WO2014038121A1 - デジタル信号処理装置 - Google Patents
デジタル信号処理装置 Download PDFInfo
- Publication number
- WO2014038121A1 WO2014038121A1 PCT/JP2013/004398 JP2013004398W WO2014038121A1 WO 2014038121 A1 WO2014038121 A1 WO 2014038121A1 JP 2013004398 W JP2013004398 W JP 2013004398W WO 2014038121 A1 WO2014038121 A1 WO 2014038121A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- digital signal
- moving average
- signal processing
- standard deviation
- output
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
- H04B10/616—Details of the electronic signal processing in coherent optical receivers
- H04B10/6165—Estimation of the phase of the received optical signal, phase error estimation or phase error correction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/06—Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying
- H04L27/22—Demodulator circuits; Receiver circuits
- H04L27/223—Demodulation in the optical domain
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying
- H04L27/22—Demodulator circuits; Receiver circuits
- H04L27/227—Demodulator circuits; Receiver circuits using coherent demodulation
Definitions
- the present invention relates to a digital signal processing apparatus that suppresses transient fluctuations of a digital signal.
- an analog signal is converted into a digital signal by an AD (Analog-to-Digital) converter and then subjected to digital signal processing, so that a received waveform distorted in a transmission path can be compensated in the digital domain, for example.
- AD Analog-to-Digital
- Such digital signal processing devices are used in various technical fields such as image processing, sound processing, wireless communication, and optical communication.
- the number of taps of the FIR filter is set.
- the number of taps of the FIR filter is set.
- FIG. 5 shows a configuration example of a digital coherent transmission / reception system (Non-Patent Document 1).
- the digital coherent transmission / reception system includes a transmitter 100 that transmits a phase-modulated optical signal and a digital coherent receiver 200 that receives and demodulates an optical signal transmitted through a transmission path.
- the digital coherent receiver 200 includes a coherent receiver 210, an AD converter 220, and a digital signal processing device 230.
- the coherent receiver 210 receives an optical signal received from the transmission path and local light from the local light source 301, and converts it into an electric signal with high sensitivity by a coherent detection technique.
- the AD converter 220 converts the electrical signal output from the coherent receiver 210 into a digital signal.
- the digital signal processing device 230 performs digital signal processing on the digital signal output from the AD converter 220, and compensates and demodulates the received waveform distorted in the transmission path.
- the digital signal processing device 230 includes an equalizer 231, a phase shift compensator 232, and a demodulator 233.
- the equalizer 231 equalizes the waveform distortion of the input digital signal
- the phase shift compensator 232 compensates the phase shift of the waveform equalized digital signal.
- the demodulator 233 outputs the phase shift compensated digital signal output from the phase shift compensator 232 as a symbol string. As described above, since the waveform distortion can be corrected with a simple configuration, a large-capacity and high-speed transmission system can be realized.
- the phase shift compensator 232 can estimate and correct the phase shift using a power method, for example (Non-patent Document 2).
- a power method for example (Non-patent Document 2).
- QPSK Quadrature Phase Shift Keying
- the estimation range of the phase shift in the power method is limited within a range of ⁇ ⁇ / 4 from the reference point, and thus a phase shift outside this range cannot be estimated.
- a phenomenon in which the time continuity of the phase shift estimated value is not maintained is called “cycle slip”, and the signal quality is deteriorated. For example, when a transient fluctuation such as pulse noise occurs in a digital signal, time continuity cannot be maintained due to an error expansion in digital signal processing, and cycle slip occurs as shown in FIG.
- Non-Patent Document 3 a technique for preventing propagation of influence by applying logical differential encoding to a transmission signal is used.
- the bit error at the moment of cycle slip cannot be prevented.
- transmission quality deteriorates because differential decoding is performed with two consecutive bit errors.
- Transient fluctuations in the digital signal such as phase shift from the phase point of the phase modulation signal, can be countered by averaging the digital signal. It becomes a cause.
- the present invention provides a digital signal processing apparatus capable of suppressing transient fluctuations of a digital signal without increasing the number of averaging in the digital signal processing by performing a statistical analysis of the digital signal. Objective.
- the present invention provides a digital signal processing apparatus that performs digital signal processing of a digital signal, calculates a moving average and a standard deviation from the digital signal, and determines whether the digital signal is within a predetermined range obtained from the moving average and the standard deviation. And a statistical analysis means for statistically determining whether or not the digital signal outside the range is corrected within the range.
- the statistical analysis means inputs a digital signal and outputs a moving average calculating unit that outputs a moving average, inputs a moving average output from the digital signal and the moving average calculating unit, and a standard deviation And a statistical determination / signal correction unit that inputs a digital signal, a moving average, and a standard deviation, corrects the digital signal by statistical determination on the digital signal, and outputs the corrected digital signal.
- the moving average calculation unit may calculate the (n ⁇ 1) th from the n ⁇ Lth digital signal S (nL), where n is an integer of 3 or more and L is an integer of 2 or more.
- the digital signal of the total L points of the digital signal S (n-1) is input, and the moving average A (n-1) is output.
- the standard deviation calculation unit calculates the digital signals of the L points up to the (n-1) th.
- the moving average A (n-1) output from the moving average calculator is input and the standard deviation ⁇ (n-1) is output.
- the statistical judgment / signal correcting unit outputs the nth digital signal S (n).
- Input the moving average A (n-1) output from the moving average calculator and the standard deviation ⁇ (n-1) output from the standard deviation calculator, and set any positive number to x as a digital signal S (n) is A (n-1) ⁇ x ⁇ (n ⁇ 1) ⁇ S (n) ⁇ A (n ⁇ 1) + x ⁇ (n ⁇ 1)
- Statistical determination is made to determine whether or not the signal is within the range, and if it is within the range, the digital signal S (n) is output as it is, and if it is outside the range, the digital signal S (n) is input to the range. Correct and output.
- the digital signal is corrected by statistical determination on the digital signal in the digital signal processing, thereby suppressing the transient fluctuation of the digital signal and improving the stability of the digital signal processing.
- FIG. 2 It is a figure which shows the structural example of the digital signal processing apparatus of this invention. It is a figure which shows the structural example of the statistical analysis means 234. FIG. It is a figure which shows the process example of the statistical analysis means 234 which corrects a phase shift. It is a figure which shows the time change example of the phase shift in this invention. It is a figure which shows the structural example of a digital coherent transmission / reception system. It is a figure which shows the time change example of the phase shift in a conventional structure.
- FIG. 1 shows a configuration example of a digital signal processing apparatus of the present invention.
- an example applied to the digital coherent receiver 200 of the digital coherent transmission / reception system shown in FIG. 5 is shown, but the present invention is not limited to the digital signal processing device 230 of the digital coherent receiver 200.
- a technique for suppressing the transient fluctuation of the digital signal such as the phase shift from the phase point of the phase modulation signal will be described.
- the transient noise in the audio signal processing is suppressed.
- the present invention can be similarly applied to general digital signal processing. *
- the quantizer 231, the phase shift compensator 232, and the demodulator 233 have the same functions as those shown in FIG.
- a feature of the digital signal processing device 230 of this embodiment is that a statistical analysis means 234 is connected to the phase shift compensator 232 to suppress transient fluctuations of the digital signal such as a phase shift from the phase point of the phase modulation signal. However, it is configured to ensure the time continuity of the phase modulation signal. That is, the digital signal indicating the phase shift output from the phase shift compensator 232 is input to the statistical analysis unit 234, and the statistical analysis unit 234 performs phase shift on the digital signal whose phase shift is not corrected or corrected by statistical analysis processing described later. Return to the compensator 232.
- the phase shift compensator 232 compensates the phase shift of the digital signal input from the equalizer 231 using the digital signal obtained by correcting or correcting the phase shift input from the statistical analysis unit 234 and outputs the compensated signal to the demodulator 233. .
- FIG. 2 shows a configuration example of the statistical analysis means 234.
- the statistical analysis means 234 includes a moving average calculation unit 11 that calculates a moving average of an input digital signal, a standard deviation calculation unit 12 that calculates a standard deviation from the input digital signal and the moving average, A statistical determination of a digital signal described below is performed using a moving average and a standard deviation, and a statistical determination / signal correction unit 13 that outputs a digital signal without correcting or correcting a phase shift is configured.
- the moving average calculation unit 11 calculates the n ⁇ 1th digital signal S (n ⁇ 1) from the n ⁇ Lth digital signal S (nL) L, where n is an integer greater than or equal to 3 and L is an integer greater than or equal to 2. A total of L digital signals are input and a moving average A (n-1) is calculated.
- the standard deviation calculation unit 12 inputs the digital signals of the L points from the (n ⁇ L) th to the (n ⁇ 1) th and the moving average A (n ⁇ 1) output from the moving average calculation unit 11, and the standard deviation ⁇ (n -1) Calculate.
- the statistical determination / signal correction unit 13 includes an nth digital signal S (n), a moving average A (n ⁇ 1) output from the moving average calculation unit 11, and a standard deviation ⁇ ( n-1) and an arbitrary positive number x, and the digital signal S (n) is A (n-1) ⁇ x ⁇ (n ⁇ 1) ⁇ S (n) ⁇ A (n ⁇ 1) + X ⁇ (n-1) Statistical determination is performed to determine whether or not the signal is within the range, and if it is within the range, the phase shift of the digital signal S (n) is output as it is, and if it is outside the range, the phase of the digital signal S (n) is output. The shift is corrected within the range and output.
- FIG. 3 shows a processing example of the statistical analysis means 234 for correcting the phase shift.
- Point B in FIG. 3 is outside the range of “15 moving averages ⁇ 2 ⁇ ” of point A due to transient fluctuations in the phase shift, and the continuity of the phase shift is subsequently increased due to signal processing error expansion. It is not maintained and cycle slip occurs.
- phase shift time continuity as shown in FIG. sexuality can be secured.
- the phase shift that is outside the range of “15 moving averages ⁇ 2 ⁇ ⁇ ”as point C after point B causes point B to be“ 15 points moving average ⁇
- the present invention is applied not only to the time change of the phase shift in the phase shift compensator 232 but also to any digital signal processing for a time-changing digital signal in the digital signal processing device 230 of the digital coherent receiver 200 shown in FIG. can do.
- the present invention can be applied to the suppression of transient fluctuations during adaptive control of the tap coefficient of the FIR filter in the equalizer 231.
- the present invention can also be applied to the suppression of transient noise in audio signal processing.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
- Dc Digital Transmission (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
図5において、デジタルコヒーレント送受信システムは、位相変調した光信号を送信する送信機100と、伝送路を介して伝送された光信号を受信して復調するデジタルコヒーレント受信機200から構成される。デジタルコヒーレント受信機200は、コヒーレントレシーバ210、ADコンバータ220、デジタル信号処理装置230から構成される。コヒーレントレシーバ210は、伝送路から受信する光信号とローカル光源301からのローカル光を入力し、コヒーレント検波技術により高感度に電気信号に変換する。ADコンバータ220は、コヒーレントレシーバ210から出力される電気信号をデジタル信号に変換する。デジタル信号処理装置230は、ADコンバータ220から出力されるデジタル信号をデジタル信号処理し、伝送路で歪んだ受信波形を補償して復調する。
A(n-1)-xσ(n-1) ≦S(n) ≦A(n-1)+xσ(n-1)
の範囲内であるか否かを判定する統計判定を行い、当該範囲内の場合はデジタル信号S(n) をそのまま出力し、当該範囲外の場合はデジタル信号S(n) を当該範囲内へ修正して出力する。
図2において、統計解析手段234は、入力するデジタル信号の移動平均を計算する移動平均計算部11と、入力するデジタル信号と移動平均から標準偏差を計算する標準偏差計算部12と、デジタル信号の移動平均および標準偏差を用いて以下に説明するデジタル信号の統計判定を行い、位相シフトを無修正または修正したデジタル信号を出力する統計判定/信号修正部13から構成される。
A(n-1)-xσ(n-1) ≦S(n) ≦A(n-1)+xσ(n-1)
の範囲内であるか否かを判定する統計判定を行い、当該範囲内の場合はデジタル信号S(n) の位相シフトをそのまま出力し、当該範囲外の場合はデジタル信号S(n) の位相シフトを当該範囲内へ修正して出力する。
A(n-1)-2σ(n-1) ≦S(n) ≦A(n-1)+2σ(n-1)
となる。例えば、デジタル信号S(n) がA(n-1)-2σ(n-1) より小さい場合は、
S(n) =A(n-1)-2σ(n-1)
に修正し、A(n-1)+2σ(n-1) より大きい場合は、
S(n) =A(n-1)+2σ(n-1)
に修正する。これにより、デジタル信号の一過性変動を除去することができる。
11 移動平均計算部
12 標準偏差計算部
13 統計判定/信号修正部
100 送信機
200 デジタルコヒーレント受信機
210 コヒーレントレシーバ
220 ADコンバータ
230 デジタル信号処理装置
231 等化器
232 位相シフト補償器
233 復調器
234 統計解析手段
301 ローカル光源
Claims (3)
- デジタル信号のデジタル信号処理を行うデジタル信号処理装置において、
前記デジタル信号から移動平均と標準偏差を算出し、前記デジタル信号がその移動平均および標準偏差から得られる所定の範囲内にあるか否かを統計判定し、当該範囲外にある前記デジタル信号を当該範囲内へ修正する統計解析手段を備えた
ことを特徴とするデジタル信号処理装置。 - 請求項1に記載のデジタル信号処理装置において、
前記統計解析手段は、
前記デジタル信号を入力し、前記移動平均を出力する移動平均計算部と、
前記デジタル信号と前記移動平均計算部から出力される前記移動平均を入力し、前記標準偏差を出力する標準偏差計算部と、
前記デジタル信号、前記移動平均および前記標準偏差を入力し、前記デジタル信号に対する前記統計判定により前記デジタル信号を修正して出力する統計判定/信号修正部と
を備えたことを特徴とするデジタル信号処理装置。 - 請求項2に記載のデジタル信号処理装置において、
前記移動平均計算部は、nを3以上の整数、Lを2以上の整数としたときに、n-L番目のデジタル信号S(n-L) からn-1番目のデジタル信号S(n-1) の合計L点のデジタル信号を入力して、移動平均A(n-1) を出力し、
前記標準偏差計算部は、前記n-1番目までのL点のデジタル信号と前記移動平均計算部から出力される移動平均A(n-1) を入力して、標準偏差σ(n-1) を出力し、
前記統計判定/信号修正部は、n番目のデジタル信号S(n) 、前記移動平均計算機から出力される移動平均A(n-1) 、および前記標準偏差計算部から出力される標準偏差σ(n-1) を入力して、任意の正の数をxとして、デジタル信号S(n) が
A(n-1)-xσ(n-1) ≦S(n) ≦A(n-1)+xσ(n-1)
の範囲内であるか否かを判定する前記統計判定を行い、当該範囲内の場合は前記デジタル信号S(n) をそのまま出力し、当該範囲外の場合はデジタル信号S(n) を当該範囲内へ修正して出力する
ことを特徴とするデジタル信号処理装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/426,054 US9749061B2 (en) | 2012-09-05 | 2013-07-18 | Digital signal processing device |
JP2014534161A JP6058682B2 (ja) | 2012-09-05 | 2013-07-18 | デジタル信号処理装置 |
CN201380040215.XA CN104509054B (zh) | 2012-09-05 | 2013-07-18 | 数字信号处理装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012195209 | 2012-09-05 | ||
JP2012-195209 | 2012-09-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014038121A1 true WO2014038121A1 (ja) | 2014-03-13 |
Family
ID=50236760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/004398 WO2014038121A1 (ja) | 2012-09-05 | 2013-07-18 | デジタル信号処理装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9749061B2 (ja) |
JP (1) | JP6058682B2 (ja) |
CN (1) | CN104509054B (ja) |
WO (1) | WO2014038121A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015052874A1 (ja) * | 2013-10-09 | 2015-04-16 | 日本電信電話株式会社 | 光伝送システム |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07245585A (ja) * | 1994-03-07 | 1995-09-19 | Mitsubishi Electric Corp | 車両の情報伝送装置 |
JP2005303753A (ja) * | 2004-04-14 | 2005-10-27 | Hitachi Ltd | 信号伝送システム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07181263A (ja) * | 1993-12-24 | 1995-07-21 | Yazaki Corp | 放射線測定装置 |
JPH07184048A (ja) * | 1993-12-24 | 1995-07-21 | Minolta Co Ltd | 画像形成装置 |
JPH09223990A (ja) * | 1996-02-19 | 1997-08-26 | Fujitsu Ltd | 伝送装置 |
US8488696B2 (en) * | 2008-06-20 | 2013-07-16 | Nippon Telegraph And Telephone Corporation | Receiver device, communication system and receiving method |
-
2013
- 2013-07-18 CN CN201380040215.XA patent/CN104509054B/zh active Active
- 2013-07-18 WO PCT/JP2013/004398 patent/WO2014038121A1/ja active Application Filing
- 2013-07-18 JP JP2014534161A patent/JP6058682B2/ja active Active
- 2013-07-18 US US14/426,054 patent/US9749061B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07245585A (ja) * | 1994-03-07 | 1995-09-19 | Mitsubishi Electric Corp | 車両の情報伝送装置 |
JP2005303753A (ja) * | 2004-04-14 | 2005-10-27 | Hitachi Ltd | 信号伝送システム |
Non-Patent Citations (1)
Title |
---|
SEB J.SAVORY: "Digital filters for coherent optical receivers", OPTICS EXPRESS, vol. 16, no. 2, 9 January 2008 (2008-01-09), pages 804 - 817 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015052874A1 (ja) * | 2013-10-09 | 2015-04-16 | 日本電信電話株式会社 | 光伝送システム |
US9692543B2 (en) | 2013-10-09 | 2017-06-27 | Nippon Telegraph And Telephone Corporation | Optical transmission system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014038121A1 (ja) | 2016-08-08 |
US20150236796A1 (en) | 2015-08-20 |
JP6058682B2 (ja) | 2017-01-11 |
CN104509054A (zh) | 2015-04-08 |
US9749061B2 (en) | 2017-08-29 |
CN104509054B (zh) | 2018-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5886984B2 (ja) | 光受信装置および位相サイクルスリップ低減方法 | |
US20190074903A1 (en) | Transmission characteristic compensation apparatus, transmission characteristic compensation method, and communication apparatus | |
US9537578B2 (en) | Method and system for coherent equalization of chromatic dispersion of optical signals in a fiber | |
CN103780519B (zh) | 基于lms的信道均衡和频偏估计联合并行方法 | |
WO2014167897A1 (ja) | 信号処理装置及び信号処理方法 | |
JP2011528206A (ja) | コヒーレント受信機における適応非線形補償 | |
CN105530050B (zh) | 均衡与偏振解复用和相偏估计与补偿的联合处理方法及装置 | |
JPWO2012029613A1 (ja) | デジタルフィルタ装置、デジタルフィルタリング方法及びデジタルフィルタ装置の制御プログラム | |
JP2011142583A (ja) | 光受信器および光受信方法 | |
KR102333415B1 (ko) | 직접수신 광전송 신호처리 장치 및 방법 | |
JP2015510366A (ja) | 波長分散処理の装置及び方法 | |
JP7417743B2 (ja) | 周波数領域等化方法、等化器、光受信器、及びシステム | |
US9112615B1 (en) | Low cycle slip phase recovery for coherent receiver | |
JP6248772B2 (ja) | 通信システム、受信装置および半導体装置 | |
JP6058682B2 (ja) | デジタル信号処理装置 | |
EP2862297B1 (en) | Receiver for optical transmission system | |
US9036690B2 (en) | Frequency-domain equalizing device and receiving device | |
JP5859410B2 (ja) | デジタルコヒーレント受信機 | |
Payyazhi et al. | Recursive blind phase search architecture for phase recovery at high error rates | |
WO2013174304A1 (en) | Method with improved phase robustness in coherent detected optical system | |
Clausen et al. | Experimental demonstration of non-integer fractionally-spaced equalization for flexible coherent receivers | |
US9660733B2 (en) | Signal processing apparatus, signal processing method, and signal processing system | |
Ma et al. | A novel high precision adaptive equalizer in digital coherent optical receivers | |
JP6009953B2 (ja) | 光受信装置 | |
CN107005259B (zh) | 减少wlan系统中的相邻信道干扰的方法和设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13835336 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014534161 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14426054 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13835336 Country of ref document: EP Kind code of ref document: A1 |