WO2014038121A1 - デジタル信号処理装置 - Google Patents

デジタル信号処理装置 Download PDF

Info

Publication number
WO2014038121A1
WO2014038121A1 PCT/JP2013/004398 JP2013004398W WO2014038121A1 WO 2014038121 A1 WO2014038121 A1 WO 2014038121A1 JP 2013004398 W JP2013004398 W JP 2013004398W WO 2014038121 A1 WO2014038121 A1 WO 2014038121A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital signal
moving average
signal processing
standard deviation
output
Prior art date
Application number
PCT/JP2013/004398
Other languages
English (en)
French (fr)
Inventor
福太郎 濱岡
剛志 関
松田 俊哉
明 那賀
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US14/426,054 priority Critical patent/US9749061B2/en
Priority to JP2014534161A priority patent/JP6058682B2/ja
Priority to CN201380040215.XA priority patent/CN104509054B/zh
Publication of WO2014038121A1 publication Critical patent/WO2014038121A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6165Estimation of the phase of the received optical signal, phase error estimation or phase error correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/223Demodulation in the optical domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation

Definitions

  • the present invention relates to a digital signal processing apparatus that suppresses transient fluctuations of a digital signal.
  • an analog signal is converted into a digital signal by an AD (Analog-to-Digital) converter and then subjected to digital signal processing, so that a received waveform distorted in a transmission path can be compensated in the digital domain, for example.
  • AD Analog-to-Digital
  • Such digital signal processing devices are used in various technical fields such as image processing, sound processing, wireless communication, and optical communication.
  • the number of taps of the FIR filter is set.
  • the number of taps of the FIR filter is set.
  • FIG. 5 shows a configuration example of a digital coherent transmission / reception system (Non-Patent Document 1).
  • the digital coherent transmission / reception system includes a transmitter 100 that transmits a phase-modulated optical signal and a digital coherent receiver 200 that receives and demodulates an optical signal transmitted through a transmission path.
  • the digital coherent receiver 200 includes a coherent receiver 210, an AD converter 220, and a digital signal processing device 230.
  • the coherent receiver 210 receives an optical signal received from the transmission path and local light from the local light source 301, and converts it into an electric signal with high sensitivity by a coherent detection technique.
  • the AD converter 220 converts the electrical signal output from the coherent receiver 210 into a digital signal.
  • the digital signal processing device 230 performs digital signal processing on the digital signal output from the AD converter 220, and compensates and demodulates the received waveform distorted in the transmission path.
  • the digital signal processing device 230 includes an equalizer 231, a phase shift compensator 232, and a demodulator 233.
  • the equalizer 231 equalizes the waveform distortion of the input digital signal
  • the phase shift compensator 232 compensates the phase shift of the waveform equalized digital signal.
  • the demodulator 233 outputs the phase shift compensated digital signal output from the phase shift compensator 232 as a symbol string. As described above, since the waveform distortion can be corrected with a simple configuration, a large-capacity and high-speed transmission system can be realized.
  • the phase shift compensator 232 can estimate and correct the phase shift using a power method, for example (Non-patent Document 2).
  • a power method for example (Non-patent Document 2).
  • QPSK Quadrature Phase Shift Keying
  • the estimation range of the phase shift in the power method is limited within a range of ⁇ ⁇ / 4 from the reference point, and thus a phase shift outside this range cannot be estimated.
  • a phenomenon in which the time continuity of the phase shift estimated value is not maintained is called “cycle slip”, and the signal quality is deteriorated. For example, when a transient fluctuation such as pulse noise occurs in a digital signal, time continuity cannot be maintained due to an error expansion in digital signal processing, and cycle slip occurs as shown in FIG.
  • Non-Patent Document 3 a technique for preventing propagation of influence by applying logical differential encoding to a transmission signal is used.
  • the bit error at the moment of cycle slip cannot be prevented.
  • transmission quality deteriorates because differential decoding is performed with two consecutive bit errors.
  • Transient fluctuations in the digital signal such as phase shift from the phase point of the phase modulation signal, can be countered by averaging the digital signal. It becomes a cause.
  • the present invention provides a digital signal processing apparatus capable of suppressing transient fluctuations of a digital signal without increasing the number of averaging in the digital signal processing by performing a statistical analysis of the digital signal. Objective.
  • the present invention provides a digital signal processing apparatus that performs digital signal processing of a digital signal, calculates a moving average and a standard deviation from the digital signal, and determines whether the digital signal is within a predetermined range obtained from the moving average and the standard deviation. And a statistical analysis means for statistically determining whether or not the digital signal outside the range is corrected within the range.
  • the statistical analysis means inputs a digital signal and outputs a moving average calculating unit that outputs a moving average, inputs a moving average output from the digital signal and the moving average calculating unit, and a standard deviation And a statistical determination / signal correction unit that inputs a digital signal, a moving average, and a standard deviation, corrects the digital signal by statistical determination on the digital signal, and outputs the corrected digital signal.
  • the moving average calculation unit may calculate the (n ⁇ 1) th from the n ⁇ Lth digital signal S (nL), where n is an integer of 3 or more and L is an integer of 2 or more.
  • the digital signal of the total L points of the digital signal S (n-1) is input, and the moving average A (n-1) is output.
  • the standard deviation calculation unit calculates the digital signals of the L points up to the (n-1) th.
  • the moving average A (n-1) output from the moving average calculator is input and the standard deviation ⁇ (n-1) is output.
  • the statistical judgment / signal correcting unit outputs the nth digital signal S (n).
  • Input the moving average A (n-1) output from the moving average calculator and the standard deviation ⁇ (n-1) output from the standard deviation calculator, and set any positive number to x as a digital signal S (n) is A (n-1) ⁇ x ⁇ (n ⁇ 1) ⁇ S (n) ⁇ A (n ⁇ 1) + x ⁇ (n ⁇ 1)
  • Statistical determination is made to determine whether or not the signal is within the range, and if it is within the range, the digital signal S (n) is output as it is, and if it is outside the range, the digital signal S (n) is input to the range. Correct and output.
  • the digital signal is corrected by statistical determination on the digital signal in the digital signal processing, thereby suppressing the transient fluctuation of the digital signal and improving the stability of the digital signal processing.
  • FIG. 2 It is a figure which shows the structural example of the digital signal processing apparatus of this invention. It is a figure which shows the structural example of the statistical analysis means 234. FIG. It is a figure which shows the process example of the statistical analysis means 234 which corrects a phase shift. It is a figure which shows the time change example of the phase shift in this invention. It is a figure which shows the structural example of a digital coherent transmission / reception system. It is a figure which shows the time change example of the phase shift in a conventional structure.
  • FIG. 1 shows a configuration example of a digital signal processing apparatus of the present invention.
  • an example applied to the digital coherent receiver 200 of the digital coherent transmission / reception system shown in FIG. 5 is shown, but the present invention is not limited to the digital signal processing device 230 of the digital coherent receiver 200.
  • a technique for suppressing the transient fluctuation of the digital signal such as the phase shift from the phase point of the phase modulation signal will be described.
  • the transient noise in the audio signal processing is suppressed.
  • the present invention can be similarly applied to general digital signal processing. *
  • the quantizer 231, the phase shift compensator 232, and the demodulator 233 have the same functions as those shown in FIG.
  • a feature of the digital signal processing device 230 of this embodiment is that a statistical analysis means 234 is connected to the phase shift compensator 232 to suppress transient fluctuations of the digital signal such as a phase shift from the phase point of the phase modulation signal. However, it is configured to ensure the time continuity of the phase modulation signal. That is, the digital signal indicating the phase shift output from the phase shift compensator 232 is input to the statistical analysis unit 234, and the statistical analysis unit 234 performs phase shift on the digital signal whose phase shift is not corrected or corrected by statistical analysis processing described later. Return to the compensator 232.
  • the phase shift compensator 232 compensates the phase shift of the digital signal input from the equalizer 231 using the digital signal obtained by correcting or correcting the phase shift input from the statistical analysis unit 234 and outputs the compensated signal to the demodulator 233. .
  • FIG. 2 shows a configuration example of the statistical analysis means 234.
  • the statistical analysis means 234 includes a moving average calculation unit 11 that calculates a moving average of an input digital signal, a standard deviation calculation unit 12 that calculates a standard deviation from the input digital signal and the moving average, A statistical determination of a digital signal described below is performed using a moving average and a standard deviation, and a statistical determination / signal correction unit 13 that outputs a digital signal without correcting or correcting a phase shift is configured.
  • the moving average calculation unit 11 calculates the n ⁇ 1th digital signal S (n ⁇ 1) from the n ⁇ Lth digital signal S (nL) L, where n is an integer greater than or equal to 3 and L is an integer greater than or equal to 2. A total of L digital signals are input and a moving average A (n-1) is calculated.
  • the standard deviation calculation unit 12 inputs the digital signals of the L points from the (n ⁇ L) th to the (n ⁇ 1) th and the moving average A (n ⁇ 1) output from the moving average calculation unit 11, and the standard deviation ⁇ (n -1) Calculate.
  • the statistical determination / signal correction unit 13 includes an nth digital signal S (n), a moving average A (n ⁇ 1) output from the moving average calculation unit 11, and a standard deviation ⁇ ( n-1) and an arbitrary positive number x, and the digital signal S (n) is A (n-1) ⁇ x ⁇ (n ⁇ 1) ⁇ S (n) ⁇ A (n ⁇ 1) + X ⁇ (n-1) Statistical determination is performed to determine whether or not the signal is within the range, and if it is within the range, the phase shift of the digital signal S (n) is output as it is, and if it is outside the range, the phase of the digital signal S (n) is output. The shift is corrected within the range and output.
  • FIG. 3 shows a processing example of the statistical analysis means 234 for correcting the phase shift.
  • Point B in FIG. 3 is outside the range of “15 moving averages ⁇ 2 ⁇ ” of point A due to transient fluctuations in the phase shift, and the continuity of the phase shift is subsequently increased due to signal processing error expansion. It is not maintained and cycle slip occurs.
  • phase shift time continuity as shown in FIG. sexuality can be secured.
  • the phase shift that is outside the range of “15 moving averages ⁇ 2 ⁇ ⁇ ”as point C after point B causes point B to be“ 15 points moving average ⁇
  • the present invention is applied not only to the time change of the phase shift in the phase shift compensator 232 but also to any digital signal processing for a time-changing digital signal in the digital signal processing device 230 of the digital coherent receiver 200 shown in FIG. can do.
  • the present invention can be applied to the suppression of transient fluctuations during adaptive control of the tap coefficient of the FIR filter in the equalizer 231.
  • the present invention can also be applied to the suppression of transient noise in audio signal processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Dc Digital Transmission (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

デジタル信号のデジタル信号処理を行うデジタル信号処理装置において、デジタル信号から移動平均と標準偏差を算出し、デジタル信号がその移動平均および標準偏差から得られる所定の範囲内にあるか否かを統計判定し、当該範囲外にあるデジタル信号を当該範囲内へ修正する統計解析手段を備える。デジタル信号の統計解析を行うことにより、デジタル信号処理において平均化数を増加させることなく、一過性の変動を抑制する。

Description

デジタル信号処理装置
 本発明は、デジタル信号の一過性の変動を抑制するデジタル信号処理装置に関する。
 デジタル信号処理装置では、アナログ信号をAD(Analog to Digital)コンバータでデジタル信号に変換した後に、デジタル信号処理を施すことにより、例えば伝送路で歪んだ受信波形をデジタル領域で補償することができる。このようなデジタル信号処理装置は、画像処理、音声処理、無線通信や光通信等の様々な技術分野で活用されている。
 デジタル信号処理を行う場合、デジタル信号処理の過程でデジタル信号にパルスノイズのような一過性の変動が生じると、デジタル信号処理の誤差が増大して出力信号の品質が劣化してしまう。ただし、このような一過性の変動成分によるデジタル信号処理への影響は、例えばローパスフィルタを用いたデジタル信号の平均化処理により、緩和することができる。
 例えば、光通信分野におけるデジタルコヒーレント受信機では、一過性変動の影響を低減するために、FIR(Finite Impulse Response)フィルタを用いて受信波形を等化処理する際に、FIRフィルタのタップ数を増やす方法がある。あるいは、位相変調信号の位相点からの位相シフトを累乗法を用いて推定し、その位相シフトを除去する際に、累乗法の信号累積数(タップ数)を増加させる方法がある。
 ここで、コヒーレント光通信技術とデジタル信号処理技術とを組み合わせたデジタルコヒーレント受信機について説明する。
 図5は、デジタルコヒーレント送受信システムの構成例を示す(非特許文献1)。
 図5において、デジタルコヒーレント送受信システムは、位相変調した光信号を送信する送信機100と、伝送路を介して伝送された光信号を受信して復調するデジタルコヒーレント受信機200から構成される。デジタルコヒーレント受信機200は、コヒーレントレシーバ210、ADコンバータ220、デジタル信号処理装置230から構成される。コヒーレントレシーバ210は、伝送路から受信する光信号とローカル光源301からのローカル光を入力し、コヒーレント検波技術により高感度に電気信号に変換する。ADコンバータ220は、コヒーレントレシーバ210から出力される電気信号をデジタル信号に変換する。デジタル信号処理装置230は、ADコンバータ220から出力されるデジタル信号をデジタル信号処理し、伝送路で歪んだ受信波形を補償して復調する。
 デジタル信号処理装置230は、等化器231、位相シフト補償器232、復調器233から構成される。等化器231は入力するデジタル信号の波形歪みを等化し、波形等化されたデジタル信号の位相シフトを位相シフト補償器232で補償する。復調器233は、位相シフト補償器232から出力される位相シフト補償されたデジタル信号をシンボル列として出力する。このように波形の歪みの補正が簡易な構成で行うことができるため、大容量かつ高速な伝送システムが実現可能になっている。
 位相シフト補償器232は、例えば、累乗法を用いて位相シフトを推定し修正することができる(非特許文献2)。累乗法における位相シフトの推定範囲は、QPSK(Quadrature Phase Shift Keying )信号の場合、基準点から±π/4の範囲内に制限されるため、この範囲外となる位相シフトは推定できない。位相シフト推定値の時間連続性が保たれない現象は「サイクルスリップ」と呼ばれており、信号品質が劣化してしまう。例えば、デジタル信号にパルスノイズ的な一過性の変動が生じた場合、デジタル信号処理の誤差拡大により時間連続性が保たれなくなり、図6に示すようにサイクルスリップが生じてしまう。
 サイクルスリップの対策として、送信信号に論理的な差動符号化を施して影響の伝搬を防止する手法などが用いられている(非特許文献3)。しかし、サイクルスリップした瞬間のビットエラーを防止することはできない。また、差動符号化したデータに1つビットエラーが生じた場合、連続した2つのビットエラーとなって差動復号されるため伝送品質が劣化してしまう。
S.J.Savory,"Digital filters for coherent optical receivers," Optics Express, vol.16, no.2, pp.804-814, 2008 S.Tsukamoto, Y.Ishikawa, and K.Kikuchi, "Optical Homodyne Receiver Comprising Phase and Polarization Diversities with Digital Signal Processing, "Proc. ECOC, 2006 T.Mizuochi, Y.Miyata, K.Kubo, T.Sugihara, K.Onohara and H.Yoshida,"Progress in Soft-Decision FEC,"OSA/OFC/NFOEC, NWC2, 2011
 位相変調信号の位相点からの位相シフトのようなデジタル信号の一過性の変動は、デジタル信号の平均化を行うことにより対策できるが、信号処理における遅延量の増大、追従性の低下等の原因となってしまう。
 本発明は、デジタル信号の統計解析を行うことにより、デジタル信号処理において平均化数を増加させることなく、デジタル信号の一過性の変動を抑制することができるデジタル信号処理装置を提供することを目的とする。
 本発明は、デジタル信号のデジタル信号処理を行うデジタル信号処理装置において、デジタル信号から移動平均と標準偏差を算出し、デジタル信号がその移動平均および標準偏差から得られる所定の範囲内にあるか否かを統計判定し、当該範囲外にあるデジタル信号を当該範囲内へ修正する統計解析手段を備える。
 本発明のデジタル信号処理装置において、統計解析手段は、デジタル信号を入力し、移動平均を出力する移動平均計算部と、デジタル信号と移動平均計算部から出力される移動平均を入力し、標準偏差を出力する標準偏差計算部と、デジタル信号、移動平均および標準偏差を入力し、デジタル信号に対する統計判定によりデジタル信号を修正して出力する統計判定/信号修正部とを備える。
 本発明のデジタル信号処理装置において、移動平均計算部は、nを3以上の整数、Lを2以上の整数としたときに、n-L番目のデジタル信号S(n-L) からn-1番目のデジタル信号S(n-1) の合計L点のデジタル信号を入力して、移動平均A(n-1) を出力し、標準偏差計算部は、n-1番目までのL点のデジタル信号と移動平均計算部から出力される移動平均A(n-1) を入力して、標準偏差σ(n-1) を出力し、統計判定/信号修正部は、n番目のデジタル信号S(n) 、移動平均計算機から出力される移動平均A(n-1) 、および標準偏差計算部から出力される標準偏差σ(n-1) を入力して、任意の正の数をxとして、デジタル信号S(n) が
  A(n-1)-xσ(n-1) ≦S(n) ≦A(n-1)+xσ(n-1) 
の範囲内であるか否かを判定する統計判定を行い、当該範囲内の場合はデジタル信号S(n) をそのまま出力し、当該範囲外の場合はデジタル信号S(n) を当該範囲内へ修正して出力する。
 本発明は、デジタル信号処理においてデジタル信号に対する統計判定によりデジタル信号の修正を行うことにより、デジタル信号の一過性の変動を抑制し、デジタル信号処理の安定性を向上することができる。
本発明のデジタル信号処理装置の構成例を示す図である。 統計解析手段234の構成例を示す図である。 位相シフトを修正する統計解析手段234の処理例を示す図である。 本発明における位相シフトの時間変化例を示す図である。 デジタルコヒーレント送受信システムの構成例を示す図である。 従来構成における位相シフトの時間変化例を示す図である。
 図1は、本発明のデジタル信号処理装置の構成例を示す。ここでは、図5に示すデジタルコヒーレント送受信システムのデジタルコヒーレント受信機200に適用した例を示すが、このデジタルコヒーレント受信機200のデジタル信号処理装置230に限定されるものではない。また、本実施例では、位相変調信号の位相点からの位相シフトのようなデジタル信号の一過性の変動を抑制する技術について説明するが、例えば音声信号処理における一過性ノイズを抑制する等、一般的なデジタル信号処理にも同様に適用可能である。 
 図1において、送信機100、デジタルコヒーレント受信機200、ローカル光源301、デジタルコヒーレント受信機200を構成するコヒーレントレシーバ210、ADコンバータ220およびデジタル信号処理装置230、さらにデジタル信号処理装置230を構成する等化器231、位相シフト補償器232および復調器233は、図5に示す構成と同様の機能を有する。
 本実施例のデジタル信号処理装置230の特徴は、位相シフト補償器232に統計解析手段234を接続し、位相変調信号の位相点からの位相シフトのようなデジタル信号の一過性の変動を抑制し、当該位相変調信号の時間連続性を担保するように構成したところにある。すなわち、位相シフト補償器232から出力される位相シフトを示すデジタル信号を統計解析手段234に入力し、統計解析手段234は後述する統計解析処理により位相シフトを無修正または修正したデジタル信号を位相シフト補償器232へ折り返す。位相シフト補償器232は、統計解析手段234から入力する位相シフトを無修正または修正したデジタル信号を用いて、等化器231から入力するデジタル信号の位相シフトを補償して復調器233に出力する。
 図2は、統計解析手段234の構成例を示す。
 図2において、統計解析手段234は、入力するデジタル信号の移動平均を計算する移動平均計算部11と、入力するデジタル信号と移動平均から標準偏差を計算する標準偏差計算部12と、デジタル信号の移動平均および標準偏差を用いて以下に説明するデジタル信号の統計判定を行い、位相シフトを無修正または修正したデジタル信号を出力する統計判定/信号修正部13から構成される。
 移動平均計算部11は、nを3以上の整数、Lを2以上の整数としたときに、n-L番目のデジタル信号S(n-L) からn-1番目のデジタル信号S(n-1) の合計L点のデジタル信号を入力し、移動平均A(n-1) を計算する。
 標準偏差計算部12は、n-L番目からn-1番目までのL点のデジタル信号と移動平均計算部11から出力される移動平均A(n-1) を入力し、標準偏差σ(n-1) を計算する。
 統計判定/信号修正部13は、n番目のデジタル信号S(n) 、移動平均計算部11から出力される移動平均A(n-1) 、標準偏差計算部12から出力される標準偏差σ(n-1) を入力して、任意の正の数をxとして、デジタル信号S(n) が
  A(n-1)-xσ(n-1) ≦S(n) ≦A(n-1)+xσ(n-1) 
の範囲内であるか否かを判定する統計判定を行い、当該範囲内の場合はデジタル信号S(n) の位相シフトをそのまま出力し、当該範囲外の場合はデジタル信号S(n) の位相シフトを当該範囲内へ修正して出力する。
 ここで、x=2とした場合、上記範囲は、
  A(n-1)-2σ(n-1) ≦S(n) ≦A(n-1)+2σ(n-1) 
となる。例えば、デジタル信号S(n) がA(n-1)-2σ(n-1) より小さい場合は、
  S(n) =A(n-1)-2σ(n-1) 
に修正し、A(n-1)+2σ(n-1) より大きい場合は、
  S(n) =A(n-1)+2σ(n-1) 
に修正する。これにより、デジタル信号の一過性変動を除去することができる。
 なお、m番目までのL点のデジタル信号の移動平均A(m) および標準偏差σ(m) は、
Figure JPOXMLDOC01-appb-M000001
でそれぞれ計算できる。
  図3は、位相シフトを修正する統計解析手段234の処理例を示す。ここでは、L=15、x=2とし、図6における 0.750μs ~ 0.765μs の範囲の統計解析手段234の処理例を示す。
 図3の点Bは、位相シフトの一過性の変動により、点Aの「15点の移動平均-2σ」の範囲外となっており、以降信号処理の誤差拡大により位相シフトの連続性が保たれず、サイクルスリップが生じている。この点Bを、点Aにおける「15点の移動平均±2σ」の範囲内へ上記のように修正して一過性の変動を抑制することにより、図4に示すように位相シフトの時間連続性を担保することができる。なお、図3において、点Bの後の点Cのように「15点の移動平均±2 σ」の範囲外となっている位相シフトは、点Bを点Aにおける「15点の移動平均±2σ」の範囲内へ修正することにより、「15点の移動平均±2σ」の範囲内となる。
 図4において、信号はBER(Bit Error Rate)= 1.9×10-3となり、サイクルスリップが生じた場合のBER= 1.4×10-2よりも信号品質が向上した。
 なお、本発明は、図1に示すデジタルコヒーレント受信機200のデジタル信号処理装置230において、位相シフト補償器232における位相シフトの時間変化のみならず、時間変化するデジタル信号に対するあらゆるデジタル信号処理へ適用することができる。例えば、本発明は、等化器231におけるFIRフィルタのタップ係数の適応制御時における一過性変動の抑制に適用することができる。また、本発明は、音声信号処理における一過性ノイズの抑制にも適用することができる。
 10 統計解析手段
 11 移動平均計算部
 12 標準偏差計算部
 13 統計判定/信号修正部
 100 送信機
 200 デジタルコヒーレント受信機
 210 コヒーレントレシーバ
 220 ADコンバータ
 230 デジタル信号処理装置
 231 等化器
 232 位相シフト補償器
 233 復調器
 234 統計解析手段
 301 ローカル光源

Claims (3)

  1.  デジタル信号のデジタル信号処理を行うデジタル信号処理装置において、
     前記デジタル信号から移動平均と標準偏差を算出し、前記デジタル信号がその移動平均および標準偏差から得られる所定の範囲内にあるか否かを統計判定し、当該範囲外にある前記デジタル信号を当該範囲内へ修正する統計解析手段を備えた
     ことを特徴とするデジタル信号処理装置。
  2.  請求項1に記載のデジタル信号処理装置において、
     前記統計解析手段は、
     前記デジタル信号を入力し、前記移動平均を出力する移動平均計算部と、
     前記デジタル信号と前記移動平均計算部から出力される前記移動平均を入力し、前記標準偏差を出力する標準偏差計算部と、
     前記デジタル信号、前記移動平均および前記標準偏差を入力し、前記デジタル信号に対する前記統計判定により前記デジタル信号を修正して出力する統計判定/信号修正部と
     を備えたことを特徴とするデジタル信号処理装置。
  3.  請求項2に記載のデジタル信号処理装置において、
     前記移動平均計算部は、nを3以上の整数、Lを2以上の整数としたときに、n-L番目のデジタル信号S(n-L) からn-1番目のデジタル信号S(n-1) の合計L点のデジタル信号を入力して、移動平均A(n-1) を出力し、
     前記標準偏差計算部は、前記n-1番目までのL点のデジタル信号と前記移動平均計算部から出力される移動平均A(n-1) を入力して、標準偏差σ(n-1) を出力し、
     前記統計判定/信号修正部は、n番目のデジタル信号S(n) 、前記移動平均計算機から出力される移動平均A(n-1) 、および前記標準偏差計算部から出力される標準偏差σ(n-1) を入力して、任意の正の数をxとして、デジタル信号S(n) が
      A(n-1)-xσ(n-1) ≦S(n) ≦A(n-1)+xσ(n-1) 
    の範囲内であるか否かを判定する前記統計判定を行い、当該範囲内の場合は前記デジタル信号S(n) をそのまま出力し、当該範囲外の場合はデジタル信号S(n) を当該範囲内へ修正して出力する
     ことを特徴とするデジタル信号処理装置。
PCT/JP2013/004398 2012-09-05 2013-07-18 デジタル信号処理装置 WO2014038121A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/426,054 US9749061B2 (en) 2012-09-05 2013-07-18 Digital signal processing device
JP2014534161A JP6058682B2 (ja) 2012-09-05 2013-07-18 デジタル信号処理装置
CN201380040215.XA CN104509054B (zh) 2012-09-05 2013-07-18 数字信号处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012195209 2012-09-05
JP2012-195209 2012-09-05

Publications (1)

Publication Number Publication Date
WO2014038121A1 true WO2014038121A1 (ja) 2014-03-13

Family

ID=50236760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004398 WO2014038121A1 (ja) 2012-09-05 2013-07-18 デジタル信号処理装置

Country Status (4)

Country Link
US (1) US9749061B2 (ja)
JP (1) JP6058682B2 (ja)
CN (1) CN104509054B (ja)
WO (1) WO2014038121A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052874A1 (ja) * 2013-10-09 2015-04-16 日本電信電話株式会社 光伝送システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245585A (ja) * 1994-03-07 1995-09-19 Mitsubishi Electric Corp 車両の情報伝送装置
JP2005303753A (ja) * 2004-04-14 2005-10-27 Hitachi Ltd 信号伝送システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181263A (ja) * 1993-12-24 1995-07-21 Yazaki Corp 放射線測定装置
JPH07184048A (ja) * 1993-12-24 1995-07-21 Minolta Co Ltd 画像形成装置
JPH09223990A (ja) * 1996-02-19 1997-08-26 Fujitsu Ltd 伝送装置
US8488696B2 (en) * 2008-06-20 2013-07-16 Nippon Telegraph And Telephone Corporation Receiver device, communication system and receiving method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245585A (ja) * 1994-03-07 1995-09-19 Mitsubishi Electric Corp 車両の情報伝送装置
JP2005303753A (ja) * 2004-04-14 2005-10-27 Hitachi Ltd 信号伝送システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEB J.SAVORY: "Digital filters for coherent optical receivers", OPTICS EXPRESS, vol. 16, no. 2, 9 January 2008 (2008-01-09), pages 804 - 817 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052874A1 (ja) * 2013-10-09 2015-04-16 日本電信電話株式会社 光伝送システム
US9692543B2 (en) 2013-10-09 2017-06-27 Nippon Telegraph And Telephone Corporation Optical transmission system

Also Published As

Publication number Publication date
JPWO2014038121A1 (ja) 2016-08-08
US20150236796A1 (en) 2015-08-20
JP6058682B2 (ja) 2017-01-11
CN104509054A (zh) 2015-04-08
US9749061B2 (en) 2017-08-29
CN104509054B (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
JP5886984B2 (ja) 光受信装置および位相サイクルスリップ低減方法
US20190074903A1 (en) Transmission characteristic compensation apparatus, transmission characteristic compensation method, and communication apparatus
US9537578B2 (en) Method and system for coherent equalization of chromatic dispersion of optical signals in a fiber
CN103780519B (zh) 基于lms的信道均衡和频偏估计联合并行方法
WO2014167897A1 (ja) 信号処理装置及び信号処理方法
JP2011528206A (ja) コヒーレント受信機における適応非線形補償
CN105530050B (zh) 均衡与偏振解复用和相偏估计与补偿的联合处理方法及装置
JPWO2012029613A1 (ja) デジタルフィルタ装置、デジタルフィルタリング方法及びデジタルフィルタ装置の制御プログラム
JP2011142583A (ja) 光受信器および光受信方法
KR102333415B1 (ko) 직접수신 광전송 신호처리 장치 및 방법
JP2015510366A (ja) 波長分散処理の装置及び方法
JP7417743B2 (ja) 周波数領域等化方法、等化器、光受信器、及びシステム
US9112615B1 (en) Low cycle slip phase recovery for coherent receiver
JP6248772B2 (ja) 通信システム、受信装置および半導体装置
JP6058682B2 (ja) デジタル信号処理装置
EP2862297B1 (en) Receiver for optical transmission system
US9036690B2 (en) Frequency-domain equalizing device and receiving device
JP5859410B2 (ja) デジタルコヒーレント受信機
Payyazhi et al. Recursive blind phase search architecture for phase recovery at high error rates
WO2013174304A1 (en) Method with improved phase robustness in coherent detected optical system
Clausen et al. Experimental demonstration of non-integer fractionally-spaced equalization for flexible coherent receivers
US9660733B2 (en) Signal processing apparatus, signal processing method, and signal processing system
Ma et al. A novel high precision adaptive equalizer in digital coherent optical receivers
JP6009953B2 (ja) 光受信装置
CN107005259B (zh) 减少wlan系统中的相邻信道干扰的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534161

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14426054

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835336

Country of ref document: EP

Kind code of ref document: A1