WO2009154278A1 - 受信装置、通信システム、および、受信方法 - Google Patents

受信装置、通信システム、および、受信方法 Download PDF

Info

Publication number
WO2009154278A1
WO2009154278A1 PCT/JP2009/061228 JP2009061228W WO2009154278A1 WO 2009154278 A1 WO2009154278 A1 WO 2009154278A1 JP 2009061228 W JP2009061228 W JP 2009061228W WO 2009154278 A1 WO2009154278 A1 WO 2009154278A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase offset
phase
parallel
frequency offset
Prior art date
Application number
PCT/JP2009/061228
Other languages
English (en)
French (fr)
Inventor
浩一 石原
小林 孝行
理一 工藤
泰司 鷹取
松井 宗大
匡人 溝口
佐野 明秀
英一 山田
山崎 悦史
宮本 裕
秀之 野坂
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2010517980A priority Critical patent/JP5203457B2/ja
Priority to CN200980120603.2A priority patent/CN102047582B/zh
Priority to US12/994,365 priority patent/US8488696B2/en
Priority to EP09766726.5A priority patent/EP2290837B1/en
Publication of WO2009154278A1 publication Critical patent/WO2009154278A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/084Equal gain combining, only phase adjustments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0845Weighted combining per branch equalization, e.g. by an FIR-filter or RAKE receiver per antenna branch
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0063Elements of loops
    • H04L2027/0067Phase error detectors

Definitions

  • the present invention relates to a receiving apparatus, a communication system, and a receiving method in wireless communication and optical communication.
  • This application includes Japanese Patent Application No. 2008-162478 filed in Japan on June 20, 2008, Japanese Patent Application No. 2008-210926 filed in Japan on August 19, 2008, and Japan on April 28, 2009. Priority is claimed based on Japanese Patent Application No. 2009-109962 filed in Japan, the contents of which are incorporated herein by reference.
  • FIG. 13 shows an example of a conventional receiver of single carrier transmission using frequency domain equalization (FDE).
  • This receiver includes receiving units 101-1 to R, timing detecting units 102-1 to R, frequency offset compensating units 103-1 to R, serial / parallel conversion units 104-1 to R, and FFT (Fast Fourier Transform) calculation.
  • R indicates the number of input ports.
  • a single carrier received signal input from R communication ports of the receiver is converted into a baseband digital signal by the receiving units 101-1 to 101-R using an oscillation signal from the local oscillator 112. Is converted to
  • the signals converted by the receiving units 101-1 to R are detected by the timing detection units 102-1 to 102-R using the preamble signal for each port, and the timing is detected.
  • the frequency detected by the timing detectors 102-1 to 102-R is estimated by the frequency offset compensator 103-R using the preamble signal included in the single carrier received signal. Compensated based on frequency offset.
  • the preamble signal is input to the weight calculation units 107-1 to 107-R, and equalization weights are calculated by the weight calculation units 107-1 to R.
  • the data signal is subjected to serial / parallel conversion by the serial / parallel converters 104-1 to 104-R, and then subjected to FFT operation by the FFT arithmetic units 105-1 to 105-R. Is obtained.
  • equalization sections 106-1 to 106-R perform equalization in the frequency domain using the weights calculated by weight calculation sections 107-1 to 107-R.
  • the signal synthesizer 108 synthesizes the signals of the respective frequency components, which are signals of the respective ports, and then converts the signals into time signals by performing IFFT computations in the IFFT computation unit 109.
  • the signal converted into the time signal is subjected to parallel / serial conversion by the parallel / serial converter 110 and then demodulated by the demodulator 111. Thereby, a transmission data sequence can be obtained by a single carrier receiver.
  • the frequency offset compensator 103-r includes an offset estimator 1031-r and an offset compensator 1032-r.
  • the offset estimated value is output to the offset compensator 1032-r.
  • Non-Patent Document 1 is known as a conventional technique of the single carrier receiver described with reference to FIG.
  • Non-Patent Document 1 When performing optical or wireless transmission, it is known that a phase offset occurs due to instability of a device in a local oscillator or a receiver. For this reason, the single carrier receiver shown in Non-Patent Document 1 has a problem in that when the optical or wireless transmission is performed, each reference frequency for transmission and reception is different, so that a phase offset occurs.
  • the present invention has been made in view of such circumstances, and the purpose thereof is when there is temporal phase offset instability or fluctuation, or when there is a phase offset mismatch between reception ports.
  • An object of the present invention is to provide a receiving apparatus, a communication system, and a receiving method capable of compensating for a phase offset. It is another object of the present invention to provide a receiving device, a communication system, and a receiving method capable of compensating for a frequency offset even when frequency instability or frequency mismatch between receiving ports occurs.
  • a receiving apparatus for receiving a signal input to a single port or a plurality of ports as a single or a plurality of received signals: for shaping a signal waveform of a pre-assigned received signal among the one or a plurality of received signals
  • a timing detection unit that detects a signal position by detecting a signal position with respect to the reception signal allocated in advance, and a frequency that compensates a frequency offset for the reception signal detected by the timing detection unit.
  • An offset compensator a serial / parallel converter for serial / parallel conversion of the received signal compensated by the frequency offset compensator, and a Fourier transform for Fourier transforming the received signal serial / parallel converted by the serial / parallel converter And the received signal Fourier-transformed by the Fourier transform unit for each frequency component, etc.
  • An inverse Fourier transform unit that performs inverse Fourier transform on the reception signal that has been equalized by the equalization unit, and a parallel / serial conversion unit that performs parallel / serial conversion on the reception signal that has been inverse Fourier transformed by the inverse Fourier transform unit.
  • a signal synthesizer that synthesizes a signal waveform shaped by the singular or plural processors; a demodulator that demodulates the signal waveform synthesized by the signal synthesizer; A phase offset estimator that is arranged on a received signal conversion path from the timing detector to the demodulator and estimates a phase offset of the supplied received signal based on a unique word for each signal block included in the received signal; The reception signal conversion path arranged on the reception signal conversion path and based on the phase offset estimated by the phase offset estimation unit; Having; a phase offset compensating unit that compensates the phase offset of the signal.
  • the communication system of the present invention receives a transmission device that transmits a transmission signal with a unique word added for each signal block, and the transmission signal input to one or more ports as one or more reception signals.
  • a communication system having a receiving device, wherein the receiving device is configured to receive a pre-assigned reception signal for shaping a signal waveform of a pre-assigned received signal among the received signal or signals.
  • a timing detection unit that detects a signal position by detecting a signal position with respect to a signal
  • a frequency offset compensation unit that compensates a frequency offset with respect to a reception signal that is timing-detected by the timing detection unit, and a frequency offset compensation unit.
  • a serial / parallel converter for serial / parallel conversion of the compensated received signal and the serial / parallel converter
  • the Fourier transform unit that performs Fourier transform on the received signal that has undergone serial / parallel conversion, the equalization unit that equalizes the received signal Fourier-transformed by the Fourier transform unit for each frequency component, and equalization by the equalization unit One or a plurality of processing units having an inverse Fourier transform unit that performs inverse Fourier transform on the received signal, and a parallel / serial conversion unit that performs parallel / serial conversion on the received signal that has been inverse Fourier transformed by the inverse Fourier transform unit,
  • a signal synthesizer for synthesizing the signal waveform shaped by the one or more processing units; a demodulator for demodulating the signal waveform synthesized by the signal synthesizer; and reception from the timing detector to the demodulator Estimate the phase offset of the supplied received signal based on the unique word for each signal block placed on the signal conversion path and included in the received signal
  • the reception method of the present invention is a reception method used in a reception apparatus that receives a signal input to a single or a plurality of ports as a single or a plurality of reception signals, and among the single or a plurality of reception signals, A timing detecting step for detecting a signal position by detecting a signal position with respect to a pre-assigned received signal; a frequency offset compensating step for compensating a frequency offset for the received signal timing detected by the timing detecting step; A serial / parallel conversion process for serial / parallel conversion of the reception signal compensated by the frequency offset compensation process, a Fourier transform process for Fourier transforming the reception signal serial / parallel converted by the serial / parallel conversion process, and the Fourier transform Equalization process to equalize the received signal Fourier transformed by the process for each frequency component An inverse Fourier transform step for performing inverse Fourier transform on the reception signal equalized by the equalization step, and a parallel / serial conversion step for parallel / serial conversion of the reception signal inversely Fourier transformed by the
  • a processing step for one or a plurality of received signals having; a signal synthesis step for synthesizing one or a plurality of signal waveforms shaped by the processing step for the one or more received signals; and a signal waveform synthesized by the signal synthesis step
  • a phase offset of the supplied received signal based on a unique word for each signal block included in the received signal, which is performed during the received signal converting step from the timing detecting step to the demodulating step.
  • the phase offset estimation unit or the phase offset estimation step estimates the phase offset ⁇ (q) of the supplied reception signal by the following general formula.
  • y (m, q) is the supplied received signal in the q-th signal block
  • x (m) is a unique word sequence
  • parameter m is for identifying M blocks in the unique word block in order.
  • the discriminating variable * indicates complex conjugate.
  • arg is a function for obtaining an angle.
  • phase offset compensation it is possible to compensate for a complicated phase offset variation by performing phase offset compensation using a known signal component (unique word) included in a signal equalized in the frequency domain. Furthermore, when the phase offset is estimated for each signal obtained at each receiving port, there is a temporal phase offset instability or fluctuation, or there is a phase offset mismatch between receiving ports. The phase offset can also be compensated for.
  • a unique word UW is used as a guard interval GI used for frequency domain equalization when a signal is transmitted
  • the series is repeatedly inserted.
  • a frequency offset is estimated using a unique word UW repeated a plurality of times for each block, and compensation is performed using the estimated frequency offset.
  • the frequency offset that cannot be compensated by the time-multiplexed preamble signal is equalized using the unique word UW before equalization. Compensate again for each block at each port. As a result, the frequency offset can be compensated and the transmission characteristics can be improved.
  • FIG. 1 is a schematic block diagram showing the configuration of a receiving apparatus according to an embodiment of the present invention.
  • This receiving apparatus receives the single carrier received signal transmitted from the transmitting apparatus 10 as a plurality of received signals, for example, R received signals.
  • R ( ⁇ 1) is the number of antennas or the number of antenna elements in the case of wireless transmission.
  • this receiving apparatus will be described as having R ports.
  • the description will be made assuming that the received signal received by the receiving device includes a unique word that is a predetermined signal for each signal block. Further, the description will be made assuming that the received signal includes a preamble signal.
  • the unique word and preamble signal will be described later with reference to FIG.
  • the receiving apparatus has a plurality of processing units 1000-1 to 1000-R for shaping a signal waveform of a reception signal associated in advance among a plurality of reception signals, and a signal waveform shaped by the plurality of processing units 1000-1 to 1000-R.
  • the plurality of processing units 1000-1 to 1000-R have the same configuration.
  • the configuration of the processing unit 1000 that is any one of the processing units 1000-1 to 1000-R will be described.
  • the processing unit 1000 includes a reception unit 1001, a timing detection unit 1002, a frequency offset compensation unit 1003, a serial / parallel conversion unit 1004, an FFT calculation unit 1005 (Fourier transform unit), an equalization unit 1006, a weight calculation unit 1007, and an IFFT calculation unit. 1008 (inverse Fourier transform unit), parallel / serial conversion unit 1009, phase offset estimation unit 1010, and phase offset compensation unit 1011.
  • the receiving unit 1001 receives a received signal from the corresponding antenna element, and converts the received signal into a baseband digital signal using an oscillation signal from the local oscillator 1014.
  • the timing detection unit 1002 detects a signal position of the reception signal converted by the reception unit 1001 into a baseband digital signal, that is, a reception signal associated in advance, and performs timing detection. This signal position is detected based on, for example, a preamble signal included in the signal.
  • the frequency offset compensation unit 1003 compensates the frequency offset for the reception signal detected by the timing detection unit 1002.
  • the weight calculator 1007 calculates equalization weights based on the preamble signal included in the received signal compensated by the frequency offset compensator 1003.
  • the serial / parallel converter 1004 performs serial / parallel conversion on the received signal compensated by the frequency offset compensator 1003.
  • the FFT operation unit 1005 performs Fourier transform on the received signal that has been serial / parallel converted by the serial / parallel converter 1004. Based on the equalization weight calculated by the weight calculation unit 1007, the equalization unit 1006 equalizes the reception signal Fourier-transformed by the FFT calculation unit 1005 for each frequency component.
  • the IFFT calculation unit 1008 performs inverse Fourier transform on the reception signal equalized by the equalization unit 1006.
  • the parallel / serial converter 1009 performs parallel / serial conversion on the received signal that has been subjected to inverse Fourier transform by the IFFT calculator 1008.
  • the phase offset estimation unit 1010 is arranged on this reception signal conversion path. More specifically, in the present embodiment, the phase offset estimation unit 1010 is arranged at the subsequent stage of the parallel / serial conversion unit 1009, and based on the received signal that the parallel / serial conversion unit 1009 performs parallel / serial conversion, Estimate the offset. When estimating the phase offset, the phase offset estimation unit 1010 estimates the phase offset for each signal block based on the unique word for each signal block included in the received signal.
  • the phase offset compensator 1011 is arranged after the phase offset estimator 1010 on the received signal conversion path, and the parallel / serial converter 1009 performs parallel / serial conversion based on the phase offset estimated by the phase offset estimator 1010. Compensate for the phase offset of the received signal. Further, the phase offset compensation unit 1011 compensates the phase offset of the reception signal parallel / serial converted by the parallel / serial conversion unit 1009 based on the phase offset for each signal block estimated by the phase offset estimation unit 1010.
  • the signal synthesis unit 1012 synthesizes the reception signals compensated by the phase offset compensation unit 1011 included in each of the plurality of processing units 1000.
  • R received signals input to the R ports are converted into baseband digital signals by the receiving units 1001-1 to 1001-R using the oscillation signal from the local oscillator 1014. .
  • the timings of the signals output from the receiving units 1001-1 to 1001-1R are detected by the timing detecting units 1002-1 to 1002-1 to detect the signal positions using the preamble signals. That is, the timing detectors 1002-1 to 1002-1 to R detect the signal position using the preamble signal for each input port, and detect the timing.
  • the frequency detected by the frequency offset compensators 1003-1 to 1003-1 to 1003-1-R is estimated and compensated for the frequency offset using the preamble signal.
  • the preamble signal is input to the weight calculation units 1007-1 to 1007-1 to calculate the equalization weight.
  • the data signal is subjected to serial / parallel conversion by the serial / parallel converters 1004-1 to 1004-1 to R, and then subjected to FFT operation by the FFT arithmetic units 1005-1 to 1005-1 to generate frequency components of the received signal. Is obtained.
  • equalization is performed in the frequency domain by the equalization units 1006-1 to 1006-1R using the weights calculated by the weight calculation units 1007-1 to 1007-1.
  • IFFT conversion is performed by IFFT arithmetic units 1008-1 to 1008-1 to convert to time signals, and parallel / serial conversion is performed by parallel / serial converters 1009-1 to 1009-1.
  • phase offset estimation units 1010-1 to 1010 -R estimate the phase offset.
  • the frequency offset or phase offset is compensated by the phase offset compensation units 1011-1 to 1011-1 to R based on the estimated phase offset estimation.
  • the signal compensated by the processing units 1000-1 to 1000-R corresponding to each port is synthesized by the signal synthesis unit 1012, and the received signal is demodulated by the demodulation unit 1013. Thereby, a transmission data sequence is obtained at the receiver.
  • FIG. 2 shows a block configuration of a transmission signal received by the receiving apparatus according to the present embodiment (refer to Reference Document 1 below).
  • a signal block having blocks is generated as a transmission signal.
  • This unique word UW is a predetermined signal and is a known signal component.
  • the unique word UW also serves as a guard interval GI that compensates for an arrival delay difference in a propagation path such as a delay path and chromatic dispersion.
  • the transmission device generates a transmission signal by adding a preamble signal block including a preamble signal to the head of the transmission signal.
  • the transmission signal has a preamble signal block including a preamble signal at the head of the transmission signal, and has a plurality of signal blocks subsequent to the preamble signal block.
  • Each signal block has K blocks, and among the K blocks, a unique word UW sequence which is information (signal) of the unique word UW is included in the unique word block which is M blocks.
  • the data blocks that are included and the remaining N blocks include a data sequence that is information of a transmission data sequence.
  • the receiving apparatus receives the transmission signal from the transmitting apparatus 10 as a received signal, and receives the received signal for each signal block that is K blocks, that is, for each unique word block and data block that are paired.
  • the processing units 1000-1 to 1000-R perform processing such as FFT calculation and frequency domain equalization.
  • the data signal described with reference to FIG. 1 corresponds to the signal included in the signal block described with reference to FIG.
  • phase offset estimation units 1010-1 to 1010-R and the phase offset compensation units 1011-1 to R will be described in detail.
  • the phase offset estimation units 1010-1 to 1010-1 to 1010-1 to R 1010-1 to R Is applied to the apparatus of this embodiment. That is, the phase offset estimation units 1010-1 to 1010-R apply the phase offset ⁇ (r, q) to the output signals from the parallel / serial conversion units 1009-1 to 100-R after equalizing the received signals. It is calculated and estimated based on (Equation 1).
  • y (r, m, q) is an output signal from the parallel / serial converter 1009-r in the q-th signal block
  • x (m) is a unique word UW sequence.
  • the parameter m is an identification variable for sequentially identifying each block in a unique word block having M blocks. * Indicates a complex conjugate.
  • arg is a function for obtaining an angle.
  • phase offset compensators 1011-1 to 1011-1 to R have the phase offset ⁇ estimated by (Equation 1), the phase offset ⁇ (r, q) estimated in the q-th signal block, and (q-1 ) A data sequence included in N blocks (data blocks) output from the parallel / serial converter 1009-r using the phase offset ⁇ (r, q ⁇ 1) estimated in the first signal block. Perform linear interpolation on.
  • phase offset compensation units 1011-1 to 101-R compensate for the phase offset of the data series included in the N blocks (data blocks) output from the parallel / serial conversion unit 1009-r.
  • phase offset compensators 1011-1 to 101-1 to R have the phase offset ⁇ (r, q) estimated in the qth signal block and the phase offset ⁇ (r, q) estimated in the (q ⁇ 1) th signal block. -1), linear interpolation is performed on the data series included in the N blocks (data blocks) included in the q-th signal block output from the parallel / serial converter 1009-r. Do.
  • phase offset compensators 1011-1 to 1011-1 to R receive data sequences included in the N blocks (data blocks) output from the parallel / serial converter 1009-r with respect to the q-th signal block. To compensate for the phase offset.
  • the phase offset compensators 1011-1 to 101-R interpolate the data series included in one signal block using the phase offset estimation values of the two signal blocks by linear interpolation. It is not limited to this.
  • the phase offset compensation units 1011-1 to 101-R use the phase offset estimation values of the total Q signal blocks before and after the data series included in one signal block by C (C ⁇ Q) order interpolation.
  • the phase offset may be compensated by interpolation.
  • a signal block may be generated as follows.
  • the transmission data sequence is divided into N blocks, and the last Ng block is copied as a guard interval GI in each block and inserted at the head of each corresponding block, so that (N + Ng) blocks as a whole You may make it produce
  • the last Ng block copied as the guard interval GI in each block corresponds to the unique word block described above.
  • phase offset compensation by the phase offset estimators 1010-1 to 1010-R and the phase offset compensators 1011-1 to 101-R a double multiplication method or a quadruple multiplication method (see the following Reference 3) is used to blind Offset compensation can be performed.
  • the unique word may be a predetermined signal, or may be a signal obtained by copying the last Ng block in each block as described above. That is, the unique word may be a signal that can be detected for each signal block in the receiving apparatus.
  • the unique word may be, for example, a guard interval GI.
  • the FFT operation units 1005-1 to 1005-1 and the IFFT operation units 1008-1 to 1008-1 are used.
  • an orthogonal converter such as a discrete Fourier transformer and an inverse discrete Fourier transformer is used.
  • an inverse orthogonal transformer can also be used.
  • the signal to be received by the receiving apparatus is single-access transmission by a single transmitting station.
  • the receiving apparatus according to the present embodiment can also be used for transmission by a plurality of transmitting stations.
  • each transmitting station transmits a plurality of transmission signals.
  • the receiving apparatus it is also possible to receive the received signal with Ns times oversampling, and to receive a signal that has been oversampled with Ns times and that has been subjected to analog-digital conversion, as described above. is there.
  • the receiving units 1001-1 to 1001-1-R receive the received signal by oversampling it by Ns times.
  • phase offset estimators 1010-1 to 1010-1 to 1010-1 to R estimate the phase offset in order to estimate the phase offset. Is applied to the apparatus of such a form. That is, the phase offset estimating units 1010-1 to 1010-1 to R calculate the phase offset ⁇ ′ by the following (Equation 2).
  • y ′ (r, m, q) represents an output signal from the parallel / serial converter 1009-r in the q-th signal block obtained by Ns-times oversampling
  • x ′ (m) represents A unique word UW sequence expressed by Ns times oversampling is shown.
  • the parameter m is an identification variable for sequentially identifying each block in a unique word block having Ns ⁇ M blocks oversampled Ns times. * Indicates a complex conjugate.
  • arg is a function for obtaining an angle.
  • phase offset compensators 1011-1 to 1011-1 to R Based on the phase offset ⁇ ′ calculated by the phase offset estimators 1010-1 to 1010-1 to R in (Expression 2), the phase offset compensators 1011-1 to 1011-1 to R have the phase offset estimator 1010-1 in (Expression 1). Similarly to the case of the phase offset ⁇ calculated by ⁇ R, the phase offsets of (Ns ⁇ N) transmission data sequences output from the parallel / serial converter 1009-r are compensated.
  • the receiving apparatus is a receiving system in single carrier transmission, but it can be similarly applied to multicarrier transmission.
  • the configuration of the receiving device is based on frequency domain equalization, but it can also be applied when using time domain equalization using a tapped delay filter.
  • PN sequence or a Chu sequence can be used as the unique word UW sequence (see the following Reference 4).
  • signals input to a plurality of ports that is, signals received by a plurality of antenna elements are included in signals equalized in the frequency domain.
  • the phase offset is compensated using the signal component (unique word). This makes it possible to compensate for complicated phase offset fluctuations.
  • the phase offset is estimated for each signal obtained at each receiving port. This makes it possible to compensate the phase offset and receive the transmission data sequence even when there is temporal phase offset instability or fluctuation or when there is a phase offset mismatch between the receiving ports. is there.
  • the configuration of the phase offset estimation units 2010-1 to 2010-R is the same as the configuration of the phase offset estimation units 2010-1 to 2010-R described with reference to FIG.
  • the configuration of the phase offset compensation units 2011-1 to 2011-R is the same as that of the phase offset compensation units 1011-1 to 101-R described with reference to FIG.
  • the phase offset estimation units 2010-1 to 2010-R and the phase offset compensation units 2011-1 to 2011-R are arranged on the received signal conversion path from the timing detection units 1002-1 to 1002-1 to the demodulation unit 1013.
  • the configuration of the receiving apparatus in the first embodiment shown in FIG. 1 is different from the configuration of the receiving apparatus in the second embodiment shown in FIG.
  • the phase offset compensation units 1011-1 to 101-R are parallel / serial conversion units 1009-1 based on the phase offsets estimated by the phase offset estimation units 1010-1 to 1010-1 to R.
  • ⁇ R compensates the parallel / serial conversion received signal, and outputs the compensated received signal to the signal synthesis unit 1012.
  • the phase offset compensators 2011-1 to 2011-1 to R are arranged after the frequency offset compensators 1003-1 to R.
  • the phase offset compensation units 2011-1 to 2011-R compensate the received signals compensated by the frequency offset compensation units 1003-1 to R based on the phase offsets estimated by the phase offset estimation units 2010-1 to 2010-1
  • the received signal is output to serial / parallel converters 1004-1 to 1004-1-R.
  • the reception signals compensated by the phase offset compensation units 1011-1 to 101-R are output to the signal synthesis unit 1012.
  • the parallel / serial converted reception signals of the parallel / serial conversion units 1009-1 to 1009-1 to R are output to the signal synthesis unit 1012.
  • the parallel / serial conversion received signals of the parallel / serial conversion units 1009-1 to 1009-1 to R have been described as being directly output to the signal synthesis unit 1012.
  • the parallel / serial conversion unit 1009-1 is used.
  • the reception signals subjected to parallel / serial conversion of ⁇ R may be output to the signal synthesis section 1012 via the phase offset estimation sections 2010-1 to 2010-R.
  • phase offset compensators 2011-1 to 2011-R use the unique word UW for the output signals from the parallel / serial converters 1009-1 to 100R that have been frequency domain equalized and parallel / serial converted (Equation 1). To estimate the phase offset for the qth signal block. Next, the phase offset compensators 2011-1 to 2011-R feed back the estimated phase offset information to the phase offset compensators 2011-1 to 2011-R corresponding to the ports.
  • the phase offset compensation units 2011-1 to 2011-1 to 2011R receive signals compensated by the frequency offset compensation unit 1003 based on the phase offset for the fed back q-th signal block, that is, received before the q + 1-th frequency domain equalization. Phase offset compensation is performed on the signal.
  • the receiving apparatus estimates the phase offset of the q + 1-th signal block from the information of the q-th signal block, and compensates for the phase offset of the q + 1-th signal block.
  • Such processing is suitable for online processing.
  • phase offset compensators 2011-1 to 2011-R use the unique word UW for the output signals from the parallel / serial converters 1009-1 to 100R that have been frequency domain equalized and parallel / serial converted (Equation 1). To estimate the phase offset of the q-th signal block. Next, the phase offset compensators 2011-1 to 2011-R feed back the estimated phase offset information to the phase offset compensators 2011-1 to 2011-R corresponding to the ports.
  • phase offset compensation units 2011-1 to 2011-R perform phase offset compensation on the received signal before the qth frequency domain equalization based on the phase offset for the qth signal block fed back. Thereafter, the equalization process is performed again on the received signals that have been phase offset compensated by the phase offset compensation units 2011-1 to 2011-R, thereby improving the quality of the signal included in the qth signal block. Can do.
  • the receiving apparatus estimates the phase offset of the qth signal block from the information of the qth signal block and compensates for the phase offset of the qth signal block.
  • Such processing is suitable for offline processing.
  • this receiving apparatus further includes a frequency offset compensated received signal storage unit in which the received signal compensated by the frequency offset compensating unit 1003 is stored. is doing.
  • the receiving apparatus operates as follows, for example.
  • the frequency offset compensation unit 1003 uses the compensated reception signal as the phase offset compensation units 2011-1 to 2011-R. And stored in the frequency offset compensated received signal storage unit.
  • phase offset compensation units 2011-1 to 2011-R perform phase offset compensation on the received signal before the qth frequency domain equalization based on the phase offset with respect to the fed back qth signal block
  • a reception signal is read from the frequency offset compensation reception signal storage unit, and phase offset compensation is performed on the read reception signal based on the phase offset for the q-th signal block fed back.
  • the receiving device can execute the second operation described above.
  • the receiving device in the second embodiment is known to be included in the signal equalized in the frequency domain, like the receiving device in the first embodiment. Compensating for phase offset compensation by using signal components (unique words) to compensate for complex phase offset fluctuations and estimating the phase offset for each signal obtained at each receiving port Even when there is a typical instability or fluctuation of the phase offset, or when there is a phase offset mismatch between the reception ports, it is possible to compensate the phase offset and receive the transmission data sequence.
  • the configuration of the phase offset estimation unit 3010 includes the phase offset estimation units 1010-1 to 1010 -R described using FIG. 1 or the phase offset estimation units 2010-1 to 2010 -R described using FIG. It is the same as either one.
  • the configuration of the phase offset compensation unit 3011 is any of the phase offset compensation units 1011-1 to 101-R described with reference to FIG. 1 or the phase offset compensation units 2011-1 to 2011-R described with reference to FIG. It is the same.
  • Phase offset estimator 3010 and phase offset compensator 3011 are arranged on the received signal conversion path from timing detectors 1002-1 to 1002-1 to demodulator 1013.
  • the configuration of the receiving apparatus in the first embodiment shown in FIG. 1 is different from the configuration of the receiving apparatus in the third embodiment shown in FIG.
  • the phase offset estimation units 1010-1 to 1010-1 to 1010-R estimate the phase offset based on the received signal parallel / serial converted by the parallel / serial conversion units 1009-1 to 1009-1R.
  • the phase offset compensators 1011-1 to 101-1 to R receive the reception signals parallel / serial converted by the parallel / serial converters 1009-1 to 1009-1 R based on the phase offsets estimated by the phase offset estimators 1010-1 to 1010 -R. I was compensated.
  • the phase offset estimation unit 3010 is arranged at the subsequent stage of the signal synthesis unit 1012.
  • the phase offset estimation unit 3010 estimates the phase offset based on the received signal synthesized by the signal synthesis unit 1012.
  • the phase offset compensation unit 3011 is arranged at the subsequent stage of the phase offset estimation unit 3010.
  • the phase offset compensation unit 3011 compensates the reception signal synthesized by the signal synthesis unit 1012 based on the phase offset estimated by the phase offset estimation unit 3010.
  • the signal synthesis unit 1012 synthesizes the reception signals compensated by the phase offset compensation unit 1011 included in each of the plurality of processing units 1000.
  • the signal synthesis unit 1012 synthesizes the reception signals parallel / serial converted by the parallel / serial conversion units 1009-1 to 1009-1R.
  • the receiving apparatus has a set of phase offset estimating units 1010-1 to 1010-R and phase offset compensating units 1011-1 to R for each port with respect to the received signal for each port. is doing.
  • the receiving apparatus according to the third embodiment has one set of a phase offset estimating unit 3010 and a phase offset compensating unit 3011 for a signal obtained by synthesizing the received signals for each port.
  • the phase offset estimating unit 3010 calculates the phase offset of the output signal synthesized by the signal synthesizing unit 1012 using the general formula described above. Estimate using.
  • the receiving apparatus according to the third embodiment described above can achieve the same effects as the receiving apparatus according to the first or second embodiment.
  • the processing units 4000-1 to R in the present embodiment correspond to the processing units 1000-1 to R in FIG. 1, the processing units 2000-1 to R in FIG. 3, or the processing units 3000-1 to R in FIG. .
  • phase offset estimation unit 4010 is the same as the configuration of the phase offset estimation unit 3010 described with reference to FIG. 4.
  • the configuration of the phase offset compensation units 4011-1 to 401-11-R is the same as the configuration of the phase offset compensation units 1011-1 to 101-R described with reference to FIG. 1 or the phase offset compensation units 2011-1 to 2011-R described with reference to FIG. It is.
  • Phase offset estimator 4010 and phase offset compensators 4011-1 to R are arranged on a received signal conversion path from timing detectors 1002-1 to R to demodulator 1013.
  • the phase offset estimators 2010-1 to 2010-R estimate the phase offset based on the received signal parallel / serial converted by the parallel / serial converters 1009-1 to 1009-1.
  • the phase offset compensation units 2011-1 to 2011-R receive the received signals compensated by the frequency offset compensation units 1003-1 to R based on the phase offsets estimated by the phase offset estimation units 2010-1 to 2010-R corresponding to the ports. Compensation was performed, and the compensated received signal was output to the serial / parallel converters 1004-1 to 1004-1-R.
  • the phase offset estimation unit 4010 is arranged at the subsequent stage of the signal synthesis unit 1012 as in the third embodiment.
  • the phase offset estimation unit 4010 estimates the phase offset based on the received signal synthesized by the signal synthesis unit 1012.
  • the phase offset compensators 4011-1 to 4011-1 are arranged in the subsequent stages of the frequency offset compensators 1003-1 to 1003-1, respectively.
  • the phase offset compensation units 4011-1 to R compensate the reception signal compensated by the frequency offset compensation units 1003-1 to 1003-1R, and directly apply the compensated reception signal. / Output to parallel converters 1004-1 to 1004-1-R.
  • the phase offset estimation unit 4010 estimates the phase offset based on a signal obtained by synthesizing the reception signal for each port. That is, the phase offset estimation unit 4010 calculates the phase offset of the output signal synthesized by the signal synthesis unit 1012 using the general formula described above. Estimate using. Based on the estimated phase offset, the phase offset compensation units 4011-1 to R compensate for the reception signals compensated by the frequency offset compensation units 1003-1 to R for each port.
  • the receiving device according to the fourth embodiment described above can achieve the same effects as the receiving devices according to the first to third embodiments.
  • the transmission signal includes 2M unique words UW (M per unique word UW) and N data signals alternately obtained by time-multiplexing the preamble signal and then repeating twice.
  • the reception signal received by the reception apparatus according to the present embodiment includes a preamble signal, a plurality of unique words UW, and a data signal for each signal block.
  • the first frequency offset estimation unit 10031-r uses the preamble signal included in the reception signal detected by the timing detection unit, An estimated value of the first frequency offset is calculated.
  • the first offset compensator 10032-r compensates for the frequency offset of the received signal whose timing is detected by the timing detector using the estimated value of the first frequency offset calculated by the first frequency offset estimator 10031-r. .
  • the second offset estimation unit 10033-r calculates a second frequency offset estimation value using a plurality of unique words included in the received signal whose frequency offset has been compensated for by the first offset compensation unit 10032-r. To do.
  • the second offset compensation unit 10033-r receives the frequency offset compensated by the first offset compensation unit 10032-r using the second frequency offset estimation value calculated by the second offset estimation unit 10033-r. Compensates for signal frequency offset.
  • frequency offset compensation is performed using the time-multiplexed preamble signal as follows.
  • the first offset estimator 10031-r calculates a frequency offset estimated value.
  • This frequency offset estimation method can be performed by taking the cross-correlation between the preamble signal and the pilot transmission signal as in the conventional method.
  • the calculated frequency offset estimation value is input as an input value to the first offset compensation unit 10032-r, and offset compensation is performed.
  • the offset-compensated data reception signal output from the first offset compensator 10032-r is then input to the second offset estimator 10034-r of the second offset compensators 10034-r and 10033-r.
  • the frequency offset is estimated using the data received signal subjected to frequency offset compensation from the first offset compensating unit 10032-r as an input signal and using the unique word UW portion of the data received signal. Calculate the value.
  • the following (Formula 3) shows a calculation method for estimating by taking a time correlation between the received signal and the transmitted signal of the unique word UW.
  • y (r, m, q) represents an output signal from the first offset compensation unit 10032-r in the q-th block
  • x (m) represents a unique word UW sequence. * Indicates a complex conjugate.
  • arg is a function for obtaining an angle.
  • the phase offset ⁇ (r, q) estimated in the q-th block estimated as in (Equation 3) and the phase offset ⁇ (r, q estimated in the previous block, that is, the (q ⁇ 1) -th block. q-1) is used to compensate for the frequency offset of the K data reception signals output from the first offset compensator 10032-r.
  • the first unique word UW plays the role of the guard interval GI of the second unique word UW. Therefore, the frequency offset can be compensated in each block using the unique word UW even in a propagation path with delay dispersion, wavelength dispersion, and the like. Therefore, it is possible to recover the orthogonality loss due to the frequency offset between the FFT blocks, and it is possible to perform highly accurate signal determination. Further, since it is not necessary to periodically insert a pilot for frequency offset compensation, transmission efficiency does not decrease.
  • the first-order linear interpolation is performed using the frequency offset estimation values of the two blocks, but C-order interpolation (where C ⁇ Q) may be performed using the preceding and following Q blocks.
  • the number of unique words UW to be repeated is the same, but may be different (M ′ ⁇ M) as shown in FIG.
  • the frequency offset value when B unique words UW are inserted is estimated by the following (formula 4).
  • (B-1) estimated frequency offset values obtained by (Equation 4) Can be used to compensate for the frequency offset of the data signal by performing D-order interpolation (where D ⁇ B ⁇ 1).
  • the variable b is an integer taking a value from 1 to B-1. * Indicates a complex conjugate.
  • arg is a function for obtaining an angle.
  • the estimated value of the frequency offset can be obtained by averaging the correlation values obtained from (B-1) unique words UW according to the following (Equation 5).
  • phase offset can be calculated by the following (Equation 6).
  • y ′ (r, m, q) is an output signal from the first offset compensator 10032-r in the q th block obtained by Ns times oversampling
  • x ′ (m) is Ns times oversampling.
  • a unique word UW sequence expressed by sampling is shown. * Indicates a complex conjugate. arg is a function for obtaining an angle.
  • the receiver configuration is based on frequency domain equalization, but it can also be applied when using time domain equalization using a tapped delay filter.
  • a PN sequence or a Chu sequence can be used as the unique word UW sequence (see the above-mentioned Reference 4).
  • the frequency offset is estimated and compensated for each port, but if the frequency offset is the same for all ports, the frequency offset estimation values for all ports may be averaged to improve the estimation accuracy. it can.
  • the frequency offset that cannot be compensated for by the signal is compensated again for each block at each port before equalization using the unique word UW that also operates as the guard interval GI.
  • the frequency offset can be compensated and the transmission characteristics can be improved.
  • each signal block has a plurality of unique words as unique words UW. explained.
  • the phase offset estimating units 1010-1 to 1010-1 to 1010-1 to 1010-1 to 2010-1 in the first to fourth embodiments. R, the phase offset estimation unit 3010, and the phase offset estimation unit 4010 each estimate the phase offset based on any one predetermined unique word UW among the plurality of unique words.
  • the phase offset is not limited to any one unique word UW, and may be estimated based on a plurality of predetermined unique words UW or all unique words UW.
  • the number of ports R is the number of polarized waves having a predetermined angle in the electromagnetic field.
  • the difference between wireless transmission and optical transmission is the configuration of the receiving unit 1001. Further, the local oscillator 1014 is changed to a local oscillation light source 2014.
  • an input signal input to the receiving apparatus is when a polarization diversity 90-degree hybrid coupler is used. , X polarization and Y polarization. Therefore, the value R of the number of ports of the receiving device is 2. That is, the optical transmission receiving apparatus has a configuration (receiving unit 2001 described later) corresponding to the receiving units 1001-1 and 1001-2. This receiving apparatus has a configuration corresponding to processing units 1000-1 and 1000-2, processing units 2000-1 and 2000-2, processing units 3000-1 and 3000-2, or processing units 4000-1 and 4000-2.
  • a configuration of a receiving unit 2001 as an example corresponding to the receiving units 1001-1 and 2 in FIG. 1, FIG. 3, FIG. 4, or FIG.
  • the optical signal transmitted from the transmission device 20 via the optical transmission path is mixed with the local oscillation light source oscillated from the local oscillation light source 2014 by the polarization diversity 90-degree hybrid coupler 20011.
  • the optical signal is passed through BPDs (balanced photodiodes) 20012-1 to 2001-4, and four basebands of X-polarized I-phase and Q-phase and Y-polarized I-phase and Q-phase. Converted to analog signal.
  • BPDs balanced photodiodes
  • Each baseband analog signal is converted into a digital signal by a corresponding A / D converter 20013-1 to 2001-4. Thereafter, the digital signals corresponding to the I-phase and Q-phase of the X polarization output from the A / D converters 20013-1 and 2001-2 are processed as complex real and imaginary parts with respect to the X polarization. Is done.
  • the digital signals corresponding to the I-phase and Q-phase of the X polarization output from the A / D converters 20013-1 and 2001-2 are sent via the complex signal converting unit 20014-1 to FIG.
  • the signal is input to the timing detection unit 1002-1 of any one of the first to fourth embodiments described with reference to FIG. 3, FIG. 4, or FIG.
  • the digital signals corresponding to the I and Q phases of the Y polarization output from the A / D converters 20013-3 to 4 are real parts of complex numbers with respect to the Y polarization. And treated as an imaginary part.
  • digital signals corresponding to the I-phase and Q-phase of Y polarization output from the A / D converters 20013-3 to 2001-3-4 are passed through the complex signal converting unit 20014-2, as shown in FIG.
  • the data is input to the timing detection unit 1002-2 of any one of the first to fourth embodiments described with reference to FIG. 3, FIG. 4, or FIG.
  • the signal processing after the timing detection units 1002-1 to 1002-1 and 2 is the same processing in both cases of optical transmission and wireless transmission, and thus description thereof is omitted. That is, the operation of the receiving device according to the fifth embodiment is the same as the operation of any one of the first to fourth embodiments.
  • a single-ended PD photodiode
  • the receiving apparatus it is not limited to.
  • a polarization diversity hybrid coupler having an arbitrary angle different from 90 degrees may be used instead of the polarization diversity 90-degree hybrid coupler 20011.
  • the polarization is a polarization having an arbitrary angle predetermined in the electromagnetic field.
  • the polarization diversity effect can be obtained even when the orthogonality of polarization is lost.
  • the receiving apparatus receives signals input to a plurality of ports, that is, a plurality of separated polarized waves (for example, an X polarized wave and a Y polarized wave) as a plurality of received signals.
  • phase offset compensation is performed using a known signal component (unique word) included in a signal equalized in the frequency domain. Therefore, it is possible to compensate for complicated phase offset fluctuations and estimate the phase offset for each signal obtained at each receiving port. Therefore, it is possible to compensate for the phase offset and receive the transmission data sequence even when there is instability or fluctuation of the phase offset in time or when there is a mismatch in phase offset between the reception ports. .
  • the horizontal axis is OSNR (Optical signal-to-noise ratio), and the vertical axis is BER (Bit error rate).
  • the experiment of FIG. 10 uses an ECL laser (external cavity laser) having a wavelength of 1552.12 nm as a carrier wave, a GI (guard interval) length of 1.28 ns, a transmission rate of 21.7 Gb / sec, and back-to- It is an experimental result in the case of optical transmission in the case of back.
  • ECL laser external cavity laser
  • GI guard interval
  • the experimental result indicated by symbol A shows that the polarization output from the processing units 2000-1 and 2000-2 in the receiving apparatus according to the fifth embodiment is the same as that in the first embodiment described with reference to FIG. This is an experimental result when input to the timing detection unit 1002-1 of the receiving apparatus.
  • the receiving device from which the experimental result indicated by the symbol A is obtained is referred to as “receiving device according to the fifth embodiment using the first embodiment”.
  • the experimental result indicated by symbol B indicates that the polarization output from the processing units 2000-1 and 2000-2 in the receiving apparatus according to the fifth embodiment is the same as that in the third embodiment described with reference to FIG. It is an experimental result at the time of inputting into the timing detection part 1002-1 of the receiver by a form.
  • the receiving apparatus from which the experimental result indicated by the symbol B is obtained is referred to as “receiving apparatus according to the fifth embodiment using the third embodiment”.
  • the stability of the carrier frequency is lower than that of radio, and a sufficient phase offset is compensated. Can not do it. Therefore, the error rate of the received signal is such that it cannot be demodulated using an error correction code. That is, the error rate BER becomes a value that cannot be displayed in FIG.
  • the receiving apparatus according to the fifth embodiment using a configuration can obtain a BER characteristic that can be sufficiently demodulated by using an error correction code even in the case of optical transmission, as compared with the receiving apparatus according to the prior art described above. I understand that
  • the “receiving apparatus according to the fifth embodiment using the first embodiment” indicated by the experimental result of the symbol A is “third” shown by the experimental result of the symbol B.
  • the BER characteristics are further improved.
  • the fifth embodiment using the first to fourth embodiments as compared with the receiving apparatus using the method of compensating the frequency offset using the preamble signal as in the prior art. All of the receiving apparatuses according to the modes have sufficiently improved BER characteristics even in the case of optical transmission.
  • each port (polarized waves of X and Y) as in the “reception device according to the fifth embodiment using the third embodiment” indicated by the experimental result of symbol B is shown.
  • Phase offset compensation at each port as in the “reception device according to the fifth embodiment using the first embodiment” shown by the experimental result of the symbol A rather than performing phase offset compensation after combining the signals from It is better to synthesize after compensation. That is, the characteristic improvement of about 1 to 2 dB can be obtained in the receiving apparatus having the characteristic indicated by the symbol A than in the receiving apparatus having the characteristic indicated by the reference numeral B.
  • the residual phase offset that cannot be fully compensated before frequency domain equalization is compensated again at each port before performing the diversity combining after equalization, whereby the phase offset
  • transmission characteristics can be improved.
  • the receiving apparatuses according to the first to fifth embodiments have been described as having a plurality of receiving ports and a plurality of processing units respectively corresponding to the plurality of receiving ports. is not.
  • the reception apparatus may include a single reception port and a single processing unit corresponding to the single reception port.
  • each port includes a timing detection unit, and each port performs timing detection.
  • a plurality of or all timing detection units can be shared, or only a certain port includes a timing detection unit.
  • the detection result can be used in another port.
  • each port includes a weight calculation unit, and the equalization weight is calculated at each port.
  • a plurality or all of the weight calculation units may be shared.
  • sharing the weight calculation unit it is possible to calculate the weight in consideration of the weight of each port, which improves the characteristics.
  • the transmission characteristics can be improved by multiplying the input signals for each port by different weights.
  • a post-detection maximum ratio combining may be performed in which a signal-to-noise power ratio (SNR) is calculated based on the equalization weight calculated by the weight calculator, and a weight proportional to the signal-to-noise power ratio is multiplied.
  • SNR signal-to-noise power ratio
  • frequency domain equalization using FFT and IFFT is applied as an equalizer.
  • the frequency domain equalization is not necessarily performed.
  • a time domain using a tapped delay line filter is used. It is also possible to equalize distortion due to dispersion by equalization.
  • single signal sequence transmission (or single-input transmission) or single polarization transmission is assumed.
  • the above-described receiving apparatus according to the present embodiment is configured to perform MIMO (Multiple-input Multiple-output) transmission ( It is also possible to adapt to polarization multiplexing transmission. In this case, it is only necessary to have as many receiving apparatuses as the number of multiplexed sequences. For example, in order to demodulate signals multiplexed by MIMO transmission using the receiving apparatus according to the first embodiment, as shown in FIGS. 11 and 12, a plurality of received signals input to each port are used.
  • the signal distributors 5001-1 to 500-1 to k (k is an arbitrary natural number) distribute signals and perform signal processing in the plurality of receiving apparatuses 5001-1 to 500-1 to k respectively in the same manner as in the first embodiment.
  • Each transmission signal can be demodulated.
  • the calculation method in the general MIMO transmission can be used as the calculation method of the equalization weight in the weight calculation unit.
  • a method for calculating the equalization weight in the weight calculation unit there is a method of estimating the equalization weight in the weight calculation unit using a known signal as in Reference Document 5 below.
  • some or all of the local oscillator, the timing detector, and the weight calculation unit can be made common.
  • the weight calculation unit it is possible to calculate the weight in consideration of the weight of each port, which improves the characteristics.
  • the signal synthesizer 1012 synthesizes the signal and then the demodulator 1013 demodulates the signal.
  • each port includes a demodulator 1013, and each port has a configuration.
  • the signal may be synthesized by the signal synthesis unit after demodulation.
  • the configuration of synchronous detection using a local oscillator is used, but the receiving apparatus according to the present embodiment can be used even in the case of a direct detection method that does not use a local oscillator.
  • each of the first to fourth embodiments is used independently, but a plurality of modes can be combined.
  • phase offset compensation units 1011-1 to R are added after the frequency offset compensation units 2011-1 to 2011-R and the phase offset estimation units 2010-1 to 2010-R.
  • the phase offset is compensated at two places.
  • the frequency offset compensators 1003-1 to 1003-1 to 1003-1 to R in the configurations of the first to fourth embodiments are assumed to have the configurations described with reference to FIGS.
  • the configuration of the frequency offset compensation units 1003-1 to 1003-1-R may be used as the configuration of the frequency offset compensation unit in the single carrier receiver according to the conventional technique described with reference to FIG. That is, the configuration of the frequency offset compensators 1003-1 to 1003-1-R can be used independently of the first to fourth embodiments.
  • the configuration of the frequency offset compensation units 1003-1 to 1003-1 to R may be the configuration described with reference to FIGS.
  • the frequency offset compensation received signal storage unit described above is a hard disk device, a magneto-optical disk device, a nonvolatile memory such as a flash memory, a storage medium that can only be read such as a CD-ROM, a RAM (Random Access Memory). It is assumed that it is configured by a volatile memory such as
  • each unit included in the processing unit 1000, 2000, 3000, or 4000 or the processing unit 1000, 2000, 3000, or 4000 in FIG. 1, FIG. 3, FIG. 4, or FIG. 5 is realized by dedicated hardware. It may also be realized by a memory and a microprocessor.
  • each unit included in the processing unit 1000, 2000, 3000, or 4000 in FIG. 1, FIG. 3, FIG. 4, or FIG. 5 or the processing unit 1000, 2000, 3000, or 4000 includes a memory and a CPU (central Function of each unit included in the processing unit 1000, 2000, 3000, or 4000 in FIG. 1, FIG. 3, FIG. 4, or FIG. 5 or the processing unit 1000, 2000, 3000, or 4000.
  • the function may be realized by loading a program for realizing the above into a memory and executing the program.
  • the present invention can be applied to a receiving apparatus and a communication system in wireless communication and optical communication, and when received signals have temporal phase offset instability or fluctuation or when phase offset mismatch occurs between receiving ports. Can also compensate for the phase offset.
  • Local oscillation light source 10031 ... first frequency offset estimation unit, 10032 ... First offset compensation unit, 10033 ... second offset estimation unit, 10034 ... second offset compensation unit, 2001 ... Polarization diversity 90 degree hybrid coupler, 20012 ... BPD (balanced photodiode), 2001 ... A / D converter, 200414 Complex signal converting unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Radio Transmission System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

 単数または複数のポートに入力された信号を複数の受信信号として受信する受信装置が、受信信号に含まれている信号ブロック毎のユニークワードに基いて位相オフセットを推定する位相オフセット推定部と、推定した信号ブロック毎の位相オフセットに基いて補償する位相オフセット補償部とを有し、周波数領域で等化された信号に含まれる既知信号成分(ユニークワード)を用いて位相オフセットの補償を行うことによって、複雑な位相オフセットの変動を補償し、各受信ポートで得られる信号に対して、それぞれ位相オフセットの推定を行う。

Description

受信装置、通信システム、および、受信方法
 本発明は無線通信および光通信における、受信装置、通信システムおよび受信方法に関する。
 本願は、2008年6月20日に日本に出願された特願2008-162478号、2008年8月19日に日本に出願された特願2008-210926号、および2009年4月28日に日本に出願された特願2009-109962号に基づき優先権を主張し、その内容をここに援用する。
 図13に周波数領域等化(Frequency Domain Equalization:FDE)を用いるシングルキャリア伝送の従来の受信機の例を示す。この受信機は、受信部101-1~R、タイミング検出部102-1~R、周波数オフセット補償部103-1~R、直/並列変換部104-1~R、FFT(Fast Fourier Transform)演算部105-1~R、等化部106-1~R、重み演算部107-1~R、信号合成部108、IFFT(Inverse Fast Fourier Transform)演算部109、並/直列変換部110、復調部111、局部発振器112を含む。ここで、Rは入力ポート数を示す。
 このシングルキャリア受信機において、受信機が有するR個の通信ポートから入力されたシングルキャリア受信信号は、局部発振器112からの発振信号を用いて、受信部101-1~Rでベースバンドのディジタル信号に変換される。
 受信部101-1~Rで変換された信号は、タイミング検出部102-1~Rで、ポート毎にプリアンブル信号を用いて、信号位置が検出され、タイミング検出される。
 タイミング検出部102-1~Rでタイミング検出された信号は、周波数オフセット補償部103-Rで、シングルキャリア受信信号に含まれているプリアンブル信号を用いて、周波数オフセットが推定され、この推定された周波数オフセットに基いて補償される。
 その後、プリアンブル信号は、重み演算部107-1~Rに入力され、重み演算部107-1~Rで等化重みが算出される。
 一方、データ信号に対しては、直/並列変換部104-1~Rで直/並列変換が行われた後、FFT演算部105-1~RでFFT演算が行われ、受信信号の周波数成分が得られる。次に、等化部106-1~Rで、重み演算部107-1~Rにおいて算出された重みを用いて、周波数領域で等化が行われる。
 その後、信号合成部108で、各ポートの信号である各周波数成分の信号を合成した後、IFFT演算部109でIFFT演算することにより時間信号に変換する。時間信号に変換された信号は、並/直列変換部110で並/直列変換が行われた後、復調部111で復調される。これにより、シングルキャリア受信機で、送信データ系列が得られる。
 また、図14に第r(=1~R)ポートにおける周波数オフセット補償部103-rの構成を示す。周波数オフセット補償部103-rは、オフセット推定部1031-rと、オフセット補償部1032-rとを有する。
 オフセット推定器1031-rは、対応するタイミング検出部102-r(=1~R)からのシングルキャリア受信信号に含まれているプリアンブル信号を用いて、周波数オフセット推定値を算出し、算出した周波数オフセット推定値をオフセット補償器1032-rへ出力する。
 オフセット補償器1032-rは、オフセット推定器1031-rにより算出されたオフセット推定値を用いて、対応するタイミング検出部102-r(=1~R)からのシングルキャリア受信信号に含まれているデータ受信信号のオフセット補償を行い、その結果を対応する直/並列変換部104-r(=1~R)に出力する。
 なお、図13を用いて説明したシングルキャリア受信機の従来技術として、非特許文献1が知られている。
A. Gusmao, R. Dinis, and N.  Esteves, "On frequency-domain equalization and diversity combining for broadband wireless communications," IEEE Trans. Commun., vol. 51, no. 7, PP.1029-1033, July 2003.
 ところで、光もしくは無線伝送を行う場合、局部発振器や受信機中の装置の不安定性により位相オフセットが生じてしまうことが知られている。そのため、非特許文献1に示すシングルキャリア受信機にあっては、光もしくは無線伝送を行おうとした際、送受信のそれぞれの基準周波数が異なるため、位相オフセットが生じてしまうという問題がある。
 また、従来技術のように、プリアンブル信号を用いて周波数オフセットを補償する方法が提案されているが、時間的な位相オフセットの不安定性または変動がある場合や、受信ポート間での位相オフセットの不一致が生じる場合には、位相オフセットを完全には補償することはできないという問題がある。また、この問題は、キャリア周波数の安定度が無線に比べて低い光伝送の場合、より顕著となる。
 また、光もしくは無線伝送を行おうとした際、送受信のそれぞれの基準周波数が異なるため、周波数オフセットが生じてしまう。従来技術のように、プリアンブル信号を用いて周波数オフセットを補償する方法が提案されているが、時間的な周波数オフセットの不安定性や、受信ポート間での周波数オフセットの不一致が生じる場合には、周波数オフセットを完全には補償することはできないという問題がある。
 本発明は、このような事情に鑑みてなされたもので、その目的は、時間的な位相オフセットの不安定性または変動がある場合や、受信ポート間での位相オフセットの不一致が生じる場合においても、位相オフセットを補償することができる受信装置、通信システム、および、受信方法を提供することにある。
 また、周波数の不安定や受信ポート間の周波数の不一致が生じる場合においても、周波数オフセットを補償することができる受信装置、通信システム、および、受信方法を提供することにある。
 単数または複数のポートに入力された信号を単数または複数の受信信号として受信する本発明の受信装置は:前記単数または複数の受信信号のうち、予め割当てられた受信信号の信号波形を整形するために、それぞれが前記予め予め割当てられた受信信号に対して信号位置を検出してタイミング検出を行うタイミング検出部と、前記タイミング検出部によってタイミング検出された受信信号に対して周波数オフセットを補償する周波数オフセット補償部と、前記周波数オフセット補償部によって補償された受信信号を直/並列変換する直/並列変換部と、前記直/並列変換部によって直/並列変換された受信信号をフーリエ変換するフーリエ変換部と、前記フーリエ変換部によってフーリエ変換された受信信号を周波数成分毎に等化する等化部と、前記等化部によって等化された受信信号を逆フーリエ変換する逆フーリエ変換部と、前記逆フーリエ変換部によって逆フーリエ変換された受信信号を並/直列変換する並/直列変換部と、を有する単数または複数の処理部と;前記単数または複数の処理部によって整形された信号波形を合成する信号合成部と;前記信号合成部によって合成された信号波形を復調する復調部と;前記タイミング検出部から前記復調部に至る受信信号変換経路上に配置され、前記受信信号に含まれる信号ブロック毎のユニークワードに基づいて、供給された受信信号の位相オフセットを推定する位相オフセット推定部と;前記受信信号変換経路上に配置され、前記位相オフセット推定部によって推定された位相オフセットに基いて前記受信信号変換経路上の信号の位相オフセットを補償する位相オフセット補償部と;を有する。
 また、本発明の通信システムは、信号ブロック毎にユニークワードが付加された送信信号を送信する送信装置と、単数または複数のポートに入力された前記送信信号を単数または複数の受信信号として受信する受信装置とを有する通信システムであって、前記受信装置が:前記単数または複数の受信信号のうち、予め割当てられた受信信号の信号波形を整形するために、それぞれが前記予め予め割当てられた受信信号に対して信号位置を検出してタイミング検出を行うタイミング検出部と、前記タイミング検出部によってタイミング検出された受信信号に対して周波数オフセットを補償する周波数オフセット補償部と、前記周波数オフセット補償部によって補償された受信信号を直/並列変換する直/並列変換部と、前記直/並列変換部によって直/並列変換された受信信号をフーリエ変換するフーリエ変換部と、前記フーリエ変換部によってフーリエ変換された受信信号を周波数成分毎に等化する等化部と、前記等化部によって等化された受信信号を逆フーリエ変換する逆フーリエ変換部と、前記逆フーリエ変換部によって逆フーリエ変換された受信信号を並/直列変換する並/直列変換部と、を有する単数または複数の処理部と;前記単数または複数の処理部によって整形された信号波形を合成する信号合成部と;前記信号合成部によって合成された信号波形を復調する復調部と;前記タイミング検出部から前記復調部に至る受信信号変換経路上に配置され、前記受信信号に含まれる信号ブロック毎のユニークワードに基づいて、供給された受信信号の位相オフセットを推定する位相オフセット推定部と;前記受信信号変換経路上に配置され、前記位相オフセット推定部によって推定された位相オフセットに基いて前記受信信号変換経路上の信号の位相オフセットを補償する位相オフセット補償部と;を有する。
 さらに、本発明の受信方法は、単数または複数のポートに入力された信号を単数または複数の受信信号として受信する受信装置に用いられる受信方法であって、 前記単数または複数の受信信号のうち、予め割当てられた受信信号に対して信号位置を検出してタイミング検出を行うタイミング検出工程と、前記タイミング検出工程によってタイミング検出された受信信号に対して周波数オフセットを補償する周波数オフセット補償工程と、前記周波数オフセット補償工程によって補償された受信信号を直/並列変換する直/並列変換工程と、前記直/並列変換工程によって直/並列変換された受信信号をフーリエ変換するフーリエ変換工程と、前記フーリエ変換工程によってフーリエ変換された受信信号を周波数成分毎に等化する等化工程と、前記等化工程によって等化された受信信号を逆フーリエ変換する逆フーリエ変換工程と、前記逆フーリエ変換工程によって逆フーリエ変換された受信信号を並/直列変換する並/直列変換工程と、を有する単数または複数の受信信号に対する処理工程と;前記単数または複数の受信信号に対する処理工程によって整形された単数または複数の信号波形を合成する信号合成工程と;前記信号合成工程によって合成された信号波形を復調する復調工程と;前記タイミング検出工程から前記復調工程に至る受信信号変換工程中に行われ、前記受信信号に含まれる信号ブロック毎のユニークワードに基づいて、供給された受信信号の位相オフセットを推定する位相オフセット推定工程と;前記受信信号変換工程中に行われ、前記位相オフセット推定工程が推定した位相オフセットに基いて前記受信信号変換経路上の信号の位相オフセットを補償する位相オフセット補償工程と;を有する。
 本発明において、前記位相オフセット推定部または位相オフセット推定工程は、下記の一般式によって前記供給された受信信号の前記位相オフセットθ(q)を推定することが好ましい。
Figure JPOXMLDOC01-appb-I000004
 但し、y(m,q)は、q番目の信号ブロックにおける前記供給された受信信号、x(m)はユニークワード系列、パラメータmはM個のブロックをユニークワードブロックにおいてそれぞれのブロックを順に識別するための識別変数、*は複素共役を示す。argは角度を求める関数である。
 本発明によれば、周波数領域で等化された信号に含まれる既知信号成分(ユニークワード)を用いて位相オフセットの補償を行うことによって、複雑な位相オフセットの変動を補償することができる。さらに、各受信ポートで得られる信号に対して、それぞれ位相オフセットの推定を行うことで、時間的な位相オフセットの不安定性または変動がある場合や、受信ポート間での位相オフセットの不一致が生じる場合においても、位相オフセットを補償することができる。
 また、本発明によれば、信号を送信する際、周波数領域等化で用いるガードインターバルGIとして、ユニークワードUWを利用するときに、その系列を複数繰り返して挿入する。受信側では、周波数領域等化を行う前にブロックごとに複数回繰り返されたユニークワードUWを用いて周波数オフセットを推定し、その推定された周波数オフセットを用いて補償する。これにより、周波数が不安定であったり、受信ポート間の周波数の不一致が生じたりする場合においても、時間多重したプリアンブル信号で補償しきれない周波数オフセットを、ユニークワードUWを用いて等化前に、各ポートでブロックごとに再度補償する。これによって、周波数オフセットを補償することができ、伝送特性を改善することが可能となる。
本発明の第1の実施形態による受信装置を示すブロック図である。 本発明の実施形態による受信装置が受信する送信信号を示す構成図である。 本発明の第2の実施形態による受信装置を示すブロック図である。 本発明の第3の実施形態による受信装置を示すブロック図である。 本発明の第4の実施形態による受信装置を示すブロック図である。 本発明の第1から第4の実施形態による受信装置における周波数オフセット補償部を示すブロック図である。 図6に示された周波数オフセット補償部で用いられる送信信号を示す第1の構成図である。 図6に示された周波数オフセット補償部で用いられる送信信号を示す第2の構成図である。 本発明の第5の実施形態による受信装置を示すブロック図である。 本発明の第5の実施形態による受信装置の受信特性を示すグラフである。 偏波多重伝送に適した本発明の実施形態による受信装置の一部を示すブロック図である。 偏波多重伝送に適した本発明の実施形態による受信装置の一部を示すブロック図である。 従来の受信装置を示すブロック図である。 従来の受信装置における周波数オフセット補償部を示すブロック図である。
<第1の実施形態>
 以下、図面を参照して、本発明の実施の形態について説明する。図1は、この発明の一実施形態による受信装置の構成を示す概略ブロック図である。この受信装置は、送信装置10から送信されたシングルキャリア受信信号を、複数の受信信号、たとえば、R個の受信信号として受信する。ここで、R(≧1)は、無線伝送の場合は、アンテナの本数またはアンテナ素子の数である。以降においては、この受信装置は、R個のポートを有しているものとして説明する。
 また、受信装置が受信する受信信号には、予め定められている信号であるユニークワードが信号ブロック毎に含まれているものとして説明する。また、この受信信号には、プリアンブル信号が含まれているものとして説明する。このユニークワードとプリアンブル信号とについては、図2を用いて、後述する。
 受信装置は、複数の受信信号のうち予め対応付けられている受信信号の信号波形を整形する複数の処理部1000-1~Rと、複数の処理部1000-1~Rで整形された信号波形を合成する信号合成部1012と、信号合成部1012で合成された信号波形を復調する復調部1013と、局部発振器1014と、を有する。
 複数の処理部1000-1~Rは、それぞれ、同様の構成を有している。ここでは、複数の処理部1000-1~Rのうちのいずれか1つの処理部である処理部1000について、その構成を説明する。
 処理部1000は、受信部1001、タイミング検出部1002、周波数オフセット補償部1003、直/並列変換部1004、FFT演算部1005(フーリエ変換部)、等化部1006、重み演算部1007、IFFT演算部1008(逆フーリエ変換部)、並/直列変換部1009、位相オフセット推定部1010、および、位相オフセット補償部1011を、有している。
 受信部1001は、対応するアンテナ素子から受信信号を受信し、受信した受信信号を、局部発振器1014からの発振信号を用いて、ベースバンドのディジタル信号に変換する。タイミング検出部1002は、受信部1001がベースバンドのディジタル信号に変換した受信信号、すなわち、予め対応付けられている受信信号に対して、信号位置を検出して、タイミング検出を行う。この信号位置の検出は、たとえば、信号に含まれているプリアンブル信号に基いて検出される。
 周波数オフセット補償部1003は、タイミング検出部1002がタイミング検出した受信信号に対して、周波数オフセットを補償する。重み演算部1007は、周波数オフセット補償部1003が補償した受信信号に含まれているプリアンブル信号に基いて、等化重みを算出する。直/並列変換部1004は、周波数オフセット補償部1003が補償した受信信号を直/並列変換する。
 FFT演算部1005は、直/並列変換部1004が直/並列変換した受信信号をフーリエ変換する。等化部1006は、重み演算部1007が算出した等化重みに基いて、FFT演算部1005がフーリエ変換した受信信号を周波数成分毎に等化する。IFFT演算部1008は、等化部1006が等化した受信信号を逆フーリエ変換する。並/直列変換部1009は、IFFT演算部1008が逆フーリエ変換した受信信号を並/直列変換する。
 タイミング検出部1002から復調部1013に至る経路を受信信号変換経路と呼ぶと、位相オフセット推定部1010はこの受信信号変換経路上に配置される。より具体的には、本実施形態においては、位相オフセット推定部1010は、並/直列変換部1009の後段に配置され、並/直列変換部1009が並/直列変換した受信信号に基いて、位相オフセットを推定する。この位相オフセット推定部1010は、位相オフセットを推定する場合に、受信信号に含まれている信号ブロック毎のユニークワードに基いて位相オフセットを信号ブロック毎に推定する。
 位相オフセット補償部1011は、受信信号変換経路上である位相オフセット推定部1010の後段に配置され、位相オフセット推定部1010が推定した位相オフセットに基いて、並/直列変換部1009が並/直列変換した受信信号の位相オフセットを補償する。また、この位相オフセット補償部1011は、位相オフセット推定部1010の推定した信号ブロック毎の位相オフセットに基いて、並/直列変換部1009が並/直列変換した受信信号の位相オフセットを補償する。
 なお、信号合成部1012は、複数の処理部1000がそれぞれ有する位相オフセット補償部1011が補償した受信信号を、合成する。
 次に、図1を用いて説明した受信装置の動作について説明する。
 まず、受信機において、R個のポートに入力されたR個の受信信号は、受信部1001-1~Rにより、局部発振器1014からの発振信号を用いて、ベースバンドのディジタル信号に変換される。
 次に、受信部1001-1~Rより出力された信号は、タイミング検出部1002-1~Rで、プリアンブル信号を用いて信号位置が検出され、タイミング検出される。すなわち、タイミング検出部1002-1~Rで、入力ポート毎にプリアンブル信号を用いて信号位置が検出され、タイミング検出される。
 次に、タイミング検出された信号は、周波数オフセット補償部1003-1~Rで、プリアンブル信号を用いて周波数オフセットが推定され、補償される。
 その後、プリアンブル信号は重み演算部1007-1~Rに入力され、等化重みが算出される。一方、データ信号に対しては、直/並列変換部1004-1~Rで直/並列変換が行われた後、FFT演算部1005-1~RでFFT演算が行われ、受信信号の周波数成分が得られる。
 次に、等化部1006-1~Rで、重み演算部1007-1~Rで算出された重みを用いて、周波数領域で等化が行われる。次に、IFFT演算部1008-1~RでIFFT変換が行われ、時間信号に変換され、並/直列変換部1009-1~Rで並/直列変換される。
 次に、位相オフセット推定部1010-1~Rで、位相オフセットが推定される。次に、位相オフセット補償部1011-1~Rで、推定された位相オフセット推定に基いて、周波数オフセットもしくは位相オフセットが補償される。
 次に、各ポートに対応する処理部1000-1~Rで補償された信号は、信号合成部1012で信号が合成され、復調部1013で受信信号が復調される。これにより、受信機で、送信データ系列が得られる。
 次に、位相オフセット推定部1010-1~Rおよび位相オフセット補償部1011-1~Rで行われる位相オフセット補償の一例について説明する。まず、図2に、本実施形態による受信装置が受信する送信信号のブロック構成を示す(次の参考文献1参照)。
[参考文献1]
L. Deneire, et al., “Training sequence versus cyclic prefix-a new look on single carrier communication,” IEEE Commun., Lett., vol. 5, no. 7, pp. 292-294, July 2001.
 この図2に示すように、送信装置10が送信する送信データ系列は、N個のブロックずつに分割され、M個のブロックを有するユニークワードUWが挿入され、全体でK(=N+M)個のブロックを有する信号ブロックが、送信信号として生成される。
 このユニークワードUWは、予め定められている信号であり、既知信号成分である。なお、このユニークワードUWは、遅延パスや波長分散といった伝搬路での到来遅延差を補償するガードインターバルGIの役目も担っている。また、送信装置は、送信信号の先頭に、プリアンブル信号を含むプリアンブル信号ブロックを追加して、送信信号を生成する。
 すなわち、送信信号は、送信信号の先頭にプリアンブル信号を含むプリアンブル信号ブロックを有しており、このプリアンブル信号ブロックに続いて、複数の信号ブロックを有している。それぞれの信号ブロックは、K個のブロックを有しており、K個のブロックのうち、M個のブロックであるユニークワードブロックには、ユニークワードUWの情報(信号)であるユニークワードUW系列が含まれており、残りのN個のブロックであるデータブロックには、送信データ系列の情報であるデータ系列が含まれている。
 受信装置は、送信装置10からの送信信号を受信信号として受信し、この受信した受信信号を、K個のブロックである信号ブロックごとに、すなわち、組とされているユニークワードブロックとデータブロックごとに、上述したように、処理部1000-1~Rで、FFT演算を行い、周波数領域等化を行うなどの処理を実行する。なお、図1を用いて説明したデータ信号とは、図2を用いて説明した信号ブロックに含まれている信号に対応する。
 次に、位相オフセット推定部1010-1~Rと位相オフセット補償部1011-1~Rとの動作について詳述する。
 位相オフセット推定部1010-1~Rは、位相オフセットを推定するために、前述した一般式
Figure JPOXMLDOC01-appb-I000005
を本実施形態の装置に適用する。すなわち、位相オフセット推定部1010-1~Rは、受信信号を等化した後の並/直列変換部1009-1~Rからの出力信号に対して、位相オフセットθ(r、q)を、次の(式1)に基いて算出し、推定する。
Figure JPOXMLDOC01-appb-M000006
 ここで、y(r、m、q)は、q番目の信号ブロックにおける並/直列変換部1009-rからの出力信号であり、x(m)はユニークワードUW系列である。なお、パラメータmは、M個のブロックを有しているユニークワードブロックにおいて、それぞれのブロックを順に識別するための識別変数である。また、*は複素共役を示す。argは角度を求める関数である。
 次に、位相オフセット補償部1011-1~Rは、(式1)により推定した位相オフセットθであって、q番目の信号ブロックにおいて推定した位相オフセットθ(r、q)と、(q-1)番目の信号ブロックにおいて推定した位相オフセットθ(r、q-1)とを用いて、並/直列変換部1009-rから出力されたN個のブロック(データブロック)に含まれているデータ系列に対して線形補間を行う。
 これにより、位相オフセット補償部1011-1~Rは、並/直列変換部1009-rから出力されたN個のブロック(データブロック)に含まれているデータ系列の位相オフセットを補償する。
 たとえば、位相オフセット補償部1011-1~Rは、q番目の信号ブロックにおいて推定した位相オフセットθ(r、q)と、(q-1)番目の信号ブロックにおいて推定した位相オフセットθ(r、q-1)とを用いて、並/直列変換部1009-rから出力された、q番目の信号ブロックが有するN個のブロック(データブロック)に含まれているデータ系列に対して、線形補間を行う。
 これにより、位相オフセット補償部1011-1~Rは、q番目の信号ブロックに対して、並/直列変換部1009-rから出力されたN個のブロック(データブロック)に含まれているデータ系列の位相オフセットを補償する。
 なお、上記説明では、位相オフセット補償部1011-1~Rは、二つの信号ブロックの位相オフセット推定値を用いて、1つの信号ブロックに含まれているデータ系列を、線形補間により補間したが、これに限られるものではない。たとえば、位相オフセット補償部1011-1~Rは、前後で合計Q信号ブロックの位相オフセット推定値を用いて、1つの信号ブロックに含まれているデータ系列を、C(C≦Q)次補間により補間することにより、位相オフセットを補償してもよい。
 また、上記説明では、送信データ系列をN個のブロックずつに分割し、M個のブロックを有するユニークワードUWを挿入し、全体としてK(=N+M)個のブロックを有する信号ブロックを生成する場合について説明したが、これに限られるものではなく、たとえば、次のようにして信号ブロックを生成するようにしてもよい。
 まず、送信データ系列をN個のブロックずつに分割し、各ブロックで最後尾のNgブロックをガードインターバルGIとしてコピーするとともに対応する各ブロックの先頭に挿入し、全体として(N+Ng)個のブロックを有する信号ブロックを生成するようにしてもよい(次の参考文献2参照)。なお、この場合、各ブロックでガードインターバルGIとしてコピーされた最後尾のNgブロックが、上述したユニークワードブロックに対応する。
[参考文献2]
D. Falconer, et al., “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag., vol. 40, no. 4, pp. 58-66、 Apr. 2002.
 この場合、位相オフセット推定部1010-1~Rと位相オフセット補償部1011-1~Rとによる位相オフセット補償としては、2逓倍法や4逓倍法(次の参考文献3参照)を用いて、ブラインドでオフセット補償を行うことができる。
[参考文献3]
S. J. Savory, et al., “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Optics express, vol. 15, no. 5, pp. 2120-2126, Mar. 2007.
 ユニークワードは、予め定められている信号でもよいし、上記に説明したように、各ブロックで最後尾のNgブロックがコピーされた信号であってもよい。すなわち、ユニークワードは、受信装置において、信号ブロック毎に検出可能な信号であってもよい。
 また、ユニークワードは、たとえば、ガードインターバルGIであってもよい。
 図1の説明においては、FFT演算部1005-1~RおよびIFFT演算部1008-1~Rを用いているが、この構成として、離散フーリエ変換器および逆離散フーリエ変換器のような直交変換器および逆直交変換器を用いることもできる。
 上記説明では、受信装置が受信対象とする信号として、単数送信局によるシングルアクセスでの送信を仮定しているが、本実施形態による受信装置は、複数の送信局での送信でも用いることができるし、各送信局が複数の送信信号を送信している場合にも用いることができる。
 受信装置において、受信信号をNs倍のオーバーサンプリングで受信し、このNs倍でオーバーサンプリングされた信号であって、アナログ・デジタル変換された信号を、上記に説明したように受信することも可能である。たとえば、受信装置において、受信部1001-1~Rで、受信信号を、Ns倍でオーバーサンプリングして、受信する。
 この場合、位相オフセット推定部1010-1~Rは、位相オフセットを推定するために、前述した一般式
Figure JPOXMLDOC01-appb-I000007
をそのような形態の装置に適用する。すなわち、位相オフセット推定部1010-1~Rは、次の(式2)により、位相オフセットθ’を算出する。
Figure JPOXMLDOC01-appb-M000008
 ここで、y’(r、m、q)は、Ns倍のオーバーサンプリングで得られたq番目の信号ブロックにおける並/直列変換部1009-rからの出力信号を示し、x’(m)はNs倍のオーバーサンプリングで表現されるユニークワードUW系列を示す。なお、パラメータmは、Ns倍にオーバーサンプリングされたNs×M個のブロックを有しているユニークワードブロックにおいて、それぞれのブロックを順に識別するための識別変数である。また、*は複素共役を示す。argは角度を求める関数である。
 位相オフセット補償部1011-1~Rは、この(式2)で位相オフセット推定部1010-1~Rにより算出された位相オフセットθ’に基いて、(式1)で位相オフセット推定部1010-1~Rにより算出された位相オフセットθの場合と同様に、並/直列変換部1009-rから出力された(Ns×N)個の送信データ系列の位相オフセットを補償する。
 上記説明では、受信装置として、シングルキャリア伝送における受信系であったが、マルチキャリア伝送においても同様に適用することが可能である。
 上記説明では、周波数領域等化を基本とした受信装置の構成となっているが、タップドディレイフィルタを用いた時間領域等化を用いる際にも適用することができる。
 上記説明において、ユニークワードUW系列は、例えばPN系列や、Chu系列を用いることができる(次の参考文献4参照)。
[参考文献4]
D. C. Chu, “ Polyphase codes with good periodic correlation properties,” IEEE Trans. Inf. Theory, Vol. 5, N0. 7, pp.531-532, July 1972.
 以上説明したように、第1の実施形態による受信装置においては、複数のポートに入力された信号、すなわち、複数のアンテナ素子で受信した信号を、周波数領域で等化された信号に含まれる既知信号成分(ユニークワード)を用いて位相オフセットの補償を行う。これによって、複雑な位相オフセットの変動を補償することができる。さらに、各受信ポートで得られる信号に対して、それぞれ位相オフセットの推定を行う。これによって、時間的な位相オフセットの不安定性または変動がある場合や、受信ポート間での位相オフセットの不一致が生じる場合においても、位相オフセットを補償して、送信データ系列を受信することが可能である。
<第2の実施形態>
 次に、図3を用いて、第2の実施形態による受信装置の構成を説明する。なお、同図において図1の各部に対応する部分には同一の符号を付け、その説明を省略する。なお、図1の処理部1000-1~Rと、図3の処理部2000-1~Rとが、それぞれ対応する。
 図3において、位相オフセット推定部2010-1~Rの構成は、図1を用いて説明した位相オフセット推定部1010-1~Rの構成と同様である。また、位相オフセット補償部2011-1~Rの構成は、図1を用いて説明した位相オフセット補償部1011-1~Rの構成と同様である。位相オフセット推定部2010-1~Rおよび位相オフセット補償部2011-1~Rは、タイミング検出部1002-1~Rから復調部1013に至る受信信号変換経路に配置される。
 図1に示す第1の実施形態における受信装置の構成と、図2に示す第2の実施形態における受信装置の構成とは、次の点が異なる。
 まず、第1の実施形態における受信装置においては、位相オフセット補償部1011-1~Rは、位相オフセット推定部1010-1~Rが推定した位相オフセットに基いて、並/直列変換部1009-1~Rが並/直列変換した受信信号を補償し、この補償した受信信号を信号合成部1012に出力していた。
 これに対して、第2の実施形態における受信装置においては、位相オフセット補償部2011-1~Rは、周波数オフセット補償部1003-1~Rの後段に配置される。位相オフセット補償部2011-1~Rは、位相オフセット推定部2010-1~Rが推定した位相オフセットに基いて、周波数オフセット補償部1003-1~Rが補償した受信信号を補償し、この補償した受信信号を直/並列変換部1004-1~Rに出力する。
 次に、第1の実施形態における受信装置においては、位相オフセット補償部1011-1~Rの補償した受信信号が、信号合成部1012に出力されていた。
 これに対して、第2の実施形態における受信装置においては、並/直列変換部1009-1~Rの並/直列変換した受信信号が、信号合成部1012に出力される。なお、ここでは、並/直列変換部1009-1~Rの並/直列変換した受信信号が、信号合成部1012に直接に出力されているものとして説明したが、並/直列変換部1009-1~Rの並/直列変換した受信信号が、位相オフセット推定部2010-1~Rを介して、信号合成部1012に出力されてもよい。
 次に、第2の実施形態における受信装置の2つの動作について説明する。なお、第1の実施形態における受信装置の動作と同様の動作については、その説明を省略する。
 まず、第1の動作について説明する。位相オフセット補償部2011-1~Rは、周波数領域等化され並/直列変換された並/直列変換部1009-1~Rからの出力信号に対して、ユニークワードUWを用いて(式1)により、q番目の信号ブロックに対する位相オフセットを推定する。次に、位相オフセット補償部2011-1~Rは、推定した位相オフセットの情報を、ポートが対応している位相オフセット補償部2011-1~Rにフィードバックする。
 位相オフセット補償部2011-1~Rは、フィードバックされたq番目の信号ブロックに対する位相オフセットに基いて、周波数オフセット補償部1003により補償された受信信号、すなわち、q+1番目の周波数領域等化前の受信信号に対して、位相オフセット補償を行う。
 すなわち、この場合、受信装置は、q番目の信号ブロックの情報からq+1番目の信号ブロックの位相オフセットを推定して、q+1番目の信号ブロックの位相オフセット補償をする。このような処理は、オンライン処理に好適である。
 次に、第2の動作について説明する。位相オフセット補償部2011-1~Rは、周波数領域等化され並/直列変換された並/直列変換部1009-1~Rからの出力信号に対して、ユニークワードUWを用いて(式1)により、q番目の信号ブロックの位相オフセットを推定する。次に、位相オフセット補償部2011-1~Rは、推定した位相オフセットの情報を、ポートが対応している位相オフセット補償部2011-1~Rにフィードバックする。
 次に、位相オフセット補償部2011-1~Rは、フィードバックされたq番目の信号ブロックに対する位相オフセットに基いて、q番目の周波数領域等化前の受信信号に対して、位相オフセット補償を行う。その後、位相オフセット補償部2011-1~Rにより位相オフセット補償された受信信号に対して、等化処理が再度行われることで、q番目の信号ブロックに含まれている信号の品質を向上させることができる。
 すなわち、この場合、受信装置は、q番目の信号ブロックの情報からq番目の信号ブロックの位相オフセットを推定して、q番目の信号ブロックの位相オフセット補償をする。
このような処理は、オフライン処理に好適である。
 なお、上記に説明した第2の動作を実行する受信装置の場合、この受信装置は、更に、周波数オフセット補償部1003が補償した受信信号が記憶される周波数オフセット補償受信信号記憶部を構成として有している。そして、受信装置は、たとえば、次のように、動作する。
 まず、周波数オフセット補償部1003は、タイミング検出部1002によって信号位置が検出された受信信号に対して、周波数オフセットを補償する場合に、この補償した受信信号を、位相オフセット補償部2011-1~Rに出力するとともに、周波数オフセット補償受信信号記憶部に記憶させる。
 その後、位相オフセット補償部2011-1~Rが、フィードバックされたq番目の信号ブロックに対する位相オフセットに基いて、q番目の周波数領域等化前の受信信号に対して位相オフセット補償を行う場合に、周波数オフセット補償受信信号記憶部から受信信号を読み出し、この読み出した受信信号に対して、フィードバックされたq番目の信号ブロックに対する位相オフセットに基いて位相オフセット補償を行う。これにより、受信装置は、上記に説明した第2の動作を実行することが可能となる。
 上記に説明した第1または第2の動作を行うことで、第2の実施形態における受信装置は、第1の実施形態における受信装置と同様に、周波数領域で等化された信号に含まれる既知信号成分(ユニークワード)を用いて位相オフセットの補償を行うことで、複雑な位相オフセットの変動を補償し、各受信ポートで得られる信号に対して、それぞれ位相オフセットの推定を行うことで、時間的な位相オフセットの不安定性または変動がある場合や、受信ポート間での位相オフセットの不一致が生じる場合においても、位相オフセットを補償して、送信データ系列を受信することが可能である。
 また、位相オフセットによって生じてしまったFFTブロック間の直交性の崩れを補償することができる。
<第3の実施形態>
 次に、図4を用いて、第3の実施形態による受信装置の構成を説明する。なお、同図において図1または図3の各部に対応する部分には同一の符号を付け、その説明を省略する。なお、図1の処理部1000-1~Rまたは図3の処理部2000-1~Rと、図4の処理部3000-1~Rとが、それぞれ対応する。
 図4において、位相オフセット推定部3010の構成は、図1を用いて説明した位相オフセット推定部1010-1~Rまたは図3を用いて説明した位相オフセット推定部2010-1~Rの内の、いずれかと同様である。また、位相オフセット補償部3011の構成は、図1を用いて説明した位相オフセット補償部1011-1~Rまたは図3を用いて説明した位相オフセット補償部2011-1~Rの内の、いずれかと同様である。位相オフセット推定部3010および位相オフセット補償部3011は、タイミング検出部1002-1~Rから復調部1013に至る受信信号変換経路に配置される。
 図1に示す第1の実施形態における受信装置の構成と、図4に示す第3の実施形態における受信装置の構成とは、次の点が異なる。
 まず、第1の実施形態における受信装置においては、位相オフセット推定部1010-1~Rは、並/直列変換部1009-1~Rが並/直列変換した受信信号に基いて、位相オフセットを推定していた。また、位相オフセット補償部1011-1~Rは、位相オフセット推定部1010-1~Rが推定した位相オフセットに基いて、並/直列変換部1009-1~Rが並/直列変換した受信信号を補償していた。
 これに対して、第3の実施形態における受信装置においては、位相オフセット推定部3010は、信号合成部1012の後段に配置される。位相オフセット推定部3010は、信号合成部1012が合成した受信信号に基いて、位相オフセットを推定する。位相オフセット補償部3011は、位相オフセット推定部3010の後段に配置される。位相オフセット補償部3011は、位相オフセット推定部3010が推定した位相オフセットに基いて、信号合成部1012が合成した受信信号を補償する。
 また、第1の実施形態における受信装置においては、信号合成部1012は、複数の処理部1000がそれぞれ有する位相オフセット補償部1011が補償した受信信号を、合成していた。
 これに対して、第3の実施形態における受信装置においては、信号合成部1012は、並/直列変換部1009-1~Rが並/直列変換した受信信号を、合成する。
 すなわち、第1の実施形態による受信装置は、各ポート毎の受信信号に対して、位相オフセット推定部1010-1~Rと位相オフセット補償部1011-1~Rとの組を各ポート毎に有している。これに対して、第3の実施形態による受信装置は、各ポート毎の受信信号を合成した信号に対して、位相オフセット推定部3010と位相オフセット補償部3011との1組を有する。
 位相オフセット推定部3010は、信号合成部1012によって合成された出力信号の位相オフセットを、前述した一般式
Figure JPOXMLDOC01-appb-I000009
を用いて推定する。
 上記に説明した第3の実施形態による受信装置も、第1または第2の実施形態による受信装置と同様の効果が得られる。
<第4の実施形態>
 次に、図5を用いて、第4の実施形態による受信装置の構成を説明する。なお、同図において図1、図3または図4の各部に対応する部分には同一の符号を付け、その説明を省略する。本実施形態における処理部4000-1~Rは、図1の処理部1000-1~R、図3の処理部2000-1~R、または、図4の処理部3000-1~Rと対応する。
 図5において、位相オフセット推定部4010の構成は、図4を用いて説明した位相オフセット推定部3010の構成と同様である。位相オフセット補償部4011-1~Rの構成は、図1を用いて説明した位相オフセット補償部1011-1~Rまたは図3を用いて説明した位相オフセット補償部2011-1~Rの構成と同様である。位相オフセット推定部4010および位相オフセット補償部4011-1~Rは、タイミング検出部1002-1~Rから復調部1013に至る受信信号変換経路に配置される。
 次に、図3に示す第2の実施形態における受信装置の構成と、図5に示す第4の実施形態における受信装置の構成との相違点について説明する。
 第2の実施形態においては、位相オフセット推定部2010-1~Rは、並/直列変換部1009-1~Rが並/直列変換した受信信号に基いて、位相オフセットを推定していた。位相オフセット補償部2011-1~Rは、ポートが対応している位相オフセット推定部2010-1~Rが推定した位相オフセットに基いて、周波数オフセット補償部1003-1~Rが補償した受信信号を補償し、この補償した受信信号を直/並列変換部1004-1~Rに出力していた。
 これに対して、第4の実施形態における受信装置においては、第3の実施形態と同様に、位相オフセット推定部4010は、信号合成部1012の後段に配置される。位相オフセット推定部4010は、信号合成部1012が合成した受信信号に基いて、位相オフセットを推定する。位相オフセット補償部4011-1~Rは、それぞれ周波数オフセット補償部1003-1~Rの後段に配置される。位相オフセット補償部4011-1~Rは、位相オフセット推定部4010が推定した位相オフセットに基いて、周波数オフセット補償部1003-1~Rが補償した受信信号を補償し、この補償した受信信号を直/並列変換部1004-1~Rに出力する。
 この第4の実施形態による受信装置においては、位相オフセット推定部4010が、各ポート毎の受信信号を合成した信号に基いて位相オフセットを推定する。すなわち、位相オフセット推定部4010は、信号合成部1012によって合成された出力信号の位相オフセットを、前述した一般式
Figure JPOXMLDOC01-appb-I000010
を用いて推定する。この推定した位相オフセットに基いて、位相オフセット補償部4011-1~Rが、各ポート毎に、周波数オフセット補償部1003-1~Rが補償した受信信号を補償する。
 上記に説明した第4の実施形態による受信装置も、第1から第3の実施形態による受信装置と同様の効果が得られる。
 次に、図6を用いて、上述した第1の実施形態から第4の実施形態による受信装置における周波数オフセット補償部1003-1~Rの構成について説明する。
 図6において、周波数オフセット補償部1003-r(r=1~R)は、第一オフセット推定器(第一周波数オフセット推定部)10031-r、第一オフセット補償部(第一周波数オフセット補償部)10032-r、第二オフセット推定器(第二周波数オフセット推定部)10033-r、および第二オフセット補償部(第二周波数オフセット補償部)10034-rから構成される。
 ここで、図7を参照して、本実施形態における送信信号のフレーム構成の一例を説明する。図7に示すように、送信信号は、プリアンブル信号を時間多重させ、続いて2回繰り返した2M個のユニークワードUW(ユニークワードUW1個あたりM個)と、N個のデータ信号とが交互に配置される(上述の参考文献1と2とを参照)。すなわち、本実施形態による受信装置が受信する受信信号には、プリアンブル信号と、複数のユニークワードUWと、データ信号とが信号ブロック毎に含まれている。
 図6の周波数オフセット補償部1003-r(r=1~R)において、第一周波数オフセット推定部10031-rは、タイミング検出部がタイミング検出した受信信号に含まれているプリアンブル信号を用いて、第1の周波数オフセットの推定値を算出する。
 第一オフセット補償部10032-rは、第一周波数オフセット推定部10031-rによって算出された第1の周波数オフセットの推定値を用いて、タイミング検出部がタイミング検出した受信信号の周波数オフセットを補償する。
 第二オフセット推定部10033-rは、第一オフセット補償部10032-rによって周波数オフセットを補償された受信信号に含まれている複数のユニークワードを用いて、第2の周波数オフセットの推定値を算出する。
 第二オフセット補償部10034-rは、第二オフセット推定部10033-rによって算出された第2の周波数オフセットの推定値を用いて、第一オフセット補償部10032-rによって周波数オフセットを補償された受信信号の周波数オフセットを補償する。
 次に、周波数オフセット補償部1003-rの動作について説明する。受信側では、次のようにして、時間多重されたプリアンブル信号を用いて周波数オフセット補償を行う。
 第rポートにおいて、まず、第一オフセット推定器10031-rが、周波数オフセット推定値を算出する。この周波数オフセットの推定方法は、従来法と同様にプリアンブル信号とパイロット送信信号の相互相関を取ることで行うことができる。
 算出された周波数オフセット推定値は、第一オフセット補償部10032-rに入力値として入力され、オフセット補償が行われる。
 第一オフセット補償部10032-rから出力されるオフセット補償されたデータ受信信号は、その後、第二オフセット補償部10034-rおよび10033-rの第二オフセット推定器10034-rに入力される。
 第二オフセット推定器10033-rでは、第一オフセット補償部10032-rからの周波数オフセット補償されたデータ受信信号を入力信号として、データ受信信号のユニークワードUWの部分を用いて、周波数オフセットの推定値を算出する。一例として、ユニークワードUWの受信信号と送信信号の時間相関を取って推定する算出方法を、次の(式3)に示す。
Figure JPOXMLDOC01-appb-M000011
 ここでy(r、m、q)はq番目のブロックにおける第一オフセット補償部10032-rからの出力信号、x(m)はユニークワードUW系列を示す。また、*は複素共役を示す。argは角度を求める関数である。
 (式3)のように推定したq番目のブロックにおいて推定した位相オフセットθ(r,q)と、一つ前のブロック、つまり(q-1)番目のブロックにおいて推定した位相オフセットθ(r,q-1)とを用いて一次線形補間を行い、第一オフセット補償部10032-rから出力されたK個のデータ受信信号の周波数オフセットを補償する。
 上記処理により、受信側では、一つ目のユニークワードUWが二つ目のユニークワードUWのガードインターバルGIの役割を果たす。したがって、遅延分散や波長分散などがある伝搬路においてもユニークワードUWを用いて各ブロックで周波数オフセットを補償できる。そのため、FFTブロック間での周波数オフセットによる直交性の崩れを回復することができ、高精度な信号判定が可能となる。
 また、周波数オフセット補償のためのパイロットを周期的に挿入する必要がなくなるため、伝送効率が低下しない。
 なお、上記説明では、二つのブロックの周波数オフセット推定値を用いて一次線形補間により補間したが、前後Qブロックを用いてC次補間(ただし、C≦Q)を行ってもよい。
 上記説明では、繰り返すユニークワードUWの個数を同じにしたが、図8に示すように異なる個数(M’≦M)にしてもよい。
 上記説明では、送信データ系列は、M個から成るユニークワードUWを2個挿入し、全体でK(=N+2M)個のブロックを生成する場合において説明したが、ユニークワードUWをB個挿入し(このBは、任意の整数)、全体でK=N+BM個のブロックを生成することもできる。
 たとえば、B個のユニークワードUWを挿入した場合の周波数オフセット値は、次の(式4)により推定する。
Figure JPOXMLDOC01-appb-M000012
 この(式4)により得られた(B-1)個の周波数オフセット推定値
Figure JPOXMLDOC01-appb-I000013
を用いて、D次補間(ただし、D≦B-1)を行うことでデータ信号の周波数オフセットを補償することができる。なお、ここで、変数bは1~B-1の値をとる整数である。また、*は複素共役を示す。argは角度を求める関数である。
 また、次の(式5)により(B-1)個のユニークワードUWから得られた相関値を平均して周波数オフセットの推定値を得ることもできる。
Figure JPOXMLDOC01-appb-M000014
 この(式5)により周波数オフセットを推定すれば、2個挿入した場合の推定値θ(r、q)に対比して、雑音および干渉成分を低減できるので、高精度に周波数オフセット推定値を得ることができる。なお、*は複素共役を示し、argは角度を求める関数である。
 また、上記方法において、オーバーサンプリングを行い、Ns倍でアナログ・デジタル変換された信号にも同様に用いることができる。この場合、位相オフセットは、次の(式6)で算出することができる。
Figure JPOXMLDOC01-appb-M000015
 ここで、y’(r、m、q)はNs倍のオーバーサンプリングで得られたq番目のブロックにおける第一オフセット補償部10032-rからの出力信号、x‘(m)はNs倍のオーバーサンプリングで表現されるユニークワードUW系列を示す。また、*は複素共役を示す。argは角度を求める関数である。
 上記説明では、周波数領域等化を基本とした受信機構成となっているが、タップドディレイフィルタを用いた時間領域等化を用いる際にも適用することができる。
 上記説明において、ユニークワードUW系列は、例えばPN系列や、Chu系列を用いることができる(上述の参考文献4参照)。
 なお、上記説明では、各ポートでそれぞれ周波数オフセットを推定し、補償しているが、全ポートで周波数オフセットが同じ場合は、全ポートの周波数オフセット推定値を平均化して推定精度を向上させることもできる。
 上記に図6から図8を用いて説明した周波数オフセット補償部1003-r(r=1~R)は、周波数の不安定や受信ポート間の周波数の不一致が生じる場合においても、時間多重したプリアンブル信号で補償しきれない周波数オフセットを、ガードインターバルGIとしても動作するユニークワードUWを用いて等化前に、各ポートでブロックごとに再度補償する。これによって、周波数オフセットを補償することができ、伝送特性を改善することが可能となる。
 上記の図6から図8を用いた周波数オフセット補償部1003-r(r=1~R)の説明においては、各信号ブロックは、ユニークワードUWとして、複数のユニークワードを有しているものとして説明した。このように、各信号ブロックが複数のユニークワードを有している場合には、第1の実施形態から第4の実施形態における位相オフセット推定部1010-1~R、位相オフセット推定部2010-1~R、位相オフセット推定部3010、および、位相オフセット推定部4010は、それぞれ、複数のユニークワードのうちの予め定められた任意の1つのユニークワードUWに基いて、位相オフセットを推定する。
 なお、任意の1つのユニークワードUWに限られるものではなく、予め定められている複数のユニークワードUW、または、全てのユニークワードUWに基いて、位相オフセットを推定してもよい。
<第5の実施形態>
 次に、第1の実施形態から第4の実施形態のいずれかの実施形態による無線伝送に対する受信装置を、光伝送に対して適用した場合の構成を、第5の実施形態として説明する。
 後述するように、光伝送の場合は、ポートの個数Rは、電磁場において予め定められた角度を持った偏波の数となる。
 無線伝送と光伝送とで異なる点は受信部1001の構成である。また、局部発振器1014が、局部発振光源2014に変更される。
 第1から第4の実施形態のいずれかによる無線伝送を行う受信装置を、光伝送に適用させる場合、受信装置に入力される入力信号は、偏波ダイバシティ90度ハイブリッドカプラを用いた場合には、X偏波とY偏波との2信号である。したがって、受信装置のポートの個数Rの値は2となる。すなわち、光伝送用受信装置は、受信部1001-1~2に対応する構成(後述する受信部2001)を有している。
 この受信装置は、処理部1000-1~2、処理部2000-1~2、処理部3000-1~2、または、処理部4000-1~2に対応する構成を有している。
 図9を用いて、図1、図3、図4または図5の受信部1001-1~2に対応する一例としての受信部2001の構成について説明する。
 受信部2001において、送信装置20から光伝送路を介して伝送されてきた光信号は、偏波ダイバシティ90度ハイブリッドカプラ20011によって、局部発振光源2014から発振された局部発振光源と混合される。次に、その光信号は、BPD(バランス型フォトダイオード)20012-1~4を介してX偏波のI相とQ相、および、Y偏波のI相とQ相の、4つのベースバンドアナログ信号に変換される。
 それぞれのベースバンドアナログ信号は、対応するA/D変換器20013-1~4によってディジタル信号に変換される。その後、A/D変換器20013-1~2から出力されるX偏波のI相とQ相とに対応するディジタル信号は、X偏波に対しての、複素数の実部と虚部として処理される。
 具体的には、A/D変換器20013-1~2から出力されるX偏波のI相とQ相とに対応するディジタル信号は、複素信号化部20014-1を介して、図1、図3、図4または図5を用いて説明した第1から第4の実施形態のうちいずれかの受信装置のタイミング検出部1002-1へ入力される。
 X偏波と同様に、A/D変換器20013-3~4から出力されるY偏波のI相とQ相とに対応するディジタル信号は、Y偏波に対しての、複素数の実部と虚部として処理される。
 具体的には、A/D変換器20013-3~4から出力されるY偏波のI相とQ相とに対応するディジタル信号は、複素信号化部20014-2を介して、図1、図3、図4または図5を用いて説明した第1から第4の実施形態のうちいずれかの受信装置のタイミング検出部1002-2へ入力される。
 タイミング検出部1002-1~2以降の信号処理は、光伝送および無線伝送のどちらの場合であっても同様の処理であるため、その説明を省略する。すなわち、第5の実施形態による受信装置の動作は、第1から第4の実施形態のうちいずれかの受信装置の動作と、同様である。
 なお、上記に説明したBPD(バランス型フォトダイオード)20012-1~4として、BPDの代わりに、シングルエンドのPD(フォトダイオード)を用いてもよい。
 上記の説明においては、偏波ダイバシティ90度ハイブリッドカプラ20011を用い、互いに直交するX偏波とY偏波との2信号となる場合について説明したが、第5の実施形態による受信装置は、これに限られるものではない。たとえば、偏波ダイバシティ90度ハイブリッドカプラ20011に代わって、90度とは異なる予め定められた任意の角度を有する偏波ダイバシティハイブリッドカプラを用いてもよい。この場合、偏波は、電磁場において予め定められた任意の角度を持った偏波となる。
 さらに、3ポート以上にすることにより、偏波の直交性が失われた場合においても、偏波ダイバシティ効果を得ることができる。
 第5の実施形態による受信装置は、複数のポートに入力された信号、すなわち、分離された複数の偏波(たとえば、X偏波とY偏波)を複数の受信信号として受信し、第1から第4の実施形態と同様に、周波数領域で等化された信号に含まれる既知信号成分(ユニークワード)を用いて位相オフセットの補償を行う。したがって、複雑な位相オフセットの変動を補償し、各受信ポートで得られる信号に対して、それぞれ位相オフセットの推定を行うことができる。よって、時間的な位相オフセットの不安定性または変動がある場合や、受信ポート間での位相オフセットの不一致が生じる場合においても、位相オフセットを補償して、送信データ系列を受信することが可能である。
 次に、図10の実験結果を用いて、本実施形態による光伝送用受信装置による効果について説明する。図10において、横軸はOSNR(Optical signal-to-noise ratio)であり、縦軸はBER(Bit error rate)である。
 この図10の実験は、搬送波として波長1552.12nmであるECLレーザ(外部キャビティレーザ)を用い、GI(ガードインターバル)長は1.28nsであり、伝送速度は21.7Gb/secであり、back-to-backである場合の、光伝送の場合の実験結果である。
 図10において、符号Aで示される実験結果は、第5の実施形態による受信装置において、処理部2000-1~2が出力する偏波が、図1を用いて説明した第1の実施形態による受信装置のタイミング検出部1002-1へ入力された場合の実験結果である。以降、この符号Aで示される実験結果が得られた受信装置を、「第1の実施形態を用いた第5の実施形態による受信装置」と称する。
 また、図10において、符号Bで示される実験結果は、第5の実施形態による受信装置において、処理部2000-1~2が出力する偏波が、図4を用いて説明した第3の実施形態による受信装置のタイミング検出部1002-1へ入力された場合の実験結果である。以降、この符号Bで示される実験結果が得られた受信装置を、「第3の実施形態を用いた第5の実施形態による受信装置」と称する。
 なお、従来技術のように、プリアンブル信号を用いて周波数オフセットを補償する方法を用いた光伝送の受信装置の場合には、キャリア周波数の安定度が無線に比べて低く、十分な位相オフセットを補償することができない。したがって、その受信信号の誤り率は、誤り訂正符号を用いても復調できない程度となってしまう。すなわち、その誤り率BERは、図10に表示できない値となる。
 この図10の実験結果から、符号Aの実験結果で示される「第1の実施形態を用いた第5の実施形態による受信装置」、および、符号Bの実験結果で示される「第3の実施形態を用いた第5の実施形態による受信装置」は、上述した従来技術による受信装置に対比して、光伝送の場合においても、誤り訂正符号を用いれば十分に復調できる程度のBER特性が得られることがわかる。
 また、この図10の実験結果より、符号Aの実験結果で示される「第1の実施形態を用いた第5の実施形態による受信装置」は、符号Bの実験結果で示される「第3の実施形態を用いた第5の実施形態による受信装置」に対比しても、更に、BER特性が改善されていることがわかる。
 この実験結果から分かるように、従来技術のように、プリアンブル信号を用いて周波数オフセットを補償する方法を用いた受信装置に対比して、第1から第4の実施形態を用いた第5の実施形態による受信装置はいずれも、光伝送の場合においても、十分に、BER特性が改善されている。
 また、この実験結果から分かるように、符号Bの実験結果で示される「第3の実施形態を用いた第5の実施形態による受信装置」のように各ポート(X、Yそれぞれの偏波)からの信号を合成してから位相オフセット補償を行うよりも、符号Aの実験結果で示される「第1の実施形態を用いた第5の実施形態による受信装置」のように各ポートで位相オフセット補償を行ってから合成するほうが、特性が優れている。すなわち、符号Aで示される特性の受信装置の方が、符号Bで示される特性の受信装置よりも、1~2dB程度の特性改善が得られる。
 以上説明したように、本実施形態によれば、周波数領域等化前に補償しきれない残留位相オフセットを、等化後のダイバシティ合成を行う前に、各ポートで再度補償することで、位相オフセットを補償することができ、伝送特性を改善することが可能となる。
 なお、上記においては、第1から第5の実施形態における受信装置は、複数の受信ポートとこの複数の受信ポートにそれぞれ対応する複数の処理部を有するものとして説明してきたが、これに限るものではない。たとえば、受信装置は、単数の受信ポートとこの単数の受信ポートに対応する単数の処理部を有していてもよい。
 上記説明では、各ポートがタイミング検出部を具備し、各ポートでタイミング検出を行っていたが、複数もしくは全てのタイミング検出部を共通にすることもできるし、あるポートのみがタイミング検出部を具備し、その検出結果を他のポートで用いるようにすることもできる。
 上記説明では、各ポートが重み演算部を具備し、各ポートで等化重みを算出していたが、複数もしくは全ての重み演算部を共通にすることもできる。特に、重み演算部を共通化することによって、各ポートの重みを考慮した重みを演算することができるため、特性が改善する。
 上記説明の信号合成部1012において、ポート毎の入力信号に対してそれぞれ異なる重みを乗算することで、伝送特性を改善することもできる。例えば、重み演算部で算出した等化重みをもとに、信号対雑音電力比(SNR)を算出し、それに比例した重みを乗算する検波後最大比合成を行っても良い。
 上記説明では、等化器としてFFTおよびIFFTを用いた周波数領域等化を適用した例を示したが、必ずしも周波数領域等化である必要はなく、例えば、タップドディレイラインフィルタを用いた時間領域等化で分散による歪みを等化することも可能である。
 上記説明では、単一信号系列伝送(またはSingle-input伝送)もしくは単一偏波伝送を仮定していたが、上述した本実施形態による受信装置を、MIMO(Multiple-input Multiple-output)伝送(もしくは偏波多重伝送)に適応することも可能である。この場合、多重された系列数分の受信装置を具備すればよい。
 例えば、第1の実施形態による受信装置を用いてMIMO伝送で多重された信号をそれぞれ復調するためには、図11と図12とに示すように、各ポートに入力された受信信号を、複数の信号分配部5001-1~k(kは任意の自然数)で信号を分配し、複数の受信装置5001-1~kにおいて、それぞれ第1の実施形態と同様に信号処理を行うことで、系列ごと送信信号を復調できる。
 その際、重み演算部での等化重みの算出方法は、一般的なMIMO伝送における算出方法を用いることができる。例えば、重み演算部での等化重みの算出方法として、下記の参考文献5のように、既知信号を用いて重み演算部での等化重みを推定する方法がある。
[参考文献5]
I. Barhumi, et al., “Optimal Training Sequences for Channel Estimation in MIMO OFDM Systems in Mobile Wireless Channels,” Broadband Communications, 2002. Access, Transmission, Networking. pp. 44-1-44-6, 2002.
 この場合においても、局部発振器、タイミング検出器、重み演算部の一部もしくは全てを共通にすることもできる。また、特に、重み演算部を共通化することによって、各ポートの重みを考慮した重みを演算することができるため、特性が改善する。
 上記においては第1の実施形態による受信装置を用いてMIMO伝送で多重された信号をそれぞれ復調する場合について説明したが、第2の実施形態から第4の実施形態による受信装置を用いてMIMO伝送で多重された信号をそれぞれ復調する場合も同様である。
 また、上記第1および第2の実施形態では、信号合成部1012で信号を合成した後に復調部1013で信号を復調する構成であったが、各ポートで復調部1013を具備し、各ポートで復調した後に信号合成部で信号を合成しても良い。
 なお、上記構成では局部発振器を用いた同期検波の構成となっているが、局部発振器を用いない直接検波方式の場合でも、本実施形態による受信装置を用いることができる。
 上記構成では、第1の実施形態から第4の実施形態を、それぞれ、独立で用いていたが、複数の形態を組み合わせることも可能である。例えば、第1と第2の実施形態を組み合わせた場合、周波数オフセット補償部2011-1~Rおよび位相オフセット推定部2010-1~Rの後段に、位相オフセット補償部1011-1~Rが追加され、2箇所で位相オフセットが補償されることになる。
 上記説明では、第1の実施形態から第4の実施形態のそれぞれの構成において、周波数オフセット補償部1003-1~Rは、図6から図8を用いて説明したような構成を有するものとして説明したが、これに限られるものではない。
 たとえば、この周波数オフセット補償部1003-1~Rの構成を、図13を用いて説明した従来技術によるシングルキャリア受信機における周波数オフセット補償部の構成として用いてもよい。すなわち、周波数オフセット補償部1003-1~Rの構成を、第1の実施形態から第4の実施形態から独立して用いることも可能である。
 第1の実施形態から第4の実施形態を組み合わせた構成において、周波数オフセット補償部1003-1~Rの構成を、図6から図8を用いて説明したような構成としてもよい。
 上記に説明した周波数オフセット補償受信信号記憶部は、ハードディスク装置や光磁気ディスク装置、フラッシュメモリ等の不揮発性のメモリや、CD-ROM等の読み出しのみが可能な記憶媒体、RAM(Random Access Memory)のような揮発性のメモリ、あるいはこれらの組み合わせにより構成されるものとする。
 図1、図3、図4または図5における処理部1000、2000、3000または4000、または、処理部1000、2000、3000または4000に含まれている各部の構成は、専用のハードウェアにより実現されるものであってもよく、また、メモリおよびマイクロプロセッサにより実現させるものであってもよい。
 また、図1、図3、図4または図5における処理部1000、2000、3000または4000、または、処理部1000、2000、3000または4000に含まれている各部の構成は、メモリおよびCPU(中央演算装置)により構成され、図1、図3、図4または図5における処理部1000、2000、3000または4000、または、処理部1000、2000、3000または4000に含まれている各部の構成の機能を実現するためのプログラムをメモリにロードして実行することによりその機能を実現させるものであってもよい。
 以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 本発明は、無線通信および光通信における受信装置および通信システムに適用でき、受信信号に時間的な位相オフセットの不安定性または変動がある場合や、受信ポート間での位相オフセットの不一致が生じる場合においても、位相オフセットを補償することができる。
101、1001、2001…受信部、
102、1002…タイミング検出部、
103、1003…周波数オフセット補償部、
104、1004…直/並列変換部、
105、1005…FFT演算部、
106、1006…等化部、
107、1007…重み演算部、
108、1012…合成部、
109、1008…IFFT演算部、
110、1009…並/直列変換部、
111、1013…復調部、
112、1014…局部発振器、
1000、2000、3000、4000…処理部、
1010、2010、3010、4010…位相オフセット推定部、
1011、2011、3011、4011…位相オフセット補償部、
2014…局部発振光源、
10031…第一周波数オフセット推定部、
10032…第一オフセット補償部、
10033…第二オフセット推定部、
10034…第二オフセット補償部、
20011…偏波ダイバシティ90度ハイブリッドカプラ、
20012…BPD(バランス型フォトダイオード)、
20013…A/D変換器、
20014…複素信号化部

Claims (24)

  1.  単数または複数のポートに入力された信号を単数または複数の受信信号として受信する受信装置であって、
     前記単数または複数の受信信号のうち、予め割当てられた受信信号の信号波形を整形するために、それぞれが前記予め予め割当てられた受信信号に対して信号位置を検出してタイミング検出を行うタイミング検出部と、前記タイミング検出部によってタイミング検出された受信信号に対して周波数オフセットを補償する周波数オフセット補償部と、前記周波数オフセット補償部によって補償された受信信号を直/並列変換する直/並列変換部と、前記直/並列変換部によって直/並列変換された受信信号をフーリエ変換するフーリエ変換部と、前記フーリエ変換部によってフーリエ変換された受信信号を周波数成分毎に等化する等化部と、前記等化部によって等化された受信信号を逆フーリエ変換する逆フーリエ変換部と、前記逆フーリエ変換部によって逆フーリエ変換された受信信号を並/直列変換する並/直列変換部と、を有する単数または複数の処理部と、
     前記単数または複数の処理部によって整形された信号波形を合成する信号合成部と、
     前記信号合成部によって合成された信号波形を復調する復調部と、
     前記タイミング検出部から前記復調部に至る受信信号変換経路上に配置され、前記受信信号に含まれる信号ブロック毎のユニークワードに基づいて、供給された受信信号の位相オフセットを推定する位相オフセット推定部と、
     前記受信信号変換経路上に配置され、前記位相オフセット推定部によって推定された位相オフセットに基いて前記受信信号変換経路上の信号の位相オフセットを補償する位相オフセット補償部と、
     を有する受信装置。
  2.  単数または複数の前記位相オフセット推定部が前記並/直列変換部の下流にそれぞれ配置され、前記並/直列変換部によって並/直列変換された受信信号に基づいて前記位相オフセットを推定し、
     単数または複数の前記位相オフセット補償部が前記位相オフセット推定部の下流にそれぞれ配置され、前記位相オフセット推定部によって推定された信号ブロック毎の位相オフセットに基いて、前記並/直列変換部によって並/直列変換された受信信号の位相を補償し、
     前記信号合成部が前記単数または複数の前記位相オフセット補償部によって位相補償された受信信号を合成する
     請求項1に記載の受信装置。
  3.  単数または複数の前記位相オフセット推定部が前記並/直列変換部の下流にそれぞれ配置され、前記並/直列変換部によって並/直列変換された受信信号に基づいて前記位相オフセットを推定し、
     単数または複数の前記位相オフセット補償部が前記周波数オフセット補償部の下流にそれぞれ配置され、前記位相オフセット推定部によって推定された信号ブロック毎の位相オフセットに基いて、前記周波数オフセット補償部によって補償された受信信号の位相を補償し、
     前記信号合成部が前記単数または複数の前記位相オフセット補償部によって位相補償された受信信号を合成する
     請求項1に記載の受信装置。
  4.  前記位相オフセット推定部が前記信号合成部の下流に配置され、前記信号合成部によって合成された受信信号に基づいて前記位相オフセットを推定し、
     前記位相オフセット補償部が前記位相オフセット推定部の下流に配置され、前記位相オフセット推定部によって推定された信号ブロック毎の位相オフセットに基いて、前記信号合成部によって合成された受信信号の位相を補償し、
     前記信号合成部が前記単数または複数の前記並/直列変換部によって並/直列変換された受信信号を合成する
     請求項1に記載の受信装置。
  5.  前記位相オフセット推定部が前記信号合成部の下流に配置され、前記信号合成部によって合成された受信信号に基づいて前記位相オフセットを推定し、
     単数または複数の前記位相オフセット補償部が前記周波数オフセット補償部の下流にそれぞれ配置され、前記位相オフセット推定部によって推定された信号ブロック毎の位相オフセットに基いて、前記周波数オフセット補償部によって補償された受信信号の位相を補償し、
     前記信号合成部が前記単数または複数の前記並/直列変換部によって並/直列変換された受信信号を合成する
    請求項1に記載の受信装置。
  6.  前記受信信号には、
     プリアンブル信号と、
     複数の前記ユニークワードと、
     が信号ブロック毎に含まれており、
     前記周波数オフセット補償部が、
     前記タイミング検出部によってタイミング検出された受信信号に含まれているプリアンブル信号を用いて、第1の周波数オフセットの推定値を算出する第一周波数オフセット推定部と、
     前記第一周波数オフセット推定部によって算出された第1の周波数オフセットの推定値を用いて、前記タイミング検出部によってタイミング検出された受信信号の周波数オフセットを補償する第一周波数オフセット補償部と、
     前記第一周波数オフセット補償部によって周波数オフセットを補償された受信信号に含まれている複数のユニークワードを用いて、第2の周波数オフセットの推定値を算出する第二周波数オフセット推定部と、
     前記第二周波数オフセット推定部によって算出された第2の周波数オフセットの推定値を用いて、前記第一周波数オフセット補償部によって周波数オフセットを補償された受信信号の周波数オフセットを補償する第二周波数オフセット補償部と、
     を有する請求項1に記載の受信装置。
  7.  前記単数または複数の受信信号を複数に分配する信号分配部をさらに有し、
     前記単数または複数の処理部に、前記信号分配部によって分配された受信信号のうち、予め割当てられた受信信号を供給する
     請求項1に記載の受信装置。
  8.  前記位相オフセット推定部は、下記の一般式によって前記供給された受信信号の前記位相オフセットθ(q)を推定する請求項1に記載の受信装置。
    Figure JPOXMLDOC01-appb-I000001
     但し、y(m,q)は、q番目の信号ブロックにおける前記供給された受信信号、x(m)はユニークワード系列、パラメータmはM個のブロックをユニークワードブロックにおいてそれぞれのブロックを順に識別するための識別変数、*は複素共役を示す。argは角度を求める関数である。
  9.  信号ブロック毎にユニークワードが付加された送信信号を送信する送信装置と、
     単数または複数のポートに入力された前記送信信号を単数または複数の受信信号として受信する受信装置とを有する通信システムであって、
     前記受信装置は、   
     前記単数または複数の受信信号のうち、予め割当てられた受信信号の信号波形を整形するために、それぞれが前記予め予め割当てられた受信信号に対して信号位置を検出してタイミング検出を行うタイミング検出部と、前記タイミング検出部によってタイミング検出された受信信号に対して周波数オフセットを補償する周波数オフセット補償部と、前記周波数オフセット補償部によって補償された受信信号を直/並列変換する直/並列変換部と、前記直/並列変換部によって直/並列変換された受信信号をフーリエ変換するフーリエ変換部と、前記フーリエ変換部によってフーリエ変換された受信信号を周波数成分毎に等化する等化部と、前記等化部によって等化された受信信号を逆フーリエ変換する逆フーリエ変換部と、前記逆フーリエ変換部によって逆フーリエ変換された受信信号を並/直列変換する並/直列変換部と、を有する単数または複数の処理部と、
     前記単数または複数の処理部によって整形された信号波形を合成する信号合成部と、
     前記信号合成部によって合成された信号波形を復調する復調部と、
     前記タイミング検出部から前記復調部に至る受信信号変換経路上に配置され、前記受信信号に含まれる信号ブロック毎のユニークワードに基づいて、供給された受信信号の位相オフセットを推定する位相オフセット推定部と、
     前記受信信号変換経路上に配置され、前記位相オフセット推定部によって推定された位相オフセットに基いて前記受信信号変換経路上の信号の位相オフセットを補償する位相オフセット補償部と、
     を有する通信システム。
  10.  単数または複数の前記位相オフセット推定部が前記並/直列変換部の下流にそれぞれ配置され、前記並/直列変換部によって並/直列変換された受信信号に基づいて前記位相オフセットを推定し、
     単数または複数の前記位相オフセット補償部が前記位相オフセット推定部の下流にそれぞれ配置され、前記位相オフセット推定部によって推定された信号ブロック毎の位相オフセットに基いて、前記並/直列変換部によって並/直列変換された受信信号の位相を補償し、
     前記信号合成部が前記単数または複数の前記位相オフセット補償部によって位相補償された受信信号を合成する
     請求項9に記載の通信システム。
  11.  単数または複数の前記位相オフセット推定部が前記並/直列変換部の下流にそれぞれ配置され、前記並/直列変換部によって並/直列変換された受信信号に基づいて前記位相オフセットを推定し、
     単数または複数の前記位相オフセット補償部が前記周波数オフセット補償部の下流にそれぞれ配置され、前記位相オフセット推定部によって推定された信号ブロック毎の位相オフセットに基いて、前記周波数オフセット補償部によって補償された受信信号の位相を補償し、
     前記信号合成部が前記単数または複数の前記位相オフセット補償部によって位相補償された受信信号を合成する
     請求項9に記載の通信システム。
  12.  前記位相オフセット推定部が前記信号合成部の下流に配置され、前記信号合成部によって合成された受信信号に基づいて前記位相オフセットを推定し、
     前記位相オフセット補償部が前記位相オフセット推定部の下流に配置され、前記位相オフセット推定部によって推定された信号ブロック毎の位相オフセットに基いて、前記信号合成部によって合成された受信信号の位相を補償し、
     前記信号合成部が前記単数または複数の前記並/直列変換部によって並/直列変換された受信信号を合成する
     請求項9に記載の通信システム。
  13.  前記位相オフセット推定部が前記信号合成部の下流に配置され、前記信号合成部によって合成された受信信号に基づいて前記位相オフセットを推定し、
     単数または複数の前記位相オフセット補償部が前記周波数オフセット補償部の下流にそれぞれ配置され、前記位相オフセット推定部によって推定された信号ブロック毎の位相オフセットに基いて、前記周波数オフセット補償部によって補償された受信信号の位相を補償し、
     前記信号合成部が前記単数または複数の前記並/直列変換部によって並/直列変換された受信信号を合成する
    請求項9に記載の通信システム。
  14.  前記受信信号には、
     プリアンブル信号と、
     複数の前記ユニークワードと、
     が信号ブロック毎に含まれており、
     前記周波数オフセット補償部が、
     前記タイミング検出部によってタイミング検出された受信信号に含まれているプリアンブル信号を用いて、第1の周波数オフセットの推定値を算出する第一周波数オフセット推定部と、
     前記第一周波数オフセット推定部によって算出された第1の周波数オフセットの推定値を用いて、前記タイミング検出部によってタイミング検出された受信信号の周波数オフセットを補償する第一周波数オフセット補償部と、
     前記第一周波数オフセット補償部によって周波数オフセットを補償された受信信号に含まれている複数のユニークワードを用いて、第2の周波数オフセットの推定値を算出する第二周波数オフセット推定部と、
     前記第二周波数オフセット推定部によって算出された第2の周波数オフセットの推定値を用いて、前記第一周波数オフセット補償部によって周波数オフセットを補償された受信信号の周波数オフセットを補償する第二周波数オフセット補償部と、
     を有する請求項9に記載の通信システム。
  15.  前記単数または複数の受信信号を複数に分配する信号分配部をさらに有し、
     前記単数または複数の処理部に、前記信号分配部によって分配された受信信号のうち、予め割当てられた受信信号を供給する
     請求項9に記載の通信システム。
  16.  前記位相オフセット推定部は、下記の一般式によって前記供給された受信信号の前記位相オフセットθ(q)を推定する請求項9に記載の通信システム。
    Figure JPOXMLDOC01-appb-I000002
     但し、y(m,q)は、q番目の信号ブロックにおける前記供給された受信信号、x(m)はユニークワード系列、パラメータmはM個のブロックをユニークワードブロックにおいてそれぞれのブロックを順に識別するための識別変数、*は複素共役を示す。argは角度を求める関数である。
  17.  単数または複数のポートに入力された信号を単数または複数の受信信号として受信する受信装置に用いられる受信方法であって、
     前記単数または複数の受信信号のうち、予め割当てられた受信信号に対して信号位置を検出してタイミング検出を行うタイミング検出工程と、前記タイミング検出工程によってタイミング検出された受信信号に対して周波数オフセットを補償する周波数オフセット補償工程と、前記周波数オフセット補償工程によって補償された受信信号を直/並列変換する直/並列変換工程と、前記直/並列変換工程によって直/並列変換された受信信号をフーリエ変換するフーリエ変換工程と、前記フーリエ変換工程によってフーリエ変換された受信信号を周波数成分毎に等化する等化工程と、前記等化工程によって等化された受信信号を逆フーリエ変換する逆フーリエ変換工程と、前記逆フーリエ変換工程によって逆フーリエ変換された受信信号を並/直列変換する並/直列変換工程と、を有する単数または複数の受信信号に対する処理工程と、
     前記単数または複数の受信信号に対する処理工程によって整形された単数または複数の信号波形を合成する信号合成工程と、
     前記信号合成工程によって合成された信号波形を復調する復調工程と、
     前記タイミング検出工程から前記復調工程に至る受信信号変換工程中に行われ、前記受信信号に含まれる信号ブロック毎のユニークワードに基づいて、供給された受信信号の位相オフセットを推定する位相オフセット推定工程と、
     前記受信信号変換工程中に行われ、前記位相オフセット推定工程が推定した位相オフセットに基いて前記受信信号変換経路上の信号の位相オフセットを補償する位相オフセット補償工程と、
     を有する受信方法。
  18.  前記位相オフセット推定工程が前記並/直列変換工程の次に行われ、前記並/直列変換工程によって並/直列変換された受信信号に基づいて前記位相オフセットを推定し、
     前記位相オフセット補償工程が前記位相オフセット推定工程の次に行われ、前記位相オフセット推定工程によって推定された信号ブロック毎の位相オフセットに基いて、前記並/直列変換工程によって並/直列変換された受信信号の位相を補償し、
     前記信号合成工程が前記位相オフセット補償工程によって位相補償された受信信号を合成する
     請求項17に記載の受信方法。
  19.  前記位相オフセット推定工程が前記並/直列変換工程の次に行われ、前記並/直列変換工程によって並/直列変換された受信信号に基づいて前記位相オフセットを推定し、
     前記位相オフセット補償工程が前記周波数オフセット補償工程の次に行われ、前記位相オフセット推定工程によって推定された信号ブロック毎の位相オフセットに基いて、前記周波数オフセット補償工程によって補償された受信信号の位相を補償し、
     前記信号合成工程が前記位相オフセット補償工程によって位相補償された受信信号を合成する
     請求項17に記載の受信方法。
  20.  前記位相オフセット推定工程が前記信号合成工程の次に行われ、前記信号合成工程によって合成された受信信号に基づいて前記位相オフセットを推定し、
     前記位相オフセット補償工程が前記位相オフセット推定工程の次に行われ、前記位相オフセット推定工程によって推定された信号ブロック毎の位相オフセットに基いて、前記信号合成工程によって合成された受信信号の位相を補償し、
     前記信号合成工程が前記並/直列変換工程によって並/直列変換された受信信号を合成する
     請求項17に記載の受信方法。
  21.  前記位相オフセット推定工程が前記信号合成工程の次に行われ、前記信号合成工程によって合成された受信信号に基づいて前記位相オフセットを推定し、
     前記位相オフセット補償工程が前記周波数オフセット補償工程の次に行われ、前記位相オフセット推定工程によって推定された信号ブロック毎の位相オフセットに基いて、前記周波数オフセット補償工程によって補償された受信信号の位相を補償し、
     前記信号合成工程が前記並/直列変換工程によって並/直列変換された受信信号を合成する
     請求項17に記載の受信方法。
  22.  前記受信信号には、
     プリアンブル信号と、
     複数の前記ユニークワードと、
     が信号ブロック毎に含まれており、
     前記周波数オフセット補償工程が、
     前記タイミング検出工程によってタイミング検出された受信信号に含まれているプリアンブル信号を用いて、第1の周波数オフセットの推定値を算出する第一周波数オフセット推定工程と、
     前記第一周波数オフセット推定工程によって算出された第1の周波数オフセットの推定値を用いて、前記タイミング検出工程がタイミング検出した受信信号の周波数オフセットを補償する第一周波数オフセット補償工程と、
     前記第一周波数オフセット補償工程によって周波数オフセットを補償された受信信号に含まれている複数のユニークワードを用いて、第2の周波数オフセットの推定値を算出する第二周波数オフセット推定工程と、
     前記第二周波数オフセット推定工程によって算出された第2の周波数オフセットの推定値を用いて、前記第一周波数オフセット補償工程によって周波数オフセットを補償された受信信号の周波数オフセットを補償する第二周波数オフセット補償工程と、
     を有する請求項17に記載の受信方法。
  23.  前記単数または複数の受信信号を複数に分配する信号分配工程をさらに有し、
     前記処理工程に、前記信号分配工程によって分配された受信信号のうち、予め割当てられた受信信号を供給する
     請求項17に記載の受信方法。
  24.  前記位相オフセット推定工程は、下記の一般式によって前記供給された受信信号の前記位相オフセットθ(q)を推定する請求項17に記載の受信方法。
    Figure JPOXMLDOC01-appb-I000003
     但し、y(m,q)は、q番目の信号ブロックにおける前記供給された受信信号、x(m)はユニークワード系列、パラメータmはM個のブロックをユニークワードブロックにおいてそれぞれのブロックを順に識別するための識別変数、*は複素共役を示す。argは角度を求める関数である。
PCT/JP2009/061228 2008-06-20 2009-06-19 受信装置、通信システム、および、受信方法 WO2009154278A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010517980A JP5203457B2 (ja) 2008-06-20 2009-06-19 受信装置、通信システム、および、受信方法
CN200980120603.2A CN102047582B (zh) 2008-06-20 2009-06-19 接收装置、通信系统、以及接收方法
US12/994,365 US8488696B2 (en) 2008-06-20 2009-06-19 Receiver device, communication system and receiving method
EP09766726.5A EP2290837B1 (en) 2008-06-20 2009-06-19 Receiver device, transmitting system and reception method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-162478 2008-06-20
JP2008162478 2008-06-20
JP2008210926 2008-08-19
JP2008-210926 2008-08-19
JP2009109962 2009-04-28
JP2009-109962 2009-04-28

Publications (1)

Publication Number Publication Date
WO2009154278A1 true WO2009154278A1 (ja) 2009-12-23

Family

ID=41434190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061228 WO2009154278A1 (ja) 2008-06-20 2009-06-19 受信装置、通信システム、および、受信方法

Country Status (5)

Country Link
US (1) US8488696B2 (ja)
EP (1) EP2290837B1 (ja)
JP (1) JP5203457B2 (ja)
CN (1) CN102047582B (ja)
WO (1) WO2009154278A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199824A (ja) * 2009-02-24 2010-09-09 Nippon Telegr & Teleph Corp <Ntt> 受信装置及び方法
JP2010283509A (ja) * 2009-06-03 2010-12-16 Mitsubishi Electric Corp 光通信用送信機、光通信用受信機
CN102857284A (zh) * 2011-06-28 2013-01-02 上海华为技术有限公司 数据发射方法、接收方法、装置及系统
JP2014171045A (ja) * 2013-03-01 2014-09-18 Panasonic Corp キャリア周波数オフセット補正方法及び装置
WO2017183631A1 (ja) * 2016-04-19 2017-10-26 日本電気株式会社 Los-mimo復調装置、通信装置、los-mimo伝送システム、los-mimo復調方法及びプログラム

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134321A1 (ja) * 2009-05-18 2010-11-25 日本電信電話株式会社 信号生成回路、光信号送信装置、信号受信回路、光信号同期確立方法、および光信号同期システム
US8218979B2 (en) * 2009-06-30 2012-07-10 Alcatel Lucent System, method and apparatus for coherent optical OFDM
JP5733465B2 (ja) * 2011-03-31 2015-06-10 富士通株式会社 バタフライフィルタの係数設定方法とその装置、受信機、及び受信方法
CN102255667B (zh) * 2011-07-21 2017-02-15 中兴通讯股份有限公司 一种进行色散补偿的方法及装置
CN102611650B (zh) * 2011-11-22 2015-01-07 河南科技大学 一种广义多载波系统频域信道估计方法及装置
CN102821079A (zh) * 2012-09-04 2012-12-12 中国电子科技集团公司第五十四研究所 大频偏条件下单载波频域均衡系统载波频偏估计和补偿方法
WO2014038121A1 (ja) * 2012-09-05 2014-03-13 日本電信電話株式会社 デジタル信号処理装置
TWI513193B (zh) 2012-11-30 2015-12-11 Global Unichip Corp 相位偏移抵消電路及相關的時脈產生器
JP6458730B2 (ja) * 2013-08-21 2019-01-30 日本電気株式会社 周波数偏差補償方式、周波数偏差補償方法及びプログラム
JP6295585B2 (ja) * 2013-10-09 2018-03-20 富士通株式会社 光通信受信装置、及び、周波数オフセット補償方法
US9338032B2 (en) * 2013-12-02 2016-05-10 Intel IP Corporation Device and method for channel estimation and signal demodulation
WO2017033550A1 (ja) * 2015-08-21 2017-03-02 日本電気株式会社 信号処理装置、通信システム、及び信号処理方法
CN108270446B (zh) * 2016-12-30 2021-10-08 上海诺基亚贝尔股份有限公司 信号处理装置和方法以及包括所述装置的电子设备
CN110661578B (zh) * 2018-06-30 2022-01-11 华为技术有限公司 一种数据恢复方法及装置
US10790920B2 (en) 2018-12-21 2020-09-29 Kratos Integral Holdings, Llc System and method for processing signals using feed forward carrier and timing recovery
WO2022250647A1 (en) * 2021-05-24 2022-12-01 Kratos Integral Holdings, Llc Systems and methods for post-detect combining of a plurality of downlink signals representative of a communication signal
CN113872910B (zh) * 2021-10-11 2024-05-28 南京中科晶上通信技术有限公司 基于fpga的载波同步方法、装置及设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003283359A (ja) * 2002-03-20 2003-10-03 Sanyo Electric Co Ltd 無線装置
JP2003332952A (ja) * 2003-03-24 2003-11-21 Matsushita Electric Ind Co Ltd 線形信号予測を用いた受信装置及び方法
JP2005252653A (ja) * 2004-03-04 2005-09-15 Hokkaido Univ 周波数オフセット推定方法および装置ならびにそれを利用した受信装置
JP2006197132A (ja) * 2005-01-12 2006-07-27 Sony Corp 無線通信装置及び無線通信方法
JP2006246129A (ja) * 2005-03-04 2006-09-14 Fujitsu Ltd 伝送システム、送信装置及び受信装置
JP2007266736A (ja) * 2006-03-27 2007-10-11 Toshiba Corp 無線受信装置
JP2008162478A (ja) 2006-12-28 2008-07-17 Toyota Motor Corp 結合部材断面構造
JP2008210926A (ja) 2007-02-26 2008-09-11 Matsushita Electric Ind Co Ltd 吸着ノズル
JP2009109962A (ja) 2007-10-12 2009-05-21 Toshiba Lighting & Technology Corp リアプロジェクタ装置及びマルチディスプレイシステム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298403A (ja) 1998-04-10 1999-10-29 Matsushita Electric Ind Co Ltd Tdma通信装置の同期回路及び、tdma通信装置の同期方法
JP3437445B2 (ja) 1998-05-22 2003-08-18 松下電器産業株式会社 線形信号予測を用いた受信装置及び方法
KR100488802B1 (ko) * 2002-12-09 2005-05-12 한국전자통신연구원 직교 주파수 분할 다중화 무선 통신 시스템에서의 반송파주파수 오차와 샘플링 주파수 오차 추적 방법 및 그 장치
DE602004015929D1 (de) * 2004-03-23 2008-10-02 Infineon Technologies Ag Phasen- und Frequenzsynchronisationseinrichtung für OFDM-Empfänger unter Verwendung von einer Präambel, Piloten und Informationsdaten
WO2006109327A1 (en) * 2005-04-12 2006-10-19 Power-One Italy S.P.A. Method and system for detecting messages in the presence of noise
WO2007023923A1 (ja) * 2005-08-24 2007-03-01 Matsushita Electric Industrial Co., Ltd. Mimo-ofdm送信装置及びmimo-ofdm送信方法
US7916799B2 (en) * 2006-04-03 2011-03-29 Realtek Semiconductor Corp. Frequency offset correction for an ultrawideband communication system
EP1876729A1 (en) * 2006-07-05 2008-01-09 Koninklijke Philips Electronics N.V. Bandwidth asymmetric communication system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003283359A (ja) * 2002-03-20 2003-10-03 Sanyo Electric Co Ltd 無線装置
JP2003332952A (ja) * 2003-03-24 2003-11-21 Matsushita Electric Ind Co Ltd 線形信号予測を用いた受信装置及び方法
JP2005252653A (ja) * 2004-03-04 2005-09-15 Hokkaido Univ 周波数オフセット推定方法および装置ならびにそれを利用した受信装置
JP2006197132A (ja) * 2005-01-12 2006-07-27 Sony Corp 無線通信装置及び無線通信方法
JP2006246129A (ja) * 2005-03-04 2006-09-14 Fujitsu Ltd 伝送システム、送信装置及び受信装置
JP2007266736A (ja) * 2006-03-27 2007-10-11 Toshiba Corp 無線受信装置
JP2008162478A (ja) 2006-12-28 2008-07-17 Toyota Motor Corp 結合部材断面構造
JP2008210926A (ja) 2007-02-26 2008-09-11 Matsushita Electric Ind Co Ltd 吸着ノズル
JP2009109962A (ja) 2007-10-12 2009-05-21 Toshiba Lighting & Technology Corp リアプロジェクタ装置及びマルチディスプレイシステム

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A. GUSMAO, R.; DINIS; N. ESTEVES: "On frequency-domain equalization and diversity combining for broadband wireless communications", IEEE TRANS. COMMUN., vol. 51, no. 7, July 2003 (2003-07-01), pages 1029 - 1033
BARHUMI ET AL.: "Optimal Training Sequences for Channel Estimation in MIMO OFDM Systems in Mobile Wireless Channels", BROADBAND COMMUNICATIONS, 2002. ACCESS, TRANSMISSION, NETWORKING, 2002, pages 44 - 1,44-6
D. C. CHU: "Polyphase codes with good periodic correlation properties", IEEE TRANS. INF. THEORY, vol. 5, no. 7, July 1972 (1972-07-01), pages 531 - 532
D. FALCONER ET AL.: "Frequency domain equalization for single-carrier broadband wireless systems", IEEE COMMUN. MAG., vol. 40, no. 4, April 2002 (2002-04-01), pages 58 - 66
L. DENEIRE ET AL.: "Training sequence versus cyclic prefix-a new look on single carrier communication", IEEE COMMUN., LETT., vol. 5, no. 7, July 2001 (2001-07-01), pages 292 - 294
S. J. SAVORY ET AL.: "Electronic compensation of chromatic dispersion using a digital coherent receiver", OPTICS EXPRESS, vol. 15, no. 5, 2007, pages 2120 - 2126
See also references of EP2290837A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199824A (ja) * 2009-02-24 2010-09-09 Nippon Telegr & Teleph Corp <Ntt> 受信装置及び方法
JP2010283509A (ja) * 2009-06-03 2010-12-16 Mitsubishi Electric Corp 光通信用送信機、光通信用受信機
CN102857284A (zh) * 2011-06-28 2013-01-02 上海华为技术有限公司 数据发射方法、接收方法、装置及系统
CN102857284B (zh) * 2011-06-28 2015-12-09 上海华为技术有限公司 数据发射方法、接收方法、装置及系统
JP2014171045A (ja) * 2013-03-01 2014-09-18 Panasonic Corp キャリア周波数オフセット補正方法及び装置
WO2017183631A1 (ja) * 2016-04-19 2017-10-26 日本電気株式会社 Los-mimo復調装置、通信装置、los-mimo伝送システム、los-mimo復調方法及びプログラム
US10523283B2 (en) 2016-04-19 2019-12-31 Nec Corporation LOS-MIMO demodulation apparatus, communication apparatus, LOS-MIMO transmission system, LOS-MIMO demodulation method and program

Also Published As

Publication number Publication date
JP5203457B2 (ja) 2013-06-05
CN102047582A (zh) 2011-05-04
US20110129041A1 (en) 2011-06-02
EP2290837B1 (en) 2016-09-21
US8488696B2 (en) 2013-07-16
EP2290837A1 (en) 2011-03-02
CN102047582B (zh) 2014-07-30
JPWO2009154278A1 (ja) 2011-12-01
EP2290837A4 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5203457B2 (ja) 受信装置、通信システム、および、受信方法
US8243834B2 (en) Wireless communication device
JP5641092B2 (ja) 無線通信システム、受信装置、送信装置、無線通信方法、受信方法、及び送信方法
US7746948B2 (en) Wireless communication apparatus and wireless communication method
JP4550746B2 (ja) Ofdmを用いた無線通信方法、ofdm送信装置及びofdm受信装置
US20060193392A1 (en) Apparatus for and method of compensation for frequency offset and channel variation in MIMO-OFDM receiver
JP4213734B2 (ja) Ofdmを用いた無線通信方法及びofdm受信装置
JP2002374224A (ja) Ofdm信号伝送システム、ofdm信号送信装置及びofdm信号受信装置
JP2008017143A (ja) 無線受信装置および方法
WO2012117788A1 (ja) 送信装置、受信装置、通信システム、通信方法、および集積回路
JP4789678B2 (ja) Ofdm受信方法及びofdm受信装置
JP4382107B2 (ja) 受信装置、無線送受信システム及び無線受信方法
JP4928487B2 (ja) 協調伝送システム、協調伝送方法および受信局
WO2014060031A1 (en) Method and apparatus for estimating channel coefficients of a mimo communications channel
JP2006014027A (ja) 無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4719102B2 (ja) 伝搬パス推定装置及びパスダイバーシチ受信装置
JP4886736B2 (ja) Ofdm信号合成用受信装置および中継装置
JP6483262B2 (ja) 無線通信装置及びそのキャリブレーション方法
WO2018006982A1 (en) Method and apparatus for multi-antenna transmission
EP2244432A1 (en) Compensating carrier frequency offsets in OFDM systems
JP2009135866A (ja) 送信方法および送信装置ならびに受信方法および受信装置
JP2011233988A (ja) Ofdm信号合成用受信装置
JP2004343587A (ja) 受信装置および方法
WO2011067866A1 (ja) 受信装置及び受信方法
JP2011119849A (ja) 無線通信装置、無線通信システムおよび受信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120603.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766726

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517980

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12994365

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009766726

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009766726

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE