WO2010020115A1 - 一种β晶相聚偏氟乙烯中空纤维膜的制备方法 - Google Patents

一种β晶相聚偏氟乙烯中空纤维膜的制备方法 Download PDF

Info

Publication number
WO2010020115A1
WO2010020115A1 PCT/CN2009/000969 CN2009000969W WO2010020115A1 WO 2010020115 A1 WO2010020115 A1 WO 2010020115A1 CN 2009000969 W CN2009000969 W CN 2009000969W WO 2010020115 A1 WO2010020115 A1 WO 2010020115A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
polyvinylidene fluoride
temperature
annealing
Prior art date
Application number
PCT/CN2009/000969
Other languages
English (en)
French (fr)
Inventor
王晓琳
田野
林亚凯
杨健
衷咏
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2010020115A1 publication Critical patent/WO2010020115A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process

Definitions

  • the invention relates to a method for preparing a polyvinylidene fluoride hollow fiber membrane, in particular to a method for preparing a high-flux, high-strength polyvinylidene fluoride hollow fiber membrane with a p-crystal phase by a thermally induced phase separation method.
  • PVDF Polyvinylidene fluoride
  • NIPS non-solvent precipitation gel phase conversion method
  • this method also has disadvantages, because the concentration of the polymer in the casting solution can only be below 16-18%, and the exchange of the solvent and the coagulation bath (liquid) in the phase separation process makes the film obtained by the method not strong. . Further, the microfiltration membrane obtained by these production methods generally has a porosity of 50% or less, so that there is a problem that the water flux is low.
  • the thermally induced phase separation (TIPS) method is an emerging membrane-forming technology, which mainly causes phase separation by cooling, and forms a pore structure. It is generally believed that the TIPS method can solve the disadvantages of poor hole formation and low strength of the NIPS method.
  • the solvents commonly used in the preparation of PVDF porous membranes by the TIPS method are phthalates, cyclohexanone, butyrolactone, etc., and the applicant has also used benzophenone (publication number: CN 1792420A).
  • a solvent a polyvinylidene fluoride porous membrane was prepared by the TIPS method.
  • the performance of the PVDF porous membrane prepared by the TIPS method is also affected by the PVDF crystal form.
  • the ⁇ crystal form is an orthorhombic system, and the configuration is all-trans TTT.
  • the unit cell contains a polar zigzag chain, so the P crystal form has higher mechanical properties than the other two crystal forms, and
  • the type of PVDF has a higher polarity and is therefore more hydrophilic than other crystal forms. Therefore, the porous film prepared from the ⁇ -form PVDF has higher mechanical strength and better hydrophilicity.
  • the object of the present invention is to improve a method for preparing a polyvinylidene fluoride hollow fiber membrane by a TIPS method, and to provide a method for preparing a ⁇ -crystalline phase polyvinylidene fluoride hollow fiber membrane, which can obtain as many ⁇ -morphic polyvinylidene fluoride as possible. .
  • the preparation method of the polyvinylidene fluoride hollow fiber membrane of the present invention is carried out as follows:
  • step 2) The mixture of step 1) is placed in a stirred tank and heated to 140. C ⁇ 220. C, forming a homogeneous solution of the polymer;
  • the polyvinylidene fluoride hollow fiber membrane obtained by the invention can be applied to the fields of microfiltration and ultrafiltration, and is particularly suitable for a membrane bioreactor which requires high membrane strength.
  • the preparation method of the polyvinylidene fluoride hollow fiber membrane of the present invention is carried out according to the following steps: 1) mixing a polyvinylidene fluoride resin with a diluent; wherein the mass percentage of the polyvinylidene fluoride resin in the mixture is 15 to 75 %;
  • step 2) the mixture of step 1) is placed in a high temperature stirred tank, and the temperature is raised to 140 ° C - 220 ° C to form a polymer homogeneous solution;
  • the diluent in the film obtained in the step 5) is extracted with an alcohol or an ether extractant to obtain a polyvinylidene fluoride hollow fiber membrane.
  • the polyvinylidene fluoride resin is a mixture of one or more polyvinylidene fluoride resins having a weight average molecular weight of from 50,000 to 800,000, preferably from 200,000 to 600,000.
  • the diluent is selected from the group consisting of methyl benzoate, ethyl benzoate, triacetin, benzophenone, diethylene glycol diethyl ether acetate, decyl salicylate, diethylene glycol Alcohol ether, triethyl citrate, diphenyl carbonate, 1,2-propylene carbonate, acetophenone, cyclohexanone, r-butyrolactone, decylisoamyl ketone, caprolactam and phthalic acid One or more mixtures of esters.
  • phthalic acid esters are selected from the group consisting of dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diamyl phthalate, phthalic acid One or a mixture of one or more of n-octyl ester, diisooctyl phthalate, and diisononyl phthalate.
  • Step 2) The homogeneous solution is preferably subjected to static defoaming prior to use in step 3).
  • Step 3) The cooling is preferably carried out by direct immersion in a cooling liquid.
  • the cooling liquid described in step 3 is usually 0 ⁇ 80.
  • the stretching in step 4) is preferably a liquid bath stretching; the stretching is a stretching of 1 to 3 stages, and the temperature of the first stage is 40 to 90 ° C, and the temperature gradient between adjacent stages is 5 ⁇ 20 °C, the temperature is gradually increased from the first stage; the total stretching ratio of the hollow fiber membrane is 1 to 10 times, and the stretching ratio is preferably 2 to 5 times.
  • the annealing is an annealing of 1 to 3 stages, and the first annealing temperature is 120 to 240 ° C, and the annealing temperature is preferably 160 to 200. C, the temperature gradient between adjacent stages is 20 ⁇ 50 °C, the temperature rises step by step from the first stage; the total annealing time is 10 ⁇ 60 seconds, preferably 30 ⁇ 50 seconds.
  • the alcohol extracting agent according to step 6) is methanol, ethanol, propanol, butanol or ethylene glycol; and the ether extracting agent is anthracene ether, diethyl ether, divinyl ether, dibutyl ether, di-n-propyl Ether or petroleum Ether, etc.
  • the present invention has the following outstanding advantages:
  • the ⁇ crystal form of PVDF in the hollow fiber membrane can be converted into the ⁇ crystal form as much as possible.
  • the strength of the obtained ⁇ -form PVDF hollow fiber membrane is significantly higher than that before the treatment, and the water flux can also be appropriately increased;
  • the stretching and annealing process is completed before the hollow fiber membrane is wound up, which is a continuous process. This reduces the post-treatment process and improves the production efficiency;
  • 3 multi-stage stretching makes the stretching of the PVDF hollow fiber membrane more adequate and uniform, which is beneficial to the full transformation of the ⁇ crystal form; Under the same stretching ratio, the stretching of each stage is more moderate, which reduces the possibility of broken wires.
  • ⁇ Crystal content determined by a wide-angle X-ray diffractometer (WAXD), expressed as a percentage of the ⁇ crystal form in the total crystal form.
  • Inner diameter, outer diameter, and wall thickness The inner, outer diameter, and wall thickness of the hollow fiber membrane were measured using an optical microscope with a scale.
  • Aperture The size of the hole in the SEM image of the sample is measured and converted to the pore size of the sample according to the magnification of the SEM.
  • Porosity After weighing the sample, it was immersed in isobutanol for 24 hours, and the weight was taken out. The porosity of the sample was calculated by converting the difference in weight of the sample before and after soaking to the volume of isobutanol and using it as the total volume of ⁇ in the sample.
  • Pure water flux Apply by pump 0.
  • the pressure of IMPa allows pure water to pass through the sample and measure the volume of water per unit area of the sample per unit time.
  • the solidified hollow fiber membrane was subjected to 3-stage hot water drawing, and the temperature of the first-stage hot water drawing apparatus was 70. C, the temperature of the third-stage hot water drawing device is 90 ° C, and the temperature gradient between adjacent hot water drawing devices is 10. C, the total draw ratio of the hollow fiber membrane in the hot water drawing apparatus is 2 times.
  • the hollow fiber membrane was subjected to 3-stage annealing, and the first-stage annealing temperature was 160.
  • C third stage annealing temperature 200.
  • the temperature gradient between adjacent annealing devices is 20.
  • the third-stage annealing has a total residence time of 45 seconds.
  • the annealed hollow fiber membrane is wound up, then extracted by ethanol and dried.
  • the average pore size is 0. 5 ⁇ m.
  • the pore size is 0. 3 mm, the porosity is 0. 3 mm, the porosity is 75%, the average pore diameter is 0. 5 ⁇ m. 2 MPa ⁇
  • the polyvinylidene fluoride resin having a weight average molecular weight of 200,000 and the benzophenone are each a component having a polyvinylidene fluoride resin content of 15% by weight and a benzophenone weight percentage of 85%.
  • the coolant bath was a water bath.
  • the solidified hollow fiber membrane was subjected to 3-stage hot water drawing, and the temperature of the first-stage hot water drawing apparatus was 70. C, the temperature of the third stage hot water drawing device is 90. C, the temperature gradient between adjacent hot water stretching devices is 10. C, the total draw ratio of the hollow fiber membrane in the hot water drawing apparatus is 2 times.
  • the hollow fiber membrane was subjected to a 3-stage annealing, and the first-stage annealing temperature was 160.
  • the third-stage annealing temperature is 200 ° C, and the temperature gradient between adjacent annealing devices is 20.
  • C the third-level annealing total residence time is 45 seconds.
  • the annealed hollow fiber membrane was wound up, then extracted with diethyl ether and dried.
  • the solidified hollow fiber membrane was subjected to 3-stage hot water drawing, the temperature of the first-stage hot water drawing apparatus was 70 ° C, and the temperature of the third-stage hot water drawing apparatus was 90.
  • C the temperature gradient between adjacent hot water drawing devices is 10.
  • C the total draw ratio of the hollow fiber membrane in the hot water drawing device is 2 times.
  • the hollow fiber membrane was subjected to 3-stage annealing, and the first-stage annealing temperature was 160.
  • C third stage annealing temperature 200.
  • the temperature gradient between adjacent annealing devices is 20.
  • the third-stage annealing has a total residence time of 45 seconds.
  • the annealed hollow fiber membrane is wound up, then extracted by ethanol and dried.
  • the hollow fiber membrane is a symmetrical film, the film has an inner diameter of 0. 9 mm, an outer diameter of 1. 5 mm, a wall thickness of 0.3 mm, a porosity of 29%, an average pore diameter of 0. 02 ⁇ m.
  • MPa The crystal form of the water content of 95. 0%, pure water flux 152 L / (m 2 - hr - 0. IMPa), tensile strength of 14. 8 MPa.
  • the polyvinylidene fluoride resin having a weight average molecular weight of 300,000 and the benzophenone are each a component having a polyvinylidene fluoride resin content of 35% by weight and a benzophenone weight percentage of 65%.
  • the polymer homogeneous solution was then extruded through a two-tube die and immersed directly into a 80 Torr coolant bath to form a film into a film.
  • the coolant bath was a water bath.
  • the solidified hollow fiber membrane is subjected to 3-stage hot water drawing, the temperature of the first-stage hot water drawing device is 70 X, and the temperature of the third-stage hot water drawing device is 90 TC, between adjacent hot water drawing devices
  • the temperature gradient is 10 and the total draw ratio of the hollow fiber membrane in the hot water drawing apparatus is 2 times.
  • the hollow fiber membrane was subjected to 3-stage annealing, the first-stage annealing temperature was 160*C, the third-stage annealing temperature was 200, the temperature gradient between adjacent annealing devices was 20 "C, and the third-stage annealing total residence time was 45 seconds.
  • the annealed hollow fiber membrane is wound up, then extracted by ethanol and dried.
  • the average pore size is 0. 5 ⁇ m.
  • the pore size is 0. 3 mm, the porosity is 0. 3 mm, the porosity is 75%, the average pore diameter is 0. 5 ⁇ m.
  • 5MPa ⁇ The P content of the crystal form is 94.7 %, the pure water flux 2, 511 L / ⁇ 2 ⁇ hr - 0. IMPa), tensile strength 3. 3MPa.
  • a group of polyvinylidene fluoride resin having a weight average molecular weight of 300,000 and r-butyrolactone The weight percentage of the polyvinylidene fluoride resin is 35%, and the weight percentage of the ruthenium-butyrolactone is 65% - it is heated to 180 in a high temperature stirred tank. C, stirring and mixing to form a polymer homogeneous solution, and allowed to stand for 24 hours. Then, the polymer homogeneous solution and glycerol were extruded through a double tube die and directly immersed in a cooling bath at 80 ° C to solidify the solution into a film, and the coolant bath was a glycerin bath.
  • the solidified hollow fiber membrane was subjected to 3-stage hot water drawing, and the temperature of the first-stage hot water drawing apparatus was 70. C, the temperature of the third-stage hot water drawing device is 90 ° C, and the temperature gradient between adjacent hot water drawing devices is 10. C, the total draw ratio of the hollow fiber membrane in the hot water drawing apparatus is 2 times.
  • the hollow fiber membrane was subjected to 3-stage annealing, and the first-stage annealing temperature was 160.
  • the third-stage annealing temperature is 200 ° C
  • the temperature gradient between adjacent annealing devices is 20 ° C
  • the tertiary annealing has a total residence time of 45 seconds.
  • the annealed hollow fiber membrane is wound up, then extracted by decyl alcohol and dried.
  • the hollow fiber membrane is a symmetrical film, a film having an inner diameter of 0. 9 mm, an outer diameter of 1. 5 mm, a wall thickness of 0. 3 mm, a porosity of 74%, an average pore diameter of 0. 4 ⁇ m. 4 MPa ⁇
  • the polyvinylidene fluoride resin having a weight average molecular weight of 300,000 and the phthalic acid phthalate are composed of a polyvinylidene fluoride resin in a weight percentage of 35%, and a methyl phthalate weight.
  • the fraction is 65% - heated in a high temperature stirred tank to 205. C, stirring and mixing to form a homogeneous polymer solution, and allowed to stand for 48 hours.
  • the polymer homogeneous solution was then extruded through a double tube die with glycerol and directly immersed in 80.
  • the solution was solidified into a film in a cooling bath of C, and the cooling bath was a water bath.
  • the solidified hollow fiber membrane was subjected to tertiary hot water drawing, the temperature of the first stage hot water drawing apparatus was 70 ° C, and the temperature of the third stage hot water drawing apparatus was 90 °. C, the temperature gradient between adjacent hot water stretching devices is 10. C, the total draw ratio of the hollow fiber membrane in the hot water stretching apparatus is 2 times.
  • the hollow fiber membrane was subjected to a three-stage annealing, the first-stage annealing temperature was 160 ° C, and the third-stage annealing temperature was 200.
  • the temperature gradient between adjacent annealing devices is 20.
  • the third-stage annealing total residence time is 45 seconds.
  • the annealed hollow fiber membrane is wound up, then extracted by ethanol and dried.
  • the hollow fiber membrane is a symmetrical film, a film having an inner diameter of 0. 9 mm, an outer diameter of 1. 5 mm, a wall thickness of 0.3 mm, a porosity of 73%, an average pore diameter of 0. 4 ⁇ m. 2 MPa ⁇
  • the polyvinylidene fluoride resin having a weight average molecular weight of 300,000 and the benzophenone are each a component having a polyvinylidene fluoride resin content of 35% by weight and a benzophenone weight percentage of 65%.
  • the temperature of the third-stage hot water drawing device is 8 (TC, the temperature gradient between adjacent hot water drawing devices is 20 ° C, the total stretching ratio of the hollow fiber membrane in the hot water drawing device 4 times.
  • the hollow fiber membrane is annealed in 3 stages, the first annealing temperature is 120 ° C, the third annealing temperature is 220 ° C, and the temperature gradient between adjacent annealing devices is 50 ° C.
  • the residence time was 60 seconds.
  • the annealed hollow fiber membrane was wound up, then extracted by ethanol and dried.
  • the average pore diameter is 0. 6 ⁇ m.
  • the average pore diameter is 0. 6 ⁇ m. 5 MPa.
  • the tensile strength is 3. 5 MPa.
  • the pure water flux is 2, 566 L / (m 2 - hr - 0. IMPa), tensile strength 3. 5 MPa.
  • the polyvinylidene fluoride resin having a weight average molecular weight of 300,000 and the benzophenone are each a component having a polyvinylidene fluoride resin content of 35% by weight and a benzophenone weight percentage of 65%.
  • the solidified hollow fiber membrane was subjected to a 3-stage glycerol bath stretching, the temperature of the first-stage drawing apparatus was 90 ° C, and the temperature of the third-stage drawing apparatus was 100. C, the temperature gradient between adjacent stretching devices is 5. C, the total stretching ratio of the hollow fiber membrane in the stretching device is 10 times.
  • the hollow fiber membrane was subjected to a 3-stage annealing, and the first-stage annealing temperature was 240.
  • the third-stage annealing temperature is 280 ° C, and the temperature gradient between adjacent annealing devices is 20.
  • C the total residence time of the tertiary annealing is 10 seconds.
  • the annealed hollow fiber membrane was wound up, then extracted with ethylene glycol and dried.
  • the hollow fiber membrane is a symmetrical film, a film having an inner diameter of 0. 9 mm, an outer diameter of 1. 5 mm, a wall thickness of 0. 3 mm, a porosity of 77%, an average pore diameter of 0. 6 ⁇ ⁇ . 6 MPa ⁇
  • the polyvinylidene fluoride resin having a weight average molecular weight of 300,000 and the diphenyl fluorenone are each a component having a polyvinylidene fluoride resin content of 35 % by weight and a benzophenone weight percentage of 65%.
  • the hollow fiber membrane was subjected to 3-stage annealing, and the first-stage annealing temperature was 160.
  • C third stage annealing temperature 200.
  • C the temperature gradient between adjacent annealing devices is 20.
  • C the third-stage annealing has a total residence time of 15 seconds.
  • the annealed hollow fiber membrane is wound up, then extracted by ethanol and dried.
  • the average pore diameter is 0. 5 ⁇ m.
  • the pore size is 0. 3 mm, the porosity is 0.3%, the average pore diameter is 0. 5 ⁇ m. 7 MPa ⁇
  • the polyvinylidene fluoride resin having a weight average molecular weight of 300,000 and the diphenyl fluorenone are each a component having a polyvinylidene fluoride resin content of 35% by weight and a benzophenone weight percentage of 65%.
  • the polymer homogeneous solution was then extruded through a two-barrel die with glycerol and directly immersed in a cooling bath at 80 ° C to solidify the solution into a film.
  • the coolant bath was a water bath.
  • the solidified hollow fiber membrane was subjected to 3-stage hot water drawing, and the temperature of the first-stage hot water drawing apparatus was 70. C, the temperature of the third-stage hot water drawing device is 90 °C, and the temperature gradient between adjacent hot water stretching devices is 10. C, the total draw ratio of the hollow fiber membrane in the hot water drawing device is 4 times.
  • the hollow fiber membrane was subjected to a 3-stage annealing, and the first-stage annealing temperature was 160.
  • the third-stage annealing temperature is 200 ° C
  • the temperature gradient between adjacent annealing devices is 20 ° C
  • the third-stage annealing time is 15 seconds.
  • the annealed hollow fiber membrane was wound up, then extracted by ethanol and dried.
  • the average pore diameter is 0. 6 ⁇ m.
  • the average pore diameter is 0. 6 ⁇ m. 2 MPa ⁇
  • the content of the crystal form is 93.2%, the pure water flux 2, 512 L / (m 2 - hr - 0. IMPa), tensile strength 3. 2 MPa.
  • the polyvinylidene fluoride resin having a weight average molecular weight of 300,000 and the benzophenone are each a component having a polyvinylidene fluoride resin content of 35% by weight and a benzophenone weight percentage of 65%.
  • the polymer homogeneous solution and glycerol were extruded through a double tube die and directly immersed in a cooling bath at 60 ° C to solidify the solution into a film, and the coolant bath was a water bath.
  • the solidified hollow fiber membrane was subjected to 3-stage hot water drawing, and the temperature of the first-stage hot water drawing apparatus was 50.
  • C the temperature of the third stage hot water drawing device is 90.
  • C the temperature gradient between adjacent hot water drawing devices is 20.
  • C the total draw ratio of the hollow fiber membrane in the hot water drawing apparatus is 4 times.
  • the hollow fiber membrane was subjected to 3-stage annealing, and the first-stage annealing temperature was 160.
  • the third-stage annealing temperature is 200 ° C, and the temperature gradient between adjacent annealing devices is 20.
  • the third-stage annealing has a total residence time of 45 seconds.
  • the annealed hollow fiber membrane is wound up and then extracted by petroleum ether
  • the hollow fiber membrane was obtained as a symmetric membrane having an inner diameter of 0.9 mm, an outer diameter of 1.5 mm, a wall thickness of 0.3 mm, a porosity of 75%, and an average pore diameter of 0.6 ⁇ m.
  • the ⁇ crystal form content is 93.2%
  • the pure water flux is 2, 415 L/ ⁇ 2 ⁇ h" 0. IMPa)
  • the tensile strength is 3.3 MPa.
  • the polyvinylidene fluoride resin having a weight average molecular weight of 300,000 and the benzophenone are each a component having a polyvinylidene fluoride resin content of 35% by weight and a benzophenone weight percentage of 65%.
  • the polymer homogeneous solution was then extruded through a two-barrel die with glycerol and directly immersed in 80.
  • the solution was solidified into a film in a cooling bath of C, and the cooling bath was a water bath.
  • the solidified hollow fiber membrane was subjected to 3-stage hot water drawing, and the temperature of the first-stage hot water drawing apparatus was 70. C, the temperature of the third stage hot water drawing device is 90. C, the temperature gradient between adjacent hot water stretching devices is 10. C, the total draw ratio of the hollow fiber membrane in the hot water drawing apparatus is 4 times.
  • the hollow fiber membrane was subjected to a 3-stage annealing, and the first-stage annealing temperature was 190.
  • C third stage annealing temperature 230.
  • C the temperature gradient between adjacent annealing devices is 20.
  • the three-stage total annealing time is 15 seconds.
  • the annealed hollow fiber membrane was wound up, then extracted by ethanol and dried.
  • the hollow fiber membrane was obtained as a symmetric membrane having an inner diameter of 0.8 mm, an outer diameter of 1.4 mm, a wall thickness of 0.3 mm, a porosity of 75%, and an average pore diameter of 0.6 ⁇ m.
  • ⁇ crystal form content is 97 ⁇ 2 % ⁇ Pure water flux 2, 379 L / (m 2 « hr - 0. IMPa), tensile strength 3. 2 MPa.
  • the polyvinylidene fluoride resin having a weight average molecular weight of 300,000 and the benzophenone are each a component having a polyvinylidene fluoride resin content of 35% by weight and a benzophenone weight percentage of 65%.
  • the coolant bath was a water bath.
  • the solidified hollow fiber membrane was subjected to 3-stage hot water drawing, and the temperature of the first-stage hot water drawing apparatus was 70. C, the temperature of the third-stage hot water drawing device is 90 ⁇ , the temperature gradient between adjacent hot water drawing devices is 10 ° C, and the total stretching ratio of the hollow fiber membrane in the hot water drawing device is 2 times. .
  • the stretched hollow fiber membrane was wound up, then extracted by ethanol and dried.
  • the average pore diameter is 0. 5 ⁇ m.
  • the average pore diameter is 0. 5 ⁇ m.
  • 5MPa ⁇ The ⁇ crystal content of 73.6%, pure water flux 2, 417 L / (m 2 - hr - 0. IMPa), tensile strength 2. 3MPa.
  • the coolant bath was a water bath.
  • the cured hollow fiber membrane was subjected to a three-stage annealing, the first annealing temperature was 160 ° C, and the third annealing temperature was 200. C, the temperature gradient between adjacent annealing devices is 20. C, the third-level annealing total stay time is 30 seconds.
  • the annealed hollow fiber membrane was wound up, then extracted by ethanol and dried.
  • the average pore size is 0. 5 ⁇ m.
  • the average pore diameter is 0. 5 ⁇ m.
  • MPa ⁇ The tensile strength of 1. 9MPa, the pure water flux of 2, 373 L / (m 2 - hr - 0. IMPa), tensile strength 1. 9MPa.
  • the polyvinylidene fluoride resin having a weight average molecular weight of 300,000 and the benzophenone are each a component having a polyvinylidene fluoride resin content of 35% by weight and a benzophenone weight percentage of 65%.
  • the solidified hollow fiber membrane is subjected to first-stage hot water stretching, and the stretching water bath temperature is 70 ° C. Then, the first-stage annealing is performed, and the annealing temperature is 160 ° C. The annealed hollow fiber membrane is wound up and extracted by ethanol. dry.
  • the hollow fiber membrane was obtained as a symmetric membrane having an inner diameter of 0.8 mm, an outer diameter of 1.4 mm, a wall thickness of 0.3 mm, a porosity of 75%, and an average pore diameter of 0.5 ⁇ m.
  • MPa The content of the crystal form is 82.6 %, the pure water flux is 2, 029 L / (m 2 - hr - 0. IMPa), tensile strength 2. lMPa.
  • the polyvinylidene fluoride resin having a weight average molecular weight of 300,000 and the benzophenone are each a component having a polyvinylidene fluoride resin content of 35% by weight and a benzophenone weight percentage of 65%.
  • the hollow fiber membrane was obtained as a symmetric membrane having an inner diameter of 0.8 mm, an outer diameter of 1.4 mm, a wall thickness of 0.3 mm, a porosity of 70%, and an average pore diameter of 0.3 ⁇ m.
  • the ⁇ crystal form content was 14.1%
  • the pure water flux was 2, 126 L/(m 2 - hr- 0. IMPa)
  • the tensile strength was 1.3 MPa.
  • the polyvinylidene fluoride resin having a weight average molecular weight of 300,000 and r-butyrolactone are each a component having a polyvinylidene fluoride resin content of 35% by weight, and the r-butyrolactone weight percentage is 65% - heated in a high temperature stirred tank to a temperature of 180. C, stirring and mixing to form a homogeneous solution of the polymer, and allowed to stand for 24 hours.
  • the polymer homogeneous solution was then extruded through a double tube die with glycerol and directly immersed in a 80 ° C cooling bath to cure the solution into a film which was a water bath.
  • the solidified hollow fiber membrane is wound up, then dried by ethanol extraction.
  • the hollow fiber membrane was obtained as a symmetric membrane having an inner diameter of 0.8 mm, an outer diameter of 1.4 mm, a wall thickness of 0.3 mm, a porosity of 70%, and an average pore diameter of 0.3 ⁇ m.
  • the ⁇ crystal form content was 16.2%
  • the pure water flux was 1,792 L/(m 2 - hr- 0. IMPa)
  • the tensile strength was 0.9 MPa.
  • the polyvinylidene fluoride resin and the phthalic acid phthalate having a weight average molecular weight of 300,000 are composed of a polyvinylidene fluoride resin in a weight percentage of 75%, and the benzophenone is heavy.
  • the percentage by weight is 25% - it is heated in a high temperature stirred tank to 205 ° C, stirred and mixed uniformly to form a polymer homogeneous solution, and allowed to stand for 24 hours.
  • the polymer homogeneous solution was then extruded through a double tube die with glycerol and directly immersed in 80.
  • the solution was solidified into a film in a cooling bath of C, and the cooling bath was a water bath.
  • the solidified hollow fiber membrane is wound up, then dried by ethanol extraction.
  • the hollow fiber membrane was obtained as a symmetric membrane having an inner diameter of 0.8 mm, an outer diameter of 1.4 mm, a wall thickness of 0.3 mm, a porosity of 27%, and an average pore diameter of 0.02 ⁇ m.
  • the crystal form content is 11.3 %
  • the pure water flux is 113 L/ ⁇ 2 ⁇ hr- 0. IMPa)
  • the tensile strength is 10.1 MPa.

Description

一种 β晶相聚偏氟乙烯中空纤维膜的制备方法 技术领域
本发明涉及聚偏氟乙烯中空纤维膜的制备方法,特别涉及一种热致 相分离法制备 ρ晶相高通量、 高强度聚偏氟乙烯中空纤维膜的方法。 背景技术
聚偏氟乙烯(PVDF )具有优良热稳定性、 耐腐蚀性、 不燃性、 抗紫 外线老化等性能, 并具有高强度和耐磨性, 因此近年来在分离膜领域引 起了广泛的重视, 例如, 在微滤和超滤方面, 聚偏氟乙烯一直作为性能 优异的膜被应用。 目前, 聚偏氟乙烯的制备方法多为非溶剂沉淀凝胶相 转化法(NIPS )。 该方法自八十年代起被广泛应用, 包括制备平板均质 膜、复合膜和中空纤维膜,现投入使用的聚偏氟乙烯多孔膜即为该方法 得到的产品。但该方法也有缺点, 由于铸膜液中聚合物浓度一般只能在 16-18 %以下, 加上相分离过程中溶剂与凝固浴(液) 的交换, 使得这 种方法所得膜的强度不高。此外, 这些制作方法得到的微滤膜的孔隙率 一般在 50 %以下, 所以都存在水通量较低的问题。
热致相分离(TIPS )法为新兴的制膜技术, 主要通过降温造成相分 离, 形成孔结构, 一般认为, TIPS法能解决 NIPS法成孔差、 强度低的 缺点。 从目前文献报导看来, TIPS法制备 PVDF多孔膜通常使用的溶剂 为邻苯二甲酸酯类、 环己酮、 丁内酯等, 本申请人也曾以二苯曱酮(公 开号: CN 1792420A ) 为溶剂, 利用 TIPS法制备了聚偏氟乙烯多孔膜。
除溶剂影响外, TIPS法制备 PVDF多孔膜的性能还受 PVDF晶型的 影响。 一般来讲, PVDF 常见的晶体结构主要有三种: α、 β、 γ。 其 中 Ρ 晶型为正交晶系, 构型为全反式 TTT, 晶胞中含有极性的锯齿型 链, 所以 P 晶型较其它两种晶型具有更高的机械性能, 并且由于 P 晶 型的 PVDF具有较高极性, 所以较其它晶型的亲水性更强, 因此, 由 β 晶型 PVDF制备的多孔膜具备更高的机械强度和更佳的亲水性。 然而, 通过 TIPS法制备的多孔膜中, PVDF主要以 α 晶型存在, 存在大量的 球晶,这在很大程度上影响了 PVDF膜的强度,制约了 TIPS法制备 PVDF 多孔膜方法的进一步发展。 因此如何尽可能多的将 TIPS法制备的 PVDF 多孔膜中的 α 晶型转变为 β 晶型就变得十分有意义。 发明内容
本发明的目的在于改进 TIPS法制备聚偏氟乙烯中空纤维膜方法, 提供一种 β 晶相聚偏氟乙烯中空纤维膜的制备方法, 该方法可尽可能 多的得到 β 晶型的聚偏氟乙烯。
本发明的技术方案如下。
本发明的聚偏氟乙烯中空纤维膜的制备方法按照如下步骤进行:
1 )将聚偏氟乙烯树脂与稀释剂相混合; 其中混合物中聚偏氟乙烯 树脂质量百分含量为 15 ~ 75 %;
2 )将步骤 1 ) 的混合物放入搅拌釜中, 升温至 140。C ~ 220。C, 形 成聚合物均相溶液;
3 )将步骤 2 )得到的聚合物均相溶液和用于形成纤维内部空腔的 液体通过双管式口模挤出, 冷却凝固成中空纤维膜;
4 )对步骤 3 )所得的中空纤维膜进行拉伸;
5 )对步骤 4 ) 中得到的中空纤维膜进行退火;
6 ) 用醇类或醚类萃取剂来萃取掉步骤 5 ) 所得膜中的稀释剂, 得 到聚偏氟乙烯中空纤维膜。
本发明得到的聚偏氟乙烯中空纤维膜, 可以应用在微滤和超滤领 域, 特别适用于对膜强度要求较高的膜生物反应器。 具体实施方式
本发明的聚偏氟乙烯中空纤维膜的制备方法按照如下步骤进行: 1 )将聚偏氟乙烯树脂与稀释剂相混合; 其中混合物中聚偏氟乙烯 树脂质量百分含量为 15 ~ 75 %;
2 )将步骤 1 )的混合物放入高温搅拌釜中,升温至 140°C - 220°C, 形成聚合物均相溶液;
3 )将步骤 2 )得到的聚合物均相溶液和用于形成纤维内部空腔的 液体通过双管式口模挤出, 冷却凝固成中空纤维膜;
4 )对步骤 3 ) 所得的中空纤维膜进行拉伸; 5)对步骤 4) 中得到的中空纤维膜进行退火;
6)用醇类或醚类萃取剂来萃取掉步骤 5)所得膜中的稀释剂, 得 到聚偏氟乙烯中空纤维膜。
步骤 1 ) 所述的聚偏氟乙烯树脂是重均分子量为 50, 000 到 800, 000, 优选 200, 000至 600, 000的一种或一种以上聚偏氟乙烯树脂 的混合物。
步骤 1 )所述的稀释剂选自苯曱酸甲酯、 苯曱酸乙酯、 三乙酸甘油 酯、 二苯曱酮、 二乙二醇乙醚乙酸酯、 水杨酸曱酯、 二乙二醇乙醚、 拧 檬酸三乙酯、 碳酸二苯酯、 1, 2-碳酸丙二醇酯、 苯乙酮、 环己酮、 r- 丁内酯、 曱基异戊基酮、 己内酰胺和邻苯二甲酸酯类中的一种或一种以 上的混合物。
上述的邻苯二曱酸酯类选自邻苯二甲酸二甲酯、 邻苯二甲酸二乙 酯、 邻苯二曱酸二丁酯、 邻苯二曱酸二戊酯、 邻苯二甲酸二正辛酯、 邻 苯二曱酸二异辛酯和邻苯二曱酸二异壬酯中的一种或一种以上的混合 物。
步骤 2) 所述的均相溶液在用于步骤 3)之前优选进行静置脱泡。 步骤 3) 所述的冷却优选通过直接浸入冷却液中进行。
步驟 3)所述的冷却液通常为 0~ 80 。
步驟 4)所述的拉伸优选为液体浴拉伸; 所述的拉伸为 1到 3级的 拉伸, 第一级的温度为 40~90°C, 相邻级之间的温度梯度为 5~20°C, 温度从第一级开始逐级升高; 中空纤维膜的总拉伸倍率为 1~ 10倍,优 选拉伸倍数为 2 ~ 5倍。
所述的形成纤维内部空腔的液体、冷却液、液体浴为聚偏氟乙烯的 非溶剂, 各自独立地选自水、 乙醇、 乙二醇、 丙二醇、 丙三醇、二甘醇、 三甘醇和聚乙二醇等中的一种或一种以上的混合物。
步骤 5)所述的退火为 1 到 3 级退火, 第一级退火温度为 120 ~ 240°C, 优选退火温度为 160~ 200。C, 相邻级之间的温度梯度为 20 ~ 50°C, 温度从第一级开始逐级升高; 总退火时间 10~60秒, 优选 30~ 50秒。
步骤 6)所述的醇类萃取剂是甲醇、 乙醇、 丙醇、 丁醇或乙二醇等; 所述的醚类萃取剂是曱醚、 乙醚、 二乙烯醚、 二丁醚、 二正丙醚或石油 醚等。
本发明与现有技术相比, 具有以下突出优点:
①通过增加拉伸与退火处理方法,可将中空纤维膜中 PVDF的 α 晶 型尽可能多地转化为 β 晶型。 所得 β 晶型的 PVDF中空纤维膜的强度 较处理之前有显著提高, 而水通量也可有适量提高; ②拉伸与退火方法 过程是在中空纤维膜收卷之前完成,是一个连续过程,这样就减少了后 处理工序, 提高了生产效率; ③多级拉伸使得 PVDF中空纤维膜所受的 拉伸较充分与均勾, 有利于 α 晶型的充分转变; ④分级进行拉伸, 在 相同的拉伸倍数条件下, 每级的拉伸更緩和, 减少了断丝的可能; ⑤在 拉伸之后再增加多级退火方法, 保障 a 晶型的充分转变为 β 晶型。 下面结合实施例对本发明的技术方案进行进一步的说明,但是所述 实施方式举例不构成对本发明的限制。
以下各实施例中, 所制得的样品的各参数通过以下方法测定: β 晶型含量: 由广角 X光衍射仪(WAXD ) 测定, 以百分比表示 β 晶型占总晶型的含量。
内径、外径和壁厚:采用带标尺的光学显微镜测量中空纤维膜的内、 外径及壁厚。
孔径: 测量样品的扫描电镜照片中的孔尺寸,根据扫描电镜的放大 倍数换算成样品的孔径。
孔隙率: 称量样品重量后, 将其在异丁醇中浸泡 24小时, 取出称 重。将浸泡前后样品的重量差换算成异丁醇体积并将其作为样品中 ^的 总体积, 计算得样品的孔隙率。
拉伸强度: 采用岛津电子万能材料试验机(AGS-100A ) 测量。
纯水通量: 用泵施加 0. IMPa的压力使纯水透过样品, 测量单位时 间内透过单位面积样品的水体积。 实施例 1:
将重均分子量为 300, 000的聚偏氟乙烯树脂与二苯甲酮一一其组 分为聚偏氟乙烯树脂的重量百分含量为 35 % , 二苯曱酮重量百分含量 为 65 %——放入高温搅拌釜中加热升温至 200Ό,搅拌混合均勾形成聚 合物均相溶液, 静置 24小时。 然后将聚合物均相溶液与丙三醇通过双 管式口模挤出并直接浸入 80'C的冷却液浴中使溶液固化成膜, 冷却液 浴为水浴。 固化的中空纤维膜进行 3级热水拉伸, 第一级热水拉伸装置 的温度为 70。C , 第三级热水拉伸装置的温度为 90°C, 相邻热水拉伸装 置之间的温度梯度为 10。C, 中空纤维膜在热水拉伸装置中的总拉伸倍 率为 2倍。接下来中空纤维膜进行 3级退火,第一级退火温度为 160。C, 第三级退火温度 200。C,相邻退火装置之间的温度梯度为 20。C , 三级退 火总停留时间 45秒。 将退火后的中空纤维膜收卷, 然后经乙醇萃取后 干燥。
得到中空纤维膜为对称膜, 膜内径为 0. 9 mm, 外径为 1. 5 mm, 壁 厚为 0. 3 mm, 孔隙率为 75 %, 平均孔径为 0. 5 μ m。 β 晶型含量为 94. 3 % , 纯水通量 2, 573 L/ (m2- hr - 0. IMPa) , 拉伸强度 3. 2 MPa。
实施例 2:
将重均分子量为 200, 000的聚偏氟乙烯树脂与二苯甲酮一一其组 分为聚偏氟乙烯树脂的重量百分含量为 15 %, 二苯甲酮重量百分含量 为 85 %——放入高温搅拌釜中加热升温至 180°C,搅拌混合均勾形成聚 合物均相溶液, 静置 24小时。 然后将聚合物均相溶液与丙三醇通过双 管式口模挤出并直接浸入 80°C的冷却液浴中使溶液固化成膜, 冷却液 浴为水浴。 固化的中空纤维膜进行 3级热水拉伸, 第一级热水拉伸装置 的温度为 70。C, 第三级热水拉伸装置的温度为 90。C, 相邻热水拉伸装 置之间的温度梯度为 10。C, 中空纤维膜在热水拉伸装置中的总拉伸倍 率为 2倍。接下来中空纤维膜进行 3级退火,第一级退火温度为 160。C , 第三级退火温度 200°C,相邻退火装置之间的温度梯度为 20。C,三级退 火总停留时间 45秒。 将退火后的中空纤维膜收卷, 然后经乙醚萃取后 干燥。
得到中空纤维膜为对称膜, 膜内径为 0. 9 mm, 外径为 1. 5mm, 壁厚 为 0. 3 mm, 孔隙率为 88 %, 平均孔径为 0. 8 μ m。 β 晶型含量为 96. 0 % , 纯水通量 2, 867 L/ (m2- hr - 0. IMPa) , 拉伸强度 1. 1 MPa。
实施例 3:
将重均分子量为 600, 000的聚偏氟乙烯树脂与二苯曱酮一一其组 分为聚偏氟乙烯树脂的重量百分含量为 75 %, 二苯甲酮重量百分含量 为 25 %——放入高温搅拌釜中加热升温至 180。C,搅拌混合均勾形成聚 合物均相溶液, 静置 24小时。 然后将聚合物均相溶液与丙三醇通过双 管式口模挤出并直接浸入 80°C的冷却液浴中使溶液固化成膜, 冷却液 浴为水浴。 固化的中空纤维膜进行 3级热水拉伸, 第一级热水拉伸装置 的温度为 70°C, 第三级热水拉伸装置的温度为 90。C, 相邻热水拉伸装 置之间的温度梯度为 10。C , 中空纤维膜在热水拉伸装置中的总拉伸倍 率为 2倍。接下来中空纤维膜进行 3级退火,第一级退火温度为 160。C, 第三级退火温度 200。C,相邻退火装置之间的温度梯度为 20。C, 三级退 火总停留时间 45秒。 将退火后的中空纤维膜收卷, 然后经乙醇萃取后 干燥。
得到中空纤维膜为对称膜, 膜内径为 0. 9 mm, 外径为 1. 5 mm, 壁 厚为 0. 3 mm,孔隙率为 29 %,平均孔径为 0. 02 μ m。 β 晶型含量为 95. 0 %, 纯水通量 152 L/ (m2- hr - 0. IMPa) , 拉伸强度 14. 8 MPa。
实施例 4:
将重均分子量为 300, 000的聚偏氟乙烯树脂与二苯曱酮一一其组 分为聚偏氟乙烯树脂的重量百分含量为 35 %, 二苯甲酮重量百分含量 为 65 %——放入高温搅拌釜中加热升温至 200 C,搅拌混合均匀形成聚 合物均相溶液, 静置 24小时。 然后将聚合物均相溶液与 1, 3-丙二醇 通过双管式口模挤出并直接浸入 80 Ό的冷却液浴中使溶液固化成膜, 冷却液浴为水浴。 固化的中空纤维膜进行 3级热水拉伸, 第一级热水拉 伸装置的温度为 70 X, 第三级热水拉伸装置的温度为 90TC , 相邻热水 拉伸装置之间的温度梯度为 10 , 中空纤维膜在热水拉伸装置中的总 拉伸倍率为 2倍。接下来中空纤维膜进行 3级退火, 第一级退火温度为 160*C, 第三级退火温度 200 ,相邻退火装置之间的温度梯度为 20 "C , 三级退火总停留时间 45秒。 将退火后的中空纤维膜收卷, 然后经乙醇 萃取后干燥。
得到中空纤维膜为对称膜, 膜内径为 0. 9 mm, 外径为 1. 5 mm, 壁 厚为 0. 3 mm, 孔隙率为 75 %, 平均孔径为 0. 5 μ m。 P 晶型含量为 94. 7 %, 纯水通量 2, 511 L/ Οη2· hr - 0. IMPa) , 拉伸强度 3. 3MPa。
实施例 5:
将重均分子量为 300, 000的聚偏氟乙烯树脂与 r-丁内酯一一其组 分为聚偏氟乙烯树脂的重量百分含量为 35 %, Γ-丁内酯重量百分含量 为 65 %——放入高温搅拌釜中加热升温至 180。C,搅拌混合均勾形成聚 合物均相溶液, 静置 24小时。 然后将聚合物均相溶液与丙三醇通过双 管式口模挤出并直接浸入 80°C的冷却液浴中使溶液固化成膜, 冷却液 浴为丙三醇浴。 固化的中空纤维膜进行 3级热水拉伸, 第一级热水拉伸 装置的温度为 70。C, 第三级热水拉伸装置的温度为 90°C, 相邻热水拉 伸装置之间的温度梯度为 10。C, 中空纤维膜在热水拉伸装置中的总拉 伸倍率为 2倍。 接下来中空纤维膜进行 3级退火, 第一级退火温度为 160。C, 第三级退火温度 200°C ,相邻退火装置之间的温度梯度为 20°C, 三级退火总停留时间 45秒。 将退火后的中空纤维膜收卷, 然后经曱醇 萃取后干燥。
得到中空纤维膜为对称膜, 膜内径为 0. 9 mm, 外径为 1. 5 mm, 壁 厚为 0. 3 mm, 孔隙率为 74 % , 平均孔径为 0. 4 μ m。 β 晶型含量为 95. 3 % , 纯水通量 1, 820 L/ (m2- hr - 0. IMPa) , 拉伸强度 2. 4 MPa。
实施例 6:
将重均分子量为 300 , 000 的聚偏氟乙烯树脂与邻苯二甲酸曱 酯一一其组分为聚偏氟乙烯树脂的重量百分含量为 35 %, 邻苯二曱酸 甲酯重量百分含量为 65 %——放入高温搅拌釜中加热升温至 205。C ,搅 拌混合均匀形成聚合物均相溶液, 静置 48小时。 然后将聚合物均相溶 液与丙三醇通过双管式口模挤出并直接浸入 80。C的冷却液浴中使溶液 固化成膜, 冷却液浴为水浴。 固化的中空纤维膜进行 3级热水拉伸, 第 一级热水拉伸装置的温度为 70°C,第三级热水拉伸装置的温度为 90。C , 相邻热水拉伸装置之间的温度梯度为 10。C, 中空纤维膜在热水拉伸装 置中的总拉伸倍率为 2倍。接下来中空纤维膜进行 3级退火, 第一级退 火温度为 160°C, 第三级退火温度 200。C, 相邻退火装置之间的温度梯 度为 20。C, 三级退火总停留时间 45秒。 将退火后的中空纤维膜收卷, 然后经乙醇萃取后干燥。
得到中空纤维膜为对称膜, 膜内径为 0. 9 mm, 外径为 1. 5 mm, 壁 厚为 0. 3 mm, 孔隙率为 73 %, 平均孔径为 0. 4 μ m。 β 晶型含量为 91. 3 % , 纯水通量 1, 612 L/ (m2- hr - 0. IMPa) , 拉伸强度 2. 2 MPa。 将重均分子量为 300, 000的聚偏氟乙烯树脂与二苯曱酮一一其组 分为聚偏氟乙烯树脂的重量百分含量为 35 % , 二苯甲酮重量百分含量 为 65 %——放入高温搅拌釜中加热升温至 200。C,搅拌混合均勾形成聚 合物均相溶液, 静置 24小时。 然后将聚合物均相溶液与和丙三醇与 1 , 3-丙二醇的混合液通过双管式口模挤出并直接浸入 60°C的冷却液浴中 使溶液固化成膜,冷却液浴为水浴。 固化的中空纤维膜进行 3级热水拉 伸, 第一级热水拉伸装置的温度为 40。C, 第三級热水拉伸装置的温度 为 8(TC, 相邻热水拉伸装置之间的温度梯度为 20。C, 中空纤维膜在热 水拉伸装置中的总拉伸倍率为 4倍。 接下来中空纤维膜进行 3级退火, 第一级退火温度为 120。C, 第三级退火温度 220°C, 相邻退火装置之间 的温度梯度为 50。C, 三级退火总停留时间 60秒。 将退火后的中空纤维 膜收卷, 然后经乙醇萃取后干燥。
得到中空纤维膜为对称膜, 膜内径为 0. 9 mm, 外径为 1. 5 mm, 壁 厚为 0. 3 mm, 孔隙率为 75 %, 平均孔径为 0. 6 μ m。 β 晶型含量为 98. 7 % , 纯水通量 2, 566 L/ (m2- hr - 0. IMPa) , 拉伸强度 3. 5 MPa.
实施例 8:
将重均分子量为 300, 000的聚偏氟乙烯树脂与二苯甲酮一一其组 分为聚偏氟乙烯树脂的重量百分含量为 35 %, 二苯曱酮重量百分含量 为 65 %——放入高温搅拌釜中加热升温至 200Ό,搅拌混合均勾形成聚 合物均相溶液, 静置 24小时。 然后将聚合物均相溶液与三甘醇通过双 管式口模挤出并直接浸入 80°C的冷却液浴中使溶液固化成膜, 冷却液 浴为水浴。 固化的中空纤维膜进行 3级丙三醇浴拉伸, 第一级拉伸装置 的温度为 90°C , 第三级拉伸装置的温度为 100。C,相邻拉伸装置之间的 温度梯度为 5。C, 中空纤维膜在拉伸装置中的总拉伸倍率为 10倍。 接 下来中空纤维膜进行 3级退火, 第一级退火温度为 240。C, 第三级退火 温度 280°C ,相邻退火装置之间的温度梯度为 20。C, 三级退火总停留时 间 10秒。 将退火后的中空纤维膜收卷, 然后经乙二醇萃取后干燥。
得到中空纤维膜为对称膜, 膜内径为 0. 9 mm, 外径为 1. 5 mm, 壁 厚为 0. 3 mm, 孔隙率为 77 % , 平均孔径为 0. 6 μ πι。 β 晶型含量为 99. 1 % , 纯水通量 2, 766 L/ Οη2 · hr - 0. IMPa) , 拉伸强度 3. 6 MPa。 将重均分子量为 300, 000的聚偏氟乙烯树脂与二苯曱酮一一其组 分为聚偏氟乙烯树脂的重量百分含量为 35 % , 二苯曱酮重量百分含量 为 65 %——放入高温搅拌釜中加热升温至 200。C,搅拌混合均匀形成聚 合物均相溶液, 静置 24小时。 然后将聚合物均相溶液与丙三醇通过双 管式口模挤出并直接浸入 80°C的冷却液浴中使溶液固化成膜, 冷却液 浴为水浴。 固化的中空纤维膜进行 3级热水拉伸, 第一级热水拉伸装置 的温度为 70。C, 第三级热水拉伸装置的温度为 90。C, 相邻热水拉伸装 置之间的温度梯度为 10。C, 中空纤维膜在热水拉伸装置中的总拉伸倍 率为 2倍。接下来中空纤维膜进行 3级退火,第一级退火温度为 160。C, 第三级退火温度 200。C,相邻退火装置之间的温度梯度为 20。C,三级退 火总停留时间 15秒。 将退火后的中空纤维膜收卷, 然后经乙醇萃取后 干燥。
得到中空纤维膜为对称膜, 膜内径为 0. 8 mm, 外径为 1. 4 mm, 壁 厚为 0. 3 mm, 孔隙率为 73 % , 平均孔径为 0. 5 μ m。 β 晶型含量为 85. 1 %, 纯水通量 2, 465 L/ (m2- hr - 0. IMPa) , 拉伸强度 2. 7 MPa。
实施例 10:
将重均分子量为 300 , 000的聚偏氟乙烯树脂与二苯曱酮一一其组 分为聚偏氟乙烯树脂的重量百分含量为 35 %, 二苯曱酮重量百分含量 为 65 %——放入高温搅拌釜中加热升温至 200。C,搅拌混合均匀形成聚 合物均相溶液, 静置 24小时。 然后将聚合物均相溶液与丙三醇通过双 管式口模挤出并直接浸入 80°C的冷却液浴中使溶液固化成膜, 冷却液 浴为水浴。 固化的中空纤维膜进行 3级热水拉伸, 第一级热水拉伸装置 的温度为 70。C, 笫三级热水拉伸装置的温度为 90°C, 相邻热水拉伸装 置之间的温度梯度为 10。C , 中空纤维膜在热水拉伸装置中的总拉伸倍 率为 4倍。接下来中空纤维膜进行 3级退火,第一级退火温度为 160。C, 第三级退火温度 200°C ,相邻退火装置之间的温度梯度为 20°C, 三级退 火总停留时间 15秒。 将退火后的中空纤维膜收卷, 然后经乙醇萃取后 干燥。
得到中空纤维膜为对称膜, 膜内径为 0. 9 mm, 外径为 1. 5 mm, 壁 厚为 0. 3 mm, 孔隙率为 75 %, 平均孔径为 0. 6 μ m。 β 晶型含量为 93. 2 % , 纯水通量 2, 512 L/ (m2- hr - 0. IMPa), 拉伸强度 3. 2 MPa。 将重均分子量为 300, 000的聚偏氟乙烯树脂与二苯曱酮一一其组 分为聚偏氟乙烯树脂的重量百分含量为 35%, 二苯曱酮重量百分含量 为 65%——放入高温搅拌釜中加热升温至 200°C,搅拌混合均匀形成聚 合物均相溶液, 静置 24小时。 然后将聚合物均相溶液与丙三醇通过双 管式口模挤出并直接浸入 60°C的冷却液浴中使溶液固化成膜, 冷却液 浴为水浴。 固化的中空纤维膜进行 3级热水拉伸, 第一级热水拉伸装置 的温度为 50。C, 第三级热水拉伸装置的温度为 90。C, 相邻热水拉伸装 置之间的温度梯度为 20。C, 中空纤维膜在热水拉伸装置中的总拉伸倍 率为 4倍。接下来中空纤维膜进行 3级退火,第一级退火温度为 160。C, 第三级退火温度 200°C,相邻退火装置之间的温度梯度为 20。C,三级退 火总停留时间 45秒。 将退火后的中空纤维膜收卷, 然后经石油醚萃取
^ 、)^ ο
得到中空纤维膜为对称膜, 膜内径为 0.9 mm, 外径为 1.5 mm, 壁 厚为 0.3 mm, 孔隙率为 75%, 平均孔径为 0.6 μ m。 β 晶型含量为 93.2 %, 纯水通量 2, 415 L/ η2· h" 0. IMPa) , 拉伸强度 3.3MPa。
实施例 12:
将重均分子量为 300, 000的聚偏氟乙烯树脂与二苯甲酮一一其组 分为聚偏氟乙烯树脂的重量百分含量为 35% , 二苯甲酮重量百分含量 为 65%——放入高温搅拌釜中加热升温至 200。C,搅拌混合均匀形成聚 合物均相溶液, 静置 24小时。 然后将聚合物均相溶液与丙三醇通过双 管式口模挤出并直接浸入 80。C的冷却液浴中使溶液固化成膜, 冷却液 浴为水浴。 固化的中空纤维膜进行 3级热水拉伸, 第一级热水拉伸装置 的温度为 70。C, 第三级热水拉伸装置的温度为 90。C, 相邻热水拉伸装 置之间的温度梯度为 10。C, 中空纤维膜在热水拉伸装置中的总拉伸倍 率为 4倍。接下来中空纤维膜进行 3级退火,第一级退火温度为 190。C, 第三級退火温度 230。C,相邻退火装置之间的温度梯度为 20。C,三级退 火总停留时间 15秒。 将退火后的中空纤维膜收卷, 然后经乙醇萃取后 干燥。
得到中空纤维膜为对称膜, 膜内径为 0.8 mm, 外径为 1.4 mm, 壁 厚为 0.3 mm, 孔隙率为 75%, 平均孔径为 0.6 μ m。 β 晶型含量为 97· 2 %, 纯水通量 2, 379 L/ (m2« hr - 0. IMPa), 拉伸强度 3. 2 MPa。
实施例 13:
将重均分子量为 300, 000的聚偏氟乙烯树脂与二苯曱酮一一其组 分为聚偏氟乙烯树脂的重量百分含量为 35 %, 二苯甲酮重量百分含量 为 65 %——放入高温搅拌釜中加热升温至 200°C ,搅拌混合均勾形成聚 合物均相溶液, 静置 24小时。 然后将聚合物均相溶液与丙三醇通过双 管式口模挤出并直接浸入 80°C的冷却液浴中使溶液固化成膜, 冷却液 浴为水浴。 固化的中空纤维膜进行 3级热水拉伸, 第一级热水拉伸装置 的温度为 70。C, 第三级热水拉伸装置的温度为 90Ό , 相邻热水拉伸装 置之间的温度梯度为 10°C , 中空纤维膜在热水拉伸装置中的总拉伸倍 率为 2倍。 将拉伸后的中空纤维膜收卷, 然后经乙醇萃取后干燥。
得到中空纤维膜为对称膜, 膜内径为 0. 8 mm, 外径为 1. 4 mm, 壁 厚为 0. 3 mm, 孔隙率为 75 % , 平均孔径为 0. 5 μ m。 β 晶型含量为 73. 6 %, 纯水通量 2, 417 L/ (m2- hr - 0. IMPa), 拉伸强度 2. 3MPa。
实施例 14:
将重均分子量为 300, 000的聚偏氟乙烯树脂与二苯甲酮一一其组 分为聚偏氟乙烯树脂的重量百分含量为 35 % , 二苯曱酮重量百分含量 为 65 %——放入高温搅拌釜中加热升温至 200°C,搅拌混合均勾形成聚 合物均相溶液, 静置 24小时。 然后将聚合物均相溶液与二甘醇通过双 管式口模挤出并直接浸入 80'C的冷却液浴中使溶液固化成膜, 冷却液 浴为水浴。固化的中空纤维膜进行 3级退火,第一级退火温度为 160°C , 第三级退火温度 200。C ,相邻退火装置之间的温度梯度为 20。C , 三级退 火总停留时间 30秒。 将退火后的中空纤维膜收卷, 然后经乙醇萃取后 干燥。
得到中空纤维膜为对称膜, 膜内径为 0. 8 mm, 外径为 1. 4 mm, 壁 厚为 0. 3 mm, 孔隙率为 75 %, 平均孔径为 0. 5 μ m。 β 晶型含量为 67. 3 % , 纯水通量 2, 373 L/ (m2- hr - 0. IMPa), 拉伸强度 1. 9MPa。
实施例 15:
将重均分子量为 300, 000的聚偏氟乙烯树脂与二苯甲酮一一其组 分为聚偏氟乙烯树脂的重量百分含量为 35 %, 二苯甲酮重量百分含量 为 65 %——放入高温搅拌釜中加热升温至 200'C,搅拌混合均勾形成聚 合物均相溶液, 静置 24小时。 然后将聚合物均相溶液和丙三醇与三甘 醇的混合液通过双管式口模挤出并直接浸入 60。C的冷却液浴中使溶液 固化成膜, 冷却液浴为水浴。 固化的中空纤维膜进行 1级热水拉伸, 拉 伸水浴温度为 70°C„ 然后再进行 1级退火, 退火温度为 160°C。 将退火 后的中空纤维膜收卷, 经乙醇萃取后干燥。
得到中空纤维膜为对称膜, 膜内径为 0.8 mm, 外径为 1.4 mm, 壁 厚为 0.3 mm, 孔隙率为 75 %, 平均孔径为 0.5 μ m。 β 晶型含量为 82.6 %, 纯水通量 2, 029 L/ (m2- hr- 0. IMPa), 拉伸强度 2. lMPa。
对比例 1
将重均分子量为 300, 000的聚偏氟乙烯树脂与二苯甲酮一一其组 分为聚偏氟乙烯树脂的重量百分含量为 35%, 二苯曱酮重量百分含量 为 65%——放入高温搅拌釜中加热升温至 200。C,搅拌混合均勾形成聚 合物均相溶液, 静置 24小时。 然后将聚合物均相溶液与丙三醇通过双 管式口模挤出并直接浸入 8(TC的冷却液浴中使溶液固化成膜, 冷却液 浴为水浴。 固化的中空纤维膜收卷, 然后经乙醇萃取后干燥。
得到中空纤维膜为对称膜, 膜内径为 0.8 mm, 外径为 1.4 mm, 壁 厚为 0.3 mm, 孔隙率为 70%, 平均孔径为 0.3μιη。 β 晶型含量为 14.1 % , 纯水通量 2, 126 L/ (m2- hr- 0. IMPa) , 拉伸强度 1.3MPa。
对比例 2
将重均分子量为 300, 000的聚偏氟乙烯树脂与 r-丁内酯一一其组 分为聚偏氟乙烯树脂的重量百分含量为 35%, r-丁内酯重量百分含量 为 65%——放入高温搅拌釜中加热升温至 180。C,搅拌混合均勾形成聚 合物均相溶液, 静置 24小时。 然后将聚合物均相溶液与丙三醇通过双 管式口模挤出并直接浸入 80'C的冷却液浴中使溶液固化成膜, 冷却液 浴为水浴。 固化的中空纤维膜收卷, 然后经乙醇萃取后干燥。
得到中空纤维膜为对称膜, 膜内径为 0.8 mm, 外径为 1.4 mm, 壁 厚为 0.3 mm, 孔隙率为 70%, 平均孔径为 0.3 μ m。 β 晶型含量为 16.2 %, 纯水通量 1, 792 L/ (m2- hr- 0. IMPa) , 拉伸强度 0.9MPa。
对比例 3
将重均分子量为 300, 000 的聚偏氟乙烯树脂与邻苯二甲酸曱 酯一一其组分为聚偏氟乙烯树脂的重量百分含量为 75%, 二苯甲酮重 量百分含量为 25%——放入高温搅拌釜中加热升温至 205°C,搅拌混合 均匀形成聚合物均相溶液, 静置 24小时。 然后将聚合物均相溶液与丙 三醇通过双管式口模挤出并直接浸入 80。C的冷却液浴中使溶液固化成 膜,冷却液浴为水浴。 固化的中空纤维膜收卷,然后经乙醇萃取后干燥。 得到中空纤维膜为对称膜, 膜内径为 0.8 mm, 外径为 1.4 mm, 壁厚 为 0.3 mm, 孔隙率为 27% , 平均孔径为 0.02μιη。 晶型含量为 11.3 % , 纯水通量 113 L/Οη2· hr- 0. IMPa) , 拉伸强度 10.1 MPa。

Claims

权利要求书
1. 一种 e 晶相聚偏氟乙烯中空纤维膜的制备方法, 其特征是: 该方法按照如下步骤进行:
1 )将聚偏氟乙烯树脂与稀释剂相混合; 其中混合物中聚偏氟乙 烯树脂质量百分比含量为 15 ~ 75 %;
2 )将步骤 1 ) 中的混合物放入高温搅拌釜中, 升温至 140。C ~ 220°C, 形成聚合物均相溶液;
3 )将步骤 2 ) 中得到的聚合物均相溶液和用于形成纤维内部空 腔的液体通过欢管式口模挤出, 冷却凝固成中空纤维膜;
4 )对步骤 3 )所得的中空纤维膜进行拉伸;
5 )对步骤 4 ) 中得到的中空纤维膜进行退火;
6 )用醇类或醚类萃取剂来萃取掉步骤 5 )所得膜中的稀释剂, , 得到聚偏氟乙烯中空纤维膜。
2. 根据权利要求 1所述的制备方法, 其特征在于: 步骤 2 )所 述的均相溶液在用于步骤 3 )之前进行静置脱泡; 步骤 3 )所述的冷却 通过直接浸入冷却液中进行。
3.根据权利要求 1所述的制备方法, 其特征在于: 步骤 4 )所述 的拉伸为液体浴拉伸。
4.根据权利要求 1所述的制备方法, 其特征在于: 聚偏氟乙烯树 脂是重均分子量为 50, 000到 800, 000的一种或一种以上聚偏氟乙烯的 混合物, 优选为重均分子量为 200, 000至 600, 000的一种或一种以上 聚偏氟乙烯的混合物。
5.根据权利要求 1所述的制备方法, 其特征在于: 所述的稀释剂 选自苯曱酸曱酯、 苯曱酸乙酯、 三乙酸甘油酯、 二苯曱酮、 二乙二醇 乙醚乙酸酯、 水杨酸曱酯、 二乙二醇乙醚、 柠檬酸三乙酯、 碳酸二苯 酯、 1 , 2 -碳酸丙二醇酯、 苯乙酮、 环己酮、 r -丁内酯、 甲基异戊基 酮、 己内酰胺和邻苯二曱酸酯类中的一种或一种以上的混合物;
所述的邻苯二曱酸酯类选自邻苯二甲酸二曱酯、 邻苯二甲酸二乙 酯、 邻苯二曱酸二丁酯、 邻苯二甲酸二戊酯、 邻苯二甲酸二正辛酯、 邻苯二曱酸二异辛酯和邻苯二曱酸二异壬酯中的一种或一种以上的混 合物。
6. 根据权利要求 2 所述的制备方法, 其特征在于: 所述的冷却 液、形成纤维内部空腔的液体和液体浴为聚偏氟乙烯的非溶剂; 所述 的聚偏氟乙烯的非溶剂选自水、 乙醇、 乙二醇、 1, 2-丙二醇、 1, 3- 丙二醇、 丙三醇、 二甘醇和三甘醇中的一种或一种以上的混合物。
7. 根据权利要求 1 所述的制备方法, 其特征在于: 所述的拉伸 为 1到 3级的拉伸, 第一级的温度为 40~90。C, 相邻级之间的温度梯 度为 5~ 20。C, 温度从第一级开始逐级升高; 中空纤维膜总拉伸倍率 为 1 ~ 10倍, 优选总拉伸倍率为 2 ~ 5倍。
8.根据权利要求 1所述的制备方法, 其特征在于: 步骤 5) 中所 述的退火为 1到 3级退火, 第一级退火温度为 120~ 240°C, 相邻退火 温度梯度 20~ 50°C, 温度从第一级开始逐级升高; 总退火时间 10~60 秒。
9. 根据权利要求 8 所述的制备方法, 其特征在于: 第一级退火 温度为 160~ 200。C, 总退火时间为 30~50秒。
10. 根据权利要求 1 所述的制备方法, 其特征是: 所述的醇类萃 取剂是甲醇、 乙醇、 丙醇、 正丁醇、 异丁醇或乙二醇; 所述的醚类萃 取剂是甲醚、 乙醚、 二乙烯醚、 二丁醚、 二正丙醚或石油醚。
PCT/CN2009/000969 2008-08-22 2009-08-24 一种β晶相聚偏氟乙烯中空纤维膜的制备方法 WO2010020115A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008101186727A CN101342468B (zh) 2008-08-22 2008-08-22 一种β晶相聚偏氟乙烯中空纤维多孔膜的制备方法
CN200810118672.7 2008-08-22

Publications (1)

Publication Number Publication Date
WO2010020115A1 true WO2010020115A1 (zh) 2010-02-25

Family

ID=40244657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000969 WO2010020115A1 (zh) 2008-08-22 2009-08-24 一种β晶相聚偏氟乙烯中空纤维膜的制备方法

Country Status (2)

Country Link
CN (1) CN101342468B (zh)
WO (1) WO2010020115A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657432A (zh) * 2013-12-17 2014-03-26 常熟丽源膜科技有限公司 亲水性中空纤维超滤膜
CN109414658A (zh) * 2016-06-24 2019-03-01 东丽株式会社 复合多孔质中空纤维膜、复合多孔质中空纤维膜的制造方法、复合多孔质中空纤维膜组件及复合多孔质中空纤维膜组件的运行方法
CN111087637A (zh) * 2019-12-16 2020-05-01 安徽大学 一种通过调控晶体结构提高pvdf热致相分离薄膜物理机械性能的方法
CN113549237A (zh) * 2021-06-02 2021-10-26 郑州大学 具有β相网状拓扑结构的聚偏氟乙烯纳米薄膜的制备方法
CN114733365A (zh) * 2021-01-07 2022-07-12 杭州费尔新材料有限公司 一种聚烯烃中空纤维膜的制备工艺

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101342468B (zh) * 2008-08-22 2011-09-14 清华大学 一种β晶相聚偏氟乙烯中空纤维多孔膜的制备方法
CN101890310B (zh) * 2010-04-23 2013-11-06 苏州膜华材料科技有限公司 稀释剂为乙酸-2-乙氧基乙酯和聚乙二醇的多孔膜及制法
CN102350232A (zh) * 2011-09-07 2012-02-15 江苏蓝天沛尔膜业有限公司 一种亲水性耐污染pvdf共混微滤平片膜及其制备方法
KR101462939B1 (ko) * 2011-11-16 2014-11-19 엘지전자 주식회사 친수성 폴리불화비닐리덴계 중공사 분리막 및 이의 제조방법
CN102517673B (zh) * 2011-11-23 2014-01-29 浙江大学 一种混合相分离制备聚合物多孔纳米纤维的方法
CN103252173B (zh) * 2012-02-15 2015-04-22 宁波大学 一种热致相分离法制备聚偏氟乙烯膜的方法
CN103252172B (zh) * 2012-02-15 2015-12-02 宁波大学 一种复合热致相分离法制备聚偏氟乙烯膜的方法
CN102755841B (zh) * 2012-08-02 2014-02-26 浙江工商大学 具有β晶相结构的疏水PVDF微孔膜的制备方法及产品
CN102872730B (zh) * 2012-09-26 2015-01-21 宁波大学 一种制备聚偏氟乙烯合金膜的方法
CN103981635B (zh) * 2014-05-09 2017-01-11 浙江省纺织测试研究院 一种多孔纤维无纺布制备方法
CN104923089B (zh) * 2015-06-16 2017-03-08 陕西科技大学 一种制备聚偏氟乙烯多孔膜的方法
CN104984667B (zh) * 2015-07-03 2017-10-24 辽宁皓唯环境工程有限公司 一种pvdf超滤膜
CN105797590A (zh) * 2016-03-25 2016-07-27 南京工业大学 一种采用环保稀释剂制备聚合物膜的方法
EP3536392A4 (en) * 2016-11-04 2019-10-23 Asahi Kasei Medical Co., Ltd. POROUS FILM AND METHOD FOR PRODUCING A POROUS FILM
CN107626212B (zh) * 2017-10-10 2020-11-17 天津工业大学 偏二氯乙烯-氯乙烯共聚物多孔膜的制膜配方及方法
CN109464921A (zh) * 2018-12-29 2019-03-15 上海鸣过滤技术有限公司 一种超大通量聚偏氟乙烯微孔拉伸膜及其制备方法
CN112745517A (zh) * 2019-10-31 2021-05-04 北京化工大学 聚偏氟乙烯薄膜的制备方法
CN110813105A (zh) * 2019-11-12 2020-02-21 北京赛诺膜技术有限公司 一种增强型聚偏氟乙烯中空纤维膜丝的制备方法及产品
CN111019274B (zh) * 2019-12-27 2021-12-24 河南理工大学 一种柔性有机-无机复合多孔压电材料、制备方法及应用
CN111013400A (zh) * 2019-12-30 2020-04-17 安徽普朗膜技术有限公司 一种低温热致相法制备聚偏氟乙烯管式膜的方法
CN111644074B (zh) * 2020-07-17 2022-12-30 安徽森诺膜技术有限公司 一种聚偏氟乙烯中空纤维膜及其制备方法
CN113002003A (zh) * 2021-03-18 2021-06-22 成都希瑞方晓科技有限公司 一种均匀膨化聚四氟乙烯带材的制备方法
CN113648843A (zh) * 2021-08-25 2021-11-16 贵州省材料产业技术研究院 一种高贯通性聚偏氟乙烯中空纤维膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038029A1 (en) * 1997-02-25 1998-09-03 Elf Atochem S.A. A thermoplastic fluororesin porous body, a method for the production thereof and use of said porous body for producing a battery cell
CN1748844A (zh) * 2005-09-02 2006-03-22 清华大学 热致相分离工艺制备聚偏氟乙烯平板微孔膜的方法
US20070090051A1 (en) * 2001-10-04 2007-04-26 Toray Industries, Inc. Hollow fiber membrane and method of producing the same
CN101164678A (zh) * 2006-10-18 2008-04-23 中国科学院化学研究所 具有可控孔结构的聚偏氟乙烯多孔膜的制备方法
CN101342468A (zh) * 2008-08-22 2009-01-14 清华大学 一种β晶相聚偏氟乙烯中空纤维多孔膜的制备方法
CN101362057A (zh) * 2008-01-30 2009-02-11 清华大学 一种制备聚偏氟乙烯多孔膜的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85107013A (zh) * 1984-09-27 1987-04-01 纳幕尔杜邦公司 芳香族聚酰胺反向渗透膜的多段退火
CN1027513C (zh) * 1991-12-31 1995-01-25 北京科技大学 高压电解电容器用高纯铝箔的退火工艺
JP4359999B2 (ja) * 2000-03-13 2009-11-11 東レ株式会社 ポリフェニレンサルファイド繊維の製造方法
CN100389861C (zh) * 2005-12-02 2008-05-28 清华大学 一种聚偏氟乙烯多孔膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038029A1 (en) * 1997-02-25 1998-09-03 Elf Atochem S.A. A thermoplastic fluororesin porous body, a method for the production thereof and use of said porous body for producing a battery cell
US20070090051A1 (en) * 2001-10-04 2007-04-26 Toray Industries, Inc. Hollow fiber membrane and method of producing the same
CN1748844A (zh) * 2005-09-02 2006-03-22 清华大学 热致相分离工艺制备聚偏氟乙烯平板微孔膜的方法
CN101164678A (zh) * 2006-10-18 2008-04-23 中国科学院化学研究所 具有可控孔结构的聚偏氟乙烯多孔膜的制备方法
CN101362057A (zh) * 2008-01-30 2009-02-11 清华大学 一种制备聚偏氟乙烯多孔膜的方法
CN101342468A (zh) * 2008-08-22 2009-01-14 清华大学 一种β晶相聚偏氟乙烯中空纤维多孔膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GU MINGHAO ET AL.: "Crystal Structure of Poly(vinylidene fluoride)", CHINESE POLYMER BULLETIN, July 2006 (2006-07-01), pages 82 - 87 *
TONG JINYU ET AL.: "Study on influence of anneal temperature on PVDF films and their performance", JOURNAL OF FUNCTIONAL MATERIALS, vol. 37, no. 10, October 2006 (2006-10-01), pages 1569 - 1571 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657432A (zh) * 2013-12-17 2014-03-26 常熟丽源膜科技有限公司 亲水性中空纤维超滤膜
CN103657432B (zh) * 2013-12-17 2015-09-23 常熟丽源膜科技有限公司 亲水性中空纤维超滤膜
CN109414658A (zh) * 2016-06-24 2019-03-01 东丽株式会社 复合多孔质中空纤维膜、复合多孔质中空纤维膜的制造方法、复合多孔质中空纤维膜组件及复合多孔质中空纤维膜组件的运行方法
US11020709B2 (en) 2016-06-24 2021-06-01 Toray Industries, Inc. Composite porous hollow fiber membrane, production method for composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and operation method for composite porous hollow fiber membrane module
CN109414658B (zh) * 2016-06-24 2021-08-03 东丽株式会社 复合多孔质中空纤维膜及制备方法、膜组件及运行方法
CN111087637A (zh) * 2019-12-16 2020-05-01 安徽大学 一种通过调控晶体结构提高pvdf热致相分离薄膜物理机械性能的方法
CN111087637B (zh) * 2019-12-16 2022-07-12 安徽大学 一种通过调控晶体结构提高pvdf热致相分离薄膜物理机械性能的方法
CN114733365A (zh) * 2021-01-07 2022-07-12 杭州费尔新材料有限公司 一种聚烯烃中空纤维膜的制备工艺
CN113549237A (zh) * 2021-06-02 2021-10-26 郑州大学 具有β相网状拓扑结构的聚偏氟乙烯纳米薄膜的制备方法
CN113549237B (zh) * 2021-06-02 2023-08-29 郑州大学 具有β相网状拓扑结构的聚偏氟乙烯纳米薄膜的制备方法

Also Published As

Publication number Publication date
CN101342468B (zh) 2011-09-14
CN101342468A (zh) 2009-01-14

Similar Documents

Publication Publication Date Title
WO2010020115A1 (zh) 一种β晶相聚偏氟乙烯中空纤维膜的制备方法
WO2009097745A1 (zh) 一种聚偏氟乙烯多孔膜及其制备方法
KR101657307B1 (ko) 불소계 중공사막 및 그 제조 방법
Zhao et al. Highly porous PVDF hollow fiber membranes for VMD application by applying a simultaneous co-extrusion spinning process
TW200815096A (en) Porous membrane made of polyvinylidene fluoride and method of making the same
US9533264B2 (en) Composite membrane, method of manufacturing the same, separation membrane including the composite membrane, and water treatment device using the separation membrane
WO2016115908A1 (zh) 原位成孔剂的聚偏氟乙烯中空纤维膜及其制备方法
CN106731901B (zh) 聚酯纤维编织管增强型复合中空纤维正渗透膜的制备方法
CN111346519A (zh) 一种非对称聚烯烃膜的制备方法
CN102824859B (zh) 一种热致相分离/界面交联同步法制备中空纤维纳滤膜的方法
CN111760474A (zh) 一种COFs@HPAN纳滤复合膜的制备方法
CN108159898A (zh) 热致相分离法制备聚丙烯腈基微孔膜的方法
CN110917894B (zh) 一种聚偏氟乙烯中空纤维多孔膜的制备方法
CN108057346A (zh) 一种高通量聚合物分离膜、制备方法、稀释剂组合物以及应用
JP2006218441A (ja) 多孔質膜及びその製造方法
CN102527249A (zh) 高密度聚乙烯中空纤维微孔膜及其制备方法
JP4269576B2 (ja) 微多孔膜の製造方法
CN101890303B (zh) 一种具有非对称结构的中空纤维膜及制法
KR101079652B1 (ko) 엠비알(mbr)용 분리막 제조를 위한 고분자화합물 및 이를 이용한 분리막의 제조방법
CN105413487A (zh) 一种聚丙烯中空纤维微孔膜及其制备方法
KR101894077B1 (ko) 분리 성능이 우수한 폴리술폰계 고분자 중공사막의 제조방법
CN101890310B (zh) 稀释剂为乙酸-2-乙氧基乙酯和聚乙二醇的多孔膜及制法
CN101890309A (zh) 一种热致相法制备中空纤维膜的方法
CN101879417B (zh) 含有pmma的中空纤维膜及其制法
KR102584858B1 (ko) 여과막 형성용 조성물, 이를 이용한 여과막 제조방법 및 여과막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09807814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09807814

Country of ref document: EP

Kind code of ref document: A1