WO2010016106A1 - 誘導電動機及び密閉型圧縮機 - Google Patents

誘導電動機及び密閉型圧縮機 Download PDF

Info

Publication number
WO2010016106A1
WO2010016106A1 PCT/JP2008/063986 JP2008063986W WO2010016106A1 WO 2010016106 A1 WO2010016106 A1 WO 2010016106A1 JP 2008063986 W JP2008063986 W JP 2008063986W WO 2010016106 A1 WO2010016106 A1 WO 2010016106A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction motor
rotor
air hole
stator
rotating shaft
Prior art date
Application number
PCT/JP2008/063986
Other languages
English (en)
French (fr)
Inventor
勇人 吉野
浩二 矢部
和彦 馬場
智明 及川
貴弘 堤
義和 藤末
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to MYPI2011000129A priority Critical patent/MY156192A/en
Priority to CN200880130451.XA priority patent/CN102099987B/zh
Priority to CZ2011-58A priority patent/CZ309599B6/cs
Priority to KR1020117000213A priority patent/KR101188558B1/ko
Priority to US12/996,910 priority patent/US8740584B2/en
Priority to JP2010523665A priority patent/JP5042365B2/ja
Priority to PCT/JP2008/063986 priority patent/WO2010016106A1/ja
Priority to TW097132901A priority patent/TWI398077B/zh
Publication of WO2010016106A1 publication Critical patent/WO2010016106A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0012Manufacturing cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/18Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having double-cage or multiple-cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/20Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having deep-bar rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0071Couplings between rotors and input or output shafts acting by interengaging or mating parts, i.e. positive coupling of rotor and shaft

Definitions

  • the present invention relates to an induction motor and a hermetic compressor having a rotor having a double cage shape.
  • another conventional induction motor has a problem that the processing cost is high because a part of the end ring and the rotor core is cut using a drilling device after die casting of the end ring.
  • the present invention has been made to solve the above-described problems.
  • An induction motor having a high starting torque and a high efficiency can be obtained without deteriorating the fitting strength of shrink fitting.
  • An object of the present invention is to obtain a highly reliable hermetic compressor in which the amount of oil rising is suppressed.
  • An induction motor includes a stator core manufactured by punching electromagnetic steel sheets into a predetermined shape and then stacking a predetermined number thereof, and a plurality of stator slots formed along the inner peripheral edge of the stator core. And a stator having a winding inserted into the stator slot; A rotor disposed inside the stator via a gap, The rotor is After punching the magnetic steel sheet into a predetermined shape, a rotor core produced by stacking a predetermined number of sheets, A plurality of double cage rotor slots formed along the outer periphery of the rotor core and filled with a conductive material; Provided around the rotation shaft hole of the rotor core with which the rotation shaft is fitted, and has three or more air hole portions opened to the rotation shaft hole; An inner diameter portion of an end ring that short-circuits both ends of the conductive material filled in the double cage rotor slot is disposed so as to be close to the air hole portion in at least one end ring. To do.
  • the induction motor according to the present invention is characterized in that the rotor and the rotating shaft are fitted by shrink fitting.
  • the air hole portion has a substantially semicircular shape.
  • the air hole portion has a long hole shape.
  • the induction motor according to the present invention is provided with a notch formed over the entire length in the axial direction on the rotating shaft at a position corresponding to the air hole provided in the rotor, and the air hole and the An air hole is formed with the notch.
  • the induction motor according to the present invention is characterized in that a notch formed in the rotary shaft over substantially the entire length in the axial direction has a long hole shape.
  • the rotor iron core is laminated with a skew, and the notch is provided so as to be inclined corresponding to the skew angle of the rotor iron core.
  • the air hole portions are arranged at substantially equal intervals in three places, and an angle formed between both ends of one air hole portion and the center of the rotation shaft is ⁇ , and two ends on the adjacent side of the two adjacent air hole portions 2 ⁇ + ⁇ ⁇ 180 degrees, where ⁇ is an angle formed by the center of the rotation axis and the center of the rotation axis.
  • the induction motor is housed in a closed container together with a compression element for compressing the refrigerant and drives the compression element by the rotating shaft, the compression element having a discharge hole for discharging the compressed refrigerant,
  • the number and position of the discharge holes and the air hole portions are matched, and the positions of the discharge holes and the air hole portions substantially coincide when high-pressure discharge gas is discharged from the discharge holes.
  • the hermetic compressor according to the present invention is characterized by including the induction motor and a compression element driven by the induction motor.
  • the induction motor according to the present invention is provided around the rotation shaft hole of the rotor core into which the rotation shaft is fitted, and has three or more air hole portions that open to the rotation shaft hole, and a double cage rotor slot.
  • FIG. 1 is a cross-sectional view of the induction motor 100
  • FIG. 2 is a cross-sectional view of a rotor slot 40 filled with an aluminum bar 30
  • FIG. 4 is a plan view of the rotor 11 of the induction motor 100
  • FIG. 5 is a plan view of the rotor core 11a of the induction motor 100
  • FIG. 6 is a rotor 11 of the induction motor 100 of a modification.
  • FIG. 7 is a plan view of a rotor core 11a of an induction motor 100 according to a modification.
  • the induction motor 100 shown in FIG. 1 is a two-pole single-phase induction motor.
  • the induction motor 100 includes a stator 12 and a rotor 11.
  • the stator 12 includes a stator core 12a, and a main winding 20b and an auxiliary winding 20a that are inserted into the stator slot 12b of the stator core 12a.
  • Insulators for example, slot cells, wedges, etc. are inserted into the stator slot 12b to ensure insulation between the windings (main winding 20b and auxiliary winding 20a) and the stator core 12a.
  • illustration is omitted here.
  • the stator core 12a is manufactured by punching out a magnetic steel sheet having a thickness of 0.1 to 1.5 mm into a predetermined shape, then laminating it in a predetermined number of axial directions, and fixing it by punching or welding.
  • Stator slots 12b are formed along the inner periphery of the stator core 12a.
  • the stator slots 12b are arranged at substantially equal intervals in the circumferential direction.
  • the stator slot 12b extends in the radial direction.
  • the stator slot 12b opens to the inner peripheral edge. This opening is called slot opening. Windings (main winding 20b and auxiliary winding 20a) are inserted from this slot opening.
  • the stator core 12 a includes 24 stator slots 12 b.
  • the main winding 20b is a concentric winding type winding.
  • the main winding 20b is disposed on the inner peripheral side (the side closer to the rotor 11) in the stator slot 12b.
  • the concentric winding main winding 20b is composed of five coils having different sizes (particularly, circumferential lengths). And it inserts in the stator slot 12b so that the center of those five coils may become the same position. Therefore, it is called a concentric winding method.
  • the main winding 20b is shown as having five coils, but this is an example, and the number thereof is not limited.
  • the five coils of the main winding 20b are M1, M2, M3, M4, and M5 in order from the larger one (with a slot pitch of 11).
  • the distribution is chosen to be approximately a sine wave. This is because the main winding magnetic flux generated when a current flows through the main winding 20b becomes a sine wave.
  • the main winding 20b may be arranged on either the inner peripheral side or the outer peripheral side in the stator slot 12b.
  • the winding peripheral length becomes shorter than in the case where it is arranged on the outer peripheral side in the stator slot 12b.
  • the leakage magnetic flux is reduced as compared with the case where it is arranged on the outer peripheral side in the stator slot 12b.
  • the impedance (resistance value, leakage reactance) of the main winding 20b is smaller than in the case where it is arranged on the outer peripheral side in the stator slot 12b. Become. Therefore, the characteristics of the induction motor 100 are improved.
  • the main winding magnetic flux is generated by passing a current through the main winding 20b.
  • the direction of the main winding magnetic flux is the vertical direction in FIG.
  • the number of turns of the five coils (M1, M2, M3, M4, M5) of the main winding 20b is selected so that the waveform of the main winding magnetic flux is as sinusoidal as possible. Since the current flowing through the main winding 20b is alternating current, the magnitude and direction are changed according to the current flowing through the main winding magnetic flux.
  • auxiliary winding 20a similar to the main winding 20b is inserted into the stator slot 12b.
  • the auxiliary winding 20a is disposed outside the stator slot 12b.
  • An auxiliary winding magnetic flux is generated by passing a current through the auxiliary winding 20a.
  • the direction of the auxiliary winding magnetic flux is orthogonal to the direction of the main winding magnetic flux (the left-right direction in FIG. 1). Since the current flowing through the auxiliary winding 20a is an alternating current, the magnitude and direction of the auxiliary winding magnetic flux change according to the current.
  • the main winding magnetic flux and the auxiliary winding magnetic flux have an electrical angle of 90 degrees (here, the number of poles is two, so the mechanical angle is 90 degrees).
  • 20b and the auxiliary winding 20a are inserted into the stator slot 12b.
  • the auxiliary winding 20a is composed of three coils of different sizes (particularly in the circumferential direction).
  • the three coils of the auxiliary winding 20a are A1, A2, and A3 in order from the larger one (with a slot pitch of 11).
  • the distribution is chosen to be approximately a sine wave. This is because the auxiliary winding magnetic flux generated when a current flows through the auxiliary winding 20a becomes a sine wave.
  • the main winding 20b is connected in parallel to the auxiliary winding 20a connected in series with an operating capacitor (not shown). Connect both ends to a single-phase AC power supply.
  • an operating capacitor (not shown). Connect both ends to a single-phase AC power supply.
  • the positions of the main winding 20b and the auxiliary winding 20a in the stator core 12a are shifted by 90 degrees in electrical angle, and the phases of the currents of the main winding 20b and the auxiliary winding 20a are different by about 90 degrees.
  • a pole rotating magnetic field is generated.
  • the stator notch 12c is provided at four locations on the outer peripheral surface of the stator core 12a. Adjacent ones of the four stator cutouts 12c are arranged at a substantially right angle. However, this is an example, and the number and arrangement of the stator notches 12c may be arbitrary.
  • the stator 12 is shrink-fitted on the inner periphery of the cylindrical hermetic container of the hermetic compressor. Inside the hermetic compressor, the refrigerant passes through the induction motor 100. Therefore, the induction motor 100 needs a refrigerant passage.
  • a refrigerant passage is formed between the stator 12 and the sealed container.
  • the refrigerant passage of the induction motor 100 includes, for example, the air hole portion 11b of the rotor 11, and between the stator 12 and the rotor 11. There is a gap 60.
  • the rotor 11 includes a rotor core 11a and a cage-shaped secondary conductor.
  • the rotor core 11a is manufactured by punching electromagnetic steel sheets having a thickness of 0.1 to 1.5 mm into a predetermined shape and laminating them in the axial direction. Usually, the electromagnetic steel sheet in the inner part of the stator core 12a is used.
  • the rotor core 11a is often punched from the same material as the stator core 12a, but the rotor core 11a may be made of a material different from that of the stator core 12a.
  • An outer layer slot 40a provided along the outer peripheral edge of the rotor core 11a, an inner layer slot 40b provided on the inner peripheral side of the outer layer slot 40a, an outer layer slot 40a, and an inner layer on the outer side in the radial direction of the rotor core 11a. It has a double cage rotor slot 40 composed of a connecting slot 40c for connecting the slot 40b (see FIG. 2).
  • the number of rotor slots 40 is thirty.
  • the induction motor 100 of FIG. 1 is a combination in which the stator core 12a has 24 slots and the rotor core 11a has 30 slots.
  • a cage induction motor has abnormal phenomena such as synchronous torque, asynchronous torque, vibration and noise. It is clear that the abnormal phenomenon of the squirrel-cage induction motor is caused by spatial harmonics in the gap magnetic flux density, but there are two possible causes for the spatial harmonics. One is the harmonic contained in the magnetomotive force itself due to the arrangement of the windings, and the other is in the gap magnetic flux density because the gap permeance (reciprocal of the magnetic resistance) is not uniform due to the presence of grooves. It is a harmonic contained in.
  • the combination of the number of slots in the stator and the number of slots in the rotor is closely related to abnormal phenomena such as synchronous torque, asynchronous torque, vibration and noise. Therefore, the combination of the number of slots of the stator and the number of slots of the rotor is carefully selected.
  • Aluminum which is a conductive material, is cast into the outer layer slot 40a, the inner layer slot 40b, and the connection slot 40c to form the aluminum bar 30 including the outer layer aluminum bar 30a, the inner layer aluminum bar 30b, and the connection aluminum bar 30c.
  • the conductive material is generally aluminum, but may be copper. In addition to die casting, there is also a method of joining the end ring to the bar after inserting the bar into the slot.
  • a double squirrel-cage secondary conductor is formed together with an end ring 32 (see FIG. 3) provided on the end surface of the rotor 11 in the stacking direction.
  • the aluminum bar 30 and the end ring 32 are manufactured by casting aluminum simultaneously by die casting.
  • a substantially semicircular air hole portion 11b communicating with the rotation shaft hole 31 is provided around the circular rotation shaft hole 31 of the rotor core 11a.
  • the substantially semicircular air hole portion 11 b opens in the rotation shaft hole 31.
  • six substantially semicircular air hole portions 11b are provided.
  • the air hole part 11b should just be in three pieces (three places) or more.
  • the rotor 11 When the rotor 11 is mounted on a hermetic compressor, the rotor 11 is fixed to the rotary shaft 50 by shrink fitting, and the air hole portion 11b is formed with a cavity between the rotary shaft. This cavity is used as part of the refrigerant flow path. In general, in order to ensure the performance of the hermetic compressor, a constant refrigerant flow path is required in the electric motor.
  • the induction motor 100 having the double-cage rotor 11 has the following general characteristics. That is, the slip frequency (difference between the frequency of the rotating magnetic field and the number of rotations of the rotor 11) becomes high at the time of activation.
  • the leakage flux of the inner layer aluminum bar 30b is larger than the leakage flux of the outer layer aluminum bar 30a.
  • the current distribution is determined by the reactance, and the secondary current mainly flows through the outer aluminum bar 30a. Therefore, when the secondary resistance is increased, the starting torque is increased and the starting characteristics are improved.
  • a single-phase induction motor driven by a single-phase AC power source tends to have a lower starting torque than a three-phase induction motor driven by a three-phase AC power source.
  • the rotor 11 of the induction motor 100 is provided with an end ring by providing a substantially semicircular air hole portion 11b communicating with the rotation shaft hole 31 around the circular rotation shaft hole 31 of the rotor core 11a. 32 can be enlarged toward the inner diameter side.
  • the end ring 32 When the end ring 32 is enlarged, the secondary resistance is reduced, and a highly efficient induction motor 100 is obtained.
  • the induction motor 100 When the induction motor 100 is mounted on a hermetic compressor, a high-performance hermetic seal that secures a refrigerant flow path. A mold compressor can be obtained.
  • stator notch 12c provided on the outer periphery of the stator 12 and the gap 60 between the stator 12 and the rotor 11 serve as a refrigerant flow path. It becomes.
  • the refrigerating machine oil necessary for lubrication of each sliding portion of the compression mechanism together with the refrigerant is stored in the lower part of the hermetic container, and a part of the refrigerating machine oil flows out of the hermetic container together with the refrigerant, It may flow into the refrigerant circuit of the refrigeration cycle apparatus.
  • Deterioration may reduce reliability such as a hermetic compressor failure.
  • the flow rate of the refrigerant is small, so that the flow rate of the refrigerant increases, and the refrigerating machine oil tends to flow through the stator notch 12c of the stator 12 together with the refrigerant.
  • the flow rate can be suppressed by increasing the stator notch 12c.
  • the stator notch 12c is increased, the magnetic path area of the stator core 12a is decreased, and the magnetic flux density of the stator core 12a is increased. Become. As the magnetic flux density increases, the excitation current and iron loss increase, the input of the induction motor 100 increases, and the efficiency decreases.
  • a substantially semicircular air hole portion 11b communicating with the rotation shaft hole 31 is provided around the circular rotation shaft hole 31 of the rotor core 11a, and the end ring 32 is expanded to the inner diameter side to provide a secondary.
  • the resistance is reduced. Therefore, it is possible to obtain a highly reliable hermetic compressor that suppresses the amount of refrigeration oil rising, and to obtain a highly efficient hermetic compressor equipped with the low-loss induction motor 100.
  • the end ring 32 may be enlarged to the inner diameter side only by the one end ring 32.
  • a substantially semicircular air hole portion 11b communicating with the rotation shaft hole 31 is provided around the circular rotation shaft hole 31 of the rotor core 11a, and the end ring 32 is enlarged toward the inner diameter side to reduce the secondary resistance.
  • R2 k1 ⁇ (Rbar + Rring) (1)
  • k1 is a resistance coefficient.
  • k2 is a coefficient.
  • the end ring 32 is enlarged toward the inner diameter side, the average diameter Dr of the end ring 32 is reduced and the cross-sectional area Ar of the end ring 32 is increased, so that the resistance Rring of the end ring 32 is reduced.
  • the induction motor may not start.
  • a rotor 11 having a double cage rotor slot 40 is used. Therefore, it is possible to obtain a highly reliable induction motor 100 that secures a starting torque and to obtain a highly efficient induction motor 100 during normal operation.
  • a greater effect can be achieved. This is because the single-phase induction motor has a smaller starting torque / stopping torque (maximum torque) than that of the three-phase induction motor.
  • a low-cost induction motor 100 can be obtained as an operation system including a circuit such as an operation capacitor.
  • the air hole portion 11b of the rotor core 11a shown in FIGS. 6 and 7 has a long hole (substantially oval) shape. Three long hole (substantially oval) shaped air hole portions 11b are arranged at substantially equal intervals in the circumferential direction.
  • the number of the air hole portions 11b is not limited to three. The number of the air hole portions 11b, the length in the circumferential direction, and the length in the radial direction are arbitrarily selected.
  • the air hole portion 11b having a long hole shape has a shorter radial dimension when compared with the substantially semicircular air hole portion 11b in FIG. Accordingly, the end ring 32 can be expanded to the inner diameter side accordingly.
  • the elongated hole-shaped air hole portion 11b can expand the end ring 32 to the inner diameter side than the substantially semicircular air hole portion 11b of FIG. Therefore, the secondary resistance can be further reduced, and the induction motor 100 with higher efficiency can be obtained.
  • aluminum is used as the material of the secondary conductor, but any conductive material may be used, and copper or the like having a lower resistance may be used.
  • aluminum may be cast by die casting after a rod-shaped copper material is put in the inner layer slot 40b.
  • the windings 20 (the main winding 20b and the auxiliary winding 20a) inserted into the stator slot 12b are concentric winding type windings, but the same effect can be obtained by the lap winding type or the wave winding type. it can.
  • the single-phase induction motor driven by the single-phase AC power source has been described. However, the same effect can be obtained in a three-phase induction motor driven by the three-phase AC power source by inserting a three-phase winding in the stator slot 12b. be able to.
  • connection slot 40c is not provided, but the outer layer slot 40a and the inner layer slot 40b are separated by the rotor core 11a. Even if the cage-shaped rotor slot 40 is configured, the same effect can be obtained.
  • the substantially semicircular air hole portion 11 b communicating with the rotation shaft hole 31 is provided around the circular rotation shaft hole 31 of the rotor core 11 a of the induction motor 100.
  • the end ring 32 can be expanded to the inner diameter side, and the secondary resistance is reduced by expanding the end ring 32 to obtain a highly efficient induction motor 100, and the induction motor 100 is hermetically sealed. In the case of mounting on a high-performance closed compressor, a refrigerant flow path can be secured.
  • stator notch 12 c of the stator 12 is provided.
  • a highly reliable hermetic compressor that suppresses the amount of refrigerating oil rising is obtained.
  • a highly efficient hermetic compressor equipped with the low-loss induction motor 100 can be obtained.
  • the air hole portion 11b when compared with the substantially semicircular air hole portion 11b, when the whole air hole area is the same, the air hole portion 11b having the long hole shape shortens the dimension in the radial direction. As a result, the end ring 32 can be expanded to the inner diameter side, the secondary resistance can be further reduced, and the induction motor 100 with higher efficiency can be obtained.
  • the starting torque is increased by using the rotor 11 having the double squirrel-shaped rotor slot 40, a special external circuit need not be used. Therefore, as an operating system including a circuit such as an operating capacitor. A low-cost induction motor 100 can be obtained.
  • FIG. 8 is a plan view of the rotor 11 of the induction motor 100.
  • FIGS. 9 and 10 show a part of the rotating shaft 50 (the length in the stacking direction of the rotor 11).
  • FIG. 11 is a plan view of the rotor 11 of the induction motor 100.
  • a notch 50 a is provided in the rotary shaft 50 at a position corresponding to the air hole portion 11 b provided in the rotary shaft hole 31 of the rotor 11.
  • the notch 50a is formed over the entire length of the rotating shaft 50 in the substantially axial direction.
  • the notch 50 a of the rotary shaft 50 is disposed corresponding to the air hole portion 11 b provided in the rotary shaft hole 31 of the rotor 11.
  • One notch 50a and one air hole portion 11b of the rotating shaft 50 form one air hole. In the example of FIG. 8, six air holes are formed.
  • the rotor 11 When the induction motor 100 is mounted on a hermetic compressor, the rotor 11 is fixed by shrinkage to the rotary shaft 50.
  • the rotation shaft hole 31 of the rotor 11 has the air hole portion 11b, the rotation shaft 50 and the arc hole portion other than the air hole portion 11b are shrink-fitted, and the air hole portion 11b is not shrink-fitted.
  • the area of the air hole portion 11b can be reduced by the amount of the notch 50a provided in the rotating shaft 50.
  • the cross-sectional area of the end ring 32 can be increased, the secondary resistance is reduced, and a highly efficient induction motor 100 can be obtained.
  • FIG. 10 shows a notch 50a that is twisted in the circumferential direction of the rotary shaft 50.
  • the rotor core 11a of the induction motor 100 is laminated with skew.
  • the induction motor 100 is known to have abnormal phenomena such as synchronous torque, asynchronous torque, vibration and noise, and the abnormal phenomenon of the induction motor 100 is caused by space harmonics in the gap magnetic flux density.
  • the induction motor 100 in order to prevent the harmonic induced voltage caused by the large groove harmonic among the spatial harmonics in the gap magnetic flux density from being induced in the aluminum bar 30 (secondary conductor) of the rotor 11, the induction motor 100.
  • the rotor cores 11a are stacked with skew.
  • the air hole portion 11b is not arranged in a direction perpendicular to the stacking direction, but is arranged to be twisted in the circumferential direction.
  • the rotor 11 of the induction motor 100 shown in FIG. 11 corresponds to the long hole (substantially elliptical) shaped air hole portion 11b, and the shape of the notch 50a of the rotating shaft 50 is also a long hole (substantially elliptical). is there.
  • One air hole is formed by one long hole (substantially elliptical) shaped air hole part 11b and one long hole (substantially elliptical) shaped notch 50a.
  • three air holes are formed at substantially equal intervals in the circumferential direction.
  • the number of air holes is not limited to three. The number of air holes, the length in the circumferential direction, and the length in the radial direction are arbitrarily selected.
  • the end ring 32 can be expanded to the inner diameter side.
  • the provision of the long hole (substantially oval) shaped notch 50a reduces the notch depth (radial depth) and suppresses the reduction in rigidity of the rotating shaft 50. Can do. Therefore, a highly reliable hermetic compressor can be obtained without reducing the strength of the rotating shaft 50.
  • the refrigerant is reduced by the amount of the notch 50a without reducing the fitting strength of shrink fitting.
  • the flow path area can be increased.
  • the area of the air hole portion 11b can be reduced by the amount of the notch 50a provided on the rotating shaft 50.
  • the cross-sectional area of the end ring 32 can be increased, the secondary resistance is reduced, and a highly efficient induction motor 100 can be obtained.
  • the air hole portion 11b when compared with the substantially semicircular air hole portion 11b in FIG. 8, when the entire air hole area is the same, the air hole portion 11b having a long hole shape (substantially elliptical shape)
  • the dimension in the radial direction can be shortened, and the end ring 32 can be expanded to the inner diameter side accordingly.
  • the provision of the elongated hole (substantially oval) shaped notch 50a reduces the notch depth (radial depth) and suppresses a decrease in rigidity of the rotating shaft 50. can do. Therefore, a highly reliable hermetic compressor can be obtained without reducing the strength of the rotating shaft 50.
  • FIG. 12 and 13 show the third embodiment and are plan views of the rotor 11 (excluding the rotating shaft 50) of the induction motor 100.
  • FIG. 12 and 13 show the third embodiment and are plan views of the rotor 11 (excluding the rotating shaft 50) of the induction motor 100.
  • the air hole 11b is provided in the rotary shaft hole 31, and therefore a refrigerant flow path is secured, so that a high-performance hermetic compressor can be obtained.
  • a highly reliable hermetic compressor in which the amount of refrigeration oil rising is suppressed can be obtained.
  • the rotation shaft hole 31 is provided with three air hole portions 11b (here, elongated holes (substantially oval)), and the center of the rotation shaft 50 and both ends of the air hole portion 11b (the arc of the rotation shaft hole 31).
  • ⁇ + ⁇ 120 [degrees] where ⁇ is an angle formed by a line connecting the two adjacent air hole portions 11b, and ⁇ is an angle formed by two adjacent end portions of two adjacent air hole portions 11b and the center of the rotation shaft 50.
  • the inner diameter of the rotating shaft hole 31 can be easily measured, and the fitting dimension with the rotating shaft 50 can be easily managed. Can be obtained.
  • FIG. 14 is a longitudinal sectional view of a rotary compressor 300 (an example of a hermetic compressor).
  • FIGS. 15 and 16 are transverse cross sections of the rotary compressor 300.
  • FIG. 14 is a longitudinal sectional view of a rotary compressor 300 (an example of a hermetic compressor).
  • FIGS. 15 and 16 are transverse cross sections of the rotary compressor 300.
  • the rotary compressor 300 stores a compression element 200, an induction motor 100 that is an electric element, and refrigerating machine oil (not shown) in a sealed container 4.
  • the refrigerating machine oil is stored at the bottom of the sealed container 4.
  • the refrigerating machine oil mainly lubricates the sliding portion of the compression element 200.
  • the sealed container 4 includes a body 1, an upper dish container 2, and a lower dish container 3.
  • the compression element 200 includes a cylinder 5, an upper bearing 6 (an example of a bearing), a lower bearing 7 (an example of a bearing), a rotating shaft 50, a rolling piston 9, a discharge muffler 8, a vane (not shown), and the like.
  • the cylinder 5 in which the compression chamber is formed has a cylinder chamber whose outer periphery has a substantially circular shape in a plan view and is a space in a substantially circular shape in a plan view.
  • the cylinder chamber is open at both axial ends.
  • the cylinder 5 has a predetermined axial height in a side view.
  • a parallel vane groove (not shown) that communicates with a cylinder chamber that is a substantially circular space of the cylinder 5 and extends in the radial direction is provided so as to penetrate in the axial direction.
  • a back pressure chamber (not shown) that is a substantially circular space in plan view communicating with the vane groove is provided on the back surface (outside) of the vane groove.
  • the cylinder 5 has a suction port (not shown) through which suction gas from the refrigeration cycle passes through the cylinder chamber from the outer peripheral surface of the cylinder 5.
  • the cylinder 5 is provided with a discharge port (not shown) in which the vicinity of the edge of the circle forming the cylinder chamber which is a substantially circular space (the end surface on the induction motor 100 side) is cut out.
  • the rolling piston 9 rotates eccentrically in the cylinder chamber.
  • the rolling piston 9 has a ring shape, and the inner periphery of the rolling piston 9 is slidably fitted to the eccentric shaft portion 50 d of the rotating shaft 50.
  • the vane is accommodated in the vane groove of the cylinder 5, and the vane is always pressed against the rolling piston 9 by a vane spring (not shown) provided in the back pressure chamber. Since the rotary compressor 300 has a high pressure inside the hermetic container 4, when the operation is started, a force due to the differential pressure between the high pressure in the hermetic container 4 and the pressure in the cylinder chamber acts on the back surface (back pressure chamber side) of the vane. Therefore, the vane spring is mainly used for the purpose of pressing the vane against the rolling piston 9 when the rotary compressor 300 is started up (in a state where there is no difference between the pressure in the sealed container 4 and the cylinder chamber).
  • the shape of the vane is flat (the thickness in the circumferential direction is smaller than the length in the radial direction and the axial direction).
  • the upper bearing 6 is slidably fitted to the main shaft portion 50b (a portion above the eccentric shaft portion 50d) of the rotating shaft 50, and at one end surface (induction motor) of the cylinder chamber (including the vane groove) of the cylinder 5. 100 side) is closed.
  • a discharge valve (not shown) is attached to the upper bearing 6.
  • the upper bearing 6 has a substantially inverted T shape when viewed from the side.
  • the lower bearing 7 is slidably fitted to the auxiliary shaft portion 50c (a portion below the eccentric shaft portion 50d) of the rotating shaft 50, and the other end surface (freezing) of the cylinder chamber (including the vane groove) of the cylinder 5 is also provided. Block the machine oil side).
  • the lower bearing 7 is substantially T-shaped in a side view.
  • a discharge muffler 8 is attached to the upper bearing 6 on the outer side (induction motor 100 side).
  • the high-temperature and high-pressure discharge gas discharged from the discharge valve of the upper bearing 6 enters the discharge muffler 8 at one end, and is then discharged from the discharge hole 8 a of the discharge muffler 8 into the sealed container 4.
  • a suction muffler (not shown) that suppresses the suction of the liquid refrigerant directly into the cylinder chamber of the cylinder 5 when the low-pressure refrigerant gas from the refrigeration cycle is sucked and the liquid refrigerant returns.
  • the suction muffler is connected to the suction port of the cylinder 5 via the suction pipe 22.
  • the suction muffler is fixed to the side surface of the sealed container 4 by welding or the like.
  • the high-temperature and high-pressure gas refrigerant compressed by the compression element 200 passes through the induction motor 100 from the discharge hole 8a of the discharge muffler 8 and is discharged from the discharge pipe 70 to an external refrigerant circuit (not shown).
  • the positional relationship between the discharge hole 8a that is a part of the compression element 200 and the air hole part 11b of the rotor 11 that is a part of the induction motor 100 will be described with reference to FIGS.
  • the case where the number of the discharge holes 8a of the discharge muffler 8 is three and the number of the air hole portions 11b of the rotor 11 is three will be described.
  • the discharge holes 8 a of the discharge muffler 8 are arranged at substantially equal intervals in the circumferential direction, like the air hole portion 11 b of the rotor 11.
  • the gas refrigerant compressed by the compression element 200 passes through the air hole portion 11b from the discharge hole 8a.
  • the gas refrigerant is high pressure, the flow rate is also high.
  • the numbers and positions of the discharge holes 8a and the air hole portions 11b are matched, and when the high-pressure discharge gas is discharged from the discharge holes 8a, the positions of the discharge holes 8a and the air hole portions 11b substantially coincide with each other. Thus, the refrigerant passes through the air hole portion 11b more effectively.
  • the compression element 200 performs one compression / discharge.
  • a high pressure is generated from the discharge hole 8a.
  • the discharge gas is discharged.
  • the number and position of the discharge holes 8a and the air hole portions 11b are matched, and when the high-pressure discharge gas is discharged from the discharge holes 8a, the positions of the discharge holes 8a and the air hole portions 11b substantially coincide with each other. In particular, it is possible to pass the gas refrigerant from the air hole portion 11b, and the rotary compressor 300 having high efficiency can be obtained.
  • each of the numbers is an integer multiple, for example, the number of the discharge holes 8a is three,
  • the number of the air hole portions 11b may be six.
  • FIG. 3 shows the first embodiment and is a cross-sectional view of the induction motor 100.
  • FIG. 5 shows the first embodiment, and is a cross-sectional view of a rotor slot 40 filled with an aluminum bar 30.
  • FIG. FIG. 3 is a diagram illustrating the first embodiment, and is a perspective view of a rotor 11 of the induction motor 100.
  • FIG. 3 shows the first embodiment and is a plan view of the rotor 11 of the induction motor 100.
  • FIG. 5 shows the first embodiment, and is a plan view of a rotor core 11a of the induction motor 100.
  • FIG. Fig. 5 shows the first embodiment, and is a plan view of a rotor 11 of an induction motor 100 according to a modification.
  • FIG. 5 shows the first embodiment, and is a plan view of a rotor core 11a of an induction motor 100 according to a modification.
  • FIG. 5 shows the second embodiment and is a plan view of the rotor 11 of the induction motor 100.
  • FIG. 6 is a diagram showing the second embodiment, and is a perspective view of a part of a rotating shaft 50 (a part corresponding to the length in the stacking direction of the rotor 11).
  • FIG. 6 is a diagram showing the second embodiment, and is a perspective view of a part of a rotating shaft 50 (a part corresponding to the length in the stacking direction of the rotor 11).
  • FIG. 5 shows the second embodiment and is a plan view of the rotor 11 of the induction motor 100.
  • FIG. 10 is a diagram showing the third embodiment, and is a plan view of the rotor 11 (excluding the rotating shaft 50) of the induction motor 100.
  • FIG. FIG. 10 is a diagram showing the third embodiment, and is a plan view of the rotor 11 (excluding the rotating shaft 50) of the induction motor 100.
  • FIG. FIG. 10 is a diagram illustrating the fourth embodiment, and is a longitudinal sectional view of a rotary compressor 300 (an example of a hermetic compressor).
  • FIG. 6 shows the fourth embodiment, and is a cross-sectional view of the rotary compressor 300.
  • FIG. 6 shows the fourth embodiment, and is a cross-sectional view of the rotary compressor 300.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Induction Machinery (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Compressor (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

 焼嵌の嵌合強度を悪化させることなく、また起動トルクが高く、高効率な誘導電動機が得られ、また冷凍機油の油上がり量を抑制した信頼性の高い密閉型圧縮機を得ることを目的とする。この発明に係る誘導電動機は、固定子鉄心の内周縁に沿って形成される複数の固定子スロットに挿入される巻線とを有する固定子と、固定子の内側に空隙を介して配置される回転子11とを備え、回転子11は、回転子鉄心11aの外周縁に沿って形成され、導電性材料が充填された二重かご形の複数の回転子スロットと、回転軸50が嵌合する回転子鉄心11aの回転軸穴31の周囲に設けられ、回転軸穴31に開口する三箇所以上の風穴部11bとを有し、二重かご形の回転子スロット30に充填される導電性材料の両端を短絡するエンドリング32の内径部を、少なくとも片側のエンドリング32において風穴部11bに近接するように配置したことを特徴とする。

Description

誘導電動機及び密閉型圧縮機
 この発明は、二重かご形状からなる回転子を有した誘導電動機及び密閉型圧縮機に関するものである。
 従来の誘導電動機において、回転子鉄心の内径部に二箇所の切欠きを設け、切欠きを潤滑油通過用切欠きとして使用しており、ダイカスト回転子を精度良く製作しているものが知られている(例えば、特許文献1参照)。
 また、従来の別の誘導電動機においては、回転子鉄心の内周領域までエンドリングを延在させた後、エンドリングと回転子鉄心に通風孔を形成するようにすることで、エンドリング内部に巣が生じることなく、機械的強度を改善している(例えば、特許文献2参照)。
特開昭59-10159号公報 特開昭61-244248号公報
 従来の誘導電動機では、回転子鉄心の内径部の切欠きが二箇所であるため、回転子鉄心と回転軸を焼嵌により嵌合させた場合、回転子鉄心の歪みが大きく、十分な嵌合強度が得られないという課題があった。
 また、従来の別の誘導電動機では、エンドリングのダイキャスト後に、穿孔装置を用いて、エンドリングと回転子鉄心の一部を削っているため、加工費が高いという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、焼嵌の嵌合強度を悪化させることなく、また起動トルクが高く、高効率な誘導電動機が得られ、また冷凍機油の油上がり量を抑制した信頼性の高い密閉型圧縮機を得ることを目的とする。
 この発明に係る誘導電動機は、電磁鋼板を所定の形状に打ち抜いた後、所定枚数積層して製作される固定子鉄心と、前記固定子鉄心の内周縁に沿って形成される複数の固定子スロットと、前記固定子スロットに挿入される巻線とを有する固定子と、
 前記固定子の内側に空隙を介して配置される回転子とを備え、
 前記回転子は、
 電磁鋼板を所定の形状に打ち抜いた後、所定枚数積層して製作される回転子鉄心と、
 前記回転子鉄心外周縁に沿って形成され、導電性材料が充填された二重かご形の複数の回転子スロットと、
 回転軸が嵌合する前記回転子鉄心の回転軸穴の周囲に設けられ、前記回転軸穴に開口する三箇所以上の風穴部とを有し、
 前記二重かご形の回転子スロットに充填される前記導電性材料の両端を短絡するエンドリングの内径部を、少なくとも片側の前記エンドリングにおいて前記風穴部に近接するように配置したことを特徴とする。
 また、この発明に係る誘導電動機は、前記回転子と前記回転軸を焼嵌により嵌合することを特徴とする。
 また、前記風穴部は略半円形状であることを特徴とする。
 また、前記風穴部は長穴形状であることを特徴とする。
 また、この発明に係る誘導電動機は、前記回転子に設けられた前記風穴部に対応した位置で、前記回転軸に略軸方向全長に亘って形成される切欠きを設け、前記風穴部と前記切欠きとで風穴を形成することを特徴とする。
 また、この発明に係る誘導電動機は、前記回転軸に略軸方向全長に亘って形成される切欠きを長穴形状とすることを特徴とする。
 また、前記回転子鉄心はスキューをかけて積層され、前記回転子鉄心のスキュー角度に対応して前記切欠きを傾斜させるように設けたことを特徴とする。
 また、前記風穴部は三箇所に略等間隔に配置され、一つの前記風穴部の両端と前記回転軸の中心とのなす角度をα、隣接する二つの前記風穴部の近接側の二つの端部と前記回転軸の中心とのなす角度をβとした場合、2α+β<180度としたことを特徴とする。
 また、冷媒を圧縮する圧縮要素と共に密閉容器の内部に収納され、前記回転軸により前記圧縮要素を駆動する誘導電動機であって、前記圧縮要素は圧縮された冷媒を吐出する吐出穴を備え、前記吐出穴と前記風穴部の個数と位置関係を合わせ、更に前記吐出穴から高圧の吐出ガスが吐出されるときに前記吐出穴と前記風穴部との位置が略一致するようにしたことを特徴とする。
 また、この発明に係る密閉型圧縮機は、前記誘導電動機と、前記誘導電動機により駆動される圧縮要素を備えたことを特徴とする。
 この発明に係る誘導電動機は、回転軸が嵌合する回転子鉄心の回転軸穴の周囲に設けられ、回転軸穴に開口する三箇所以上の風穴部と、二重かご形の回転子スロットに充填される導電性材料の両端を短絡するエンドリングの内径部を、風穴部に近接するように配置したことにより、起動トルクを高くするとともに通常運転時に高効率な誘導電動機を得ることができる。
 実施の形態1.
 以下、実施の形態1について図面を参照しながら説明する。図1乃至図7は実施の形態1を示す図で、図1は誘導電動機100の横断面図、図2はアルミバー30を充填した回転子スロット40の横断面図、図3は誘導電動機100の回転子11の斜視図、図4は誘導電動機100の回転子11の平面図、図5は誘導電動機100の回転子鉄心11aの平面図、図6は変形例の誘導電動機100の回転子11の平面図、図7は変形例の誘導電動機100の回転子鉄心11aの平面図である。
 図1に示す誘導電動機100は、二極の単相誘導電動機である。誘導電動機100は、固定子12と、回転子11とを備える。
 固定子12は、固定子鉄心12aと、固定子鉄心12aの固定子スロット12bに挿入される主巻線20bおよび補助巻線20aとを備える。
 尚、固定子スロット12bには巻線(主巻線20bおよび補助巻線20a)と固定子鉄心12aとの間に絶縁を確保するために絶縁材(例えば、スロットセル、ウェッジ等)が挿入されるが、ここでは図示を省略している。
 固定子鉄心12aは、板厚が0.1~1.5mmの電磁鋼板を所定の形状に打ち抜いた後、所定枚数軸方向に積層し、抜きカシメや溶接等により固定して製作される。
 固定子鉄心12aには、内周縁に沿って固定子スロット12bが形成されている。固定子スロット12bは、周方向にほぼ等間隔に配置される。
 固定子スロット12bは、半径方向に延在している。固定子スロット12bは、内周縁に開口している。この開口部をスロットオープニングと言う。このスロットオープニングから巻線(主巻線20bおよび補助巻線20a)が挿入される。図1の例では、固定子鉄心12aは、24個の固定子スロット12bを備える。
 主巻線20bは、同心巻方式の巻線である。図1の例では、固定子スロット12b内の内周側(回転子11に近い方)に、主巻線20bが配置される。ここでは、同心巻方式の主巻線20bは、大きさ(特に周方向の長さ)が異なる五個のコイルから構成される。そして、それらの五個のコイルの中心が同じ位置になるように固定子スロット12bに挿入される。そのため、同心巻方式と呼ばれる。主巻線20bが五個のコイルのものを示したが、一例であって、その数は問わない。
 主巻線20bの五個のコイルを、大きい方(スロットピッチが11のもの)から順にM1、M2、M3、M4、M5とする。その分布が、略正弦波になるように選ばれる。主巻線20bに電流が流れた場合に発生する主巻線磁束が正弦波になるようにするためである。
 主巻線20bは、固定子スロット12b内の内周側、外周側のどちらに配置してもよい。主巻線20bを固定子スロット12b内の内周側に配置すると、固定子スロット12b内の外周側に配置する場合に比べて、巻線周長が短くなる。また、主巻線20bを固定子スロット12b内の内周側に配置すると、固定子スロット12b内の外周側に配置する場合に比べて、漏れ磁束が少なくなる。よって、主巻線20bを固定子スロット12b内の内周側に配置すると、固定子スロット12b内の外周側に配置する場合に比べて主巻線20bのインピーダンス(抵抗値、漏れリアクタンス)が小さくなる。そのため、誘導電動機100の特性が良くなる。
 主巻線20bに電流を流すことで、主巻線磁束が生成される。この主巻線磁束の向きは、図1の上下方向である。前述したように、この主巻線磁束の波形ができるだけ正弦波になるように、主巻線20bの五個のコイル(M1、M2、M3、M4、M5)の巻数が選ばれる。主巻線20bに流れる電流は交流であるから、主巻線磁束も流れる電流に従って大きさと向きを変える。
 また、固定子スロット12bには、主巻線20bと同様の同心巻方式の補助巻線20aが挿入される。図1では、補助巻線20aは、固定子スロット12b内の外側に配置されている。補助巻線20aに電流を流すことで補助巻線磁束が生成される。この補助巻線磁束の向きは、主巻線磁束の向きに直交する(図1の左右方向)。補助巻線20aに流れる電流は交流であるから、補助巻線磁束も電流に従って大きさと向きを変える。
 一般的には主巻線磁束と補助巻線磁束のなす角度が電気角で90度(ここでは極数が二極であるため、機械角も90度である)になるように、主巻線20bと補助巻線20aとが固定子スロット12bに挿入される。
 図1の例では、補助巻線20aは大きさ(周方向の長さが特に)が異なる三個のコイルから構成される。補助巻線20aの三個のコイルを、大きい方(スロットピッチが11のもの)から順にA1、A2、A3とする。その分布が、略正弦波になるように選ばれる。補助巻線20aに電流が流れた場合に発生する補助巻線磁束が正弦波になるようにするためである。
 そして、それらの三個のコイル(A1、A2、A3)の中心が同じ位置になるように固定子スロット12bに挿入される。
 補助巻線20aと直列に運転コンデンサ(図示せず)を接続したものに主巻線20bを並列に接続させる。その両端を単相交流電源へ接続する。運転コンデンサを補助巻線20aに直列に接続することにより、補助巻線20aに流れる電流の位相を主巻線20bに流れる電流の位相より約90度進めることができる。
 主巻線20bと補助巻線20aの固定子鉄心12aにおける位置を電気角で90度ずらし、且つ主巻線20bと補助巻線20aの電流の位相を約90度異なるようにすることにより、二極の回転磁界が発生する。
 固定子鉄心12aの外周面には、外周円形状を略直線状に切り欠いた略直線部をなす固定子切欠き12cが四ヶ所に設けられている。四ヶ所の固定子切欠き12cは、隣り合うもの同士が略直角に配置される。但し、これは一例であり、固定子切欠き12cの数、配置は任意でよい。
 密閉型圧縮機に図1の誘導電動機100を使用する場合、固定子12は密閉型圧縮機の円筒状の密閉容器の内周に焼き嵌めされる。密閉型圧縮機の内部では、冷媒が誘導電動機100を通過する。そのため、誘導電動機100には、冷媒の通路が必要である。固定子切欠き12cを設けることにより、固定子12と密閉容器との間に冷媒の通路が形成される。誘導電動機100の冷媒の通路には、この固定子鉄心12aの外周面の固定子切欠き12cによるもの以外に、例えば、回転子11の風穴部11b、固定子12と回転子11との間の空隙60がある。
 また、回転子11は回転子鉄心11aとかご形二次導体を備える。回転子鉄心11aは、固定子鉄心12aと同様に板厚が0.1~1.5mmの電磁鋼板を所定の形状に打ち抜き、軸方向に積層して製作される。通常、固定子鉄心12aの内側の部分の電磁鋼板を利用する。
 一般的に回転子鉄心11aは固定子鉄心12aと同一の材料から打ち抜くことが多いが、回転子鉄心11aは固定子鉄心12aと材料を変えても構わない。
 回転子鉄心11aには半径方向外周側に、回転子鉄心11aの外周縁に沿って設けられる外層スロット40aと、外層スロット40aの内周側に設けられた内層スロット40bと、外層スロット40aと内層スロット40bを連結する連結スロット40cからなる二重かご形状の回転子スロット40を有する(図2参照)。
 図1の例では、回転子スロット40の数は、30である。結局、図1の誘導電動機100は、固定子鉄心12aのスロット数が24、回転子鉄心11aのスロット数が30の組合せである。但し、これは一例であり、固定子鉄心12aのスロット数と回転子鉄心11aのスロット数との組合せは、この限りではない。
 かご形誘導電動機は、同期トルク、非同期トルク、振動・騒音等の異常現象があることが知られている。かご形誘導電動機の異常現象は、空隙磁束密度中の空間高調波によって起きるものであることは明白であるが、その空間高調波が生じる原因としては次の二つが考えられる。一つは巻線の配置のために起磁力自身の中に含まれる高調波であり、他は溝が存在するために空隙のパーミアンス(磁気抵抗の逆数)が一様でないことから空隙磁束密度中に含まれる高調波である。
 このように、かご形誘導電動機では、固定子のスロット数と回転子のスロット数との組合せが、同期トルク、非同期トルク、振動・騒音等の異常現象に密接に関係する。そのため、固定子のスロット数と回転子のスロット数との組合せは、慎重に選ばれる。
 外層スロット40a、内層スロット40bおよび連結スロット40cには、共に導電性材料であるアルミが鋳込まれて、外層アルミバー30a、内層アルミバー30bおよび連結アルミバー30cからなるアルミバー30を形成する。導電性材料は、アルミが一般的であるが、銅でもよい。また、ダイキャスティング以外に、バーをスロットに挿入後、エンドリングをバーに接合する方法もある。
 回転子11の積層方向端面に設けられたエンドリング32(図3参照)と共に二重かご形二次導体を形成する。一般的にアルミバー30とエンドリング32はダイキャストにより同時にアルミを鋳込むことで製作される。
 図1、図4、図5に示すように、回転子鉄心11aの円形の回転軸穴31の周囲に、回転軸穴31に連通する略半円形の風穴部11bを設けている。略半円形の風穴部11bは回転軸穴31に開口している。図1、図4、図5の例では、六個の略半円形の風穴部11bを設けている。風穴部11bは、三個(三箇所)以上にあればよい。
 密閉型圧縮機に回転子11を搭載する場合、回転子11は回転軸50に焼嵌により固定され、風穴部11bは回転軸との間で空洞が形成される。この空洞は冷媒の流路の一部として使用される。一般的に密閉型圧縮機の性能を確保するために、電動機に一定の冷媒の流路が必要である。
 二重かご形状の回転子11を有する誘導電動機100は、以下に示すような一般的な特徴を有する。即ち、起動時はすべり周波数(回転磁界の周波数と回転子11の回転数との差)が高くなる。内層アルミバー30bの漏れ磁束は、外層アルミバー30aの漏れ磁束より多くなる。すべり周波数が大きい起動時には、リアクタンス分により電流分布が決まり、二次電流は外層アルミバー30aに主に流れる。そのため、二次抵抗が大きくなることにより起動トルクが増大して起動特性が改善される。
 また通常運転時は、すべり周波数が低いので、二次電流はアルミバー30全体に流れるため、アルミ断面積が大きくなり、二次抵抗が小さくなる。従って、二次銅損が低くなることで、高効率化が実現できるという特性を有している。
 また単相交流電源で駆動される単相誘導電動機は、三相交流電源で駆動される三相誘導電動機と比較すると、起動トルクが低くなる傾向がある。
 二次抵抗を小さくする方法としてエンドリング32の体積を大きくする方法があり、体積を拡大させる方法として、高さ方向(軸方向)を拡大する方法と、内径側に拡大する方法がある。
 エンドリング32の高さ方向を拡大する場合、回転子11の積層方向(軸方向)の長さが大きくなるため、電動機全長が長くなり、電動機の大型化を招く課題がある。
 またエンドリング32を内径側に拡大させた回転子11を密閉型圧縮機に搭載した場合、回転子11に風穴を設ける場所がなくなる課題がある。
 本実施の形態の誘導電動機100の回転子11は、回転子鉄心11aの円形の回転軸穴31の周囲に、回転軸穴31に連通する略半円形の風穴部11bを設けることで、エンドリング32を内径側に拡大することが可能である。
 エンドリング32を拡大することで二次抵抗が低くなり、高効率な誘導電動機100を得ると共に、その誘導電動機100を密閉型圧縮機に搭載する場合、冷媒の流路を確保した高性能な密閉型圧縮機を得ることができる。
 また回転子11に風穴を設けない場合について考察する。風穴がない回転子11を密閉型圧縮機に搭載した場合、固定子12の外周に設けられた固定子切欠き12cと、固定子12と回転子11との間の空隙60が冷媒の流路となる。
 密閉型圧縮機には、冷媒と共に圧縮機構部の各摺動部の潤滑に必要な冷凍機油が、密閉容器の下部に貯留されており、冷凍機油の一部は冷媒と共に密閉容器から流出し、冷凍サイクル装置の冷媒回路に流入することがある。
 冷凍サイクル装置の冷媒回路に、圧縮された冷媒以外に過度の冷凍機油が流入する(油上がり量が増加する)と、冷凍サイクル装置の性能が悪化すると共に、圧縮機構の各摺動部の潤滑が悪化(不足)することで密閉型圧縮機が故障するなど信頼性が低くなる可能性がある。
 回転子11に風穴がない場合、冷媒の流路面積が小さいために冷媒の流速が速くなり、冷媒と共に冷凍機油が、固定子12の固定子切欠き12cを通って流出する傾向がある。固定子切欠き12cを大きくすることで流速を抑えることができるが、固定子切欠き12cが大きくなると、逆に固定子鉄心12aの磁路面積が小さくなり、固定子鉄心12aの磁束密度が大きくなる。磁束密度が大きくなると、励磁電流や鉄損が増加して誘導電動機100の入力が大きくなり、効率が低くなる。
 本実施の形態では、回転子鉄心11aの円形の回転軸穴31の周囲に、回転軸穴31に連通する略半円形の風穴部11bを設け、エンドリング32を内径側に拡大させて二次抵抗を小さくしている。そのため、冷凍機油の油上がり量を抑制した信頼性の高い密閉型圧縮機を得ると共に、低損失な誘導電動機100を搭載した高効率な密閉型圧縮機を得ることができる。尚、エンドリング32を内径側に拡大させるのは、片側のエンドリング32だけでもよい。
 回転子鉄心11aの円形の回転軸穴31の周囲に、回転軸穴31に連通する略半円形の風穴部11bを設け、エンドリング32を内径側に拡大させて二次抵抗を小さくしているが、二次抵抗R2を、アルミバー30の抵抗Rbar、エンドリング32の抵抗Rringで簡略化して表わすと次式のようになる。
 R2=k1×(Rbar+Rring)      (1)
 ここで、k1は抵抗係数である。
 また、エンドリング32の抵抗Rringは、エンドリング32の平均直径Drに比例し、エンドリング32の断面積Arに反比例する。即ち、
 Rring=k2×Dr/Ar          (2)
 ここで、k2は係数である。
 従って、エンドリング32を内径側に拡大すれば、エンドリング32の平均直径Drが小さくなるとともに、エンドリング32の断面積Arが大きくなるので、エンドリング32の抵抗Rringが小さくなる。
 エンドリング32を内径側に拡大しても、アルミバー30の抵抗Rbarは変化しないが、エンドリング32の抵抗Rringが小さくなることにより、二次抵抗R2を小さくすることができる。
 二重かご形状でない(普通かご形)一般的な回転子スロット形状を有する回転子を用いて、エンドリングの断面積を大きくした場合、二次抵抗が低くなることで通常運転時の効率を改善することができるが、誘導電動機の起動トルクが低くなる課題がある。
 誘導電動機の起動トルクが低くなると、同一の起動トルクを得るために高い電源電圧が必要となる。何らかの原因で電源電圧が低くなった場合、誘導電動機が起動できない場合がある。
 本実施の形態では、二重かご形の回転子スロット40を有する回転子11を用いている。そのため、起動トルクを確保した信頼性の高い誘導電動機100を得ると共に、通常運転時に高効率な誘導電動機100を得ることができる。特に単相交流電源で駆動される単相誘導電動機において、より大きな効果を奏する。単相誘導電動機は、起動トルク/停動トルク(最大トルク)が三相誘導電動機のそれに比べて小さいからである。
 単純に起動トルクをアップさせる別の方式として、単相誘導電動機の補助巻線20aと直列に接続される運転コンデンサの容量を大きくする方式がある。また運転コンデンサと並列に起動コンデンサとリレーを設けるなど、単相誘導電動機の外付け回路で対策を行う方式がある。しかし、いずれの方式においてもコストアップを伴う。
 本実施の形態では、二重かご形の回転子スロット40を有する回転子11を用いて起動トルクをアップさせるので、特段の外付け回路を使用しなくてよい。そのため、運転コンデンサなどの回路を含めた運転システムとして低コストな誘導電動機100を得ることができる。
 次に、回転子鉄心11aの風穴部11bの変形例を説明する。図6、図7に示す回転子鉄心11aの風穴部11bは、長穴(略楕円)形状になっている。長穴(略楕円)形状の風穴部11bを周方向に略等間隔に三個配置している。但し、風穴部11bの個数は三個に限定されるものではない。風穴部11bの個数、周方向の長さ、半径方向の長さは任意に選択される。
 風穴部11bを長穴形状にすることで、図4の略半円形の風穴部11bと比較すると、全体の風穴面積が同一の場合、長穴形状の風穴部11bは、径方向の寸法を短くすることができ、その分エンドリング32を内径側に拡大することが可能である。
 長穴形状の風穴部11bは、図4の略半円形の風穴部11bよりもエンドリング32を内径側に拡大できる。そのため、更に二次抵抗を低くすることができ、更に高効率な誘導電動機100を得ることができる。
 本実施の形態では、二次導体の材質としてアルミを使用するが、導電性材料であれば良く、更に低抵抗な材料である銅などを用いても良い。
 あるいは内層スロット40bに棒状の銅材を入れた後に、ダイキャストでアルミを鋳込んでも良い。
 固定子スロット12bに挿入される巻線20(主巻線20b、補助巻線20a)は、同心巻方式の巻線を示したが、重ね巻方式や波巻方式でも同様の効果を得ることができる。
 また単相交流電源で駆動される単相誘導電動機について説明したが、固定子スロット12bに三相巻線を挿入し、三相交流電源で駆動される三相誘導電動機においても同様の効果を得ることができる。
 また二重かご形状として外層スロット40a、内層スロット40b、連結スロット40cからなる構成について説明したが、連結スロット40cを設けず、外層スロット40aと内層スロット40bを回転子鉄心11aで分離させた二重かご形状の回転子スロット40を構成しても同様の効果を得ることができる。
 以上のように、本実施の形態によれば、誘導電動機100の回転子鉄心11aの円形の回転軸穴31の周囲に、回転軸穴31に連通する略半円形の風穴部11bを設けることで、エンドリング32を内径側に拡大することが可能になり、エンドリング32を拡大することで二次抵抗が低くなり、高効率な誘導電動機100を得ると共に、その誘導電動機100を密閉型圧縮機に搭載する場合、冷媒の流路を確保した高性能な密閉型圧縮機を得ることができる。
 また、誘導電動機100の回転子鉄心11aの円形の回転軸穴31の周囲に、回転軸穴31に連通する略半円形の風穴部11bを設けることで、固定子12の固定子切欠き12cを、冷媒と共に冷凍機油が固定子12の固定子切欠き12cを通って流出するような大きさにする必要がないので、冷凍機油の油上がり量を抑制した信頼性の高い密閉型圧縮機を得ると共に、低損失な誘導電動機100を搭載した高効率な密閉型圧縮機を得ることができる。
 また、風穴部11bを長穴形状にすることで、略半円形の風穴部11bと比較すると、全体の風穴面積が同一の場合、長穴形状の風穴部11bは、径方向の寸法を短くすることができ、その分エンドリング32を内径側に拡大することが可能であり、更に二次抵抗を低くすることができ、更に高効率な誘導電動機100を得ることができる。
 また、二重かご形の回転子スロット40を有する回転子11を用いて起動トルクをアップさせるので、特段の外付け回路を使用しなくてよいため、運転コンデンサなどの回路を含めた運転システムとして低コストな誘導電動機100を得ることができる。
 実施の形態2.
 以下、実施の形態2について図面を参照しながら説明する。図8乃至図11は実施の形態2を示す図で、図8は誘導電動機100の回転子11の平面図、図9および図10は回転軸50の一部(回転子11の積層方向長さに相当する部分)の斜視図、図11は誘導電動機100の回転子11の平面図である。
 図8において、回転子11の回転軸穴31に設けられた風穴部11bに対応した位置で、回転軸50に切欠き50aを設けたものである。切欠き50aは、回転軸50の略軸方向全長に亘って形成されている。
 回転軸50の切欠き50aは、回転子11の回転軸穴31に設けられた風穴部11bと対応して配置される。そして、回転軸50の一つの切欠き50aと一つの風穴部11bとで、一つの風穴を形成する。図8の例では、六個の風穴を形成する。
 誘導電動機100を密閉型圧縮機に搭載する場合、回転子11は回転軸50に焼嵌固定されている。回転子11の回転軸穴31に風穴部11bがある場合、回転軸50と焼嵌されるのは風穴部11b以外の円弧部の箇所であり、風穴部11bは焼嵌されない。
 図9に示すように風穴部11bに対応した位置で、回転軸50に切欠き50aを設けることで焼嵌の嵌合強度を低下させることなく、切欠き50aの分だけ冷媒の流路面積を増加させることができる。
 回転軸50に切欠き50aを設けない図4のケースと流路面積を同じにする場合は、回転軸50に切欠き50aを設けた分、風穴部11bの面積を小さくすることができる。
 風穴部11bの面積を小さくすることで、エンドリング32の断面積を増加させることができ、二次抵抗が小さくなり、高効率な誘導電動機100を得ることができる。
 また、図10は切欠き50aを回転軸50の円周方向にねじるように設けたものである。誘導電動機100の回転子鉄心11aはスキューをかけて積層されることが一般的である。誘導電動機100は、同期トルク、非同期トルク、振動・騒音等の異常現象があることが知られていて、誘導電動機100の異常現象は、空隙磁束密度中の空間高調波によって起きるものであることは既に述べたが、空隙磁束密度中の空間高調波の中で大きい溝高調波による高調波誘起電圧が回転子11のアルミバー30(二次導体)に誘起しないようにするために、誘導電動機100の回転子鉄心11aはスキューをかけて積層される。
 そのため風穴部11bは積層方向に対して垂直方向に配置されておらず、円周方向にねじるように配置されている。
 回転子鉄心11aのスキュー方向に対応するように、切欠き50aをねじって配置することで、焼嵌の嵌合強度を悪化させることなく、冷媒流路面積を増加させることで高性能な密閉型圧縮機を得ることができる。
 図11に示す誘導電動機100の回転子11は、長穴(略楕円)形状の風穴部11bに対応して、回転軸50の切欠き50aの形状も長穴(略楕円)形状にしたものである。
 一つの長穴(略楕円)形状の風穴部11bと、一つの長穴(略楕円)形状の切欠き50aとで一つの風穴を形成する。図11のケースでは、三個の風穴が周方向に略等間隔に形成されている。但し、風穴の個数は三個に限定されるものではない。風穴の個数、周方向の長さ、半径方向の長さは任意に選択される。
 風穴部11bを長穴形状にすることで、図8の略半円形の風穴部11bと比較すると、全体の風穴面積が同一の場合、長穴(略楕円)形状の風穴部11bは、径方向の寸法を短くすることができ、その分エンドリング32を内径側に拡大することが可能である。
 冷媒の流路である風穴面積が同じ場合、長穴(略楕円)形状の切欠き50aを設けると切欠き深さ(半径方向深さ)が小さくなり、回転軸50の剛性低下を抑制することができる。そのため回転軸50の強度が低下することなく、信頼性の高い密閉型圧縮機を得ることができる。
 以上のように、図9に示すように風穴部11bに対応した位置で、回転軸50に切欠き50aを設けることで焼嵌の嵌合強度を低下させることなく、切欠き50aの分だけ冷媒の流路面積を増加させることができる。
 また、回転軸50に切欠き50aを設けない図4のケースと流路面積を同じにする場合は、回転軸50に切欠き50aを設けた分、風穴部11bの面積を小さくすることができ、 風穴部11bの面積を小さくすることで、エンドリング32の断面積を増加させることができ、二次抵抗が小さくなり、高効率な誘導電動機100を得ることができる。
 また、回転子鉄心11aのスキュー方向に対応するように、切欠き50aをねじって配置することで、焼嵌の嵌合強度を悪化させることなく、冷媒流路面積を増加させることで高性能な密閉型圧縮機を得ることができる。
 また、風穴部11bを長穴形状にすることで、図8の略半円形の風穴部11bと比較すると、全体の風穴面積が同一の場合、長穴(略楕円)形状の風穴部11bは、径方向の寸法を短くすることができ、その分エンドリング32を内径側に拡大することが可能である。
 また、冷媒の流路である風穴面積が同じ場合、長穴(略楕円)形状の切欠き50aを設けると切欠き深さ(半径方向深さ)が小さくなり、回転軸50の剛性低下を抑制することができる。そのため回転軸50の強度が低下することなく、信頼性の高い密閉型圧縮機を得ることができる。
 実施の形態3.
 以下、実施の形態3について図面を参照しながら説明する。図12及び図13は実施の形態3を示す図で、誘導電動機100の回転子11(回転軸50は除く)の平面図である。
 図12において、回転子11の外径寸法をA、回転子11の内径とエンドリング32の内径との距離をBとした場合、回転子11の回転軸穴31に風穴部11bを設けると共に、B<0.1Aとなるように、エンドリング32の内径寸法を内周側に拡大させたものである。
 回転子11を密閉型圧縮機に搭載した場合、回転軸穴31に風穴部11bを設けているため、冷媒の流路が確保されているので高性能な密閉型圧縮機を得ることができる。また冷凍機油の油上がり量を抑制した信頼性の高い密閉型圧縮機を得ることができる。
 図13において、回転軸穴31に三つの風穴部11b(ここでは長穴(略楕円)形状)を設けたもので、回転軸50の中心と風穴部11bの両端部(回転軸穴31の弧との交点)を結ぶ線のなす角度をα、隣接する二つの風穴部11bの近接側の二つの端部と回転軸50の中心とのなす角度をβとした場合、α+β≒120[度]、かつ2α+β<180[度]としたものである。
 3つの風穴部11bを略等間隔に設けるとα+β≒120[度]となるが、βに対してαが大きくなると、回転軸50と回転子11を焼嵌固定しても嵌合強度が低下してしまう課題がある。
 また、2α+βが180度以上になると、回転軸穴31の中心を通る直線が回転軸穴31の円弧部の二点を通過しなくなる。即ち、回転軸穴31の中心と回転軸穴31の円弧部を通る直線は、回転軸穴31の円弧部の反対側(180度)では、風穴部11bを通る。そのため回転軸50との嵌め合い寸法を管理する際に、回転子11の回転軸穴31の内径の測定を容易に行うことが困難になる。
 本実施の形態では、2α+β<180[度]に設定することで回転軸穴31の内径測定が容易になり、回転軸50との嵌め合い寸法の管理が簡単になる誘導電動機100の回転子11を得ることができる。
 実施の形態4.
 以下、実施の形態4について図面を参照しながら説明する。図14乃至図16は実施の形態4を示す図で、図14は回転式圧縮機300(密閉型圧縮機の一例)の縦断面図、図15および図16は回転式圧縮機300の横断面図である。
 回転式圧縮機300における誘導電動機100の構造以外は公知のものである。従って、図14を参照しながら一シリンダの回転式圧縮機300の構成を簡単に説明する。
 図14に示すように、回転式圧縮機300は密閉容器4内に、圧縮要素200と電動要素である誘導電動機100と図示しない冷凍機油とを収納している。冷凍機油は、密閉容器4内の底部に貯留している。冷凍機油は主に圧縮要素200の摺動部を潤滑する。密閉容器4は、胴部1と上皿容器2と下皿容器3とから構成される。
 圧縮要素200は、シリンダ5、上軸受6(軸受の一例)、下軸受7(軸受の一例)、回転軸50、ローリングピストン9、吐出マフラ8、ベーン(図示せず)等で構成される。
 内部に圧縮室が形成されるシリンダ5は、外周が平面視略円形で、内部に平面視略円形の空間であるシリンダ室を備える。シリンダ室は、軸方向両端が開口している。シリンダ5は、側面視で所定の軸方向の高さを持つ。
 シリンダ5の略円形の空間であるシリンダ室に連通し、半径方向に延びる平行なベーン溝(図示せず)が軸方向に貫通して設けられる。
 また、ベーン溝の背面(外側)に、ベーン溝に連通する平面視略円形の空間である背圧室(図示せず)が設けられる。
 シリンダ5には、冷凍サイクルからの吸入ガスが通る吸入ポート(図示せず)が、シリンダ5の外周面からシリンダ室に貫通している。
 シリンダ5には、略円形の空間であるシリンダ室を形成する円の縁部付近(誘導電動機100側の端面)を切り欠いた吐出ポート(図示せず)が設けられる。
 ローリングピストン9が、シリンダ室内を偏心回転する。ローリングピストン9はリング状で、ローリングピストン9の内周が回転軸50の偏心軸部50dに摺動自在に嵌合する。
 ベーンがシリンダ5のベーン溝内に収納され、背圧室に設けられるベーンスプリング(図示せず)でベーンが常にローリングピストン9に押し付けられている。回転式圧縮機300は、密閉容器4内が高圧であるから、運転を開始するとベーンの背面(背圧室側)に密閉容器4内の高圧とシリンダ室の圧力との差圧による力が作用するので、ベーンスプリングは主に回転式圧縮機300の起動時(密閉容器4内とシリンダ室の圧力に差がない状態)に、ベーンをローリングピストン9に押し付ける目的で使用される。
 ベーンの形状は、平たい(周方向の厚さが、径方向及び軸方向の長さよりも小さい)略直方体である。
 上軸受6は、回転軸50の主軸部50b(偏心軸部50dより上の部分)に摺動自在に嵌合するとともに、シリンダ5のシリンダ室(ベーン溝も含む)の一方の端面(誘導電動機100側)を閉塞する。
 上軸受6に、吐出弁(図示せず)が取り付けられる。上軸受6は、側面視略逆T字状である。
 下軸受7が、回転軸50の副軸部50c(偏心軸部50dより下の部分)に摺動自在に嵌合するとともに、シリンダ5のシリンダ室(ベーン溝も含む)の他方の端面(冷凍機油側)を閉塞する。下軸受7は、側面視略T字状である。
 上軸受6には、その外側(誘導電動機100側)に吐出マフラ8が取り付けられる。上軸受6の吐出弁から吐出される高温・高圧の吐出ガスは、一端吐出マフラ8に入り、その後吐出マフラ8の吐出穴8aから密閉容器4内に放出される。
 密閉容器4の横に、冷凍サイクルからの低圧の冷媒ガスを吸入し、液冷媒が戻る場合に液冷媒が直接シリンダ5のシリンダ室に吸入されるのを抑制する吸入マフラ(図示せず)が設けられる。吸入マフラは、シリンダ5の吸入ポートに吸入管22を介して接続する。吸入マフラは、溶接等により密閉容器4の側面に固定される。
 圧縮要素200で圧縮された高温・高圧のガス冷媒は、吐出マフラ8の吐出穴8aから誘導電動機100を通過して、吐出管70から外部の冷媒回路(図示せず)へ吐出される。
 図15および図16を用いて、圧縮要素200の一部である吐出穴8aと、誘導電動機100の一部である回転子11の風穴部11bとの位置関係について説明する。ここでは、吐出マフラ8の吐出穴8aの個数は三個で、回転子11の風穴部11bの個数も三個の場合について説明する。吐出マフラ8の吐出穴8aは、回転子11の風穴部11bと同様、周方向に略等間隔に配置されている。
 前述のように、圧縮要素200で圧縮されたガス冷媒の一部は、吐出穴8aから風穴部11bを通過するが、ガス冷媒は高圧であるため、流速も速くなっている。本実施の形態では吐出穴8aと風穴部11bの個数と位置関係を合わせ、更に吐出穴8aから高圧の吐出ガスが吐出されるときに吐出穴8aと風穴部11bとの位置が略一致するようにして、より効果的に風穴部11bから冷媒を通過するようにしたものである。
 誘導電動機100の回転子11が一回転する度に、圧縮要素200では一回の圧縮・吐出が行われるが、吐出穴8aと風穴部11bの位置が略一致したときに、吐出穴8aから高圧の吐出ガスが吐出されるようにする。
 吐出穴8aと風穴部11bの個数と位置関係を合わせ、更に吐出穴8aから高圧の吐出ガスが吐出されるときに吐出穴8aと風穴部11bとの位置が略一致するようにして、より効果的に風穴部11bからガス冷媒を通過させることが可能であり、効率の高い回転式圧縮機300を得ることができる。
 ここでは吐出穴8aと風穴部11bの個数が同じ場合について説明したが、位相が合えば同様の効果が得られるため、それぞれの個数が整数倍の関係、例えば、吐出穴8aが三個で、風穴部11bの個数が六個であっても良い。
 また、ガス冷媒の風穴部11bへの通過量を増加させるためには、吐出穴8aを回転軸50の中心付近に設けることが、より望ましいが、その限りではない。
実施の形態1を示す図で、誘導電動機100の横断面図。 実施の形態1を示す図で、アルミバー30を充填した回転子スロット40の横断面図。 実施の形態1を示す図で、誘導電動機100の回転子11の斜視図。 実施の形態1を示す図で、誘導電動機100の回転子11の平面図。 実施の形態1を示す図で、誘導電動機100の回転子鉄心11aの平面図。 実施の形態1を示す図で、変形例の誘導電動機100の回転子11の平面図。 実施の形態1を示す図で、変形例の誘導電動機100の回転子鉄心11aの平面図。 実施の形態2を示す図で、誘導電動機100の回転子11の平面図。 実施の形態2を示す図で、回転軸50の一部(回転子11の積層方向長さに相当する部分)の斜視図。 実施の形態2を示す図で、回転軸50の一部(回転子11の積層方向長さに相当する部分)の斜視図。 実施の形態2を示す図で、誘導電動機100の回転子11の平面図。 実施の形態3を示す図で、誘導電動機100の回転子11(回転軸50は除く)の平面図。 実施の形態3を示す図で、誘導電動機100の回転子11(回転軸50は除く)の平面図。 実施の形態4を示す図で、回転式圧縮機300(密閉型圧縮機の一例)の縦断面図。 実施の形態4を示す図で、回転式圧縮機300の横断面図。 実施の形態4を示す図で、回転式圧縮機300の横断面図。
符号の説明
 1 胴部、2 上皿容器、3 下皿容器、4 密閉容器、5 シリンダ、6 上軸受、7 下軸受、8 吐出マフラ、8a 吐出穴、9 ローリングピストン、11 回転子、11a 回転子鉄心、11b 風穴部、12 固定子、12a 固定子鉄心、12b 固定子スロット、12c 固定子切欠き、20 巻線、20a 補助巻線、20b 主巻線、30 アルミバー、30a 外層アルミバー、30b 内層アルミバー、30c 連結アルミバー、31 回転軸穴、32 エンドリング、40 回転子スロット、40a 外層スロット、 40b 内層スロット、40c 連結スロット、50 回転軸、50a 切欠き、50b 主軸部、50c 副軸部、50d 偏心軸部、60 空隙、70 吐出管、100 誘導電動機、200 圧縮要素、300 回転式圧縮機。

Claims (10)

  1.  電磁鋼板を所定の形状に打ち抜いた後、所定枚数積層して製作される固定子鉄心と、前記固定子鉄心の内周縁に沿って形成される複数の固定子スロットと、前記固定子スロットに挿入される巻線とを有する固定子と、
     前記固定子の内側に空隙を介して配置される回転子とを備え、
     前記回転子は、
     電磁鋼板を所定の形状に打ち抜いた後、所定枚数積層して製作される回転子鉄心と、
     前記回転子鉄心外周縁に沿って形成され、導電性材料が充填された二重かご形の複数の回転子スロットと、
     回転軸が嵌合する前記回転子鉄心の回転軸穴の周囲に設けられ、前記回転軸穴に開口する三箇所以上の風穴部とを有し、
     前記二重かご形の回転子スロットに充填される前記導電性材料の両端を短絡するエンドリングの内径部を、少なくとも片側の前記エンドリングにおいて前記風穴部に近接するように配置したことを特徴とする誘導電動機。
  2.  前記回転子と前記回転軸を焼嵌により嵌合することを特徴とする請求項1記載の誘導電動機。
  3.  前記風穴部は略半円形状であることを特徴とする請求項1記載の誘導電動機。
  4.  前記風穴部は長穴形状であることを特徴とする請求項1記載の誘導電動機。
  5.  前記回転子に設けられた前記風穴部に対応した位置で、前記回転軸に略軸方向全長に亘って形成される切欠きを設け、前記風穴部と前記切欠きとで風穴を形成することを特徴とする請求項1記載の誘導電動機。
  6.  前記回転軸に略軸方向全長に亘って形成される切欠きを長穴形状とすることを特徴とする請求項5記載の誘導電動機。
  7.  前記回転子鉄心はスキューをかけて積層され、前記回転子鉄心のスキュー角度に対応して前記切欠きを傾斜させるように設けたことを特徴とする請求項5記載の誘導電動機。
  8.  前記風穴部は三箇所に略等間隔に配置され、一つの前記風穴部の両端と前記回転軸の中心とのなす角度をα、隣接する二つの前記風穴部の近接側の二つの端部と前記回転軸の中心とのなす角度をβとした場合、2α+β<180度としたことを特徴とする請求項4記載の誘導電動機。
  9.  冷媒を圧縮する圧縮要素と共に密閉容器の内部に収納され、前記回転軸により前記圧縮要素を駆動する誘導電動機であって、
     前記圧縮要素は圧縮された冷媒を吐出する吐出穴を備え、前記吐出穴と前記風穴部の個数と位置関係を合わせ、更に前記吐出穴から高圧の吐出ガスが吐出されるときに前記吐出穴と前記風穴部との位置が略一致するようにしたことを特徴とする請求項1記載の誘導電動機。
  10.  請求項1記載の誘導電動機と、前記誘導電動機により駆動される圧縮要素を備えたことを特徴とする密閉型圧縮機。
PCT/JP2008/063986 2008-08-05 2008-08-05 誘導電動機及び密閉型圧縮機 WO2010016106A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MYPI2011000129A MY156192A (en) 2008-08-05 2008-08-05 Induction motor and hermetic compressor
CN200880130451.XA CN102099987B (zh) 2008-08-05 2008-08-05 感应电动机及密闭型压缩机
CZ2011-58A CZ309599B6 (cs) 2008-08-05 2008-08-05 Indukční motor
KR1020117000213A KR101188558B1 (ko) 2008-08-05 2008-08-05 유도 전동기 및 밀폐형 압축기
US12/996,910 US8740584B2 (en) 2008-08-05 2008-08-05 Induction motor and hermetic compressor
JP2010523665A JP5042365B2 (ja) 2008-08-05 2008-08-05 誘導電動機及び密閉型圧縮機
PCT/JP2008/063986 WO2010016106A1 (ja) 2008-08-05 2008-08-05 誘導電動機及び密閉型圧縮機
TW097132901A TWI398077B (zh) 2008-08-05 2008-08-28 Induction motor and hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/063986 WO2010016106A1 (ja) 2008-08-05 2008-08-05 誘導電動機及び密閉型圧縮機

Publications (1)

Publication Number Publication Date
WO2010016106A1 true WO2010016106A1 (ja) 2010-02-11

Family

ID=41663336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063986 WO2010016106A1 (ja) 2008-08-05 2008-08-05 誘導電動機及び密閉型圧縮機

Country Status (8)

Country Link
US (1) US8740584B2 (ja)
JP (1) JP5042365B2 (ja)
KR (1) KR101188558B1 (ja)
CN (1) CN102099987B (ja)
CZ (1) CZ309599B6 (ja)
MY (1) MY156192A (ja)
TW (1) TWI398077B (ja)
WO (1) WO2010016106A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005697A (ja) * 2011-06-22 2013-01-07 Hitachi Industrial Equipment Systems Co Ltd 誘導電動機
JP2013170483A (ja) * 2012-02-20 2013-09-02 Mitsubishi Electric Corp 圧縮機及びこの圧縮機を備えた冷凍サイクル装置
WO2014102942A1 (ja) * 2012-12-26 2014-07-03 三菱電機株式会社 かご形回転子の製造方法、誘導電動機の製造方法およびかご形回転子
WO2015117535A1 (zh) * 2014-02-10 2015-08-13 刘延杰 直筒轴式水泵
US9343930B2 (en) 2012-05-25 2016-05-17 Baldor Electric Company Segmented stator assembly
JPWO2016002012A1 (ja) * 2014-07-01 2017-04-27 三菱電機株式会社 回転子、電動機、圧縮機、及び送風機
DE202014011588U1 (de) 2014-07-01 2022-11-10 Mitsubishi Electric Corporation Rotor, elektrischer Motor, Verdichter und Gebläse
JP7465168B2 (ja) 2020-07-22 2024-04-10 ミネベアミツミ株式会社 レゾルバ

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066875A2 (en) * 2007-11-22 2009-05-28 Lg Electronics Inc. Motor for compressor and hermetic compressor having the same
EP2268983B1 (en) * 2007-11-22 2017-12-20 LG Electronics Inc. Motor for compressor and hermetic compressor having the same
WO2009066873A2 (en) * 2007-11-22 2009-05-28 Lg Electronics Inc. Motor for compressor and hermetic compressor having the same
MY177440A (en) * 2007-12-27 2020-09-15 Mitsubishi Electric Corp Induction motor rotor core having shaped slots
JP5079021B2 (ja) * 2008-01-25 2012-11-21 三菱電機株式会社 誘導電動機及び密閉型圧縮機
FR2950751B1 (fr) * 2009-09-30 2012-05-04 Converteam Technology Ltd Rotor de moteur electrique optimise pour les grandes puissances
FR2977740B1 (fr) * 2011-07-05 2017-07-21 Renault Sas Rotor de moteur electrique comprenant un arbre frette dans un empilement de toles, et procede de fabrication du rotor
JP2013048498A (ja) * 2011-08-27 2013-03-07 Nidec Servo Corp ハイブリッド型回転電機
JP5084980B1 (ja) * 2012-04-06 2012-11-28 三菱電機株式会社 2重かご形回転子
FR2997585B1 (fr) * 2012-10-25 2016-05-06 Valeo Equip Electr Moteur Paquet de toles pour emmanchement sur une piece cylindrique
DE102014006288A1 (de) * 2013-04-30 2014-10-30 Ziehl-Abegg Se Rotor für einen Reluktanzmotor, insbesondere einen Synchron-Reluktanzmotor, Verfahren zur Herstellung eines solchen Rotors sowie Reluktanzmotor mit einem solchen Rotor
CN103346635A (zh) * 2013-06-03 2013-10-09 江苏通达动力科技股份有限公司 一种电机转轴和转子冲片的连接机构及加工方法
DE112014004337T5 (de) * 2013-12-16 2016-06-02 Mitsubishi Electric Corporation Herstellungsverfahren für einen Rotor vom Korbtyp sowie Rotor vom Korbtyp
JP6230441B2 (ja) * 2014-02-20 2017-11-15 三菱電機株式会社 単相誘導電動機、密閉型圧縮機及び冷凍サイクル装置
US9882449B2 (en) 2015-04-17 2018-01-30 Martin Engineering Company Electrically driven industrial vibrator with circumjacent eccentric weight and motor
CN104836400B (zh) * 2015-06-01 2017-10-31 广东威灵电机制造有限公司 洗衣机用单相感应电机及洗衣机
US20180195512A1 (en) * 2015-09-24 2018-07-12 Guangdong Meizi Compressor Co., Ltd. Rotary compressor
CN106936230B (zh) * 2015-12-31 2020-01-03 丹佛斯(天津)有限公司 定子、电机和压缩机
CN106936239A (zh) * 2015-12-31 2017-07-07 丹佛斯(天津)有限公司 用于电机的转轴、电机和压缩机
US9822998B2 (en) 2016-03-17 2017-11-21 Daikin Applied Americas Inc. Centrifugal compressor with motor cooling
US10498280B1 (en) 2016-08-25 2019-12-03 Apple Inc. Electric motor with shielded phase windings
CN106451849B (zh) 2016-10-13 2018-12-28 珠海格力节能环保制冷技术研究中心有限公司 一种转子结构、电机及压缩机
CN110475977B (zh) 2017-03-24 2022-04-26 江森自控科技公司 磁性轴承马达压缩机
US11264847B2 (en) * 2017-06-02 2022-03-01 Mitsubishi Electric Corporation Reluctance motor, compressor, and air conditioner
US11888353B2 (en) * 2018-04-10 2024-01-30 Mitsubishi Electric Corporation Motor, compressor, and air conditioner
US11973373B2 (en) * 2018-10-30 2024-04-30 Mitsubishi Electric Corporation Rotor, motor, compressor, and refrigeration and air-conditioning device
US11557941B2 (en) 2019-03-14 2023-01-17 Robert C. Hendricks Electronically commutated axial conductor motor
DE102019204960B4 (de) * 2019-04-08 2024-09-26 Audi Ag Rotor für eine elektrische Maschine
DE102019113456A1 (de) * 2019-05-21 2020-11-26 Schaeffler Technologies AG & Co. KG Rotor mit optimierter Rotorblechgeometrie zur Fluidführung
CN110491612B (zh) * 2019-08-20 2021-10-08 赵小勇 一种电动机电容及单相电动机
EP3832852A1 (de) * 2019-12-04 2021-06-09 Hilti Aktiengesellschaft Verbindung rotorwelle zu blechpaket
US11973370B2 (en) * 2021-03-15 2024-04-30 Anhui Meizhi Precision Manufacturing Co., Ltd. Motor, compressor and refrigeration device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234850A (ja) * 1987-02-27 1988-09-30 ゼネラル・エレクトリック・カンパニイ 閉スロット形回転子構造
JPH0241672U (ja) * 1988-09-08 1990-03-22
JPH0543753U (ja) * 1991-11-08 1993-06-11 株式会社東芝 回転電機の回転子
JPH08205438A (ja) * 1995-01-25 1996-08-09 Toshiba Ave Corp モータ
JPH104658A (ja) * 1996-06-13 1998-01-06 Hitachi Ltd 誘導電動機
JP2003158839A (ja) * 2001-11-20 2003-05-30 Yaskawa Electric Corp 空冷モータ
JP2004201428A (ja) * 2002-12-19 2004-07-15 Matsushita Electric Ind Co Ltd 電動機

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US980986A (en) * 1906-08-22 1911-01-10 Gen Electric Alternating-current electric motor.
FR564927A (fr) 1923-01-20 1924-01-15 Acec Perfectionnements aux rotors en court-circuit pour moteurs asynchrones
US1650795A (en) * 1924-12-16 1927-11-29 Us Electrical Mfg Company Bimetallic rotor for induction motors
US1708909A (en) * 1925-12-17 1929-04-09 Crockerwheeler Electric Mfg Co Rotor for induction motors
US1771936A (en) * 1927-10-11 1930-07-29 Gen Electric Induction motor
US1957551A (en) * 1930-04-17 1934-05-08 Electric Specialty Co Electric motor
US1996460A (en) * 1933-03-31 1935-04-02 Chicago Pneumatic Tool Co Ventilated induction motor
US2139748A (en) * 1936-11-18 1938-12-13 Reliance Electric & Eng Co Squirrel cage rotor and process for making the same
US2292167A (en) * 1940-07-20 1942-08-04 Allis Louis Co Induction motor
US2370458A (en) * 1942-09-14 1945-02-27 Allis Louis Co Cast squirrel cage rotor
US2803763A (en) * 1954-09-27 1957-08-20 Eustace S Dunn Heat dissipation in rotors of electric motors
US3401291A (en) * 1966-01-26 1968-09-10 Gen Electric Bar design for high torque, low slip squirrel cage rotors
DE1563345A1 (de) 1966-06-07 1970-03-26 Siemens Ag Wechselstablaeufer fuer Asynchronmaschinen
JPS4729503U (ja) 1971-04-30 1972-12-04
JPS5171915A (ja) 1974-12-19 1976-06-22 Tokyo Shibaura Electric Co Kaitendenki
JPS5239106A (en) 1975-09-25 1977-03-26 Hitachi Ltd Cage rotor of induction motor
JPS6023584B2 (ja) * 1977-12-14 1985-06-08 株式会社日立製作所 永久磁石式同期電動機
JPS54148207A (en) 1978-05-12 1979-11-20 Toshiba Corp Cast rotor for rotary electric machine
JPS563559A (en) 1979-06-22 1981-01-14 Toshiba Corp Manufacturing of cage rotor
JPS58176540U (ja) 1982-05-20 1983-11-25 三菱電機株式会社 回転電機の回転子
JPS5910159A (ja) 1982-07-07 1984-01-19 Hitachi Ltd ダイカストロ−タ用鉄心の製作方法
US4585967A (en) * 1983-10-21 1986-04-29 General Electric Company Rotor of AC dynamoelectric machine with improved cooling and stability and method of making the same
JPS60162434A (ja) 1984-02-01 1985-08-24 Ebara Corp 液冷回転電機
JPS61244248A (ja) 1985-04-22 1986-10-30 Toshiba Corp 鋳込回転子の製造方法
JPS6268468U (ja) 1985-10-14 1987-04-28
JPS62189929A (ja) * 1986-02-13 1987-08-19 Mitsubishi Electric Corp 回転電機の回転子およびその製造方法
JPH0721096Y2 (ja) 1987-09-18 1995-05-15 三菱電機株式会社 かご形誘導電動機の回転子
US4801832A (en) * 1987-11-04 1989-01-31 General Electric Company Stator and rotor lamination construction for a dynamo-electric machine
JPH01129738A (ja) 1987-11-16 1989-05-23 Shinko Electric Co Ltd かご形誘導電動機の回転子
JPH027771U (ja) 1988-06-22 1990-01-18
US5182483A (en) * 1989-12-28 1993-01-26 Kabushiki Kaisha Toshiba Squirrel-cage rotor with shaped-conductor harmonic reduction
JP2977846B2 (ja) 1990-02-06 1999-11-15 株式会社東芝 インバータ駆動形回転電機
US5334923A (en) * 1990-10-01 1994-08-02 Wisconsin Alumni Research Foundation Motor torque control method and apparatus
JPH04244762A (ja) 1991-01-28 1992-09-01 Toshiba Corp 回転電機の回転子軸
JPH06153471A (ja) 1992-11-04 1994-05-31 East Japan Railway Co 誘導電動機の回転子構造
JPH06253511A (ja) * 1993-02-24 1994-09-09 Fanuc Ltd 高速誘導電動機の籠形回転子
DE4417787A1 (de) 1993-05-21 1994-11-24 Toshiba Kawasaki Kk Läufer für eine elektrische Drehmaschine und Verfahren zu dessen Herstellung
JPH08140319A (ja) 1994-11-11 1996-05-31 Nissan Motor Co Ltd 誘導モータのロータ
JP3132992B2 (ja) * 1995-10-31 2001-02-05 三菱電機株式会社 ロータ組立装置
JPH09224358A (ja) 1996-02-16 1997-08-26 Hitachi Ltd 誘導電動機
US6088906A (en) * 1997-09-16 2000-07-18 Ut-Battelle, Llc Method of manufacturing squirrel cage rotors
JPH11299188A (ja) 1998-04-17 1999-10-29 Toshiba Corp 回転子巻線の製造方法
US6058596A (en) * 1998-08-03 2000-05-09 General Electric Company Method of making an induction motor rotor
US5986366A (en) * 1998-09-23 1999-11-16 Sundstrand Corporation Rotor for a dynamoelectric machine
TW564285B (en) * 1999-06-29 2003-12-01 Sanyo Electric Co Sealed rotary compressor
JP2001342954A (ja) * 2000-05-31 2001-12-14 Sanyo Electric Co Ltd 電動圧縮機及びそれを用いた冷却装置
ES2362171T3 (es) * 2001-03-30 2011-06-29 Sanyo Electric Co., Ltd. Motor de inducción síncrono, procedimiento de fabricación y unidad de accionamiento para el mismo, y compresor eléctrico hermético.
JP3801477B2 (ja) 2001-10-11 2006-07-26 三菱電機株式会社 同期誘導電動機のロータ及び同期誘導電動機及びファンモータ及び圧縮機及び空気調和機及び冷蔵庫
TW571487B (en) 2001-10-16 2004-01-11 Hitachi Air Conditioning Sys Self-starting synchronous motor and compressor using the same
JP3764375B2 (ja) * 2001-11-15 2006-04-05 三菱電機株式会社 同期誘導電動機の回転子及び電動機の回転子及び同期誘導電動機及び誘導電動機及び直流ブラシレスモータ及び密閉型圧縮機及び冷蔵庫及び空気調和機和機及び同期誘導電動機の回転子の製造方法
JP2003333812A (ja) 2002-05-14 2003-11-21 Yaskawa Electric Corp インダクションモータのロータ
KR20060027707A (ko) 2004-09-23 2006-03-28 엘지전자 주식회사 유도 전동기의 농형 회전자 및 그 제조방법
KR100619751B1 (ko) * 2004-10-23 2006-09-13 엘지전자 주식회사 셰이딩 코일형 단상 동기/유도 전동기
JP4559872B2 (ja) * 2005-02-22 2010-10-13 三菱電機株式会社 単相電動機及び密閉形圧縮機
JP5017120B2 (ja) * 2005-11-09 2012-09-05 株式会社東芝 回転電機用回転子及び回転電機
US7709991B2 (en) * 2005-12-08 2010-05-04 A. O. Smith Corporation Rotor assembly for an electric machine including a vibration damping member and method of manufacturing same
US8035273B2 (en) * 2005-12-08 2011-10-11 A.O. Smith Corporation Rotor assembly having two core portions each with a reduced back portion
US8022588B2 (en) * 2006-03-30 2011-09-20 Mitsubishi Electric Corporation Single-phase 2-pole electric motor in which main windings and auxiliary windings are mutually offset by other than 90 degrees and mounted in different size slots
WO2007127658A2 (en) * 2006-04-25 2007-11-08 A.O. Smith Corporation Rotor having lobed bore and method of assembling same
MY177440A (en) * 2007-12-27 2020-09-15 Mitsubishi Electric Corp Induction motor rotor core having shaped slots
JP5079021B2 (ja) * 2008-01-25 2012-11-21 三菱電機株式会社 誘導電動機及び密閉型圧縮機
US8648514B2 (en) * 2008-05-08 2014-02-11 Mitsubishi Electric Corporation Rotary electric motor and blower that uses the same
JP5632465B2 (ja) * 2010-08-23 2014-11-26 パナソニック株式会社 密閉型圧縮機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234850A (ja) * 1987-02-27 1988-09-30 ゼネラル・エレクトリック・カンパニイ 閉スロット形回転子構造
JPH0241672U (ja) * 1988-09-08 1990-03-22
JPH0543753U (ja) * 1991-11-08 1993-06-11 株式会社東芝 回転電機の回転子
JPH08205438A (ja) * 1995-01-25 1996-08-09 Toshiba Ave Corp モータ
JPH104658A (ja) * 1996-06-13 1998-01-06 Hitachi Ltd 誘導電動機
JP2003158839A (ja) * 2001-11-20 2003-05-30 Yaskawa Electric Corp 空冷モータ
JP2004201428A (ja) * 2002-12-19 2004-07-15 Matsushita Electric Ind Co Ltd 電動機

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005697A (ja) * 2011-06-22 2013-01-07 Hitachi Industrial Equipment Systems Co Ltd 誘導電動機
JP2013170483A (ja) * 2012-02-20 2013-09-02 Mitsubishi Electric Corp 圧縮機及びこの圧縮機を備えた冷凍サイクル装置
US9343930B2 (en) 2012-05-25 2016-05-17 Baldor Electric Company Segmented stator assembly
WO2014102942A1 (ja) * 2012-12-26 2014-07-03 三菱電機株式会社 かご形回転子の製造方法、誘導電動機の製造方法およびかご形回転子
JP5843980B2 (ja) * 2012-12-26 2016-01-13 三菱電機株式会社 かご形回転子の製造方法および誘導電動機の製造方法
WO2015117535A1 (zh) * 2014-02-10 2015-08-13 刘延杰 直筒轴式水泵
JPWO2016002012A1 (ja) * 2014-07-01 2017-04-27 三菱電機株式会社 回転子、電動機、圧縮機、及び送風機
US10348145B2 (en) 2014-07-01 2019-07-09 Mitsubishi Electric Corporation Rotor, electric motor, compressor, and blower
DE202014011588U1 (de) 2014-07-01 2022-11-10 Mitsubishi Electric Corporation Rotor, elektrischer Motor, Verdichter und Gebläse
JP7465168B2 (ja) 2020-07-22 2024-04-10 ミネベアミツミ株式会社 レゾルバ

Also Published As

Publication number Publication date
TW201008082A (en) 2010-02-16
JPWO2010016106A1 (ja) 2012-01-12
KR101188558B1 (ko) 2012-10-08
CZ309599B6 (cs) 2023-05-10
MY156192A (en) 2016-01-29
CZ201158A3 (cs) 2011-12-07
JP5042365B2 (ja) 2012-10-03
US8740584B2 (en) 2014-06-03
CN102099987B (zh) 2014-06-11
TWI398077B (zh) 2013-06-01
CN102099987A (zh) 2011-06-15
KR20110022037A (ko) 2011-03-04
US20110081263A1 (en) 2011-04-07

Similar Documents

Publication Publication Date Title
JP5042365B2 (ja) 誘導電動機及び密閉型圧縮機
JP5079021B2 (ja) 誘導電動機及び密閉型圧縮機
JP6377128B2 (ja) 回転子の製造方法
JP6422566B2 (ja) モータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機
JP5143166B2 (ja) 単相誘導電動機及び密閉型圧縮機
JP2011041379A (ja) 自己始動型永久磁石同期電動機、及び、これを用いた圧縮機と冷凍サイクル
US9214839B2 (en) Three-phase dynamoelectric machines and stators with phase windings formed of different conductor material(s)
KR20180113564A (ko) 전동기, 압축기, 및 냉동 사이클 장치
JP4762301B2 (ja) 圧縮機用電動機及び圧縮機及び冷凍サイクル装置
JP2010226830A (ja) 電動機及びそれを搭載した圧縮機
CN109923757B (zh) 永久磁铁式旋转电机及使用永久磁铁式旋转电机的压缩机
US11604014B2 (en) Electric motor and compressor having the same
JP5159807B2 (ja) 単相誘導電動機及び密閉型圧縮機
JP4193726B2 (ja) 同期誘導電動機の回転子及び圧縮機
JP5230574B2 (ja) 圧縮機用電動機及び圧縮機及び冷凍サイクル装置
KR100863047B1 (ko) 모터 및 이를 포함하는 압축기
KR20200003140A (ko) 영구 자석식 회전 전기 기기 및 그것을 사용한 압축기
JP5499511B2 (ja) 固定子、モータ及び圧縮機
WO2019146030A1 (ja) 永久磁石式回転電機及びそれを用いた圧縮機
JP2020108297A (ja) 圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880130451.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010523665

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12996910

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117000213

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV2011-58

Country of ref document: CZ

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1465/CHENP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 08792183

Country of ref document: EP

Kind code of ref document: A1