DE102005008929A1 - Verfahren zur Herstellung eines Xylylendiamins - Google Patents
Verfahren zur Herstellung eines Xylylendiamins Download PDFInfo
- Publication number
- DE102005008929A1 DE102005008929A1 DE102005008929A DE102005008929A DE102005008929A1 DE 102005008929 A1 DE102005008929 A1 DE 102005008929A1 DE 102005008929 A DE102005008929 A DE 102005008929A DE 102005008929 A DE102005008929 A DE 102005008929A DE 102005008929 A1 DE102005008929 A1 DE 102005008929A1
- Authority
- DE
- Germany
- Prior art keywords
- hydrogenation
- alkali metal
- carried out
- metal hydroxide
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 238000005984 hydrogenation reaction Methods 0.000 title claims abstract description 49
- 150000008044 alkali metal hydroxides Chemical class 0.000 title claims abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 16
- GKXVJHDEWHKBFH-UHFFFAOYSA-N xylylenediamine group Chemical class C=1(C(=CC=CC1)CN)CN GKXVJHDEWHKBFH-UHFFFAOYSA-N 0.000 title claims abstract description 16
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 title claims description 20
- XQZYPMVTSDWCCE-UHFFFAOYSA-N phthalonitrile Chemical class N#CC1=CC=CC=C1C#N XQZYPMVTSDWCCE-UHFFFAOYSA-N 0.000 title claims description 15
- 230000015572 biosynthetic process Effects 0.000 title description 5
- 238000003786 synthesis reaction Methods 0.000 title description 3
- 239000004952 Polyamide Substances 0.000 title description 2
- 229920002647 polyamide Polymers 0.000 title description 2
- 239000003054 catalyst Substances 0.000 claims abstract description 47
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 22
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000002904 solvent Substances 0.000 claims abstract description 17
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 46
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 24
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 22
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 16
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- LAQPNDIUHRHNCV-UHFFFAOYSA-N isophthalonitrile Chemical compound N#CC1=CC=CC(C#N)=C1 LAQPNDIUHRHNCV-UHFFFAOYSA-N 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 229920006391 phthalonitrile polymer Polymers 0.000 claims description 9
- 239000000243 solution Substances 0.000 claims description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 3
- 125000002723 alicyclic group Chemical group 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 150000001983 dialkylethers Chemical class 0.000 claims description 3
- 238000002386 leaching Methods 0.000 claims description 3
- 229910000838 Al alloy Inorganic materials 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 239000002638 heterogeneous catalyst Substances 0.000 claims 2
- -1 phthalodinitrile compound Chemical class 0.000 abstract description 9
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 150000002170 ethers Chemical class 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 229910017052 cobalt Inorganic materials 0.000 description 8
- 239000010941 cobalt Substances 0.000 description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000011651 chromium Substances 0.000 description 7
- 150000002825 nitriles Chemical class 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- BHXFKXOIODIUJO-UHFFFAOYSA-N benzene-1,4-dicarbonitrile Chemical compound N#CC1=CC=C(C#N)C=C1 BHXFKXOIODIUJO-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- FHKPTEOFUHYQFY-UHFFFAOYSA-N 2-aminohexanenitrile Chemical compound CCCCC(N)C#N FHKPTEOFUHYQFY-UHFFFAOYSA-N 0.000 description 2
- MTPJEFOSTIKRSS-UHFFFAOYSA-N 3-(dimethylamino)propanenitrile Chemical compound CN(C)CCC#N MTPJEFOSTIKRSS-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 2
- 239000007868 Raney catalyst Substances 0.000 description 2
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 2
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 150000001409 amidines Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- 239000003426 co-catalyst Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000011877 solvent mixture Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 1
- CZLMRJZAHXYRIX-UHFFFAOYSA-N 1,3-dioxepane Chemical compound C1CCOCOC1 CZLMRJZAHXYRIX-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 125000005266 diarylamine group Chemical group 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000003022 phthalic acids Chemical class 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/44—Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
- C07C209/48—Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/01—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
- C07C211/26—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
- C07C211/27—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Verfahren zur Herstellung eines Xylylendiamins durch heterogenkatalysierte Hydrierung eines Phthalodinitrils, wobei die Hydrierung in Gegenwart eines Nickel-Skelett-Katalysators, von Wasser, eines Alkalimetallhydroxids und eines Ethers als Lösungsmittel, bei einem Absolutdruck im Bereich von 1 bis 100 bar, bei einer Temperatur im Bereich von 40 bis 150 DEG C und ohne Zugabe von Ammoniak durchgeführt wird.
Description
- Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Xylylendiamins durch heterogenkatalysierte Hydrierung eines Phthalodinitrils.
- Xylylendiamin (Bis(aminomethyl)benzol) ist ein nützlicher Ausgangsstoff, z.B. für die Synthese von Polyamiden, Epoxyhärtern oder als Zwischenstufe zur Herstellung von Isocyanaten.
- Die Bezeichnung „Xylylendiamin" (XDA) umfasst die drei Isomere ortho-Xylylendiamin, meta-Xylylendiamin (MXDA) und para-Xylylendiamin.
- Der Begriff „Phthalodinitril" (PDN) umfasst die drei Isomere 1,2-Dicyanbenzol = o-Phthalodinitril, 1,3-Dicyanbenzol = Isophthalodinitril = IPDN und 1,4-Dicyanbenzol = Terephthalodinitril.
- Die Phthalodinitrile sind Feststoffe (z.B. schmilzt Isophthalodinitril (IPDN) bei 161°C) und weisen relativ schlechte Löslichkeiten in vielen organischen Lösungsmitteln auf.
- Die zweistufige Synthese von Xylylendiamin durch Ammonoxidation von Xylol und anschließender Hydrierung des erhaltenen Phthalodinitrils ist im Prinzip bekannt.
- US-A-4,482,741 (UOP Inc.) beschreibt die Hydrierung von PDN in Gegenwart von Ammoniak, einem geträgerten Co/Ti-Katalysator und XDA als Lösungsmittel.
- DE-A-21 64 169 (Mitsubishi Gas Chemical Co., Inc.) beschreibt auf Seite 6, letzter Absatz, die Hydrierung von IPDN zu meta-XDA in Gegenwart eines Ni- und/oder Co-Katalysators in Ammoniak als Lösungsmittel.
- JP-B-46008283 (Toray Industries Inc.; ACS-Abstract 75:5222) betrifft die Hydrierung von Nitrilen, wie Aminocapronitril, zu primären Aminen in Gegenwart von Blei-haltigen Nickel- oder Kobaltkatalysatoren.
- US-B1-6,660,887 (Solutia Inc.) beschreibt die Herstellung von 3-Dimethylaminopropylamin (DMAPA) aus N,N-Dimethylaminopropionitril (DMAPN) bei niedrigem Druck in Gegenwart eines Nickelkatalysators.
- FR-A1-2 722 784 (Rhone Poulenc) lehrt insbesondere die Hydrierung von Dinitrilen, wie Adipodinitril, zu Diaminen in Gegenwart von Ti-dotierten Raney-Nickel-Katalysatoren.
-
US 3,862,911 (und DE-A-2 260 978) (Rhone Poulenc) beschreibt Ni/Cr/Fe/Al-Katalysatoren zur Hydrierung von Nitrilen, insbesondere Adiponitril. Gemäß Example 6 B gelingt die Hydrierung von IPDN zu MXDA in Ethanol bei 85°C und 40 bar mit einer Ausbeute von nur 75 %. - ACS-Abstract No. 139:381881 (JP-A2-2003 327563) (Mitsubishi Gas) offenbart ein Verfahren zur kontinuierlichen Hydrierung von aromatischen Dinitrilen in einem Ammoniakhaltigen Lösungsmittel, wie m-Xylol, in einem ,fixed bed irrigation liquid type reactor' und in Gegenwart von Nickel- oder Kobaltkatalysatoren.
- EP-A1-1 449 825 (Mitsubishi Gas Chem. Comp.) beschreibt eine zweistufige Herstellung von aromatischen Diaminen aus aromatischen Dinitrilen, wie IPDN, in Gegenwart eines Pd-Katalysators in der ersten Stufe und in Gegenwart eines Ni- oder Co-Katalysators in der zweiten Stufe.
-
US 2,970,170 und GB-B-821 404 (California Research Corp.) betreffen ein mehrstufiges Produktionsverfahren für Xylylendiamine ausgehend von den entsprechenden Phthalsäuren. Für die Dinitril-Hydrierung, z.B. in Gegenwart von Kobalt- oder Nickelkatalysatoren, werden Drucke im Bereich von 1500 bis 10.000 psig (103,4 – 689,5 bar), besonders 2000 bis 5000 psig (137,9 – 344,7 bar), und Temperaturen im Bereich von 180 bis 400°F (82 bis 204°C) gelehrt (US-Pat., Spalte 3, Zeilen 65-71). - EP-A1-1 454 895 (Mitsubishi Gas Chem. Comp.) beschreibt ein zweistufiges Verfahren zur Hydrierung von Dicyanobenzolen bei Drucken von 5 bis 300 bar, insbesondere 10 bis 200 bar, in Gegenwart von geträgerten oder ungeträgerten Co-, Ni-, Pd-, Ru- oder Rh-Katalysatoren, bevorzugt in Gegenwart von Ammoniak und optional in Gegenwart von Additiven, wie Alkalimetallhydroxiden oder Erdalkalimetallhydroxiden.
- US-B1-6,476,267 (Sagami Chemical Research Center) betrifft die Herstellung von aromatischen primären Aminen aus Nitrilen, wie IPDN, in Gegenwart von geträgerten Ni-Katalysatoren und polaren Lösungsmitteln, bevorzugt in Gegenwart von NH3, bei Drucken von 0,1 bis 50 kg/cm2 G (0,1 bis 49 bar), z.B. ≤ 19 kg/cm2G (18,6 bar), und Temperaturen bis 200°C.
- Trägermaterial des Ni-Katalysators ist Silica, Alumina oder Aktivkohle, bevorzugt Silica (alle Beispiele).
- Gemäß Beispiel 22 gelingt die Hydrierung von IPDN in Methanol in Gegenwart von NH3 an einem Silica-geträgerten Ni-Katalysator bei 170 °C und 15 kg/cm2G (14,7 bar) in 79,5 % Ausbeute.
- GB-B-810 530 (P.B. Brindley et al.) lehrt die Hydrierung von Iso- oder Terephthalodinitril in Gegenwart von Ammoniak, Nickel- oder Kobalt-Katalysatoren und aromatischen Kohlenwasserstoffen, Wasser, DMF, Methanol oder Ethanol als Lösungsmittel. Der Druck beträgt bis 200 atm. (203 bar).
- EP-A1-913 388 (Air Products) betrifft die Hydrierung von Nitrilen, wie DMAPN, zu Aminen in Gegenwart von Raney-Kobalt-Katalysatoren, LiOH und Wasser und in Abwesenheit von organischen Lösungsmitteln, bei Drucken im Bereich von 1 bis 300 bar, insbesondere 5 bis 80 bar.
- Nachteile ergeben sich hier durch den Aufwand, das Edukt-Nitril im Falle eines Feststoffs dem Reaktor zuzuführen und dadurch, dass das Edukt-Nitril und/oder Intermediate, wie Imine, mit dem Produkt-Amin in zu hohem Maß unerwünschte Nebenprodukte bilden.
- ACS-Abstract No. 91:91334 (JP-A2-54 041 804) (Takeda Chem. Ind.) betrifft die Hydrierung von Nitrilen, wie IPDN, in Lösungsmittelgemischen aus Alkoholen und cyclischen Kohlenwasserstoffen an Raney-Co- oder Raney-Ni-Katalysatoren bei z.B. 105-115 kg/cm2 (103-113 bar).
- US-A-3,647,054 (ACS-Abstract No. 73:130762) (Japan Gas-Chemical Comp.) beschreibt die Hydrierung von Phthalonitril in flüssigem Ammoniak und in Gegenwart von Methanol an Raney-Ni bei 200 atm. (203 bar) und die anschließende Reinigung des Rohproduktes.
- ACS-Abstract No. 74:31537 (JP-B4-45 03 0088) (Toray Ind.) lehrt die Hydrierung von Aminocapronitril in flüssigem Ammoniak an einem modifizierten Raney-Co-Katalysator.
- ACS-Abstract No. 59:61849 (
JP 38 00 8719 - US-A-3,544,485 (Toyo Rayon) und ACS-Abstract No. 73:109473 (JP-B4-45 016 098) (Toray Ind.) beschreiben Methoden zur Aktivierung von Raney-Legierungen.
- DE-A1-100 65 031 (Degussa AG) betrifft die Verwendung von Raney-Katalysatoren in Form von Hohlkörpern in Hydrierverfahren.
- Die sechs deutschen Patentanmeldungen mit den Aktenzeichen 10341615.3, 10341632.3, 10341614.5, 10341633.1, 10341612.9 und 10341613.7 (BASF AG) vom 10.09.03 und die zwei deutschen Patentanmeldungen mit den Aktenzeichen 102004042947.2 und 102004042954.5 (BASF AG) vom 02.09.04 betreffen jeweils Verfahren zur Herstellung von XDA.
- Die deutsche Patentanmeldung mit dem Aktenzeichen 102005003315.6 (BASF AG) vom 24.01.05 beschreibt ein Verfahren zur Herstellung eines Xylylendiamins durch heterogenkatalysierte Hydrierung eines Phthalodinitrils in Gegenwart eines Kobalt-Skelett-Katalysators.
- Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein verbessertes wirtschaftliches Verfahren zur Herstellung eines Xylylendiamins aufzufinden. Das Verfahren sollte ein oder mehrere Nachteile der Verfahren des Stands der Technik überwinden. Das Xylylendiamin, insbesondere MXDA, sollte dabei in hoher Ausbeute, insbesondere Raum-Zeit-Ausbeute, Selektivität, Reinheit und/oder Farbqualität anfallen.
- [Raum-Zeit-Ausbeuten werden angegeben in ,Produktmenge/(Katalysatorvolumen Zeit)' (kg/(IKat.·h)) und/oder ,Produktmenge/(Reaktorvolumen·Zeit)' (kg/(IReaktor·h)]. Demgemäß wurde ein Verfahren zur Herstellung eines Xylylendiamins durch heterogenkatalysierte Hydrierung eines Phthalodinitrils gefunden, welches dadurch gekennzeichnet ist, dass die Hydrierung in Gegenwart eines Nickel-Skelett-Katalysators, von Wasser, eines Alkalimetallhydroxids und eines Ethers als Lösungsmittel, bei einem Absolutdruck im Bereich von 1 bis 100 bar, bei einer Temperatur im Bereich von 40 bis 150°C und ohne Zugabe von Ammoniak durchgeführt wird.
- Bevorzugt findet das erfindungsgemäße Verfahren Anwendung zur Herstellung von meta-Xylylendiamin (MXDA) durch Hydrierung von Isophthalodinitril (IPDN).
- Vorteile des erfindungsgemäßen Verfahrens sind u.a. der, bedingt durch die Fahrweise ohne NH3-Zugabe und die Niederdruckfahrweise, geringere apparatetechnische und sicherheitstechnische Aufwand und damit niedrigere fixe Kosten (Investment) und variable Kosten.
- Weiterhin fallen im erfindungsgemäßen, selektiven Verfahren besonders geringe Mengen an Nebenprodukten, wie z.B. höher als das Xylylendiamin siedende Produkte (bei gleichem Druck) und Amidine, z.B. der Formel I, sowie deren Folgeprodukte (Dimeres von MXDA der Formel II) an.
- Das im Verfahren als Edukt eingesetzte PDN kann in einer vorherigen Stufe durch Ammonoxidation des entsprechenden Xylol-Isomers synthetisiert werden. Solche Syntheseverfahren sind z.B. in den BASF-Patentanmeldungen EP-A-767 165, EP-A-699 476, EP-A-222 249, DE-A-35 40 517 und DE-A-37 00 710, sowie in den o.g. sieben BASF-Patentanmeldungen zur Herstellung von XDA vom 10.09.03 und 02.09.04 beschrieben.
- Das erfindungsgemäße Verfahren lässt sich wie folgt ausführen:
Der Einsatzstoff PDN wird bevorzugt in einer Reinheit von ≥ 90 Gew.-%, insbesondere ≥ 98 Gew.-%, z.B. 98,2 bis 99,9 Gew.-%, eingesetzt. Solche Reinheiten können z.B. durch Destillation oder Rektifikation von kommerziell erhältlicher Ware erzielt werden. - Das erfindungsgemäße Hydrierverfahren wird bevorzugt in Gegenwart von 0,5 bis 15 Gew.-%, besonders 2 bis 10 Gew.-%, ganz besonders 2,5 bis 7 Gew.-%, insbesondere 3 bis 5 Gew.-%, Wasser, jeweils bezogen auf das eingesetzte PDN, durchgeführt.
- Für die Hydrierung des Phthalodinitrils zum entsprechenden Xylylendiamin (o-, m- bzw. p-Xylylendiamin) nach der Gleichung wird das PDN in einem Ether gelöst und/oder suspendiert. Zur Erhöhung der Geschwindigkeit des Auflösens und/oder zur Erhöhung der Menge an gelöstem PDN kann der Lösungsvorgang bei erhöhter Temperatur, z.B. bei 50 bis 145°C, erfolgen.
- Bevorzugt werden im erfindungsgemäßen Verfahren 15 bis 75 Gew.-%ige, insbesondere 20 bis 50 Gew.-%ige, Lösungen und/oder Suspensionen des PDNs im Lösungsmittel oder Lösungsmittelgemisch eingesetzt.
- Als Lösungsmittel und/oder Suspensionsmittel wird bevorzugt ein C4-12-Dialkylether und/oder C3-12-alicyclischer Ether, insbesondere ein C4-6-Dialkylether und/oder C4-6-alicyclischer Ether, eingesetzt.
- Beispiele hierfür sind Methyl-tert.-butylether (MTBE), Diethylether (DEE), Di-n-propylether, Di-n-butylether, 1,2-Dimethoxyethan, 1,2-Diethoxyethan, Tetrahydrofuran (THF), 2-Methyl-THF, Tetrahydropyran, 1,3-Dioxepan, 1,4-Dioxan, 1,3-Dioxan und 1,3-Dioxolan. Besonders bevorzugt ist THF.
- Als Lösungsmittel und/oder Suspensionsmittel kann auch ein Gemisch von zwei oder mehr der genannten Lösungsmittel eingesetzt werden.
- Als Katalysator für die Hydrierung wird erfindungsgemäß ein Nickel-Skelett-Katalysator eingesetzt.
- Typische Beispiele für solche Katalysatoren sind RaneyTM-Nickel-Katalysatoren. Hierbei wird der aktive Katalysator als ,Metallschwamm' aus einer binären Legierung von Nickel und ggf. weiteren Elementen mit z. B. Aluminium durch Herauslösen eines Partners mit Säure oder Lauge hergestellt. Reste des ursprünglichen Legierungspartners wirken oft synergetisch.
- Die im erfindungsgemäßen Verfahren eingesetzten Katalysatoren werden bevorzugt ausgehend von einer Legierung aus Nickel und einer weiteren Legierungskomponente, die in Alkalien löslich ist, hergestellt. Bei dieser löslichen Legierungskomponente wird bevorzugt Aluminium verwendet, es können aber auch andere Komponenten wie Zink und Silicium oder Gemische aus solchen Komponenten eingesetzt werden.
- Zur Aktivierung des Katalysators wird die lösliche Legierungskomponente ganz oder teilweise mit Alkali extrahiert, wofür zum Beispiel wässrige Natronlauge verwendet werden kann. Der Katalysator kann danach z. B. mit Wasser oder organischen Lösungsmittel gewaschen werden.
- In dem Katalysator können einzelne oder mehrere weitere Elemente als Promotoren anwesend sein. Beispiele für Promotoren sind Metalle der Nebengruppen IB, VIB und/oder VIII des Periodensystems, wie Chrom, Eisen, Molybdän, Kobalt, Kupfer usw.
- Die Aktivierung der Katalysatoren durch Auslaugen der löslichen Komponente (typischerweise Aluminium) kann entweder im Reaktor selbst oder vor Einfüllen in den Reaktor erfolgen. Die voraktivierten Katalysatoren sind luftempfindlich und pyrophor und werden deshalb in der Regel unter einem Medium wie z. B. Wasser, einem organischen Lösungsmittel oder einem Stoff, der bei der erfindungsgemäßen Reaktion zugegen ist (Lösungsmittel, Edukt, Produkt) aufbewahrt und gehandhabt oder in eine organische Verbindung, die bei Raumtemperatur fest ist, eingebettet.
- Die Katalysatoren können als Pulver für Suspensionshydrierungen, als Granulat oder als Formkörper wie Tabletten oder Stränglinge für Festbettreaktoren eingesetzt werden.
- Bevorzugt wird erfindungsgemäß ein Nickel-Skelett-Katalysator eingesetzt, der aus einer Ni/Al-Legierung durch Laugung mit wässriger Alkalimetallhydroxid-Lösung, z.B. Natronlauge, und nachfolgender Waschung mit Wasser erhalten wurde, und bevorzugt als Promotoren mindestens eines der Elemente Fe, Cr enthält.
- Solche aktivierten Katalysatoren enthalten typischerweise neben Nickel noch
1 – 30 Gew.-% Al, besonders 2 – 20 Gew.-% Al, ganz besonders 5 – 14 Gew.-% Al, und
0 – 10 Gew.-% Cr, besonders 0,1 – 7 Gew.-% Cr, ganz besonders 1 – 4 Gew.-% Cr, und/oder
0 – 10 Gew.-% Fe, besonders 0,1 – 7 Gew.-% Fe, ganz besonders 1 – 4 Gew.-% Fe, wobei die Gewichtsangaben jeweils auf das Katalysatorgesamtgewicht bezogen sind. - Als Katalysator im erfindungsgemäßen Verfahren kann zum Beispiel vorteilhaft ein Nickel-Skelett-Katalysator A 4000 von Johnson Matthey eingesetzt werden.
- Dieser Katalysator weist folgende Zusammensetzung auf:
Al: ≤ 14 Gew.-%, Ni: ≥ 80 Gew.-%, Fe: 1 – 4 Gew.-%, Cr: 1 – 4 Gew.-%. - Bevorzugt enthält der eingesetzte Nickel-Skelett-Katalysator kein Blei (Pb) und/oder kein Kobalt (Co) und/oder kein Metall der Nebengruppe IVB, d.h. kein Ti, Zr und/oder Hf.
- Das PDN wird in Gegenwart von Alkalimetallhydroxid (MOH), insbesondere 0,001 bis 5 Mol-% MOH, ganz besonders 0,002 bis 1,5 Mol-% MOH, besonders bevorzugt 0,005 bis 1,2 Mol-% MOH, z.B. 1 Mol-%, MOH, jeweils bezogen auf das eingesetzte PDN, umgesetzt.
- In einer bevorzugten Ausführungsform wird die entsprechende Menge an MOH als wässrige Lösung, z.B. als 1 bis 25 Gew.-%ige wässrige Lösung, eingesetzt.
- Mögliche Alkalimetalle M sind Li, Na, K, Rb und Cs. Bevorzugt ist M = K oder Na. Besonders bevorzugt ist M = K.
- Es können auch Mischungen aus zwei oder mehr der genannten Alkalimetallhydroxide (MOH) eingesetzt werden, wobei die oben genannten MOH-Mengen dann auf die Summe der Alkalimetallhydroxide bezogen sind. Z.B. kann eine NaOH – KOH – Mischung eingesetzt werden.
- In einer besonderen Ausführungsform wird der eingesetzte Katalysator zuvor mit einem Alkalimetallhydroxid (M'OH) oder einer Mischung aus zwei oder mehr Alkalimetallhydroxiden M'OH, z.B. einer Mischung aus NaOH und KOH, behandelt. Diese Behandlung ist besonders dann vorteilhaft, wenn die Hydrierung in Abwesenheit von MOH im vorgelegten Reaktionsgemisch durchgeführt wird.
- Diese Behandlung des Katalysators mit M'OH kann nach dem Fachmann bekannten Verfahren erfolgen, z.B. durch Sättigen des Katalysators mit M'OH, z.B. 0,01 bis 5,0 Gew.-% M'OH (bez. auf das Trägermaterial), in Gegenwart eines geeigneten Lösungsmittels, z.B. Wasser. (EP-A1-913 388,
US 6,429,338 ,US 3,636,108 ). - Mögliche Alkalimetalle M' sind Li, Na, K, Rb und Cs. Bevorzugt sind M = K oder Na. Besonders bevorzugt ist M' = K.
- Die Hydrierung wird ohne Zugabe von Ammoniak durchgeführt.
- Die Reaktionstemperatur der Hydrierung liegt im Bereich von 40 bis 150°C, bevorzugt 50 bis 120°C, insbesondere 60 bis 110°C, ganz besonders 70 bis 105°C, z.B. 80 bis 100°C.
- Der Absolutdruck liegt bei der Hydrierung im Bereich von 1 bis 100 bar, bevorzugt 2 bis 80 bar, insbesondere 5 bis 60 bar, ganz besonders 10 bis 50 bar, z.B. 20 bis 40 bar.
- Die Hydrierung wird bevorzugt in einer Reaktionsstufe durchgeführt. D.h. vorteilhaft brauchen nicht mehrere Hydrierstufen, wie z.B. gelehrt in EP-A1-1 449 825 und EP-A1-1 454 895, angewendet zu werden.
- Als Reaktoren für das erfindungsgemäße Verfahren können zum Beispiel übliche Hochdruckautoklaven eingesetzt werden.
- Für die Hydrierung können die dem Fachmann für diese Umsetzung bekannten Reaktoren (z.B. Festbett- oder Suspensionsfahrweise) sowie Verfahren (kontinuierlich, halbkontinuierlich (Semibatch), diskontinuierlich (Batch)) angewendet werden. Bei der Suspensionsfahrweise ist ein kontinuierliches Verfahren oder Semibatch-Verfahren bevorzugt.
- Bei der Katalysatorfestbettfahrweise ist sowohl die Sumpf- als auch die Rieselfahrweise möglich. Bevorzugt ist eine Rieselfahrweise.
- Der Hydrierreaktor kann in geradem Durchgang gefahren werden. Alternativ ist auch eine Kreislauffahrweise möglich, bei der ein Teil des Reaktoraustrages an den Reak toreingang zurückgeführt wird, bevorzugt ohne vorherige Aufarbeitung des Kreislaufstromes. Damit lässt sich eine optimale Verdünnung der Reaktionslösung erreichen, was sich günstig auf die Selektivität auswirkt. Insbesondere kann der Kreislaufstrom mittels eines externen Wärmeüberträgers auf einfache und kostengünstige Weise gekühlt und somit die Reaktionswärme abgeführt werden. Der Reaktor lässt sich dadurch auch adiabat betreiben, wobei der Temperaturanstieg der Reaktionslösung durch den gekühlten Kreislaufstrom begrenzt werden kann. Da der Reaktor selbst dann nicht gekühlt werden muss, ist eine einfache und kostengünstige Bauform möglich. Eine Alternative stellt ein gekühlter Rohrbündelreaktor dar.
- Bei der bevorzugten Suspensionsfahrweise im Semibatch-Verfahren wird bevorzugt der Nickel-Skelett-Katalysator, das Alkalimetallhydroxid und Wasser im Reaktor vorgelegt und nachfolgend unter den eingestellten Reaktionsbedingungen (Druck, Temperatur) das Phthalodinitril im Lösungsmittel über einen bestimmten Zeitraum (z.B. 2 – 8 h) zugefahren (halbkontinuierliche Fahrweise).
- In einer besonderen Ausgestaltung insbesondere dieser Fahrweise wird zusätzlich das dem eingesetzten PDN entsprechende XDA mit vorgelegt, z.B. in Mengen von 500 – 1500 Gew.-% bezogen auf einzusetzendes PDN.
- Das dem eingesetzten PDN entsprechende XDA ist im Fall des ortho-Dinitrils das ortho-XDA, im Fall des meta-Dinitrils das MXDA und im Fall des para-Dinitrils das para-XDA.
- Die mit dem erfindungsgemäßen Verfahren erzielbaren Umsätze an PDN liegen im Bereich von ≥ 95 %, insbesondere ≥ 99 %, z.B. ≥ 96 bis 99,9 % oder 99,5 bis 100 %, bei Selektivitäten (für die Bildung von XDA) im Bereich von ≥ 80 %, insbesondere ≥ 85 %, z.B. 86 bis 99,5 % oder 90 bis 99 %.
- Der vom Lösungsmittel befreite Reaktionsaustrag enthält insbesondere ≤ 2 Gew.-%, ganz besonders ≤ 1 Gew.-%, z.B. 0 bis 0,5 Gew.-%, Amidine der Formel I und/oder höher als das XDA siedende Produkte, wie z.B. das entsprechende (Bisaminoalkyl)diarylamin II.
- Nach der Durchführung des erfindungsgemäßen Verfahrens kann die Isolierung des XDAs z.B. durch Destillation oder Rektifikation erfolgen.
- Beispiel 1
- In einem 300 ml Hochdruckautoklav mit magnetisch gekoppeltem Begasungsrührer, Probennahmestutzen, Temperaturregelung und einem Einlass für die kontinuierliche Zuführung von Edukten, wurden 60 g THF, 1,19 g wasserfeuchtes, undotiertes RaneyTM-Nickel und 0,021 g KOH in 1,73 g Wasser zusammengegeben.
- Der Autoklav wurde verschlossen, das Gemisch inertisiert, und auf 10 bar Wassertoff aufgepresst. Es wurde unter Eigendruck und Rühren (500 U/Min.) auf 100°C erhitzt. Bei Erreichen dieser Temperatur wurde auf 36 bar Wasserstoff aufgepresst und die Rührerdrehzahl auf 1200 U/Min. erhöht. Anschließend wurde über 5 h eine Lösung von 7,2 g IPDN in 83 g THF zugepumpt, wobei kontinuierlich Wasserstoff zugeführt wurde (unter Druckhaltung von 32-36 bar).
- Nach 5 h wurde eine Probe genommen. GC-Analyse der Probe ergab einen Umsatz von 100 % und eine Selektivität von 96,5 %. Es wurde keine Hochsiederbildung beobachtet. Nach beendeter Dosierung wurde das Gemisch noch 5 h unter denselben Bedingungen gehalten, wobei die Selektivität nicht sank.
- Beispiel 2
- Simulation der rückvermischten Fahrweise:
- In einem 300 ml Hochdruckautoklav mit magnetisch gekoppeltem Begasungsrührer, Probennahmestutzen, Temperaturregelung und einem Einlass für die kontinuierliche Zuführung von Edukten, wurden 60 g MXDA, 5,95 g RaneyTM-Nickel A4000 der Firma Johnson Matthey, das zuvor mit MXDA wasserfrei gewaschen worden war, und 0,1 g KOH in 0,5 g Wasser zusammengegeben.
- Der Autoklav wurde verschlossen, das Gemisch inertisiert, und auf 10 bar Wasserstoff aufgepresst. Es wurde unter Eigendruck und Rühren (500 U/Min.) auf 100°C erhitzt. Bei Erreichen dieser Temperatur wurde auf 36 bar Wasserstoff aufgepresst und die Rührerdrehzahl auf 1200 U/min erhöht. Anschließend wurde über 1 h eine Lösung von 7,2 g IPDN in 83 g THF zugepumpt, wobei kontinuierlich Wasserstoff zugeführt wurde (unter Druckhaltung bei 32-36 bar).
- Nach 1 h wurde eine Probe genommen. GC-Analyse der Probe ergab einen Gehalt an MXDA von 99,1 % bei einem Umsatz von 100 %. Der Gehalt an Hochsiedern war 0,24 % (in GC-FL%). Nach beendeter Dosierung wurde das Gemisch noch 2 h unter denselben Bedingungen gehalten, wobei die Selektivität nicht sank.
Claims (20)
- Verfahren zur Herstellung eines Xylylendiamins durch heterogenkatalysierte Hydrierung eines Phthalodinitrils, dadurch gekennzeichnet, dass die Hydrierung in Gegenwart eines Nickel-Skelett-Katalysators, von Wasser, eines Alkalimetallhydroxids und eines Ethers als Lösungsmittel, bei einem Absolutdruck im Bereich von 1 bis 100 bar, bei einer Temperatur im Bereich von 40 bis 150°C und ohne Zugabe von Ammoniak durchgeführt wird.
- Verfahren nach Anspruch 1 zur Herstellung von meta-Xylylendiamin (MXDA) durch Hydrierung von Isophthalodinitril (IPDN).
- Verfahren nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung in einer Reaktionsstufe durchgeführt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung bei einem Absolutdruck im Bereich von 5 bis 60 bar durchgeführt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung bei einer Temperatur im Bereich von 60 bis 120°C durchgeführt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Nickel-Skelett-Katalysator aus einer Ni/Al-Legierung durch Laugung mit wässriger Alkalimetallhydroxid-Lösung und Waschung erhalten wurde.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Nickel-Skelett-Katalysator als Promotor Fe und/oder Cr enthält.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Nickel-Skelett-Katalysator neben Nickel noch 1 – 30 Gew.-% Al, und 0,1 – 10 Gew.-% Cr und/oder 0,1 – 10 Gew.-% Fe, jeweils bezogen auf das Katalysatorgesamtgewicht, enthält.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung in Gegenwart eines C4-12-Dialkylethers und/oder C3-12-alicyclischen Ethers als Lösungsmittel durchgeführt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung in Gegenwart von Tetrahydrofuran (THF) als Lösungsmittel durchgeführt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung in Gegenwart von 0,001 bis 5 Mol-% Alkalimetallhydroxid bezogen auf das eingesetzte Phthalodinitril durchgeführt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man das Alkalimetallhydroxid als wässrige Lösung einsetzt.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man als Alkalimetallhydroxid Kaliumhydroxid (KOH) oder Natriumhydroxid (NaOH) einsetzt.
- Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass man als Alkalimetallhydroxid eine Mischung von Natriumhydroxid und Kaliumhydroxid (NaOH und KOH) einsetzt.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der eingesetzte Heterogenkatalysator zuvor mit einem Alkalimetallhydroxid oder einer Mischung von Alkalimetallhydroxiden behandelt wurde.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der eingesetzte Heterogenkatalysator zuvor mit Kaliumhydroxid (KOH) behandelt wurde.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Semibatch-Fahrweise und keine Batch-Fahrweise durchgeführt wird.
- Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass eine kontinuierliche Fahrweise und keine Semibatch- oder Batch-Fahrweise durchgeführt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung in Gegenwart von zugesetztem Xylylendiamin, das dem eingesetzten Phthalodinitril entspricht, durchgeführt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung in Gegenwart von 0,5 bis 15 Gew.-% Wasser bezogen auf das eingesetzte Phthalodinitril durchgeführt wird.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005008929A DE102005008929A1 (de) | 2005-02-24 | 2005-02-24 | Verfahren zur Herstellung eines Xylylendiamins |
JP2007556608A JP2008531521A (ja) | 2005-02-24 | 2006-02-23 | キシリレンジアミンの製造方法 |
KR1020077021773A KR20070105382A (ko) | 2005-02-24 | 2006-02-23 | 크실릴렌디아민의 제조 방법 |
CNA2006800059244A CN101128416A (zh) | 2005-02-24 | 2006-02-23 | 生产苯二甲胺的方法 |
PCT/EP2006/060226 WO2006089931A1 (de) | 2005-02-24 | 2006-02-23 | Verfahren zur herstellung eines xylylendiamins |
EP06708480A EP1856025A1 (de) | 2005-02-24 | 2006-02-23 | Verfahren zur herstellung eines xylylendiamins |
US11/816,878 US20080154061A1 (en) | 2005-02-24 | 2006-02-23 | Method For Producing a Xylylenediamine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005008929A DE102005008929A1 (de) | 2005-02-24 | 2005-02-24 | Verfahren zur Herstellung eines Xylylendiamins |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102005008929A1 true DE102005008929A1 (de) | 2006-08-31 |
Family
ID=36061322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102005008929A Withdrawn DE102005008929A1 (de) | 2005-02-24 | 2005-02-24 | Verfahren zur Herstellung eines Xylylendiamins |
Country Status (7)
Country | Link |
---|---|
US (1) | US20080154061A1 (de) |
EP (1) | EP1856025A1 (de) |
JP (1) | JP2008531521A (de) |
KR (1) | KR20070105382A (de) |
CN (1) | CN101128416A (de) |
DE (1) | DE102005008929A1 (de) |
WO (1) | WO2006089931A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8142618B2 (en) | 2006-02-01 | 2012-03-27 | Basf Aktiengesellschaft | Processes for preparing pure xylylenediamine |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005003315A1 (de) * | 2005-01-24 | 2006-08-03 | Basf Ag | Verfahren zur Herstellung eines Xylylendiamins |
EP1917232B1 (de) | 2005-08-02 | 2011-09-14 | Basf Se | Verfahren zur herstellung von xylylendiamin durch kontinuierliche hydrierung von phthalodinitril |
DE102005045806A1 (de) * | 2005-09-24 | 2007-03-29 | Basf Ag | Verfahren zur Herstellung von Xylylendiamin |
JP5566284B2 (ja) | 2007-05-29 | 2014-08-06 | エボニック デグサ ゲーエムベーハー | 活性化卑金属触媒 |
EP2148741A1 (de) | 2007-05-29 | 2010-02-03 | Evonik Degussa GmbH | Aktivierte nichtedelmetallkatalysatoren |
KR101403730B1 (ko) * | 2007-05-29 | 2014-06-03 | 에보니크 데구사 게엠베하 | 활성화된 베이스 금속 촉매 |
WO2009049662A1 (en) | 2007-10-15 | 2009-04-23 | Evonik Degussa Gmbh | Fast filtering powder catalytic mixtures |
US8759588B2 (en) | 2008-09-08 | 2014-06-24 | Mitsubishi Gas Chemical Company, Inc. | Process for producing xylylenediamine |
CN103339098B (zh) * | 2011-01-31 | 2015-04-22 | 三菱瓦斯化学株式会社 | 苯二甲胺的制造方法 |
CN102180799A (zh) * | 2011-03-23 | 2011-09-14 | 南通泰禾化工有限公司 | 一种对苯二甲胺的制备方法 |
US12319635B2 (en) | 2020-07-22 | 2025-06-03 | Mitsubishi Gas Chemical Company, Inc. | Method for producing aromatic aminomethyl |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2970170A (en) * | 1957-03-22 | 1961-01-31 | California Research Corp | Preparation of xylylenediamines |
US3647054A (en) * | 1970-04-02 | 1972-03-07 | Japan Gas Chemical Co | Process for purifying xylylenediamine by alkaline agent addition and distillation |
BE792649A (fr) * | 1971-12-13 | 1973-06-12 | Rhone Poulenc Sa | Catalyseur a base de nickel raney au fer |
US4482741A (en) * | 1984-01-09 | 1984-11-13 | Uop Inc. | Preparation of xylylenediamine |
US5869653A (en) * | 1997-10-30 | 1999-02-09 | Air Products And Chemicals, Inc. | Hydrogenation of nitriles to produce amines |
US6544485B1 (en) * | 2001-01-29 | 2003-04-08 | Sharper Image Corporation | Electro-kinetic device with enhanced anti-microorganism capability |
US6476267B1 (en) * | 1999-02-04 | 2002-11-05 | Sagami Chemical Research Center | Process for producing aromatic primary amine by low-pressure |
WO2002051791A2 (de) * | 2000-12-23 | 2002-07-04 | Degussa Ag | Verfahren zur herstellung von primären und sekundären aminen durch hydrierung von nitrilen und iminen |
JP4304420B2 (ja) * | 2002-07-01 | 2009-07-29 | 三菱瓦斯化学株式会社 | キシリレンジアミンおよび/またはシアノベンジルアミンの製造方法 |
US6660887B1 (en) * | 2002-12-23 | 2003-12-09 | Solutia Inc. | Low pressure process for manufacture of 3-dimethylaminopropylamine (DMAPA) |
DE602004019000D1 (de) * | 2003-02-20 | 2009-03-05 | Mitsubishi Gas Chemical Co | Hoch-selektives Herstellungsverfahren von Di(aminomethyl)-substituierten aromatischen Verbindungen |
DE602004021052D1 (de) * | 2003-03-07 | 2009-06-25 | Mitsubishi Gas Chemical Co | Herstellungsverfahren von Xylylendiamin |
JP4495730B2 (ja) * | 2003-09-10 | 2010-07-07 | ビーエーエスエフ ソシエタス・ヨーロピア | 液体フタロジニトリルの連続的水素化によるキシリレンジアミンの製造方法 |
DE102005003315A1 (de) * | 2005-01-24 | 2006-08-03 | Basf Ag | Verfahren zur Herstellung eines Xylylendiamins |
-
2005
- 2005-02-24 DE DE102005008929A patent/DE102005008929A1/de not_active Withdrawn
-
2006
- 2006-02-23 WO PCT/EP2006/060226 patent/WO2006089931A1/de active Application Filing
- 2006-02-23 CN CNA2006800059244A patent/CN101128416A/zh active Pending
- 2006-02-23 US US11/816,878 patent/US20080154061A1/en not_active Abandoned
- 2006-02-23 JP JP2007556608A patent/JP2008531521A/ja not_active Withdrawn
- 2006-02-23 EP EP06708480A patent/EP1856025A1/de not_active Withdrawn
- 2006-02-23 KR KR1020077021773A patent/KR20070105382A/ko not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8142618B2 (en) | 2006-02-01 | 2012-03-27 | Basf Aktiengesellschaft | Processes for preparing pure xylylenediamine |
Also Published As
Publication number | Publication date |
---|---|
US20080154061A1 (en) | 2008-06-26 |
CN101128416A (zh) | 2008-02-20 |
EP1856025A1 (de) | 2007-11-21 |
KR20070105382A (ko) | 2007-10-30 |
JP2008531521A (ja) | 2008-08-14 |
WO2006089931A1 (de) | 2006-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1856025A1 (de) | Verfahren zur herstellung eines xylylendiamins | |
WO2006077233A1 (de) | Verfahren zur herstellung eines xylylendiamins | |
EP2129651B1 (de) | Neues verfahren zur herstellung von teta über eddn | |
EP2114861B1 (de) | Verfahren zur herstellung von triethylentetraamin | |
EP2114860B1 (de) | Herstellungsverfahren für ethylenamingemische | |
EP2132162B1 (de) | Verfahren zur herstellung von ethylenaminen | |
EP2132165B1 (de) | Verfahren zur herstellung von ethylendiamin | |
EP2114857B1 (de) | Verfahren zur herstellung von tetraethylenpentaamin | |
EP1107941B1 (de) | Verbessertes verfahren zur gleichzeitigen herstellung von 6-aminocapronitril und hexamethylendiamin | |
DE19747913C1 (de) | Verfahren zur Herstellung primärer und/oder sekundärer Amine aus Iminen oder Nitrilen, insbesondere zur Herstellung von 3-Aminomethyl-3,5,5-trimethyl-cyclohexylamin (Isophorondiamin) aus 3-Cyano-3,5,5-trimethylcyclohexanimin (Isophoronnitril-imin) durch Hydrierung in Gegenwart eines quaternären Ammoniumhydroxids | |
EP0223035A1 (de) | Verwendung von modifizierten Raney-Katalysatoren zur Herstellung von aromatischen Diaminoverbindungen | |
WO2008104578A1 (de) | Verfahren zur herstellung von ethylenaminen aus roh-aan | |
EP2961731B1 (de) | Verfahren zur herstellung von eda unter verwendung von so2-freier blausäure | |
EP0929513A1 (de) | Verfahren zur gleichzeitigen herstellung von 6-aminocapronitril und hexamethylendiamin | |
DE10065030A1 (de) | Verfahren zur Herstellung von 3-Aminomethyl-3,5,5-trimethylcyclohexylamin | |
EP0925276B1 (de) | Verfahren zur herstellung von aliphatischen alpha, omega-aminonitrilen | |
EP0503246B1 (de) | Verfahren zur Herstellung von 3-Aminomethyl-3,5,5-trimethylcyclohexylamin | |
EP1663947A1 (de) | Verfahren zur herstellung von xylylendiamin durch kontinuierliche hydrierung von flüssigem phthalodinitril | |
DE60223804T2 (de) | Verfahren zur hemihydrierung von dinitrilen zur bildung von aminonitrilen | |
DE102005045806A1 (de) | Verfahren zur Herstellung von Xylylendiamin | |
EP3180308B1 (de) | Verfahren zur herstellung von 2,2-difluorethylamin | |
DE19646436A1 (de) | Verfahren zur Herstellung von aliphatischen, alpha,omega-Aminonitrilen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8139 | Disposal/non-payment of the annual fee |