類とシアン化水素を反応させる方法、フタル酸類とアンモニアを反応させる方法等が挙げられる。工業的には、主に、キシレン等のアルキル置換ベンゼンのアンモ酸化によって製造される。
例えば、キシレンのアンモ酸化は、特公昭49−45860号公報、特開昭49−13141号公報、特開昭63−190646号公報、特開平5−170724号公報、特開平1−275551号公報、特開平5−170724号公報、特開平9−71561号公報等に記載の、公知触媒及び公知方法で実施することができる。
<キシリレンジアミンの製造方法>
本発明では、フタロニトリル類を溶媒に溶解した溶液を、触媒を充填した反応器に供給し、水素化反応に付すことによりキシリレンジアミンを得る。
本発明の製造方法により得られるキシリレンジアミンとしては、オルトキシリレンジアミン、メタキシリレンジアミン、パラキシリレンジアミンの3つの異性体が挙げられる。原料としてイソフタロニトリルを用いた場合には、メタキシリレンジアミンが主生成物となる。
フタロニトリル類を水素化する方法としては、特許文献1に開示された方法を利用できる。つまり、不均一系触媒を反応器に充填し、フタロニトリル類を溶媒に溶解して得られるフタロニトリル類溶液及び水素を反応器へ供給する流通方式(トリクルベッド方式)を利用できる。該方法は、不均一系触媒により、フタロニトリル類を気液固三相下で連続接触水素化反応により還元する方法である。不均一系触媒を用いたトリクルベッド方式による連続接触水素化反応を採用する場合に、後述する触媒洗浄操作による触媒再生・賦活効果がより顕著に現れる。
本発明では、フタロニトリル類の水素化の反応形式は、固定床のみならず、懸濁床でもよいが、固定床が好ましい。なお、水素化反応は、連続流通式の反応器を使用して行う。
固定床の不均一系触媒としては、公知の担持金属触媒、非担持金属触媒、ラネー触媒、貴金属触媒等を使用できる。金属としてはニッケル、コバルト、パラジウムが好適であり、金属濃度は10〜95質量%が好ましく、20〜80質量%がより好ましく、30〜70質量%がさらに好ましい。担体としては、珪藻土、シリカ、アルミナ、シリカ・アルミナ、マグネシア、ジルコニア、チタニア、活性炭が好ましい。
フタロニトリル類の水素化における反応温度は、好ましくは20〜200℃、より好ましくは30〜160℃、さらに好ましくは40〜120℃である。フタロニトリル類の水素化における反応圧力(水素圧)は、好ましくは1〜30MPa、より好ましくは2〜20MPa、さらに好ましくは3〜15MPaである。
原料フタロニトリル類を溶解するための前記溶媒としては、例えば液体アンモニアをはじめ、水素化反応条件下で安定な種々の溶媒が用いられる。液体アンモニア以外の具体的な溶媒としては、トルエン、キシレン、トリメチルベンゼン等の芳香族炭化水素系溶媒;テトラヒドロフラン、ジオキサン等のエーテル系溶媒;メタノール、エタノール、プロパノール等のアルコール系溶媒;ベンジルアミン、メチルベンジルアミン等の芳香族モノアミン系溶媒等が挙げられる。上記の溶媒の中でも、液体アンモニアと芳香族炭化水素系溶媒が好ましく、液体アンモニアがより好ましい。
(触媒洗浄操作)
同一触媒を用いてフタロニトリル類の水素化反応を長期間連続的に実施していると、触媒の活性が低下し、且つ触媒層差圧が増加してくるため、キシリレンジアミンの製造の継続が困難となる。
そこで、本発明では、以下の操作(1)〜(3)を実施することにより、触媒のシンタリングや粉化を抑制しつつ、効果的に触媒を再生・賦活し、且つ触媒層差圧を低減することを可能にした。
(1)前記原料フタロニトリル類溶液の供給を中断する。
(2)次いで、フタロニトリル類の含有量が3質量%以下であり、且つキシリレンジアミン含有量が1質量%以上である洗浄液を前記触媒に接触させる。
(3)接触後に前記溶液の供給を再開し、前記触媒を継続して水素化反応に使用する。
水素化反応に使用される触媒の失活の原因としてはいくつかの要因が考えらえる。例えば、触媒の活性成分の熱的負荷によるシンタリングや、触媒の活性成分及び/又は構成成分に対し触媒毒となり得る成分の混入等による触媒の被毒作用によって触媒失活や永久被毒を受けること等が考えられる。
なお、「失活」とは、目的の水素化反応に対して触媒としての機能を完全に失うということではなく、生産性、ユーティリティー及びコスト等の実用面からみて工業的に使用できない状態である。
−操作(1)−
触媒活性が低下するに伴って反応液中の反応中間体である3−シアノベンジルアミン(以下、反応中間体CBAと称する)の濃度が高まり、水素化反応を継続するに従って水素化触媒層差圧が上昇してくるため、前記(1)において、原料フタロニトリル類溶液の供給の中断は、反応中間体CBAの濃度や触媒層差圧を指標として判断することができる。
具体的には、反応中間体CBAの濃度が好ましくは13質量%以上、より好ましくは10質量%以上、さらに好ましくは6質量%以上となった時点で、原料フタロニトリル類溶液の供給を中断すればよい。また、触媒層差圧の上昇がみられた時点で適時原料フタロニトリル類溶液の供給を中断すればよく、安定してキシリレンジアミンを製造する観点から、原料フタロニトリル類溶液の供給不能となる前に原料フタロニトリル類溶液の供給を中断することが好ましい。なお、触媒層差圧は、実施例に記載の方法により求めた値である。
また、反応中間体CBAの濃度や触媒層差圧を指標とせずに、触媒活性が低下し過ぎず、且つ触媒層差圧が増大し過ぎない程度の一定時間間隔により供給を中断する方法も有効である。
−操作(2)−
原料フタロニトリル類溶液の供給を中断した後、触媒が充填された反応器へ洗浄液を通液して、洗浄液を触媒と接触させる。この操作(2)により、触媒の再生・賦活効果及び触媒層差圧の改善効果がある。これは、既に重合あるいは縮合反応等で高沸副生物に変化しつつある有機物(以下、高沸副生物前駆体と称する)を触媒表面から脱離させることができたためと考えられる。
すなわち、前記操作(1)においては、反応中間体CBAの濃度の上昇がほとんどなく、触媒層差圧もみられない時点で原料フタロニトリル類溶液の供給を止めることが、操作(2)による効果発現の観点から好ましい。触媒表面上への上記高沸副生物前駆体の吸着による活性点(水素化反応が起きるスポット)の減少が失活の主原因たるものである場合には、上記のように、吸着した高沸副生物前駆体を触媒表面上から脱離させ除去することができれば触媒活性が再生される。
操作(2)で使用する前記洗浄液は、フタロニトリル類の含有量が3質量%以下であり、且つキシリレンジアミン含有量が1質量%以上である洗浄液である。
該洗浄液中のキシリレンジアミン濃度は、触媒の再生・賦活及び触媒層差圧低減の観点から、1〜100質量%であることが重要であり、3〜100質量%が好ましく、5〜100質量%がより好ましく、10〜100質量%がより好ましく、50〜100質量%がより好ましく、90〜100質量%がより好ましく、95〜100質量%がより好ましく、99〜100質量%がさらに好ましい。
反応目的物がメタキシリレンジアミンである場合は、洗浄液として反応目的物のメタキシリレンジアミンを洗浄液として使用でき、同様にして、反応目的物が異性体のオルトキシリレンジアミン又はパラキシリレンジアミンである場合は、反応目的物であるオルトキシリレンジアミン又はパラキシリレンジアミンを洗浄液として使用できる。
なお、反応目的物がメタキシリレンジアミンである場合、反応目的物のメタキシレンジアミンの他に、異性体であるオルトキシリレンジアミン又はパラキシリレンジアミンを混合して洗浄液として使用できる。但し、異性体を混合して使用する場合は、別途、混合液から異性体を蒸留により分離回収する操作や装置が必要になる。
一方、洗浄液中の原料フタロニトリル類の濃度は、触媒の再生・賦活及び触媒層差圧低減の観点から、3質量%以下であることが重要であり、1質量%以下が好ましく、0.1質量%以下がより好ましく、0.005質量%以下がさらに好ましい。工業的に入手可能なキシリレンジアミンや、本発明の製造方法により得られるキシリレンジアミンには、原料フタロニトリル類が含有されていることもあるため、場合によっては、フタロニトリル類の濃度を前記範囲に調整してから使用する必要がある。
不均一系触媒の存在下、原料フタロニトリル類を溶媒に溶解し、キシリレンジアミンを製造する方法においては、反応器の反応帯(触媒層)を通過した水素化反応液を、適宜フタロニトリル類の濃度を前記範囲に調整してから前記洗浄液として使用することができ、この方法が簡便であり、工業的に特に好ましい。また、該水素化反応液から、例えば液体アンモニア等の溶媒を一部又は全部除去した液を前記洗浄液として使用することもできる。
なお、上記の様に、洗浄液として水素化反応液を利用する場合、洗浄液中の反応中間体CBA濃度および高沸副生物(高沸副生物前駆体を含む。)の濃度は、触媒洗浄効果の観点から、それぞれ、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下であり、実質的に0質量%であることが特に好ましい。
洗浄液の粘度が高い場合、前記した原料フタロニトリル類を溶解するための溶媒を洗浄液に混合して粘度を低減してもよい。粘度を低減するための溶媒としては、液体アンモニアと芳香族炭化水素系溶媒が好ましく、液体アンモニアがより好ましい。
操作(2)の洗浄(接触)を実施する温度条件は広範囲に選ぶことができる。その圧力下で液相を保持できる温度であれば高い温度ほど効果はあるが、必要以上の温度は溶媒等が熱により変質する恐れもあるので、通常の水素化反応温度付近、具体的には20〜180℃が好ましく、40〜140℃がより好ましく、60〜120℃がより好ましく、60〜110℃がさらに好ましい。
洗浄(接触)時間は、触媒の再生・賦活及び触媒層差圧低減の観点から、30分以上が好ましく、1〜20時間がより好ましい。
洗浄液を通液させて触媒に接触させる(洗浄する)ことにより、触媒上に吸着した原料フタロニトリル類、反応生成物、高沸副生成物(重合物、縮合物等)及び高沸副生成物前駆体等の少なくとも一部を洗浄して脱離させることができているものと考えられる。
反応停止前の反応器内圧力を保持したまま、触媒と洗浄液の接触温度を前記温度範囲に保持、又は洗浄液を前記温度範囲に保持した状態で洗浄操作を実施することにより、高沸副生物前駆体の洗浄液への溶解量が多くなり、効果的となる。
洗浄終了後、水素化反応をすぐに再開するためには、触媒洗浄中の反応器内の圧力は1〜30MPaが好ましく、3〜20MPaがより好ましく、3〜15MPaがさらに好ましい。
洗浄液を通液させ触媒に接触させる操作については、水素及び/又は窒素雰囲気下で行うこともできる。
洗浄液を触媒に接触させる操作については特に制限は無いが、例えば原料フタロニトリル類溶液の供給停止後、反応器内を洗浄液で満たすことにより触媒に接触させる方法や、洗浄液の少なくとも一部を、循環流通方式又はワンパス流通方式により反応器へ流通させることにより触媒に接触させる方法等が挙げられる。
ここで、循環流通方式とは、連続流通式の反応器の出口からの洗浄液の少なくとも一部を反応器の入口に循環使用する流通方式であり、ワンパス流通方式とは、連続流通方式の反応器の出口からの洗浄液を再使用しない流通方式を意味する。
操作(2)では、温度、圧力、時間及び洗浄液の量は、固定化されたものではなく、操作を通してこれらの値の少なくとも1つ以上を変化させ、状況に応じてこれらの値の少なくとも1つ以上を変更できる。
同様に、トリクル流れを形成するために洗浄操作時に使用する水素のガス流量、窒素のガス流量、及び水素濃度等の値も固定化されたものではなく、操作を通してこれらの値の少なくとも1つ以上を変化させ、状況に応じてこれらの値の少なくとも1つ以上を変更できる。
−操作(3)−
操作(2)の後に、原料フタロニトリル類溶液の供給を再開し、洗浄操作に付された触媒により、フタロニトリル類の水素化反応を再開する。
その後、前記操作(1)〜(3)を必要に応じて繰り返すことにより、フタロニトリル類の水素化反応を長期間連続的に実施することも可能である。
(キシリレンジアミンの取得方法)
フタロニトリル類の水素化反応によって得られるキシリレンジアミンの取得方法に特に制限は無く、公知の方法を採用すればよい。
例えば、触媒を充填した反応器を流通してきた水素化反応液から、高沸副生物、高沸副生物前駆体及び低沸物等を蒸留によって除去することにより、ガスクロマトグラフィー(以下、GCと称する)純度99質量%以上のキシリレンジアミンを得ることができる。例えばイソフタロニトリルの水素化反応であれば、通常、GC純度99.95質量%程度のメタキシリレンジアミンを得ることもできる。洗浄操作で使用した洗浄液からも、メタキシリレンジアミンを蒸留により得ることができる。
以下、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
以下の各例においては、メタキシリレンジアミンをMXDAと称することがある。
また、各例において行った水素化反応液のガスクロマトグラフィー(GC)分析方法及び触媒層差圧の測定方法は、以下の通りである。なお、各例において、水素化反応液をサンプリングしてガスクロマトグラフィー(GC)分析を行うタイミングが異なることもある。
[ガスクロマトグラフィー分析(定性・定量分析)]
装置:Agilent 6890(Agilent Technologies社製)
注入口温度:230℃
カラム:Agilent J&W GCカラム「DB−1」(Agilent Technologies社製)
カラム温度:100℃〜280℃
検出器:水素炎イオン化検出器(FID)
注入:原料あるいはサンプリング液を、溶媒以外の成分が1〜5質量%になる様にメタノールあるいはテトラヒドロフランで希釈したものを注入した。
[触媒層差圧の測定]
デジタル式圧力測定器(VALCOM製圧力センサー)を反応器の入口及び出口に設置し、各値の差を触媒層差圧とした。数値が高い程、通液状況が悪化していることを示す。
<実施例1>
(水素化反応)
内径25mmφのSUS製の反応器に、ニッケル含量50質量%であるニッケル/珪藻土担体の触媒(円柱状、直径3mmφ、高さ3mm)を120mL充填し、水素気流下200℃で還元して触媒を活性化させた。冷却後、反応器及びそれらをつなぐ配管内に水素ガスを圧入して一定圧力8MPaに保ち、外部加熱により反応器内を70℃に維持した。
反応器の入口より13L/hで水素ガスの供給を開始した。水素ガスの流通状態を保ちながら、原料イソフタロニトリル(三菱瓦斯化学株式会社製、メタキシレンのアンモ酸化反応により得られた製品、純度94質量%以上)を1質量部、液体アンモニア(三菱化学株式会社製、純度99.9質量%)を9質量部の割合で混合した原料液を139g/hで反応器の入口より供給し、反応器内の温度70℃にて、トリクルベッド方式の連続的な水素化反応を行い、反応器の出口からは、水素化反応によって得られた水素化反応液を抜出した。反応開始後、適時、反応器の出口より抜出した水素化反応液をサンプリングし、ガスクロマトグラフィーで分析した。
(水素化反応停止:操作(1))
水素化反応を開始してから300時間後、原料液の供給のみを停止した。
(触媒洗浄:操作(2))
反応器内の温度を70℃に維持し、反応器の入口から洗浄液として三菱瓦斯化学株式会社製のMXDA[GC純度99.9質量%、イソフタロニトリル約10質量ppm以下(GC検出限界以下)]800gを139g/hで反応器へ供給した(洗浄時間約6時間、ワンパス流通方式)。
洗浄操作を行なった後の洗浄液からは、MXDA由来と考えられる高沸副生物前駆体が液体クロマトグラフィーで確認された。
(水素化反応再開:操作(3))
洗浄終了後、水素ガスの流通状態を保ちながら、原料イソフタロニトリル1質量部及び液体アンモニア9質量部の割合で混合した原料液を139g/hで反応器の入口より供給し、反応器内の温度70℃にて連続的な水素化反応を再開した。
水素化反応再開後、適時、反応器の出口より抜出した水素化反応液をサンプリングし、ガスクロマトグラフィーで分析した。
MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表1に示す。
<比較例1>
実施例1において、水素化反応停止[操作(1)]及び触媒洗浄[操作(2)]を行わず、そのまま水素化反応を継続したこと以外は実施例1と同様にして、連続的な水素化反応を行った。反応開始後、適時、反応器の出口より抜出した水素化反応液をサンプリングし、ガスクロマトグラフィーで分析した。
反応開始から600時間経過した時点で原料イソフタロニトリルの転化率100質量%、反応目的物であるMXDAの選択率78.1質量%、反応中間体CBAの選択率18.1質量%となり水素化触媒活性の低下が認められ、触媒層差圧も0.14MPaとなり増大した。
MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表1に示す。
<比較例2>
実施例1において、水素化反応温度を70℃から80℃に変更し、反応停止[操作(1)]及び触媒洗浄[操作(2)]を行わず、そのまま水素化反応を継続したこと以外は実施例1と同様にして、連続的な水素化反応を行った。反応開始後、適時、反応器の出口より抜き出した水素化反応液をサンプリングし、ガスクロマトグラフィーで分析した。
水素化反応開始から800時間経過した時点で触媒層差圧は0.29MPaに増大し、更に水素化反応開始から850時間経過した時点で原料液の供給の継続が難しくなり水素化反応を停止した。
MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表1に示す。
<比較例3>
実施例1において、洗浄液を、三菱瓦斯化学株式会社製のMXDA(GC純度99.9質量%、イソフタロニトリル約10質量ppm以下(GC検出限界以下))768gとイソフタロニトリル32gを混合した液800g(イソフタロニトリル濃度:4質量%)に変更したこと以外は、実施例1と同様にして実験及び分析を行った。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体が液体クロマトグラフィーで確認された。
水素化反応再開から300時間経過した時点で原料イソフタロニトリルの転化率100質量%、反応目的物MXDAの選択率77.3質量%、反応中間体CBAの選択率16.7質量%となり、水素化触媒活性の低下が認められ、触媒層差圧も0.13MPaとなり増大した。
MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表1に示す。
<比較例4>
実施例1において、洗浄液を液体アンモニアに変更したこと以外は、実施例1と同様にして実験及び分析を行った。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体が液体クロマトグラフィーで確認された。
水素化反応再開から300時間経過した時点で原料イソフタロニトリルの転化率100質量%、反応目的物MXDAの選択率78.8質量%、反応中間体CBAの選択率17.3質量%となり、水素化触媒活性の低下が認められ、触媒層差圧も0.12MPaとなり増大した。
MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表1に示す。
<実施例2>
実施例1において、洗浄液を、液体アンモニアを除去した水素化反応液[MXDAのGC純度94質量%、イソフタロニトリル約10質量ppm以下(GC検出限界以下)]に変更したこと以外は、実施例1と同様に実験及び分析を行った。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体が液体クロマトグラフィーで確認された。
MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表2に示す。
<実施例3>
実施例1において、洗浄液を、三菱瓦斯化学株式会社製のMXDA[GC純度99.9質量%、イソフタロニトリル約10ppm以下(GC検出限界以下)]128gと液体アンモニアを672g混合した液800g(MXDA濃度:16質量%)に変更したこと以外は、実施例1と同様に実験及び分析を行った。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体が液体クロマトグラフィーで確認された。
MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表2に示す。
<実施例4>
実施例1において、洗浄液を、三菱瓦斯化学株式会社製のMXDA[GC純度99.9質量%、イソフタロニトリル約10ppm以下(GC検出限界以下)]40gと液体アンモニアを760g混合した液800g(MXDA濃度:5質量%)に変更したこと以外は、実施例1と同様に実験及び分析を行った。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体が液体クロマトグラフィーで確認された。
MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表2に示す。
<実施例5>
実施例1において、初めの水素化反応温度及び水素化反応再開[操作(3)]における水素化反応温度を70℃から80℃に変更し、操作(1)において、反応開始から800時間後に原料液の供給のみを停止し、触媒洗浄[操作(2)]の温度を70℃から110℃に変更したこと以外は、実施例1と同様に実験及び分析を行った。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体が液体クロマトグラフィーで確認された。
MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表2に示す。
<実施例6>
実施例1において、触媒洗浄[操作(2)]の温度を70℃から20℃に変更したこと以外は、実施例1と同様に実験及び分析を行った。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体が液体クロマトグラフィーで確認された。
MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表2に示す。
<実施例7>
(水素化反応)
実施例1において、水素化反応温度を70℃から80℃に変更したこと以外は同様にして水素化反応を行った。
(水素化反応停止−1:操作(1))
水素化反応開始から100時間後、原料液の供給のみを停止した。
(触媒洗浄−1:操作(2))
反応器内の温度を80℃から90℃に昇温し、反応器の入口から洗浄液として三菱瓦斯化学株式会社製のMXDA[GC純度99.9質量%、イソフタロニトリル約10ppm以下(GC検出限界以下)]800gを139g/hで供給した。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体がわずかながら液体クロマトグラフィーで確認された。
(水素化反応再開−1:操作(3))
洗浄後、水素ガスの流通状態を保ちながら、原料イソフタロニトリル1質量部及び液体アンモニア9質量部の割合で混合した原料液を139g/hで反応器の入口より供給し、反応器内温度80℃にて連続的な水素化反応を再開した。
(水素化反応停止−2:操作(1))
前記水素化反応の再開から100時間後、原料液の供給のみを再び停止した。
(触媒洗浄−2:操作(2))
反応器内の温度を80℃から90℃に昇温し、反応器の入口から洗浄液として三菱瓦斯化学株式会社製のMXDA[GC純度99.9質量%、イソフタロニトリル約10ppm以下(GC検出限界以下)]800gを139g/hで供給した。洗浄操作で使用した洗浄液からは、MXDA由来と考えられる高沸副生物前駆体がわずかながら液体クロマトグラフィーで確認された。
(水素化反応再開−2:操作(3))
洗浄後、水素ガスの流通状態を保ちながら、原料イソフタロニトリル1質量部及び液体アンモニア9質量部の割合で混合した原料液を139g/hで反応器の入口より供給し、反応器内温度80℃にて連続的な水素化反応を再開した。
MXDA及び反応中間体CBAの選択率並びに反応器内の触媒層差圧の推移を表2に示す。
Figure 0005531961
Figure 0005531961
実施例1〜7において、水素化反応再開直後又は水素化反応再開から50時間後の反応中間体CBAの濃度及び触媒層差圧より、触媒再生・賦活効果と触媒層差圧改善効果が認められた。
一方、触媒の洗浄操作を行わなかった比較例1及び比較例2では、反応中間体CBAの濃度及び触媒層差圧が増加し続け、特に比較例2のように長時間反応を実施すると、原料の供給不能に陥り、水素化反応の継続が不可能となり、工業的に長期間実施するには耐えない方法であることがわかった。
また、触媒の洗浄操作を行ったとしても、洗浄液中のイソフタロニトリルの濃度が3質量%を超えている場合(比較例3)や、MXDAの濃度が1質量%に満たない場合(比較例4)では、十分な触媒再生・賦活効果を得られず、また触媒層差圧改善効果も不十分であり、工業的に実施するのは困難であった。なお、比較例3の結果は、水素化反応により得られる水素化反応液を洗浄液として用いる場合にも、水素化反応液中のイソフタロニトリルの濃度を3質量%以下に低減してから使用する必要があることを示している。
実施例1の水素化反応再開後300時間の結果と、比較例1〜4の水素化反応開始後600時間の結果とを比較すると、本発明の効果が顕著に現れていることがわかる。
本発明の製造方法により得られるキシリレンジアミンは、例えばポリアミド、エポキシ硬化剤の合成のために有用な出発物質又はイソシアネート樹脂の製造における中間体として有用である。

Claims (8)

  1. オルトフタロニトリル、イソフタロニトリル及びテレフタロニトリルからなる群から選ばれる1種以上を溶媒に溶解した溶液を、触媒を充填した反応器に供給し、水素化反応によりキシリレンジアミンを得る製造方法であって、
    (1)前記溶液の供給を中断し、
    (2)オルトフタロニトリル、イソフタロニトリル及びテレフタロニトリルからなる群から選ばれる1種以上の含有量が3質量%以下であり、且つキシリレンジアミン含有量が1質量%以上である洗浄液を前記触媒に接触させ、
    (3)接触後に前記溶液の供給を再開し、前記触媒を継続して水素化反応に使用する
    ことを特徴とするキシリレンジアミンの製造方法。
  2. 前記(2)において、洗浄液を20〜180℃で前記触媒に接触させる、請求項1に記載のキシリレンジアミンの製造方法。
  3. 前記(2)において使用する洗浄液が、オルトフタロニトリル、イソフタロニトリル及びテレフタロニトリルからなる群から選ばれる1種以上の水素化反応によって得られた水素化反応液である、請求項1又は2に記載のキシリレンジアミンの製造方法。
  4. 前記(2)において、洗浄液の少なくとも一部を、循環流通方式又はワンパス流通方式により触媒に接触させる、請求項1〜3のいずれかに記載のキシリレンジアミンの製造方法。
  5. 前記(2)において、洗浄液を、水素及び/又は窒素雰囲気下で触媒に接触させる、請求項1〜4のいずれかに記載のキシリレンジアミンの製造方法。
  6. 前記フタロニトリル類がイソフタロニトリルである、請求項1〜5のいずれかに記載のキシリレンジアミンの製造方法。
  7. 前記溶媒が液体アンモニアである、請求項1〜6のいずれかに記載のキシリレンジアミンの製造方法。
  8. 前記溶媒が液体アンモニアであり、前記(2)において、該液体アンモニアの一部又は全部を除いた水素化反応液を洗浄液として用いる、請求項3〜6のいずれかに記載のキシリレンジアミンの製造方法。
JP2010527769A 2008-09-08 2009-08-27 キシリレンジアミンの製造方法 Active JP5531961B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010527769A JP5531961B2 (ja) 2008-09-08 2009-08-27 キシリレンジアミンの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008230164 2008-09-08
JP2008230164 2008-09-08
JP2010527769A JP5531961B2 (ja) 2008-09-08 2009-08-27 キシリレンジアミンの製造方法
PCT/JP2009/064989 WO2010026920A1 (ja) 2008-09-08 2009-08-27 キシリレンジアミンの製造方法

Publications (2)

Publication Number Publication Date
JPWO2010026920A1 JPWO2010026920A1 (ja) 2012-02-02
JP5531961B2 true JP5531961B2 (ja) 2014-06-25

Family

ID=41797088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010527769A Active JP5531961B2 (ja) 2008-09-08 2009-08-27 キシリレンジアミンの製造方法

Country Status (6)

Country Link
US (1) US8759588B2 (ja)
EP (1) EP2325162B1 (ja)
JP (1) JP5531961B2 (ja)
KR (1) KR101614563B1 (ja)
CN (1) CN102159532B (ja)
WO (1) WO2010026920A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2671864B1 (en) * 2011-01-31 2017-03-15 Mitsubishi Gas Chemical Company, Inc. Method for producing xylylenediamine
US20220153682A1 (en) * 2019-03-20 2022-05-19 Mitsubishi Gas Chemical Company, Inc. Method for producing xylylenediamine
CN114671769A (zh) * 2022-04-24 2022-06-28 河南尤尼特化工新材料有限公司 一种连续式生产间苯二甲胺的工艺

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2970170A (en) * 1957-03-22 1961-01-31 California Research Corp Preparation of xylylenediamines
US3803204A (en) 1972-03-27 1974-04-09 Standard Oil Co Preparation of aromatic nitriles
JPS5320969B2 (ja) 1973-05-02 1978-06-29
JP2522929B2 (ja) 1987-02-03 1996-08-07 日東化学工業株式会社 ニトリル類製造用バナジウム・アンチモン含有酸化物触媒の製法
JPH0623158B2 (ja) 1988-04-26 1994-03-30 三菱瓦斯化学株式会社 芳香族ニトリルの製造法
JP3156734B2 (ja) 1991-07-10 2001-04-16 三菱瓦斯化学株式会社 ニトリル化合物の製造法および製造用触媒
US5877364A (en) 1994-12-13 1999-03-02 Intevep, S.A. Process for the simultaneous selective hydrogenation of diolefins and nitriles in multiple reactor units
US5817589A (en) * 1996-04-02 1998-10-06 Intevep, S.A. Regeneration of catalyst comprising flushing with inert gas followed by flushing with hydrogen
JPH0971561A (ja) 1995-09-05 1997-03-18 Nitto Chem Ind Co Ltd ジシアノベンゼンの製造法
DE10047703A1 (de) * 2000-09-25 2002-04-11 Basf Ag Verfahren zur Regenerierung von Katalysatoren
US7468342B2 (en) 2001-05-22 2008-12-23 Mitsubishi Gas Chemical Company, Inc. Catalysts and process for producing aromatic amines
JP4182324B2 (ja) * 2001-05-22 2008-11-19 三菱瓦斯化学株式会社 芳香族アミン製造触媒の製法
JP2003038956A (ja) 2001-05-22 2003-02-12 Mitsubishi Gas Chem Co Inc 芳香族アミン製造触媒および芳香族アミンの製造方法
JP4945860B2 (ja) 2001-07-24 2012-06-06 凸版印刷株式会社 バリア性チューブ状容器
JP4561063B2 (ja) 2002-08-26 2010-10-13 三菱瓦斯化学株式会社 キシリレンジアミンの製造方法
EP1449825B1 (en) * 2003-02-20 2009-01-14 Mitsubishi Gas Chemical Company, Inc. High-selective production method of di(aminomethyl)-substituted aromatic compound
EP1454895B1 (en) * 2003-03-07 2009-05-13 Mitsubishi Gas Chemical Company, Inc. Production method of xylylenediamine
DE102005008929A1 (de) * 2005-02-24 2006-08-31 Basf Ag Verfahren zur Herstellung eines Xylylendiamins
GB2431068B (en) 2005-10-05 2010-05-05 Agilent Technologies Inc Method of building a database, system for populating a database, and method of delivering location-relevant information
DE102006006625A1 (de) * 2006-02-14 2007-08-16 Degussa Gmbh Verfahren zur Herstellung von Aminen durch Konditionierung des Katalysators mit Ammoniak
RU2434676C9 (ru) * 2006-03-10 2012-12-27 Басф Се Катализатор на основе смешанных оксидов для гидрирования органических соединений, способ его получения и способ гидрирования
US8212080B2 (en) 2008-12-26 2012-07-03 Mitsubishi Gas Chemical Company, Inc. Production method of xylylenediamine

Also Published As

Publication number Publication date
WO2010026920A1 (ja) 2010-03-11
KR101614563B1 (ko) 2016-04-21
EP2325162B1 (en) 2014-06-25
EP2325162A4 (en) 2012-11-21
CN102159532A (zh) 2011-08-17
JPWO2010026920A1 (ja) 2012-02-02
US20110245540A1 (en) 2011-10-06
CN102159532B (zh) 2014-09-17
US8759588B2 (en) 2014-06-24
KR20110085970A (ko) 2011-07-27
EP2325162A1 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
US5874607A (en) Coproduction of 6-aminocapronitrile and hexamethylenediamine
JP5493836B2 (ja) キシリレンジアミンの製造方法
KR20190062555A (ko) 톨루엔디아민(tda) 타르의 수소화 방법
KR100614015B1 (ko) 니트릴 또는 니트로 화합물을 아민으로 연속 수소화하기위한 방법
EP1873137B1 (en) Production of Xylenediamines
JP5531961B2 (ja) キシリレンジアミンの製造方法
EP1857434B1 (en) Method for producing xylylenediamine
JP2013177345A (ja) キシリレンジアミンの製造方法
KR101235491B1 (ko) 니트릴 화합물의 제조방법
JP2013177346A (ja) メタキシリレンジアミンの製造方法
KR20190059281A (ko) 1,4-디시아노시클로헥산, 1,4-비스(아미노메틸)시클로헥산, 및 1,4-시클로헥산디카르본산의 제조방법
JP5040435B2 (ja) キシリレンジアミンの製造方法
JP5040460B2 (ja) キシリレンジアミンの製造方法
JP2011225502A5 (ja)
US6521791B1 (en) Process for regenerating a monolith hydrogenation catalytic reactor
EP0908447B1 (en) Process for the preparation of cyanoarylmethylamine
JP2022040373A (ja) ビス(アミノメチル)シクロヘキサンの製造方法
JP4561063B2 (ja) キシリレンジアミンの製造方法
KR20030034205A (ko) 촉매의 재생 방법
RU2482104C2 (ru) Способ переработки углеводородных соединений, содержащих нитрильные или аминные функциональные группы
TW202102468A (zh) 亞二甲苯二胺之製造方法
WO2014147161A1 (en) Method for preparation of acetonitrile from ethanol and ammonia by amination-dehydrogenation
JP2015017050A (ja) 高収率なキシリレンジアミンの回収方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R151 Written notification of patent or utility model registration

Ref document number: 5531961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151