WO2014167897A1 - 信号処理装置及び信号処理方法 - Google Patents

信号処理装置及び信号処理方法 Download PDF

Info

Publication number
WO2014167897A1
WO2014167897A1 PCT/JP2014/053853 JP2014053853W WO2014167897A1 WO 2014167897 A1 WO2014167897 A1 WO 2014167897A1 JP 2014053853 W JP2014053853 W JP 2014053853W WO 2014167897 A1 WO2014167897 A1 WO 2014167897A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signal processing
coefficient
filter coefficient
unit
Prior art date
Application number
PCT/JP2014/053853
Other languages
English (en)
French (fr)
Inventor
和佳子 安田
安部 淳一
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/782,838 priority Critical patent/US9853765B2/en
Priority to JP2015511144A priority patent/JP6206487B2/ja
Publication of WO2014167897A1 publication Critical patent/WO2014167897A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6161Compensation of chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6162Compensation of polarization related effects, e.g., PMD, PDL
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6163Compensation of non-linear effects in the fiber optic link, e.g. self-phase modulation [SPM], cross-phase modulation [XPM], four wave mixing [FWM]

Definitions

  • the present invention relates to a signal processing device and a signal processing method.
  • the amount of data to be communicated is increasing with the spread of the Internet. In order to cope with this, it is necessary to increase the capacity of the transmission path.
  • One technique for realizing a large capacity is a multilevel modulation method (Quadrature Amplitude Modulation: QAM).
  • QAM Quadrature Amplitude Modulation
  • the optical signal that has been subjected to QAM modulation by the transmitter is demodulated by a digital coherent optical receiver.
  • Non-Patent Document 1 describes a nonlinear compensation method called Back Propagation.
  • This compensation method is a method for compensating for waveform distortion while tracing the propagation waveform from the reception side to the transmission side by performing dispersion compensation in small steps and performing nonlinear compensation immediately after each dispersion compensation.
  • the dispersion compensation function is realized by a linear distortion compensation circuit
  • the nonlinear compensation function is realized by a nonlinear distortion compensation circuit.
  • the linear distortion compensation circuit includes an FFT / IFFT circuit in order to perform dispersion compensation in the frequency domain. Since the FFT / IFFT circuit has a large circuit scale, only a few FFT / IFFT circuits can be mounted on one signal processing device in consideration of the LSI mounting area and power consumption.
  • Non-Patent Document 1 also describes a compensation method called Filtered Back Propagation.
  • Filtered Back Propagation uses the time average amount of the phase rotation amount calculated from the signal intensity for nonlinear compensation, thereby reducing the number of stages of the nonlinear compensation stage.
  • Low1Pass Filter is used for the time average of the phase rotation amount.
  • Non-Patent Document 2 describes the coefficient setting method for the Low Pass Filter described above.
  • the received optical signal is demodulated without performing nonlinear compensation.
  • the coefficient of Low Pass Filter is determined by monitoring the difference between the demodulated symbol position and the ideal symbol position of the signal.
  • Non-Patent Document 2 assumes that the received signal can be demodulated without nonlinear compensation. For this reason, in order to demodulate, it cannot be applied to a low-quality received signal for which nonlinear compensation is essential.
  • An object of the present invention is to enable setting of a nonlinear compensation coefficient without demodulation when receiving and demodulating polarization multiplexed and multilevel modulated signal light.
  • electrical signal generating means for generating an electrical signal based on signal light that has been polarization multiplexed and multi-level modulated and transmitted via a transmission line;
  • Linear compensation means for performing a process of compensating for the electrical signal using a first filter coefficient for dispersion generated in the signal light in the transmission path;
  • a second coefficient setting means for determining a second filter coefficient for determining a width on a time axis to be considered when compensating for a nonlinear effect generated in the signal light in the transmission path, using the magnitude of the dispersion;
  • Non-linear compensation means for compensating the non-linear effect with respect to the electrical signal using the second filter coefficient;
  • a signal processing apparatus is provided.
  • an electrical signal is generated based on signal light that is polarization multiplexed and multi-level modulated and transmitted through a transmission line,
  • the electrical signal is subjected to a process of compensating for the dispersion generated in the signal light in the transmission path using a first filter coefficient,
  • a second filter coefficient that determines a width on a time axis to be considered when compensating for a nonlinear effect generated in the signal light in the transmission path is determined using the magnitude of the dispersion,
  • the coefficient of nonlinear compensation can be set without performing demodulation.
  • FIG. 1 is a diagram illustrating a configuration of an optical communication system according to the first embodiment.
  • the optical communication system according to the present embodiment includes an optical transmission device 10 and an optical reception device 20.
  • the optical transmitter 10 and the optical receiver 20 are connected to each other via a transmission path 30.
  • the transmission line 30 is configured using an optical fiber or the like.
  • This optical communication system is a system that performs communication using, for example, a QAM (Quadrature Amplitude Modulation) method.
  • QAM Quadrature Amplitude Modulation
  • the optical transmission device 10 (signal processing device) generates a polarization multiplexed and multilevel modulated optical signal by modulating light using a plurality of signals to be transmitted.
  • the generated optical signal is transmitted to the optical receiver 20 via the transmission path 30.
  • the optical receiver 20 demodulates the received optical signal. When the optical signal propagates through the transmission line 30, it undergoes a linear effect (dispersion effect) and a nonlinear effect.
  • the optical receiver 20 also performs processing for compensating for these effects.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of the optical receiver 20.
  • the optical receiver 20 includes an electrical signal generation unit 200, a linear compensation unit 301, a nonlinear compensation unit 300, and a second coefficient setting unit 400.
  • the electric signal generation unit 200 generates an electric signal based on the optical signal received via the transmission path 30.
  • the linear compensation unit 301 performs processing for compensating for the dispersion generated in the signal light in the transmission line 30 using the first filter coefficient with respect to the electric signal.
  • the second coefficient setting unit 400 determines a second filter coefficient for compensating for a non-linear effect generated in the signal light in the transmission line 30 using the magnitude of dispersion generated in the transmission line 30.
  • the nonlinear compensator 300 performs processing for compensating the nonlinear effect on the electrical signal using the second filter coefficient determined by the second coefficient setting unit 400.
  • the optical signal is a pulse signal.
  • a non-linear effect that the optical signal receives during transmission through the transmission line 30 is caused by the influence of a pulse on the time axis itself and a pulse positioned adjacent thereto. Therefore, the non-linear effect that the pulse receives is determined by the broadening of the pulse width. On the other hand, the spread of the width of the pulse is determined by the dispersion of the optical signal. Therefore, if the second filter coefficient is determined using the magnitude of dispersion generated in the transmission path 30, the nonlinear effect can be compensated with high accuracy. Therefore, the coefficient for nonlinear compensation can be set without performing demodulation.
  • the magnitude of dispersion generated in the transmission line 30 is determined almost uniquely when the configuration of the optical communication system and the transmission line 30 is determined. Therefore, according to the present embodiment, the second filter coefficient can be determined by installing the optical transmission device 10 and the optical reception device 20 and measuring the magnitude of dispersion generated in the transmission path 30.
  • the optical communication system according to the present embodiment has the same configuration as that of the optical communication system according to the first embodiment, except for the configuration of the optical receiver 20.
  • FIG. 3 is a diagram showing a functional configuration of the optical receiver 20.
  • the optical receiver 20 includes a local light source (LO) 210, an optical 90 ° hybrid 220 (interference unit), a photoelectric (O / E) conversion unit 230, an AD (analog / digital) conversion unit (ADC) 240, and a signal processing unit. 100.
  • the signal processing unit 100 is composed of one semiconductor device.
  • the light 90 ° hybrid 220 receives signal light and local light from the local light source 210.
  • the optical 90 ° hybrid 220 generates a first optical signal (I x ) by causing an optical signal and local light to interfere with each other with a phase difference of 0, and causes the optical signal and local light to interfere with each other with a phase difference of ⁇ / 2.
  • Two optical signals (Q x ) are generated.
  • the optical 90 ° hybrid 220 generates a third optical signal (I y ) by causing the optical signal and local light to interfere with each other with a phase difference of 0, and causes the optical signal and local light to interfere with each other with a phase difference of ⁇ / 2.
  • a fourth optical signal (Q y ) is generated.
  • the first optical signal and the second optical signal form a set of signals
  • the third optical signal and the fourth optical signal also form a set of signals.
  • the photoelectric conversion unit 230 photoelectrically converts the four optical signals (output light) generated by the light 90 ° hybrid 220 to generate four analog signals.
  • the AD converter 240 converts each of the four analog signals generated by the photoelectric converter 230 into digital signals (quantization).
  • the signal processing unit 100 processes the four digital signals generated by the AD conversion unit 240 to generate a demodulated signal obtained by demodulating the optical signal.
  • the signal processing unit 100 includes a polarization signal generation unit 110, a distortion compensation unit 102, a polarization separation unit 104, and a demodulation unit 106.
  • the polarization signal generation unit 110 includes addition units 112 and 114.
  • the adder 112 adds the digital signal generated from the first optical signal (I x ) and the digital signal generated from the second optical signal (Q x ), thereby performing the first polarization signal (E x ).
  • the adder 114 adds the digital signal generated from the third optical signal (I y ) and the digital signal generated from the fourth optical signal (Q y ), thereby performing the second polarization signal (E y ).
  • Ex and Ey follow the following formulas (1) and (2).
  • the distortion compensation unit 102 performs a process for compensating for a linear effect and a nonlinear effect received when the optical signal propagates through the transmission path 30. Details of the distortion compensation unit 102 will be described later.
  • the polarization separation unit 104 performs a filter operation for each polarization.
  • the demodulator 106 demodulates the transmitted signal by compensating for the frequency difference and phase difference between the optical signal and the local light.
  • FIG. 4 is a diagram for explaining a functional configuration of the distortion compensation unit 102.
  • the distortion compensation unit 102 has at least one processing stage including a linear compensation unit 301 and a nonlinear compensation unit 300.
  • the final stage of the distortion compensation unit 102 is preferably the linear compensation unit 301 (second dispersion compensation unit).
  • the number of processing stages is 10 or more, for example, the final stage of the distortion compensation unit 102 may not be the linear compensation unit 301.
  • the sum of the dispersion compensation amounts by the linear compensation unit 301 included in the distortion compensation unit 102 is It is equal to the amount of dispersion received by the signal light in the transmission line 30.
  • the linear compensation unit 301 compensates for the linear effect that the optical signal receives on the transmission line 30.
  • the linear compensation unit 301 includes, for example, an FFT (Fast Fourier Transform) unit, a filter unit, and an IFFT (Inverse Fast Fourier Transform) unit.
  • the FFT unit performs an FFT operation on the input signal.
  • the filter unit performs a filter operation on the signal using the first filter coefficient for compensating for the dispersion effect that the optical signal receives in the transmission path.
  • the IFFT unit performs an IFFT operation on the filtered signal.
  • the non-linear compensation unit 300 compensates for the non-linear effect that the optical signal has received on the transmission line 30 by using the second filter coefficient.
  • the distortion compensation unit 102 includes a first coefficient setting unit 420 and a second coefficient setting unit 400.
  • the first coefficient setting unit 420 sets the first filter coefficient in the linear compensation unit 301.
  • the first filter coefficient may be calculated using the dispersion that the signal light receives on the transmission path 30 by the first coefficient setting unit 420, or may be directly input to the first coefficient setting unit 420 from the outside.
  • the second coefficient setting unit 400 includes a tap number calculation unit 402 and a second coefficient calculation unit 404.
  • the tap number calculation unit 402 determines the number of taps using the dispersion that the signal light receives on the transmission path 30.
  • the second coefficient calculation unit 404 delimits a predetermined function at equal intervals as many times as the number of taps, and sets the function value at each of the plurality of delimiters as a second filter coefficient. Then, the second coefficient calculation unit 404 sets the calculated second filter coefficient in the nonlinear compensation unit 300. Details of the second coefficient setting process by the second coefficient setting unit 400 will be described later.
  • the dispersion received by the signal light on the transmission path 30 is input from the dispersion setting unit 500.
  • FIG. 5 is a diagram illustrating an example of a functional configuration of the nonlinear compensator 300.
  • the nonlinear compensation unit 300 performs a compensation process according to Filtered / Back / Propagation.
  • the nonlinear compensation unit 300 may perform processing according to processing according to another method.
  • the nonlinear compensation unit 300 includes intensity calculation units 302 and 304, an addition unit 305, a filter unit 306, a phase modulation unit 308, delay units 310 and 314, and multiplication units 312 and 316.
  • Strength calculating unit 302 calculates the intensity of the polarized signal E x, and calculates the phase rotation amount based on the intensity.
  • the intensity calculation unit 304 calculates the intensity of the polarization signal E y and calculates the amount of phase rotation based on the intensity.
  • the addition unit 305 adds the phase rotation amount calculated by the intensity calculation unit 302 and the phase rotation amount calculated by the intensity calculation unit 304.
  • the filter unit 306 multiplies the phase rotation amount output from the adding unit 305 by a coefficient for time averaging (the above-described second filter coefficient: h (n)).
  • the phase modulation unit 308 uses the phase rotation amount after being processed by the filter unit 306 to calculate a coefficient for compensating for the phase rotation. Then, this coefficient is multiplied by the polarization unit E x after being delayed by the delay unit 310 by the multiplication unit 312, and the polarization signal E y after being delayed by the delay unit 314 by the multiplication unit 316. Is multiplied. Note that the delay units 310 and 314 are provided to synchronize the polarization signals E x and E y with the coefficient calculation timing.
  • nonlinear compensator 300 shown in FIG. 5 performs processing according to the following equations (3) and (4).
  • FIG. 6 is a diagram for explaining details of processing by the tap number calculation unit 402 and the second coefficient calculation unit 404.
  • the non-linear effect that the optical signal receives during transmission through the transmission line 30 is that a certain pulse on the time axis is affected by itself and a pulse positioned next to it. Is caused by Therefore, the non-linear effect that the pulse receives is determined by the broadening of the pulse width. Therefore, the greater the variance, the wider the pulse width, and the larger the time width to be taken into account when calculating the phase rotation amount due to the nonlinear effect.
  • the second coefficient calculation unit 404 delimits a predetermined function at the same number of times as the number of taps at equal intervals, and sets the function value at each of the plurality of delimiters as the second filter coefficient.
  • the tap number calculation unit 402 calculates the number of taps by multiplying the magnitude of dispersion by a proportional coefficient. In this way, the number of taps increases as the variance increases, and as a result, the time width set by the second coefficient calculation unit 404 increases.
  • this proportionality coefficient is set by, for example, an administrator of the optical communication system based on the function and dispersion used by the second coefficient calculation unit 404.
  • the function used by the second coefficient calculation unit 404 is determined to take the maximum value at the tap located at the center and take the minimum value at the taps located at both ends.
  • the tap located at the center and the tap located at both ends are connected by a straight line, but may be connected by a curve.
  • the second filter coefficient corresponding to each tap is determined as a function value in each of a plurality of divisions by dividing a line (that is, a function) connecting the maximum value and the minimum value by a half of the number of taps. For this reason, when the number of taps calculated by the tap number calculation unit 402 increases, the difference between the two second filter coefficients corresponding to the taps adjacent to each other decreases.
  • the second filter coefficient used for nonlinear compensation can be set without performing demodulation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Optical Communication System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

 光受信装置(20)は、電気信号生成部(200)、線形補償部(301)、非線形補償部(300)、及び第2係数設定部(400)を備えている。電気信号生成部(200)は、伝送路(30)を介して受信した光信号に基づいて、電気信号を生成する。線形補償部(301)は、電気信号に対して、伝送路(30)において信号光に生じた分散を、第1フィルタ係数を用いて補償する処理を行う。第2係数設定部(400)は、伝送路(30)において信号光に生じた非線形効果を補償するための第2フィルタ係数を、伝送路(30)で生じた分散の大きさを用いて定める。非線形補償部(300)は、第2係数設定部(400)が定めた第2フィルタ係数を用いて、電気信号に対して非線形効果を補償する処理を行う。

Description

信号処理装置及び信号処理方法
 本発明は、信号処理装置及び信号処理方法に関する。
 インターネットの普及に伴い、通信されるデータの量が増大している。これに対応するためには、伝送路の容量を増大させる必要がある。大容量化を実現するための技術の一つとして、多値変調方式(Quadrature Amplitude Modulation:QAM)がある。送信器でQAM方式の変調を施された光信号は、デジタルコヒーレント方式の光受信器で復調される。
 QAM方式の光通信においては、光信号が伝送路を伝播する際に受ける非線形効果が大きな問題となる。光信号が伝送路中で非線形効果を受けると、光信号の位相が回転する。QAM方式は複雑な位相情報を取り扱うため、非線形効果による位相回転を受けると、受信時に正しい位相情報を復調できなくなる。
 これに対して非特許文献1には、Back Propagationと呼ばれる非線形補償方式が記載されている。この補償方式は、分散補償を小刻みに行うとともに、各分散補償の直後で非線形補償を行うことで、受信側から送信側へ伝播波形を遡りながら波形歪を補償する方式である。
 しかし、Back Propagationでは、分散補償機能と非線形補償機能を組み合わせて1つの非線形補償ステージとしたとき、非線形補償ステージの段数を多くする必要がある。分散補償機能は線形歪補償回路によって実現され、非線形補償機能は非線形歪補償回路によって実現される。線形歪補償回路は、周波数領域で分散補償を行うために、FFT/IFFT回路を含んでいる。FFT/IFFT回路は回路規模が大きいため、LSIの実装面積や消費電力を考慮すると、一つの信号処理装置には、数個のFFT/IFFT回路しか実装できない。
 これに対して非特許文献1には、Filtered Back Propagationと呼ばれる補償方式も記載されている。Filtered Back Propagationは、信号強度から算出される位相回転量の時間平均量を非線形補償に用いることで、非線形補償ステージの段数を削減するものである。また非特許文献1において、位相回転量の時間平均にはLow Pass Filterが用いられている。
 さらに、非特許文献2には、上記したLow Pass Filterの係数設定手法が記載されている。非特許文献2においては、受信した光信号に対して非線形補償を行わないで復調する。そして復調したシンボル位置とその信号の理想シンボル位置の差をモニタすることにより、Low Pass Filterの係数を決定している。
Liang B. Du and Arthur J. Lowery, "Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems", OPTICS EXPRESS, Vol. 18, No. 16, pp17075-17088, 2010 Lei Li et al., "Implementation Efficient Nonlinear Equalizer Based on Correlated Digital Backpropagation", Proc. Conf. OFC OWW3, 2011
 非特許文献2に記載の方法では、受信信号を非線形補償せずに復調できることが前提となっている。このため、復調するためには非線形補償を行うことが必須である低品質の受信信号には適用できない。
 本発明の目的は、偏波多重かつ多値変調された信号光を受信して復調する場合において、復調を行わなくても非線形補償の係数を設定できるようにすることである。
 本発明によれば、偏波多重かつ多値変調されていて伝送路を介して送信された信号光に基づいて電気信号を生成する電気信号生成手段と、
 前記電気信号に対して、前記伝送路において前記信号光に生じた分散を、第1フィルタ係数を用いて補償する処理を行う線形補償手段と、
 前記伝送路において前記信号光に生じた非線形効果を補償するときに考慮すべき時間軸上の幅を定める第2フィルタ係数を、前記分散の大きさを用いて定める第2係数設定手段と、
 前記電気信号に対して、前記非線形効果を、前記第2フィルタ係数を用いて補償する非線形補償手段と、
を備える信号処理装置が提供される。
 本発明によれば、偏波多重かつ多値変調されていて伝送路を介して送信された信号光に基づいて電気信号を生成し、
 前記電気信号に対して、前記伝送路において前記信号光に生じた分散を、第1フィルタ係数を用いて補償する処理を行い、
 前記伝送路において前記信号光に生じた非線形効果を補償するときに考慮すべき時間軸上の幅を定める第2フィルタ係数を、前記分散の大きさを用いて定め、
 前記電気信号に対して、前記非線形効果を、前記第2フィルタ係数を用いて補償する信号処理方法が提供される。
 本発明によれば、偏波多重かつ多値変調された信号光を受信して復調する場合において、復調を行わなくても非線形補償の係数を設定できる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
第1の実施形態に係る光通信システムの構成を示す図である。 光受信装置の機能構成の一例を示す図である。 第2の実施形態に係る光受信装置の機能構成を示す図である。 歪補償部の機能構成を説明する図である。 非線形補償部の機能構成の一例を示す図である。 タップ数算出部及び第2係数算出部による処理の詳細を説明するための図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1の実施形態)
 図1は、第1の実施形態に係る光通信システムの構成を示す図である。本実施形態に係る光通信システムは、光送信装置10及び光受信装置20を備えている。光送信装置10及び光受信装置20は、伝送路30を介して互いに接続されている。伝送路30は、光ファイバなどを用いて構成されている。この光通信システムは、例えばQAM(Quadrature Amplitude Modulation)方式で通信を行うシステムである。
 光送信装置10(信号処理装置)は、送信すべき複数の信号を用いて光を変調することにより、偏波多重且つ多値変調された光信号を生成する。生成された光信号は、伝送路30を介して光受信装置20に送信される。光受信装置20は、受信した光信号を復調する。光信号は伝送路30を伝播する際、線形効果(分散効果)と非線形効果を受ける。光受信装置20は、これらの効果を補償するための処理も行う。
 図2は、光受信装置20の機能構成の一例を示す図である。光受信装置20は、電気信号生成部200、線形補償部301、非線形補償部300、及び第2係数設定部400を備えている。電気信号生成部200は、伝送路30を介して受信した光信号に基づいて、電気信号を生成する。線形補償部301は、電気信号に対して、伝送路30において信号光に生じた分散を、第1フィルタ係数を用いて補償する処理を行う。第2係数設定部400は、伝送路30において信号光に生じた非線形効果を補償するための第2フィルタ係数を、伝送路30で生じた分散の大きさを用いて定める。非線形補償部300は、第2係数設定部400が定めた第2フィルタ係数を用いて、電気信号に対して非線形効果を補償する処理を行う。
 光信号はパルス信号である。そして伝送路30を伝送している間に光信号が受ける非線形効果は、時間軸上においてあるパルスが自分自身とその隣に位置するパルスの影響を受けることにより、生じる。このため、パルスの幅の広がりによって、そのパルスが受ける非線形効果が定まる。一方、パルスの幅の広がりは、光信号の分散の大きさで定まる。従って、第2フィルタ係数を、伝送路30で生じた分散の大きさを用いて定めると、高い精度で非線形効果を補償することができる。このため、復調を行わなくても非線形補償の係数を設定できる。
 伝送路30で生じる分散の大きさは、光通信システム及び伝送路30の構成が定まれば、ほぼ一意に定まる。従って、本実施形態によれば、光送信装置10及び光受信装置20を設置した上で、伝送路30で生じる分散の大きさを測定すると、第2フィルタ係数を定めることができる。
(第2の実施形態)
 本実施形態に係る光通信システムは、光受信装置20の構成を除いて、第1の実施形態に係る光通信システムと同様の構成である。
 図3は、光受信装置20の機能構成を示す図である。光受信装置20は、局所光源(LO)210、光90°ハイブリッド220(干渉部)、光電(O/E)変換部230、AD(アナログ・デジタル)変換部(ADC)240、および信号処理部100を備えている。信号処理部100は、一つの半導体装置で構成されている。
 光90°ハイブリッド220は、信号光と、局所光源210からの局所光が入力される。光90°ハイブリッド220は、光信号と局所光とを位相差0で干渉させて第1光信号(I)を生成し、光信号と局所光とを位相差π/2で干渉させて第2光信号(Q)を生成する。また光90°ハイブリッド220は、光信号と局所光とを位相差0で干渉させて第3光信号(I)を生成し、光信号と局所光とを位相差π/2で干渉させて第4光信号(Q)を生成する。第1光信号及び第2光信号は、一組の信号を形成し、また第3光信号及び第4光信号も、一組の信号を形成する。
 光電変換部230は、光90°ハイブリッド220が生成した4つの光信号(出力光)を光電変換して、4つのアナログ信号を生成する。
 AD変換部240は、光電変換部230が生成した4つのアナログ信号を、それぞれデジタル信号に変換する(量子化)。
 信号処理部100は、AD変換部240が生成した4つのデジタル信号を処理することにより、光信号を復調した復調信号を生成する。具体的には、信号処理部100は、偏波信号生成部110、歪補償部102、偏波分離部104、及び復調部106を備えている。
 偏波信号生成部110は、加算部112,114を備えている。加算部112は、第1光信号(I)から生成されたデジタル信号と第2光信号(Q)から生成されたデジタル信号とを加算処理することにより、第1の偏波信号(E)を生成する。加算部114は、第3光信号(I)から生成されたデジタル信号と第4光信号(Q)から生成されたデジタル信号とを加算処理することにより、第2の偏波信号(E)を生成する。具体的には、Ex及びEyは、以下の式(1),(2)に従っている。
Figure JPOXMLDOC01-appb-M000001

Figure JPOXMLDOC01-appb-M000002
 歪補償部102は、光信号が伝送路30を伝播する際に受けた線形効果及び非線形効果を補償するための処理を行う。歪補償部102の詳細については、後述する。
 偏波分離部104は、偏波ごとにフィルタ演算を行う。復調部106は、光信号と局所光の間の周波数差および位相差を補償することにより、送信されてきた信号を復調する。
 図4は、歪補償部102の機能構成を説明する図である。歪補償部102は、線形補償部301及び非線形補償部300からなる処理ステージを少なくとも1段有している。なお、処理ステージの数が少ない場合(例えば5ステージ以下)、歪補償部102の最終段は、線形補償部301(第2分散補償部)であるのが好ましい。ただし処理ステージの数が例えば10段以上の場合は、歪補償部102の最終段は線形補償部301でなくても良い。
 なお、歪補償部102の最終段が線形補償部301である場合及び非線形補償部300である場合のいずれであっても、歪補償部102が有する線形補償部301による分散補償量の和は、伝送路30において信号光が受ける分散量に等しい。
 線形補償部301は、光信号が伝送路30で受けた線形効果を補償する。線形補償部301は、例えば、FFT(Fast Fourier Transform)部、フィルタ部、及びIFFT(Inverse Fast Fourier Transform)部を備えている。FFT部は入力された信号をFFT演算する。フィルタ部は、光信号が伝送路中で受けた分散効果を補償するための第1フィルタ係数を用いて、信号をフィルタ演算する。IFFT部は、フィルタ処理された信号をIFFT演算する。
 非線形補償部300は、光信号が伝送路30で受けた非線形効果を、第2フィルタ係数を用いて補償する。
 また、歪補償部102は、第1係数設定部420及び第2係数設定部400を備えている。第1係数設定部420は、線形補償部301に第1フィルタ係数を設定する。第1フィルタ係数は、第1係数設定部420が、信号光が伝送路30で受ける分散を用いて算出しても良いし、外部から第1係数設定部420に直接入力されても良い。
 第2係数設定部400は、タップ数算出部402及び第2係数算出部404を備えている。タップ数算出部402は、信号光が伝送路30で受ける分散を用いてタップ数を定める。第2係数算出部404は、予め定められた関数を等間隔でタップ数と同じ回数区切り、複数の前記区切りのそれぞれにおける関数の値を第2フィルタ係数とする。そして第2係数算出部404は、算出した第2フィルタ係数を非線形補償部300に設定する。第2係数設定部400による第2係数の設定処理の詳細については、後述する。
 なお、信号光が伝送路30で受ける分散は、分散設定部500から入力される。
 図5は、非線形補償部300の機能構成の一例を示す図である。本図に示す例において、非線形補償部300は、Filtered Back Propagationに従った補償処理を行う。ただし、非線形補償部300は他の方式に従った処理に従った処理を行っても良い。
 非線形補償部300は、強度算出部302,304、加算部305、フィルタ部306、位相変調部308、遅延部310,314、及び乗算部312,316を備えている。強度算出部302は、偏波信号Eの強度を算出し、この強度に基づいた位相回転量を算出する。強度算出部304は偏波信号Eの強度を算出し、この強度に基づいた位相回転量を算出する。加算部305は、強度算出部302が算出した位相回転量と強度算出部304が算出した位相回転量を加算する。フィルタ部306は、加算部305が出力した位相回転量に、時間平均するための係数(上記した第2フィルタ係数:h(n))を乗ずる。位相変調部308は、フィルタ部306によって処理された後の位相回転量を用いることにより、位相回転を補償するための係数を算出する。そしてこの係数は、乗算部312によって、遅延部310によって遅延された後の偏波信号Eに乗算され、かつ、乗算部316によって、遅延部314によって遅延された後の偏波信号Eに乗算される。なお、遅延部310,314は、偏波信号E,Eを係数の算出タイミングに同期させるために設けられている。
 なお、図5に示す非線形補償部300は、以下の式(3),(4)に従った処理を行う。
Figure JPOXMLDOC01-appb-M000003

Figure JPOXMLDOC01-appb-M000004
 図6は、タップ数算出部402及び第2係数算出部404による処理の詳細を説明するための図である。
 第1の実施形態において説明したように、伝送路30を伝送している間に光信号が受ける非線形効果は、時間軸上においてあるパルスが自分自身とその隣に位置するパルスの影響を受けることにより、生じる。このため、パルスの幅の広がりによって、そのパルスが受ける非線形効果が定まる。従って、分散が大きいほど、パルス幅が広がり、非線形効果による位相回転量を算出するときに考慮すべき時間幅が大きくなる。
 一方、第2係数算出部404は、予め定められた関数を等間隔でタップ数と同じ回数区切り、複数の前記区切りのそれぞれにおける関数の値を第2フィルタ係数とする。
 そしてタップ数算出部402は、分散の大きさに比例係数を乗じることにより、タップ数を算出する。このようにすると、分散が大きくなるにつれてタップ数が大きくなり、その結果、第2係数算出部404で設定される時間幅が大きくなる。
 なお、この比例係数は、第2係数算出部404が用いる関数及び分散に基づいて、例えば光通信システムの管理者によって設定される。
 また本図に示す例において、第2係数算出部404が用いる関数は、中央に位置するタップにおいて最大値をとり、両端に位置するタップで最小値を取るように定められている。本図に示す例では、中央に位置するタップと両端に位置するタップは直線で結ばれているが、曲線で結ばれていてもよい。
 また、第2係数算出部404が用いる関数は、最大値、最小値、及び最大値と最小値を結ぶ線の形状は固定されているが、最大値から最小値までのタップ数は固定されていない。そして、各タップに対応する第2フィルタ係数は、最大値と最小値を結ぶ線(すなわち関数)を、タップ数の半分の数で分割し、複数の区切りのそれぞれにおける関数の値として定められる。このため、タップ数算出部402によって算出されるタップ数が増えた場合、互いに隣り合うタップに対応する2つの第2フィルタ係数の差分は小さくなる。
 本実施形態によっても、復調を行わなくても、非線形補償で用いる第2フィルタ係数を設定することができる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 この出願は、2013年4月9日に出願された日本出願特願2013-081395を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (11)

  1.  偏波多重かつ多値変調されていて伝送路を介して送信された信号光に基づいて電気信号を生成する電気信号生成手段と、
     前記電気信号に対して、前記伝送路において前記信号光に生じた分散を、第1フィルタ係数を用いて補償する処理を行う線形補償手段と、
     前記伝送路において前記信号光に生じた非線形効果を補償するときに考慮すべき時間軸上の幅を定める第2フィルタ係数を、前記分散の大きさを用いて定める第2係数設定手段と、
     前記電気信号に対して、前記非線形効果を、前記第2フィルタ係数を用いて補償する非線形補償手段と、
    を備える信号処理装置。
  2.  請求項1に記載の信号処理装置において、
     前記第2係数設定手段は、
      前記分散の大きさを用いてタップ数を定め、
      予め定められた関数を等間隔で前記タップ数と同じ回数区切り、複数の前記区切りのそれぞれにおける前記関数の値を前記第2フィルタ係数とする信号処理装置。
  3.  請求項2に記載の信号処理装置において、
     前記関数は、中央に位置する前記タップにおいて最大値をとり、両端に位置する前記タップで最小値を取るように定められている信号処理装置。
  4.  請求項2又は3に記載の信号処理装置において、
     前記第2係数設定手段は、前記分散の大きさに比例係数を乗じることにより、前記タップ数を算出する信号処理装置。
  5.  請求項4に記載の信号処理装置において、
     前記比例係数は前記関数及び前記分散に基づいて設定される信号処理装置。
  6.  請求項1~5のいずれか一項に記載の信号処理装置において、
     前記電気信号生成手段は、
      前記信号光と局所光とを干渉させることにより4つの出力光を生成する干渉手段と、
      前記4つの信号光を光電変換して4つのアナログ信号を生成する光電変換手段と、
      前記4つのアナログ信号を4つのデジタル信号に変換するアナログ・デジタル変換手段と、
      前記4つのデジタル信号から、前記信号光の2つの偏波成分に対応する2つの偏波信号を、前記電気信号として生成する偏波信号生成手段と、
    を有する信号処理装置。
  7.  偏波多重かつ多値変調されていて伝送路を介して送信された信号光に基づいて電気信号を生成し、
     前記電気信号に対して、前記伝送路において前記信号光に生じた分散を、第1フィルタ係数を用いて補償する処理を行い、
     前記伝送路において前記信号光に生じた非線形効果を補償するときに考慮すべき時間軸上の幅を定める第2フィルタ係数を、前記分散の大きさを用いて定め、
     前記電気信号に対して、前記非線形効果を、前記第2フィルタ係数を用いて補償する信号処理方法。
  8.  請求項7に記載の信号処理方法において、
     前記第2フィルタ係数を定めるとき、
      前記分散の大きさを用いてタップ数を定め、
      予め定められた関数を等間隔で前記タップ数と同じ回数区切り、複数の前記区切りのそれぞれにおける前記関数の値を前記第2フィルタ係数とする信号処理方法。
  9.  請求項8に記載の信号処理方法において、
     前記関数は、中央に位置する前記タップにおいて最大値をとり、両端に位置する前記タップで最小値を取るように定められている信号処理方法。
  10.  請求項8又は9に記載の信号処理方法において、
     前記タップ数は、前記分散の大きさに比例係数を乗じることにより算出される信号処理方法。
  11.  請求項10に記載の信号処理方法において、
     前記比例係数は前記関数及び前記分散に基づいて設定される信号処理方法。
PCT/JP2014/053853 2013-04-09 2014-02-19 信号処理装置及び信号処理方法 WO2014167897A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/782,838 US9853765B2 (en) 2013-04-09 2014-02-19 Signal processing device and signal processing method for optical polarization multiplexed signal
JP2015511144A JP6206487B2 (ja) 2013-04-09 2014-02-19 信号処理装置及び信号処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-081395 2013-04-09
JP2013081395 2013-04-09

Publications (1)

Publication Number Publication Date
WO2014167897A1 true WO2014167897A1 (ja) 2014-10-16

Family

ID=51689313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053853 WO2014167897A1 (ja) 2013-04-09 2014-02-19 信号処理装置及び信号処理方法

Country Status (3)

Country Link
US (1) US9853765B2 (ja)
JP (1) JP6206487B2 (ja)
WO (1) WO2014167897A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127599A (ja) * 2015-01-05 2016-07-11 富士通株式会社 マルチキャリア光通信システムにおける非線形補償方法、装置及びシステム
JP2020145561A (ja) * 2019-03-05 2020-09-10 日本電信電話株式会社 光受信装置及び係数最適化方法
WO2022113268A1 (ja) * 2020-11-27 2022-06-02 日本電信電話株式会社 光伝送システム、光受信装置、光送信装置、制御方法およびプログラム
JP7549258B2 (ja) 2020-11-27 2024-09-11 日本電信電話株式会社 光伝送システム、光受信装置、光送信装置、制御方法およびプログラム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122815A1 (ja) * 2013-02-07 2014-08-14 日本電気株式会社 信号処理装置及び信号処理方法
EP2804334A1 (en) * 2013-05-13 2014-11-19 Xieon Networks S.à.r.l. Method, device and communication system for reducing optical transmission impairments
JP6176012B2 (ja) * 2013-09-11 2017-08-09 富士通株式会社 非線形歪み補償装置及び方法並びに通信装置
CN104980379B (zh) * 2014-04-11 2018-06-08 富士通株式会社 非线性失真的估计装置、方法以及接收机
US10038503B2 (en) * 2014-08-13 2018-07-31 Xilinx, Inc. Adaptive optical channel compensation
US10333621B2 (en) * 2016-02-16 2019-06-25 Nokia Of America Corporation Optical communication with some compensation of nonlinear optical effects
JP6759742B2 (ja) * 2016-06-16 2020-09-23 富士通株式会社 受信装置及び設定方法
KR102275351B1 (ko) * 2020-05-07 2021-07-09 한국과학기술원 절대값 연산 기반 전자 비선형 등화 장치 및 방법
JP2022174467A (ja) * 2021-05-11 2022-11-24 日本電気株式会社 通信システム、受信機、等化信号処理回路、方法、及びプログラム
US12052055B2 (en) * 2022-07-22 2024-07-30 Nec Corporation Method of equalizing waveform distortion, terminal device, and optical communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198364A (ja) * 2008-02-22 2009-09-03 Fujitsu Ltd 光ファイバ伝送路の特性および光信号の品質をモニタするモニタ回路
JP2010050578A (ja) * 2008-08-19 2010-03-04 Fujitsu Ltd 歪補償器、光受信装置およびそれらの制御方法並びに光伝送システム
WO2012111140A1 (ja) * 2011-02-18 2012-08-23 三菱電機株式会社 光受信器、非線形等化回路及びデジタル信号処理回路
JP2012186807A (ja) * 2011-03-04 2012-09-27 Fujitsu Ltd 非線形劣化補償方法および装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7606498B1 (en) * 2005-10-21 2009-10-20 Nortel Networks Limited Carrier recovery in a coherent optical receiver
JP5298894B2 (ja) * 2009-01-30 2013-09-25 富士通株式会社 歪み補償装置,光受信装置及び光送受信システム
US20130302041A1 (en) * 2011-02-02 2013-11-14 Nec Corporation Optical receiver and method for optical reception
CN103312414B (zh) * 2012-03-16 2016-03-30 富士通株式会社 一种逆信道装置和包含该装置的发射机、接收机及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198364A (ja) * 2008-02-22 2009-09-03 Fujitsu Ltd 光ファイバ伝送路の特性および光信号の品質をモニタするモニタ回路
JP2010050578A (ja) * 2008-08-19 2010-03-04 Fujitsu Ltd 歪補償器、光受信装置およびそれらの制御方法並びに光伝送システム
WO2012111140A1 (ja) * 2011-02-18 2012-08-23 三菱電機株式会社 光受信器、非線形等化回路及びデジタル信号処理回路
JP2012186807A (ja) * 2011-03-04 2012-09-27 Fujitsu Ltd 非線形劣化補償方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WAKAKO MAEDA ET AL.: "Simple optimization method for nonlinear compensation by filtered backpropagation-based equalization utilizing intra-stage dispersion", OPTICAL COMMUNICATION (ECOC 2013), 39TH EUROPEAN CONFERENCE AND EXHIBITION ON, September 2013 (2013-09-01), pages 1 - 3 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127599A (ja) * 2015-01-05 2016-07-11 富士通株式会社 マルチキャリア光通信システムにおける非線形補償方法、装置及びシステム
JP2020145561A (ja) * 2019-03-05 2020-09-10 日本電信電話株式会社 光受信装置及び係数最適化方法
JP7311744B2 (ja) 2019-03-05 2023-07-20 日本電信電話株式会社 光受信装置及び係数最適化方法
US11716149B2 (en) 2019-03-05 2023-08-01 Nippon Telegraph And Telephone Corporation Optical receiving apparatus and coefficient optimization method
WO2022113268A1 (ja) * 2020-11-27 2022-06-02 日本電信電話株式会社 光伝送システム、光受信装置、光送信装置、制御方法およびプログラム
JP7549258B2 (ja) 2020-11-27 2024-09-11 日本電信電話株式会社 光伝送システム、光受信装置、光送信装置、制御方法およびプログラム

Also Published As

Publication number Publication date
JPWO2014167897A1 (ja) 2017-02-16
US20160036554A1 (en) 2016-02-04
US9853765B2 (en) 2017-12-26
JP6206487B2 (ja) 2017-10-04

Similar Documents

Publication Publication Date Title
JP6206487B2 (ja) 信号処理装置及び信号処理方法
JP6287866B2 (ja) 信号処理装置及び信号処理方法
JP5590090B2 (ja) 周波数オフセット補償装置及び方法並びに光コヒーレント受信機
JP5238881B2 (ja) コヒーレント受信機における適応非線形補償
US20100054759A1 (en) Method for Electric Power Supply of Optical Receiver, Digital Signal Processing Circuit, and Optical Receiver
US9100126B2 (en) Optical reception device and optical reception control method
JP2010193204A (ja) 信号処理装置および光受信装置
EP2583424B1 (en) Method for phase and oscillator frequency estimation
US20150372764A1 (en) Optical receiver having an equalization filter with an integrated signal re-sampler
JP5316736B1 (ja) デジタル受信機及び波形補償方法
WO2014155775A1 (ja) 信号処理装置、光通信システム、及び信号処理方法
JP6711358B2 (ja) 信号処理装置、通信システム、及び信号処理方法
JP2009218837A (ja) 光受信装置および光受信方法
CN107395287A (zh) 一种频偏估计方法和装置
JP6428639B2 (ja) 非線形歪補償器、それを用いた光受信器、および非線形歪補償方法
JP5681743B2 (ja) 光受信装置および光受信方法
JP6380403B2 (ja) 搬送波周波数偏差推定装置および搬送波周波数偏差推定方法
JP2014230249A (ja) 信号処理装置及び信号処理方法
CN110168967B (zh) 一种光接收机及延时估计方法
JP6009953B2 (ja) 光受信装置
JP6116001B2 (ja) 光送信装置及び光受信装置
WO2017029030A1 (en) Method for nonlinearity compensation in optical transmission systems
JP2016208417A (ja) 光受信装置
Börjesson Implementation of Blind Carrier Phase Recovery for Coherent Fiber-Optical Receivers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782364

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015511144

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14782838

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782364

Country of ref document: EP

Kind code of ref document: A1