WO2015052874A1 - 光伝送システム - Google Patents
光伝送システム Download PDFInfo
- Publication number
- WO2015052874A1 WO2015052874A1 PCT/JP2014/004696 JP2014004696W WO2015052874A1 WO 2015052874 A1 WO2015052874 A1 WO 2015052874A1 JP 2014004696 W JP2014004696 W JP 2014004696W WO 2015052874 A1 WO2015052874 A1 WO 2015052874A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- optical
- light
- signal
- phase rotation
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 266
- 230000005540 biological transmission Effects 0.000 title claims abstract description 125
- 238000012545 processing Methods 0.000 claims abstract description 105
- 230000001427 coherent effect Effects 0.000 claims abstract description 101
- 108010076504 Protein Sorting Signals Proteins 0.000 claims abstract description 39
- 239000013307 optical fiber Substances 0.000 claims description 41
- 230000010287 polarization Effects 0.000 claims description 41
- 230000003044 adaptive effect Effects 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 7
- 239000006185 dispersion Substances 0.000 description 26
- 238000005516 engineering process Methods 0.000 description 7
- 238000007476 Maximum Likelihood Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000023077 detection of light stimulus Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
- H04B10/616—Details of the electronic signal processing in coherent optical receivers
- H04B10/6165—Estimation of the phase of the received optical signal, phase error estimation or phase error correction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/532—Polarisation modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
- H04B10/556—Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
- H04B10/5561—Digital phase modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
- H04B10/615—Arrangements affecting the optical part of the receiver
- H04B10/6151—Arrangements affecting the optical part of the receiver comprising a polarization controller at the receiver's input stage
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
- H04B10/616—Details of the electronic signal processing in coherent optical receivers
- H04B10/6161—Compensation of chromatic dispersion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
- H04B10/616—Details of the electronic signal processing in coherent optical receivers
- H04B10/6164—Estimation or correction of the frequency offset between the received optical signal and the optical local oscillator
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/06—Polarisation multiplex systems
Definitions
- the present invention relates to an optical transmission system that performs MIMO signal processing using digital coherent technology and a plurality of receivers.
- Non-Patent Document 1 is a standard modulation / demodulation method in a 100 Gbit / s long-distance optical transmission system.
- a 100 Gbit / s long-distance optical transmission system for example, a 32 Gbit / s signal is generated using quaternary phase modulation, and this signal is multiplexed twice to generate a coherent optical signal, and two more polarizations are used. In this way, a multiplex 128 Gbit / s coherent optical signal is generated.
- An optical transmission system having a transmission capacity of several Tbit / s can be realized by wavelength-multiplexing DP-QPSK optical signals having different wavelengths.
- coherent reception is performed using local light having the same wavelength as the signal light, and the received signal is digitized using an A / D converter and then subjected to digital signal processing by the DSP.
- excellent transmission characteristics are realized by performing chromatic dispersion compensation, polarization dispersion compensation, polarization signal separation, phase estimation, and the like of the transmission line.
- Non-Patent Document 2 proposes a MIMO diversity technique for improving reception sensitivity using a plurality of receivers as an approach for further improving reception characteristics.
- the effect is most apparent when the correlation between signals to be synthesized is low.
- signal light transmitted through different paths or signal light having different wavelengths is used in order to obtain a signal having low correlation in optical transmission, the transmission capacity of the entire system is reduced from the viewpoint of transmission capacity.
- An object of the present invention is to provide an optical transmission system that can improve reception characteristics without reducing transmission capacity by using a plurality of coherent receivers for one or a plurality of signal lights. .
- the first invention is an optical transmission system for transmitting signal light between a transmitter and a receiver connected via an optical fiber transmission line, wherein the transmitter transmits an optical carrier signal of optical frequency ⁇ f1 with two data
- the signal light that is polarization multiplexed and modulated by the signal train is generated and sent to the optical fiber transmission line, and the receiving unit is close to the optical frequency f1 of the signal light and has optical frequencies f11 and f12 that satisfy 11f11 ⁇ f12.
- Digital signal processing by inputting two coherent receivers for coherent detection of signal light using two LO lights controlled at a predetermined optical frequency interval ⁇ F and electric signals output from each coherent receiver And a digital signal processing unit that demodulates two data signal sequences.
- the digital signal processing unit is a virtual reference that is close to the optical frequency f1 of the signal light with respect to the two LO lights.
- a process of obtaining the frequency difference ⁇ f2 of the other LO light from ⁇ f1- ⁇ F is performed, and two coherent receivers Applicable to the output of multiple phase rotation compensation circuits that input the electrical signals output from each of them and compensate for the phase rotation that occurs in each electrical signal due to the frequency difference ⁇ f1, ⁇ f2.
- a waveform equalization circuit that performs equalization processing, and a phase estimation circuit that compensates for the residual component of phase rotation caused by the frequency difference between the optical frequency f1 ⁇ of the signal light and the virtual reference frequency f1 'with respect to the output of the waveform equalization circuit With.
- the receiving unit includes a frequency difference measuring device that measures the frequency interval ⁇ F ′ instead of controlling the optical frequency interval of the two LO lights to ⁇ F
- the digital signal processing unit includes: Based on the measured frequency interval ⁇ F ′, when the frequency difference ⁇ f1 of one LO light with respect to the reference frequency f1 ′ is set, a process of obtaining the frequency difference ⁇ f2 of the other LO light from ⁇ f1 ⁇ F ′ is performed.
- an optical transmission system for transmitting signal light between a transmitter and a receiver connected via an optical fiber transmission line, wherein the transmitter transmits an optical carrier signal having an optical frequency f1 with two data.
- signal light that is polarization-multiplexed and modulated by the signal train is generated and transmitted to the optical fiber transmission line.
- the receiving unit is close to the optical frequency f1 of the signal light, and f11 ⁇ f12 ⁇ ... ⁇ f1p, p is 3 Using the first LO light to pth LO light controlled at predetermined optical frequency intervals ⁇ F1 to ⁇ F (p ⁇ 1) at optical frequencies f11, f12,.
- P coherent receivers each for coherent detection of light
- a digital signal processing unit that receives an electric signal output from each coherent receiver, performs digital signal processing, and demodulates two data signal sequences Configuration and digital signal processing Is set to a virtual reference frequency f1 ′ that is close to the optical frequency f1 of the signal light with respect to the first LO light to the pth LO light, and the first LO light with respect to the reference frequency f1 ′ is set.
- the frequency difference ⁇ f1 is set
- the frequency difference ⁇ f2 of the second LO light is obtained from ⁇ f1 ⁇ F1
- the frequency difference ⁇ fp of the pth LO light is obtained from ⁇ f (p ⁇ 1) ⁇ F (p ⁇ 1).
- a plurality of phase rotation compensation circuits that perform processing to obtain, input each electrical signal output from the p coherent receivers, and compensate for phase rotation generated in each electrical signal due to the frequency difference ⁇ f1 to ⁇ fp;
- Waveform equalization circuit that performs adaptive equalization processing on the output of the phase rotation compensation circuit and the difference between the optical frequency f1 of the signal light and the virtual reference frequency f1 ′ with respect to the output of the waveform equalization circuit
- a phase estimation circuit that compensates for residual components of phase rotation.
- the receiving unit controls the frequency intervals ⁇ F1 ′ to ⁇ F instead of controlling the optical frequency intervals of the first LO light to the pth LO light to ⁇ F1 to ⁇ F (p ⁇ 1).
- (p-1) ′ is provided, and the digital signal processing unit includes the first LO light for the reference frequency f1′1 based on the measured frequency intervals ⁇ F1 ′ to ⁇ F (p ⁇ 1) ′.
- the frequency difference ⁇ f1 is set, the frequency differences ⁇ f2 to ⁇ fp of other LO lights are obtained from ⁇ f1 ⁇ F1 ′ to ⁇ f (p ⁇ 1) ⁇ F (p ⁇ 1) ′.
- an optical transmission system for transmitting signal light between a transmitter and a receiver connected via an optical fiber transmission line.
- the transmitter transmits optical carrier signals having optical frequencies f1 and f2, respectively.
- the first signal light and the second signal light that are polarization-multiplexed modulated with two data signal sequences are generated, and each signal light is wavelength-multiplexed and sent to the optical fiber transmission line.
- Signal light wavelength-multiplexed using two LO lights that are close to the optical frequencies f1 and f2 of the signal light and have optical frequencies f11 and f12 that are f11 ⁇ f12 and controlled at a predetermined optical frequency interval ⁇ F.
- Two coherent receivers for coherent detection of each of the signals input an electric signal output from each coherent receiver, perform digital signal processing, and transmit two data signal sequences transmitted by the first signal light;
- the digital signal processing unit includes a digital signal processing unit that demodulates two transmitted data signal sequences, and the digital signal processing unit is close to the optical frequencies f1 and f2 of the signal light with respect to the two LO lights, respectively.
- virtual reference frequencies f1 'and f2' are set and the frequency differences ⁇ f11 and ⁇ f12 of one LO light with respect to the reference frequencies f1 'and f2' are set, the frequency differences ⁇ f21 and ⁇ f22 of the other LO light are set.
- a first plurality of phase rotation compensation circuits that separate and output signal components transmitted by the first signal light, and a first that performs adaptive equalization processing on the outputs of the first plurality of phase rotation compensation circuits
- Waveform equalization circuit and first waveform A first phase estimation circuit for compensating for the residual component of phase rotation caused by the frequency difference between the optical frequency f1 of the first signal light and the virtual reference frequency f1 'with respect to the output of the conversion circuit, and two coherent receivers
- Each electrical signal output from the second signal is input, the phase rotation generated in each electrical signal due to the frequency difference ⁇ f12, ⁇ f22 is compensated, and the signal component transmitted by the second signal light is separated and output.
- a plurality of phase rotation compensation circuits a second waveform equalization circuit that performs adaptive equalization processing on the outputs of the second plurality of phase rotation compensation circuits, and an output of the second waveform equalization circuit
- a second phase estimation circuit that compensates for a residual component of phase rotation caused by a frequency difference between the optical frequency f2 of the signal light and the virtual reference frequency f2 ′.
- the receiving unit includes a frequency difference measuring device that measures the frequency interval ⁇ F ′ instead of controlling the optical frequency interval of the two LO lights to ⁇ F
- the digital signal processing unit includes: Based on the measured frequency interval ⁇ F ′, when the frequency differences ⁇ f11 and ⁇ f12 of one LO light with respect to the reference frequencies f1 ′ and f2 ′ are set, the frequency differences ⁇ f21 and ⁇ f22 of the other LO light are set to ⁇ f11 ⁇ F ′. , ⁇ f12 ⁇ F ′.
- a fourth invention is an optical transmission system for transmitting signal light between a transmitter and a receiver connected via an optical fiber transmission line, wherein n and m are integers of 2 or more, and k is 1 to n.
- the transmitter When the integer, i is an integer of 2 to m, the transmitter generates n signal lights obtained by polarization-multiplexing the optical carrier signals of the optical frequencies f1 to fn with two data signal sequences, respectively. It is configured to wavelength-multiplex n signal lights and send them to the optical fiber transmission line, and the receiving unit is close to the optical frequencies f1 to fn of the signal light and has optical frequencies f11 to f11 ⁇ f12 ⁇ .
- m coherent receivers for coherent detection of signal light using m LO lights each controlled by f1m ⁇ at predetermined optical frequency intervals ⁇ F1 to ⁇ F (m-1), and m coherent receptions 2 ⁇ n, input the electrical signal output from the machine and apply digital signal processing
- a digital signal processing unit that demodulates the data signal sequence, and the digital signal processing unit is a virtual reference frequency fk ′ that is close to the optical frequency fk of the signal light with respect to m LO lights.
- phase rotation compensation circuits that input each electrical signal output from the m coherent receivers and compensate for phase rotation generated in each electrical signal due to the frequency difference ⁇ fk, and a plurality of phase rotation compensation circuits Waveform equalization circuit that performs adaptive equalization processing on the output of the signal, and residual components of phase rotation caused by the frequency difference between the optical frequency ⁇ fk of the signal light and the virtual reference frequency fk ′ for the output of the waveform equalization circuit And a phase estimation circuit that compensates for.
- the receiving unit controls the frequency intervals ⁇ F1 ′ to ⁇ F (m ⁇ 1) ′ instead of controlling the optical frequency intervals of the m LO lights to ⁇ F1 to ⁇ F (m ⁇ 1).
- the digital signal processing unit sets a frequency difference ⁇ fk of one LO light with respect to the reference frequency fk ′ based on the measured frequency interval ⁇ F1 ′ to ⁇ F (m ⁇ 1) ′. Occasionally, a process for obtaining the frequency difference ⁇ fi of other LO light from ⁇ f (i ⁇ 1) ⁇ F (i ⁇ 1) is performed.
- the diversity effect can be achieved by the configuration using a plurality of coherent receivers for one or a plurality of signal lights, and the reception characteristics can be improved without reducing the transmission capacity.
- FIG. 3 is a diagram illustrating a configuration example of a digital signal processing unit 25 according to the first embodiment. It is a figure which shows the structure of Example 2 of this invention. It is a figure which shows the structure of Example 3 of this invention.
- FIG. 9 is a diagram illustrating a configuration example of a digital signal processing unit 25 according to a third embodiment. It is a figure which shows the structure of Example 5 of this invention.
- FIG. 10 is a diagram illustrating a configuration example of a digital signal processing unit 25 according to a fifth embodiment. It is a figure which shows the structure of Example 7 of this invention. It is a figure which shows the structure of Example 8 of this invention.
- FIG. 10 is a diagram illustrating a configuration example of a digital signal processing unit 25 according to a fifth embodiment. It is a figure which shows the structure of Example 7 of this invention. It is a figure which shows the structure of Example 8 of this invention.
- Example 10 is a diagram illustrating a configuration example of a digital signal processing unit 25 according to an eighth embodiment. It is a figure which shows the structure of Example 9 of this invention. It is a figure which shows the example of a demodulation signal by the conventional structure and this invention structure. It is a figure which shows the example of a demodulation signal by the conventional structure and this invention structure. It is a figure which shows the structure of Example 10 of this invention.
- FIG. 1 shows a configuration of a first embodiment of an optical transmission system according to the present invention.
- a transmission unit 10 and a reception unit 20 are connected via an optical fiber transmission line 50.
- the transmitter 10 includes a signal light source 11 and a polarization multiplexed vector modulator 12.
- the signal light source 11 outputs an optical carrier signal having an optical frequency f1.
- the polarization multiplexed vector modulator 12 performs polarization multiplexing modulation on the optical carrier signal having the optical frequency f1 output from the signal light source 11 with two data signal sequences Data1x and Data1y, and the generated signal light is an optical fiber transmission line 50. Output to.
- the receiving unit 20 includes an optical coupler 21, coherent receivers 22-1 and 22-2, a phase synchronization circuit 23, LO light sources 24-1 and 24-2, and a digital signal processing unit 25.
- the optical coupler 21 splits the signal light received via the optical fiber transmission line 50 into two and inputs it to the coherent receivers 22-1 and 22-2.
- the LO light sources 24-1 and 24-2 receive the LO light controlled at the predetermined optical frequency interval ⁇ F by the phase synchronization circuit 23 at the optical frequencies f11 and f12 adjacent to the optical frequency f1 of the signal light, and the coherent receiver 22- Input to 1, 22-2.
- f11 ⁇ f12 and ⁇ F f12 ⁇ f11.
- the coherent receivers 22-1 and 22-2 coherently detect the signal light having the optical frequency f1 branched by the optical coupler 21 with the LO light having the optical frequencies f11 and f12 and output the signal to the digital signal processing unit 25.
- the digital signal processing unit 25 performs digital signal processing on the electrical signals input from the coherent receivers 22-1 and 22-2, and demodulates the data signal sequences Data1x and Data1y.
- the optical frequencies f11 and f12 of the LO light sources 24-1 and 24-2 are set in the vicinity of the optical frequency f1 of the signal light. It is difficult to match the optical frequency f1 of the signal light.
- the phase synchronization circuit 23 can control the optical frequency interval ⁇ F of the two LO lights to a specified value, and the two LO lights fluctuate in the same frequency direction.
- FIG. 1 (2) when the frequency difference ⁇ f1 of one LO light is set with respect to a virtual reference frequency f1 ′ substantially equal to the optical frequency f1 of the signal light, the other LO light is set.
- phase rotation amount ⁇ f1 due to one LO light is determined based on the virtual reference frequency f1 ′ close to the optical frequency f1 of the signal light
- the phase rotation amount ⁇ f2 due to the other LO light is obtained.
- phase rotation amounts ⁇ f1 and ⁇ f2 included in the electrical signals input from the coherent receivers 22-1 and 22-2 are configured to compensate in the frequency domain.
- FIG. 2 illustrates a configuration example of the digital signal processing unit 25 according to the first embodiment.
- two complex signals corresponding to orthogonal polarization components output from the coherent receivers 22-1 and 22-2 are converted into A / D converters 1-11, 1-12, 1-21, and 1, respectively.
- Each dispersion compensation circuit performs common dispersion compensation corresponding to the total amount of chromatic dispersion in the optical fiber transmission line 50 on each input complex signal, and outputs complex signals E 1x , E 1y , E 2x , E 2y . To do.
- the phase rotation compensation circuits 3-11 and 3-12 receive the complex signals E 1x and E 1y , and the complex signal E compensates the phase rotation amount ⁇ f1 due to the frequency difference between the signal light having the optical frequency f1 and the LO light having the optical frequency f11. 1tx and E 1ty are output.
- the phase rotation compensation circuits 3-21 and 3-22 receive the complex signals E 2x and E 2y , and the complex signal E compensates the phase rotation amount ⁇ f2 due to the frequency difference between the signal light having the optical frequency f1 and the LO light having the optical frequency f12. 2tx and E 2ty are output.
- the waveform equalization circuit 4 inputs the complex signals E 1tx , E 1ty , E 2tx , E 2ty output from the phase rotation compensation circuits 3-11 , 3-12 , 3-21 , 3-22 and receives the polarization component. Each time, adaptive signal processing of the FIR filter is performed by maximum likelihood estimation, and complex signals E 1X and E 1Y are output.
- the complex signals E 1X and E 1Y include a phase rotation residual component generated by a frequency difference and a phase difference between the optical frequency f1 of the signal light and the virtual reference frequency f1 ′ of each LO light.
- the phase estimation circuits 5-1 and 5-2 output the complex signals compensated for the phase rotation residual components of the complex signals E 1X and E 1Y input from the waveform equalization circuit 4 to the discrimination circuits 6-1 and 6-2. .
- the identification circuits 6-1 and 6-2 demodulate and output the data signal sequences Data1x and Data1y from the input complex signal.
- the complex electric field of each polarization component of the signal light generated by polarization multiplexing modulation in the transmission unit 10 is represented as E1 , ix and E1 , iy .
- the complex electric fields E 1, ox and E 1, oy of the respective polarization components of the signal light transmitted through the optical fiber transmission line 50 are expressed by equation (1) using the transfer function matrix T 1 of the optical fiber transmission line 50.
- the signal light transmitted through the optical fiber transmission line 50 represented by the equation (1) is coherently detected by the coherent receivers 22-1 and 22-2, and the complex signals E 1x , E 1y , E shown in the equation (2) are obtained. 2x and E2y are output.
- Figures 1 (2) and (3) show the image.
- R 1 and R 2 in Expression (2) indicate matrices representing frequency characteristics of the coherent receiver generated from the phase rotation amounts ⁇ f1 and ⁇ f2 caused by the respective LO lights.
- exp (j2 ⁇ f1t) and exp (j2 ⁇ f2t) indicate phase rotation terms corresponding to the phase rotation amounts ⁇ f1 and ⁇ f2 by the respective LO lights.
- ⁇ 0 (t) represents a matrix representing the phase rotation generated from the frequency difference f1 ⁇ f1 ′ between the optical frequency f1 of the signal light and the virtual reference frequency f1 ′ of each LO light.
- [Phi] 1 and [Phi] 2 indicate matrices representing phase rotations resulting from the phase difference between the signal light and each LO light.
- t is time.
- phase rotation compensation circuits 3-11, 3-12, 3-21, 3-22 complex signals E 1tx , E 1ty , E 2tx in which the phase rotation amounts ⁇ f1, ⁇ f2 due to the frequency difference between the signal light and each LO light are compensated.
- E 2ty is expressed as in equation (3).
- phase rotation compensation circuits 3-11, 3-12, 3-21, 3-22 an adaptive equalization algorithm such as CMA or LMS generally used in the digital coherent method is used, and R 1 ⁇ 1 , R 2 -1 , ⁇ 1 -1 , ⁇ 2 -1 , T 1 -1 can be approximately calculated, and the phase rotation amounts ⁇ f1 and ⁇ f2 by each LO light can be compensated.
- An adaptive equalization algorithm such as CMA or LMS is described in Non-Patent Document 3.
- Fig. 1 (4) shows the image.
- the frequency difference between the optical frequency f1 of the signal light and the virtual reference frequency f1 ′ of each LO light, that is, ⁇ 0 (t) caused by the fluctuation remains uncompensated, but is common to the equation (3),
- the relative phase fluctuation of each equation is zero. Therefore, ⁇ 0 (t) can be compensated by the subsequent phase estimation circuits 5-1 and 5-2, similarly to a general digital coherent method.
- the transmission data E 1, ix , E 1, iy can be calculated with high accuracy by the diversity effect by using two different equations for the transmission signals E 1, ix , E 1, iy .
- FIG. 12 shows an example of a demodulated signal according to the conventional configuration and the configuration of Embodiment 1 of the present invention.
- a calculation example in the case of using two receiving systems having a frequency interval ⁇ F of each LO light of 12 GHz for a single polarization QPSK signal of 64 Gbit / s is shown.
- the OSNR at the time of reception was adjusted to 14 dB.
- the BER (Bit error rate) when using the conventional receiving system was 3.4 ⁇ 10 ⁇ 4
- the BER when using the present invention was confirmed to be 3.5 ⁇ 10 ⁇ 5 , an improvement of one digit. It was done.
- FIG. 3 shows the configuration of the second embodiment of the present invention.
- the receiving unit 20 of the first embodiment controls the frequency interval ⁇ F to a predetermined value by synchronizing the phases of each LO light, and compensates for the phase rotation amounts ⁇ f1 and ⁇ f2 obtained by the digital signal processing unit 25 in relation to ⁇ F. It was a configuration.
- the receiving unit 20 according to the second embodiment has a configuration in which the frequency interval ⁇ F of each LO light is measured and input to the digital signal processing unit 25 for processing.
- the frequency difference measuring device 26 measures the frequency interval ⁇ F of each LO light of the LO light sources 24-1 and 24-2, and gives it to the digital signal processing unit 25.
- ⁇ F can be obtained from the cycle of a beat signal obtained by combining two LO lights. Further, it can be calculated from the cos ( ⁇ F) component or sin ( ⁇ F) component obtained by inputting the two LO lights to the coherent receivers 22-1 and 22-2.
- the digital signal processing unit 25 determines the phase rotation amount ⁇ f1 due to the frequency difference between the signal light and one LO light, and further obtains the phase rotation amount ⁇ f2 due to the frequency difference between the signal light and the other LO light from the measured ⁇ F. In this configuration, the phase rotation amounts ⁇ f1 and ⁇ f2 are compensated. Other configurations are the same as those of the first embodiment.
- FIG. 4 shows the configuration of the third embodiment of the present invention.
- a transmission unit 10 and a reception unit 20 are connected via an optical fiber transmission line 50.
- the receiving unit 20 according to the third embodiment is configured to include p coherent receivers. p is an integer of 3 or more.
- the transmission unit 10 includes a signal light source 11 and a polarization multiplexed vector modulator 12.
- the signal light source 11 outputs an optical carrier signal having an optical frequency f1.
- the polarization multiplexing vector modulator 12 performs polarization multiplexing modulation on the optical carrier signal output from the signal light source 11 with the two data signal sequences Data1x and Data1y, and generates the signal light to the optical fiber transmission line 50. Output to.
- the receiving unit 20 includes an optical coupler 21, coherent receivers 22-1 to 22-p, a phase synchronization circuit 23, LO light sources 24-1 to 24-p, and a digital signal processing unit 25.
- the optical coupler 21 p-branches the signal light received via the optical fiber transmission line 50 and inputs it to the coherent receivers 22-1 to 22-p.
- the LO light sources 24-1 to 24-p have optical frequencies f11, f12,..., F1p that are close to the optical frequency f1 of the signal light, and predetermined optical frequency intervals ⁇ F1, ⁇ F2,. -1)
- the controlled LO light is input to the coherent receivers 22-1 to 22-p.
- the coherent receivers 22-1 to 22-p coherently detect the signal light having the optical frequency f1 branched by the optical coupler 21 with the LO light having the optical frequencies f11 to f1p, and output to the digital signal processing unit 25.
- the digital signal processing unit 25 performs digital signal processing on the electrical signals input from the coherent receivers 22-1 to 22-p, and demodulates the data signal sequences Data1x and Data1y.
- the frequency difference ⁇ f1 of one LO light is set with respect to a virtual reference frequency f1 ′ substantially equal to the optical frequency f1 of the signal light, the frequency differences ⁇ f2 to ⁇ fp with the other LO lights are sequentially as follows: I want.
- ⁇ fp ⁇ f (p-1) - ⁇ F (p-1)
- the phase rotation amounts ⁇ f1 to ⁇ fp included in the electrical signals input from the coherent receivers 22-1 to 22-p are compensated.
- the data signal sequence can be demodulated without being affected by the frequency fluctuation of each LO light.
- FIG. 5 illustrates a configuration example of the digital signal processing unit 25 according to the third embodiment.
- two complex signals corresponding to orthogonal polarization components output from the coherent receivers 22-1 to 22-p are respectively converted into A / D converters 1-11, 1-12,. , 1-p2 is converted into a digital signal with a sampling period T, and then input to dispersion compensation circuits 2-11, 12-12,..., 2-p1, 2-p2.
- Each dispersion compensation circuit performs common dispersion compensation corresponding to the total chromatic dispersion amount in the optical fiber transmission line 50 on each input complex signal, and the complex signals E 1x , E 1y ,..., E px , E py Is output.
- phase rotation compensation circuits 3-11, 3-12,..., 3-p1, 3-p2 input complex signals E 1x , E 1y ,..., E px , E py , respectively,
- Complex signals E 1tx , E 1ty , ⁇ , E ptx , E pty that compensate for phase rotation amounts ⁇ f 1 to ⁇ fp due to the frequency difference are output.
- the waveform equalization circuit 4 inputs the complex signals E 1tx , E 1ty ,..., E ptx , E pty output from the phase rotation compensation circuits 3-11, 3-12,. Then, adaptive signal processing of the FIR filter is performed by maximum likelihood estimation for each polarization component, and complex signals E 1X and E 1Y are output.
- the complex signals E 1X and E 1Y include a phase rotation residual component generated by a frequency difference and a phase difference between the optical frequency f1 of the signal light and the virtual reference frequency f1 ′ of each LO light.
- the phase estimation circuits 5-1 and 5-2 output the complex signals compensated for the phase rotation residual components of the complex signals E 1X and E 1Y input from the waveform equalization circuit 4 to the discrimination circuits 6-1 and 6-2. .
- the identification circuits 6-1 and 6-2 demodulate and output the data signal sequences Data1x and Data1y from the input complex signal.
- the frequency interval ⁇ F1 ′ to ⁇ F (p -1) is assumed to have a frequency difference measuring device for measuring '.
- the frequency difference measuring device can be handled by the same configuration as in the second embodiment.
- the digital signal processing unit 25 determines the phase rotation amount ⁇ f1 depending on the frequency difference between the signal light and one LO light, and further determines the frequency of the signal light and the other LO light from the measured frequency interval ⁇ F1 ′ to ⁇ F (p ⁇ 1) ′.
- the phase rotation amounts ⁇ f2 to ⁇ fp due to the difference are sequentially obtained, and the respective phase rotation amounts ⁇ f1 to ⁇ fp are compensated.
- Other configurations are the same as those of the first embodiment.
- FIG. 6 shows the configuration of the fifth embodiment of the present invention.
- the transmission unit 10 and the reception unit 20 are connected via an optical fiber transmission line 50.
- the transmission unit 10 according to the fifth embodiment is configured to wavelength-multiplex and transmit the signal light having the optical frequencies f1 and f2.
- the transmission unit 10 includes signal light sources 11-1 and 11-2, polarization multiplexed vector modulators 12-1 and 12-2, and a wavelength multiplexer 13.
- the signal light source 11-1 outputs an optical carrier signal having an optical frequency f1.
- the signal light source 11-2 outputs an optical carrier signal having an optical frequency f2.
- the polarization multiplexed vector modulator 12-1 generates signal light obtained by polarization multiplexing modulation of the optical carrier signal having the optical frequency f1 output from the signal light source 11-1 with two data signal sequences Data1x and Data1y.
- the polarization multiplexing vector modulator 12-2 generates signal light obtained by polarization multiplexing modulation of the optical carrier signal having the optical frequency f2 output from the signal light source 11-2 with two data signal sequences Data2x and Data2y.
- the wavelength multiplexer 13 outputs signal light obtained by combining the signal lights of the optical frequencies f1 and f2 output from the polarization multiplexing vector modulators 12-1 and 12-2 to the optical fiber transmission line 50.
- the receiving unit 20 includes an optical coupler 21, coherent receivers 22-1 and 22-2, a phase synchronization circuit 23, LO light sources 24-1 and 24-2, and a digital signal processing unit 25.
- the optical coupler 21 splits the signal light received via the optical fiber transmission line 50 into two and inputs it to the coherent receivers 22-1 and 22-2.
- the LO light source 24-1 inputs LO light having an optical frequency f11 adjacent to the optical frequency f1 of the signal light to the coherent receiver 22-1.
- the LO light source 24-2 inputs LO light having an optical frequency f12 close to the optical frequency f2 of the signal light to the coherent receiver 22-2.
- the optical frequencies LOf11 and f12 of the LO light are controlled by the phase synchronization circuit 23 at a predetermined optical frequency interval ⁇ F.
- f11 ⁇ f12 and ⁇ F f12 ⁇ f11.
- the coherent receiver 22-1 coherently detects the signal light having the optical frequencies f1 and f2 branched by the optical coupler 21 with the LO light having the optical frequency f11 and outputs the signal light to the digital signal processing unit 25.
- the coherent receiver 22-2 coherently detects the signal light having the optical frequencies f1 and f2 branched by the optical coupler 21 with the LO light having the optical frequency f12 and outputs the signal light to the digital signal processing unit 25.
- the digital signal processing unit 25 performs digital signal processing on the electrical signals input from the coherent receivers 22-1 and 22-2, and demodulates the data signal sequences Data1x and Data1y and the data signal sequences Data2x and Data2y.
- the optical frequencies f11 and f12 of the LO light sources 24-1 and 24-2 are set in the vicinity of the optical frequencies f1 and f2 of the signal light.
- the optical frequency interval ⁇ F is controlled to a specified value.
- ⁇ f21 ⁇ f11 - ⁇ F
- phase rotation amounts ⁇ f11 and ⁇ f12 by one LO light are determined based on virtual reference frequencies f1 ′ and f2 ′ that are close to the optical frequencies f1 and f2 of each signal light, phase rotation by the other LO light
- the amounts ⁇ f21 and ⁇ f22 are obtained.
- the phase rotation amounts ⁇ f11 and ⁇ f12 due to one LO light included in the electric signals input from the coherent receivers 22-1 and 22-2 are compensated, and the other LO light is compensated.
- FIG. 7 illustrates a configuration example of the digital signal processing unit 25 according to the fifth embodiment.
- two complex signals corresponding to orthogonal polarization components output from the coherent receivers 22-1 to 22-2 are converted into A / D converters 1-11, 1-12, 1-21, 1 respectively.
- Each dispersion compensation circuit performs common dispersion compensation corresponding to the total amount of chromatic dispersion in the optical fiber transmission line 50 on each input complex signal, and outputs complex signals E 1x , E 1y , E 2x , E 2y . To do.
- the phase rotation compensation circuits 3-111 and 3-112 receive the complex signals E 1x and E 1y , and the complex signal E compensates the phase rotation amount ⁇ f11 due to the frequency difference between the signal light of the optical frequency f1 and the LO light of the optical frequency f11. 11tx and E 11ty are output.
- the phase rotation compensation circuits 3-121 and 3-122 receive the complex signals E 2x and E 2y , and the complex signal E compensates the phase rotation amount ⁇ f21 due to the frequency difference between the signal light of the optical frequency f1 and the LO light of the optical frequency f12. Outputs 12tx and E 12ty .
- Phase rotation compensation circuit 3-211, 3-212 is a complex signal E 1x, enter the E 1y, the optical frequency f2 signal light and the complex signal E obtained by compensating the phase rotation amount ⁇ f12 by the frequency difference between the LO light optical frequency f11 21tx , E21ty ) is output.
- the phase rotation compensation circuits 3-221 and 3-222 receive the complex signals E 2x and E 2y and compensate the complex signal E that compensates for the phase rotation amount ⁇ f22 caused by the frequency difference between the signal light having the optical frequency f2 and the LO light having the optical frequency f12. 22tx and E 22ty are output.
- the waveform equalization circuit 4-1 receives the complex signals E 11tx , E 11ty , E 12tx , E 12ty output from the phase rotation compensation circuits 3-111, 3-112, 3-121 and 3-122, FIR filter adaptive signal processing is performed by maximum likelihood estimation for each wave component, and complex signals E 1X and E 1Y are output.
- the complex signals E 1X and E 1Y include a phase rotation residual component generated by a frequency difference and a phase difference between the optical frequency f1 of the signal light and the virtual reference frequency f1 ′ of each LO light.
- the phase estimation circuits 5-11 and 5-12 input the complex signals compensated for the phase rotation residual components of the complex signals E 1X and E 1Y input from the waveform equalization circuit 4-1 to the discrimination circuits 6-11 and 6-12. Output.
- the identification circuits 6-11 and 6-12 demodulate and output the data signal sequences Data1x and Data1y from the input complex signal.
- the waveform equalization circuit 4-2 receives the complex signals E 21tx , E 21ty , E 22tx , E 22ty output from the phase rotation compensation circuits 3-211, 3-212, 3-221, 3-222, FIR filter adaptive signal processing is performed by maximum likelihood estimation for each wave component, and complex signals E 2X and E 2Y are output.
- the complex signals E 2X and E 2Y include a phase rotation residual component generated by a frequency difference and a phase difference between the optical frequency f2 of the signal light and the virtual reference frequency f2 ′ of each LO light.
- the phase estimation circuits 5-21 and 5-22 provide the complex signals compensated for the phase rotation residual components of the complex signals E 2X and E 2Y input from the waveform equalization circuit 4-2 to the discrimination circuits 6-21 and 6-22. Output.
- the identification circuits 6-21 and 6-22 demodulate and output the data signal sequences Data2x and Data2y from the input complex signal.
- FIG. 13 shows an example of a demodulated signal according to the conventional configuration and the configuration of the fifth embodiment.
- the OSNR at the time of reception was adjusted to 15 dB.
- a frequency interval of 32 GHz is the limit of wavelength demultiplexing for an optical signal with a symbol rate of 32 Gboud.
- the cross-talk component was separated from the optical signal having a symbol rate of 32 Gboud and the wavelength multiplexed signal having a frequency interval of 25 GHz, and the DP-QPSK signal was demodulated. .
- Example 6 is configured to include a frequency difference measuring device that measures the frequency interval ⁇ F ′ ⁇ ⁇ instead of controlling the optical frequency interval of each LO light to ⁇ F instead of the phase synchronization circuit 23 of Example 5.
- the frequency difference measuring device can be handled by the same configuration as in the second embodiment.
- the digital signal processing unit 25 determines phase rotation amounts ⁇ f11 and ⁇ f12 depending on the frequency difference between each signal light and one LO light, and further performs phase rotation due to the frequency difference between each signal light and the other LO light from the measured frequency interval ⁇ F ′.
- the amounts ⁇ f21 and ⁇ f22 are obtained, and the respective phase rotation amounts ⁇ f11, ⁇ f12, ⁇ f21, and ⁇ f22 are compensated.
- Other configurations are the same as those of the first embodiment.
- an electric signal detected by using two coherent receivers for one signal light is input to a digital signal processing unit, and a signal subjected to phase rotation compensation is subjected to diversity signal processing.
- the signal light is demodulated.
- an electrical signal detected using p coherent receivers for one signal light is input to a digital signal processing unit, and each signal subjected to phase rotation compensation is subjected to diversity signal processing to demodulate the signal light. It is the structure to do. Thus, the diversity effect can be enhanced by increasing the number of coherent receivers.
- electrical signals detected using two coherent receivers for two signal lights are input to a digital signal processing unit, and signals output from dispersion compensation circuits corresponding to the respective coherent receivers are input.
- the signal light is branched into the same number of two as the signal light, and the signals subjected to phase rotation compensation are each subjected to diversity signal processing to demodulate the two signal lights.
- two coherent receivers are shared for each signal light, branched in the digital signal processing unit, and processed for each signal light
- the two signal lights can be separated and demodulated with a minimum configuration.
- three or more coherent receivers are used as in the third embodiment shown in FIGS. 4 and 5, and output from the dispersion compensation circuit corresponding to each coherent receiver in the digital signal processing unit. It is also possible to increase the diversity effect by branching the signal to the same number as the signal light and performing the same processing.
- a dispersion compensation circuit corresponding to each coherent receiver in the digital signal processing unit as in the fifth embodiment shown in FIGS. 6 and 7, using any plurality of coherent receivers for three or more signal lights. It is also possible to increase the diversity effect by branching the signal output from the same number as the signal light and performing the same processing.
- FIG. 8 shows a configuration of the seventh embodiment of the present invention.
- the transmission unit 10 and the reception unit 20 are connected via an optical fiber transmission line 50.
- the transmission unit 10 according to the seventh embodiment is configured to transmit wavelength-multiplexed signal light having optical frequencies f1 and f2.
- the transmission unit 10 includes signal light sources 11-1 and 11-2, polarization multiplexed vector modulators 12-1 and 12-2, and a wavelength multiplexer 13.
- the signal light source 11-1 outputs an optical carrier signal having an optical frequency f1.
- the signal light source 11-2 outputs an optical carrier signal having an optical frequency f2.
- the polarization multiplexed vector modulator 12-1 generates signal light obtained by polarization multiplexing modulation of the optical carrier signal having the optical frequency f1 output from the signal light source 11-1 with two data signal sequences Data1x and Data1y.
- the polarization multiplexing vector modulator 12-2 generates signal light obtained by polarization multiplexing modulation of the optical carrier signal having the optical frequency f2 output from the signal light source 11-2 with two data signal sequences Data2x and Data2y.
- the wavelength multiplexer 13 outputs signal light obtained by combining the signal lights of the optical frequencies f1 and f2 output from the polarization multiplexing vector modulators 12-1 and 12-2 to the optical fiber transmission line 50.
- the receiving unit 20 includes an optical coupler 21, coherent receivers 22-1 to 22-3, a phase synchronization circuit 23, LO light sources 24-1 to 24-3, and a digital signal processing unit 25.
- the optical coupler 21 splits the wavelength multiplexed signal light received via the optical fiber transmission line 50 into three and inputs it to the coherent receivers 22-1 to 22-3.
- the LO light source 24-1 inputs LO light having an optical frequency f11 adjacent to the optical frequency f1 of the signal light to the coherent receiver 22-1.
- the LO light source 24-2 inputs LO light having an optical frequency f12 near the optical frequencies f1 and f2 of the signal light to the coherent receiver 22-2.
- the LO light source 24-3 inputs LO light having an optical frequency f13 adjacent to the optical frequency f2 of the signal light to the coherent receiver 22-3.
- the optical frequencies f11, f12, and f13 of the LO light are controlled by the phase synchronization circuit 23 at predetermined optical frequency intervals ⁇ F1 and ⁇ F2, respectively.
- the coherent receivers 22-1 to 22-3 coherently detect the signal lights of the optical frequencies f1 and f2 branched by the optical coupler 21 with the LO lights of the optical frequencies f11, f12, and f13, respectively, and send them to the digital signal processing unit 25. Output.
- the digital signal processing unit 25 performs digital signal processing on the electrical signals input from the coherent receivers 22-1 to 22-3, and demodulates the data signal sequences Data1x and Data1y and the data signal sequences Data2x and Data2y.
- the optical frequencies f11, f12, and f13 of the LO light sources 24-1 to 24-3 are set in the vicinity of the optical frequencies f1 and f2 of the signal light.
- the optical frequency interval ⁇ F1, ⁇ F2 of light is controlled to a specified value.
- the frequency difference ⁇ f12 of the LO light source 24-1 is set with respect to a virtual reference frequency f2 ′ substantially equal to the optical frequency f2 of the other signal light
- phase rotation amounts ⁇ f11 and ⁇ f12 by one LO light are determined based on virtual reference frequencies f1 ′ and f2 ′ that are close to the optical frequencies f1 and f2 of each signal light, phase rotation by other LO lights
- the quantities ⁇ f21, ⁇ f31, ⁇ f22, and ⁇ f32 are obtained.
- the phase rotation compensation circuit of the digital signal processing unit 25 compensates for phase rotation amounts ⁇ f11 and ⁇ f12 due to one LO light included in the electrical signals input from the coherent receivers 22-1 to 22-3, and other LO light.
- the frequency intervals ⁇ F1 ′ and ⁇ F2 ′ are measured to perform digital signal processing. It is good also as composition given to part 25.
- FIG. 9 shows the configuration of the eighth embodiment of the present invention.
- the optical transmission system of the eighth embodiment includes the optical frequencies f1 and f2 of the signal light sources 11-1 and 11-2 of the transmitting unit 10 in the optical transmission system of the fifth embodiment illustrated in FIG.
- the LO light sources 24-1 and 24-2 are set so that the optical frequencies f11 and f12 are substantially equal. That is, the optical frequency f11 of the LO light source 24-1 is set to a frequency f1 ′ substantially equal to the optical frequency f1 of one signal light, and the optical frequency f12 of the LO light source 24-2 is set to the optical frequency f2 of the other signal light. Is set to a frequency f2 ′ substantially equal to
- the optical frequencies f1 and f2 of the signal light sources 11-1 and 11-2 of the transmission unit 10 are controlled by the phase synchronization circuit 14 at a predetermined optical frequency interval ⁇ F.
- the optical frequencies f11 and f12 of the LO light sources 24-1 and 24-2 of the receiving unit 20 are controlled by the phase synchronization circuit 23 at a predetermined optical frequency interval ⁇ F. Therefore, the two signal lights and the two LO lights are maintained in an almost equal optical frequency relationship while their optical frequency intervals ⁇ F are controlled equally.
- the optical frequencies f11 and f12 of the LO light sources 24-1 and 24-2 are set to optical frequencies f1 ′ and f2 ′ substantially equal to the optical frequencies f1 and f2 of the signal light, respectively.
- the optical frequency interval ⁇ F between the two signal lights and the two LO lights is controlled to a specified value.
- phase rotation amount ⁇ f12 by one LO light is determined based on the frequencies f1 ′ and f2 ′ that are substantially equal to the optical frequencies f1 and f2 of each signal light
- the phase rotation amount ⁇ f21 by the other LO light can be obtained.
- the phase rotation compensation circuit of the digital signal processing unit 25 compensates for the phase rotation amounts ⁇ f12 and ⁇ f21 due to the other LO light included in the electrical signals input from the coherent receivers 22-1 and 22-2, thereby obtaining each LO light.
- FIG. 10 illustrates a configuration example of the digital signal processing unit 25 according to the eighth embodiment.
- two complex signals corresponding to orthogonal polarization components output from the coherent receivers 22-1 to 22-2 are converted into A / D converters 1-11, 1-12, 1-21, 1 respectively.
- Each dispersion compensation circuit performs common dispersion compensation corresponding to the total amount of chromatic dispersion in the optical fiber transmission line 50 on each input complex signal, and outputs complex signals E 1x , E 1y , E 2x , E 2y . To do.
- the complex signals E 1x and E 1y output from the dispersion compensation circuits 2-11 and 2-12 are input to the waveform equalization circuit 4-1 as they are.
- the phase rotation compensation circuits 3-121 and 3-122 receive the complex signals E 2x and E 2y from the dispersion compensation circuits 2-21 and 22-22, and the frequency of the signal light at the optical frequency f1 and the LO light at the optical frequency f12.
- Complex signals E 2tx and E 2ty compensated for the phase rotation amount ⁇ f21 due to the difference are output.
- the complex signals E 2x and E 2y output from the dispersion compensation circuits 2-21 and 2-22 are input to the waveform equalization circuit 4-2 as they are.
- the phase rotation compensation circuits 3-211 and 3-212 receive the complex signals E 1x and E 1y from the dispersion compensation circuits 2-11 and 12-12, and the frequency difference between the signal light at the optical frequency f2 and the LO light at the optical frequency f11.
- the complex signals E 1tx and E 1ty compensated for the phase rotation amount ⁇ f12 by the above are output.
- the waveform equalization circuit 4-1 receives complex signals E 1x , E 1y , E 2tx , E 2ty , performs adaptive signal processing of the FIR filter by maximum likelihood estimation for each polarization component, and outputs complex signals E 1X , E 1Y is output.
- the complex signals E 1X and E 1Y include a phase rotation residual component caused by a frequency difference and a phase difference between the optical frequency f1 of the signal light and the optical frequency f11 of each LO light.
- the phase estimation circuits 5-11 and 5-12 input the complex signals compensated for the phase rotation residual components of the complex signals E 1X and E 1Y input from the waveform equalization circuit 4-1 to the discrimination circuits 6-11 and 6-12. Output.
- the identification circuits 6-11 and 6-12 demodulate and output the data signal sequences Data1x and Data1y from the input complex signal.
- the waveform equalization circuit 4-2 receives complex signals E 2x , E 2y , E 1tx , E 1ty , performs adaptive signal processing of the FIR filter by maximum likelihood estimation for each polarization component, and outputs complex signals E 2X , E 2Y is output.
- the complex signals E 2X and E 2Y include a phase rotation residual component generated by a frequency difference and a phase difference between the optical frequency f2 of the signal light and the optical frequency f12 of each LO light.
- the phase estimation circuits 5-21 and 5-22 provide the complex signals compensated for the phase rotation residual components of the complex signals E 2X and E 2Y input from the waveform equalization circuit 4-2 to the discrimination circuits 6-21 and 6-22. Output.
- the identification circuits 6-21 and 6-22 demodulate and output the data signal sequences Data2x and Data2y from the input complex signal.
- FIG. 11 shows the configuration of the ninth embodiment of the present invention.
- the optical transmission system according to the ninth embodiment includes signal light sources 11-1 and 11-2 controlled by the phase synchronization circuit 14 according to the eighth embodiment, and an LO light source 24-1 controlled by the phase synchronization circuit 23.
- mode-lock light sources 32 and 42 are used, respectively, and a transmission / reception shared configuration is further provided. That is, the signal light that is polarization-multiplexed and modulated by the transmission / reception unit 101 and further wavelength-multiplexed is transmitted to the transmission / reception unit 102 via the optical fiber transmission line 50 and demodulated, and is also polarization-modulated by the transmission / reception unit 102. Further, the wavelength-multiplexed signal light is transmitted to the transmission / reception unit 101 via the optical fiber transmission line 50 ′ and demodulated.
- the mode-lock light source 32 of the transmission / reception unit 101 generates CW light of n frequencies f1, f2,..., Fn having a uniform frequency interval ⁇ f that is phase-synchronized based on a signal of frequency ⁇ f input from the oscillator 31.
- n is an integer of 2 or more, and f1 ⁇ f2 ⁇ .
- the wavelength demultiplexer 33 demultiplexes the output from the mode-locked light source 32 into n CW lights having a uniform frequency interval ⁇ f, and inputs the demultiplexed signals to the wavelength multiplexed vector modulators 12-1 to 12-n, respectively.
- Other configurations are the same as those of the eighth embodiment shown in FIG.
- the mode-locked light source 42 of the transmitting / receiving unit 102 generates CW light of m frequencies f1 ′, f2 ′,..., Fm ′ with a uniform frequency interval ⁇ f that is phase-synchronized based on the signal of the frequency ⁇ f input from the oscillator 41 To do.
- m is an integer of 2 or more
- the wavelength demultiplexer 43 branches the output from the mode-locked light source 42 into m CW lights having a uniform frequency interval ⁇ f, and inputs them to the coherent receivers 22-1 to 22-m, respectively.
- Other configurations are the same as those of the eighth embodiment shown in FIG.
- the mode-locked light source 42 of the transmitting / receiving unit 102 also generates CW light of n frequencies f1, f2,..., Fn with a uniform frequency interval ⁇ f, like the mode-locked light source 32 of the transmitting / receiving unit 101.
- the wavelength demultiplexer 33 demultiplexes the output from the mode-locked light source 32 into n CW lights having a uniform frequency interval ⁇ f, and inputs the demultiplexed signals to the wavelength multiplexed vector modulators 12-1 to 12-n, respectively.
- Other configurations are the same as those of the eighth embodiment shown in FIG.
- the mode-locked light source 32 of the transmission / reception unit 101 also generates CW light of m frequencies f1 ′, f2 ′,..., Fm ′ with a uniform frequency interval ⁇ f, like the mode-locking light source 42 of the transmission / reception unit 102.
- the wavelength demultiplexer 43 demultiplexes the output from the mode-locked light source 32 into m CW lights having a uniform frequency interval ⁇ f, and inputs them to the coherent receivers 22-1 to 22-m, respectively.
- Other configurations are the same as those of the eighth embodiment shown in FIG.
- the signal light can be transmitted bidirectionally between the transmission / reception unit 101 and the transmission / reception unit 102 while sharing the mode-lock light sources 32 and 42, respectively.
- the LO light source controlled by the phase synchronization circuit 23 is the ninth embodiment. It can replace with the structure using the mode lock light source shown in FIG.
- FIG. 14 shows the configuration of Embodiment 10 of the present invention.
- the optical transmission system according to the tenth embodiment includes M transmission units 10-1 to 10-M similar to the transmission unit 10 according to the first embodiment illustrated in FIG.
- the receivers 20-1 to 20-M are configured to perform wavelength multiplexing transmission of signal light having different optical frequencies via the optical fiber transmission line 50.
- M is an integer of 2 or more.
- the transmitting unit 10-1 outputs signal light having an optical frequency f1 that has been polarization multiplexed.
- the transmission unit 10-M outputs signal light having an optical frequency fM subjected to polarization multiplexing modulation.
- the signal light of each optical frequency is wavelength multiplexed by the wavelength multiplexer 51 and output to the optical fiber transmission line 50.
- the wavelength multiplexed signal light received via the optical fiber transmission line 50 is wavelength-separated by the wavelength demultiplexer 52 and input to the receiving units 20-1 to 20-M.
- the receiving unit 20-1 processes the signal light having the optical frequency f1.
- the receiving unit 20-M processes the signal light having the optical frequency fM.
- the structure of the transmission part 10 and the receiving part 20 is not restricted to Example 1 shown in FIG. 1, The structure in another Example may be sufficient.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
Abstract
Description
図1において、実施例1の光伝送システムは、送信部10と受信部20が光ファイバ伝送路50を介して接続される。送信部10は、信号光源11と偏波多重ベクトル変調器12とにより構成される。信号光源11は、光周波数 f1 の光キャリア信号を出力する。偏波多重ベクトル変調器12は、信号光源11から出力される光周波数 f1 の光キャリア信号を2つのデータ信号列Data1x,Data1yで偏波多重変調し、生成された信号光を光ファイバ伝送路50に出力する。
Δf2=Δf1-ΔF
図2において、コヒーレント受信機22-1,22-2から出力された直交する偏波成分に相当するそれぞれ2つの複素信号は、A/Dコンバータ1-11,1-12,1-21,1-22によってサンプリング周期Tでデジタル信号に変換された後、分散補償回路2-11,2-12,2-21,2-22に入力される。各分散補償回路は、入力された各複素信号に対して光ファイバ伝送路50における総波長分散量に相当する共通の分散補償を施し、複素信号E1x,E1y,E2x,E2yを出力する。
実施例1の受信部20は、各LO光を位相同期させることにより周波数間隔ΔFを規定値に一定制御し、デジタル信号処理部25でΔFとの関係で求まる位相回転量Δf1,Δf2を補償する構成であった。実施例2の受信部20は、各LO光の周波数間隔ΔFを測定してデジタル信号処理部25に入力して処理する構成である。
図4において、実施例3の光伝送システムは、送信部10と受信部20が光ファイバ伝送路50を介して接続される。実施例3の受信部20は、p個のコヒーレント受信機を有する構成である。pは3以上の整数である。
Δf2=Δf1-ΔF1
Δf3=Δf2-ΔF2
…
Δfp=Δf(p-1)-ΔF(p-1)
図5において、コヒーレント受信機22-1~22-pから出力された直交する偏波成分に相当するそれぞれ2つの複素信号は、A/Dコンバータ1-11,1-12,~,1-p1,1-p2によってサンプリング周期Tでデジタル信号に変換された後、分散補償回路2-11,2-12,~,2-p1,2-p2に入力される。各分散補償回路は、入力された各複素信号に対して光ファイバ伝送路50における総波長分散量に相当する共通の分散補償を施し、複素信号E1x,E1y,~,Epx,Epyを出力する。
図6において、実施例5の光伝送システムは、送信部10と受信部20が光ファイバ伝送路50を介して接続される。実施例5の送信部10は、光周波数f1,f2の信号光を波長多重して送信する構成である。
Δf21 =Δf11 -ΔF
また、他方の信号光の光周波数f2とほぼ等しい仮想的な基準周波数f2' に対して、一方のLO光の周波数差Δf12 を設定すると、他方のLO光との周波数差Δf22 は以下のように求まる。
Δf22 =Δf12 -ΔF
図7において、コヒーレント受信機22-1~22-2から出力された直交する偏波成分に相当するそれぞれ2つの複素信号は、A/Dコンバータ1-11,1-12,1-21,1-22によってサンプリング周期Tでデジタル信号に変換された後、分散補償回路2-11,2-12,2-21,2-22に入力される。各分散補償回路は、入力された各複素信号に対して光ファイバ伝送路50における総波長分散量に相当する共通の分散補償を施し、複素信号E1x,E1y,E2x,E2yを出力する。
図8において、実施例7の光伝送システムは、送信部10と受信部20が光ファイバ伝送路50を介して接続される。実施例7の送信部10は、光周波数f1,f2の信号光を波長多重して送信する構成である。
Δf21 =Δf11 -ΔF1
Δf31 =Δf21 -ΔF2
Δf22 =Δf12 -ΔF1
Δf32 =Δf22 -ΔF2
図9において、実施例8の光伝送システムは、図6に示す実施例5の光伝送システムにおける送信部10の信号光源11-1,11-2の光周波数f1,f2と、受信部20のLO光源24-1,24-2の光周波数 f11,f12 がほぼ等しくなるように設定する。すなわち、LO光源24-1の光周波数f11 は、一方の信号光の光周波数f1とほぼ等しい周波数f1' に設定し、LO光源24-2の光周波数f12 は、他方の信号光の光周波数f2とほぼ等しい周波数f2' に設定する。
Δf11 =0
Δf22 =0
Δf12 =ΔF
Δf21 =-ΔF
図10において、コヒーレント受信機22-1~22-2から出力された直交する偏波成分に相当するそれぞれ2つの複素信号は、A/Dコンバータ1-11,1-12,1-21,1-22によってサンプリング周期Tでデジタル信号に変換された後、分散補償回路2-11,2-12,2-21,2-22に入力される。各分散補償回路は、入力された各複素信号に対して光ファイバ伝送路50における総波長分散量に相当する共通の分散補償を施し、複素信号E1x,E1y,E2x,E2yを出力する。
図11において、実施例9の光伝送システムは、実施例8における位相同期回路14により制御される信号光源11-1,11-2と、位相同期回路23により制御されるLO光源24-1,24-2に代えて、それぞれモードロック光源32,42を用い、さらに送受信共用構成としたことを特徴とする。すなわち、送受信部101で偏波多重変調され、さらに波長多重された信号光は、光ファイバ伝送路50を介して送受信部102に伝送されて復調されるとともに、送受信部102で偏波多重変調され、さらに波長多重された信号光は、光ファイバ伝送路50’を介して送受信部101に伝送されて復調される構成である。
図14において、実施例10の光伝送システムは、図1に示す実施例1の送信部10と同様のM個の送信部10-1~10-Mと、受信部20と同様のM個の受信部20-1~20-Mを備え、光ファイバ伝送路50を介して異なる光周波数の信号光を波長多重伝送する構成である。ここで、Mは2以上の整数である。
2 分散補償回路
3 位相回転補償回路
4 波形等化回路
5 位相推定回路
6 識別回路
10 送信部
11 信号光源
12 偏波多重ベクトル変調器
13 波長合波器
14 位相同期回路
20 受信部
21 光カプラ
22 コヒーレント受信機
23 位相同期回路
24 LO光源
25 デジタル信号処理部
26 周波数差測定器
31,41 発振器
32,42 モードロック光源
33,43 波長分波器
50 光ファイバ伝送路
51 波長合波器
52 波長分波器
Claims (8)
- 光ファイバ伝送路を介して接続される送信部と受信部との間で信号光を伝送する光伝送システムにおいて、
前記送信部は、光周波数 f1 の光キャリア信号を2つのデータ信号列で偏波多重変調した信号光を生成し、前記光ファイバ伝送路に送出する構成であり、
前記受信部は、前記信号光の光周波数 f1 と近接しかつ f11<f12 である光周波数f11,f12 で、所定の光周波数間隔ΔFに制御された2つのLO光を用いて、前記信号光をそれぞれコヒーレント検波する2つのコヒーレント受信機と、各コヒーレント受信機から出力される電気信号を入力してデジタル信号処理を施し、前記2つのデータ信号列を復調するデジタル信号処理部とを備えた構成であり、
前記デジタル信号処理部は、
前記2つのLO光に対して、前記信号光の光周波数 f1 と近接する仮想的な基準周波数f1' が設定され、当該基準周波数f1' に対する一方のLO光の周波数差Δf1が設定されたときに他方のLO光の周波数差Δf2をΔf1-ΔFから求める処理を行い、
前記2つのコヒーレント受信機から出力される各電気信号を入力し、前記周波数差Δf1,Δf2に起因して各電気信号に生じる位相回転を補償する複数の位相回転補償回路と、
前記複数の位相回転補償回路の出力に対して適応等化処理を行う波形等化回路と、
前記波形等化回路の出力に対して前記信号光の光周波数 f1 と前記仮想的な基準周波数f1' の周波数差によって生じる位相回転の残留成分を補償する位相推定回路と
を備えたことを特徴とする光伝送システム。 - 請求項1に記載の光伝送システムにおいて、
前記受信部は、前記2つのLO光の光周波数間隔をΔFに制御する代わりにその周波数間隔ΔF’を測定する周波数差測定器を備え、
前記デジタル信号処理部は、前記測定した周波数間隔ΔF’に基づいて、前記基準周波数f1' に対する一方のLO光の周波数差Δf1を設定したときに他方のLO光の周波数差Δf2をΔf1-ΔF’から求める処理を行う
ことを特徴とする光伝送システム。 - 光ファイバ伝送路を介して接続される送信部と受信部との間で信号光を伝送する光伝送システムにおいて、
前記送信部は、光周波数 f1 の光キャリア信号を2つのデータ信号列で偏波多重変調した信号光を生成し、前記光ファイバ伝送路に送出する構成であり、
前記受信部は、前記信号光の光周波数 f1 と近接しかつ f11< f12<…<f1p 、pは3以上の整数である光周波数f11, f12, …, f1p で、それぞれ所定の光周波数間隔ΔF1 ~ΔF(p-1) に制御された第1のLO光~第pのLO光を用いて、前記信号光をそれぞれコヒーレント検波するp個のコヒーレント受信機と、各コヒーレント受信機から出力される電気信号を入力してデジタル信号処理を施し、前記2つのデータ信号列を復調するデジタル信号処理部とを備えた構成であり、
前記デジタル信号処理部は、
前記第1のLO光~第pのLO光に対して、前記信号光の光周波数 f1 と近接する仮想的な基準周波数f1' が設定され、当該基準周波数f1' に対する第1のLO光の周波数差Δf1が設定されたときに第2のLO光の周波数差Δf2をΔf1-ΔF1 から求め、さらに第pのLO光の周波数差ΔfpをΔf(p-1)-ΔF(p-1) から求める処理を行い、
前記p個のコヒーレント受信機から出力される各電気信号を入力し、前記周波数差Δf1~Δfpに起因して各電気信号に生じる位相回転を補償する複数の位相回転補償回路と、
前記複数の位相回転補償回路の出力に対して適応等化処理を行う波形等化回路と、
前記波形等化回路の出力に対して前記信号光の光周波数 f1 と前記仮想的な基準周波数f1' の周波数差によって生じる位相回転の残留成分を補償する位相推定回路と
を備えたことを特徴とする光伝送システム。 - 請求項3に記載の光伝送システムにおいて、
前記受信部は、前記第1のLO光~第pのLO光の光周波数間隔をΔF1 ~ΔF(p-1) に制御する代わりにその周波数間隔ΔF1'~ΔF(p-1)'を測定する周波数差測定器を備え、
前記デジタル信号処理部は、前記測定した周波数間隔ΔF1'~ΔF(p-1)'に基づいて、前記基準周波数f1' に対する第1のLO光の周波数差Δf1を設定したときに他のLO光の周波数差Δf2~ΔfpをΔf1-ΔF1'~Δf(p-1)-ΔF(p-1)'から求める処理を行う
ことを特徴とする光伝送システム。 - 光ファイバ伝送路を介して接続される送信部と受信部との間で信号光を伝送する光伝送システムにおいて、
前記送信部は、光周波数 f1 ,f2の光キャリア信号をそれぞれ2つのデータ信号列で偏波多重変調した第1の信号光および第2の信号光を生成し、さらに各信号光を波長多重して前記光ファイバ伝送路に送出する構成であり、
前記受信部は、前記信号光の光周波数 f1 ,f2とそれぞれ近接しかつ f11<f12 である光周波数 f11,f12 で、所定の光周波数間隔ΔFに制御された2つのLO光を用いて、前記波長多重伝送された信号光をそれぞれコヒーレント検波する2つのコヒーレント受信機と、各コヒーレント受信機から出力される電気信号を入力してデジタル信号処理を施し、前記第1の信号光で伝送された前記2つのデータ信号列と、前記第2の信号光で伝送された前記2つのデータ信号列とを復調するデジタル信号処理部とを備えた構成であり、
前記デジタル信号処理部は、
前記2つのLO光に対して、前記信号光の光周波数 f1 ,f2とそれぞれ近接する仮想的な基準周波数 f1',f2' が設定され、当該基準周波数 f1',f2' に対する一方のLO光の周波数差Δf11 ,Δf12 が設定されたときに、他方のLO光の周波数差Δf21 ,Δf22 をΔf11 -ΔF,Δf12 -ΔFから求める処理を行い、
前記2つのコヒーレント受信機から出力される各電気信号を入力し、前記周波数差Δf11 ,Δf21 に起因して各電気信号に生じる位相回転を補償し、前記第1の信号光で伝送された信号成分を分離して出力する第1の複数の位相回転補償回路と、
前記第1の複数の位相回転補償回路の出力に対して適応等化処理を行う第1の波形等化回路と、
前記第1の波形等化回路の出力に対して前記第1の信号光の光周波数 f1 と前記仮想的な基準周波数f1' の周波数差によって生じる位相回転の残留成分を補償する第1の位相推定回路と、
前記2つのコヒーレント受信機から出力される各電気信号を入力し、前記周波数差Δf12 ,Δf22 に起因して各電気信号に生じる位相回転を補償し、前記第2の信号光で伝送された信号成分を分離して出力する第2の複数の位相回転補償回路と、
前記第2の複数の位相回転補償回路の出力に対して適応等化処理を行う第2の波形等化回路と、
前記第2の波形等化回路の出力に対して前記信号光の光周波数 f2 と前記仮想的な基準周波数f2' の周波数差によって生じる位相回転の残留成分を補償する第2の位相推定回路と
を備えたことを特徴とする光伝送システム。 - 請求項5に記載の光伝送システムにおいて、
前記受信部は、前記2つのLO光の光周波数間隔をΔFに制御する代わりにその周波数間隔ΔF’を測定する周波数差測定器を備え、
前記デジタル信号処理部は、前記測定した周波数間隔ΔF’に基づいて、前記基準周波数f1' ,f2' に対する一方のLO光の周波数差Δf11 ,Δf12 が設定されたときに、他方のLO光の周波数差Δf21 ,Δf22 をΔf11 -ΔF' ,Δf12 -ΔF’から求める処理を行う
ことを特徴とする光伝送システム。 - 光ファイバ伝送路を介して接続される送信部と受信部との間で信号光を伝送する光伝送システムにおいて、
n,mを2以上の整数、kを1~nの整数、iを2~mの整数としたときに、
前記送信部は、光周波数f1~fnの光キャリア信号をそれぞれ2つのデータ信号列で偏波多重変調したn個の信号光を生成し、さらにn個の信号光を波長多重して前記光ファイバ伝送路に送出する構成であり、
前記受信部は、前記信号光の光周波数f1~fnと近接しかつ f11<f12 <…<f1m である光周波数 f11~f1m で、それぞれ所定の光周波数間隔ΔF1 ~ΔF(m-1) に制御されたm個のLO光を用いて、前記信号光をそれぞれコヒーレント検波するm個のコヒーレント受信機と、m個のコヒーレント受信機から出力される電気信号を入力してデジタル信号処理を施し、2×n個の前記データ信号列を復調するデジタル信号処理部とを備えた構成であり、
前記デジタル信号処理部は、
前記m個のLO光に対して、前記信号光の光周波数 fk と近接する仮想的な基準周波数fk' が設定され、当該基準周波数fk' に対する1つのLO光の周波数差Δfkが設定されたときに他のLO光の周波数差ΔfiをΔf(i-1)-ΔF(i-1) から求める処理を行い、
前記m個のコヒーレント受信機から出力される各電気信号を入力し、前記周波数差Δfkに起因して各電気信号に生じる位相回転を補償する複数の位相回転補償回路と、
前記複数の位相回転補償回路の出力に対して適応等化処理を行う波形等化回路と、
前記波形等化回路の出力に対して前記信号光の光周波数 fk と前記仮想的な基準周波数fk' の周波数差によって生じる位相回転の残留成分を補償する位相推定回路と
を備えたことを特徴とする光伝送システム。 - 請求項7に記載の光伝送システムにおいて、
前記受信部は、前記m個のLO光の光周波数間隔をΔF1 ~ΔF(m-1) に制御する代わりにその周波数間隔ΔF1 ’~ΔF(m-1) ’を測定する周波数差測定器を備え、
前記デジタル信号処理部は、前記測定した周波数間隔ΔF1 ’~ΔF(m-1) ’に基づいて、前記基準周波数fk' に対する1つのLO光の周波数差Δfkを設定したときに他のLO光の周波数差ΔfiをΔf(i-1)-ΔF(i-1) から求める処理を行う
ことを特徴とする光伝送システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480055732.9A CN105637785B (zh) | 2013-10-09 | 2014-09-11 | 光传输系统 |
US15/027,610 US9692543B2 (en) | 2013-10-09 | 2014-09-11 | Optical transmission system |
JP2015541424A JP6052938B2 (ja) | 2013-10-09 | 2014-09-11 | 光伝送システム |
EP14852459.8A EP3043491B1 (en) | 2013-10-09 | 2014-09-11 | Optical transmission system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013211931 | 2013-10-09 | ||
JP2013-211931 | 2013-10-09 | ||
JP2014-151488 | 2014-07-25 | ||
JP2014151488 | 2014-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015052874A1 true WO2015052874A1 (ja) | 2015-04-16 |
Family
ID=52812710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/004696 WO2015052874A1 (ja) | 2013-10-09 | 2014-09-11 | 光伝送システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US9692543B2 (ja) |
EP (1) | EP3043491B1 (ja) |
JP (1) | JP6052938B2 (ja) |
CN (1) | CN105637785B (ja) |
WO (1) | WO2015052874A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017038104A (ja) * | 2015-08-06 | 2017-02-16 | 日本電信電話株式会社 | デジタルコヒーレント受信機 |
JP2017038103A (ja) * | 2015-08-06 | 2017-02-16 | 日本電信電話株式会社 | デジタルコヒーレント受信機 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111052641B (zh) * | 2017-08-28 | 2021-07-23 | 三菱电机株式会社 | 光通信装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012119759A (ja) * | 2010-11-29 | 2012-06-21 | Hitachi Ltd | 偏波多重光伝送システム、偏波多重光送信器及び偏波多重光受信器 |
WO2014038121A1 (ja) * | 2012-09-05 | 2014-03-13 | 日本電信電話株式会社 | デジタル信号処理装置 |
JP2014053679A (ja) * | 2012-09-05 | 2014-03-20 | Nippon Telegr & Teleph Corp <Ntt> | デジタルコヒーレント受信機 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1001580A1 (en) * | 1991-03-20 | 2000-05-17 | Sony Corporation | Demodulator for differential phase shift keying signal using a maximum likelihood sequence estimator |
US5355092A (en) * | 1992-06-26 | 1994-10-11 | Sanyo Electric Co., Ltd. | Relatively simple QPSK demodulator, that uses substantially all digital circuitry and an internally generated symbol clock, and circuitry for use therein |
JPH1051418A (ja) * | 1996-08-06 | 1998-02-20 | Mitsubishi Electric Corp | ディジタル受信装置 |
US6487236B1 (en) * | 1998-09-30 | 2002-11-26 | Fujitsu Limited | Method and apparatus for achieving demodulation in radio communications system using M-sequence orthogonal modulation |
US7346279B1 (en) * | 2002-03-25 | 2008-03-18 | Forster Energy Llc | Optical transceiver using heterodyne detection and a transmitted reference clock |
US7460793B2 (en) * | 2002-12-11 | 2008-12-02 | Michael George Taylor | Coherent optical detection and signal processing method and system |
KR100525002B1 (ko) * | 2004-01-19 | 2005-10-31 | 삼성전자주식회사 | 파일럿 신호가 왜곡된 채널 환경에서도 반송파를 복조하기위한 알고리즘 및 그 복조 장치 |
CN100372238C (zh) * | 2004-03-31 | 2008-02-27 | 清华大学 | 时域同步正交频分复用接收机系统 |
US20060245766A1 (en) * | 2005-04-29 | 2006-11-02 | Taylor Michael G | Phase estimation for coherent optical detection |
US7826752B1 (en) * | 2005-06-02 | 2010-11-02 | Level 3 Communications, Llc | Optical transmission apparatuses, methods, and systems |
EP2071747B1 (en) * | 2006-09-26 | 2015-02-18 | Hitachi, Ltd. | Optical electric field receiver and optical transmission system |
US20100202552A1 (en) * | 2007-05-14 | 2010-08-12 | Sharp Kabushiki Kaisha | Ofdm demodulator, ofdm demodulation method, ofdm demodulation program, and storage medium |
JP5034770B2 (ja) * | 2007-08-16 | 2012-09-26 | 富士通株式会社 | コヒーレント光受信器および光通信システム |
US8463141B2 (en) * | 2007-09-14 | 2013-06-11 | Alcatel Lucent | Reconstruction and restoration of two polarization components of an optical signal field |
CN101453269B (zh) * | 2007-11-30 | 2012-01-04 | 富士通株式会社 | 频差补偿装置和方法、光相干接收机 |
JP4872003B2 (ja) * | 2008-02-22 | 2012-02-08 | 日本電信電話株式会社 | 光ofdm受信器および光伝送システムおよびサブキャリア分離回路およびサブキャリア分離方法 |
US8068742B2 (en) * | 2008-07-10 | 2011-11-29 | Finisar Corporation | Phase shift keyed modulation of optical signal using chirp managed laser |
EP2146448B1 (en) * | 2008-07-16 | 2010-11-17 | Alcatel Lucent | Adaptive non-linearity compensation in coherent receiver |
JP5278001B2 (ja) * | 2009-01-29 | 2013-09-04 | 富士通株式会社 | 光通信システムおよび光受信器 |
CN101651479B (zh) * | 2009-09-23 | 2015-02-04 | 中国人民解放军信息工程大学 | 基于自适应信号波形补偿多天线信号合成增强方法及装置 |
US8781029B2 (en) * | 2010-06-17 | 2014-07-15 | Nippon Telegraph And Telephone Corporation | Frequency offset estimation apparatus, reception apparatus, frequency offset estimation method, and reception method |
US20130216240A1 (en) * | 2010-11-01 | 2013-08-22 | Nec Corporation | Coherent light receiving device, system, and method |
JP5601205B2 (ja) | 2011-01-07 | 2014-10-08 | 富士通株式会社 | 光受信器および光通信システム |
JP5736837B2 (ja) * | 2011-02-23 | 2015-06-17 | 富士通株式会社 | 光受信装置 |
US8934786B2 (en) * | 2011-09-16 | 2015-01-13 | Alcatel Lucent | Communication through pre-dispersion-compensated phase-conjugated optical variants |
US20140270803A1 (en) * | 2011-10-11 | 2014-09-18 | Telefonaktiebolaget L M Ericsson (Publ) | Optical transmission using polarisation diversity |
US8983309B2 (en) * | 2012-02-13 | 2015-03-17 | Ciena Corporation | Constrained continuous phase modulation and demodulation in an optical communications system |
CN102904646B (zh) * | 2012-09-10 | 2015-04-01 | 中国科学院半导体研究所 | 基于光梳的偏振复用信道化接收机 |
-
2014
- 2014-09-11 WO PCT/JP2014/004696 patent/WO2015052874A1/ja active Application Filing
- 2014-09-11 US US15/027,610 patent/US9692543B2/en active Active
- 2014-09-11 CN CN201480055732.9A patent/CN105637785B/zh active Active
- 2014-09-11 EP EP14852459.8A patent/EP3043491B1/en active Active
- 2014-09-11 JP JP2015541424A patent/JP6052938B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012119759A (ja) * | 2010-11-29 | 2012-06-21 | Hitachi Ltd | 偏波多重光伝送システム、偏波多重光送信器及び偏波多重光受信器 |
WO2014038121A1 (ja) * | 2012-09-05 | 2014-03-13 | 日本電信電話株式会社 | デジタル信号処理装置 |
JP2014053679A (ja) * | 2012-09-05 | 2014-03-20 | Nippon Telegr & Teleph Corp <Ntt> | デジタルコヒーレント受信機 |
Non-Patent Citations (6)
Title |
---|
"1 OOG Ultra Long Haul DWDM Framework Document", OIF |
AKHIL R.SHAH ET AL.: "Coherent optical MIMO (COMIMO", IEEE JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 23, no. ISSUE., August 2005 (2005-08-01), pages 2410 - 2419, XP011138114 * |
MAMORU SAWAHASHI; KENICHI HIGUCHI; NORIYUKI MAEDA; HIDEKAZU TAOKA: "Multi-antenna Radio Transmission Technology 1, Summary of Multi-antenna Radio Transmission Technology", NTT DOCOMO TECHNICAL JOURNAL, vol. 13, no. 3, 2005, pages 68 - 75 |
MINGBO NIU ET AL.: "MIMO architecture for coherent optical wireless communication: System design and performance", IEEE /OSA JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, vol. 5, no. ISSUE., May 2013 (2013-05-01), pages 411 - 420, XP011510026 * |
See also references of EP3043491A4 |
YOJIRO MORI; CHAO ZHANG; KAZURO KIKUCHI: "Novel Configuration of Finite-impulse-response Filters Tolerant to Carrier-phase Fluctuations in Digital Coherent Optical Receivers for Higher-order Quadrature Amplitude Modulation Signals", OPTICS EXPRESS, vol. 20, no. 24, 2012, pages 26236 - 26251 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017038104A (ja) * | 2015-08-06 | 2017-02-16 | 日本電信電話株式会社 | デジタルコヒーレント受信機 |
JP2017038103A (ja) * | 2015-08-06 | 2017-02-16 | 日本電信電話株式会社 | デジタルコヒーレント受信機 |
Also Published As
Publication number | Publication date |
---|---|
CN105637785B (zh) | 2018-01-12 |
CN105637785A (zh) | 2016-06-01 |
EP3043491A4 (en) | 2017-04-26 |
EP3043491B1 (en) | 2018-03-28 |
US9692543B2 (en) | 2017-06-27 |
JPWO2015052874A1 (ja) | 2017-03-09 |
JP6052938B2 (ja) | 2016-12-27 |
US20160241352A1 (en) | 2016-08-18 |
EP3043491A1 (en) | 2016-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130223843A1 (en) | Nyquist wavelength division multiplexing system | |
JP5707981B2 (ja) | サンプリングクロック同期装置、ディジタルコヒーレント受信装置およびサンプリングクロック同期方法 | |
US8891976B2 (en) | Interferometer configured for signal processing in an interference path | |
WO2010075886A1 (en) | Method and arrangement for transmitting signals in a point to multipoint network | |
JP2011155579A (ja) | 光送受信システム及び光受信機 | |
JP2015512189A (ja) | コヒーレント光受信機における偏光多重分離のためのシステムおよび方法 | |
JP2012004691A (ja) | 偏波多重光伝送システム | |
CN116996128B (zh) | 光纤传输系统及装置 | |
JP6052938B2 (ja) | 光伝送システム | |
US9825707B2 (en) | System and method for coherent detection with digital signal procession | |
Xiao et al. | ICI mitigation for dual-carrier superchannel transmission based on m-PSK and m-QAM formats | |
JP4726078B2 (ja) | 光ofdm受信回路、光ofdm受信装置、及び光ofdm伝送システム | |
JP2011035735A (ja) | 伝送装置,伝送システムおよび通信方法 | |
US10256907B2 (en) | System and method for coherent detection with digital signal procession | |
JP5968833B2 (ja) | 光伝送システムおよびデジタル信号処理装置 | |
JP5095834B2 (ja) | 光ofcdm伝送システム | |
WO2014196179A1 (ja) | 光受信装置、光伝送システム、光受信方法および光伝送方法 | |
Liu et al. | Multi-carrier coherent receiver based on a shared optical hybrid and a cyclic AWG array for terabit/s optical transmission | |
JP5492118B2 (ja) | Wdm信号一括コヒーレント受信器及び方法 | |
JP6400444B2 (ja) | マルチキャリア光伝送システム | |
JP2015162723A (ja) | 光送信機、光受信機、光送信方法及び光受信方法 | |
Portela et al. | Experimental demonstration of joint-polarization phase recovery algorithms for dual-polarization 16-QAM transmission | |
JP4843633B2 (ja) | 光cdm伝送システム、送信装置及び受信装置 | |
Hamaoka et al. | Mode and polarization division multiplexed signal detection with single coherent receiver using mode-selective coherent detection technique | |
Gaete et al. | Stereo multiplexing for direct detected optical communication systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14852459 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015541424 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15027610 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014852459 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014852459 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |