WO2010005084A1 - 耐塩素性に優れた配管機材用シール部材、耐塩素性に優れた配管機材用シール部材の製造方法、耐油性に優れた配管機材用シール部材及び配管機材 - Google Patents

耐塩素性に優れた配管機材用シール部材、耐塩素性に優れた配管機材用シール部材の製造方法、耐油性に優れた配管機材用シール部材及び配管機材 Download PDF

Info

Publication number
WO2010005084A1
WO2010005084A1 PCT/JP2009/062619 JP2009062619W WO2010005084A1 WO 2010005084 A1 WO2010005084 A1 WO 2010005084A1 JP 2009062619 W JP2009062619 W JP 2009062619W WO 2010005084 A1 WO2010005084 A1 WO 2010005084A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
sealing member
piping equipment
mass
ethylene
Prior art date
Application number
PCT/JP2009/062619
Other languages
English (en)
French (fr)
Inventor
徹 野口
宏之 植木
祐一 浅野
Original Assignee
日信工業株式会社
株式会社キッツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008181872A external-priority patent/JP5072750B2/ja
Priority claimed from JP2008181871A external-priority patent/JP5001232B2/ja
Application filed by 日信工業株式会社, 株式会社キッツ filed Critical 日信工業株式会社
Priority to US13/003,423 priority Critical patent/US20110166255A1/en
Priority to ES09794528T priority patent/ES2759475T3/es
Priority to EP09794528.1A priority patent/EP2311922B1/en
Priority to CN200980127048.6A priority patent/CN102089399B/zh
Publication of WO2010005084A1 publication Critical patent/WO2010005084A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • F16K1/226Shaping or arrangements of the sealing
    • F16K1/2263Shaping or arrangements of the sealing the sealing being arranged on the valve seat
    • F16K1/2265Shaping or arrangements of the sealing the sealing being arranged on the valve seat with a channel- or U-shaped seal covering a central body portion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/32Specific surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/02Inorganic compounds
    • C09K2200/0204Elements
    • C09K2200/0208Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/02Inorganic compounds
    • C09K2200/0278Fibres
    • C09K2200/0282Carbon fibres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0617Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0617Polyalkenes
    • C09K2200/062Polyethylene

Definitions

  • the present invention relates to a sealing member for piping equipment excellent in chlorine resistance, a method for producing a sealing member for piping equipment excellent in chlorine resistance, a sealing member for piping equipment excellent in oil resistance, and piping equipment.
  • Piping equipment such as valves that are installed in pipes for various fluids such as water, oil, and gas, and open and close the flow paths of these fluids, are equipped with seal members made of an elastic material such as rubber.
  • Such sealing materials for piping equipment have various characteristics such as hardness, tensile strength, elongation, tear strength, compression elasticity, wear resistance, oil resistance, chemical resistance, temperature resistance, and gas permeability resistance. (For example, refer to Japanese Patent No. 2932420). Therefore, a seal member for piping equipment in which carbon black is blended with ethylene / propylene rubber (EPDM) having excellent mechanical strength has been used.
  • EPDM ethylene / propylene rubber
  • a rubber seat for a butterfly valve (hereinafter referred to as a sealing member) that does not use carbon black as a reinforcing agent has been proposed (see, for example, Japanese Patent No. 2872830).
  • a butterfly valve because of its structure, has a large liquid contact area when compared to a seal member used in a stationary manner, and the wet lubrication fluid is applied to the seal member at a high speed to apply lubrication. Since the effect of the material fades in a short period of time, and the disc is a mechanism that slides while strongly pressing the seal member, the black component tends to be peeled off due to chlorine deterioration of the seal member.
  • ethylene / propylene rubber tends to be inferior in oil resistance because it swells with mineral oil or gasoline, which is a nonpolar oil, and nitrile rubber (NBR) is used as a seal member for piping equipment applications that require oil resistance. Adopted. Therefore, a further improvement in oil resistance has been desired for a seal member for piping equipment using ethylene / propylene rubber.
  • NBR nitrile rubber
  • An object of the present invention is to provide a sealing member for piping equipment having excellent chlorine resistance, a method for producing a sealing member for piping equipment excellent in chlorine resistance, a sealing member for piping equipment and piping equipment having excellent oil resistance. It is in.
  • the sealing member for piping equipment excellent in chlorine resistance according to the present invention is It includes ethylene / propylene rubber, surface-oxidized carbon nanofibers, and carbon black having an average particle diameter of 50 nm to 10 ⁇ m.
  • the sealing member for piping equipment having excellent chlorine resistance surface oxidized carbon nanofibers and carbon black having an average particle diameter of 50 nm to 10 ⁇ m are present in an aqueous solution. Since it is relatively stable with respect to chlorous acid, hypochlorite ions, etc., there is little deterioration of rubber at the interface between these reinforcing agents and ethylene / propylene rubber, and it can be excellent in chlorine resistance. Moreover, according to the sealing member for piping equipment excellent in chlorine resistance according to the present invention, since it is reinforced by carbon nanofibers and carbon black, it can have excellent mechanical strength.
  • the carbon nanofiber may have a surface oxygen concentration of 2.6 atm% to 4.6 atm% as measured by X-ray photoelectron spectroscopy (XPS).
  • the carbon nanofiber may have an average diameter of 4 nm to 230 nm.
  • the carbon nanofibers 5 to 50 parts by mass and the carbon black 10 to 120 parts by mass can be blended with 100 parts by mass of the ethylene / propylene rubber.
  • a manufacturing method of a sealing member for piping equipment excellent in chlorine resistance is as follows.
  • a sealing member for piping equipment having excellent chlorine resistance
  • surface-oxidized carbon nanofibers and chlorine black having an average particle diameter of 50 nm to 10 ⁇ m are present in an aqueous solution. Since it is relatively stable against ions, hypochlorous acid, hypochlorite ions, etc., piping equipment with excellent chlorine resistance with little deterioration of rubber at the interface between these reinforcing agents and ethylene / propylene rubber
  • the sealing member for a product can be manufactured.
  • the reinforcing material is reinforced by carbon nanofiber and carbon black, the sealing member for piping equipment having excellent mechanical strength is provided. Can be manufactured.
  • the carbon nanofiber may have a surface oxygen concentration of 2.6 atm% to 4.6 atm% as measured by X-ray photoelectron spectroscopy (XPS).
  • the amount of increase in oxygen concentration on the surface of the second carbon nanofiber relative to the oxygen concentration on the surface of the first carbon nanofiber measured by X-ray photoelectron spectroscopy (XPS) is 0.
  • Oxidation treatment can be performed so that the concentration becomes 5 atm% to 2.6 atm%.
  • the increase rate of the oxygen concentration on the surface of the second carbon nanofibers relative to the oxygen concentration on the surface of the first carbon nanofibers measured by X-ray photoelectron spectroscopy (XPS) is 20 Oxidation treatment can be performed so that the concentration becomes from 120% to 120%.
  • the first carbon nanofibers can be heat-treated at 600 ° C. to 800 ° C. in an atmosphere containing oxygen.
  • the second carbon nanofibers can be obtained by reducing the mass of the first carbon nanofibers by 2% to 20%.
  • the first carbon nanofiber may have an average diameter of 4 nm to 250 nm.
  • the sealing member for piping equipment excellent in chlorine resistance In the manufacturing method of the sealing member for piping equipment excellent in chlorine resistance according to the present invention, 5 to 50 parts by mass of the second carbon nanofiber and 10 to 120 parts by mass of the carbon black are blended with 100 parts by mass of the ethylene / propylene rubber. be able to.
  • the piping equipment according to the present invention has a seal member excellent in chlorine resistance.
  • the piping equipment according to the present invention is It has a sealing member excellent in chlorine resistance, including ethylene / propylene rubber, surface-oxidized carbon nanofibers, and carbon black having an average particle diameter of 50 nm to 10 ⁇ m.
  • chlorine, chlorine ions, hypochlorous acid, hypochlorous acid, and carbon nanofibers whose surface is subjected to surface oxidation treatment and carbon black having an average particle diameter of 50 nm to 10 ⁇ m are present in an aqueous solution. Since it is relatively stable against chlorate ions and the like, there is little deterioration of rubber at the interface between these reinforcing agents and ethylene / propylene rubber, and it can be excellent in chlorine resistance. Moreover, according to the piping equipment using the sealing member excellent in chlorine resistance according to the present invention, since the sealing member is reinforced by the carbon nanofibers and carbon black, it can have excellent mechanical strength.
  • the carbon nanofiber may have a surface oxygen concentration of 2.6 atm% to 4.6 atm% as measured by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the carbon nanofiber may have an average diameter of 4 nm to 230 nm.
  • the sealing member may contain 5 to 50 parts by mass of the carbon nanofibers and 10 to 120 parts by mass of the carbon black with respect to 100 parts by mass of the ethylene / propylene rubber.
  • the sealing member for piping equipment excellent in oil resistance according to the present invention is The total of the carbon nanofibers and the carbon black including 5 to 70 parts by mass of carbon nanofibers and 0 to 120 parts by mass of carbon black with respect to 100 parts by mass of the ethylene / propylene rubber Is 50 to 190 parts by mass.
  • the swelling of the rubber by the carbon nanofibers dispersed in the ethylene / propylene rubber can be physically suppressed.
  • the carbon nanofibers may have an average diameter of 4 nm to 230 nm, and the carbon black may have an average particle diameter of 10 nm to 10 ⁇ m.
  • the carbon nanofiber may be 15 to 65 parts by mass.
  • the piping equipment according to the present invention has a seal member with excellent oil resistance.
  • the piping equipment according to the present invention is The total of the carbon nanofibers and the carbon black including 5 to 70 parts by mass of carbon nanofibers and 0 to 120 parts by mass of carbon black with respect to 100 parts by mass of the ethylene / propylene rubber Has a sealing member with excellent oil resistance, in which is 50 to 190 parts by mass.
  • the piping equipment according to the present invention it is possible to physically suppress swelling of the sealing member by the carbon nanofibers dispersed in the ethylene / propylene rubber. be able to.
  • the carbon nanofibers may have an average diameter of 4 nm to 230 nm, and the carbon black may have an average particle diameter of 10 nm to 10 ⁇ m.
  • the carbon nanofiber may be 15 to 65 parts by mass.
  • FIG. 1 is a diagram schematically showing a mixing process by a closed kneader.
  • FIG. 2 is a diagram schematically showing a third kneading step (thinning) of the rubber composition by an open roll machine.
  • FIG. 3 is a longitudinal sectional view showing a schematic configuration of a butterfly valve which is an embodiment of the piping equipment.
  • FIG. 4 is a cross-sectional view taken along the line X-X ′ of FIG. 3 for explaining the opening / closing operation of the butterfly valve which is one embodiment of the piping equipment.
  • FIG. 5 is a schematic view showing an enlarged cross-section of a part of the sealing member for piping equipment.
  • FIG. 6 is a schematic view showing an enlarged cross section of a part of a conventional sealing member for piping equipment.
  • FIG. 7 is a graph showing a change in mass of the second carbon nanofiber with respect to temperature according to a TG (thermal mass spectrometry) method.
  • FIG. 8 is a photograph of an aqueous sodium hypochlorite solution after the samples of Examples and Comparative Examples were immersed for 1004 hours.
  • FIG. 9 is a schematic diagram illustrating a friction test apparatus.
  • a sealing member for piping equipment having excellent chlorine resistance includes ethylene / propylene rubber, surface-treated carbon nanofibers, and carbon black having an average particle diameter of 50 nm to 10 ⁇ m. It is characterized by including.
  • a manufacturing method of a sealing member for piping equipment having excellent chlorine resistance is obtained by oxidizing a first carbon nanofiber manufactured by a vapor phase growth method and oxidizing the surface.
  • the first step of obtaining the carbon nanofibers, carbon black having an average particle size of 50 nm to 10 ⁇ m and the second carbon nanofibers are mixed with ethylene / propylene rubber, and shear force is applied to the ethylene / propylene rubber.
  • a second step of dispersing in the step is obtained by oxidizing a first carbon nanofiber manufactured by a vapor phase growth method and oxidizing the surface.
  • the piping equipment according to one embodiment of the present invention is excellent in chlorine resistance including a seal member containing ethylene / propylene rubber, surface-oxidized carbon nanofibers, and carbon black having an average particle diameter of 50 nm to 10 ⁇ m. And a sealing member.
  • the first carbon nanofiber is produced by, for example, a vapor deposition method.
  • the vapor phase growth method is a method for producing first carbon nanofibers by gas phase pyrolysis of a gas such as hydrocarbon in the presence of a metal catalyst.
  • the vapor phase growth method will be described in more detail.
  • an organic compound such as benzene or toluene is used as a raw material
  • an organic transition metal compound such as ferrocene or nickelcene is used as a metal catalyst, and these are used together with a carrier gas at a high temperature such as 400 ° C.
  • the first carbon nanofibers having an average diameter of 70 nm or less can be obtained by bringing metal-containing particles previously supported on a refractory support such as alumina or carbon into contact with a carbon-containing compound at a high temperature.
  • the average diameter of the first carbon nanofibers produced by the vapor deposition method is preferably 4 nm to 250 nm.
  • the first carbon nanofiber is an untreated carbon nanofiber in the sense that the surface is not oxidized, and the dispersibility is preferably improved by oxidizing the surface.
  • the first carbon nanofibers manufactured by the vapor phase growth method can be heat-treated at 2000 ° C. to 3200 ° C. in an inert gas atmosphere before being oxidized.
  • the heat treatment temperature is more preferably 2500 ° C. to 3200 ° C., particularly preferably 2800 ° C. to 3200 ° C. It is preferable that the heat treatment temperature is 2000 ° C. or higher because impurities such as amorphous deposits and remaining catalytic metal deposited on the surface of the first carbon nanofiber during vapor phase growth are removed. Further, when the heat treatment temperature of the first carbon nanofiber is 2500 ° C.
  • the skeleton of the first carbon nanofiber is graphitized (crystallized), the defects of the first carbon nanofiber are reduced, and the strength is increased. It is preferable because it improves. In addition, it is preferable if the heat treatment temperature of the first carbon nanofiber is 3200 ° C. or less because the graphite skeleton is not easily broken by the sublimation of graphite.
  • the first carbon nanofiber graphitized in this way is an untreated carbon nanofiber because it has not been oxidized, and has excellent strength, thermal conductivity, electrical conductivity, and the like due to graphitization. .
  • Examples of the first carbon nanofibers include so-called carbon nanotubes.
  • the carbon nanotube has a structure in which one surface of graphite having a carbon hexagonal mesh surface is wound in one layer or multiple layers.
  • a carbon material partially having a carbon nanotube structure can also be used.
  • carbon nanotube it may be called “graphite fibril nanotube” or “vapor-grown carbon fiber”.
  • the second carbon nanofiber is obtained by oxidizing the surface of the first carbon nanofiber produced by the vapor deposition method. The oxidation treatment will be described later in the column of the manufacturing method of the piping member sealing member.
  • the second carbon nanofiber has an oxygen concentration of 2.6 atm% to 4.6 atm%, preferably 3.0 atm% to 4.0 atm%, as measured by X-ray photoelectron spectroscopy (XPS) on the surface thereof. More preferably, it is 3.1 atm% to 3.7 atm%.
  • XPS X-ray photoelectron spectroscopy
  • the second carbon nanofiber may have a mass obtained by reducing the mass of the first carbon nanofiber by 2% to 20%.
  • the second carbon nanofibers, the ratio (D / G) preferably 0.12 to 0.22 peak intensity D of around 1300 cm -1 to the peak intensity G of around 1600 cm -1 measured by Raman scattering spectroscopy is there.
  • the second carbon nanofibers preferably have a nitrogen adsorption specific surface area of 34 m 2 / g to 58 m 2 / g.
  • the second carbon nanofibers preferably have an average diameter of 4 nm to 230 nm, preferably 20 nm to 10 ⁇ m, and particularly preferably 60 nm to 150 nm.
  • the second carbon nanofiber is preferably dispersible with respect to the matrix material when the diameter is 4 nm or more, and conversely when the diameter is 230 nm or less, the flatness of the surface of the matrix material is not easily impaired.
  • the average diameter of the second carbon nanofiber is 60 nm or more, the dispersibility and the flatness of the surface are excellent.
  • the average diameter is 150 nm or less, the number of carbon nanofibers increases even with a small addition amount. The performance of the member can be improved, and thus the expensive first carbon nanofibers can be saved.
  • the aspect ratio of the second carbon nanofiber is preferably 50 to 200.
  • the surface reactivity between the carbon nanofiber and another material, for example, the matrix material in the composite material is improved.
  • the wettability of can be improved.
  • the rigidity and flexibility of the composite material can be improved.
  • wettability between the second carbon nanofiber and the matrix material can be improved by appropriately oxidizing the surface with relatively low reactivity.
  • the dispersibility can be improved, and for example, the same physical properties can be obtained even by adding a smaller amount of the second carbon nanofiber than in the prior art.
  • the surface of conventional carbon black with a relatively small diameter is activated by chlorine, chlorine ions, hypochlorous acid, and hypochlorite ions in the aqueous solution
  • the ethylene / propylene rubber in contact with the surface is oxidized and deteriorated.
  • the second carbon nanofiber subjected to the surface oxidation treatment has many portions in which carbon atoms on the surface are substituted with oxygen atoms, and the oxygen atoms on the surface are molecules of ethylene / propylene rubber. It is considered that the surface is hardly activated by chlorine, chlorine ions, hypochlorous acid, and hypochlorite ions. Therefore, the ethylene / propylene rubber blended with the second carbon nanofibers is excellent in chlorine resistance as compared with the blended with the conventional small-diameter carbon black.
  • the blending amount of the second carbon nanofibers with respect to the ethylene / propylene rubber can be appropriately adjusted depending on the degree of reinforcement depending on the use of the seal member for piping equipment and the blending amount of the carbon black blended together.
  • the second carbon nanofiber can be blended in an amount of 5 to 50 parts by mass with respect to 100 parts by mass of the rubber. If the blending amount of the second carbon nanofiber is 5 parts by mass or more, a reinforcing effect for ethylene / propylene rubber can be obtained by increasing the blending amount of carbon black. Is also preferable.
  • Carbon Black As long as the carbon black has a mean particle size of 50 nm to 10 ⁇ m, various grades of carbon black using various raw materials can be used singly or in combination. Carbon black has an average particle diameter of 50 to 10 ⁇ m, more preferably an average particle diameter of 50 to 150 nm. Ethylene / propylene rubber blended with carbon black having a relatively large particle size in this way is excellent in chlorine resistance, and can be divided into a large amount of ethylene / propylene rubber system, so the blending amount of ethylene / propylene rubber In addition, the amount of the second carbon nanofiber can be saved, which is economically excellent.
  • Carbon black with a small particle size blended in conventional sealing materials for piping equipment is easily activated by chlorine, chlorine ions, hypochlorous acid, and hypochlorite ions in aqueous solution.
  • the average particle size of the carbon black is less than 50 nm, the reinforcing property is excellent but the chlorine resistance tends to be inferior.
  • the reinforcing effect tends to be inferior when the average particle size is larger than 10 ⁇ m, it is preferable to use carbon black having an average particle size of 10 ⁇ m or less from the viewpoint of economy.
  • carbon black for example, carbon black of grades such as SRF, MT, FT, Austin black and GPF can be adopted.
  • the blending amount of carbon black with respect to ethylene / propylene rubber can be appropriately adjusted depending on the degree of reinforcement depending on the use of the seal member for piping equipment and the blending amount of the second carbon nanofiber blended together.
  • Carbon black can be blended in an amount of 10 to 120 parts by mass with respect to 100 parts by mass of rubber. If the blending amount of carbon black is 10 parts by mass or more, a reinforcing effect for ethylene / propylene rubber can be obtained, and the blending amount of ethylene / propylene rubber and second carbon nanofibers can be reduced. The following is preferable because it can be processed and can be mass-produced.
  • Ethylene / propylene rubber EPDM ethylene-propylene-diene copolymer
  • the ethylene / propylene rubber according to the present embodiment includes a third component such as ethylidene norbornene in order to obtain heat resistance, cold resistance, and sealability necessary for a seal member for piping equipment, and includes ethylene and propylene.
  • the copolymerization ratio is preferably EPDM having an ethylene content of 45% to 80%.
  • the weight average molecular weight of the ethylene / propylene rubber is usually desirably 50,000 or more, more preferably 70,000 or more, and particularly preferably about 100,000 to 500,000.
  • the molecular weight of the ethylene / propylene rubber is within this range, the ethylene / propylene rubber molecules are entangled with each other and connected to each other, so that the ethylene / propylene rubber easily penetrates into the aggregated carbon nanofibers. Great effect to separate fibers. If the molecular weight of the ethylene / propylene rubber is less than 5000, the ethylene / propylene rubber molecules cannot be sufficiently entangled with each other, and the effect of dispersing the carbon nanofibers tends to be small even if a shearing force is applied in the process described later. There is. On the other hand, if the molecular weight of the ethylene / propylene rubber is larger than 5 million, the ethylene / propylene rubber becomes too hard and the workability tends to be lowered.
  • the manufacturing method of the sealing member for piping equipment includes a first step and a second step.
  • the first step in the method for manufacturing a piping member sealing member will be described.
  • the first carbon nanofibers produced by the vapor phase growth method are oxidized to obtain second carbon nanofibers whose surfaces are oxidized.
  • the first carbon nanofiber those subjected to the graphitization treatment can be used.
  • the surface oxygen concentration of the second carbon nanofiber obtained in the first step measured by X-ray photoelectron spectroscopy (XPS) is 2.6 atm% to 4.6 atm%, preferably 3.0 atm%. It is ⁇ 4.0 atm%, more preferably 3.1 atm% to 3.7 atm%.
  • the second carbon nanofibers are desirably oxidized to such an extent that the oxygen concentration on the surface thereof is increased by 0.2 atm% or more from the oxygen concentration on the surface of the first carbon nanofibers.
  • the amount of increase in the oxygen concentration on the surface of the second carbon nanofiber relative to the oxygen concentration on the surface of the first carbon nanofiber measured by X-ray photoelectron spectroscopy (XPS) is 0.5 atm%.
  • Oxidation treatment can be performed so as to be ⁇ 2.6 atm%.
  • the amount of increase in the surface oxygen concentration of the second carbon nanofiber relative to the surface oxygen concentration of the first carbon nanofiber is more preferably 0.9 atm% to 1.9 atm%, and further 1.0 atm%.
  • the rate of increase in the oxygen concentration on the surface of the second carbon nanofiber relative to the oxygen concentration on the surface of the first carbon nanofiber measured by X-ray photoelectron spectroscopy (XPS) is 20%.
  • the oxidation treatment can be performed so as to be ⁇ 120%.
  • the increase rate of the surface oxygen concentration of the second carbon nanofibers relative to the surface oxygen concentration of the first carbon nanofibers is more preferably 43% to 90%, and further preferably 48% to 76%. Is preferred.
  • the surface reactivity of the second carbon nanofiber and ethylene / propylene rubber is improved by appropriately oxidizing the surface of the second carbon nanofiber, and the carbon nanofiber in the ethylene / propylene rubber is improved.
  • the first carbon nanofibers can be heat-treated at 600 ° C. to 800 ° C. in an atmosphere containing oxygen.
  • the first carbon nanofibers are placed in a furnace in an air atmosphere, set to a predetermined temperature in the temperature range of 600 ° C. to 800 ° C., and heat-treated, so that the surface of the second carbon nanofibers has a desired oxygen content.
  • the heat treatment time in the first step is a time for holding the first carbon nanofibers in a heat treatment furnace at a predetermined temperature, and can be, for example, 10 minutes to 180 minutes.
  • the atmosphere containing oxygen may be the air, an oxygen atmosphere, or an atmosphere in which an oxygen concentration is appropriately set.
  • a sufficient oxygen concentration may be present in the atmosphere so that the surface of the second carbon nanofiber is oxidized to a desired oxygen concentration in the first step.
  • the temperature of the heat treatment can be appropriately set in order to obtain a desired oxidation treatment in the range of 600 ° C. to 800 ° C.
  • the heat treatment temperature and heat treatment time can be appropriately adjusted depending on the oxygen concentration in the furnace used in the first step, the inner volume of the furnace, the amount of the first carbon nanofibers to be treated, and the like.
  • the mass of the second carbon nanofibers oxidized in the first step is preferably reduced by 2% to 20%, for example, from the mass of the first carbon nanofibers. It can be estimated that the second carbon nanofibers are appropriately oxidized. If the mass of the second carbon nanofiber is less than 2% less than the mass of the first carbon nanofiber, the oxygen concentration on the surface of the second carbon nanofiber is low, and it is difficult to improve the wettability. There is.
  • the second carbon nanofibers whose weight is reduced by more than 20% from the mass of the first carbon nanofibers, although the wettability is almost the same as the second carbon nanofibers whose weight loss is 20% or less.
  • the loss due to the reduction of the carbon nanofibers due to the oxidation treatment is large, and it tends to be economically disadvantageous with respect to the energy consumption of the heat treatment. This is because when the surface of the first carbon nanofiber is oxidized, a part of the carbon on the surface of the first carbon nanofiber is vaporized as carbon dioxide gas to be reduced. It is preferable because it can be estimated that the fiber length is not almost shortened unless the mass of the second carbon nanofiber exceeds 20% of the mass of the first carbon nanofiber.
  • the oxygen concentration on the surface of the second carbon nanofiber can be analyzed by XPS (X-ray photoelectron spectroscopy).
  • the analysis of the oxygen concentration by XPS is performed by, for example, argon gas for 0.5 minute to 1.0 minute with respect to the second carbon nanofiber before measurement in order to remove impurities attached to the surface of the second carbon nanofiber. It is preferable to perform analysis after etching to bring out the clean surface of the second carbon nanofiber.
  • the argon gas concentration is preferably 5 ⁇ 10 ⁇ 2 Pa to 20 ⁇ 10 ⁇ 2 Pa
  • the argon gas pressure (gauge pressure) is preferably 0.4 MPa to 0.5 MPa.
  • a carbon tape which is a conductive adhesive is applied on a metal base of an XPS apparatus, and a second carbon nanofiber is sprinkled on the carbon tape to adhere to the carbon tape. It is preferable to carry out in a state in which excess second carbon nanofibers that have not adhered to the carbon tape are shaken off.
  • the second carbon nanofibers obtained by the first step the ratio of the peak intensity D of around 1300 cm -1 to the peak intensity G of around 1600 cm -1 measured by Raman scattering spectroscopy (D / G) is preferably Is from 0.12 to 0.22.
  • the Raman peak ratio (D / G) of the second carbon nanofiber is larger than the Raman peak ratio (D / G) of the first carbon nanofiber because there are many defects in the crystal on the surface.
  • the second carbon nanofiber is desirably oxidized to such an extent that its Raman peak ratio (D / G) increases by 0.02 or more than the Raman peak ratio (D / G) of the first carbon nanofiber.
  • the second carbon nanofiber preferably has a nitrogen adsorption specific surface area of 34 m 2 / g to 58 m 2 / g.
  • the nitrogen adsorption specific surface area of the second carbon nanofiber is larger than the nitrogen adsorption specific surface area of the first carbon nanofiber because the surface thereof is rough. It is desirable that the second carbon nanofibers are oxidized to such an extent that the nitrogen adsorption specific surface area is increased by 9 m 2 / g or more than the nitrogen adsorption specific surface area of the first carbon nanofibers.
  • the average diameter of the first carbon nanofibers used in the first step is preferably 4 nm to 250 nm, and the average diameter of the second carbon nanofibers obtained in the first step is 4 nm to 230 nm. Can do.
  • surface reactivity with ethylene / propylene rubber can be improved, and wettability with respect to ethylene / propylene rubber can be improved.
  • the blending amount of the second carbon nanofibers into the ethylene / propylene rubber can be set according to the use, but because the second carbon nanofibers have improved wettability with the ethylene / propylene rubber, For example, when manufacturing a sealing member for piping equipment having the same rigidity, the amount of blending is small and economical.
  • the second step of the manufacturing method of the sealing member for piping equipment is to combine carbon black having an average particle size of 50 nm to 10 ⁇ m and the second carbon nanofiber obtained in the first step with ethylene / propylene. It is mixed with rubber and dispersed in the ethylene / propylene rubber by shearing force.
  • the second step there is a method in which the ethylene / propylene rubber and the second carbon nanofiber are supplied to a known mixer such as an open roll, a single or twin screw extruder, a Banbury mixer, a kneader, and kneaded. Can be mentioned.
  • the filler other than the second carbon nanofibers such as carbon black is preferably supplied to the mixer before supplying the second carbon nanofibers.
  • the step of kneading the ethylene / propylene rubber, the carbon black, and the second carbon nanofiber includes the first kneading of the ethylene / propylene rubber, the carbon black, and the second carbon nanofiber at a first temperature.
  • an example in which a closed kneading method is used as the first kneading step and the second kneading step and an open roll method is used as the third kneading step will be described in detail with reference to FIGS. To do.
  • FIG. 1 is a diagram schematically showing a mixing process by a closed kneader 11 using two rotors.
  • FIG. 2 is a diagram schematically showing a third kneading step (thinning) of the piping member sealing member by the open roll machine.
  • the closed kneader 11 includes a first rotor 12 and a second rotor 14.
  • the ethylene / propylene rubber 200 is introduced from the material supply port 16 of the closed kneader 11 and the first and second rotors 12 and 14 are rotated. Further, a predetermined amount of carbon black 212 and second carbon nanofiber 220 are added to the chamber 18, and the first and second rotors 12 and 14 are further rotated, whereby the ethylene / propylene rubber 200 and the carbon black 212 are rotated. And mixing with the 2nd carbon nanofiber 220 is performed.
  • a first kneading step is performed in which the mixture obtained in the mixing step is further kneaded with a high shearing force by rotating the first and second rotors 12 and 14 at a predetermined speed ratio.
  • the first kneading step in order to obtain as high a shearing force as possible, mixing of the ethylene / propylene rubber and the second carbon nanofiber is performed at a first temperature that is 50 to 100 ° C. lower than that in the second kneading step.
  • the first temperature is preferably a first temperature of 0 to 50 ° C., more preferably 5 to 30 ° C.
  • the first temperature may be set according to the temperature of the chamber 18, may be set according to the temperatures of the first and second rotors 12 and 14, or the speed ratio may be controlled while measuring the temperature of the mixture. Various temperature controls may be performed. In addition, when the first kneading step is performed in the same closed kneading machine 11 following the above-described mixing step, the first temperature may be set in advance.
  • the second carbon nanofibers 220 are formed of ethylene / propylene while leaving agglomerates in the first kneading step. Disperses throughout the rubber 200.
  • Second kneading step Further, the mixture obtained in the first kneading step is charged into another closed kneader, and the second kneading step is performed.
  • the second kneading step the ethylene / propylene rubber molecules are cut to generate radicals, so that the kneading is performed at a second temperature that is 50 to 100 ° C. higher than the first temperature.
  • the hermetic kneader used in the second kneading step is heated to the second temperature by a heater built in the rotor or a heater built in the chamber, and the second kneading machine is higher than the first temperature.
  • the second kneading step can be performed at a temperature of The second temperature can be appropriately selected depending on the type of ethylene / propylene rubber to be used, but is preferably 50 to 150 ° C.
  • the second temperature can be appropriately selected depending on the type of ethylene / propylene rubber to be used, but is preferably 50 to 150 ° C.
  • the mixture 36 obtained by the second kneading step is further charged into the open roll 30 set at the first temperature, and as shown in FIG. Step) is performed once to 10 times, for example, and dispensed.
  • the roll interval d (nip) between the first roll 32 and the second roll 34 is set to 0 to 0.5 mm, for example, 0.3 mm, where the shearing force is larger than that in the first and second kneading steps.
  • the temperature is set to a third temperature of 0 to 50 ° C., more preferably 5 to 30 ° C., the same as in the first kneading step.
  • the ratio of the surface speeds (V1 / V2) in thinness is 1.05 to 3.00. It is preferably 1.05 to 1.2. By using such a surface velocity ratio, a desired shear force can be obtained.
  • the thinned mixture 36 is rolled with a roll and dispensed into a sheet.
  • the third kneading step is a finishing dispersion step in which the second carbon nanofibers are further uniformly dispersed in the ethylene / propylene rubber, and is effective when more uniform dispersibility is required.
  • the ethylene / propylene rubber in which radicals are generated acts so as to pull out the second carbon nanofibers one by one, thereby further dispersing the second carbon nanofibers.
  • a vulcanizing agent crosslinking agent
  • crosslinking agent can be added in the third kneading step to uniformly disperse the vulcanizing agent.
  • the second carbon nanofibers can be dispersed throughout the ethylene / propylene rubber with a high shearing force, and further, the second carbon nanofiber can be dispersed at the second temperature.
  • the agglomerates of the second carbon nanofibers can be released by the radicals of the ethylene / propylene rubber molecules.
  • the deformation causes the mixture subjected to a strong shear force to flow more complicatedly and disperse the second carbon nanofibers in the ethylene / propylene rubber.
  • the second carbon nanofibers once dispersed are prevented from reaggregating due to chemical interaction with the ethylene / propylene rubber, and can have good dispersion stability. Therefore, the non-polar ethylene / propylene rubber such as EPDM can be used to disperse the second carbon nanofibers as a whole, and to produce a seal member for piping equipment that is free from the aggregates of the second carbon nanofibers.
  • the wettability with the ethylene / propylene rubber is improved by appropriately oxidizing the surface of the second carbon nanofibers.
  • a closed kneader In the first and second kneading steps in which the second carbon nanofibers are dispersed in the ethylene / propylene rubber by a shearing force, it is preferable to use a closed kneader from the viewpoint of workability.
  • the kneader may be used.
  • As the closed kneader a tangential type or meshing type such as a Banbury mixer, a kneader, or a Brabender can be adopted.
  • the first, second, and third kneading steps are not limited to the above-described closed kneading method and open roll method, and can be performed by a multi-screw extrusion kneading method (for example, a twin-screw extruder).
  • the kneader can be selected in combination as appropriate according to the production amount.
  • the open roll method in the third kneading step is preferable because it can measure and manage not only the roll temperature but also the actual temperature of the mixture.
  • a manufacturing method for sealing members for piping equipment is to mix a vulcanizing agent with the dispensed sheet-like mixture after passing through, or to mix a vulcanizing agent during any kneading process.
  • Molding of rubber to be molded into the shape of seal members required for various piping equipment by, for example, injection molding method, transfer molding method, press molding method, extrusion molding method, calendering method, etc.
  • a sealing member for piping equipment can be formed.
  • a compounding agent usually used in processing of ethylene / propylene rubber can be added.
  • a well-known thing can be used as a compounding agent.
  • the compounding agent include a crosslinking agent, a vulcanizing agent, a vulcanization accelerator, a vulcanization retarder, a softening agent, a plasticizer, a curing agent, a reinforcing agent, a filler, an antiaging agent, and a coloring agent. It can.
  • These compounding agents can be introduced into the ethylene / propylene rubber before or after the introduction of the second carbon nanofibers in an open roll, for example.
  • FIG. 3 is a longitudinal sectional view showing a schematic configuration of a butterfly valve which is an embodiment of piping equipment.
  • FIG. 4 is a cross-sectional view taken along the line X-X ′ of FIG. 3 for explaining the opening / closing operation of the butterfly valve which is one embodiment of the piping equipment.
  • the sealing member for piping equipment can be used for various piping equipment such as piping of various fluids and valves for opening and closing the flow paths of these fluids, it is an embodiment of the piping equipment shown in FIGS.
  • the outline of the structure of the sealing member for piping equipment will be described using the butterfly valve 20.
  • the butterfly valve 20 has an annular seal member (seat ring, seat rubber, rubber liner or rubber) obtained by the manufacturing method described in (IV) above on the inner peripheral surface of a cylindrical body 21 made of a rigid material such as metal.
  • a disc-like disc 24 is disposed inside the seal member 22.
  • Cylindrical stems 23 and 23 are mounted on the center axis of the disc 24 so as to protrude from the upper and lower sides of the disc 24, and the stems 23 and 23 are rotatably mounted through the body 21 and the seal member 22. Yes.
  • the outer peripheral surface 24 a of the disc 24 rotates the disc 24 to press the outer peripheral surface 24 a against the seal surface 22 a on the inner peripheral surface of the seal member 22 to close the valve. Therefore, the fluid flow path 28 in the valve can be opened and closed by rotating the disc 24 around the longitudinal axis of the stems 23 and 23.
  • the wetted area of the seal member 22 is large, the effect of the applied lubricant is easily lost in a short period of time, and the disk 24 slides strongly pressing the seal member 22. Due to the mechanism, there was a tendency for the black component to be peeled off due to the chlorine deterioration of the seal member 22, but the black component was peeled off by using such a seal member 22 for piping equipment having excellent chlorine resistance. Can be reduced.
  • Piping equipment includes gate valves, ball valves, needle valves, check valves, ball valves, cocks, butterfly valves, diaphragm valves, safety valves, relief valves, pressure reducing valves, control valves, steam traps, solenoid valves, ventilation Valves such as valves, hydrants, and screwed joints, welded joints, welded joints, fusion joints, adhesive joints, quick fluid joints, bite joints, clamping joints, expansion joints, clamp joints, Refers to joints such as one-touch joints, slide joints, compression joints, pipe joints, rolled thread joints, insertion joints, coupling joints, housing joints, and flexible joints.
  • the sealing member for piping equipment includes ethylene / propylene rubber, surface-oxidized second carbon nanofibers, and carbon black having an average particle diameter of 50 nm to 10 ⁇ m, and has excellent chlorine resistance.
  • the ethylene / propylene rubber contains carbon nanofibers having a surface oxygen concentration of 2.6 atm% to 4.6 atm% as measured by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the second carbon nanofibers are uniformly dispersed in the ethylene / propylene rubber. Since the second carbon nanofibers are oxidized, the wettability with the ethylene / propylene rubber is improved, and the rigidity and flexibility of the sealing member for piping equipment are improved.
  • surface oxidized carbon nanofibers and carbon black with an average particle size of 50 nm to 10 ⁇ m are relatively stable against chlorine, chlorine ions, hypochlorous acid and hypochlorite ions, and are suitable for piping equipment.
  • the sealing member for piping equipment may contain 5 to 50 parts by mass of second carbon nanofibers and 10 to 120 parts by mass of carbon black with respect to 100 parts by mass of ethylene / propylene rubber. It is preferable from the viewpoints of reinforcing property, workability, economy and the like.
  • the piping member seal member excellent in oil resistance has 5 to 70 parts by mass of carbon nanofibers and 0 to 120 parts by mass of carbon black with respect to 100 parts by mass of ethylene / propylene rubber. And the total of the carbon nanofibers and the carbon black is 50 parts by mass to 190 parts by mass.
  • the piping equipment according to an embodiment of the present invention includes 5 to 70 parts by mass of carbon nanofibers and 0 to 120 parts by mass of carbon black with respect to 100 parts by mass of ethylene / propylene rubber, and And a total of the carbon nanofibers and the carbon black is 50 parts by mass to 190 parts by mass, and has a sealing member with excellent oil resistance.
  • the vapor phase growth method is a method for producing carbon nanofibers by gas phase pyrolysis of a gas such as hydrocarbon in the presence of a metal catalyst.
  • the vapor phase growth method will be described in more detail.
  • an organic compound such as benzene or toluene is used as a raw material
  • an organic transition metal compound such as ferrocene or nickelcene is used as a metal catalyst, and these are used together with a carrier gas at a high temperature such as 400 ° C.
  • a method of introducing carbon nanofibers on a substrate by introducing them into a reaction furnace set to a reaction temperature of ⁇ 1000 ° C., a method of generating carbon nanofibers in a floating state, or a method of growing carbon nanofibers on a reaction furnace wall Etc. can be used.
  • carbon nanofibers having an average diameter of 70 nm or less can be obtained by bringing metal-containing particles previously supported on a refractory support such as alumina or carbon into contact with a carbon-containing compound at a high temperature.
  • the average diameter of the carbon nanofibers produced by the vapor deposition method is preferably 4 nm to 250 nm.
  • the carbon nanofibers manufactured by the vapor growth method can be heat-treated at 2000 ° C. to 3200 ° C. in an inert gas atmosphere.
  • the heat treatment temperature is more preferably 2500 ° C. to 3200 ° C., particularly preferably 2800 ° C. to 3200 ° C. It is preferable that the heat treatment temperature is 2000 ° C. or higher because impurities such as amorphous deposits deposited on the surface of carbon nanofibers and remaining catalytic metals are removed during vapor phase growth.
  • the heat treatment temperature of the carbon nanofibers is 2500 ° C.
  • the heat treatment temperature of the carbon nanofibers is 3200 ° C. or less because the graphite skeleton is not easily broken by the sublimation of graphite.
  • carbon nanofibers examples include so-called carbon nanotubes.
  • the carbon nanotube has a structure in which one surface of graphite having a carbon hexagonal mesh surface is wound in one layer or multiple layers.
  • a carbon material partially having a carbon nanotube structure can also be used.
  • graphite fibril nanotube or “vapor-grown carbon fiber”.
  • carbon nanofibers can be subjected to surface oxidation treatment of carbon nanofibers produced by a vapor deposition method.
  • the carbon nanofibers may be subjected to surface oxidation treatment after being subjected to the graphitization treatment.
  • the oxygen concentration on the surface of the carbon nanofiber before the treatment measured by X-ray photoelectron spectroscopy (XPS), is 0.5 atm% to 2 from the oxygen concentration on the surface of the carbon nanofiber after the treatment.
  • the oxidation treatment can be performed so as to be higher by 6 atm%.
  • the surface oxidation treatment step was performed such that the oxygen concentration on the surface of the carbon nanofiber before treatment, measured by X-ray photoelectron spectroscopy (XPS), was 20% to the oxygen concentration on the surface of the carbon nanofiber after treatment.
  • the oxidation treatment can be performed so as to be 120% higher.
  • the surface oxygen concentration measured by X-ray photoelectron spectroscopy (XPS) of the carbon nanofibers obtained in the surface oxidation treatment step may be 2.6 atm% to 4.6 atm%.
  • the carbon nanofibers can be heat-treated at 600 ° C. to 800 ° C. in an atmosphere containing oxygen.
  • the surface of the carbon nanofibers can be oxidized to a desired oxygen concentration by placing the carbon nanofibers in a furnace in an air atmosphere, setting the temperature to a predetermined temperature in the temperature range of 600 ° C. to 800 ° C., and performing a heat treatment.
  • the carbon nanofiber is a carbon nanofiber produced by a vapor phase growth method, which is higher in temperature than the reaction temperature in the vapor phase growth method without being graphitized, and 1100 ° C. to 1600 ° C.
  • Heat treatment in an inert gas atmosphere
  • the carbon nanofibers thus heat-treated have moderately non-crystalline parts on the surface, so that the wettability with ethylene / propylene rubber is good and there are relatively few defects, so the strength of the carbon nanofibers is sufficient. This is preferable.
  • Carbon Black As long as the carbon black has an average particle size of 10 nm to 10 ⁇ m, various grades of carbon black using various raw materials can be used alone or in combination. Carbon black more preferably has an average particle size of the basic constituent particles of 10 to 150 nm. Since carbon black can divide the system of ethylene / propylene rubber, it can save the blending amount of ethylene / propylene rubber and the blending amount of carbon nanofibers and is economically superior.
  • Ethylene / propylene rubber (ethylene-propylene-diene copolymer) is preferably used as the ethylene / propylene rubber.
  • the ethylene / propylene rubber according to the present embodiment includes a third component such as ethylidene norbornene in order to obtain heat resistance, cold resistance, and sealability necessary for a seal member for piping equipment, and includes ethylene and propylene.
  • the copolymerization ratio is preferably EPDM having an ethylene content of 45% to 80%.
  • the weight average molecular weight of the ethylene / propylene rubber is usually desirably 50,000 or more, more preferably 70,000 or more, and particularly preferably about 100,000 to 500,000.
  • the molecular weight of the ethylene / propylene rubber is within this range, the ethylene / propylene rubber molecules are entangled with each other and connected to each other, so that the ethylene / propylene rubber easily penetrates into the aggregated carbon nanofibers. Great effect to separate fibers. If the molecular weight of the ethylene / propylene rubber is less than 5000, the ethylene / propylene rubber molecules cannot be sufficiently entangled with each other, and the effect of dispersing the carbon nanofibers tends to be small even if a shearing force is applied in the process described later. There is. On the other hand, if the molecular weight of the ethylene / propylene rubber is larger than 5 million, the ethylene / propylene rubber becomes too hard and the workability tends to be lowered.
  • Examples of a method of mixing ethylene / propylene rubber and carbon nanofiber include a method of supplying and kneading to a known mixer such as an open roll, a single or twin screw extruder, a Banbury mixer, and a kneader.
  • the filler other than carbon nanofibers such as carbon black is preferably supplied to the mixer before supplying the carbon nanofibers.
  • the step of kneading the ethylene / propylene rubber, the carbon black, and the carbon nanofiber can be carried out in the same manner as the second step (IV), and the ethylene / propylene rubber, the carbon black and the carbon nanofiber, A first kneading step for kneading the mixture at a first temperature, a second kneading step for kneading the mixture obtained in the first kneading step at a second temperature, and a mixture obtained in the second kneading step And a third kneading step for passing through.
  • FIG. 1 is the second carbon nanofiber, but in this embodiment, the reference numeral 220 in FIG. 1 is the carbon nanofiber.
  • the manufacturing method of the sealing member for piping materials using FIGS. 1 and 2 overlaps with the above (IV), it is omitted.
  • (X) Piping equipment sealing member and butterfly valve The piping equipment sealing member of the present embodiment can be applied to the piping equipment sealing member and butterfly valve of FIGS. 3 and 4 used in the description of (V). it can. Therefore, the description of the piping material seal member and the butterfly valve in FIGS.
  • the piping equipment in the present embodiment can be the piping equipment exemplified in the above (V).
  • the sealing member for piping equipment obtained in (IX) above contains 5 to 70 parts by mass of carbon nanofibers and 0 to 120 parts by mass of carbon black with respect to 100 parts by mass of ethylene / propylene rubber. And the total of the carbon nanofibers and the carbon black is 50 to 190 parts by mass.
  • the oil resistance of the sealing member for piping equipment will be described with reference to FIGS.
  • FIG. 5 is a schematic view showing an enlarged cross-section of a part of the sealing member for piping equipment.
  • FIG. 6 is a schematic view showing an enlarged cross section of a part of a conventional sealing member for piping equipment.
  • the sealing member for piping equipment includes carbon nanofibers 52 dispersed in ethylene / propylene rubber 50 and bound rubber-like interfaces formed around the carbon nanofibers 52.
  • Phase 54 forms a network and prevents the infiltration of oil 56 as indicated by the arrows.
  • FIG. 5 does not include carbon black in order to simplify the description.
  • the piping member sealing member is reinforced with carbon nanofibers, it has the basic physical strength required for the piping member sealing member, and the friction coefficient can be lowered. This can be presumed to be because the surface of the sealing member is dotted with a number of high elastic modulus portions composed of carbon nanofibers and interfacial phases, and the high elastic modulus portions protrude from the sealing member surface to form irregularities.
  • the sealing member for piping equipment having a reduced friction coefficient in this way for example, in the butterfly valve 20 such that the outer peripheral surface 24a of the disc 24 is in contact with the inner peripheral surface 22a of the sealing member 22, the disc Since the rotational torque of 24 can be reduced, energy is saved.
  • the wear of the piping member sealing member can be reduced, and a longer life can be expected.
  • the blending amount of carbon nanofibers and carbon black with respect to ethylene / propylene rubber can be appropriately adjusted according to the degree of reinforcement depending on the use of the seal member for piping equipment and the blending amount of other fillers. For example, oil resistance can be improved and the friction coefficient can be reduced by increasing the amount of carbon nanofibers blended, but carbon nanofibers are expensive and can be blended with carbon black in consideration of economy. preferable.
  • the sealing member for piping equipment includes 5 to 70 parts by mass of carbon nanofibers and 0 to 120 parts by mass of carbon black with respect to 100 parts by mass of ethylene / propylene rubber. And the carbon black are 50 parts by mass to 190 parts by mass, and more preferably, the carbon nanofibers are 15 parts by mass to 65 parts by mass.
  • the blending amount of carbon nanofiber is 5 parts by mass or more, the reinforcing effect, oil resistance and low friction coefficient for ethylene / propylene rubber can be obtained by increasing the blending amount of carbon black. By reducing the amount of black, it can be adjusted to an appropriate hardness and can be processed.
  • a spray nozzle is attached to the top of a vertical heating furnace (inner diameter 17.0 cm, length 150 cm).
  • the furnace wall temperature (reaction temperature) is raised to and maintained at 1000 ° C., and 20 g / min of a benzene liquid raw material containing 4% by weight of ferrocene is supplied from the spray nozzle at a flow rate of hydrogen gas of 100 L / min.
  • the shape of the spray at this time is a conical side surface (trumpet shape or umbrella shape), and the apex angle of the nozzle is 60 °.
  • the carbon nanofibers produced by the vapor phase growth method were graphitized by heat treatment at 2800 ° C. in an inert gas atmosphere.
  • the graphitized first (untreated) carbon nanofiber (shown as “CNT-N” in Table 1) has an average diameter of 87 nm, an average length of 10 ⁇ m, a Raman peak ratio (D / G) of 0.08, and nitrogen adsorption.
  • the specific surface area was 25 m 2 / g and the surface oxygen concentration was 2.1 atm%.
  • the temperature setting of the heating furnace was set based on the result of measuring the mass reduction of the first carbon nanofibers using the TG (Thermal Mass Spectrometry) method.
  • TG Thermal Mass Spectrometry
  • the mass decrease when the temperature of the first carbon nanofiber was raised in the atmosphere was measured, and the mass change of the second carbon nanofiber with respect to the temperature as shown in FIG. 7 was shown.
  • the rate of temperature increase was 10 ° C./min, and the atmosphere was air (compressed air 200 ml / min). From this measurement result, the heating furnace is set between 600 ° C. at which the mass of the first carbon nanofiber starts to decrease (oxidize) and 800 ° C.
  • the second carbon nanofibers are “CNT-A (575 ° C.)”, “CNT-B (615 ° C.)”, “CNT-C (650 ° C.) according to the set temperature of the heating furnace. ) ”,“ CNT-D (690 ° C.) ”, and“ CNT-E (720 ° C.) ”.
  • the actual temperature in the heating furnace was in the range of ⁇ 30 ° C. with respect to the set temperature.
  • HOLOLAB-5000 Type peak intensity at around 1300 cm -1 to the peak intensity G in the vicinity of 1600 cm -1 in the second carbon nanofibers by Raman scattering spectroscopy using a (532nmND YAG) The ratio of D (D / G) was measured.
  • the nitrogen adsorption specific surface area (m 2 / g) was measured using NOVA3000 type (nitrogen gas) manufactured by Yuasa Ionics.
  • the oxygen concentration on the surface of the second carbon nanofiber was measured using XPS (X-ray Photoelectron Spectroscopy).
  • the second carbon nanofiber is sprinkled on the carbon tape on the metal base to adhere to the carbon tape, and the excess second carbon nanofiber that did not adhere to the carbon tape is shaken off and removed.
  • a metal base was mounted in the XPS apparatus.
  • the XPS apparatus “JPS-9200 for X-ray photoelectron spectrometer for microanalysis manufactured by JEOL Ltd. was used.
  • the second carbon nanofiber as a powder sample was added with an argon gas concentration of 8 ⁇ 10 ⁇ 10. -2 Pa, subjected to argon gas etching in 0.5 minutes gave a clean surface of the second carbon nanofibers.
  • XPS analysis diameter 1mm X-ray source of the apparatus anticathode Al / Mg twin target
  • the oxygen concentration on the surface of the second carbon nanofiber was measured at an acceleration voltage of 10 kV and an emission current of 30 mA, and the elements on the surface of the second carbon nanofiber detected by XPS were oxygen and carbon.
  • Examples 1 to 4 and Comparative Examples 1 to 4 were prepared as open rolls (roll setting temperature 20 ° C.) in Tables 2 and 3.
  • a predetermined amount of ethylene / propylene rubber shown in the figure was charged, and carbon black, carbon nanofibers, oil, and the like were charged into the ethylene / propylene rubber. Further, the mixture was again put into an open roll set at a roll temperature of 100 ° C., and taken out by performing a second kneading step.
  • this mixture was wound around an open roll (roll temperature: 10 to 20 ° C., roll interval: 0.3 mm), and thinning was repeated 5 times. At this time, the surface speed ratio of the two rolls was set to 1.1. Further, the roll gap was set to 1.1 mm, and the sheet obtained through thinning was put in and dispensed.
  • SRF-CB is SRF grade carbon black having an average particle diameter of 69 nm
  • MT-CB is MT grade carbon black having an average particle diameter of 122 nm
  • EPDM is manufactured by JSR Corporation.
  • the ethylene-propylene-diene copolymer (EPDM) was trade name EP24 (Mooney viscosity (ML 1 + 4 , 125 ° C.) of 42, ethylene content 54 mass%, diene content 4.5 mass%).
  • CNT-C is the second carbon nanofiber having a surface oxygen concentration of 3.5 atm% obtained in (1) above, and “CNT-N” is not oxidized. 1 carbon nanofiber.
  • CNT-F means that the carbon nanofibers produced by the vapor phase growth method in (1-1) are not graphitized, and the gas nanofibers are produced in an inert gas atmosphere. This carbon nanofiber was improved in wettability with the matrix by heat treatment at a heat treatment temperature (1200 ° C.) higher than the reaction temperature in the phase growth method, and was used for blending the seal member sample of Comparative Example 2.
  • Comparative Example 5 the following various measurements were performed using a sheet-like sample molded with the same composition as the sealing member for the current butterfly valve.
  • the seal member of the current product was blended with EPDM in a predetermined amount of FEF (average particle size 43 nm) and HAF (average particle size 28 nm).
  • Chlorine resistance test A sodium hypochlorite aqueous solution having a chlorine concentration of 200 ppm and a pH of 9 ⁇ 0.5 was prepared, and the sealing member samples for piping equipment of Examples 1 to 4 and Comparative Examples 1 to 5 were used as the aqueous solution. And immersed for 1004 hours at 60 ° C. (changed to a freshly prepared aqueous solution every 24 hours, 5 times per week except for holidays), and visually observed changes in appearance before and after 1004 hours immersion, Residual chlorine concentration in the aqueous solution after lapse of 24 hours (after immersion for 1004 hours from the start of the test) of the aqueous solution adjusted at the time of 980 hours was measured. The results are shown in Tables 4 and 5. Moreover, the photograph of this aqueous solution after 1004 hours immersion is shown in FIG.
  • a spray nozzle is attached to the top of a vertical heating furnace (inner diameter 17.0 cm, length 150 cm).
  • the furnace wall temperature (reaction temperature) is raised to and maintained at 1000 ° C., and 20 g / min of a benzene liquid raw material containing 4% by weight of ferrocene is supplied from the spray nozzle at a flow rate of hydrogen gas of 100 L / min.
  • the shape of the spray at this time is a conical side surface (trumpet shape or umbrella shape), and the apex angle of the nozzle is 60 °.
  • the carbon nanofibers produced by the vapor phase growth method were graphitized by heat treatment at 2800 ° C. in an inert gas atmosphere.
  • Graphitized carbon nanofibers (shown as “CNT-N” in Tables 6 and 7) have an average diameter of 87 nm, an average length of 10 ⁇ m, a Raman peak ratio (D / G) of 0.08, a nitrogen adsorption specific surface area of 25 m 2 / g, the surface oxygen concentration was 2.1 atm%.
  • the carbon nanofibers manufactured by the vapor phase growth method are not graphitized and are heat-treated in an inert gas atmosphere at a heat treatment temperature (1200 ° C.) higher than the reaction temperature in the vapor phase growth method.
  • the carbon nanofibers improved in wettability with the matrix (shown as “CNT-F” in Tables 6 and 7) have an average diameter of 87 nm, an average length of 10 ⁇ m, a Raman peak ratio (D / G) of 1.29, The tap density was 0.013 g / cm 3 and the nitrogen adsorption specific surface area was 35 m 2 / g.
  • CNT-N graphitized carbon nanofiber
  • a heating furnace desk electric furnace AMF-20N manufactured by Asahi Rika Seisakusho
  • the surface-oxidized carbon nanofibers had an average diameter of 87 nm, an average length of 10 ⁇ m, a Raman peak ratio (D / G) of 0.19, a nitrogen adsorption specific surface area of 43 m 2 / g, and a surface oxygen concentration of 2.1 atm%.
  • the Raman peak ratio is, KAISER OPTICAL SYSTEM Co.
  • HOLOLAB-5000 Type peak intensity of 1300cm around -1 to the peak intensity G in the vicinity of 1600 cm -1 in the carbon nanofibers by Raman scattering spectroscopy using a (532nmND YAG) D The ratio (D / G) was measured.
  • the nitrogen adsorption specific surface area (m 2 / g) was measured using NOVA3000 type (nitrogen gas) manufactured by Yuasa Ionics.
  • the oxygen concentration on the surface of the carbon nanofibers was measured using XPS (X-ray Photoelectron Spectroscopy).
  • the carbon nanofibers are sprinkled on the carbon tape on the metal base to adhere to the carbon tape, and the excess carbon nanofibers not attached to the carbon tape are shaken off to remove the metal base by XPS. Installed in the device.
  • XPS apparatus “JPS-9200 for X-ray photoelectron spectrometer for microanalysis manufactured by JEOL Ltd. was used.
  • carbon nanofibers which are powdery samples, were converted to an argon gas concentration of 8 ⁇ 10 ⁇ 2 Pa, 0 Argon gas etching was performed for 5 minutes to bring out a clean surface of carbon nanofibers, and the X-ray source of the XPS apparatus was set to an analysis diameter of 1 mm, an anti-cathode Al / Mg twin target, an acceleration voltage of 10 kV, and an emission current of 30 mA.
  • the oxygen concentration on the surface of the carbon nanofiber was set and the elements on the surface of the carbon nanofiber detected by XPS were oxygen and carbon.
  • this mixture was wound around an open roll (roll temperature: 10 to 20 ° C., roll interval: 0.3 mm), and thinning was repeated 5 times. At this time, the surface speed ratio of the two rolls was set to 1.1. Further, the roll gap was set to 1.1 mm, and the sheet obtained through thinning was put in and dispensed.
  • HAF-CB is an HAF grade carbon black having an average particle size of 28 nm
  • SRF-CB is an SRF grade carbon black having an average particle size of 69 nm
  • MT-CB is an average particle size of 122 nm.
  • EPDM is an ethylene-propylene-diene copolymer (EPDM) product name EP103AF (Mooney viscosity (ML 1 + 4 , 125 ° C.) 91 manufactured by JSR, and ethylene content 59% by mass Diene content 4.5 mass%) and trade name EP24 (Mooney viscosity (ML 1 + 4 , 125 ° C.) 42, ethylene content 54 mass%, diene content 4.5 mass%).
  • EP103AF Mooney viscosity (ML 1 + 4 , 125 ° C.) 91 manufactured by JSR, and ethylene content 59% by mass Diene content 4.5 mass
  • EP24 Mooney viscosity (ML 1 + 4 , 125 ° C.) 42, ethylene content 54 mass%, diene content 4.5 mass%).
  • Comparative Example 9 the following various measurements were performed using a sheet-like sample molded with the same composition as the sealing member for the current butterfly valve.
  • the seal member of the current product was blended with EPDM in a predetermined amount of FEF (average particle size 43 nm) and HAF (average particle size 28 nm).
  • Oil resistance test JIS K 6258 test lubricant No. 1 manufactured by SUNOCO was used to soak the test pieces of the seal member sample for piping equipment of Examples 5 to 11 and Comparative Examples 6 to 9 in the test solution at 100 ° C. for 70 hours.
  • the measurement (hardness) of (3) was performed on the test piece of each sample, and the volume and length of the test piece of each sample were measured. For hardness, the difference in hardness before and after immersion was determined, and for other measured values, the rate of change in the measured value after immersion relative to the measured value before immersion was calculated. The results are shown in Tables 6 and 7.
  • Friction test The test pieces (width 20 mm ⁇ length 70 mm ⁇ thickness 2 mm) 60 of the pipe material sealing member samples of Examples 5 to 11 and Comparative Examples 6 to 9 are as in the test apparatus shown in FIG. , Placed on a disk (material is SUS14A, surface roughness is Ra 0.18) 62, put a metal piece 64 on it and press the disk with 10N, then put the metal piece in the horizontal direction (right direction in FIG. 9) The tensile and frictional forces were measured, and the static and dynamic friction coefficients were calculated. The results are shown in Tables 6 and 7.
  • the seal member samples for piping equipment of Examples 5 to 11 of the present invention have small volume change rate and length change rate in the oil resistance test, and are less likely to swell compared to the current product sample of Comparative Example 9 and have oil resistance. I found it excellent. In particular, when Examples 7 to 9 having the same amount of carbon nanofibers were compared, it was found that the higher the wettability of the carbon nanofiber surface, the better the oil resistance. Further, since the oil resistance of the sample using the MT grade carbon black of Comparative Example 8 was excellent, it was found that the large-diameter carbon black was more excellent in oil resistance than the small-diameter carbon black. Further, according to Examples 5 to 11, it was found that the friction coefficient was smaller than that of the current product sample of Comparative Example 9. Compared with the current product sample of Comparative Example 9, the samples of Comparative Examples 6 to 8 had particularly low tear strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

 本発明の耐塩素性に優れた配管機材用シール部材22の製造方法は、第1の工程と、第2の工程と、を含む。第1の工程は、気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化された第2のカーボンナノファイバーを得る工程である。第2の工程は、平均粒径が50nm~10μmのカーボンブラックと第2のカーボンナノファイバーとを、エチレン・プロピレンゴムに混合し、剪断力でエチレン・プロピレンゴム中に分散する工程である。

Description

耐塩素性に優れた配管機材用シール部材、耐塩素性に優れた配管機材用シール部材の製造方法、耐油性に優れた配管機材用シール部材及び配管機材
 本発明は、耐塩素性に優れた配管機材用シール部材、耐塩素性に優れた配管機材用シール部材の製造方法、耐油性に優れた配管機材用シール部材及び配管機材に関する。
 水、油、ガスなどの各種流体用の配管に配設し、これらの流体の流路を開閉するバルブなどの配管機材は、ゴムなどの弾性材料からなるシール部材を装着していた。このような配管機材用シール部材は、硬さ、引張強さ、伸び、引裂き強さ、圧縮弾性、耐摩耗性、耐油性、耐薬品性、耐温度性、耐ガス透過性などの様々な特性が要求されていた(例えば、特許第2932420号公報参照)。そこで、各種機械的強度に優れているエチレン・プロピレンゴム(EPDM)にカーボンブラックを配合して加硫成形した配管機材用シール部材が用いられていた。
 例えば水道、共同浴場、プール、食品製造設備などで、塩素による殺菌、洗浄および脱色を目的とする流体中の遊離残留塩素が存在していた。従来の配管機材用シール部材は、各種機械的強度に優れていたが、このような流体中の遊離残留塩素がシール部材のゴム表面を酸化、塩素化させ、架橋層、脆化層を形成した後水流振動等の影響で、これに亀裂を生じせしめて、黒色成分等が剥離して、配管系統内に浮遊することがあり、耐塩素性の向上が望まれていた。そこで、カーボンブラックを補強剤として用いないバタフライ弁のラバーシート(以下、シール部材という)が提案されていた(例えば、特許第2872830号公報参照)。このようなバタフライ弁は、その構造上、固定式で用いるシール部材と比較した場合、シール部材の接液面積が大きい上に、接液流体が速度を有してシール部材に接するために塗布潤滑材の効果が短期間で薄れ、さらにはジスクがシール部材を強く押圧して摺動する機構であるため、シール部材の塩素劣化に起因する黒色成分の剥離が生じやすい傾向があった。
 また、エチレン・プロピレンゴムは特に非極性油である鉱物油やガソリンなどによって膨潤するため耐油性に劣る傾向があり、耐油性の要求される配管機材用途にはニトリルゴム(NBR)をシール部材に採用していた。そこで、エチレン・プロピレンゴムを用いた配管機材用シール部材は、耐油性の一層の向上が望まれていた。
 また、エラストマーにカーボンナノファイバーとカーボンブラックが均一に分散された複合材料が提案されていた(例えば、特開2007-39649号公報参照)。
 本発明の目的は、耐塩素性に優れた配管機材用シール部材、耐塩素性に優れた配管機材用シール部材の製造方法、耐油性に優れた配管機材用シール部材及び配管機材を提供することにある。
 本発明にかかる耐塩素性に優れた配管機材用シール部材は、
 エチレン・プロピレンゴムと、表面酸化処理されたカーボンナノファイバーと、平均粒径が50nm~10μmのカーボンブラックと、を含む。
 本発明にかかる耐塩素性に優れた配管機材用シール部材によれば、表面酸化処理されたカーボンナノファイバー及び平均粒径が50nm~10μmのカーボンブラックが水溶液中に存在する塩素、塩素イオン、次亜塩素酸、次亜塩素酸イオンなどに対して比較的安定であるため、これらの補強剤とエチレン・プロピレンゴムとの界面におけるゴムの劣化が少なく、耐塩素性に優れることができる。また、本発明にかかる耐塩素性に優れた配管機材用シール部材によれば、カーボンナノファイバーとカーボンブラックとによって補強されるため、優れた機械的強度を有することができる。
 本発明にかかる耐塩素性に優れた配管機材用シール部材において、
 前記カーボンナノファイバーは、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%であることができる。
 本発明にかかる耐塩素性に優れた配管機材用シール部材において、
 前記カーボンナノファイバーは、平均直径が4nm~230nmであることができる。
 本発明にかかる耐塩素性に優れた配管機材用シール部材において、
 前記エチレン・プロピレンゴム100質量部に対して、前記カーボンナノファイバー5質量部~50質量部と、前記カーボンブラック10質量部~120質量部と、が配合されることができる。
 本発明にかかる耐塩素性に優れた配管機材用シール部材の製造方法は、
 気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化された第2のカーボンナノファイバーを得る第1の工程と、
 平均粒径が50nm~10μmのカーボンブラックと前記第2のカーボンナノファイバーとを、エチレン・プロピレンゴムに混合し、剪断力で該エチレン・プロピレンゴム中に分散する第2の工程と、
 を含む。
 本発明にかかる耐塩素性に優れた配管機材用シール部材の製造方法によれば、表面酸化処理されたカーボンナノファイバー及び平均粒径が50nm~10μmのカーボンブラックが水溶液中に存在する塩素、塩素イオン、次亜塩素酸、次亜塩素酸イオンなどに対して比較的安定であるため、これらの補強剤とエチレン・プロピレンゴムとの界面におけるゴムの劣化が少なく、耐塩素性に優れた配管機材用シール部材を製造することができる。また、本発明にかかる耐塩素性に優れた配管機材用シール部材の製造方法によれば、カーボンナノファイバーとカーボンブラックとによって補強されるため、優れた機械的強度を有する配管機材用シール部材を製造することができる。
 本発明にかかる耐塩素性に優れた配管機材用シール部材の製造方法において、
 前記カーボンナノファイバーは、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%であることができる。
 本発明にかかる耐塩素性に優れた配管機材用シール部材の製造方法において、
 前記第1の工程は、X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加量が、0.5atm%~2.6atm%になるように酸化処理することができる。
 本発明にかかる耐塩素性に優れた配管機材用シール部材の製造方法において、
 前記第1の工程は、X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加割合が、20%~120%になるように酸化処理することができる。
 本発明にかかる耐塩素性に優れた配管機材用シール部材の製造方法において、
 前記第1の工程は、前記第1のカーボンナノファイバーを酸素を含有する雰囲気中で600℃~800℃で熱処理することができる。
 本発明にかかる耐塩素性に優れた配管機材用シール部材の製造方法において、
 前記第1の工程は、前記第1のカーボンナノファイバーの質量を2%~20%減量して前記第2のカーボンナノファイバーを得ることができる。
 本発明にかかる耐塩素性に優れた配管機材用シール部材の製造方法において、
 前記第1のカーボンナノファイバーは、平均直径が4nm~250nmであることができる。
 本発明にかかる耐塩素性に優れた配管機材用シール部材の製造方法において、
 前記第2の工程は、前記エチレン・プロピレンゴム100質量部に対して、前記第2のカーボンナノファイバー5質量部~50質量部と、前記カーボンブラック10質量部~120質量部と、を配合することができる。
 本発明にかかる配管機材は、耐塩素性に優れたシール部材を有する。
 本発明にかかる配管機材は、
 エチレン・プロピレンゴムと、表面酸化処理されたカーボンナノファイバーと、平均粒径が50nm~10μmのカーボンブラックと、を含む、耐塩素性に優れたシール部材を有する。
 本発明にかかる配管機材によれば、シール部材が表面酸化処理されたカーボンナノファイバー及び平均粒径が50nm~10μmのカーボンブラックが水溶液中に存在する塩素、塩素イオン、次亜塩素酸、次亜塩素酸イオンなどに対して比較的安定であるため、これらの補強剤とエチレン・プロピレンゴムとの界面におけるゴムの劣化が少なく、耐塩素性に優れることができる。また、本発明にかかる耐塩素性に優れたシール部材を用いた配管機材によれば、シール部材がカーボンナノファイバーとカーボンブラックとによって補強されるため、優れた機械的強度を有することができる。
 本発明にかかる配管機材において、
 前記カーボンナノファイバーは、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%であることができる。
 本発明にかかる配管機材において、
 前記カーボンナノファイバーは、平均直径が4nm~230nmであることができる。
 本発明にかかる配管機材において、
 前記シール部材は、前記エチレン・プロピレンゴム100質量部に対して、前記カーボンナノファイバー5質量部~50質量部と、前記カーボンブラック10質量部~120質量部と、が配合されることができる。
 本発明にかかる耐油性に優れた配管機材用シール部材は、
 エチレン・プロピレンゴム100質量部に対して、カーボンナノファイバー5質量部~70質量部と、カーボンブラック0質量部~120質量部と、を含み、かつ、前記カーボンナノファイバーと前記カーボンブラックとの合計が50質量部~190質量部である。
 本発明にかかる耐油性に優れた配管機材用シール部材によれば、エチレン・プロピレンゴム中に分散されたカーボンナノファイバーによってゴムが膨潤することを物理的に抑制することができる。
 本発明にかかる耐油性に優れた配管機材用シール部材において、
 前記カーボンナノファイバーは平均直径が4nm~230nmであり、前記カーボンブラックは平均粒径が10nm~10μmであることができる。
 本発明にかかる耐油性に優れた配管機材用シール部材において、
 前記カーボンナノファイバーは15質量部~65質量部であることができる。
 本発明にかかる配管機材は、耐油性に優れたシール部材を有する。
 本発明にかかる配管機材は、
 エチレン・プロピレンゴム100質量部に対して、カーボンナノファイバー5質量部~70質量部と、カーボンブラック0質量部~120質量部と、を含み、かつ、前記カーボンナノファイバーと前記カーボンブラックとの合計が50質量部~190質量部である、耐油性に優れたシール部材を有する。
 本発明にかかる配管機材によれば、エチレン・プロピレンゴム中に分散されたカーボンナノファイバーによってシール部材が膨潤することを物理的に抑制することができるため、耐油性の要求される用途に採用することができる。
 本発明にかかる配管機材において、
 前記カーボンナノファイバーは平均直径が4nm~230nmであり、前記カーボンブラックは平均粒径が10nm~10μmであることができる。
 本発明にかかる配管機材において、
 前記カーボンナノファイバーは15質量部~65質量部であることができる。
図1は、密閉式混練機による混合工程を模式的に示す図である。 図2は、オープンロール機によるゴム組成物の第3の混練工程(薄通し)を模式的に示す図である。 図3は、配管機材の一実施形態であるバタフライ弁の概略構成を示す縦断面図である。 図4は、配管機材の一実施形態であるバタフライ弁の開閉動作を説明する図3のX-X’断面図である。 図5は、配管機材用シール部材の一部を拡大した断面を示す模式図である。 図6は、従来の配管機材用シール部材の一部を拡大した断面を示す模式図である。 図7は、TG(熱質量分析)法による温度に対する第2のカーボンナノファイバーの質量変化を示したグラフである。 図8は、実施例及び比較例のサンプルを1004時間浸漬した後の次亜塩素酸ナトリウム水溶液の写真である。 図9は、摩擦試験装置を説明する模式図である。
 以下、本発明の実施の形態について詳細に説明する。
 まず、本発明の一実施形態にかかる耐塩素性に優れた配管機材用シール部材、本発明の一実施形態にかかる耐塩素性に優れた配管機材用シール部材の製造方法、そして本発明の一実施形態にかかる配管機材について説明する。
 本発明の一実施形態にかかる耐塩素性に優れた配管機材用シール部材は、エチレン・プロピレンゴムと、表面酸化処理されたカーボンナノファイバーと、平均粒径が50nm~10μmのカーボンブラックと、を含むことを特徴とする。
 本発明の一実施形態にかかる耐塩素性に優れた配管機材用シール部材の製造方法は、気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化された第2のカーボンナノファイバーを得る第1の工程と、平均粒径が50nm~10μmのカーボンブラックと前記第2のカーボンナノファイバーとを、エチレン・プロピレンゴムに混合し、剪断力で該エチレン・プロピレンゴム中に分散する第2の工程と、を含むことを特徴とする。
 本発明の一実施形態にかかる配管機材は、シール部材がエチレン・プロピレンゴムと、表面酸化処理されたカーボンナノファイバーと、平均粒径が50nm~10μmのカーボンブラックと、を含む耐塩素性に優れたシール部材を有することを特徴とする。
 (I)表面酸化処理されたカーボンナノファイバー
 第1のカーボンナノファイバー
 まず、配管機材用シール部材の製造方法の第1の工程に用いられる第1のカーボンナノファイバーについて説明した後、第1の工程で得られた第2のカーボンナノファイバーについて説明する。
 第1のカーボンナノファイバーの製造方法は、例えば気相成長法によって製造される。気相成長法は、炭化水素等のガスを金属系触媒の存在下で気相熱分解させて第1のカーボンナノファイバーを製造する方法である。より詳細に気相成長法を説明すると、例えば、ベンゼン、トルエン等の有機化合物を原料とし、フェロセン、ニッケルセン等の有機遷移金属化合物を金属系触媒として用い、これらをキャリアーガスとともに高温例えば400℃~1000℃の反応温度に設定された反応炉に導入し、第1のカーボンナノファイバーを基板上に生成させる方法、浮遊状態で第1のカーボンナノファイバーを生成させる方法、あるいは第1のカーボンナノファイバーを反応炉壁に成長させる方法等を用いることができる。また、あらかじめアルミナ、炭素等の耐火性支持体に担持された金属含有粒子を炭素含有化合物と高温で接触させて、平均直径が70nm以下の第1のカーボンナノファイバーを得ることもできる。気相成長法で製造された第1のカーボンナノファイバーの平均直径は、平均直径が4nm~250nmであることが好ましい。第1のカーボンナノファイバーは、表面が酸化処理されていないという意味で未処理のカーボンナノファイバーであり、表面を酸化処理して分散性を向上することが好ましい。
 このように気相成長法で製造された第1のカーボンナノファイバーを酸化処理する前に不活性ガス雰囲気中において2000℃~3200℃で熱処理することができる。この熱処理温度は、2500℃~3200℃がさらに好ましく、特に2800℃~3200℃が好ましい。熱処理温度が、2000℃以上であると、気相成長の際に第1のカーボンナノファイバーの表面に沈積したアモルファス状の堆積物や残留している触媒金属などの不純物が除去されるので好ましい。また、第1のカーボンナノファイバーの熱処理温度が、2500℃以上であると、第1のカーボンナノファイバーの骨格が黒鉛化(結晶化)し、第1のカーボンナノファイバーの欠陥が減少し強度が向上するため好ましい。なお、第1のカーボンナノファイバーの熱処理温度が、3200℃以下であれば、黒鉛が昇華することによる黒鉛骨格の破壊が発生しにくいため好ましい。このように黒鉛化した第1のカーボンナノファイバーは、酸化処理されていないので未処理のカーボンナノファイバーであって、黒鉛化によって優れた強度、熱伝導性、電気伝導性などを有している。
 第1のカーボンナノファイバーは、例えば、いわゆるカーボンナノチューブなどが例示できる。カーボンナノチューブは、炭素六角網面のグラファイトの1枚面を1層もしくは多層に巻いた構造を有する。また、部分的にカーボンナノチューブの構造を有する炭素材料も使用することができる。なお、カーボンナノチューブという名称の他にグラファイトフィブリルナノチューブ、気相成長炭素繊維といった名称で称されることもある。
 第2のカーボンナノファイバー
 第2のカーボンナノファイバーは、気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化されることで得られる。酸化処理については、配管機材用シール部材の製造方法の欄で後述する。第2のカーボンナノファイバーは、その表面のX線光電子分光法(XPS)で測定した酸素濃度が2.6atm%~4.6atm%であり、好ましくは3.0atm%~4.0atm%であり、さらに好ましくは3.1atm%~3.7atm%である。このように、第2のカーボンナノファイバーの表面が適度に酸化していることで、第2のカーボンナノファイバーとエチレン・プロピレンゴムとの表面反応性が向上し、エチレン・プロピレンゴム中における第2のカーボンナノファイバーをより均一に分散することができる。第2のカーボンナノファイバーは、第1のカーボンナノファイバーの質量を2%~20%減量した質量を有することができる。第2のカーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm-1付近のピーク強度Gに対する1300cm-1付近のピーク強度Dの比(D/G)好ましくは0.12~0.22である。第2のカーボンナノファイバーは、窒素吸着比表面積が好ましくは34m/g~58m/gである。第2のカーボンナノファイバーは、平均直径が4nm~230nmであることが好ましく、20nm~10μmが好適で、特には60nm~150nmが好適である。第2のカーボンナノファイバーは、直径が4nm以上ではマトリックス材料に対する分散性が向上し、逆に230nm以下ではマトリックス材料の表面の平坦性が損なわれにくく好ましい。第2のカーボンナノファイバーの平均直径が60nm以上では分散性及び表面の平坦性に優れており、150nm以下では少量の添加量でもカーボンナノファイバーの本数が増加することになるため例えば配管機材用シール部材の性能を向上させることができ、したがって高価な第1のカーボンナノファイバーを節約することができる。また、第2のカーボンナノファイバーのアスペクト比は50~200が好ましい。
 第2のカーボンナノファイバーによれば、表面が適度に酸化されていることによって、カーボンナノファイバーと他の材料例えば複合材料におけるマトリックス材料との表面反応性が向上し、カーボンナノファイバーとマトリックス材料との濡れ性が改善することができる。このように濡れ性が改善されたカーボンナノファイバーを用いることによって、例えば複合材料の剛性や柔軟性を改善することができる。特に、黒鉛化された第1のカーボンナノファイバーの場合、比較的反応性の低い表面を適度に酸化させることによって、第2のカーボンナノファイバーとマトリックス材料との濡れ性を改善することができるため、分散性を向上させることができ、例えば従来より少量の第2のカーボンナノファイバーの添加でも同等の物性を得ることができる。従来の比較的小径のカーボンブラックは水溶液中の塩素、塩素イオン、次亜塩素酸、次亜塩素酸イオンによって表面が活性化するため、その表面と接しているエチレン・プロピレンゴムが酸化されて劣化すると考えられる。これに対し、表面酸化処理が施された第2のカーボンナノファイバーは、その表面の炭素原子が酸素原子に置換された部分を多数有し、しかもその表面の酸素原子がエチレン・プロピレンゴムの分子とも結合して比較的安定な状態であると考えられ、塩素、塩素イオン、次亜塩素酸、次亜塩素酸イオンによってその表面が活性化しにくいと推測される。したがって、第2のカーボンナノファイバーを配合したエチレン・プロピレンゴムは、従来の小径のカーボンブラックが配合されたものに比べて耐塩素性に優れている。
 エチレン・プロピレンゴムに対する第2のカーボンナノファイバーの配合量は、配管機材用シール部材の用途による補強の程度や一緒に配合されるカーボンブラックの配合量によって適宜調整することができるが、エチレン・プロピレンゴム100質量部に対して、第2のカーボンナノファイバーを5質量部~50質量部を配合することができる。第2のカーボンナノファイバーの配合量が5質量部以上であればカーボンブラックの配合量を多くすることでエチレン・プロピレンゴムに対する補強効果が得られ、50質量部以下であれば比較的加工性にも優れるため好ましい。
 (II)カーボンブラック
 カーボンブラックは、平均粒径が50nm~10μmのカーボンブラックであれば、種々の原材料を用いた種々のグレードのカーボンブラックを1種類もしくは複数種類を組み合わせて用いることができる。カーボンブラックは、基本構成粒子の平均粒径が50~10μmであり、さらに好ましくは平均粒径が50~150nmである。このように比較的大きな粒径を有するカーボンブラックが配合されたエチレン・プロピレンゴムは、耐塩素性に優れると共に、エチレン・プロピレンゴムの系を大きく分割することができるためエチレン・プロピレンゴムの配合量及び第2のカーボンナノファイバーの配合量を節約できて経済的に優れる。従来の配管機材用シール部材に配合されていた粒径の小さいカーボンブラックは水溶液中の塩素、塩素イオン、次亜塩素酸、次亜塩素酸イオンによってその表面が活性化しやすく、エチレン・プロピレンゴムに配合された場合、カーボンブラックとエチレン・プロピレンゴムとの界面から酸化反応によってエチレン・プロピレンゴムの劣化が進むと推測される。したがって、カーボンブラックの平均粒径が50nm未満だと補強性に優れるものの耐塩素性に劣る傾向があり含まないことが好ましい。また、平均粒径が10μmより大きいと補強効果に劣る傾向があるため、経済性の点からも平均粒径が10μm以下のカーボンブラックを用いることが好ましい。このようなカーボンブラックとしては、例えばSRF,MT,FT,オースチンブラック、GPFなどのグレードのカーボンブラックを採用することができる。
 エチレン・プロピレンゴムに対するカーボンブラックの配合量は、配管機材用シール部材の用途による補強の程度や一緒に配合される第2のカーボンナノファイバーの配合量によって適宜調整することができるが、エチレン・プロピレンゴム100質量部に対して、カーボンブラックを10質量部~120質量部を配合することができる。カーボンブラックの配合量が10質量部以上であればエチレン・プロピレンゴムに対する補強効果が得られかつエチレン・プロピレンゴム及び第2のカーボンナノファイバーの配合量を少なくすることができるため好ましく、120質量部以下であれば加工が可能であって、量産も可能であるため好ましい。
 (III)エチレン・プロピレンゴム
 エチレン・プロピレンゴムとしては、EPDM(エチレン-プロピレン-ジエン共重合体)を用いることが好ましい。また、本実施の形態にかかるエチレン・プロピレンゴムは、配管機材用シール部材に必要な耐熱性、耐寒性、シール性を得るため、エチリデンノルボルネンなどの第3成分を含み、かつ、エチレンとプロピレンの共重合比は、エチレン含量で45%~80%のEPDMが好ましい。エチレン・プロピレンゴムの重量平均分子量は、通常5万以上のものが望ましく、より好ましくは7万以上、特に好ましくは10~50万程度のものを用いることができる。エチレン・プロピレンゴムの分子量がこの範囲であると、エチレン・プロピレンゴム分子が互いに絡み合い、相互につながっているので、エチレン・プロピレンゴムは、凝集したカーボンナノファイバーの相互に侵入しやすく、したがってカーボンナノファイバー同士を分離する効果が大きい。エチレン・プロピレンゴムの分子量が5000より小さいと、エチレン・プロピレンゴム分子が相互に充分に絡み合うことができず、後に説明する工程で剪断力をかけてもカーボンナノファイバーを分散させる効果が小さくなる傾向がある。また、エチレン・プロピレンゴムの分子量が500万より大きいと、エチレン・プロピレンゴムが固くなりすぎて加工性が低下する傾向がある。
 (IV)配管機材用シール部材の製造方法
 配管機材用シール部材の製造方法は、第1の工程と、第2の工程と、を有する。
 第1の工程
 まず、配管機材用シール部材の製造方法における第1の工程について説明する。第1の工程は、気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化された第2のカーボンナノファイバーを得る。第1のカーボンナノファイバーは、前記黒鉛化処理を施したものを用いることができる。第1の工程で得られた第2のカーボンナノファイバーのX線光電子分光法(XPS)で測定した表面の酸素濃度は、2.6atm%~4.6atm%であり、好ましくは3.0atm%~4.0atm%であり、さらに好ましくは3.1atm%~3.7atm%である。第2のカーボンナノファイバーは、その表面の酸素濃度が第1のカーボンナノファイバーの表面の酸素濃度より0.2atm%以上増加する程度に酸化することが望ましい。第1の工程は、X線光電子分光法(XPS)で測定した、第1のカーボンナノファイバーの表面の酸素濃度に対する第2のカーボンナノファイバーの表面の酸素濃度の増加量が、0.5atm%~2.6atm%になるように酸化処理を行うことができる。このような第1のカーボンナノファイバーの表面酸素濃度に対する第2のカーボンナノファイバーの表面酸素濃度の増加量は、0.9atm%~1.9atm%であることがより好ましく、さらに1.0atm%~1.6atm%であることが好ましい。また、第1の工程は、X線光電子分光法(XPS)で測定した、第1のカーボンナノファイバーの表面の酸素濃度に対する第2のカーボンナノファイバーの表面の酸素濃度の増加割合が、20%~120%になるように酸化処理を行うことができる。このような第1のカーボンナノファイバーの表面酸素濃度に対する第2のカーボンナノファイバーの表面酸素濃度の増加割合は、43%~90%であることがより好ましく、さらに48%~76%であることが好ましい。このように、第2のカーボンナノファイバーの表面が適度に酸化していることで、第2のカーボンナノファイバーとエチレン・プロピレンゴムとの表面反応性が向上し、エチレン・プロピレンゴム中におけるカーボンナノファイバーの分散不良を改善することができる。第1の工程は、第1のカーボンナノファイバーを酸素を含有する雰囲気中で600℃~800℃で熱処理することができる。例えば、大気雰囲気の炉内に第1のカーボンナノファイバーを配置し、600℃~800℃の温度範囲の所定温度に設定し、熱処理することによって、第2のカーボンナノファイバーの表面が所望の酸素濃度に酸化できる。この第1の工程で熱処理する時間は、所定温度の熱処理炉内で第1のカーボンナノファイバーを保持する時間であって、例えば10分~180分であることができる。酸素を含有する雰囲気は、大気中でもよいし、酸素雰囲気でもよいし、適宜酸素濃度を設定した雰囲気をもちいてもよい。第2のカーボンナノファイバーの表面が第1の工程で所望の酸素濃度に酸化されるのに十分な酸素濃度が雰囲気中に存在すればよい。熱処理の温度は、600℃~800℃の範囲で所望の酸化処理を得るために適宜設定することができる。通常、800℃付近で第1のカーボンナノファイバーは燃焼して繊維に大きなダメージを負うため、温度設定と熱処理の時間は実験を繰り返しながら慎重に設定することが望ましい。なお、熱処理の温度や熱処理の時間は、第1の工程に用いる炉内の酸素濃度や炉の内容積、処理する第1のカーボンナノファイバーの量などによって適宜調整することができる。このように第1の工程で酸化処理された第2のカーボンナノファイバーの質量は、第1のカーボンナノファイバーの質量より例えば2%~20%減量することが好ましく、この減量の範囲であれば第2のカーボンナノファイバーが適度に酸化していると推測できる。第2のカーボンナノファイバーの質量が第1のカーボンナノファイバーの質量より2%未満しか減量していないと、第2のカーボンナノファイバーの表面の酸素濃度が低いため濡れ性の向上が得にくい傾向がある。また、第1のカーボンナノファイバーの質量より20%を超えて減量した第2のカーボンナノファイバーは、減量が20%以下の第2のカーボンナノファイバーに比べて濡れ性がほとんど変わらないにもかかわらず、酸化処理によるカーボンナノファイバーの減量による損失が大きく、しかも熱処理のエネルギー消費量に対して経済的にも不利になる傾向がある。第1のカーボンナノファイバーの表面が酸化することによって、第1のカーボンナノファイバーの表面の炭素の一部が炭酸ガスとして気化して減量することになるからである。第2のカーボンナノファイバーの質量が第1のカーボンナノファイバーの質量より20%を超えなければ繊維長がほとんど短くならないと推測できるため好ましい。なお、第2のカーボンナノファイバーの表面の酸素濃度は、XPS(X線光電子分光法)によって分析することができる。XPSによる酸素濃度の分析は、第2のカーボンナノファイバーの表面に付着した不純物を除去するために、測定前の第2のカーボンナノファイバーに対し例えば0.5分~1.0分間のアルゴンガスエッチングを行い、第2のカーボンナノファイバーの清浄な表面を出してから分析を行うことが好ましい。このアルゴンガスエッチングのアルゴンガス濃度は5×10-2Pa~20×10-2Pa、アルゴンガスの圧力(ゲージ圧)は0.4MPa~0.5MPaが好ましい。また、XPSによる酸素濃度の分析は、XPS装置の金属台の上に導電性接着剤である例えばカーボンテープを貼り、そのカーボンテープ上に第2のカーボンナノファイバーをふりかけてカーボンテープに付着させ、カーボンテープに付着しなかった余分な第2のカーボンナノファイバーを振り落として取り除いた状態で行うことが好ましい。このように、XPSによる酸素濃度の分析においては、第2のカーボンナノファイバーをカーボンテープ上に押しつけてブロック状に固めることなく、なるべく粉体に近い状態で分析することが好ましい。
 第1の工程によって得られた第2のカーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm-1付近のピーク強度Gに対する1300cm-1付近のピーク強度Dの比(D/G)が好ましくは0.12~0.22である。第2のカーボンナノファイバーのラマンピーク比(D/G)は、その表面の結晶に欠陥が多くなるため、第1のカーボンナノファイバーのラマンピーク比(D/G)よりも大きくなる。第2のカーボンナノファイバーは、そのラマンピーク比(D/G)が第1のカーボンナノファイバーのラマンピーク比(D/G)より0.02以上増加する程度に酸化することが望ましい。また、第2のカーボンナノファイバーは、窒素吸着比表面積が好ましくは34m/g~58m/gである。第2のカーボンナノファイバーの窒素吸着比表面積は、その表面が荒れるため、第1のカーボンナノファイバーの窒素吸着比表面積よりも大きくなる。第2のカーボンナノファイバーは、その窒素吸着比表面積が第1のカーボンナノファイバーの窒素吸着比表面積より9m/g以上増加する程度に酸化することが望ましい。第1の工程に用いられる第1のカーボンナノファイバーの平均直径は4nm~250nmであることが好ましく、第1の工程で得られた第2のカーボンナノファイバーの平均直径は4nm~230nmであることができる。このような第2のカーボンナノファイバーを用いることにより、エチレン・プロピレンゴムとの表面反応性が向上し、エチレン・プロピレンゴムに対する濡れ性を改善することができる。
 第2のカーボンナノファイバーのエチレン・プロピレンゴムへの配合量は、用途に応じて設定することができるが、第2のカーボンナノファイバーはエチレン・プロピレンゴムとの濡れ性が向上しているため、例えば同じ剛性の配管機材用シール部材を製造する場合、配合量が少なく経済的である。
 第2の工程
 配管機材用シール部材の製造方法の第2の工程は、平均粒径が50nm~10μmのカーボンブラックと第1の工程で得られた第2のカーボンナノファイバーとを、エチレン・プロピレンゴムに混合し、剪断力で該エチレン・プロピレンゴム中に分散する。
 第2の工程としては、エチレン・プロピレンゴムと第2のカーボンナノファイバーとを、オープンロール、単軸あるいは2軸の押出機、バンバリーミキサー、ニーダーなど公知の混合機に供給し、混練する方法が挙げられる。カーボンブラックなどの第2のカーボンナノファイバー以外の充填材は、第2のカーボンナノファイバーを供給する前に混合機に供給することが好ましい。エチレン・プロピレンゴムとカーボンブラックと第2のカーボンナノファイバーとを混練する工程は、エチレン・プロピレンゴムと、カーボンブラック及び第2のカーボンナノファイバーと、を第1の温度で混練する第1の混練工程と、第1の混練工程で得られた混合物を第2の温度で混練する第2の混練工程と、第2の混練工程で得られた混合物を薄通しする第3の混練工程と、を含むことができる。本実施の形態では、第1の混練工程及び第2の混練工程として密閉式混練法を用い、第3の混練工程としてオープンロール法を用いた例について図1及び図2を用いて詳細に説明する。
 図1は、2本のロータを用いた密閉式混練機11による混合工程を模式的に示す図である。図2は、オープンロール機による配管機材用シール部材の第3の混練工程(薄通し)を模式的に示す図である。
 図1において、密閉式混練機11は、第1のロータ12と、第2のロータ14と、を有する。
 混合工程
 まず、密閉式混練機11の材料供給口16からエチレン・プロピレンゴム200を投入し、第1,第2のロータ12,14を回転させる。さらに、チャンバー18内に所定量のカーボンブラック212及び第2のカーボンナノファイバー220を加えて、さらに第1,第2のロータ12,14を回転させることにより、エチレン・プロピレンゴム200とカーボンブラック212及び第2のカーボンナノファイバー220との混合が行われる。
 第1の混練工程
 ついで、混合工程で得られた混合物を、さらに第1,第2のロータ12,14を所定の速度比で回転させて高い剪断力で混練する第1の混練工程が行なわれる。第1の混練工程では、できるだけ高い剪断力を得るために、エチレン・プロピレンゴムと第2のカーボンナノファイバーとの混合は、第2の混練工程より50~100℃低い第1の温度で行なわれる。第1の温度は、好ましくは0~50℃、より好ましくは5~30℃の第1の温度である。第1の温度の設定は、チャンバー18の温度によって設定しても、第1、第2のロータ12,14の温度によって設定してもよく、あるいは混合物の温度を測定しながら速度比の制御や各種温度制御を行なってもよい。また、前述の混合工程に引き続いて同じ密閉式混練機11で第1の混練工程を行なう場合は、あらかじめ第1の温度に設定しておいてもよい。
 エチレン・プロピレンゴム200として非極性のEPDM(エチレン-プロピレン-ジエン共重合ゴム)を用いた場合、第1の混練工程によって、第2のカーボンナノファイバー220は、凝集塊を残しながらもエチレン・プロピレンゴム200全体に分散する。
 第2の混練工程
 さらに、第1の混練工程によって得られた混合物を別の密閉式混練機に投入し、第2の混練工程が行なわれる。第2の混練工程では、エチレン・プロピレンゴムの分子を切断してラジカルを生成させるため、第1の温度よりも50~100℃高い第2の温度で混練が行なわれる。第2の混練工程で用いられる密閉式混練機は、ロータ内に内蔵したヒータもしくはチャンバーに内蔵されたヒータによって第2の温度まで昇温させられており、第1の温度よりも高温の第2の温度で第2の混練工程を行うことができる。第2の温度は、用いられるエチレン・プロピレンゴムの種類によって適宜選択することができるが、50~150℃が好ましい。このようにして第2の混練工程を行なうことで、エチレン・プロピレンゴムの分子が切断されてラジカルが生成し、第2のカーボンナノファイバーがエチレン・プロピレンゴム分子のラジカルと結合しやすくなる。
 第3の混練工程
 そして、第2の混練工程によって得られた混合物36をさらに第1の温度に設定されたオープンロール30に投入し、図2に示すように、第3の混練工程(薄通し工程)を例えば1回~10回行い、分出しする。第1のロール32及び第2のロール34のロール間隔d(ニップ)は、第1、第2の混練工程よりも剪断力が大きくなる0~0.5mm、例えば0.3mmに設定され、ロール温度は第1の混練工程と同じ0~50℃、より好ましくは5~30℃の第3の温度に設定される。第1のロール32の表面速度をV1、第2のロール34の表面速度をV2とすると、薄通しにおける両者の表面速度比(V1/V2)は、1.05~3.00であることが好ましく、さらに1.05~1.2であることが好ましい。このような表面速度比を用いることにより、所望の剪断力を得ることができる。薄通しされた混合物36は、ロールで圧延されてシート状に分出しされる。第3の混練工程は、エチレン・プロピレンゴム中に第2のカーボンナノファイバーをさらに均一に分散させる仕上げの分散工程であり、より均一な分散性を要求されるときに有効である。この第3の混練工程(薄通し工程)によって、ラジカルが生成したエチレン・プロピレンゴムが第2のカーボンナノファイバーを1本づつ引き抜くように作用し、第2のカーボンナノファイバーをさらに分散させることができる。また、第3の混練工程で加硫剤(架橋剤)を投入し、加硫剤の均一分散も行うことができる。
 このように、第1の温度による第1の混練工程を行なうことで、高い剪断力によってエチレン・プロピレンゴム全体に第2のカーボンナノファイバーを分散させることができ、さらに第2の温度による第2の混練工程と第1の温度による第3の混練工程とを行なうことで、エチレン・プロピレンゴム分子のラジカルによって第2のカーボンナノファイバーの凝集塊を解くことができる。本実施の形態によれば、第3の混練工程において混合物が狭いロール間から押し出された際に、エチレン・プロピレンゴムの弾性による復元力で混合物はロール間隔より厚く変形する。その変形は、強い剪断力の作用した混合物をさらに複雑に流動させ、第2のカーボンナノファイバーをエチレン・プロピレンゴム中に分散させると推測できる。そして、一旦分散した第2のカーボンナノファイバーは、エチレン・プロピレンゴムとの化学的相互作用によって再凝集することが防止され、良好な分散安定性を有することができる。したがって、EPDMのような非極性のエチレン・プロピレンゴムでも第2のカーボンナノファイバーを全体に分散させると共に、第2のカーボンナノファイバーの凝集塊の無い配管機材用シール部材を製造することができる。しかも、第2のカーボンナノファイバーの表面は適度に酸化処理されていることによってエチレン・プロピレンゴムとの濡れ性が向上している。
 なお、エチレン・プロピレンゴムに第2のカーボンナノファイバーを剪断力によって分散させる第1、第2の混練工程においては、加工性から密閉式混練機を用いることが好ましいが、オープンロール法などの他の混練機を用いてもよい。密閉式混練機としては、バンバリミキサ、ニーダ、ブラベンダーなどの接線式もしくは噛合い式を採用することができる。第1、第2、第3の混練工程は、上記密閉式混練法、オープンロール法に限定されず、多軸押出し混練法(例えば二軸押出機)によって行うことができる。混練機は、生産量などに応じて適宜組み合わせて選択することができる。特に、第3の混練工程におけるオープンロール法は、ロール温度の管理だけでなく、混合物の実際の温度を測定し管理することができるため、好ましい。
 配管機材用シール部材の製造方法は、薄通し後の分出しされたシート状の混合物にさらに加硫剤を混合し、もしくはいずれかの混練工程中に加硫剤を混合しておき、一般に採用されるゴムの成形加工例えば、射出成形法、トランスファー成形法、プレス成形法、押出成形法、カレンダー加工法などによって各種配管機材に要求されるシール部材の形状に成形し、例えば型加硫方式などにより加熱・加硫して配管機材用シール部材を成形することができる。
 本実施の形態にかかる配管機材用シール部材の製造方法において、通常、エチレン・プロピレンゴムの加工で用いられる配合剤を加えることができる。配合剤としては公知のものを用いることができる。配合剤としては、例えば、架橋剤、加硫剤、加硫促進剤、加硫遅延剤、軟化剤、可塑剤、硬化剤、補強剤、充填剤、老化防止剤、着色剤などを挙げることができる。これらの配合剤は、例えばオープンロールにおける第2のカーボンナノファイバーの投入前もしくは投入後にエチレン・プロピレンゴムに投入することができる。
 (V)配管機材用シール部材
 次に、配管機材用シール部材について、図3及び図4を用いて以下に説明する。
 図3は、配管機材の一実施形態であるバタフライ弁の概略構成を示す縦断面図である。図4は、配管機材の一実施形態であるバタフライ弁の開閉動作を説明する図3のX-X’断面図である。
 配管機材用シール部材は各種流体の配管やこれらの流体の流路を開閉するバルブなどの各種配管機材に用いることができるが、ここでは図3及び図4に示す配管機材の一実施形態であるバタフライ弁20を用いて配管機材用シール部材の構成の概略を説明する。バタフライ弁20は、金属などの剛性材料からなる円筒形のボデー21の内周面に前記(IV)で説明した製造方法によって得られた環状のシール部材(シートリング、シートラバー、ラバーライナーまたはラバーシートと呼ぶこともある)22を装着し、シール部材22の内側に円板状のジスク24が配置されている。ジスク24の中心軸線上に円柱状のステム23、23がジスク24の上下から突出するように装着されると共に、ステム23、23がボデー21とシール部材22を貫通して回転自在に装着されている。ジスク24の外周面24aは、ジスク24を回動させることによって、シール部材22の内周面にあるシール面22aに外周面24aを押し付けてバルブを閉止する。したがって、ステム23、23の縦軸を中心にしてジスク24を回動させることで、バルブ内の流体の流路28を開閉することができる。このような構造のバタフライ弁20は、シール部材22の接液面積が大きい上に、塗布潤滑材の効果が短期間で薄れやすく、さらにはジスク24がシール部材22を強く押圧して摺動する機構であるため、シール部材22の塩素劣化に起因する黒色成分の剥離が生じやすい傾向があったが、このような耐塩素性に優れた配管機材用シール部材22を用いることで黒色成分の剥離が低減できる。
 なお、配管機材とは、仕切弁、玉形弁、ニードル弁、逆止め弁、ボール弁、コック、バタフライ弁、ダイヤフラム弁、安全弁、逃がし弁、減圧弁、調節弁、蒸気トラップ、電磁弁、通気弁、給水栓等のバルブ、およびねじ込み式継手、溶接式継手、溶着式継手、融着式継手、接着式継手、迅速流体継手、くい込み式継手、締め付け式継手、伸縮式継手、クランプ式継手、ワンタッチ式継手、スライド式継手、圧縮式継手、拡管式継手、転造ねじ式継手、挿し込み式継手、カップリング式継手、ハウジング式継手、可とう式継手等の継手を指す。
 配管機材用シール部材は、エチレン・プロピレンゴムと、表面酸化処理された第2のカーボンナノファイバーと、平均粒径が50nm~10μmのカーボンブラックと、を含み、耐塩素性に優れている。エチレン・プロピレンゴムに、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%であるカーボンナノファイバーを含む。第2のカーボンナノファイバーはエチレン・プロピレンゴム中に均一に分散している。第2のカーボンナノファイバーは、酸化処理されているため、エチレン・プロピレンゴムとの濡れ性が改善され、配管機材用シール部材の剛性や柔軟性が改善される。特に、表面酸化処理されたカーボンナノファイバー及び平均粒径が50nm~10μmのカーボンブラックは塩素、塩素イオン、次亜塩素酸、次亜塩素酸イオンに対しても比較的安定であり、配管機材用シール部材として耐塩素性に優れる。配管機材用シール部材は、エチレン・プロピレンゴム100質量部に対して、第2のカーボンナノファイバー5質量部~50質量部と、カーボンブラック10質量部~120質量部と、が配合されることが補強性、加工性、経済性などの点から好ましい。
 次に、本発明の一実施形態にかかる耐油性に優れた配管機材用シール部材及びその製造方法と、本発明の一実施形態にかかる配管機材と、について説明する。
 本発明の一実施形態にかかる耐油性に優れた配管機材用シール部材は、エチレン・プロピレンゴム100質量部に対して、カーボンナノファイバー5質量部~70質量部と、カーボンブラック0質量部~120質量部と、を含み、かつ、前記カーボンナノファイバーと前記カーボンブラックとの合計が50質量部~190質量部であることを特徴とする。
 本発明の一実施形態にかかる配管機材は、エチレン・プロピレンゴム100質量部に対して、カーボンナノファイバー5質量部~70質量部と、カーボンブラック0質量部~120質量部と、を含み、かつ、前記カーボンナノファイバーと前記カーボンブラックとの合計が50質量部~190質量部である、耐油性に優れたシール部材を有することを特徴とする。
 (VI)カーボンナノファイバー
 カーボンナノファイバーは、例えば気相成長法によって製造される。気相成長法は、炭化水素等のガスを金属系触媒の存在下で気相熱分解させてカーボンナノファイバーを製造する方法である。より詳細に気相成長法を説明すると、例えば、ベンゼン、トルエン等の有機化合物を原料とし、フェロセン、ニッケルセン等の有機遷移金属化合物を金属系触媒として用い、これらをキャリアーガスとともに高温例えば400℃~1000℃の反応温度に設定された反応炉に導入し、カーボンナノファイバーを基板上に生成させる方法、浮遊状態でカーボンナノファイバーを生成させる方法、あるいはカーボンナノファイバーを反応炉壁に成長させる方法等を用いることができる。また、あらかじめアルミナ、炭素等の耐火性支持体に担持された金属含有粒子を炭素含有化合物と高温で接触させて、平均直径が70nm以下のカーボンナノファイバーを得ることもできる。気相成長法で製造されたカーボンナノファイバーの平均直径は、平均直径が4nm~250nmであることが好ましい。
 このように気相成長法で製造されたカーボンナノファイバーを不活性ガス雰囲気中において2000℃~3200℃で熱処理することができる。この熱処理温度は、2500℃~3200℃がさらに好ましく、特に2800℃~3200℃が好ましい。熱処理温度が、2000℃以上であると、気相成長の際にカーボンナノファイバーの表面に沈積したアモルファス状の堆積物や残留している触媒金属などの不純物が除去されるので好ましい。また、カーボンナノファイバーの熱処理温度が、2500℃以上であると、カーボンナノファイバーの骨格が黒鉛化(結晶化)し、カーボンナノファイバーの欠陥が減少し強度が向上するため好ましい。なお、カーボンナノファイバーの熱処理温度が、3200℃以下であれば、黒鉛が昇華することによる黒鉛骨格の破壊が発生しにくいため好ましい。
 カーボンナノファイバーは、例えば、いわゆるカーボンナノチューブなどが例示できる。カーボンナノチューブは、炭素六角網面のグラファイトの1枚面を1層もしくは多層に巻いた構造を有する。また、部分的にカーボンナノチューブの構造を有する炭素材料も使用することができる。なお、カーボンナノチューブという名称の他にグラファイトフィブリルナノチューブ、気相成長炭素繊維といった名称で称されることもある。
 また、カーボンナノファイバーはエチレン・プロピレンゴムに混合される前に、エチレン・プロピレンゴムとの濡れ性を向上させるため、各種表面処理を行うことができる。例えば、カーボンナノファイバーは、気相成長法によって製造されたカーボンナノファイバーを表面酸化処理することができる。カーボンナノファイバーは、前記黒鉛化処理を施したもの表面酸化処理してもよい。表面酸化処理の工程は、X線光電子分光法(XPS)で測定した、処理前のカーボンナノファイバーの表面の酸素濃度が、処理後のカーボンナノファイバーの表面の酸素濃度より0.5atm%~2.6atm%高くなるように酸化処理を行うことができる。また、表面酸化処理の工程は、X線光電子分光法(XPS)で測定した、処理前のカーボンナノファイバーの表面の酸素濃度が、処理後のカーボンナノファイバーの表面の酸素濃度に対し20%~120%高くなるように酸化処理を行うことができる。表面酸化処理の工程で得られたカーボンナノファイバーのX線光電子分光法(XPS)で測定した表面の酸素濃度は、2.6atm%~4.6atm%であることができる。表面酸化処理の工程は、カーボンナノファイバーを酸素を含有する雰囲気中で600℃~800℃で熱処理することができる。例えば、大気雰囲気の炉内にカーボンナノファイバーを配置し、600℃~800℃の温度範囲の所定温度に設定し、熱処理することによって、カーボンナノファイバーの表面が所望の酸素濃度に酸化できる。
 また、例えば、カーボンナノファイバーは、気相成長法によって製造されたカーボンナノファイバーを、黒鉛化処理をせずに、前記気相成長法における反応温度より高温であって、かつ、1100℃~1600℃で熱処理(不活性ガス雰囲気中)することができる。このように熱処理されたカーボンナノファイバーは、適度に表面に非結晶部分が存在するため、エチレン・プロピレンゴムとの濡れ性が良好であり、比較的欠陥も少ないのでカーボンナノファイバーの強度も十分であるため好ましい。
 (VII)カーボンブラック
 カーボンブラックは、平均粒径が10nm~10μmのカーボンブラックであれば、種々の原材料を用いた種々のグレードのカーボンブラックを1種類もしくは複数種類を組み合わせて用いることができる。カーボンブラックは、基本構成粒子の平均粒径が10~150nmであることがさらに好ましい。カーボンブラックは、エチレン・プロピレンゴムの系を分割することができるためエチレン・プロピレンゴムの配合量及びカーボンナノファイバーの配合量を節約できて経済的に優れる。
 (VIII)エチレン・プロピレンゴム
 エチレン・プロピレンゴムとしては、EPDM(エチレン-プロピレン-ジエン共重合体)を用いることが好ましい。また、本実施の形態にかかるエチレン・プロピレンゴムは、配管機材用シール部材に必要な耐熱性、耐寒性、シール性を得るため、エチリデンノルボルネンなどの第3成分を含み、かつ、エチレンとプロピレンの共重合比は、エチレン含量で45%~80%のEPDMが好ましい。エチレン・プロピレンゴムの重量平均分子量は、通常5万以上のものが望ましく、より好ましくは7万以上、特に好ましくは10~50万程度のものを用いることができる。エチレン・プロピレンゴムの分子量がこの範囲であると、エチレン・プロピレンゴム分子が互いに絡み合い、相互につながっているので、エチレン・プロピレンゴムは、凝集したカーボンナノファイバーの相互に侵入しやすく、したがってカーボンナノファイバー同士を分離する効果が大きい。エチレン・プロピレンゴムの分子量が5000より小さいと、エチレン・プロピレンゴム分子が相互に充分に絡み合うことができず、後に説明する工程で剪断力をかけてもカーボンナノファイバーを分散させる効果が小さくなる傾向がある。また、エチレン・プロピレンゴムの分子量が500万より大きいと、エチレン・プロピレンゴムが固くなりすぎて加工性が低下する傾向がある。
 (IX)配管機材用シール部材の製造方法
 配管機材用シール部材の製造方法は、カーボンブラックとカーボンナノファイバーとを、エチレン・プロピレンゴムに混合し、剪断力で該エチレン・プロピレンゴム中に分散する。
 エチレン・プロピレンゴムとカーボンナノファイバーとを混合する方法としては、オープンロール、単軸あるいは2軸の押出機、バンバリーミキサー、ニーダーなど公知の混合機に供給し、混練する方法が挙げられる。カーボンブラックなどのカーボンナノファイバー以外の充填材は、カーボンナノファイバーを供給する前に混合機に供給することが好ましい。エチレン・プロピレンゴムとカーボンブラックとカーボンナノファイバーとを混練する工程は、前記(IV)の第2の工程と同様に実施することができ、エチレン・プロピレンゴムと、カーボンブラック及びカーボンナノファイバーと、を第1の温度で混練する第1の混練工程と、第1の混練工程で得られた混合物を第2の温度で混練する第2の混練工程と、第2の混練工程で得られた混合物を薄通しする第3の混練工程と、を含むことができる。その際、前記(IV)において図1の符号220は第2のカーボンナノファイバーであったが、本実施の形態においては図1の符号220はカーボンナノファイバーである。ここでは、図1,2を用いた配管機材用シール部材の製造方法は、前記(IV)と重複するため、省略する。
 (X)配管機材用シール部材及びバタフライ弁
 本実施の形態の配管機材用シール部材は、前記(V)の説明において用いた図3,4の配管機材用シール部材及びバタフライ弁に適用することができる。したがって、ここでは、図3,4における配管機材用シール部材及びバタフライ弁の説明が前記(V)と重複するため、省略する。
 また、本実施の形態における配管機材とは、前記(V)において例示した配管機材とすることができる。
 前記(IX)で得られた配管機材用シール部材は、エチレン・プロピレンゴム100質量部に対して、カーボンナノファイバー5質量部~70質量部と、カーボンブラック0質量部~120質量部と、を含み、かつ、前記カーボンナノファイバーと前記カーボンブラックとの合計が50質量部~190質量部である。図5及び図6を用いて配管機材用シール部材の耐油性について説明する。図5は、配管機材用シール部材の一部を拡大した断面を示す模式図である。図6は、従来の配管機材用シール部材の一部を拡大した断面を示す模式図である。
 図6に示すように、従来の配管機材用シール部材はカーボンブラック58によって補強されていたので、矢印56で示すようにオイルがエチレン・プロピレンゴム50中に浸入して膨潤することになっていた。これに対して、一実施形態にかかる配管機材用シール部材は、図5に示すように、エチレン・プロピレンゴム50中に分散されたカーボンナノファイバー52及びその周囲に形成されたバウンドラバー状の界面相54がネットワークを形成し、矢印で示したオイル56の浸入を阻止する。また、カーボンナノファイバー52及び界面相54によって形成されたネットワークによってエチレン・プロピレンゴム50が移動を制限されるため、浸入してきたオイルによって膨潤することを物理的に抑制することができると推測できる。なお、図5においては、説明を簡単にするためにカーボンブラックを含まない図とした。
 また、配管機材用シール部材は、カーボンナノファイバーによって補強されているため、配管機材用シール部材に要求される物理的強度の基本性能を有すると共に、摩擦係数を下げることができる。これは、シール部材の表面にカーボンナノファイバーと界面相とからなる高弾性率部分が多数点在し、しかもこの高弾性率部分がシール部材表面から突出して凹凸を形成するためと推測できる。このように摩擦係数を下げた配管機材用シール部材を、例えばシール部材22の内周面22aにジスク24の外周面24aのほぼ全周が接触するようなバタフライ弁20に採用することで、ジスク24の回転トルクを下げることができるため省エネルギーとなる。また、配管機材用シール部材の表面の摩擦係数を下げることにより、配管機材用シール部材の摩耗を低減することができ、長寿命化が期待できる。
 エチレン・プロピレンゴムに対するカーボンナノファイバー及びカーボンブラックの配合量は、配管機材用シール部材の用途による補強の程度や他の充填剤の配合量によって適宜調整することができる。例えば、カーボンナノファイバーの配合量を増やすことで耐油性が向上し、摩擦係数が下げることができるが、カーボンナノファイバーは高価であるため経済性を考慮してカーボンブラックを合わせて配合することが好ましい。配管機材用シール部材は、エチレン・プロピレンゴム100質量部に対して、カーボンナノファイバー5質量部~70質量部と、カーボンブラック0質量部~120質量部と、を含み、かつ、前記カーボンナノファイバーと前記カーボンブラックとの合計が50質量部~190質量部であり、より好ましくはカーボンナノファイバーは15質量部~65質量部である。カーボンナノファイバーの配合量が5質量部以上であればカーボンブラックの配合量を多くすることでエチレン・プロピレンゴムに対する補強効果、耐油性、低摩擦係数が得られ、70質量部以下であればカーボンブラックの配合量を少なくすることで適度な硬度に調整することができると共に加工も可能である。
 以下、本発明の実施例について述べるが、本発明はこれらに限定されるものではない。
 まず、実施例1~4及び比較例1~5の配管機材用シール部材サンプルを用いて耐塩素性を評価した。
(1)カーボンナノファイバーの表面酸化処理
(1-1)縦型加熱炉(内径17.0cm、長さ150cm)の頂部に、スプレーノズルを取り付ける。加熱炉の炉内壁温度(反応温度)を1000℃に昇温・維持し、スプレーノズルから4重量%のフェロセンを含有するベンゼンの液体原料20g/分を100L/分の水素ガスの流量で炉壁に直接噴霧(スプレー)散布するように供給する。この時のスプレーの形状は円錐側面状(ラッパ状ないし傘状)であり、ノズルの頂角が60°である。このような条件の下で、フェロセンは熱分解して鉄微粒子を作り、これがシード(種)となってベンゼンの熱分解による炭素から、カーボンナノファイバーを生成成長させた。本方法で成長したカーボンナノファイバーを5分間隔で掻き落としながら1時間にわたって連続的に製造した。
 このように気相成長法によって製造されたカーボンナノファイバーを、不活性ガス雰囲気中において2800℃で熱処理して黒鉛化した。黒鉛化した第1の(未処理)カーボンナノファイバー(表1では「CNT-N」と示す)は、平均直径87nm、平均長さ10μm、ラマンピーク比(D/G)0.08、窒素吸着比表面積25m/g、表面の酸素濃度2.1atm%であった。
(1-2)黒鉛化した第1のカーボンナノファイバー100gを大気雰囲気の加熱炉(卓上電気炉AMF-20Nアサヒ理化製作所製)に入れ、表1に示す温度(575℃~720℃)と時間(1時間もしくは2時間)で加熱炉内で保持して熱処理することで酸化処理を行って第2のカーボンナノファイバーを得た。
 加熱炉の温度設定は、TG(熱質量分析)法を用いて第1のカーボンナノファイバーの質量減少を測定した結果をみて設定した。TG(熱質量分析)法では、第1のカーボンナノファイバーを大気中で昇温したときの質量減少を測定し、図7に示すような温度に対する第2のカーボンナノファイバーの質量変化を示した。このとき、昇温速度は10℃/min、雰囲気は大気(圧縮空気200ml/min)であった。この測定結果から、第1のカーボンナノファイバーの質量が減少(酸化)し始める600℃から第1のカーボンナノファイバーの質量減少が100%(燃え尽きる)になる800℃の間で加熱炉を表1に示すような5つの設定温度に設定し、5種類の第2のカーボンナノファイバーを得た。第2のカーボンナノファイバーは、表1に示すように、加熱炉の設定温度に応じて「CNT-A(575℃)」、「CNT-B(615℃)」、「CNT-C(650℃)」、「CNT-D(690℃)」、「CNT-E(720℃)」とした。なお、加熱炉内の実際の温度は、設定温度に対し±30℃の範囲であった。
 また、5種類の第2のカーボンナノファイバーについて、ラマンピーク比(D/G)、窒素吸着比表面積、表面の酸素濃度を測定し、その結果を表1に示した。また、第1及び第2のカーボンナノファイバーの表面の酸素濃度の測定結果に基づいて、酸化処理を行う前の第1のカーボンナノファイバー(「CNT-N」)の表面酸素濃度(a)に対する各第2のカーボンナノファイバーの表面酸素濃度(b)の増加量(c=b-a)及び表面酸素濃度の増加割合(d=100・c/a)を計算し、表1に示した。ラマンピーク比は、KAISER OPTICAL SYSTEM社製HOLOLAB-5000型(532nmND:YAG)を用いてラマン散乱分光法によって第2のカーボンナノファイバーにおける1600cm-1付近のピーク強度Gに対する1300cm-1付近のピーク強度Dの比(D/G)を測定した。窒素吸着比表面積(m/g)は、ユアサアイオニクス社製NOVA3000型(窒素ガス)を用いて測定した。第2のカーボンナノファイバーの表面の酸素濃度は、XPS(X線光電子分光分析法(X-ray Photoelectron Spectroscopy))を用いて測定した。具体的には、まず、第2のカーボンナノファイバーを金属台上のカーボンテープ上にふりかけてカーボンテープに付着させ、カーボンテープに付着しなかった余分な第2のカーボンナノファイバーを振り落として取り除いて、金属台をXPS装置の中に装着した。XPS装置は、日本電子社製の「マイクロ分析用X線光電子分光装置JPS-9200を用いた。そして、次に、粉体状の試料である第2のカーボンナノファイバーをアルゴンガス濃度8×10-2Pa、0.5分間でアルゴンガスエッチングを行い、第2のカーボンナノファイバーの清浄な表面を出した。さらに、XPS装置のX線源を分析径1mm、対陰極Al/Mgツインターゲット、加速電圧10kV、エミッション電流30mAに設定して第2のカーボンナノファイバーの表面の酸素濃度を測定した。XPSによって検出された第2のカーボンナノファイバーの表面の元素は酸素と炭素であった。
Figure JPOXMLDOC01-appb-T000001
 (2)実施例1~4及び比較例1~5のシール部材サンプルの作製
実施例1~4及び比較例1~4サンプルとして、オープンロール(ロール設定温度20℃)に、表2,3に示す所定量のエチレン・プロピレンゴムを投入し、カーボンブラック、カーボンナノファイバー、オイルなどをエチレン・プロピレンゴムに投入し混合工程の後、第1の混練工程を行いロールから取り出した。さらに、その混合物をロール温度100℃に設定されたオープンロールに再度投入し、第2の混練工程を行って取り出した。
 次に、この混合物をオープンロール(ロール温度10~20℃、ロール間隔0.3mm)に巻きつけ、薄通しを繰り返し5回行なった。このとき、2本のロールの表面速度比を1.1とした。さらに、ロール間隙を1.1mmにセットして、薄通しして得られたシートを投入し、分出しした。
 薄通しして得られた無架橋のシートに有機過酸化物と共架橋剤とを配合して混合し、ロール間隙を1.1mmにセットしたオープンロールに投入し、分出しした。分出しして金型サイズに切り取ったシートを金型にセットし、175℃、100kgf/cm、20分間圧縮成形して厚さ1mmの実施例1~4及び比較例1~4の架橋体の配管機材用シール部材サンプルを得た。
 表2及び表3において、「SRF-CB」は平均粒径69nmのSRFグレードのカーボンブラック、「MT-CB」は平均粒径122nmのMTグレードのカーボンブラックであり、「EPDM」はJSR社製のエチレン-プロピレン-ジエン共重合体(EPDM)の商品名EP24(ムーニー粘度(ML1+4、125℃)が42、エチレン含量54質量%、ジエン含量4.5質量%)であった。また、表2及び表3において、「CNT-C」は前記(1)で得られた表面酸素濃度3.5atm%の第2のカーボンナノファイバーであり、「CNT-N」は酸化処理しない第1のカーボンナノファイバーである。また、表2及び表3において、「CNT-F」は、前記(1-1)で気相成長法によって製造されたカーボンナノファイバーを黒鉛化処理せず、不活性ガス雰囲気中で、前記気相成長法における反応温度より高温である熱処理温度(1200℃)で熱処理してマトリックスとの濡れ性を向上したカーボンナノファイバーであり、比較例2のシール部材サンプルの配合に用いた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 また、比較例5として、現行品のバタフライ弁用のシール部材と同様の配合で成形されたシート状サンプルを用いて以下の各種測定を行った。現行品のシール部材は、EPDMにFEF(平均粒径43nm)とHAF(平均粒径28nm)とを所定量配合していた。
 (3)硬度(Hs)の測定
 実施例1~4及び比較例1~5の配管機材用シール部材サンプルのゴム硬度(JIS-A)をJIS K 6253に基づいて測定した。測定結果を表4,5に示す。
 (4)引張強さ(Tb)及び破断伸び(Eb)の測定
 実施例1~4及び比較例1~5の配管機材用シール部材サンプルを1A形のダンベル形状に切り出した試験片について、東洋精機社製の引張試験機を用いて、23±2℃、引張速度500mm/minでJIS K6251に基づいて引張試験を行い引張強さ(MPa)及び破断伸び(%)を測定した。これらの結果を表4、5に示す。
 (5)100%モジュラス(M100)の測定
 実施例1~4及び比較例1~5の配管機材用シール部材サンプル(幅5mm×長さ50mm×厚さ1mm)を10mm/minで伸長し、100%変形時の応力(M100:100%モジュラス(MPa))を求めた。測定結果を表4,5に示す。
 (6)引裂き強度の測定
 実施例1~4及び比較例1~5の配管機材用シール部材サンプルからJIS K 6252に準拠して切込みなし無しアングル型試験片を打ち抜いて作製し、JIS K 6252に準拠して引裂き試験を行って、引裂き強度(N/mm)を測定した。結果を表4,5に示す。
 (7)耐塩素性試験
 塩素濃度200ppm、pH=9±0.5の次亜塩素酸ナトリウム水溶液を調整し、実施例1~4及び比較例1~5の配管機材用シール部材サンプルを該水溶液に60℃で1004時間浸漬(休業日を除いて1週間あたり5回、24時間ごとに新しく調整した水溶液に入れ替えた)し、浸漬前と1004時間浸漬後における外観変化を目視で観察すると共に、980時間経過時に調整した該水溶液の24時間経過後(試験開始から1004時間浸漬後)の該水溶液中の残留塩素濃度を測定した。結果を表4,5に示す。また、1004時間浸漬後の該水溶液の写真を図8に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4,5及び図8から、本発明の実施例1~4によれば、以下のことが確認された。すなわち、本発明の実施例1~4の配管機材用シール部材サンプルは、比較例2~5に比べて耐塩素性に優れていることがわかった。また、比較例1,2によれば、SRFカーボンブラック及びMTカーボンブラックだけが補強剤として配合された配管機材用シール部材サンプルは、耐塩素性に優れていることがわかった。しかしながら、比較例1,2では引裂き強度などの物性において比較例5の現行品サンプルより劣ることがわかった。
 次に、実施例5~11及び比較例6~9の配管機材用シール部材サンプルを用いて耐油性を評価した。
(8)カーボンナノファイバーの製造
 縦型加熱炉(内径17.0cm、長さ150cm)の頂部に、スプレーノズルを取り付ける。加熱炉の炉内壁温度(反応温度)を1000℃に昇温・維持し、スプレーノズルから4重量%のフェロセンを含有するベンゼンの液体原料20g/分を100L/分の水素ガスの流量で炉壁に直接噴霧(スプレー)散布するように供給する。この時のスプレーの形状は円錐側面状(ラッパ状ないし傘状)であり、ノズルの頂角が60°である。このような条件の下で、フェロセンは熱分解して鉄微粒子を作り、これがシード(種)となってベンゼンの熱分解による炭素から、カーボンナノファイバーを生成成長させた。本方法で成長したカーボンナノファイバーを5分間隔で掻き落としながら1時間にわたって連続的に製造した。
 このように気相成長法によって製造されたカーボンナノファイバーを、不活性ガス雰囲気中において2800℃で熱処理して黒鉛化した。黒鉛化したカーボンナノファイバー(表6,7では「CNT-N」と示す)は、平均直径87nm、平均長さ10μm、ラマンピーク比(D/G)0.08、窒素吸着比表面積25m/g、表面の酸素濃度2.1atm%であった。
 また、このように気相成長法によって製造されたカーボンナノファイバーを、黒鉛化処理せず、不活性ガス雰囲気中で前記気相成長法における反応温度より高温である熱処理温度(1200℃)で熱処理してマトリックスとの濡れ性を向上したカーボンナノファイバー(表6,7では「CNT-F」と示す)は、平均直径87nm、平均長さ10μm、ラマンピーク比(D/G)1.29、タップ密度0.013g/cm、窒素吸着比表面積35m/gであった。
 さらに、黒鉛化したカーボンナノファイバー(CNT-N)100gを大気雰囲気の加熱炉(卓上電気炉AMF-20Nアサヒ理化製作所製)に入れ、650℃で2時間加熱炉内で保持して熱処理することで表面酸化処理を施したカーボンナノファイバー(表6,7では「CNT-C」と示す)を得た。表面酸化処理カーボンナノファイバーは、平均直径87nm、平均長さ10μm、ラマンピーク比(D/G)0.19、窒素吸着比表面積43m/g、表面の酸素濃度2.1atm%であった。
 なお、ラマンピーク比は、KAISER OPTICAL SYSTEM社製HOLOLAB-5000型(532nmND:YAG)を用いてラマン散乱分光法によってカーボンナノファイバーにおける1600cm-1付近のピーク強度Gに対する1300cm-1付近のピーク強度Dの比(D/G)を測定した。窒素吸着比表面積(m/g)は、ユアサアイオニクス社製NOVA3000型(窒素ガス)を用いて測定した。カーボンナノファイバーの表面の酸素濃度は、XPS(X線光電子分光分析法(X-ray Photoelectron Spectroscopy))を用いて測定した。具体的には、まず、カーボンナノファイバーを金属台上のカーボンテープ上にふりかけてカーボンテープに付着させ、カーボンテープに付着しなかった余分なカーボンナノファイバーを振り落として取り除いて、金属台をXPS装置の中に装着した。XPS装置は、日本電子社製の「マイクロ分析用X線光電子分光装置JPS-9200を用いた。次に、粉体状の試料であるカーボンナノファイバーをアルゴンガス濃度8×10-2Pa、0.5分間でアルゴンガスエッチングを行い、カーボンナノファイバーの清浄な表面を出した。さらに、XPS装置のX線源を分析径1mm、対陰極Al/Mgツインターゲット、加速電圧10kV、エミッション電流30mAに設定してカーボンナノファイバーの表面の酸素濃度を測定した。XPSによって検出されたカーボンナノファイバーの表面の元素は酸素と炭素であった。
 (9)実施例5~11及び比較例6~9のシール部材サンプルの作製
 実施例5~11及び比較例6~8サンプルとして、オープンロール(ロール設定温度20℃)に、表6,7に示す所定量のエチレン・プロピレンゴムを投入し、カーボンブラック、カーボンナノファイバー、オイルなどをエチレン・プロピレンゴムに投入し素練りの後、第1の混練工程を行いロールから取り出した。さらに、その混合物をロール温度100℃に設定されたオープンロールに再度投入し、第2の混練工程を行って取り出した。
 次に、この混合物をオープンロール(ロール温度10~20℃、ロール間隔0.3mm)に巻きつけ、薄通しを繰り返し5回行なった。このとき、2本のロールの表面速度比を1.1とした。さらに、ロール間隙を1.1mmにセットして、薄通しして得られたシートを投入し、分出しした。
 薄通しして得られた無架橋のシートに有機過酸化物と共架橋剤とを配合して混合し、ロール間隙を1.1mmにセットしたオープンロールに投入し、分出しした。分出しして金型サイズに切り取ったシートを金型にセットし、175℃、100kgf/cm、20分間圧縮成形して厚さ1mmの実施例5~11及び比較例6~8の架橋体の配管機材用シール部材サンプルを得た。
 表6,7において、「HAF-CB」は平均粒径28nmのHAFグレードのカーボンブラック、「SRF-CB」は平均粒径69nmのSRFグレードのカーボンブラック、「MT-CB」は平均粒径122nmのMTグレードのカーボンブラックであり、「EPDM」はJSR社製のエチレン-プロピレン-ジエン共重合体(EPDM)の商品名EP103AF(ムーニー粘度(ML1+4、125℃)が91、エチレン含量59質量%、ジエン含量4.5質量%)と商品名EP24(ムーニー粘度(ML1+4、125℃)が42、エチレン含量54質量%、ジエン含量4.5質量%)であった。
 また、比較例9として、現行品のバタフライ弁用のシール部材と同様の配合で成形されたシート状サンプルを用いて以下の各種測定を行った。現行品のシール部材は、EPDMにFEF(平均粒径43nm)とHAF(平均粒径28nm)とを所定量配合していた。
 (10)硬度(Hs)の測定
 実施例5~11及び比較例6~9の配管機材用シール部材サンプル試験片(JIS K 6251ダンベル3号片)をのゴム硬度(JIS-A)をJIS K 6253スプリング式硬さ試験(A形)に基づいて測定した。測定結果を表6,7に示す。
 (11)引張強さ(Tb)及び破断伸び(Eb)の測定
 実施例5~11及び比較例6~9の配管機材用シール部材サンプルを1A形のダンベル形状に切り出した試験片について、東洋精機社製の引張試験機を用いて、23±2℃、引張速度500mm/minでJIS K6251に基づいて引張試験(列理方向に引っ張る)を行い引張強さ(MPa)及び破断伸び(%)を測定した。これらの結果を表6,7に示す。
 (12)100%モジュラス(M100)の測定
 実施例5~11及び比較例6~9の配管機材用シール部材サンプル(幅5mm×長さ50mm×厚さ1mm)を10mm/minで伸長し、100%変形時の応力(M100:100%モジュラス(MPa))を求めた。測定結果を表6,7に示す。
 (13)引裂き強度の測定
 実施例5~11及び比較例6~9の配管機材用シール部材サンプルからJIS K 6252に準拠して切込みなし無しアングル型試験片を打ち抜いて作製し、JIS K 6252に準拠して引裂き試験(列理方向に引っ張る)を行って、引裂き強度(N/mm)を測定した。結果を表6,7に示す。
 (14)耐油性試験
 JIS K 6258試験用潤滑油No.1(SUNOCO社製)の試験液を用いて、実施例5~11及び比較例6~9の配管機材用シール部材サンプルの試験片を該試験液に100℃で70時間浸漬し、浸漬前後における各サンプルの試験片について前記(3)の測定(硬度)を行い、また各サンプルの試験片の体積及び長さを測定した。硬度については浸漬前後の硬度の差を求め、その他の測定値については浸漬前の測定値に対する浸漬後の測定値の変化率を計算した。結果を表6,7に示す。
 (15)摩擦試験
 実施例5~11及び比較例6~9の配管機材用シール部材サンプルの試験片(幅20mm×長さ70mm×厚さ2mm)60を、図9に示す試験装置のように、ディスク(材質はSUS14A、面粗度はRa0.18)62上に配置し、その上に金属片64を載せて10Nでディスク押し付けた後、水平方向(図9の右方向)へ金属片を引っ張り、摩擦力を測定し、静摩擦係数及び動摩擦係数を計算した。結果を表6,7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表6,7から、本発明の実施例5~11によれば、以下のことが確認された。すなわち、本発明の実施例5~11の配管機材用シール部材サンプルは、耐油性試験において体積変化率及び長さ変化率が小さく、比較例9の現行品サンプルに比べて膨潤しにくく耐油性に優れていることがわかった。特に、カーボンナノファイバーの配合量が同じ実施例7~9を比較すると、カーボンナノファイバーの表面の濡れ性が高い方が耐油性も向上することがわかった。また、比較例8のMTグレードのカーボンブラックを用いたサンプルの耐油性が優れていることから、大径のカーボンブラックが小径のカーボンブラックより耐油性に優れることがわかった。また、実施例5~11によれば、比較例9の現行品サンプルに比べて摩擦係数が小さいことがわかった。比較例6~8のサンプルは、比較例9の現行品サンプルに比べて特に引裂き強度が小さかった。
11 密閉式混練機
12、14 第1、第2のロータ
20 バタフライ弁
22 シール部材
24 ジスク
30 オープンロール
32、34 第1、第2のロール
36 混合物
60 試験片
62 ディスク
64 金属片
200 エチレン・プロピレンゴム
212 カーボンブラック
220 第2のカーボンナノファイバーまたはカーボンナノファイバー

Claims (24)

  1.  エチレン・プロピレンゴムと、表面酸化処理されたカーボンナノファイバーと、平均粒径が50nm~10μmのカーボンブラックと、を含む、耐塩素性に優れた配管機材用シール部材。
  2.  請求項1において、
     前記カーボンナノファイバーは、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%である、耐塩素性に優れた配管機材用シール部材。
  3.  請求項1または2において、
     前記カーボンナノファイバーは、平均直径が4nm~230nmである、耐塩素性に優れた配管機材用シール部材。
  4.  請求項1~3のいずれかにおいて、
     前記エチレン・プロピレンゴム100質量部に対して、前記カーボンナノファイバー5質量部~50質量部と、前記カーボンブラック10質量部~120質量部と、が配合された、耐塩素性に優れた配管機材用シール部材。
  5.  気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化された第2のカーボンナノファイバーを得る第1の工程と、
     平均粒径が50nm~10μmのカーボンブラックと前記第2のカーボンナノファイバーとを、エチレン・プロピレンゴムに混合し、剪断力で該エチレン・プロピレンゴム中に分散する第2の工程と、
     を含む、耐塩素性に優れた配管機材用シール部材の製造方法。
  6.  請求項5において、
     前記カーボンナノファイバーは、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%である、耐塩素性に優れた配管機材用シール部材の製造方法。
  7.  請求項5または6において、
     前記第1の工程は、X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加量が、0.5atm%~2.6atm%になるように酸化処理する、耐塩素性に優れた配管機材用シール部材の製造方法。
  8.  請求項5または6において、
     前記第1の工程は、X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加割合が、20%~120%になるように酸化処理する、耐塩素性に優れた配管機材用シール部材の製造方法。
  9.  請求項5~8のいずれかにおいて、
     前記第1の工程は、前記第1のカーボンナノファイバーを酸素を含有する雰囲気中で600℃~800℃で熱処理する、耐塩素性に優れた配管機材用シール部材の製造方法。
  10.  請求項5~9のいずれかにおいて、
     前記第1の工程は、前記第1のカーボンナノファイバーの質量を2%~20%減量して前記第2のカーボンナノファイバーを得る、耐塩素性に優れた配管機材用シール部材の製造方法。
  11.  請求項5~10のいずれかにおいて、
     前記第1のカーボンナノファイバーは、平均直径が4nm~250nmである、耐塩素性に優れた配管機材用シール部材の製造方法。
  12.  請求項5~11のいずれかにおいて、
     前記第2の工程は、前記エチレン・プロピレンゴム100質量部に対して、前記第2のカーボンナノファイバー5質量部~50質量部と、前記カーボンブラック10質量部~120質量部と、を配合する、耐塩素性に優れた配管機材用シール部材の製造方法。
  13.  請求項1~4のいずれかに記載の耐塩素性に優れたシール部材を有する、配管機材。
  14.  エチレン・プロピレンゴムと、表面酸化処理されたカーボンナノファイバーと、平均粒径が50nm~10μmのカーボンブラックと、を含む、耐塩素性に優れたシール部材を有する、配管機材。
  15.  請求項14において、
     前記カーボンナノファイバーは、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%である、配管機材。
  16.  請求項14または15において、
     前記カーボンナノファイバーは、平均直径が4nm~230nmである、配管機材。
  17.  請求項14~16のいずれかにおいて、
     前記シール部材は、前記エチレン・プロピレンゴム100質量部に対して、前記カーボンナノファイバー5質量部~50質量部と、前記カーボンブラック10質量部~120質量部と、が配合された、配管機材。
  18.  エチレン・プロピレンゴム100質量部に対して、カーボンナノファイバー5質量部~70質量部と、カーボンブラック0質量部~120質量部と、を含み、かつ、前記カーボンナノファイバーと前記カーボンブラックとの合計が50質量部~190質量部である、耐油性に優れた配管機材用シール部材。
  19.  請求項18において、
     前記カーボンナノファイバーは平均直径が4nm~230nmであり、前記カーボンブラックは平均粒径が10nm~10μmである、耐油性に優れた配管機材用シール部材。
  20.  請求項18または19において、
     前記カーボンナノファイバーは15質量部~65質量部である、耐油性に優れた配管機材用シール部材。
  21.  請求項18~20のいずれかに記載の耐油性に優れたシール部材を有する、配管機材。
  22.  エチレン・プロピレンゴム100質量部に対して、カーボンナノファイバー5質量部~70質量部と、カーボンブラック0質量部~120質量部と、を含み、かつ、前記カーボンナノファイバーと前記カーボンブラックとの合計が50質量部~190質量部である、耐油性に優れたシール部材を有する、配管機材。
  23.  請求項22において、
     前記カーボンナノファイバーは平均直径が4nm~230nmであり、前記カーボンブラックは平均粒径が10nm~10μmである、配管機材。
  24.  請求項22または23において、
     前記カーボンナノファイバーは15質量部~65質量部である、配管機材。
PCT/JP2009/062619 2008-07-11 2009-07-10 耐塩素性に優れた配管機材用シール部材、耐塩素性に優れた配管機材用シール部材の製造方法、耐油性に優れた配管機材用シール部材及び配管機材 WO2010005084A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/003,423 US20110166255A1 (en) 2008-07-11 2009-07-10 Sealing member for piping component having excellent chlorine resistance, method for producing sealing member for piping component having excellent chlorine resistance, sealing member for piping component having excellent oil resistance, and piping component having excellent oil resistance
ES09794528T ES2759475T3 (es) 2008-07-11 2009-07-10 Miembro de sellado para material de tubería que tiene excelente resistencia al cloro, método para producir un miembro de sellado para material de tubería que tiene excelente resistencia al cloro, miembro de sellado para material de tubería que tiene excelente resistencia al aceite, y material de tubería
EP09794528.1A EP2311922B1 (en) 2008-07-11 2009-07-10 Sealing member for piping material having excellent chlorine resistance, method for producing sealing member for piping material having excellent chlorine resistance, sealing member for piping material having excellent oil resistance, and piping material
CN200980127048.6A CN102089399B (zh) 2008-07-11 2009-07-10 耐氯性优异的管道材料用密封件、耐氯性优异的管道材料用密封件的制造方法、耐油性优异的管道材料用密封件以及管道材料

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008181872A JP5072750B2 (ja) 2008-07-11 2008-07-11 耐油性に優れた配管機材用シール部材を有する配管機材及びバタフライ弁
JP2008181871A JP5001232B2 (ja) 2008-07-11 2008-07-11 耐塩素性に優れた配管機材用シール部材及びその製造方法並びに配管機材
JP2008-181872 2008-07-11
JP2008-181871 2008-07-11

Publications (1)

Publication Number Publication Date
WO2010005084A1 true WO2010005084A1 (ja) 2010-01-14

Family

ID=41507194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062619 WO2010005084A1 (ja) 2008-07-11 2009-07-10 耐塩素性に優れた配管機材用シール部材、耐塩素性に優れた配管機材用シール部材の製造方法、耐油性に優れた配管機材用シール部材及び配管機材

Country Status (6)

Country Link
US (1) US20110166255A1 (ja)
EP (1) EP2311922B1 (ja)
CN (2) CN102089399B (ja)
ES (1) ES2759475T3 (ja)
PT (1) PT2311922T (ja)
WO (1) WO2010005084A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5179979B2 (ja) * 2008-04-16 2013-04-10 日信工業株式会社 カーボンナノファイバー及びその製造方法、カーボンナノファイバーを用いた炭素繊維複合材料の製造方法及び炭素繊維複合材料
US10267424B2 (en) 2016-02-12 2019-04-23 Mueller International, Llc Butterfly valve seat with seat cover
CN108003408B (zh) * 2016-11-01 2020-10-23 中国石油化工股份有限公司 一种硫化橡胶及其制备方法和应用
US20180149278A1 (en) * 2016-11-29 2018-05-31 Mueller International, Llc Torque reducing valve seat
JP6857100B2 (ja) * 2017-07-31 2021-04-14 Nok株式会社 密封装置
CN107269854B (zh) * 2017-08-18 2020-05-29 中机十院国际工程有限公司 一种建筑管道用截止阀
WO2022160161A1 (en) 2021-01-28 2022-08-04 Mueller International, Llc Bonded valve seat
GB2610406A (en) 2021-09-02 2023-03-08 Black & Decker Inc Seal

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280788A (ja) * 1987-05-13 1988-11-17 Asahi Chem Ind Co Ltd ガスケツト用組成物
JP2872830B2 (ja) 1991-08-08 1999-03-24 株式会社キッツ バタフライ弁のラバーシート
JP2932420B2 (ja) 1994-06-22 1999-08-09 株式会社キッツ バタフライバルブ
JP2004059409A (ja) * 2002-07-31 2004-02-26 Junji Nakamura カーボンナノ材料、その製法及び水素貯蔵材料
JP2004210821A (ja) * 2002-12-26 2004-07-29 Inoac Corp 耐塩素水性ゴム組成物
JP2006189092A (ja) * 2005-01-06 2006-07-20 Nissin Kogyo Co Ltd リップ状シール部材及び該リップ状シール部材を用いた車両用液圧マスタシリンダ
JP2007039649A (ja) 2005-06-30 2007-02-15 Nissin Kogyo Co Ltd 複合材料
JP2007064377A (ja) * 2005-08-31 2007-03-15 Nissin Kogyo Co Ltd ピストンシール部材及び該ピストンシール部材を用いたディスクブレーキ
JP2008024800A (ja) * 2006-07-20 2008-02-07 Nissin Kogyo Co Ltd 炭素繊維複合材料

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2144140B (en) * 1983-07-26 1987-07-22 Cummins Engine Co Inc High swell gasket material
JPS6250495A (ja) * 1985-08-28 1987-03-05 Toa Nenryo Kogyo Kk 炭素繊維の表面電解処理装置
JP4005048B2 (ja) * 2003-04-09 2007-11-07 日信工業株式会社 炭素繊維複合材料およびその製造方法
JP4005058B2 (ja) * 2003-07-23 2007-11-07 日信工業株式会社 炭素繊維複合材料及びその製造方法、炭素繊維複合成形品及びその製造方法
JP4005005B2 (ja) * 2003-08-28 2007-11-07 日信工業株式会社 炭素繊維複合材料及びその製造方法、並びに炭素繊維複合成形品及びその製造方法
JP4149413B2 (ja) * 2004-05-21 2008-09-10 日信工業株式会社 炭素繊維複合材料及びその製造方法
JP4245514B2 (ja) * 2004-05-24 2009-03-25 日信工業株式会社 炭素繊維複合材料及びその製造方法、炭素繊維複合金属材料の製造方法、炭素繊維複合非金属材料の製造方法
JP2006167710A (ja) * 2004-11-22 2006-06-29 Nissin Kogyo Co Ltd 薄膜の製造方法及び薄膜が形成された基材、電子放出材料及びその製造方法並びに電子放出装置
JP2007039638A (ja) * 2005-03-23 2007-02-15 Nissin Kogyo Co Ltd 炭素繊維複合材料
JP4224499B2 (ja) * 2005-06-30 2009-02-12 日信工業株式会社 繊維複合材料の製造方法
JP4493567B2 (ja) * 2005-08-31 2010-06-30 日信工業株式会社 リップ状シール部材及び該リップ状シール部材を用いた車両用液圧マスタシリンダ
JP4810382B2 (ja) * 2005-11-11 2011-11-09 日信工業株式会社 熱可塑性樹脂組成物及びその製造方法
JP4427034B2 (ja) * 2006-04-28 2010-03-03 日信工業株式会社 炭素繊維複合材料
JP4231916B2 (ja) * 2006-04-28 2009-03-04 日信工業株式会社 炭素繊維複合樹脂材料の製造方法
US7960467B2 (en) * 2006-11-30 2011-06-14 Nissin Kogyo Co., Ltd. Carbon fiber composite material and method of producing the same
US20090000880A1 (en) * 2006-11-30 2009-01-01 Nissin Kogyo Co., Ltd. Disc brake shim plate
EA017675B1 (ru) * 2008-04-07 2013-02-28 Шлюмбергер Текнолоджи Б.В. Термостойкий уплотнительный материал, бесконечный уплотнительный элемент, в котором используется термостойкий уплотнительный материал, и скважинное устройство, включающее в себя бесконечный уплотнительный элемент
JP5179979B2 (ja) * 2008-04-16 2013-04-10 日信工業株式会社 カーボンナノファイバー及びその製造方法、カーボンナノファイバーを用いた炭素繊維複合材料の製造方法及び炭素繊維複合材料
KR101238969B1 (ko) * 2008-07-10 2013-03-04 닛신 고오교오 가부시키가이샤 카본 나노파이버의 제조 방법 및 카본 나노파이버 및 카본 나노파이버를 이용한 탄소섬유 복합 재료의 제조 방법 및 탄소섬유 복합 재료
WO2010004634A1 (ja) * 2008-07-10 2010-01-14 日信工業株式会社 カーボンナノファイバー及びその製造方法並びに炭素繊維複合材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280788A (ja) * 1987-05-13 1988-11-17 Asahi Chem Ind Co Ltd ガスケツト用組成物
JP2872830B2 (ja) 1991-08-08 1999-03-24 株式会社キッツ バタフライ弁のラバーシート
JP2932420B2 (ja) 1994-06-22 1999-08-09 株式会社キッツ バタフライバルブ
JP2004059409A (ja) * 2002-07-31 2004-02-26 Junji Nakamura カーボンナノ材料、その製法及び水素貯蔵材料
JP2004210821A (ja) * 2002-12-26 2004-07-29 Inoac Corp 耐塩素水性ゴム組成物
JP2006189092A (ja) * 2005-01-06 2006-07-20 Nissin Kogyo Co Ltd リップ状シール部材及び該リップ状シール部材を用いた車両用液圧マスタシリンダ
JP2007039649A (ja) 2005-06-30 2007-02-15 Nissin Kogyo Co Ltd 複合材料
JP2007064377A (ja) * 2005-08-31 2007-03-15 Nissin Kogyo Co Ltd ピストンシール部材及び該ピストンシール部材を用いたディスクブレーキ
JP2008024800A (ja) * 2006-07-20 2008-02-07 Nissin Kogyo Co Ltd 炭素繊維複合材料

Also Published As

Publication number Publication date
ES2759475T3 (es) 2020-05-11
EP2311922B1 (en) 2019-09-04
EP2311922A1 (en) 2011-04-20
PT2311922T (pt) 2019-12-09
CN102089399B (zh) 2014-04-09
CN103589075A (zh) 2014-02-19
US20110166255A1 (en) 2011-07-07
CN102089399A (zh) 2011-06-08
EP2311922A4 (en) 2015-12-16
CN103589075B (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
WO2010005084A1 (ja) 耐塩素性に優れた配管機材用シール部材、耐塩素性に優れた配管機材用シール部材の製造方法、耐油性に優れた配管機材用シール部材及び配管機材
JP5934587B2 (ja) ニードルバルブ
US8415420B2 (en) Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
JP6415284B2 (ja) 炭素繊維複合材料
JP7307584B2 (ja) ウェットマスターバッチおよびこれを含む炭素繊維補強ゴム複合材
WO2020195799A1 (ja) エラストマー組成物および成形体
JP5072750B2 (ja) 耐油性に優れた配管機材用シール部材を有する配管機材及びバタフライ弁
JP5112202B2 (ja) 耐塩素性に優れた炭素繊維複合材料及びその製造方法
JP6623033B2 (ja) 炭素繊維複合材料及び炭素繊維複合材料の製造方法
JP5800746B2 (ja) シール部材
JP2014081073A (ja) 耐蒸気性に優れた無端状シール部材及びバルブ
JP5171786B2 (ja) カーボンナノファイバー集合体、カーボンナノファイバーの製造方法及び炭素繊維複合材料の製造方法
JP5001232B2 (ja) 耐塩素性に優れた配管機材用シール部材及びその製造方法並びに配管機材
JP6473588B2 (ja) 炭素繊維複合材料及び炭素繊維複合材料の製造方法
JP2013116965A (ja) 炭素繊維複合材料の製造方法及び炭素繊維複合材料
Prabu et al. Studies on the mechanical properties of carbon black-halloysite nanotube hybrid fillers in nitrile/PVC nanocomposites for oil seal applications
JP7010792B2 (ja) 炭素繊維複合材料及び炭素繊維複合材料の製造方法
JP2023020935A (ja) 炭素繊維複合材料及び炭素繊維複合材料の製造方法
JP2023082827A (ja) 炭素繊維複合材料及びその製造方法
JP2023019471A (ja) 炭素繊維複合材料及びその製造方法
Torabizadeh Effect of Filler on Fracture, Mechanical, and Thermophysical Properties of Rubber Nanocomposites
JP2015055317A (ja) ボールシート及びボールバルブ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980127048.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009794528

Country of ref document: EP