WO2010007930A1 - 新規エチレン系化合物、それを含む電荷輸送材料、それを含む電子写真用感光体およびその製造方法 - Google Patents

新規エチレン系化合物、それを含む電荷輸送材料、それを含む電子写真用感光体およびその製造方法 Download PDF

Info

Publication number
WO2010007930A1
WO2010007930A1 PCT/JP2009/062505 JP2009062505W WO2010007930A1 WO 2010007930 A1 WO2010007930 A1 WO 2010007930A1 JP 2009062505 W JP2009062505 W JP 2009062505W WO 2010007930 A1 WO2010007930 A1 WO 2010007930A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
ethylene compound
electrophotographic photoreceptor
carbon atoms
Prior art date
Application number
PCT/JP2009/062505
Other languages
English (en)
French (fr)
Inventor
豊強 朱
洋一 中村
清三 北川
信二郎 鈴木
郁夫 高木
Original Assignee
富士電機デバイステクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機デバイステクノロジー株式会社 filed Critical 富士電機デバイステクノロジー株式会社
Priority to KR1020107019121A priority Critical patent/KR101235002B1/ko
Priority to CN200980108223.7A priority patent/CN101959844B/zh
Priority to JP2010520840A priority patent/JP5321985B2/ja
Priority to US12/921,374 priority patent/US8951702B2/en
Publication of WO2010007930A1 publication Critical patent/WO2010007930A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06147Amines arylamine alkenylarylamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Definitions

  • the present invention relates to an electrophotographic photoreceptor (hereinafter also simply referred to as “photoreceptor”) and a method for producing the same, and more specifically, an electrophotographic printer, copy, mainly comprising a conductive substrate and a photosensitive layer containing an organic material.
  • the present invention relates to an electrophotographic photoreceptor used in a machine, a fax machine, and the like, and a method for manufacturing the same.
  • Image forming methods using electrophotography include office copying machines, printers, plotters, and digital image multifunction devices that combine these functions, as well as small personal printers and fax transceivers in recent years. Is also widely applied.
  • Patent Document 1 many photoconductors have been developed since the invention of Carlson (Patent Document 1) as photoconductors for electrophotographic devices, and those using organic materials are particularly common.
  • Examples of such a photoreceptor include an anodized film, a subbing layer such as a resin film on a conductive substrate such as aluminum, a charge generation layer containing an organic pigment having a photoconductivity such as a phthalocyanine or an azo pigment, and a ⁇ -electron conjugate.
  • a charge transport layer including a molecule having a partial structure involved in charge hopping conduction such as amine and hydrazone bonded to the system and a protective layer are laminated.
  • a single-layer type photoreceptor having both charge generation and charge transport functions is also known. Further, the single layer type photoreceptor may have an undercoat layer.
  • a conductive substrate is used in a paint obtained by dissolving or dispersing a pigment having a function such as charge generation or light scattering, or a charge transport agent that plays a role in charge transport in an appropriate resin solution.
  • the method of dip-coating is generally used because it is excellent in mass productivity.
  • phthalocyanines have a large absorbance in the oscillation wavelength region of a semiconductor laser and have an excellent charge generation ability compared with other charge generation agents, so that they are widely studied as materials for photosensitive layers.
  • photoreceptors using various phthalocyanines having copper, aluminum, indium, vanadium, titanium or the like as a central metal (Patent Documents 2 to 5).
  • the contact charging method As a method for charging the photosensitive member, there is a non-contact charging method in which the charging member and the photosensitive member are not contacted by corona discharge from a scorotron, a charging member such as a roller made of conductive rubber or a brush made of conductive fiber, and the like. There is a contact charging method in which the photosensitive member comes into contact. Since the contact charging method has a shorter discharge distance in the atmosphere than the non-contact charging method, the generation of ozone is small, the power supply voltage may be low, and there is no deposition of dirt on the charging member caused by the discharge. Maintenance free. In addition, the contact charging method can make the charging position on the photosensitive member uniform. Accordingly, since a more compact, low-cost, and low environmental pollution electrophotographic apparatus can be realized, the contact charging method is mainly used for medium-sized to small-sized apparatuses.
  • Patent Document 6 discloses a technique for adding an orange dye compound, Patent Document 7 for adding an orange dye, and Patent Document 8 for adding a compound having a maximum absorption wavelength at 480 nm.
  • Patent Documents 9 to 12 and the like disclose ethylene-based compounds having many double bonds as charge transporting agents. Yes.
  • Patent Documents 6 to 8 and the like the technique of adding a specific additive to the charge transport layer is limited to the phthalocyanine pigment or the specific charge transport agent. Further, this document does not describe anything other than the light deterioration preventing effect for preventing the photodecomposition of the charge transfer agent or the like in consideration of light absorption. In addition, the compounds described in Patent Documents 9 to 12 have not shown a sufficient effect on light fatigue.
  • an object of the present invention is to provide an ethylene-based compound and a charge transporting agent that are small in photodegradation, and in addition, an electrophotographic photoreceptor capable of preventing the increase in residual potential accompanying fatigue due to less photo-fatigue, Accordingly, it is an object of the present invention to provide an electrophotographic photosensitive member that has stable characteristics as an electrophotographic photosensitive member even when used for a long period of time, and that can stably obtain a good image, and a method for producing the same.
  • the present inventors diligently studied and repeated experiments on an electrophotographic photoreceptor capable of preventing photodeterioration, photo fatigue, and accompanying increase in residual potential due to repeated use.
  • a compound having a tetrasubstituted ethylene structure having a specific structure for the photosensitive layer photodegradation hardly occurs, photodegradation can be suppressed, and Z-form / E-form (cis-form)
  • photo fatigue is suppressed because it has a structure in which trans (cis-trans) photoisomerization hardly occurs.
  • the present inventors have found that an electrophotographic photoreceptor having extremely excellent characteristics can be provided because photodegradation and light fatigue can be prevented, and the present invention has been completed.
  • the electrophotographic photoreceptor of the present invention is an electrophotographic photoreceptor comprising at least a photosensitive layer on a conductive substrate, and the photosensitive layer includes In the following general formula (I), It contains an ethylene-based compound represented by:
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms or an optionally substituted alkoxyl group having 1 to 6 carbon atoms.
  • R 4 represents an alkyl group having 1 to 3 carbon atoms, a phenyl group or a tolyl group, and Ar represents an aryl group or heterocyclic group having 7 to 20 carbon atoms.
  • the position of R 4 and Ar may be either a Z-form (cis-form) or E-form (trans-form) structure alone or a mixture of both.
  • the compound of the formula (I) which has another structure may be included.
  • the photosensitive layer contains at least a charge generating agent, a charge transporting agent and a binder resin, and the charge transporting agent contains an ethylene compound represented by the above general formula (I). It may be the body.
  • the present invention relates to, for example, a function-separated electrophotographic image in which a charge generation layer containing at least a charge generation agent is formed on a conductive substrate, and a charge transport layer containing at least a charge transfer agent is formed thereon.
  • Photoconductor a function-separated type electrophotographic photoreceptor in which a charge transport layer containing at least a charge transport agent is formed on a conductive substrate, and at least a charge transport agent and a charge generator are contained thereon may be used. Further, it may be a single layer type electrophotographic photoreceptor comprising a single photosensitive layer.
  • the charge generating agent that can be used in the present invention can contain either titanyl phthalocyanine, metal-free phthalocyanine, or both.
  • the method for producing the electrophotographic photoreceptor of the present invention includes the following general formula (I), A photosensitive layer is formed by applying a coating solution containing an ethylene compound represented by formula (1) onto a conductive substrate, and in the general formula (I), R 1 to R 4 and Ar are as defined above Is shown.
  • the photosensitive layer is an ethylene compound represented by the general formula (I), that is, a double bond site.
  • the compound (I) having a structure substituted with four different substituents, and this compound is less susceptible to photolysis and photodegradation due to the steric effect of the substituents, so that light fatigue is suppressed.
  • the compound (I) has a Z--by a Hula-twist mechanism even when irradiated with light in a long time as compared with a disubstituted or trisubstituted ethylene compound in a space in a film state.
  • Photo-isomerization is less likely to occur, and photodegradation is reduced.
  • the characteristics of the electrophotographic photosensitive member that can reduce the light fatigue of the photosensitive layer and prevent the increase of the residual potential, that is, the electrophotographic photosensitive member even when used for a long period of time are stable, and a good image is stabilized.
  • An electrophotographic photoreceptor obtained in this manner and a method for producing the same can be provided.
  • Regarding the mechanism of Z-form / E-form photoisomerization of ethylene compounds by the flat twist mechanism see J. et al. Photochem. Photobiol. A: Chemistry, 2006, 184, 44-49. Etc. are described.
  • Compound No. 2-4 tri-substituted structure ethylene compound is a three-dimensional structural change of charge transport material in the membrane by E-isomer / Z-isomer isomerization by the twisting mechanism that occurs even in a relatively limited space in the membrane. It is thought that the occurrence of this affects the photoreceptor characteristics.
  • No. 2-53 or No. In the case of a tetrasubstituted ethylene compound such as 2-58, since it has a sterically large tetrasubstituent, it is very difficult to synthesize it by the synthesis method at the final stage of the document, and it is industrially produced in a high yield. Is difficult to synthesize in large quantities.
  • the tetrasubstituted ethylene compound represented by the general formula (I) of the present invention can prevent photoisomerization by the twisting mechanism even in the space in the film. Furthermore, since the tetrasubstituted ethylene compound has a tetrasubstituted structure and is a structure that is sterically crowded, the ethylene portion is unlikely to undergo photolysis due to external factors such as ozone and NOx. Moreover, since this invention uses the method different from patent document 9 also about the synthesis
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a negatively charged laminated photoreceptor.
  • FIG. 3 is a schematic cross-sectional view showing an example of a positively charged laminated photoreceptor.
  • FIG. 2 is an NMR chart of compound (I-1).
  • the ethylene-based compound of the present invention has the following general formula (I), It is a compound represented by these.
  • the compound represented by formula (I) is also referred to as compound (I).
  • Other compounds are described in the same manner.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms or an alkoxyl group having 1 to 6 carbon atoms
  • R 4 Represents an alkyl group having 1 to 3 carbon atoms, a phenyl group or a tolyl group
  • Ar represents an aryl group or heterocyclic group having 7 to 20 carbon atoms.
  • examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, iso-butyl group, s-butyl group, t-butyl group, pentyl group, An isopentyl group, a neopentyl group, a hexyl group, a cyclohexyl group, etc. may be mentioned, and some or all of the hydrogen atoms may be substituted with halogen atoms such as fluorine, chlorine, bromine and iodine, alkyl groups having 1 to 3 carbon atoms, etc. It may be.
  • the alkoxy group having 1 to 6 carbon atoms includes methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, iso-butoxy group, s-butoxy group, t-butoxy group.
  • some or all of the hydrogen atoms are halogen atoms such as fluorine, chlorine, bromine, iodine, carbon It may be substituted with an alkyl group having 1 to 3 atoms.
  • R 1 , R 2 and R 3 are preferably hydrogen atoms or methyl groups, and R 1 , R 2 and R 3 are more preferably hydrogen atoms. preferable.
  • R 4 examples include an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, a propyl group, and an isopropyl group, a phenyl group, and a tolyl group. And may be substituted with a halogen atom such as bromine or iodine.
  • R 4 is preferably a methyl group.
  • examples of the aryl group having 7 to 20 carbon atoms include a naphthyl group, a biphenyl group, an anthryl group, a phenanthryl group, etc., and some or all of the hydrogen atoms are fluorine, chlorine, bromine, iodine, etc. May be substituted with a halogen atom, an alkyl group having 1 to 3 carbon atoms, or the like.
  • examples of the heterocyclic group include a furyl group, a thienyl group, a pyridyl group, a piperidyl group, a quinolyl group, and an isoquinolyl group.
  • Ar is preferably a kind selected from the group consisting of a naphthyl group, a biphenyl group, an anthryl group, a tolyl group, a xylyl group, and a phenanthryl group.
  • Ar is more preferably an anthryl group.
  • Examples of the compound (I) include compounds (I-1) to (I-108) described in Tables 1 to 4 below.
  • H represents a hydrogen atom
  • Me represents a methyl group
  • Et represents an ethyl group
  • * 1 to * 10 represent substituents having the following structures.
  • compound (I) is produced, for example, as follows.
  • the compound (I) synthesized in the present invention may be a mixture of E-form and Z-form.
  • the reaction ratio (molar ratio) between the compound 2 and the compound 6 is preferably 1: 1.
  • the yield of compound (I) may worsen.
  • the amount of the compound 2 is too large, the amount of the unreacted compound 2 increases, and it may be difficult to purify the compound (I).
  • the reaction temperature is preferably ⁇ 20 to 100 ° C., and the reaction time is preferably 2 to 8 hours. By setting it as this range, a desired reaction can be efficiently carried out with a relatively simple production facility.
  • examples of the catalyst include titanium tetrachloride-zinc, titanium trichloride-aluminum lithium hydride, titanium trichloride-zinc, titanium trichloride-copper, titanium trichloride-lithium, and the like.
  • a catalyst may be used individually by 1 type and may be used in combination of 2 or more type.
  • the addition amount of the catalyst is preferably 1 to 1.5 mol with respect to 1 mol of compound 6. If the addition amount of the catalyst is less than 1 mol, the reactivity between the compound 2 and the compound 6 may be significantly reduced. When the addition amount of the catalyst exceeds 1.5 mol, it may be difficult to control the reaction between the compound 2 and the compound 6.
  • the compounds 3-1 to 3-6 of the following formula are preferable.
  • aldehyde compound (R 3 PhCHO) of the reaction formula 2 compounds R3-1 to R3-4 of the following formula are preferable. More preferred are compounds R3-1 and R3-2.
  • the charge transport agent of the present invention contains an ethylene compound (compound (I)) represented by the above general formula (I).
  • the electrophotographic photoreceptor of the present invention is an electrophotographic photoreceptor having at least a photosensitive layer on a conductive substrate.
  • an ethylene compound represented by the above general formula (I) compound ( An electrophotographic photoreceptor including I)).
  • examples of the electrophotographic photoreceptor include (i) a single-layer photoreceptor and (ii) a laminated photoreceptor, depending on the layer structure of the photosensitive layer. These photoconductors can be used as either positive or negative charge type photoconductors.
  • the photosensitive layer preferably contains at least a charge transport agent, and further contains a charge generator and a binder resin.
  • FIG. 1 is a schematic cross-sectional view showing an example of a single layer type photoreceptor.
  • the single-layer type photoreceptor 110 includes a conductive substrate 10, an undercoat layer 20 provided on the conductive substrate 10, and a photosensitive layer 30 containing a charge generator, a charge transport agent, and a binder resin.
  • Examples of the conductive substrate 10 include metals such as iron, aluminum, copper, tin, platinum, silver, vanadium, molybdenum, chromium, cadmium, titanium, nickel, palladium, indium, stainless steel, and brass; Laminated plastic materials; glass coated with aluminum iodide, tin oxide, indium oxide or the like can be used.
  • Examples of the shape of the conductive substrate include a sheet shape and a drum shape. The shape of the conductive substrate 10 may be appropriately determined according to the structure of the image forming apparatus.
  • the undercoat layer 20 is made of a resin-based layer or a metal oxide film such as alumite, and controls the charge injection property from the conductive substrate 10 to the photosensitive layer 30 or covers defects on the substrate surface. It is provided as necessary for the purpose of improving the adhesion between the photosensitive layer 30 and the base.
  • the resin material used for the undercoat layer 20 include insulating polymers such as casein, polyvinyl alcohol, polyamide, melamine, and cellulose, and conductive polymers such as polythiophene, polypyrrole, and polyaniline. These resins are used alone. Alternatively, they can be used in combination as appropriate. Further, these resins can contain metal oxides such as titanium dioxide and zinc oxide.
  • the photosensitive layer 30 is made of, for example, a coating solution obtained by dissolving or dispersing a charge transport agent containing at least compound (I), a charge generator and a binder resin, and, if necessary, an electron (charge) transport agent in a solvent. It is formed by coating on the conductive substrate 10 and drying.
  • the coating liquid is prepared by dissolving or dispersing each component in a solvent using a roll mill, a ball mill, an attritor, a paint shaker, an ultrasonic disperser or the like.
  • a coating method a known method may be used.
  • the charge transport agent containing compound (I) may be referred to as a hole transport agent below.
  • the thickness of the photosensitive layer 30 is preferably 5 to 100 ⁇ m, and more preferably 10 to 50 ⁇ m. If the thickness of the photosensitive layer 30 is outside the above range, the desired effect may not be sufficient, which is not preferable.
  • the compound (I) alone or a mixture of hydrazone compound, butadiene compound, diamine compound, indole compound, indoline compound, stilbene compound, distilbene compound and the like is used as appropriate.
  • either the Z-form or the E-form of compound (I) may be used mainly or singly, or a mixture of both may be used.
  • the content of the hole transfer agent is preferably 1 to 50% by mass, more preferably 3 to 40% by mass, based on the solid content of the single-layer type photosensitive layer 30.
  • Examples of the electron transport agent used in the photosensitive layer 30 include succinic anhydride, maleic anhydride, dibromosuccinic anhydride, phthalic anhydride, 3-nitrophthalic anhydride, 4-nitrophthalic anhydride, pyromellitic anhydride, Pyromellitic acid, trimellitic acid, trimellitic anhydride, phthalimide, 4-nitrophthalimide, tetracyanoethylene, tetracyanoquinodimethane, chloranil, bromanyl, o-nitrobenzoic acid, malononitrile, trinitrofluorenone, trinitrothioxanthone, Dinitrobenzene, dinitroanthracene, dinitroacridine, nitroanthraquinone, dinitroanthraquinone, thiopyran compounds, quinone compounds, benzoquinone compounds, diphenoquinone compounds, naphthoquinone compounds, anthraquinone compounds, Chirubenkinon compounds, mention may
  • titanyl phthalocyanine As the charge generating agent, titanyl phthalocyanine, metal-free phthalocyanine pigment, etc. may be used alone, or two or more kinds may be used in combination.
  • binder resin examples include polycarbonate resins such as bisphenol Z type, bisphenol ZC type, bisphenol C type and bisphenol A type, polyarylate resin, styrene-butadiene copolymer, styrene-acrylonitrile copolymer, styrene-maleic acid.
  • Copolymer Acrylic copolymer, Styrene-acrylic acid copolymer, Polyethylene resin, Ethylene-vinyl acetate copolymer, Chlorinated polyethylene resin, Polyvinyl chloride resin, Polypropylene resin, Ionomer resin, Vinyl chloride-vinyl acetate copolymer Polymers, alkyd resins, polyamide resins, polyurethane resins, polysulfone resins, diallyl phthalate resins, ketone resins, polyvinyl butyral resins, polyether resins, etc .; silicone resins, epoxy resins, phenol resins Urea resins, thermosetting resins such as melamine resin, epoxy acrylate, urethane - photocurable resins such as acrylate. Binder resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the photosensitive layer 30 may contain a known additive as long as the electrophotographic characteristics are not adversely affected.
  • additives include antioxidants, radical scavengers, singlet quenchers, deterioration inhibitors such as ultraviolet absorbers, softeners, plasticizers, surface modifiers, extenders, thickeners, dispersion stabilizers. , Wax, acceptor, donor and the like.
  • a known sensitizer such as terphenyl, halonaphthoquinones, acenaphthylene, etc. may be used in combination with the charge generator.
  • Solvents for preparing the coating solution by dissolving and dispersing the above materials include, for example, alcohols such as methanol, ethanol, isopropanol and butanol; aliphatic hydrocarbons such as n-hexane, octane and cyclohexane; benzene, toluene Aromatic hydrocarbons such as xylene; halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, chlorobenzene; ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether; acetone, methyl ethyl ketone, Ketones such as cyclohexanone; esters such as ethyl acetate and methyl acetate; dimethylformaldehyde, dimethylformamide, dimethylsulfoxide
  • a solvent may be used individually by 1 type and may be used in mixture of 2 or more types.
  • a surfactant, a leveling agent and the like may be added to the coating solution.
  • FIG. 2 is a schematic cross-sectional view showing an example of a negatively charged laminated photoreceptor.
  • the negatively charged laminated photoreceptor 120 includes a conductive substrate 10, an undercoat layer 20 provided on the conductive substrate 10, a charge generation layer 40 containing a charge generation agent, and a charge provided on the charge generation layer 40. And a transport layer 50.
  • the photosensitive layer 30 includes a charge generation layer 40 and a charge transport layer 50 that are sequentially stacked.
  • the same materials as those of the single-layer type photoreceptor 110 can be used.
  • the charge generation layer 40 includes a charge generation agent and a binder resin.
  • the charge generator either titanyl phthalocyanine, metal-free phthalocyanine, or both are used.
  • the binder resin is not particularly limited, and the same ones as described above can be used, and an appropriate one is selected from various types of polyvinyl chloride, polyvinyl butyral, polyvinyl acetal, polyester, polycarbonate, acrylic resin, phenoxy resin, and the like. can do.
  • the film thickness of the charge generation layer 40 is preferably 0.1 to 5 ⁇ m, particularly 0.2 to 0.5 ⁇ m.
  • the charge transport layer 50 includes a charge transport agent and a binder resin.
  • a charge transport agent compound (I) alone or a mixture of hydrazone compound, butadiene compound, diamine compound, indole compound, indoline compound, stilbene compound, distilbene compound and the like may be used in appropriate combination.
  • the binder resin polycarbonate resin such as bisphenol A type, bisphenol Z type, bisphenol A type-biphenyl copolymer, polystyrene resin, polyphenylene resin, etc. may be used alone or in appropriate combination.
  • either the Z-form or the E-form of the compound (I) may be used mainly or singly, or a mixture of both may be used.
  • the content of the charge transport agent is preferably 10 to 90% by mass, and more preferably 20 to 80% by mass with respect to the solid content of the charge transport layer 50.
  • the film thickness of the charge transport layer 50 is preferably in the range of 3 to 50 ⁇ m, more preferably 15 to 40 ⁇ m in order to maintain a practically effective surface potential.
  • the undercoat layer 20 and the charge transport layer 50 may have an electron-accepting substance, an antioxidant, or the like for the purpose of improving sensitivity, reducing residual potential, or improving environmental resistance and stability against harmful light.
  • An agent, a light stabilizer and the like can be added.
  • Compounds used for such purposes include chromal derivatives such as tocopherol and ether compounds, ester compounds, polyarylalkane compounds, hydroquinone derivatives, diether compounds, benzophenone derivatives, benzotriazole derivatives, thioether compounds, phenylenediamine derivatives, phosphonic acids
  • chromal derivatives such as tocopherol and ether compounds, ester compounds, polyarylalkane compounds, hydroquinone derivatives, diether compounds, benzophenone derivatives, benzotriazole derivatives, thioether compounds, phenylenediamine derivatives, phosphonic acids
  • Examples include, but are not limited to, esters, phosphites, phenol compounds, hindered phenol compounds, linear amine compounds, cyclic amine compounds, hindered amine compounds, and the like.
  • the photosensitive layer 30 may contain a leveling agent such as silicone oil or fluorine-based oil for the purpose of improving the leveling property of the formed film and imparting further lubricity.
  • a leveling agent such as silicone oil or fluorine-based oil for the purpose of improving the leveling property of the formed film and imparting further lubricity.
  • a surface protective layer may be further provided on the surface of the photosensitive layer 30 as necessary for the purpose of further improving environmental resistance and mechanical strength. It is desirable that the surface protective layer is made of a material having excellent durability against mechanical stress and environmental resistance, and has a performance of transmitting light sensitive to the charge generation layer 40 with as low loss as possible.
  • the undercoat layer 20 is formed by means such as coating as with the photosensitive layer 30 of the single-layer photoreceptor 110, for example.
  • the charge generation layer 40 is formed by means such as vapor deposition or coating.
  • the charge transport layer 50 is formed by means such as coating as with the photosensitive layer 30 of the single-layer type photoreceptor 110.
  • FIG. 3 is a schematic cross-sectional view showing an example of a positively charged laminated photoreceptor.
  • the positively charged laminated photoreceptor 130 includes a conductive substrate 10, an undercoat layer 20 provided on the conductive substrate 10, a charge transport layer 50, and a charge generation agent that includes a charge generating agent provided on the charge transport layer 50.
  • Layer 40 the photosensitive layer 30 includes a charge transport layer 50 and a charge generation layer 40 that are sequentially stacked.
  • the charge transport layer 50 is mainly composed of a charge transport agent and a resin binder.
  • the charge transport agent and the resin binder the same materials as those described in the embodiment of the charge transport layer 50 in the negatively charged laminated photoreceptor 120 can be used.
  • the content of each material and the film thickness of the charge transport layer 50 can be the same as those of the negatively charged laminated photoreceptor 120.
  • the charge generation layer 40 provided on the charge transport layer 50 is mainly composed of a charge generation agent, a hole transfer agent, an electron transfer agent (acceptor compound), and a resin binder.
  • the charge generating agent, hole transporting agent, electron transporting agent, and resin binder the same materials as those mentioned as the embodiment of the single layer type photosensitive layer 30 in the single layer type photoreceptor 110 can be used.
  • the content of each material can be the same as the amount mentioned as the embodiment of the single-layer photosensitive layer 30 in the single-layer photoreceptor 110.
  • the film thickness of the charge generation layer 40 is preferably in the range of 3 to 50 ⁇ m, more preferably 8 to 35 ⁇ m.
  • the photosensitive layer of this invention is not limited to these layer structures, The thing which added the other functional layer is included.
  • FIG. 4 shows an NMR chart of the compound (I-1), and the signal of the compound (I-1) is shown below.
  • 1 H-NMR (CDCl 3 ; 400 MHz); ⁇ 8.41 (0.58H, s, Ar—H for E), ⁇ 8.39 (0.42H, s, Ar—H for Z), ⁇ 8.28 (0.58 H, s, Ar—H) for E), ⁇ 8.14 (0.42H, s, Ar—H for Z), ⁇ 8.01-7.91 (3H, m, Ar—H for E and Z), ⁇ 7.69-7.13 ( 10H, m, Ar-H for E and Z), ⁇ 7.11-6.79 (13H, m, Ar-H for E and Z), ⁇ 2.26 (1.74H, s, CH 3 for E,) , ⁇ 2.23 (1.26H, s, CH 3 for Z).
  • Example 1 Manufacture of negatively charged laminated photoreceptor
  • a coating solution was prepared by dissolving and dispersing 5 parts by mass of alcohol-soluble nylon (manufactured by Toray Industries, Inc., “CM 8000” (trade name)) and 5 parts by mass of aminosilane-treated titanium oxide fine particles in 90 parts by mass of methanol.
  • An aluminum cylinder having an outer diameter of 24 mm was used as the conductive substrate.
  • the coating solution was dip-coated as an undercoat layer, and dried at a temperature of 100 ° C. for 30 minutes to form an undercoat layer having a thickness of about 2 ⁇ m.
  • a charge generation layer was formed on the conductive substrate on which the undercoat layer was formed. Drying was performed under conditions of a drying temperature of 80 ° C. and a drying time of 30 minutes. The resulting charge generation layer had a thickness after drying of 0.1 to 0.5 ⁇ m.
  • Example 2 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-2, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 3 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-3, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 4 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-4) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 5 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-5, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 6 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-6, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 7 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-7) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 8 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-8, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 9 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-9, R 1 , R 2 , R 3 is p-position) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 10 An electrophotographic photoreceptor was produced in exactly the same manner except that the ethylene compound (No. I-10) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 11 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-11, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 12 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-12, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 13 An electrophotographic photoreceptor was produced in exactly the same manner except that the ethylene compound (No. I-13) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 14 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-14, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 15 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-15, R 1 , R 2 , R 3 are in the p-position) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 16 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-16) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 17 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-17, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 18 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-18, R 1 , R 2 , R 3 is p-position) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 19 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-19) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 20 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-20, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 21 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-21, R 1 , R 2 , R 3 is p-position) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 22 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-22) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 23 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-23, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 24 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-24, R 1 , R 2 , R 3 are in the p-position) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 25 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-25) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 26 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-26, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 27 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-27, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 28 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-28) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 29 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-29, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 30 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-30, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 31 An electrophotographic photoreceptor was produced in exactly the same manner except that the ethylene compound (No. I-31) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 32 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-32, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 33 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-33, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 34 An electrophotographic photoreceptor was produced in exactly the same manner except that the ethylene compound (No. I-34) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 35 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-35, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 36 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-36, R 1 , R 2 , R 3 is p-position) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 37 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-37) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 38 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-38, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 39 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-39, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 40 An electrophotographic photoreceptor was produced in exactly the same manner except that the ethylene compound (No. I-40) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 41 Except for using an ethylene compound (No. I-41, R 1 and R 2 are in the p-position) instead of the ethylene compound (No. I-1) used in Example 1, the same method was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 42 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-42, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 43 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-43) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 44 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-44, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 45 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-45, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 46 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-46) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 47 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-47, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 48 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-48, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 49 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-49) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 50 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-50, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 51 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-51, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 52 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-52) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 53 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-53, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 54 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-54, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 55 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-55) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 56 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-56, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 57 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-57, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 58 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-58) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 59 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-59, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 60 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-60, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 61 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-61) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 62 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-62, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 63 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-63, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 64 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-64) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 65 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-65, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 66 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-66, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 67 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-67) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 68 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-68, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 69 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-69, R 1 , R 2 , R 3 is p-position) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 70 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-70) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 71 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-71, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 72 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-72, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 73 An electrophotographic photoreceptor was produced in exactly the same manner except that the ethylene compound (No. I-73) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 74 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-74, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 75 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-75, R 1 , R 2 , R 3 are in the p-position) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 76 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-76) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 77 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-77, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 78 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-78, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 79 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-79) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 80 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-80, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 81 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-81, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 82 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-82) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 83 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-83, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 84 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-84, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 85 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-85) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 86 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-86, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 87 Instead of the ethylene compound (No. I-1) used in Example 1, ethylene compound (No.I-87, R 1, R 2, R 3 is p- position) except using quite An electrophotographic photoreceptor was prepared in the same manner.
  • Example 88 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-88) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 89 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-89, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 90 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-90, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 91 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-91) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 92 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-92, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 93 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-93, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 94 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-94) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 95 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-95, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 96 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-96, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 97 An electrophotographic photoreceptor was produced in exactly the same manner except that the ethylene compound (No. I-97) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 98 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-98, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 99 instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-99, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 100 An electrophotographic photoreceptor was produced in exactly the same manner except that the ethylene compound (No. I-100) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 101 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-101, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 102 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-102, R 1 , R 2 , R 3 are in the p-position) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 103 An electrophotographic photoreceptor was produced in exactly the same manner except that the ethylene compound (No. I-103) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 104 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-104, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 105 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-105, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 106 An electrophotographic photoreceptor was prepared in exactly the same manner except that the ethylene compound (No. I-106) was used instead of the ethylene compound (No. I-1) used in Example 1.
  • Example 107 Except for using the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-107, R 1 and R 2 are in the p-position) was used. Thus, an electrophotographic photoreceptor was produced.
  • Example 108 Instead of the ethylene compound (No. I-1) used in Example 1, an ethylene compound (No. I-108, R 1 , R 2 , R 3 are p-positions) was used. An electrophotographic photoreceptor was prepared in the same manner.
  • Example 109 An electrophotographic photoreceptor was produced in the same manner as in Example 1 except that the charge generating agent used in Example 1 was replaced with Y-type titanyl phthalocyanine.
  • Example 110 An electrophotographic photoreceptor was produced in the same manner as in Example 1 except that the charge generator used in Example 1 was replaced with metal-free phthalocyanine.
  • Example 111 An electrophotographic photoreceptor was produced in the same manner as in Example 1, except that the binder resin in the charge transport layer used in Example 1 was replaced with polycarbonate resin (PCZ-500, manufactured by Mitsubishi Gas Chemical).
  • PCZ-500 polycarbonate resin
  • Example 112 An electrophotographic photoreceptor was produced in the same manner as in Example 1 except that the binder resin in the charge transport layer used in Example 1 was replaced with a polycarbonate resin (manufactured by Mitsubishi Engineering Plastics, S3000).
  • Example 2 instead of the ethylene-based compound (No. I-1) used in Example 1, a known charge transfer agent compound (No. I-110) shown in Table 5 below was used, and the electrons were produced in the same manner. A photographic photoreceptor was prepared.
  • Example 113 A vinyl chloride-vinyl acetate-vinyl alcohol copolymer (manufactured by Nissin Chemical Industry Co., Ltd., trade name "Solvine TA5R") is used as an undercoat layer on the outer periphery of an aluminum cylinder having an outer diameter of 24 mm as the conductive substrate 1.
  • a coating solution prepared by stirring and dissolving 0.2 parts by mass in 99 parts by mass of methyl ethyl ketone was dip coated and dried at a temperature of 100 ° C. for 30 minutes to form an undercoat layer 20 having a thickness of 0.1 ⁇ m.
  • the following formula 1 part by weight of a metal-free phthalocyanine represented by the formula, 45 parts by weight of the compound (I-1) as a hole transport material, and the following formula as an electron transport material:
  • PCZ-500 trade name
  • the solution was dip coated and dried at a temperature of 100 ° C. for 60 minutes to form a photosensitive layer having a film thickness of 25 ⁇ m, thereby producing a single layer type photoreceptor.
  • Example 114 A single-layer photoreceptor was produced in the same manner as in Example 113 except that the compound (I-1) used in Example 113 was changed to the compound (I-37).
  • Example 115 A single-layer type photoreceptor was produced in the same manner as in Example 113 except that the metal-free phthalocyanine used in Example 113 was changed to Y-type titanyl phthalocyanine.
  • Comparative Example 4 A single-layer photoreceptor was produced in the same manner as in Example 113 except that the compound (I-1) used in Example 113 was replaced with the compound (I-109) in Comparative Example 1.
  • Example 116 50 parts by mass of the compound (I-1) as a charge transport material and 50 parts by mass of a polycarbonate resin (manufactured by Mitsubishi Gas Chemical Co., Ltd., PCZ-500 (trade name)) as a resin binder are dissolved in 800 parts by mass of dichloromethane. Thus, a coating solution was prepared. Further, an aluminum cylinder having an outer diameter of 24 mm was used as the conductive substrate 1. The coating solution was dip coated on the outer circumference of the aluminum cylinder and dried at a temperature of 120 ° C. for 60 minutes to form a charge transport layer having a thickness of 15 ⁇ m.
  • the following formula as a charge generator 1.5 parts by mass of a metal-free phthalocyanine represented by the following formula, 10 parts by mass of the compound (I-1) as a hole transport material, and the following formula as an electron transport material: 25 parts by mass of the compound represented by the formula (1) and 60 parts by mass of polycarbonate resin (PCZ-500 (trade name) manufactured by Mitsubishi Gas Chemical Co., Ltd.) as a resin binder are dissolved and dispersed in 800 parts by mass of 1,2-dichloroethane.
  • the coating solution prepared in this manner was dip coated. Next, the film was dried at a temperature of 100 ° C. for 60 minutes to form a photosensitive layer having a film thickness of 15 ⁇ m, and a positively charged laminated type photoreceptor was produced.
  • Example 117 A positively charged laminated photoreceptor was produced in the same manner as in Example 116 except that the metal-free phthalocyanine used in Example 116 was changed to Y-type titanyl phthalocyanine.
  • Example 5 A positively charged laminated photoreceptor was produced in the same manner as in Example 116 except that the compound (I-1) used in Example 116 was replaced with the compound (I-109).
  • the drum produced in the same manner was mounted on the printer, and after printing 10,000 sheets of A4 paper, the light portion potential (light portion potential after printing 10,000 sheets) was measured.
  • the electrophotographic photoreceptors prepared in Examples 113 to 116 and Comparative Examples 4 and 5 were mounted on a printer HL-2040 manufactured by Brother Industries, Ltd., modified so that the surface potential of the photoreceptor could be measured.
  • the exposed portion potential was evaluated.
  • the light part potential (light part potential before printing and light irradiation) in the actual machine was measured.
  • the photoconductor was left under a 1500 lx ⁇ s fluorescent lamp for 12 hours, irradiated with light, and then similarly mounted on an HL-2040 printer, and the light portion potential (light portion potential after light irradiation) was measured.
  • Table 13 The results are shown in Table 13 below.
  • the drum produced in the same manner was mounted on the printer, and after printing 10,000 sheets of A4 paper, the light portion potential (light portion potential after printing 10,000 sheets) was measured.
  • the photoconductor according to the present invention can be used for a long period of time because it can prevent an increase in residual potential in evaluation before and after printing 10,000 sheets with a printer, and there is little potential fluctuation in the exposed part before and after light irradiation.
  • the characteristics as an electrophotographic photoreceptor are stable and have excellent light fatigue characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 光劣化を抑え、かつ、光疲労が少なく、それにともなう残留電位の上昇を防止でき、長期間使用しても電子写真用感光体としての特性が安定で、良好な画像が安定して得られるエチレン系化合物、それを含む電荷輸送材料、それを含む電子写真用感光体およびその製造方法を提供する。  下記一般式(I)、 (一般式(I)中、R、RおよびRは、各々独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基または炭素数1~6のアルコキシル基を示し、Rは炭素数1~3のアルキル基、フェニル基またはトリル基を示し、Arは炭素数7~20のアリール基または複素環基を示す)で示されるエチレン系化合物、それを含む電荷輸送材料、それを含む電子写真用感光体およびその製造方法である。

Description

新規エチレン系化合物、それを含む電荷輸送材料、それを含む電子写真用感光体およびその製造方法
 本発明は、電子写真用感光体(以下単に「感光体」とも称する)およびその製造方法に関し、詳しくは、主として導電性基体と有機材料を含む感光層とからなり、電子写真方式のプリンター、複写機、ファックスなどに用いられる電子写真用感光体およびその製造方法に関する。
 電子写真方式を利用した画像形成方法は、オフィス用複写機、プリンター、プロッターおよびこれらの機能を複合させたディジタル(digital)画像複合機などのほか、近年、個人向けの小型プリンター、ファクス送受信機にも広く適用されている。また、電子写真装置用感光体としてカールソンの発明(特許文献1)以来、多くの感光体が開発されており、特に有機材料を使用するものが一般的となっている。
 このような感光体としては、アルミニウムなどの導電性基体上に陽極酸化皮膜、樹脂膜などの下引き層、フタロシアニン類、アゾ顔料など光導電性を有する有機顔料を含む電荷発生層、π電子共役系と結合したアミン、ヒドラゾンなど電荷のホッピング伝導に関与する部分構造を有する分子を含む電荷輸送層および保護層を積層してなる機能分離型感光体がある。また、電荷発生および電荷輸送の機能を併せ持つ単層型感光体も知られている。さらに、単層型感光体は下引き層を有してもよい。
 上記各層の形成方法としては、電荷発生や光散乱などの機能を有する顔料や、電荷輸送の役割を担う電荷輸送剤をそれぞれ適切な樹脂溶液に溶解または分散させて得られる塗料に、導電性基体を浸漬塗布する方法が量産性に優れるため一般的である。
 また、近年の電子写真装置は、発振波長が450~780nm程度の半導体レーザーあるいは発光ダイオードを露光用光源として画像および文字などのディジタル信号を光信号に変換し、帯電させた感光体上に照射することによって感光体表面に静電潜像を形成し、これをトナーによって可視化する、所謂反転現像プロセスが主流である。
 さらに、かかる電子写真装置において、フタロシアニン類は他の電荷発生剤と比較して半導体レーザーの発振波長領域での吸光度が大きく、かつ、優れた電荷発生能力を有するため、感光層用材料として広く検討されている。特に、現在、中心金属として銅、アルミニウム、インジウム、バナジウム、チタニウムなどを有する各種フタロシアニンを用いた感光体が知られている(特許文献2~5)。
 感光体を帯電させる方法としては、スコロトロンからのコロナ放電などによる帯電部材と感光体とが非接触である非接触帯電方式、導電性ゴムからなるローラーや導電性繊維からなるブラシなどによる帯電部材と感光体とが接触する接触帯電方式とがある。該接触帯電方式は非接触帯電方式と比較して大気中での放電距離が短いためにオゾンの発生が少なく、電源電圧が低くてもよく、放電によって生じる帯電部材への汚れの沈着がないためメンテナンスフリーである。また、該接触帯電方式は感光体上での帯電位を均一にできる。従って、よりコンパクトで低コスト、低環境汚染の電子写真装置を実現できるため、接触帯電方式は特に中型~小型装置で主流となっている。
 しかしながら、多くの化合物は電荷発生層と電荷輸送層とを組み合わせて感光層とした場合、実用上必要とされる感光体の諸特性、条件を満足するものは極めて少ないことが実験の結果知られている。特に、公知の電子写真プロセスによる帯電、露光の繰り返し特性を満足するものは少なく、繰り返し帯電および露光を行なうと、電荷輸送層での電荷のトラップの蓄積が原因とみられる残留電位の上昇を招く。その影響で特にプリンターなどで用いられている反転現像方式では繰り返しによる濃度変化が発生する。これらは、光疲労によるものと推察される。また、かかる問題は、上記のフタロシアニン顔料、ビスアゾ顔料等を結着樹脂に分散塗布してなる機能兼用型単層感光体においても同様の問題が生じる。
 光劣化防止に対しては、電荷輸送層に特定の添加剤を添加することが、知られている。例えば、特許文献6には橙色染料化合物を、特許文献7にはオレンジ色素を、また特許文献8には480nmに最大吸収波長を有する化合物を、夫々添加する技術が開示されている。
 また、光安定性、露光疲労による帯電性の低下等を防止することを目的に、特許文献9~12等には、電荷輸送剤として多くの二重結合を有するエチレン系化合物が、開示されている。
米国特許第2297691号明細書 特開昭53-89433号公報 米国特許第3816118号明細書 特開昭57-148745号公報 米国特許第3825422号明細書 特開平10-228121号公報 特公平8-33660号公報 特開平11-184108号公報 特開昭60-104951号公報 特開平2-264263号公報 特開平5-112508号公報 特開平7-120950号公報
 しかしながら、特許文献6~8等に記載されているように、電荷輸送層に特定の添加剤を添加する技術は、フタロシアニン顔料または特定の電荷輸送剤に対する限定されたものである。また、同文献には光の吸収を考慮して電荷輸送剤等の光分解を防止する光劣化防止効果以外は記述されていない。また、特許文献9~12記載の化合物は、光疲労については十分な効果が示されていなかった。
 そこで、本発明の目的は、光劣化が小さなエチレン系化合物および電荷輸送剤を提供し、加えて光疲労が少なく、疲労にともなう残留電位の上昇を防止できる電子写真用感光体、さらには、これらの性質により長期間使用しても電子写真用感光体としての特性が安定で、良好な画像が安定して得られる電子写真用感光体、およびその製造方法を提供することにある。
 本発明者らは、繰り返し使用における感光体の光劣化、光疲労、それにともなう残留電位の上昇を防止できるような電子写真用感光体について鋭意検討し、実験を重ねた。その結果、感光層に、特定の構造の四置換エチレン構造を持つ化合物を使用することにより、光分解が起こり難く、光劣化を抑えることができ、かつ、Z-体/E-体(シス-トランス(cis-trans))光異性化が起こり難い構造を持つため、光疲労が抑制されることを見出した。また、光劣化および光疲労を防止できるため特性が極めて優れた電子写真用感光体を提供できることを見出し、本発明を完成するに至った。
 即ち、本発明は下記一般式(I)、
Figure JPOXMLDOC01-appb-I000005
で示されるエチレン系化合物、およびそれを含む電荷輸送剤であり、本発明の電子写真用感光体は、導電性基体上に、少なくとも感光層を備えた電子写真用感光体であり、該感光層中に、下記一般式(I)、
Figure JPOXMLDOC01-appb-I000006
で表されるエチレン系化合物を含有するものである。
 上記一般式(I)中、R、RおよびRは、各々独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基または置換されてもよい炭素数1~6のアルコキシル基を示し、Rは炭素数1~3のアルキル基、フェニル基またはトリル基を示し、Arは炭素数7~20のアリール基または複素環基を示す。式(I)の化合物はRとArの位置がZ-体(cis-体),E-体(trans-体)のいずれかの構造単独、もしくは両者の混合物であってもかまわない。さらに、他の構造を有する式(I)の化合物を含んでいてもよい。
 本発明は、感光層が、少なくとも電荷発生剤、電荷輸送剤および結着樹脂を含有し、該電荷輸送剤として、上記一般式(I)で表されるエチレン系化合物を含有した電子写真用感光体でもよい。
 本発明は、例えば、導電性基体の上に少なくとも電荷発生剤が含有される電荷発生層が形成され、その上に少なくとも電荷輸送剤が含有される電荷輸送層が形成される機能分離型電子写真用感光体である。また、導電性基体の上に少なくとも電荷輸送剤が含有される電荷輸送層が形成され、その上に少なくとも電荷輸送剤及び電荷発生剤が含有される機能分離型電子写真用感光体でもよい。さらに、単一の感光層からなる単層型電子写真用感光体であってもよい。
 本発明に用いることができる前記電荷発生剤としては、チタニルフタロシアニン、無金属フタロシアニンのいずれか、もしくは両者を含有することができる。
 また、本発明の電子写真用感光体の製造方法は、下記一般式(I)、
Figure JPOXMLDOC01-appb-I000007
で表されるエチレン系化合物を含む塗布液を導電性基体上に塗布することにより感光層を形成するものであり、一般式(I)中、R~RおよびArは上記と同様のものを示している。
 本発明によれば、導電性基体上に少なくとも感光層を備えた電子写真用感光体は、前記感光層が、上記一般式(I)で示されるエチレン系化合物、即ち、二重結合の部位に四つの異なる置換基により置換された構造を有する化合物(I)を含み、この化合物が置換基の立体的な効果により光分解、および光劣化し難いため、その光疲労が抑えられる。加えて、該化合物(I)は、膜状態での空間において、二置換または三置換されたエチレン系化合物に比べ、長時間に光照射しても、フラツイスト(Hula-twist)メカニズムによるZ-体/E-体光異性化が起こり難いため、光劣化が少なくなる。その結果、感光層の光疲労が小さく、残留電位の上昇を防止できる電子写真用感光体、即ち、長期間使用しても電子写真用感光体としての特性が安定で、良好な画像が安定して得られる電子写真用感光体、およびその製造方法を提供することができる。なお、フラツイストメカニズムによるエチレン系化合物のZ-体/E-体光異性化機構に関してはJ.Photochem.Photobiol.A:Chemistry,2006,184,44-49.等に記載されている。
 例えば特許文献9の化合物No.2-4の三置換構造エチレン系化合物は、膜中の比較的限られた空間でも起こるフラツイストメカニズムによるE-体/Z-体異性化により、膜中で電荷輸送材の立体的な構造変化が起こることで感光体特性に影響を及ぼすと考えられる。また、No.2-53やNo.2-58のような四置換エチレン系化合物の場合、立体的に大きな四置換基を持つために同文献の最終段階での合成方法により合成することが非常に困難であり、高収率で工業的に大量に合成することが難しい。これに対し、本発明の一般式(I)で示される四置換エチレン系化合物は、膜中の空間においてもフラツイスト機構による光異性化を防ぐことが可能である。さらに、該四置換エチレン系化合物は四置換構造であり立体的に混み合っている構造であるため、エチレン部位がオゾンやNOx等による外的要因による光分解が起こりにくい。また、本発明は合成方法についても特許文献9とは異なる方法を用いることから、工業的な生産を可能にする。
単層型感光体の一例を示す概略断面図である。 負帯電積層型感光体の一例を示す概略断面図である。 正帯電積層型感光体の一例を示す概略断面図である。 化合物(I-1)のNMRチャート図である。
 以下、本発明の実施形態について、詳細に説明する。
 本発明のエチレン系化合物は、下記一般式(I)、
Figure JPOXMLDOC01-appb-I000008
で表される化合物である。以下、一般式(I)で表される化合物を化合物(I)とも称す。他の化合物も同様に記す。
 上記一般式(I)中、R、RおよびRは、各々独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基または炭素数1~6のアルコキシル基を示し、Rは炭素数1~3のアルキル基、フェニル基またはトリル基を示し、Arは炭素数7~20のアリール基または複素環基を示す。
 本発明において、炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基等が挙げられ、一部あるいは全部の水素原子が、フッ素、塩素、臭素、ヨウ素等のハロゲン原子、炭素原子数1~3のアルキル基等で置換されていてもよい。
 また、本発明において、炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、iso-ブトキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基等が挙げられ、一部あるいは全部の水素原子が、フッ素、塩素、臭素、ヨウ素等のハロゲン原子、炭素原子数1~3のアルキル基等で置換されていてもよい。
 さらに、本発明において、R、RおよびRのうち少なくとも2つが、水素原子またはメチル基であることが好ましく、また、R、RおよびRが、水素原子であることがより好ましい。
 また、Rとしては、メチル基、エチル基、プロピル基、イソプロピル基等の炭素数1~3のアルキル基、フェニル基またはトリル基が挙げられ、一部あるいは全部の水素原子が、フッ素、塩素、臭素、ヨウ素等のハロゲン原子等で置換されていてもよい。さらに、特にRはメチル基であることが好ましい。
 また、本発明において、炭素数7~20のアリール基としては、ナフチル基、ビフェニル基、アントリル基、フェナントリル基等が挙げられ、一部あるいは全部の水素原子が、フッ素、塩素、臭素、ヨウ素等のハロゲン原子、炭素原子数1~3のアルキル基等で置換されていてもよい。
 さらに、本発明において、複素環基としては、フリル基、チエニル基、ピリジル基、ピペリジル基、キノリル基、イソキノリル基等が挙げられる。
 さらにまた、本発明において、Arがナフチル基、ビフェニル基、アントリル基、トリル基、キシリル基およびフェナントリル基よりなる群から選ばれる一種であることが好ましい。また、特に、Arがアントリル基であることがより好ましい。
 上記化合物(I)としては、例えば、下記表1~4記載の化合物(I-1)~(I-108)が挙げられる。なお、下記表1~4中、Hは水素原子、Meはメチル基、Etはエチル基を示し、*1~*10は下記構造の置換基を示す。
*1
Figure JPOXMLDOC01-appb-I000009
*2
Figure JPOXMLDOC01-appb-I000010
*3
Figure JPOXMLDOC01-appb-I000011
*4
Figure JPOXMLDOC01-appb-I000012
*5
Figure JPOXMLDOC01-appb-I000013
*6
Figure JPOXMLDOC01-appb-I000014
*7
Figure JPOXMLDOC01-appb-I000015
*8
Figure JPOXMLDOC01-appb-I000016
*9
Figure JPOXMLDOC01-appb-I000017
*10
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 本発明において、化合物(I)は、例えば、以下のようにして製造する。
(a)工程:
 下記反応式1に示すように、化合物1、ケトン類化合物(A)、2-(ジシクロヘキシルホスフィノ)ビフェニル(DCHPBP)、トリスジベンジリデンアセトンジパラジウム(パラジウム触媒、Pd cat.)、t-BuONaを反応させて、化合物2が得られる。
反応式1
Figure JPOXMLDOC01-appb-I000023
(b)工程:
 下記反応式2に示すように、触媒(n-BuLi)の存在下、溶剤(テトラヒドロフラン、THF)中にて化合物3とアルデヒド(RPhCHO)を反応させて化合物4とし、化合物4を抽出、精製する。
反応式2
Figure JPOXMLDOC01-appb-I000024
(c)工程:
 下記反応式3に示すように、溶剤(CHCl)中にて化合物4と三臭化リンを反応させて、化合物5が得られる。
反応式3
Figure JPOXMLDOC01-appb-I000025
(d)工程:
 下記反応式4に示すように、化合物5とNaIO-DMF(ジメチルホルムアミド)とを反応させて化合物6とし、化合物6を抽出、精製する。
反応式4
Figure JPOXMLDOC01-appb-I000026
(e)工程:
 下記反応式5に示すように、触媒の存在下、溶剤中にて化合物6と化合物2とを反応させて化合物(I)とし(マクマリー(McMurry)反応)、化合物(I)を抽出、精製する。
反応式5
Figure JPOXMLDOC01-appb-I000027
 本発明において合成した化合物(I)は、E-体及びZ-体の混合物となる場合がある。この場合、E-体とZ-体の溶解性が異なる溶媒に混合物を溶解させることによりE-体単独、もしくはZ-体単独に分離することが可能である。あるいはカラム精製により分離することが可能である。
 上記反応式5において、化合物2と化合物6との反応割合(モル比)は、1:1が好ましい。上記化合物2が少なすぎると、化合物(I)の収率が悪くなる場合がある。一方、上記化合物2が多すぎると、未反応の化合物2が多くなり、化合物(I)の精製が困難となるおそれがある。
 また、反応温度は、-20~100℃が好ましく、反応時間は、2~8時間が好ましい。該範囲とすることにより、比較的簡易な製造設備で、所望の反応を効率的に実施できる。
 さらに、触媒としては、例えば、四塩化チタン-亜鉛、三塩化チタン-水素化アルミウムリチウム、三塩化チタン-亜鉛、三塩化チタン-銅、三塩化チタン-リチウム等が挙げられる。触媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 触媒の添加量は、1モルの化合物6に対して、1~1.5モルが好ましい。触媒の添加量が1モル未満では、化合物2と化合物6との反応性が著しく低下するおそれがある。触媒の添加量が1.5モルを超えると、化合物2と化合物6との反応を制御することが困難になるおそれがある。
 反応式1の化合物1としては下記式の化合物1-1~1-10が好ましい。更に好ましくは下記式1-1及び1-2が挙げられる。
Figure JPOXMLDOC01-appb-I000028
 また、反応式1の化合物(A)としては下記式の化合物A-1~A-6が好ましい。
Figure JPOXMLDOC01-appb-I000029
 さらに、反応式2の化合物3としては下記式の化合物3-1~3-6が好ましい。
Figure JPOXMLDOC01-appb-I000030
 さらにまた、反応式2のアルデヒド化合物(RPhCHO)としては下記式の化合物R3-1~R3-4が好ましい。更に好ましくは化合物R3-1、R3-2が挙げられる。
Figure JPOXMLDOC01-appb-I000031
 本発明の電荷輸送剤は、上記一般式(I)で表されるエチレン系化合物(化合物(I))を含むものである。
(電子写真用感光体)
 本発明の電子写真用感光体は、導電性基体上に少なくとも感光層を備えた電子写真用感光体において、該感光層中に、上記一般式(I)で表されるエチレン系化合物(化合物(I))を含む電子写真用感光体である。
 本発明において、電子写真用感光体としては、感光層の層構成により(i)単層型感光体、(ii)積層型感光体が挙げられる。これらの感光体は、正負いずれの帯電型感光体としても用いることができる。また、感光層は少なくとも電荷輸送剤を含み、さらには電荷発生剤および結着樹脂を含むことが好ましい。
(単層型感光体)
 図1は、単層型感光体の一例を示す概略断面図である。単層型感光体110は、導電性基体10と、導電性基体10上に設けられた下引き層20と、電荷発生剤、電荷輸送剤および結着樹脂を含有する感光層30とを有する。
 導電性基体10としては、例えば、鉄、アルミニウム、銅、スズ、白金、銀、バナジウム、モリブデン、クロム、カドミウム、チタン、ニッケル、パラジウム、インジウム、ステンレス鋼、真鍮等の金属;該金属が蒸着またはラミネートされたプラスチック材料;ヨウ化アルミニウム、酸化スズ、酸化インジウム等で被覆されたガラス等が挙げられる。導電性基体の形状としては、シート状、ドラム状等が挙げられる。導電性基体10の形状は、画像形成装置の構造に合わせて適宜決定すればよい。
 下引き層20は、樹脂を主成分とする層やアルマイトなどの金属酸化皮膜からなり、導電性基体10から感光層30への電荷の注入性を制御するため、または基体表面の欠陥の被覆、感光層30と下地との接着性の向上などの目的で必要に応じて設けられる。下引き層20に用いられる樹脂材料としては、カゼイン、ポリビニルアルコール、ポリアミド、メラミン、セルロースなどの絶縁性高分子、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性高分子が挙げられ、これらの樹脂は単独で、あるいは適宜組み合わせて混合して用いることができる。また、これらの樹脂に二酸化チタン、酸化亜鉛などの金属酸化物を含有することができる。
 感光層30は、例えば、少なくとも化合物(I)を含む電荷輸送剤、電荷発生剤および結着樹脂と、必要に応じて電子(電荷)輸送剤と、を溶剤に溶解または分散させた塗布液を、導電性基体10上に塗布し、乾燥させることで形成される。塗布液の調製は、ロールミル、ボールミル、アトライタ、ペイントシェーカー、超音波分散機等を用いて、各成分を溶剤に溶解または分散さることによって行われる。塗布方法は、公知の方法を用いればよい。なお、化合物(I)を含む電荷輸送剤は、以下において正孔輸送剤と称されることもある。
 感光層30の厚さは、5~100μmが好ましく、10~50μmがより好ましい。感光層30の厚さが、上記範囲外であると、所期の効果が十分でない場合があり、好ましくない。
 感光層30において、正孔輸送剤としては、化合物(I)単独で、あるいはヒドラゾン化合物、ブタジエン化合物、ジアミン化合物、インドール化合物、インドリン化合物、スチルベン化合物、ジスチルベン化合物などと適宜組み合わせで混合して用いられる。感光層30では、化合物(I)のZ-体およびE-体を、いずれか一方を主としてもしくは単独で用いてもよいし、または、両者を混合して用いてもよい。正孔輸送剤の含有量は、単層型感光層30の固形分に対して、好適には、1~50質量%、より好適には、3~40質量%である。
 また、感光層30において用いられる電子輸送剤としては、無水琥珀酸、無水マレイン酸、ジブロモ無水琥珀酸、無水フタル酸、3-ニトロ無水フタル酸、4-ニトロ無水フタル酸、無水ピロメリット酸、ピロメリット酸、トリメリット酸、無水トリメリット酸、フタルイミド、4-ニトロフタルイミド、テトラシアノエチレン、テトラシアノキノジメタン、クロラニル、ブロマニル、o-ニトロ安息香酸、マロノニトリル、トリニトロフルオレノン、トリニトロチオキサントン、ジニトロベンゼン、ジニトロアントラセン、ジニトロアクリジン、ニトロアントラキノン、ジニトロアントラキノン、チオピラン系化合物、キノン系化合物、ベンゾキノン化合物、ジフェノキノン系化合物、ナフトキノン系化合物、アントラキノン系化合物、スチルベンキノン系化合物、アゾキノン系化合物等を挙げることができる。また、これら電子輸送剤を単独または2種以上組み合わせて使用することが可能である。電子輸送剤の含有量は、単層型感光層30の固形分に対して、好適には、1~50質量%、より好適には、3~40質量%である。
 また、電荷発生剤としては、チタニルフタロシアニン、無金属フタロシアニン系顔料等の単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 結着樹脂としては、例えば、ビスフェノールZ型、ビスフェノールZC型、ビスフェノールC型、ビスフェノールA型等のポリカーボネート樹脂、ポリアリレート樹脂、スチレン-ブタジエン共重合体、スチレン-アクリロニトリル共重合体、スチレン-マレイン酸共重合体、アクリル共重合体、スチレン-アクリル酸共重合体、ポリエチレン樹脂、エチレン-酢酸ビニル共重合体、塩素化ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリプロピレン樹脂、アイオノマー樹脂、塩化ビニル-酢酸ビニル共重合体、アルキド樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリスルホン樹脂、ジアリルフタレート樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポリエーテル樹脂等の熱可塑性樹脂;シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂等の熱硬化性樹脂;エポキシアクリレート、ウレタン-アクリレート等の光硬化型樹脂等が挙げられる。結着樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 感光層30は、電子写真特性に悪影響を与えない範囲で、公知の添加剤を含有していてもよい。添加剤としては、例えば、酸化防止剤、ラジカル捕捉剤、一重項クエンチャー、紫外線吸収剤等の劣化防止剤、軟化剤、可塑剤、表面改質剤、増量剤、増粘剤、分散安定剤、ワックス、アクセプター、ドナー等が挙げられる。また、感光層30の感度を向上させるために、テルフェニル、ハロナフトキノン類、アセナフチレン等の公知の増感剤を電荷発生剤と併用してもよい。
 上述の材料を溶解、分散させて塗布液を調整する溶剤としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール等のアルコール類;n-ヘキサン、オクタン、シクロヘキサン等の脂肪族系炭化水素;ベンゼン、トルエン、キシレン等の芳香族系炭化水素;ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン等のハロゲン化炭化水素;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸メチル等のエステル類;ジメチルホルムアルデヒド、ジメチルホルムアミド、ジメチルスルホキシド等が挙げられる。溶剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。塗布液には、各成分の分散性、感光層表面の平滑性をよくするために、界面活性剤、レベリング剤等を添加してもよい。
(負帯電積層型感光体)
 図2は、負帯電積層型感光体の一例を示す概略断面図である。負帯電積層型感光体120は、導電性基体10、導電性基体10上に設けられた下引き層20、電荷発生剤を含有する電荷発生層40、および電荷発生層40上に設けられた電荷輸送層50と、を有する。ここで、感光層30は、電荷発生層40および電荷輸送層50が順次積層され構成される。
 導電性基体10および下引き層20としては、単層型感光体110と同様のものを用いることができる。
 電荷発生層40は電荷発生剤と結着樹脂を含む。電荷発生剤としてはチタニルフタロシアニン、無金属フタロシアニンのいずれか、もしくは両者が用いられる。また、結着樹脂としては特に制限はなく上記と同様のものを使用でき、各種のポリ塩化ビニル、ポリビニルブチラール、ポリビニルアセタール、ポリエステル、ポリカーボネート、アクリル樹脂、フェノキシ樹脂等の中から適切なものを選択することができる。さらに、電荷発生層40の膜厚としては0.1~5μm、特には0.2~0.5μmが好適である。
 電荷輸送層50は、電荷輸送剤と結着樹脂を含む。電荷輸送剤としては、化合物(I)単独で、あるいはヒドラゾン化合物、ブタジエン化合物、ジアミン化合物、インドール化合物、インドリン化合物、スチルベン化合物、ジスチルベン化合物等と適宜組み合わせで混合して用いられる。また、結着樹脂としては、ビスフェノールA型、ビスフェノールZ型、ビスフェノールA型-ビフェニル共重合体等のポリカーボネート樹脂、ポリスチレン樹脂、ポリフェニレン樹脂などがそれぞれ単独で、あるいは適宜組み合わせで混合して用いられる。電荷輸送層50では、化合物(I)のZ-体およびE-体を、いずれか一方を主としてもしくは単独で用いてもよいし、または、両者を混合して用いてもよい。電荷輸送剤の含有量は、電荷輸送層50の固形分に対して、好適には、10~90質量%、より好適には、20~80質量%である。電荷輸送層50の膜厚としては、実用上有効な表面電位を維持するためには3~50μmの範囲が好ましく、より好適には15~40μmである。
 さらに、下引き層20、電荷輸送層50には感度の向上、残留電位の減少、あるいは耐環境性や有害な光に対する安定性の向上などを目的として必要に応じて電子受容性物質、酸化防止剤、光安定剤などを添加することができる。このような目的に用いられる化合物としては、トコフェロールなどのクロマール誘導体およびエーテル化合物、エステル化合物、ポリアリールアルカン化合物、ハイドロキノン誘導体、ジエーテル化合物、ベンゾフェノン誘導体、ベンゾトリアゾール誘導体、チオエーテル化合物、フェニレンジアミン誘導体、ホスホン酸エステル、亜リン酸エステル、フェノール化合物、ヒンダードフェノール化合物、直鎖アミン化合物、環状アミン化合物、ヒンダードアミン化合物等が挙げられるが、これらに限定されるものではない。
 さらに、感光層30中には、形成した膜のレベリング性の向上や、さらなる潤滑性の付与を目的として、シリコーンオイルやフッ素系オイルなどのレベリング剤を含有させることもできる。
 また、感光層30表面に、耐環境性や機械的強度をより向上させる目的で、必要に応じてさらに表面保護層を設けてもよい。表面保護層は、機械的ストレスに対する耐久性および耐環境性に優れた材料で構成され、電荷発生層40が感応する光をできるだけ低損失で透過させる性能を有していることが望まれる。
 下引き層20は、例えば、単層型感光体110の感光層30と同様に塗布等の手段によって形成される。また、電荷発生層40は、例えば、蒸着、塗布等の手段によって形成される。さらに、電荷輸送層50は、例えば、単層型感光体110の感光層30と同様に塗布等の手段によって形成される。
(正帯電積層型感光体)
 図3は、正帯電積層型感光体の一例を示す概略断面図である。正帯電積層型感光体130は、導電性基体10、導電性基体10上に設けられた下引き層20、電荷輸送層50、電荷輸送層50上に設けられた電荷発生剤を含有する電荷発生層40と、を有する。ここで、感光層30は、電荷輸送層50および電荷発生層40が順次積層され構成される。
 正帯電積層型感光体130においては、電荷輸送層50は、主として電荷輸送剤と樹脂バインダとにより構成される。電荷輸送剤および樹脂バインダとして、負帯電積層型感光体120における電荷輸送層50の実施の形態に挙げたものと同じ材料を用いることができる。各材料の含有量、電荷輸送層50の膜厚も負帯電積層型感光体120と同様とすることができる。
 電荷輸送層50上に設けられる電荷発生層40は、主として電荷発生剤、正孔輸送剤、電子輸送剤(アクセプター性化合物)、および樹脂バインダからなる。電荷発生剤、正孔輸送剤、電子輸送剤、および樹脂バインダとして、単層型感光体110における単層型感光層30の実施の形態として挙げたものと同じ材料を用いることができる。各材料の含有量は単層型感光体110における単層感光層30の実施の形態として挙げた量と同様にすることができる。電荷発生層40の膜厚は3~50μmの範囲が好ましく、より好適には8~35μmである。
 なお、実施の形態として3種類の感光層を説明したが、本発明の感光層はこれらの層構成に限定されるものではなく、他の機能層を付加したものを含む。
 次に、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を超えない限り以下の製造例、実施例に限定されるものではない。なお、実施例中「部」とあるのは「質量部」を示す。
[製造例1]
(化合物I-1の製造)
(a)工程:
 2Lの2口フラスコに、下記化合物11(25.5g、0.15モル)、1-(4-クロロ-フェニル)エタノン(23.3g、0.15モル)、2-(ジシクロヘキシルホスフィノ)ビフェニル(0.13g、0.038ミリモル)、トリスジベンジリデンアセトンジパラジウム(0.17g、0.19ミリモル)、t-BuONa(15.4g、0.16モル)、o-キシレン500mLを入れ、アルゴン置換して、120℃にて5時間攪拌した後、室温まで冷却した。反応液中の有機層をイオン交換水で3回洗浄し、有機層に無水硫酸ナトリウムおよび活性白土を加え、乾燥および吸着処理し、キシレンを減圧留去した。得られた残渣をカラムクロマトグラフィー(クロロホルム/へキサン展開)にて精製し、下記化合物12として、固体(収量37.02g、収率86%)を得た。
Figure JPOXMLDOC01-appb-I000032
(b)工程:
 2Lのフラスコに、下記化合物13(16.2g、0.063モル)、nBuLi(27.7mL、0.07モル)、テトラヒドロフラン(THF)500mLを入れ、アルゴン置換して、-78℃にて30分攪拌した後、ベンズアルデヒド(PhCHO)(9.60g、0.09モル)を添加し、再び1時間攪拌した。攪拌後、反応液を-30℃までに上昇し、塩化アルミニウム水溶液を入れ、常温まで酢酸イソプロピル(IPAC)を入れ、有機層に無水硫酸ナトリウムを加えた。得られた残渣をカラムクロマトグラフィーにて精製し、下記化合物14として、固体(収量11.4g、収率63%)を得た。
(c)工程:
 2Lのフラスコに、化合物14(11.4g、0.039モル)、ジクロロメタン400mLを入れ、アルゴン置換して、-25℃にて15分攪拌した後、三臭化リン(4.25g、0.016モル)を添加し、再び3時間攪拌した。反応液中に水およびジクロロメタンを入れ、有機層に無水硫酸ナトリウムを加え、精製し、下記化合物15として、固体(収量12.69g、収率93%)を得た。
Figure JPOXMLDOC01-appb-I000034
(d)工程:
 2Lのフラスコに、化合物15(12.69g、0.037モル)、NaIO(7.92g、0.037モル)、ジメチルホルムアミド(DMF)500mLを入れ、150℃にて5時間攪拌した。反応液中にエーテルと水を入れ、有機層に無水硫酸ナトリウムを加え、エーテルを留去した。得られた残渣をカラムにて精製し、下記化合物16として、固体(収量8.27g、収率80%)を得た。
Figure JPOXMLDOC01-appb-I000035
(e)工程:
 2Lの3口フラスコに、化合物16(8.27g、0.029モル)および化合物12(8.32g、0.029モル)を入れ、アルゴン置換を行い、乾燥させたジオキサン200mLおよび四塩化チタン(3.82mL、0.035モル)を加え、室温にて30分攪拌した。攪拌後、亜鉛(3.77g、0.058モル)を添加し、2時間攪拌した後、100℃まで3時間反応した。その後、反応液中の有機層をイオン交換水で3回洗浄し、エーテルにて抽出し、有機層に無水硫酸ナトリウムを加え、エーテルを減圧留去した。再結晶(酢酸エチル/へキサン)にて精製し、化合物(I-1)として、固体(収量6.38g、収率41%)を得た。
Figure JPOXMLDOC01-appb-I000036
 得られた化合物(I-1)の分析結果を以下に示す。
(1)NMR分析結果(E/Z=58/42)
 図4に化合物(I-1)のNMRチャートを示し、下記に化合物(I-1)のシグナルを示す。
H-NMR (CDCl 400MHz);δ8.41(0.58H,s,Ar-H for E),δ8.39(0.42H,s,Ar-H for Z),δ8.28(0.58H,s,Ar-H for E),δ8.14(0.42H,s,Ar-H for Z),δ8.01-7.91(3H,m,Ar-H for E and Z),δ7.69-7.13(10H,m,Ar-H for E and Z),δ7.11-6.79(13H,m,Ar-H for E and Z),δ2.26(1.74H,s,CH for E,),δ2.23(1.26H,s,CH3 for Z).
(2)質量分析結果
m/e=537(計算値 537)
〔製造例2〕
 製造例1のエチレン系化合物(No.I-1)の(e)工程において、化合物16及び化合物12を特開昭60-104951号公報記載の合成方法に従い反応を試みたが、目的物は得られなかった。
(負帯電積層型感光体の製造)
〔実施例1〕
 アルコール可溶性ナイロン(東レ(株)製、「CM 8000」(商品名))5質量部、アミノシラン処理された酸化チタン微粒子5質量部を、メタノール90質量部に溶解、分散させて塗布液を調製した。また、導電性基体として外径24mmのアルミニウム製円筒を使用した。このアルミニウム製円筒の外周に、下引き層として、該塗布液を浸積塗工し、温度100℃で30分間乾燥して、膜厚約2μmの下引き層を形成した。
 次に、ポリビニルブチラール樹脂1質量部をジクロロメタン98質量部に溶解し、これにα型チタニルフタロシアニン2質量部を加えてスラリーを作製した。該スラリー5Lをビーズ径0.4μmのジルコニアビーズをベッセル容量に対して85v/v%の嵩充填率で充填したディスクタイプのビーズミルを用いて、処理液流量300mL,ディスク周速3m/sにて10パス分処理を行い、電荷発生層塗布液とした。
 得られた電荷発生層塗布液を用いて、上記下引き層を形成した導電性基体に電荷発生層を成膜した。乾燥温度80℃,乾燥時間30minの条件で乾燥した。得られた電荷発生層の乾燥後膜厚は0.1~0.5μmであった。
 この電荷発生層上に、電荷輸送剤としてエチレン系化合物(No.I-1)9質量部、結着樹脂としてポリカーボネート樹脂(出光興産(株)製、タフゼットB-500(商品名))11質量部をジクロロメタン80質量部に溶解した塗布液を浸漬塗工した。次いで、温度90℃で60min乾燥して25μmの電荷輸送層を形成し、電子写真用感光体を作製した。
〔実施例2〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-2、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例3〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-3、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例4〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-4)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例5〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-5、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例6〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-6、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例7〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-7)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例8〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-8、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例9〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-9、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例10〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-10)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例11〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-11、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例12〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-12、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例13〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-13)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例14〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-14、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例15〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-15、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例16〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-16)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例17〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-17、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例18〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-18、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例19〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-19)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例20〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-20、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例21〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-21、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例22〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-22)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例23〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-23、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例24〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-24、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例25〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-25)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例26〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-26、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例27〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-27、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例28〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-28)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例29〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-29、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例30〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-30、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例31〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-31)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例32〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-32、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例33〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-33、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例34〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-34)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例35〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-35、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例36〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-36、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
[実施例37]
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-37)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例38〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-38、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例39〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-39、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例40〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-40)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例41〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-41、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例42〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-42、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例43〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-43)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例44〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-44、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例45〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-45、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例46〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-46)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例47〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-47、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例48〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-48、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例49〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-49)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例50〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-50、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例51〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-51、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例52〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-52)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例53〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-53、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例54〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-54、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例55〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-55)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例56〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-56、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例57〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-57、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例58〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-58)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例59〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-59、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例60〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-60、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例61〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-61)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例62〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-62、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例63〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-63、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例64〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-64)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例65〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-65、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例66〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-66、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例67〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-67)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例68〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-68、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例69〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-69、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例70〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-70)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例71〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-71、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
[実施例72]
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-72、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例73〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-73)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例74〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-74、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例75〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-75、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例76〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-76)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例77〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-77、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例78〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-78、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例79〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-79)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例80〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-80、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例81〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-81、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例82〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-82)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例83〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-83、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例84〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-84、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例85〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-85)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例86〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-86、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例87〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-87、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例88〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-88)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例89〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-89、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例90〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-90、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例91〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-91)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例92〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-92、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例93〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-93、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例94〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-94)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例95〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-95、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例96〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-96、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例97〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-97)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例98〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-98、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例99〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-99、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例100〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-100)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例101〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-101、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例102〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-102、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例103〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-103)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例104〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-104、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例105〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-105、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例106〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-106)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
[実施例107]
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-107、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例108〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、エチレン系化合物(No.I-108、R、R、Rはp-位)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔実施例109〕
 実施例1で使用した電荷発生剤をY型チタニルフタロシアニンに代えた以外は実施例1と同様の方法で電子写真用感光体を作製した。
〔実施例110〕
 実施例1で使用した電荷発生剤を無金属フタロシアニンに代えた以外は実施例1と同様の方法で電子写真用感光体を作製した。
〔実施例111〕
 実施例1で使用した電荷輸送層での結着樹脂をポリカーボネート樹脂(三菱ガス化学製、PCZ-500)に代えた以外は実施例1と同様の方法で電子写真用感光体を作製した。
〔実施例112〕
 実施例1で使用した電荷輸送層での結着樹脂をポリカーボネート樹脂(三菱エンジニアリングプラスチックス製、S3000)に代えた以外は実施例1と同様の方法で電子写真用感光体を作製した。
〔比較例1〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、下記表5に示す公知の電荷輸送剤化合物(No.I-109)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。なお、表5中の記号は、上記表1~4と同様のものを示す。
〔比較例2〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、下記表5に示す公知の電荷輸送剤化合物(No.I-110)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
〔比較例3〕
 実施例1で用いたエチレン系化合物(No.I-1)に代えて、下記表5に示す公知の電荷輸送剤化合物(No.I-111)を用いたほかは、全く同様の方法で電子写真用感光体を作製した。
Figure JPOXMLDOC01-appb-T000037
(単層型感光体の製造)
〔実施例113〕
 導電性基体1としての外径24mmのアルミニウム製円筒の外周に、下引き層として、塩化ビニル-酢酸ビニル-ビニルアルコール共重合体(日信化学工業(株)製、商品名「ソルバインTA5R」)0.2質量部をメチルエチルケトン99質量部に攪拌溶解させて調製した塗布液を浸漬塗工し、温度100℃で30分間乾燥して、膜厚0.1μmの下引き層20を形成した。
 この下引き層20上に、電荷発生剤として下記式、
Figure JPOXMLDOC01-appb-I000038
で示される無金属フタロシアニン1質量部と、正孔輸送材料として化合物(I-1)を45質量部と、電子輸送材料として下記式、
Figure JPOXMLDOC01-appb-I000039
で示される化合物30質量部と、樹脂バインダとしてポリカーボネート樹脂(三菱ガス化学(株)製、PCZ-500(商品名))55質量部とを、テトラヒドロフラン350質量部に溶解、分散させて調製した塗布液を浸漬塗工し、温度100℃で60分間乾燥して、膜厚25μmの感光層を形成し、単層型感光体を作製した。
〔実施例114〕
 実施例113で使用した化合物(I-1)を化合物(I-37)とした以外は実施例113と同様の方法で単層型感光体を作製した。
〔実施例115〕
 実施例113で使用した無金属フタロシアニンをY型チタニルフタロシアニンとした以外は実施例113と同様の方法で単層型感光体を作製した。
比較例4
 実施例113で使用した化合物(I-1)を比較例1の化合物(I-109)に代えた以外は、実施例113と同様の方法で単層型感光体を作製した。
(正帯電積層型感光体の製造)
〔実施例116〕
 電荷輸送材料として化合物(I-1)を50質量部と、樹脂バインダとしてポリカーボネート樹脂(三菱ガス化学(株)製、PCZ-500(商品名))50質量部とを、ジクロロメタン800質量部に溶解して、塗布液を調製した。また、導電性基体1として外径24mmのアルミニウム製円筒を使用した。このアルミニウム製円筒の外周に、該塗布液を浸漬塗工し、温度120℃で60分間乾燥して、膜厚15μmの電荷輸送層を形成した。
 この電荷輸送層上に、電荷発生剤としての下記式、
Figure JPOXMLDOC01-appb-I000040
で示される無金属フタロシアニン1.5質量部と、正孔輸送材料としての化合物(I-1)を10質量部と、電子輸送材料としての下記式、
Figure JPOXMLDOC01-appb-I000041
で示される化合物25質量部と、樹脂バインダとしてポリカーボネート樹脂(三菱ガス化学(株)製、PCZ-500(商品名))60質量部とを、1、2-ジクロロエタン 800質量部に溶解、分散させて調製した塗布液を浸漬塗工した。次いで、温度100℃で60分間乾燥して、膜厚15μmの感光層を形成し、正帯電積層型感光体を作製した。
〔実施例117〕
 実施例116で使用した無金属フタロシアニンをY型チタニルフタロシアニンとした以外は実施例116と同様の方法で正帯電積層型感光体を作製した。
〔比較例5〕
 実施例116で使用した化合物(I-1)を化合物(I-109)に代えた以外は、実施例116と同様の方法で正帯電積層型感光体を作製した。
(評価)
 実施例1~112および比較例1~3にて得られた電子写真用感光体を、感光体の表面電位も測定できるように改造を施した市販のプリンター(ヒューレットパッカード社製LJ-4000)に装着し、実機中の明部電位(印字及び光照射前明部電位)を測定した。さらに、感光体を1500lx・sの蛍光灯下に12時間放置し、光照射した後、同様にLJ-4000プリンターに装着し、明部電位(光照射後明部電位)を測定した。結果を下記表6~12に示す。さらに同様にして作製したドラムを上記プリンターに装着し、A4用紙1万枚の印字を実施した後、感光体の明部電位(1万枚印字後明部電位)を測定した。ここで、光照射前後の電位変化量および1万枚印字前後の電位変化量、即ち数値の絶対値は、小さいほど電位変動が少なく、光劣化が小さく、かつ、光疲労が少なくなることを示す。
 また、実施例113~116及び比較例4、5において作製した電子写真用感光体を、感光体の表面電位も測定できるように改造を施したブラザー工業(株)製プリンターHL-2040に搭載して露光部電位を評価した。実機中の明部電位(印字及び光照射前明部電位)を測定した。さらに、感光体を1500lx・sの蛍光灯下に12時間放置し、光照射した後、同様にHL-2040プリンターに装着し、明部電位(光照射後明部電位)を測定した。結果を下記表13に示す。さらに同様に作製したドラムを上記プリンターに装着し、A4用紙1万枚の印字を実施した後、感光体の明部電位(1万枚印字後明部電位)を測定した。ここで、光照射前後の電位変化量および1万枚印字前後の電位変化量、即ち数値の絶対値は、小さいほど電位変動が少なく、光劣化が小さく、かつ、光疲労が少なくなることを示す。
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
 本発明による感光体は、プリンターでの1万枚印字前後の評価おいて、残留電位の上昇を防止でき、かつ、光照射前後においても、露光部の電位変動が少ないことから、長期間使用しても電子写真用感光体としての特性が安定で、光疲労特性に優れるという特徴を持つことが分かる。
10 導電性基体
20 下引き層
30 感光層
40 電荷発生層
50 電荷輸送層
110 単層型感光体
120 負帯電積層型感光体
130 正帯電積層型感光体

Claims (17)

  1.  下記一般式(I)、
    Figure JPOXMLDOC01-appb-I000001
    (一般式(I)中、R、RおよびRは、各々独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基または炭素数1~6のアルコキシル基を示し、Rは炭素数1~3のアルキル基、フェニル基またはトリル基を示し、Arは炭素数7~20のアリール基または複素環基を示す)で示されることを特徴とするエチレン系化合物。
  2.  下記一般式(I)、
    Figure JPOXMLDOC01-appb-I000002
    (一般式(I)中、R、RおよびRは、各々独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基または炭素数1~6のアルコキシル基を示し、Rは炭素数1~3のアルキル基、フェニル基またはトリル基を示し、Arは炭素数7~20のアリール基または複素環基を示す)で示されるエチレン系化合物を含むことを特徴とする電荷輸送剤。
  3.  導電性基体上に少なくとも感光層を備えた電子写真用感光体において、
     該感光層に、下記一般式(I)、
    Figure JPOXMLDOC01-appb-I000003
    (一般式(I)中、R、RおよびRは、各々独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基または炭素数1~6のアルコキシル基を示し、Rは炭素数1~3のアルキル基、フェニル基またはトリル基を示し、Arは炭素数7~20のアリール基または複素環基を示す)で表されるエチレン系化合物を含有することを特徴とする電子写真用感光体。
  4.  前記一般式(I)で示されるエチレン系化合物として、E-体およびZ-体よりなる群から選ばれる構造のエチレン系化合物を一種以上含む請求項3記載の電子写真用感光体。
  5.  前記一般式(I)において、Arがナフチル基、ビフェニル基、アントリル基、トリル基、キシリル基およびフェナントリル基よりなる群から選ばれる一種である請求項3記載の電子写真用感光体。
  6.  前記一般式(I)において、Rがメチル基、エチル基、プロピル基、イソプロピル基、フェニル基およびトリル基よりなる群から選ばれる一種である請求項3記載の電子写真用感光体。
  7.  前記一般式(I)において、Rがメチル基、エチル基、プロピル基、イソプロピル基、フェニル基およびトリル基よりなる群から選ばれる一種である請求項5記載の電子写真用感光体。
  8.  前記一般式(I)において、R、RおよびRのうち少なくとも2つが、水素原子またはメチル基である請求項3記載の電子写真用感光体。
  9.  前記一般式(I)において、R、RおよびRのうち少なくとも2つが、水素原子またはメチル基である請求項7記載の電子写真用感光体。
  10.  前記一般式(I)において、R、RおよびRが、水素原子である請求項3記載の電子写真用感光体。
  11.  前記一般式(I)において、Rがメチル基である請求項10記載の電子写真用感光体。
  12.  前記一般式(I)において、Arがアントリル基である請求項11記載の電子写真用感光体。
  13.  前記感光層が、少なくとも電荷発生剤、電荷輸送剤および結着樹脂を含有し、前記電荷輸送剤として、前記一般式(I)で表されるエチレン系化合物を含有する請求項3記載の電子写真用感光体。
  14.  前記感光層が、前記電荷発生剤として、チタニルフタロシアニンおよび無金属フタロシアニンから選ばれる一種以上を含有する請求項13記載の電子写真用感光体。
  15.  前記電荷発生剤を含有する電荷発生層、および前記電荷輸送剤を含有する電荷輸送層を順次積層してなる前記感光層を備えた請求項13記載の電子写真用感光体。
  16.  前記電荷発生剤および前記電荷輸送剤を含有する単層からなる前記感光層を備えた請求項13記載の電子写真用感光体。
  17.  電子写真用感光体の製造方法において、下記一般式(I)、
    Figure JPOXMLDOC01-appb-I000004
    (一般式(I)中、R、RおよびRは、各々独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基または炭素数1~6のアルコキシル基を示し、Rは炭素数1~3のアルキル基、フェニル基またはトリル基を示し、Arは炭素数7~20のアリール基または複素環基を示す)で表されるエチレン系化合物を含む塗布液を導電性基体上に塗布することにより感光層を形成する工程を含むことを特徴とする電子写真用感光体の製造方法。
PCT/JP2009/062505 2008-07-18 2009-07-09 新規エチレン系化合物、それを含む電荷輸送材料、それを含む電子写真用感光体およびその製造方法 WO2010007930A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020107019121A KR101235002B1 (ko) 2008-07-18 2009-07-09 신규 에틸렌계 화합물, 그것을 포함하는 전하 수송 재료, 그것을 포함하는 전자 사진용 감광체 및 그의 제조 방법
CN200980108223.7A CN101959844B (zh) 2008-07-18 2009-07-09 新乙烯类化合物、包含其的电荷输送材料、包含其的电子照相用感光体及其制造方法
JP2010520840A JP5321985B2 (ja) 2008-07-18 2009-07-09 新規エチレン系化合物、それを含む電荷輸送材料、それを含む電子写真用感光体およびその製造方法
US12/921,374 US8951702B2 (en) 2008-07-18 2009-07-09 Charge transport material that is an ethylene compound, electrophotographic photoreceptor containing the charge transport material, and process for producing the electrophotographic photoreceptor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008187022 2008-07-18
JP2008-187022 2008-07-18

Publications (1)

Publication Number Publication Date
WO2010007930A1 true WO2010007930A1 (ja) 2010-01-21

Family

ID=41550333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062505 WO2010007930A1 (ja) 2008-07-18 2009-07-09 新規エチレン系化合物、それを含む電荷輸送材料、それを含む電子写真用感光体およびその製造方法

Country Status (6)

Country Link
US (1) US8951702B2 (ja)
JP (1) JP5321985B2 (ja)
KR (1) KR101235002B1 (ja)
CN (1) CN101959844B (ja)
TW (1) TWI449684B (ja)
WO (1) WO2010007930A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140199619A1 (en) * 2011-08-05 2014-07-17 Fuji Electric Co., Ltd. Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic apparatus using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105694859B (zh) * 2015-06-10 2018-06-08 广东阿格蕾雅光电材料有限公司 有机电子发光材料
WO2019077706A1 (ja) * 2017-10-18 2019-04-25 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置
KR20210072209A (ko) * 2019-12-06 2021-06-17 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 아민 화합물

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081757A (ja) * 1998-09-04 2000-03-21 Canon Inc 電子写真装置、電子写真感光体及びプロセスカートリッジ
JP2003021925A (ja) * 2001-07-06 2003-01-24 Canon Inc 電子写真感光体、電子写真装置及びプロセスカートリッジ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2297691A (en) 1939-04-04 1942-10-06 Chester F Carlson Electrophotography
US3816118A (en) 1964-06-15 1974-06-11 Xerox Corp Electrophotographic element containing phthalocyanine
US3825422A (en) 1972-10-26 1974-07-23 Xerox Corp Imaging process
JPS5389433A (en) 1977-01-17 1978-08-07 Mita Industrial Co Ltd Photosensitive body for electrophotography
JPS57148745A (en) 1981-03-11 1982-09-14 Nippon Telegr & Teleph Corp <Ntt> Lamination type electrophotographic receptor
JPS60104951A (ja) 1983-11-14 1985-06-10 Ricoh Co Ltd 電子写真感光体
JPH01287572A (ja) * 1987-03-12 1989-11-20 Konica Corp 電子写真感光体
JP2646357B2 (ja) * 1987-05-26 1997-08-27 キヤノン株式会社 電子写真感光体
JPS63292137A (ja) * 1987-05-26 1988-11-29 Canon Inc 電子写真感光体
JPH01245263A (ja) * 1988-03-28 1989-09-29 Toshiba Corp 電子写真感光体
JP2876060B2 (ja) 1989-04-03 1999-03-31 株式会社リコー 電子写真感光体
JPH02312096A (ja) 1989-05-26 1990-12-27 Ricoh Co Ltd センスアンプ装置
JPH034231A (ja) * 1989-05-31 1991-01-10 Canon Inc 電子写真感光体
JPH05112508A (ja) 1991-10-17 1993-05-07 Mita Ind Co Ltd スチルベン誘導体およびそれを用いた電子写真感光体
JPH07120950A (ja) 1992-06-18 1995-05-12 Mita Ind Co Ltd 電子写真感光体
US5476506A (en) 1994-02-08 1995-12-19 Ethicon, Inc. Bi-directional crimped graft
JP3808139B2 (ja) * 1996-08-20 2006-08-09 株式会社リコー 電子写真感光体
JP3816163B2 (ja) * 1996-09-27 2006-08-30 株式会社リコー 電子写真感光体
JPH10228121A (ja) 1997-02-14 1998-08-25 Fuji Electric Co Ltd 電子写真用感光体
JP3689546B2 (ja) 1997-12-25 2005-08-31 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP4010871B2 (ja) * 2001-05-30 2007-11-21 三井化学株式会社 有機電界発光素子および新規チオフェン化合物
JP3881648B2 (ja) * 2003-10-08 2007-02-14 シャープ株式会社 電子写真感光体およびそれを備える画像形成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081757A (ja) * 1998-09-04 2000-03-21 Canon Inc 電子写真装置、電子写真感光体及びプロセスカートリッジ
JP2003021925A (ja) * 2001-07-06 2003-01-24 Canon Inc 電子写真感光体、電子写真装置及びプロセスカートリッジ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140199619A1 (en) * 2011-08-05 2014-07-17 Fuji Electric Co., Ltd. Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic apparatus using same
US9904186B2 (en) * 2011-08-05 2018-02-27 Fuji Electric Co., Ltd. Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic apparatus using same

Also Published As

Publication number Publication date
TWI449684B (zh) 2014-08-21
US8951702B2 (en) 2015-02-10
KR20100120672A (ko) 2010-11-16
US20110183246A1 (en) 2011-07-28
CN101959844A (zh) 2011-01-26
JPWO2010007930A1 (ja) 2012-01-05
KR101235002B1 (ko) 2013-02-20
TW201008898A (en) 2010-03-01
CN101959844B (zh) 2015-08-26
JP5321985B2 (ja) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5321985B2 (ja) 新規エチレン系化合物、それを含む電荷輸送材料、それを含む電子写真用感光体およびその製造方法
JP2012073346A (ja) 電子写真感光体
JP6059197B2 (ja) キノン誘導体及び電子写真感光体
JP5883839B2 (ja) 電子写真感光体
JP2011154226A (ja) 電子写真感光体
JP5887323B2 (ja) 電子写真感光体
JP2008063230A (ja) トリフェニルアミン誘導体および電子写真感光体
JP2010191175A (ja) 電子写真感光体
JP6192605B2 (ja) トリフェニルアミンヒドラゾン誘導体、及び電子写真感光体
JP2007147700A (ja) 電子写真感光体
JP6078517B2 (ja) 電子写真感光体
JP3641068B2 (ja) エナミン誘導体およびそれを用いた電子写真感光体
JP5231034B2 (ja) 電子写真感光体
JP5174470B2 (ja) 電子写真感光体
JP6059196B2 (ja) トリアリールアミン誘導体及び電子写真感光体
JP2008158060A (ja) 電子写真感光体
JP2008164776A (ja) 電子写真感光体
JP3694562B2 (ja) ジエナミン誘導体およびそれを用いた電子写真感光体
JP6047541B2 (ja) 電子写真感光体
JP4324525B2 (ja) 電子写真感光体
JP4489891B2 (ja) アルケニルアミン化合物及びそれを用いた電子写真感光体
JP2010191011A (ja) 電子写真感光体
JP2010037250A (ja) ジアミン誘導体および電子写真用感光体
JPWO2018163597A1 (ja) 電子写真感光体
JP2006038906A (ja) 電子写真感光体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108223.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797855

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010520840

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107019121

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12921374

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09797855

Country of ref document: EP

Kind code of ref document: A1