WO2009139070A1 - 製造方法および試験用ウエハユニット - Google Patents

製造方法および試験用ウエハユニット Download PDF

Info

Publication number
WO2009139070A1
WO2009139070A1 PCT/JP2008/059085 JP2008059085W WO2009139070A1 WO 2009139070 A1 WO2009139070 A1 WO 2009139070A1 JP 2008059085 W JP2008059085 W JP 2008059085W WO 2009139070 A1 WO2009139070 A1 WO 2009139070A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
circuit
test
connection
side pads
Prior art date
Application number
PCT/JP2008/059085
Other languages
English (en)
French (fr)
Inventor
新一 濱口
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to KR1020107018692A priority Critical patent/KR101148917B1/ko
Priority to PCT/JP2008/059085 priority patent/WO2009139070A1/ja
Priority to JP2010511830A priority patent/JP5208208B2/ja
Priority to TW098116152A priority patent/TWI382486B/zh
Publication of WO2009139070A1 publication Critical patent/WO2009139070A1/ja
Priority to US12/945,742 priority patent/US8441274B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a test wafer unit and a manufacturing method thereof.
  • the present invention relates to a test wafer unit provided with a plurality of test circuits for testing a plurality of semiconductor chips formed on a semiconductor wafer, and a method for manufacturing the same.
  • the apparatus includes a probe card that can be electrically connected to a plurality of semiconductor chips at once.
  • the BOST circuit can be formed with high density by a semiconductor process, and a large number of BOST circuits can be provided in the probe card.
  • a via hole that electrically connects the front and back surfaces of the semiconductor wafer is formed.
  • the BOST circuit is formed in the probe card, it is preferable to shorten the time for forming the via hole in order to reduce damage to the BOST circuit when forming the via hole. For example, by reducing the thickness of the semiconductor wafer used as the probe card substrate as much as possible, the time for forming the via hole penetrating the semiconductor wafer can be shortened.
  • the strength of the semiconductor wafer is reduced.
  • the probe card since the probe card contacts the chip under test with a constant pressing force, it is not preferable to reduce the strength of the semiconductor wafer used for the probe card.
  • the probe card has a large area, and the problem due to a decrease in the strength of the semiconductor wafer becomes significant.
  • an object of the present invention is to provide a manufacturing method and a test wafer unit that can solve the above-described problems. This object is achieved by a combination of features described in the independent claims.
  • the dependent claims define further advantageous specific examples of the present invention.
  • the first aspect of the present invention is a manufacturing method for manufacturing a test wafer unit provided with a plurality of test circuits for testing a plurality of semiconductor chips formed on a semiconductor wafer. Then, a plurality of test circuits are formed on the circuit wafer, and a plurality of circuit side pads to be electrically connected to the plurality of test circuits are formed on a predetermined surface of the connection wafer having a wafer thickness larger than that of the circuit wafer.
  • a plurality of wafer-side pads to be electrically connected to the plurality of semiconductor chips on the back surface of the predetermined surface, and a plurality of lengths for electrically connecting the plurality of circuit-side pads and the plurality of wafer-side pads.
  • a test wafer unit provided with a plurality of test circuits for testing a plurality of semiconductor chips formed on a semiconductor wafer, wherein the circuit wafer has a plurality of test circuits formed thereon. And a plurality of circuit-side pads to be electrically connected to the plurality of test circuits are formed on the predetermined surface, and a plurality of wafers to be electrically connected to the plurality of semiconductor chips on the back surface of the predetermined surface.
  • a test wafer unit comprising a connection wafer having a wafer thickness larger than a circuit wafer, wherein a side pad is formed and a plurality of long via holes are formed to electrically connect the plurality of circuit side pads and the plurality of wafer side pads. I will provide a.
  • FIG. 5 is a diagram showing an example of a method for manufacturing a test wafer unit 600.
  • FIG. FIG. 2A shows a circuit wafer 610 and a connection wafer 630 to be prepared.
  • FIG. 2B shows pads and the like formed on the circuit wafer 610 and the connection wafer 630.
  • FIG. 2C shows an example of the test wafer unit 600.
  • 5 is a diagram illustrating a detailed configuration example of a test wafer unit 600.
  • FIG. FIG. 6 is a view showing another example of a test wafer unit 600.
  • FIG. 11 is a diagram showing another example of a connection wafer 630.
  • FIG. 11 is a diagram showing another example of a connection wafer 630.
  • 3 is a block diagram illustrating a functional configuration example of a test circuit 616.
  • FIG. 1 is a diagram for explaining an outline of a test using the test wafer unit 600.
  • each semiconductor chip 310 of the semiconductor wafer 300 is tested using the test wafer unit 600.
  • the test wafer unit 600 may include a wafer formed of the same semiconductor material as the substrate of the semiconductor wafer 300 to be tested. Further, the test wafer unit 600 may include a wafer having substantially the same diameter as the substrate of the semiconductor wafer 300 to be tested. The wafer of the test wafer unit 600 is disposed so as to overlap the semiconductor wafer 300, thereby being electrically connected to the inspection pads in the plurality of semiconductor chips 310 in a lump. A plurality of wafer-side pads 636 corresponding to the pads of the semiconductor chip 310 may be formed on the surface of the test wafer unit 600 that faces the semiconductor wafer 300.
  • the test wafer unit 600 includes a plurality of test circuits 616 corresponding to the plurality of semiconductor chips 310.
  • the test wafer unit 600 may include a plurality of test circuits 616 corresponding to the plurality of semiconductor chips 310 on a one-to-one basis.
  • Each test circuit 616 may test the corresponding semiconductor chip 310 based on test data given in advance.
  • each test circuit 616 may generate a test signal to be supplied to the corresponding semiconductor chip 310, and determine whether the semiconductor chip 310 is good or bad based on a response signal output from the corresponding semiconductor chip 310. Good.
  • the control device 10 may supply test data, power supply power, a control signal, and the like to each test circuit 616.
  • the control device 10 may write the same test data in parallel to each test circuit 616.
  • the test wafer unit 600 tests the plurality of semiconductor chips 310 in parallel by being electrically connected together with the plurality of semiconductor chips 310 of the semiconductor wafer 300 to be tested.
  • the test circuit 616 and the wafer-side pad 636 are shown on the same wafer of the test wafer unit 600. However, the test circuit 616 and the wafer-side pad 636 are provided on different wafers in the test wafer unit 600. It is done.
  • FIG. 2 is a diagram illustrating an example of a method for manufacturing the test wafer unit 600.
  • FIG. 2A shows a circuit wafer 610 and a connection wafer 630 to be prepared.
  • FIG. 2B shows pads and the like formed on the circuit wafer 610 and the connection wafer 630.
  • FIG. 2C shows an example of the test wafer unit 600.
  • a circuit wafer 610 and a connection wafer 630 are prepared.
  • a wafer having a wafer thickness h 2 larger than the wafer thickness h 1 of the circuit wafer 610 is prepared as the connection wafer 630.
  • circuit wafer 610 and the connection wafer 630 may be formed of the same substrate material.
  • the circuit wafer 610 and the connection wafer 630 may be formed of the same substrate material as the semiconductor wafer 300 to be tested.
  • the circuit wafer 610 and the connection wafer 630 may be silicon wafers.
  • circuit wafer 610 and the connection wafer 630 may be wafers having substantially the same diameter.
  • the circuit wafer 610 and the connection wafer 630 may have the same diameter as the semiconductor wafer 300 to be tested.
  • elements such as pads, wirings, and circuits are formed on the circuit wafer 610 and the connection wafer 630.
  • these elements may be formed by a semiconductor process such as exposure.
  • element formation for the circuit wafer 610 and the connection wafer 630 is performed for each wafer.
  • a plurality of test circuits 616 are formed on the surface of the wafer.
  • the test circuit 616 is formed corresponding to the plurality of semiconductor chips 310 to be tested, and tests the corresponding semiconductor chips 310, respectively.
  • the test circuit 616 may include a circuit that generates a test signal supplied to the semiconductor chip 310. Further, a circuit for determining whether the semiconductor chip 310 is good or bad based on a signal output from the semiconductor chip 310 may be provided.
  • a plurality of front surface pads 612, a plurality of back surface pads 620, a plurality of wirings 614, and a plurality of short via holes 618 are further formed corresponding to the plurality of test circuits 616.
  • Each surface pad 612 is formed on the same surface as the test circuit 616 in the circuit wafer 610.
  • Each wiring 614 electrically connects the corresponding test circuit 616 and the surface pad 612.
  • Each back pad 620 is formed on the back surface of the surface on which the test circuit 616 is provided in the circuit wafer 610.
  • Each short via hole 618 is formed through the circuit wafer 610 so as to electrically connect the corresponding test circuit 616 and back surface pad 620 via the front surface pad 612.
  • the short via hole 618 is formed by forming a through hole in the circuit wafer 610 by etching or the like and applying a conductive material to the surface of the through hole by vapor deposition or the like.
  • the front surface pad 612 and the back surface pad 620 are formed at both ends of the short via hole 618.
  • the test circuit 616 when the conductive material for the short via hole 618 is applied, the test circuit 616 that has already been formed may be damaged because the processing such as heating and charging is performed.
  • the damage given to the test circuit 616 depends on the time length of the step of applying the conductive material of the short via hole 618. Further, the time length of the step of applying the conductive material for the short via hole 618 depends on the length of the short via hole 618, the surface area, and the like. For this reason, it is preferable that the wafer thickness h1 of the circuit wafer 610 be thin enough to ignore damage to the test circuit 616 when the conductive material for the short via hole 618 is applied. For example, the wafer thickness h1 of the circuit wafer 610 may be about several tens of ⁇ m.
  • a plurality of circuit side pads 632, a plurality of wafer side pads 636, and a plurality of long via holes 634 are formed in the connection wafer 630.
  • the plurality of circuit-side pads 632 are formed on a predetermined surface of the connection wafer 630 that should be disposed to face the circuit wafer 610 so as to be electrically connected to the plurality of test circuits 616.
  • the plurality of circuit side pads 632 are formed in one-to-one correspondence with the plurality of back surface pads 620.
  • the wafer-side pad 636 is formed on the back surface of the predetermined surface described above so as to be electrically connected to the plurality of semiconductor chips 310.
  • the plurality of wafer side pads 636 are formed in one-to-one correspondence with the plurality of circuit side pads 632.
  • the long via hole 634 is formed through the connection wafer 630 so as to electrically connect the corresponding circuit side pad 632 and wafer side pad 636.
  • the long via hole 634 is formed by forming a through hole in the connection wafer 630 by etching or the like and applying a conductive material to the surface of the through hole by electrolytic plating or the like.
  • the circuit side pad 632 and the wafer side pad 636 are formed at both ends of the long via hole 634.
  • the long via hole 634 may be formed by the same method as the short via hole 618, or may be formed by a method suitable for forming a via hole having a larger area. Since a circuit that generates a signal is not formed in the connection wafer 630, the long via hole 634 may be formed over a longer time than the short via hole 618. For example, the time for forming the conductive material in the short via hole 618 may be shorter than the time for forming the conductive material in the long via hole 634.
  • the circuit wafer 610 and the connection wafer 630 are overlapped so that the combination of the corresponding back surface pad 620 and circuit side pad 632 is electrically connected, A test wafer unit 600 is formed.
  • the plurality of test circuits 616 are electrically connected to the plurality of wafer side pads 636 via the plurality of circuit side pads 632.
  • test wafer unit 600 of this example forms the test circuit 616 on the relatively thin circuit wafer 610
  • damage to the test circuit 616 when the short via hole 618 is formed on the circuit wafer 610. Can be reduced.
  • the relatively thick connection wafer 630 is superimposed on the circuit wafer 610, the strength of the test wafer unit 600 can be improved. For this reason, even if it is a case where the semiconductor wafer 300 of a large area is tested, it can prevent that the wafer unit 600 for a test is damaged.
  • the circuit wafer 610 and the connection wafer 630 may be fixed in a superposed state. For example, it may be attached via an anisotropic conductive sheet having adhesiveness. Moreover, you may bond together by another method.
  • FIG. 3 is a diagram showing a detailed configuration example of the test wafer unit 600.
  • the test wafer unit 600 of this example stores a circuit wafer 610 and a connection wafer 630 between the wiring board 202 and the membrane 222.
  • the wiring board 202 may be a printed board on which wiring for electrically connecting the test circuit 616 of the circuit wafer 610 and the control device 10 is provided.
  • the circuit wafer 610 is electrically connected to the wiring substrate 202 via the apparatus-side anisotropic conductive sheet 212.
  • the connection wafer 630 is electrically connected to the circuit wafer 610 via the intermediate anisotropic conductive sheet 252.
  • the connection wafer 630 is electrically connected to the membrane 222 via the wafer side anisotropic conductive sheet 218.
  • the support unit 204 supports the membrane 222 with respect to the wiring substrate 202, so that the apparatus-side anisotropic conductive sheet 212, the circuit wafer 610, the intermediate anisotropic conductive sheet 252, the connection wafer 630, and the wafer side
  • the anisotropic conductive sheet 218 is fixed to the wiring board 202.
  • the support portion 204 may include an extending portion 205 provided by extending in the vertical direction from the back surface of the wiring board 202, and a locking portion 209 that locks the fixing ring 220 at the lower end of the extending portion 205. That is, the support unit 204 may indicate the membrane 222 fixed to the fixing ring 220 by supporting the fixing ring 220.
  • the support unit 204 supports the lower end of the fixing ring 220 at a position away from the lower surface of the wiring substrate 202 by a predetermined distance so that the lower end of the fixing ring 220 cannot be more than a predetermined distance from the lower surface of the wiring substrate 202. It's okay. Further, the support part 204 may be fixed to the wiring board 202 by inserting screws into the screw holes 208 provided in the wiring board 202 and the screw holes 206 provided in the support part 204. The diameter of the screw hole 206 may be larger than the diameter of the screw hole 208.
  • the device-side seal 214 is provided along the peripheral edge of the surface of the membrane 222 on the wiring board 202 side, and seals between the peripheral edge of the surface of the membrane 222 on the wiring board 202 side and the wiring board 202.
  • the apparatus side seal part 214 may be formed of an elastic material having elasticity.
  • the membrane 222 is provided between the wafer side anisotropic conductive sheet 218 and the semiconductor wafer 300.
  • the membrane 222 may have bump terminals that electrically connect the terminals of the semiconductor wafer 300 and the wafer-side pads 636 of the connection wafer 630.
  • the fixing ring 220 fixes the membrane 222 to the apparatus side seal part 214. As shown in FIG. 3, a gap may be provided between each anisotropic conductive sheet and each wafer and the apparatus-side seal portion 214.
  • the fixing ring 220 may be provided in an annular shape along the peripheral edge of the surface of the membrane 222 on the semiconductor wafer 300 side.
  • the membrane 222 has a circular shape with substantially the same diameter as the fixing ring 220, and the end portion is fixed to the fixing ring 220.
  • the membrane 222 of the test wafer unit 600 is electrically connected to the semiconductor wafer 300 placed on the wafer tray 226.
  • the wafer tray 226 is moved to a predetermined position by the wafer stage 228.
  • the wafer tray 226 is provided so as to form a sealed space with the wiring board 202.
  • the wafer tray 226 of this example forms a sealed space with the wiring substrate 202, the device-side seal portion 214, and the wafer-side seal portion 224.
  • the wafer tray 226 places the semiconductor wafer 300 on the surface of the sealed space side.
  • the wafer side seal part 224 is provided along the region corresponding to the peripheral part of the membrane 222 on the surface of the wafer tray 226, and seals between the peripheral part of the wafer tray side surface of the membrane 222 and the wafer tray 226.
  • the wafer side seal portion 224 may be formed in an annular shape on the surface of the wafer tray 226.
  • the wafer side seal portion 224 may be formed in a lip shape in which the annular diameter increases as the distance from the surface of the wafer tray 226 increases.
  • the tip of the wafer-side seal portion 224 bends according to the pressing force, thereby bringing the distance between the membrane 222 and the semiconductor wafer 300 closer.
  • the wafer-side seal portion 224 is formed such that the height from the surface of the wafer tray 226 when not pressed against the membrane 222 is higher than the height of the semiconductor wafer 300.
  • the decompression unit 234 decompresses the sealed space between the wiring substrate 202 and the wafer tray 226 formed by the wiring substrate 202, the wafer tray 226, the apparatus side seal unit 214, and the wafer side seal unit 224. As a result, the decompression unit 234 brings the wafer tray 226 closer to the wiring board 202 to a predetermined position.
  • the wafer tray 226 is disposed at the predetermined position so as to apply a pressing force to each anisotropic conductive sheet, and the wiring substrate 202, the circuit wafer 610, the connection wafer 630, the membrane 222, and the semiconductor.
  • the wafer 300 is electrically connected.
  • the wafer side seal portion 224 may contact the membrane 222 inside the fixing ring 220.
  • the sealed space is divided by the membrane 222 into a space on the wiring substrate 202 side and a space on the wafer tray 226 side.
  • the membrane 222 is provided with a through hole 242 connecting these spaces.
  • the device side anisotropic conductive sheet 212, the circuit wafer 610, the connection wafer 630, and the wafer side anisotropic conductive sheet 218 may be similarly provided with a through hole 213, a through hole 240, and a through hole 219. .
  • through holes are also provided in the device-side anisotropic conductive sheet 212, the circuit wafer 610, the intermediate anisotropic conductive sheet 252, the connection wafer 630, and the wafer-side anisotropic conductive sheet 218. .
  • These through-holes are preferably distributed substantially uniformly in each plane. With such a configuration, the air sucked in the process of depressurizing the sealed space flows in a dispersed manner through the many through holes.
  • the pressing force applied to the anisotropic conductive sheet is distributed almost uniformly in each plane, and the stress strain in the depressurization process can be greatly reduced. For this reason, the crack of a wafer, the distortion of an anisotropic conductive sheet, etc. can be prevented. Further, by providing the through-hole 242 in the membrane 222, it is possible to decompress the space on the wiring substrate 202 side and the space on the semiconductor wafer 300 side with one decompression unit 234, and electrically connect them. Can do.
  • the decompression unit 234 sucks the semiconductor wafer 300 onto the wafer tray 226.
  • the decompression unit 234 of this example includes a decompressor 236 for a sealed space and a decompressor 238 for a semiconductor wafer.
  • an air intake path 232 for a sealed space and an air intake path 230 for a semiconductor wafer are formed in the wafer tray 226.
  • connection wafer 630 fixed to the wiring board 202 and the semiconductor wafer 300 can be electrically connected. Then, in a state where the connection wafer 630 and the semiconductor wafer 300 are electrically connected, the connection space 630 and the semiconductor are sealed by sealing the air intake path 232 for the sealed space and the air intake path 230 for the semiconductor wafer. The wafer 300 is fixed.
  • FIG. 4 is a diagram showing another example of the test wafer unit 600.
  • a plurality of wafer-side pads 636 are formed with a pad interval different from that of the plurality of circuit-side pads 632. That is, the connection wafer 630 of this example also functions as a pitch conversion substrate.
  • the plurality of circuit side pads 632 are formed at positions corresponding to the back surface pads 620 of the circuit wafer 610.
  • the plurality of wafer side pads 636 are formed at positions corresponding to the pads 312 of the semiconductor wafer 300. With such a configuration, the circuit wafer 610 having different pad intervals and the semiconductor wafer 300 can be electrically connected.
  • one end of the long via hole 634 in this example is connected to the corresponding wafer-side pad 636.
  • a plurality of pitch conversion wirings 638 and a plurality of intermediate pads 640 are further formed on the connection wafer 630.
  • the plurality of intermediate pads 640 are formed at positions where they are connected to the other end of the long via hole 634.
  • Each pitch conversion wiring 638 electrically connects the other end of the corresponding long via hole 634 to the corresponding circuit side pad 632 through the intermediate pad 640.
  • FIG. 5 is a view showing another structure example of the connection wafer 630.
  • a plurality of switches 642 are further formed in addition to the structure of the connection wafer 630 described with reference to FIGS.
  • the plurality of switches 642 may be provided in one-to-one correspondence with the plurality of wafer-side pads 636.
  • Each switch 642 switches whether or not to electrically connect the corresponding wafer side pad 636 and the corresponding test circuit 616.
  • the switch 642 may include a transistor provided between the circuit side pad 632 and the intermediate pad 640.
  • FIG. 6 is a diagram showing another example of the structure of the connection wafer 630.
  • a switch portion 644 is further formed on the connection wafer 630 in this example.
  • the switch unit 644 switches which test circuit 616 is electrically connected to each wafer-side pad 636.
  • the switch unit 644 of this example may switch the connection relationship between the wafer-side pad 636 and the test circuit 616 by switching to which intermediate pad 640 each circuit-side pad 632 is connected.
  • FIG. 7 is a block diagram illustrating a functional configuration example of the test circuit 616.
  • the test circuit 616 includes a pattern generation unit 122, a waveform shaping unit 130, a driver 132, a comparator 134, a timing generation unit 136, a logic comparison unit 138, a characteristic measurement unit 140, and a power supply unit 142. Note that the test circuit 616 may have the configuration shown in FIG. 7 for each input / output pin of the semiconductor chip 310 to be connected. These structures may be formed on the circuit wafer 610 by a semiconductor process such as exposure.
  • the pattern generator 122 generates a logic pattern of the test signal.
  • the pattern generation unit 122 of this example includes a pattern memory 124, an expected value memory 126, and a fail memory 128.
  • the pattern generator 122 may output a logical pattern stored in advance in the pattern memory 124.
  • the pattern memory 124 may store a logical pattern given from the control device 10 before starting the test.
  • the pattern generator 122 may generate the logical pattern based on an algorithm given in advance.
  • the waveform shaping unit 130 shapes the waveform of the test signal based on the logical pattern given from the pattern generation unit 122.
  • the waveform shaping unit 130 may shape the waveform of the test signal by outputting a voltage corresponding to each logic value of the logic pattern for each predetermined bit period.
  • the driver 132 outputs a test signal corresponding to the waveform given from the waveform shaping unit 130.
  • the driver 132 may output a test signal in accordance with the timing signal given from the timing generator 136.
  • the driver 132 may output a test signal having the same cycle as the timing signal.
  • the driver 132 supplies the test signal to the corresponding semiconductor chip 310.
  • the comparator 134 measures the response signal output from the semiconductor chip 310.
  • the comparator 134 may measure the logical pattern of the response signal by sequentially detecting the logical value of the response signal in accordance with the strobe signal supplied from the timing generator 136.
  • the logic comparison unit 138 functions as a determination unit that determines the quality of the corresponding semiconductor chip 310 based on the logic pattern of the response signal measured by the comparator 134. For example, the logic comparison unit 138 may determine the quality of the semiconductor chip 310 based on whether or not the expected value pattern given from the pattern generation unit 122 matches the logic pattern detected by the comparator 134.
  • the pattern generation unit 122 may supply the expected value pattern stored in advance in the expected value memory 126 to the logic comparison unit 138.
  • the expected value memory 126 may store a logic pattern given from the control device 10 before the test is started.
  • the pattern generation unit 122 may generate the expected value pattern based on an algorithm given in advance.
  • the fail memory 128 stores the comparison result in the logical comparison unit 138.
  • the fail memory 128 may store the pass / fail judgment result in the logic comparison unit 138 for each address of the semiconductor chip 310.
  • the control device 10 may read the pass / fail judgment result stored in the fail memory 128.
  • the test circuit 616 may output the pass / fail judgment result stored in the fail memory 128 to the control device 10 outside the test wafer unit 600.
  • the characteristic measurement unit 140 measures the voltage or current waveform output by the driver 132.
  • the characteristic measurement unit 140 may function as a determination unit that determines whether the semiconductor chip 310 is good or not based on whether a waveform of a current or voltage supplied from the driver 132 to the semiconductor chip 310 satisfies a predetermined specification. .
  • the power supply unit 142 supplies power for driving the semiconductor chip 310.
  • the power supply unit 142 may supply power to the semiconductor chip 310 according to the power supplied from the control device 10 during the test. Further, the power supply unit 142 may supply drive power to each component of the test circuit 616.
  • test circuit 616 Since the test circuit 616 has such a configuration, a test system in which the scale of the control device 10 is reduced can be realized.
  • a general-purpose personal computer or the like can be used as the control device 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

 半導体ウエハに形成される複数の半導体チップを試験する複数の試験回路が設けられた試験用ウエハユニットを製造する製造方法であって、回路用ウエハに複数の試験回路を形成し、回路用ウエハよりウエハ厚が厚い接続用ウエハにおいて所定の面に、複数の試験回路と電気的に接続されるべき複数の回路側パッドを形成し、所定の面の裏面に、複数の半導体チップと電気的に接続されるべき複数のウエハ側パッドを形成し、複数の回路側パッドおよび複数のウエハ側パッドを電気的に接続する複数の長ビアホールを形成し、回路用ウエハおよび接続用ウエハを重ねあわせることで、複数の試験回路と、複数の回路側パッドとを電気的に接続させて、試験用ウエハユニットを形成する製造方法を提供する。

Description

製造方法および試験用ウエハユニット
 本発明は、試験用ウエハユニットおよびその製造方法に関する。特に本発明は、半導体ウエハに形成される複数の半導体チップを試験する複数の試験回路が設けられた試験用ウエハユニットおよびその製造方法に関する。
 半導体チップの試験において、複数の半導体チップが形成された半導体ウエハの状態で、各半導体チップの良否を試験する装置が知られている(例えば、特許文献1参照)。当該装置は、複数の半導体チップと一括して電気的に接続可能なプローブカードを備えることが考えられる。
特開2002-222839号公報
 ここで、半導体チップの試験として、例えばBOST回路を用いる方法がある。このとき、プローブカードにBOST回路を搭載することも考えられるが、半導体ウエハの状態で試験を行う場合、搭載すべきBOST回路が多数となり、BOST回路をプローブカードのプリント基板に実装することが困難である。
 このような問題を解決するべく、プローブカードに半導体ウエハを用いることが考えられる。これにより、半導体プロセスでBOST回路を高密度に形成することができ、多数のBOST回路をプローブカードに設けることができる。
 しかし、プローブカードとして半導体ウエハを用いる場合、半導体ウエハの表面および裏面を電気的に接続するビアホールが形成される。ここで、プローブカードには、BOST回路が形成されているので、ビアホールを形成するときのBOST回路へのダメージを低減すべく、ビアホールを形成する時間を短くすることが好ましい。例えば、プローブカードの基板となる半導体ウエハをできるだけ薄くすることで、半導体ウエハを貫通するビアホールを形成する時間を短くすることができる。
 しかし、半導体ウエハを薄くすると、半導体ウエハの強度が低下してしまう。一般に、プローブカードは、一定の押圧力で被試験チップと接触するので、プローブカードに用いられる半導体ウエハの強度を低下させるのは好ましくない。特に、被試験ウエハに形成される複数の半導体チップを一括して試験する場合、プローブカードは大面積となり、半導体ウエハの強度を低下させることによる問題が顕著になる。
 そこで本発明は、上記の課題を解決することのできる製造方法および試験用ウエハユニットを提供することを目的とする。この目的は請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。
 上記課題を解決するために、本発明の第1の形態においては、半導体ウエハに形成される複数の半導体チップを試験する複数の試験回路が設けられた試験用ウエハユニットを製造する製造方法であって、回路用ウエハに複数の試験回路を形成し、回路用ウエハよりウエハ厚が厚い接続用ウエハにおいて所定の面に、複数の試験回路と電気的に接続されるべき複数の回路側パッドを形成し、所定の面の裏面に、複数の半導体チップと電気的に接続されるべき複数のウエハ側パッドを形成し、複数の回路側パッドおよび複数のウエハ側パッドを電気的に接続する複数の長ビアホールを形成し、回路用ウエハおよび接続用ウエハを重ねあわせることで、複数の試験回路と、複数の回路側パッドとを電気的に接続させて、試験用ウエハユニットを形成する製造方法を提供する。
 本発明の第2の形態においては、半導体ウエハに形成される複数の半導体チップを試験する複数の試験回路が設けられた試験用ウエハユニットであって、複数の試験回路が形成された回路用ウエハと、所定の面に、複数の試験回路と電気的に接続されるべき複数の回路側パッドが形成され、所定の面の裏面に、複数の半導体チップと電気的に接続されるべき複数のウエハ側パッドが形成され、複数の回路側パッドおよび複数のウエハ側パッドを電気的に接続する複数の長ビアホールが形成される、回路用ウエハよりウエハ厚が厚い接続用ウエハとを備える試験用ウエハユニットを提供する。
 なお、上記の発明の概要は、発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となりうる。
試験用ウエハユニット600を用いた試験の概要を説明する図である。 試験用ウエハユニット600の製造方法例を示す図である。図2(a)は、準備すべき回路用ウエハ610および接続用ウエハ630を示す。図2(b)は、回路用ウエハ610および接続用ウエハ630に形成されるパッド等を示す。図2(c)は、試験用ウエハユニット600の一例を示す。 試験用ウエハユニット600の詳細な構成例を示す図である。 試験用ウエハユニット600の他の例を示す図である。 接続用ウエハ630の他の例を示す図である。 接続用ウエハ630の他の例を示す図である。 試験回路616の機能構成例を示すブロック図である。
符号の説明
10・・・制御装置、122・・・パターン発生部、124・・・パターンメモリ、126・・・期待値メモリ、128・・・フェイルメモリ、130・・・波形成形部、132・・・ドライバ、134・・・コンパレータ、136・・・タイミング発生部、138・・・論理比較部、140・・・特性測定部、142・・・電源供給部、202・・・配線基板、204・・・支持部、205・・・延伸部、206・・・ネジ穴、208・・・ネジ穴、209・・・係止部、212・・・装置側異方性導電シート、213・・・貫通孔、214・・・装置側シール部、218・・・ウエハ側異方性導電シート、219・・・貫通孔、220・・・固定リング、222・・・メンブレン、224・・・ウエハ側シール部、226・・・ウエハトレイ、228・・・ウエハステージ、230・・・吸気経路、232・・・吸気経路、234・・・減圧部、236・・・減圧器、238・・・減圧器、240・・・貫通孔、242・・・貫通孔、252・・・中間異方性導電シート、300・・・半導体ウエハ、310・・・半導体チップ、312・・・パッド、226・・・ウエハトレイ、600・・・試験用ウエハユニット、610・・・回路用ウエハ、612・・・表面パッド、614・・・配線、616・・・試験回路、618・・・短ビアホール、620・・・裏面パッド、630・・・接続用ウエハ、632・・・回路側パッド、634・・・長ビアホール、636・・・ウエハ側パッド、638・・・ピッチ変換配線、640・・・中間パッド、642・・・スイッチ、644・・・スイッチ部
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、試験用ウエハユニット600を用いた試験の概要を説明する図である。本例における試験は、試験用ウエハユニット600を用いて、半導体ウエハ300のそれぞれの半導体チップ310を試験する。
 試験用ウエハユニット600は、試験対象の半導体ウエハ300の基板と同一の半導体材料で形成されたウエハを有してよい。また、試験用ウエハユニット600は、試験対象の半導体ウエハ300の基板と略同一の直径のウエハを有してよい。試験用ウエハユニット600のウエハは、半導体ウエハ300と重なるように配置されることで、複数の半導体チップ310における検査用のパッドと一括して電気的に接続される。試験用ウエハユニット600の、半導体ウエハ300と対向する面には、半導体チップ310のそれぞれのパッドに対応する、複数のウエハ側パッド636が形成されてよい。
 また、試験用ウエハユニット600は、複数の半導体チップ310に対応する、複数の試験回路616を有する。例えば試験用ウエハユニット600は、複数の半導体チップ310に一対一に対応して、複数の試験回路616を有してよい。それぞれの試験回路616は、予め与えられる試験データに基づいて、対応する半導体チップ310を試験してよい。例えば、それぞれの試験回路616は、対応する半導体チップ310に供給する試験信号を生成してよく、また、対応する半導体チップ310が出力する応答信号に基づいて、半導体チップ310の良否を判定してよい。
 制御装置10は、それぞれの試験回路616に、試験データ、電源電力、および、制御信号等を供給してよい。制御装置10は、それぞれの試験回路616に、同一の試験データを並列に書き込んでよい。試験用ウエハユニット600は、試験対象の半導体ウエハ300の複数の半導体チップ310と一括して電気的に接続されることで、複数の半導体チップ310を並列に試験する。なお、図1においては、試験用ウエハユニット600の同一ウエハ上に試験回路616およびウエハ側パッド636を示したが、試験回路616およびウエハ側パッド636は、試験用ウエハユニット600において異なるウエハに設けられる。
 図2は、試験用ウエハユニット600の製造方法例を示す図である。図2(a)は、準備すべき回路用ウエハ610および接続用ウエハ630を示す。図2(b)は、回路用ウエハ610および接続用ウエハ630に形成されるパッド等を示す。図2(c)は、試験用ウエハユニット600の一例を示す。
 まず、図2(a)に示すように、回路用ウエハ610および接続用ウエハ630を準備する。ここで、接続用ウエハ630として、ウエハ厚h2が、回路用ウエハ610のウエハ厚h1より厚いウエハを準備する。
 また、回路用ウエハ610および接続用ウエハ630は、同一の基板材料で形成されてよい。また、回路用ウエハ610および接続用ウエハ630は、試験対象の半導体ウエハ300と同一の基板材料で形成されてよい。例えば、回路用ウエハ610および接続用ウエハ630は、シリコンウエハであってよい。
 また、回路用ウエハ610および接続用ウエハ630は、直径が略同一のウエハであってよい。また、回路用ウエハ610および接続用ウエハ630は、試験対象の半導体ウエハ300と同一の直径であってよい。
 次に、図2(b)に示すように、回路用ウエハ610および接続用ウエハ630に対して、パッド、配線、回路等の素子を形成する。当該工程では、露光等の半導体プロセスにより、これらの素子を形成してよい。また、回路用ウエハ610および接続用ウエハ630に対する素子形成は、ウエハ毎に行われる。
 回路用ウエハ610に対しては、ウエハの表面に複数の試験回路616を形成する。上述したように、試験回路616は、試験対象の複数の半導体チップ310と対応して形成され、それぞれ対応する半導体チップ310を試験する。例えば試験回路616は、半導体チップ310に供給する試験信号を生成する回路を有してよい。また、半導体チップ310が出力する信号に基づいて、半導体チップ310の良否を判定する回路を有してよい。
 また、回路用ウエハ610には、複数の試験回路616に対応して、複数の表面パッド612、複数の裏面パッド620、複数の配線614、および、複数の短ビアホール618を更に形成する。それぞれの表面パッド612は、回路用ウエハ610において、試験回路616と同一の面に形成される。また、それぞれの配線614は、対応する試験回路616および表面パッド612を電気的に接続する。
 それぞれの裏面パッド620は、回路用ウエハ610において、試験回路616が設けられる面の裏面に形成される。それぞれの短ビアホール618は、対応する試験回路616および裏面パッド620を、表面パッド612を介して電気的に接続すべく、回路用ウエハ610を貫通して形成される。例えば、短ビアホール618は、エッチング等により回路用ウエハ610に貫通孔を形成して、貫通孔の表面に蒸着等により導電材料を塗布することで形成される。また、表面パッド612および裏面パッド620は、短ビアホール618の両端に形成される。
 ここで、短ビアホール618の導電材料を塗布する場合、加熱、帯電等の処理が行われるので、既に形成された試験回路616にダメージを与える場合がある。試験回路616に与えられるダメージは、短ビアホール618の導電材料を塗布する工程の時間長に依存する。また、短ビアホール618の導電材料を塗布する工程の時間長は、短ビアホール618の長さ、表面積等に依存する。このため、回路用ウエハ610のウエハ厚h1は、短ビアホール618の導電材料を塗布するときに、試験回路616に与えるダメージが無視できる程度に薄いことが好ましい。例えば、回路用ウエハ610のウエハ厚h1は、数十μm程度であってよい。
 接続用ウエハ630には、複数の回路側パッド632、複数のウエハ側パッド636、および、複数の長ビアホール634を形成する。複数の回路側パッド632は、接続用ウエハ630において、回路用ウエハ610と対向して配置されるべき所定の面に、複数の試験回路616と電気的に接続すべく形成される。例えば、複数の回路側パッド632は、複数の裏面パッド620と一対一に対応して形成される。
 ウエハ側パッド636は、上述した所定の面の裏面に、複数の半導体チップ310と電気的に接続すべく形成される。複数のウエハ側パッド636は、複数の回路側パッド632と一対一に対応して形成される。
 長ビアホール634は、対応する回路側パッド632およびウエハ側パッド636を電気的に接続すべく、接続用ウエハ630を貫通して形成される。例えば、長ビアホール634は、エッチング等により接続用ウエハ630に貫通孔を形成して、貫通孔の表面に電解メッキ等により導電材料を塗布することで形成される。また、回路側パッド632およびウエハ側パッド636は、長ビアホール634の両端に形成される。
 長ビアホール634は、短ビアホール618と同一の方法で形成されてよく、また、より大面積のビアホールを形成するのに適した方法で形成されてもよい。接続用ウエハ630には、信号を生成するような回路が形成されないので、長ビアホール634は、短ビアホール618よりも長時間かけて形成されてよい。例えば、短ビアホール618に導電材料を成膜する時間は、長ビアホール634に導電材料を成膜する時間よりも短くてよい。
 次に、図2(c)に示すように、回路用ウエハ610および接続用ウエハ630を、対応する裏面パッド620および回路側パッド632の組み合わせがそれぞれ電気的に接続されるように重ねあわせて、試験用ウエハユニット600を形成する。これにより、複数の試験回路616が、複数の回路側パッド632を介して複数のウエハ側パッド636と電気的に接続される。それぞれのウエハ側パッド636を、試験対象の半導体ウエハ300におけるそれぞれの半導体チップ310と電気的に接続することで、それぞれの半導体チップ310を一括して試験することができる。
 上述したように、本例の試験用ウエハユニット600は、比較的に薄い回路用ウエハ610に試験回路616を形成するので、回路用ウエハ610に短ビアホール618を形成する場合の試験回路616のダメージを低減することができる。そして、比較的に厚い接続用ウエハ630を、回路用ウエハ610に重ね合わせるので、試験用ウエハユニット600の強度を向上させることができる。このため、大面積の半導体ウエハ300を試験するような場合であっても、試験用ウエハユニット600が破損することを防ぐことができる。
 なお、回路用ウエハ610および接続用ウエハ630は、重ね合わせた状態で固定されてよい。例えば、接着性を有する異方性導電シート等を介して貼りあわされてよい。また、他の方法で張り合わされてもよい。
 図3は、試験用ウエハユニット600の詳細な構成例を示す図である。本例の試験用ウエハユニット600は、配線基板202と、メンブレン222との間に、回路用ウエハ610および接続用ウエハ630を格納する。配線基板202は、回路用ウエハ610の試験回路616と、制御装置10とを電気的に接続する配線が設けられるプリント基板であってよい。
 回路用ウエハ610は、装置側異方性導電シート212を介して、配線基板202と電気的に接続される。また、接続用ウエハ630は、中間異方性導電シート252を介して、回路用ウエハ610と電気的に接続される。また、接続用ウエハ630は、ウエハ側異方性導電シート218を介して、メンブレン222と電気的に接続される。
 支持部204は、配線基板202に対してメンブレン222を支持することで、装置側異方性導電シート212、回路用ウエハ610、中間異方性導電シート252、接続用ウエハ630、および、ウエハ側異方性導電シート218を配線基板202に固定する。
 例えば支持部204は、配線基板202の裏面から垂直方向に延伸して設けられる延伸部205と、延伸部205の下端において、固定リング220を係止する係止部209を有してよい。つまり支持部204は、固定リング220を支持することにより、固定リング220に固定されたメンブレン222を指示してよい。
 支持部204は、固定リング220の下端が、配線基板202の下面から所定の距離以上はなれないように、配線基板202の下面から所定の距離だけ離れた位置で、固定リング220の下端を支持してよい。また、支持部204は、配線基板202に設けられたネジ穴208および支持部204に設けられたネジ穴206にネジが挿入されることで、配線基板202に固定されてよい。ネジ穴206の直径は、ネジ穴208の直径より大きくてよい。
 装置側シール部214は、メンブレン222の配線基板202側の面の周縁部に沿って設けられ、メンブレン222における配線基板202側の面の周縁部、および、配線基板202の間をシールする。装置側シール部214は、弾性を有する弾性材料で形成されてよい。メンブレン222は、ウエハ側異方性導電シート218および半導体ウエハ300の間に設けられる。メンブレン222は、半導体ウエハ300の端子と、接続用ウエハ630のウエハ側パッド636とを電気的に接続するバンプ端子を有してよい。
 固定リング220は、メンブレン222を装置側シール部214に対して固定する。図3に示すように、それぞれの異方性導電シートおよびそれぞれのウエハと、装置側シール部214との間には、隙間が設けられてよい。
 例えば固定リング220は、メンブレン222における半導体ウエハ300側の面の周縁部に沿って環状に設けられてよい。メンブレン222は、固定リング220と略同一直径の円形状を有しており、端部が固定リング220に固定される。このような構成により、回路用ウエハ610および接続用ウエハ630を重ね合わせた試験用ウエハユニット600を形成することができる。
 また、試験用ウエハユニット600のメンブレン222は、ウエハトレイ226に載置された半導体ウエハ300と電気的に接続する。ウエハトレイ226は、ウエハステージ228により、所定の位置に移動される。
 ウエハトレイ226は、配線基板202と密閉空間を形成するように設けられる。本例のウエハトレイ226は、配線基板202、装置側シール部214、および、ウエハ側シール部224と、密閉空間を形成する。また、ウエハトレイ226は、当該密閉空間側の面に、半導体ウエハ300を載置する。
 ウエハ側シール部224は、ウエハトレイ226の表面において、メンブレン222の周縁部に対応する領域に沿って設けられ、メンブレン222におけるウエハトレイ側の面の周縁部、および、ウエハトレイ226の間をシールする。ウエハ側シール部224は、ウエハトレイ226の表面において環状に形成されてよい。
 また、ウエハ側シール部224は、ウエハトレイ226の表面からの距離が大きくなるに従い、環状の直径が大きくなるようなリップ状に形成されてよい。ウエハ側シール部224は、メンブレン222に押し付けられた場合に、その押圧力に応じて先端がたわむことで、メンブレン222と半導体ウエハ300との距離を接近させる。また、ウエハ側シール部224は、メンブレン222に押し付けられていない状態における、ウエハトレイ226の表面からの高さが、半導体ウエハ300の高さより高くなるように形成される。
 減圧部234は、配線基板202、ウエハトレイ226、装置側シール部214、および、ウエハ側シール部224により形成される、配線基板202およびウエハトレイ226の間の密閉空間を減圧する。これにより減圧部234は、ウエハトレイ226を配線基板202に対して所定の位置まで接近させる。ウエハトレイ226は、当該所定の位置に配置されることで、それぞれの異方性導電シートに押圧力を印加して、配線基板202、回路用ウエハ610、接続用ウエハ630、メンブレン222、および、半導体ウエハ300を電気的に接続させる。
 また、ウエハ側シール部224は、固定リング220の内側において、メンブレン222と接触してよい。この場合、メンブレン222により、密閉空間が、配線基板202側の空間と、ウエハトレイ226側の空間に分断されてしまう。このため、メンブレン222には、これらの空間を接続する貫通孔242が設けられることが好ましい。また、装置側異方性導電シート212、回路用ウエハ610、接続用ウエハ630、ウエハ側異方性導電シート218にも同様に、貫通孔213、貫通孔240、貫通孔219が設けられてよい。
 また、装置側異方性導電シート212、回路用ウエハ610、中間異方性導電シート252、接続用ウエハ630、および、ウエハ側異方性導電シート218にも、貫通孔が設けられることが好ましい。これらの貫通孔は、それぞれの面内において略均等に分散配置されることが好ましい。このような構成により、密閉空間を減圧する過程で吸気される空気は、多数の貫通孔により分散して流動する。
 このため、密閉空間を減圧する過程において、異方性導電シートにかかる押圧力が、それぞれの面内において略均等に分散され、減圧過程における応力歪を大幅に低減することができる。このため、ウエハの割れ、異方性導電シートの歪み等を防ぐことができる。また、メンブレン222に貫通孔242を設けることで、一つの減圧部234で、配線基板202側の空間と、半導体ウエハ300側の空間とを減圧することができ、これらを電気的に接続することができる。
 また、減圧部234は、半導体ウエハ300をウエハトレイ226に吸着させる。本例の減圧部234は、密閉空間用の減圧器236と、半導体ウエハ用の減圧器238とを有する。また、ウエハトレイ226には、密閉空間用の吸気経路232と、半導体ウエハ用の吸気経路230とが形成される。
 このような構成により、配線基板202に固定される接続用ウエハ630と、半導体ウエハ300とを電気的に接続することができる。そして、接続用ウエハ630と半導体ウエハ300とが電気的に接続した状態で、密閉空間用の吸気経路232と、半導体ウエハ用の吸気経路230とを封止することで、接続用ウエハ630と半導体ウエハ300とを固定する。
 図4は、試験用ウエハユニット600の他の例を示す図である。本例における接続用ウエハ630においては、複数のウエハ側パッド636を、複数の回路側パッド632とは異なるパッド間隔で形成する。つまり、本例の接続用ウエハ630は、ピッチ変換基板としても機能する。例えば、複数の回路側パッド632は、回路用ウエハ610の裏面パッド620と対応する位置に形成される。また、複数のウエハ側パッド636は、半導体ウエハ300のパッド312と対応する位置に形成される。このような構成により、パッド間隔の異なる回路用ウエハ610と、半導体ウエハ300とを電気的に接続することができる。
 なお、本例の長ビアホール634は、一端が対応するウエハ側パッド636に接続される。また、接続用ウエハ630には、複数のピッチ変換配線638および複数の中間パッド640が更に形成される。複数の中間パッド640は、長ビアホール634の他端と接続する位置に形成される。それぞれのピッチ変換配線638は、対応する長ビアホール634の他端を、中間パッド640を介して、対応する回路側パッド632に電気的に接続する。
 図5は、接続用ウエハ630の他の構造例を示す図である。本例における接続用ウエハ630には、図1から図4に関連して説明した接続用ウエハ630の構造に加え、複数のスイッチ642が更に形成される。複数のスイッチ642は、複数のウエハ側パッド636と一対一に対応して設けられてよい。
 それぞれのスイッチ642は、対応するウエハ側パッド636と、対応する試験回路616とを電気的に接続するか否かを切り替える。スイッチ642は、回路側パッド632と、中間パッド640との間に設けられるトランジスタを有してよい。
 図6は、接続用ウエハ630の他の構造例を示す図である。本例における接続用ウエハ630には、図1から図4に関連して説明した接続用ウエハ630の構造に加え、スイッチ部644が更に形成される。スイッチ部644は、それぞれのウエハ側パッド636に、いずれの試験回路616を電気的に接続するかを切り替える。本例のスイッチ部644は、それぞれの回路側パッド632を、いずれの中間パッド640に接続するか切り替えることで、ウエハ側パッド636および試験回路616間の接続関係を切り替えてよい。
 図7は、試験回路616の機能構成例を示すブロック図である。試験回路616は、パターン発生部122、波形成形部130、ドライバ132、コンパレータ134、タイミング発生部136、論理比較部138、特性測定部140、および、電源供給部142を有する。なお、試験回路616は、接続される半導体チップ310の入出力ピンのピン毎に、図7に示した構成を有してよい。これらの構成は、露光等の半導体プロセスにより、回路用ウエハ610に形成されてよい。
 パターン発生部122は、試験信号の論理パターンを生成する。本例のパターン発生部122は、パターンメモリ124、期待値メモリ126、および、フェイルメモリ128を有する。パターン発生部122は、パターンメモリ124に予め格納された論理パターンを出力してよい。パターンメモリ124は、試験開始前に制御装置10から与えられる論理パターンを格納してよい。また、パターン発生部122は、予め与えられるアルゴリズムに基づいて当該論理パターンを生成してもよい。
 波形成形部130は、パターン発生部122から与えられる論理パターンに基づいて、試験信号の波形を成形する。例えば波形成形部130は、論理パターンの各論理値に応じた電圧を、所定のビット期間ずつ出力することで、試験信号の波形を成形してよい。
 ドライバ132は、波形成形部130から与えられる波形に応じた試験信号を出力する。ドライバ132は、タイミング発生部136から与えられるタイミング信号に応じて、試験信号を出力してよい。例えばドライバ132は、タイミング信号と同一周期の試験信号を出力してよい。ドライバ132は、当該試験信号を、対応する半導体チップ310に供給する。
 コンパレータ134は、半導体チップ310が出力する応答信号を測定する。例えばコンパレータ134は、タイミング発生部136から与えられるストローブ信号に応じて応答信号の論理値を順次検出することで、応答信号の論理パターンを測定してよい。
 論理比較部138は、コンパレータ134が測定した応答信号の論理パターンに基づいて、対応する半導体チップ310の良否を判定する判定部として機能する。例えば論理比較部138は、パターン発生部122から与えられる期待値パターンと、コンパレータ134が検出した論理パターンとが一致するか否かにより、半導体チップ310の良否を判定してよい。パターン発生部122は、期待値メモリ126に予め格納された期待値パターンを、論理比較部138に供給してよい。期待値メモリ126は、試験開始前に制御装置10から与えられる論理パターンを格納してよい。また、パターン発生部122は、予め与えられるアルゴリズムに基づいて当該期待値パターンを生成してもよい。
 フェイルメモリ128は、論理比較部138における比較結果を格納する。例えば、半導体チップ310のメモリ領域を試験する場合、フェイルメモリ128は、半導体チップ310のアドレス毎に、論理比較部138における良否判定結果を格納してよい。制御装置10は、フェイルメモリ128が格納した良否判定結果を読み出してよい。例えば、試験回路616は、フェイルメモリ128が格納した良否判定結果を、試験用ウエハユニット600の外部の制御装置10に出力してよい。
 また、特性測定部140は、ドライバ132が出力する電圧または電流の波形を測定する。例えば特性測定部140は、ドライバ132から半導体チップ310に供給する電流または電圧の波形が、所定の仕様を満たすか否かに基づいて、半導体チップ310の良否を判定する判定部として機能してよい。
 電源供給部142は、半導体チップ310を駆動する電源電力を供給する。例えば電源供給部142は、試験中に制御装置10から与えられる電力に応じた電源電力を、半導体チップ310に供給してよい。また、電源供給部142は、試験回路616の各構成要素に駆動電力を供給してもよい。
 試験回路616がこのような構成を有することで、制御装置10の規模を低減した試験システムを実現することができる。例えば制御装置10として、汎用のパーソナルコンピュータ等を用いることができる。
 以上、発明を実施の形態を用いて説明したが、発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。

Claims (9)

  1.  半導体ウエハに形成される複数の半導体チップを試験する複数の試験回路が設けられた試験用ウエハユニットを製造する製造方法であって、
     回路用ウエハに前記複数の試験回路を形成し、
     前記回路用ウエハよりウエハ厚が厚い接続用ウエハにおいて所定の面に、前記複数の試験回路と電気的に接続されるべき複数の回路側パッドを形成し、前記所定の面の裏面に、前記複数の半導体チップと電気的に接続されるべき複数のウエハ側パッドを形成し、前記複数の回路側パッドおよび前記複数のウエハ側パッドを電気的に接続する複数の長ビアホールを形成し、
     前記回路用ウエハおよび前記接続用ウエハを重ねあわせることで、前記複数の試験回路と、前記複数の回路側パッドとを電気的に接続させて、前記試験用ウエハユニットを形成する製造方法。
  2.  前記接続用ウエハの前記複数のウエハ側パッドを、前記複数の回路側パッドとは異なるパッド間隔で形成し、
     それぞれの前記長ビアホールを、一端が対応する前記ウエハ側パッドに接続するように形成し、
     それぞれの前記長ビアホールの他端を、対応する前記回路側パッドに電気的に接続するピッチ変換配線を、前記接続用ウエハに更に形成する
     請求項1に記載の製造方法。
  3.  それぞれの前記ウエハ側パッドと、対応する前記試験回路とを電気的に接続するか否かを切り替えるスイッチを、前記接続用ウエハに更に形成する
     請求項1に記載の製造方法。
  4.  それぞれの前記ウエハ側パッドに、いずれの前記試験回路を電気的に接続するかを切り替えるスイッチを、前記接続用ウエハに更に形成する
     請求項1に記載の製造方法。
  5.  前記複数の試験回路を、前記回路用ウエハの所定の面に形成し、
     前記所定の面の裏面に設けられた複数のパッドと、前記複数の試験回路とを電気的に接続する複数の短ビアホールを、前記回路用ウエハに更に形成する
     請求項1に記載の製造方法。
  6.  前記短ビアホールに導電材料を成膜する時間は、前記長ビアホールに導電材料を成膜する時間よりも短い
     請求項5に記載の製造方法。
  7.  前記回路用ウエハおよび前記接続用ウエハとして、基板材料が同一のウエハを用いる
     請求項1に記載の製造方法。
  8.  前記回路用ウエハおよび前記接続用ウエハとして、直径が略同一のウエハを用いる
     請求項1に記載の製造方法。
  9.  半導体ウエハに形成される複数の半導体チップを試験する複数の試験回路が設けられた試験用ウエハユニットであって、
     前記複数の試験回路が形成された回路用ウエハと、
     所定の面に、前記複数の試験回路と電気的に接続されるべき複数の回路側パッドが形成され、前記所定の面の裏面に、前記複数の半導体チップと電気的に接続されるべき複数のウエハ側パッドが形成され、前記複数の回路側パッドおよび前記複数のウエハ側パッドを電気的に接続する複数の長ビアホールが形成される、前記回路用ウエハよりウエハ厚が厚い接続用ウエハと
     を備える試験用ウエハユニット。
PCT/JP2008/059085 2008-05-16 2008-05-16 製造方法および試験用ウエハユニット WO2009139070A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020107018692A KR101148917B1 (ko) 2008-05-16 2008-05-16 제조 방법 및 시험용 웨이퍼 유닛
PCT/JP2008/059085 WO2009139070A1 (ja) 2008-05-16 2008-05-16 製造方法および試験用ウエハユニット
JP2010511830A JP5208208B2 (ja) 2008-05-16 2008-05-16 製造方法および試験用ウエハユニット
TW098116152A TWI382486B (zh) 2008-05-16 2009-05-15 製造方法以及測試用晶圓單元
US12/945,742 US8441274B2 (en) 2008-05-16 2010-11-12 Wafer unit manufacturing method for testing a semiconductor chip wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/059085 WO2009139070A1 (ja) 2008-05-16 2008-05-16 製造方法および試験用ウエハユニット

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/945,742 Continuation US8441274B2 (en) 2008-05-16 2010-11-12 Wafer unit manufacturing method for testing a semiconductor chip wafer

Publications (1)

Publication Number Publication Date
WO2009139070A1 true WO2009139070A1 (ja) 2009-11-19

Family

ID=41318452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/059085 WO2009139070A1 (ja) 2008-05-16 2008-05-16 製造方法および試験用ウエハユニット

Country Status (5)

Country Link
US (1) US8441274B2 (ja)
JP (1) JP5208208B2 (ja)
KR (1) KR101148917B1 (ja)
TW (1) TWI382486B (ja)
WO (1) WO2009139070A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110254000A1 (en) * 2010-04-15 2011-10-20 Hynix Semiconductor Inc. Semiconductor chip embedded with a test circuit
JP2013088288A (ja) * 2011-10-18 2013-05-13 Fujitsu Semiconductor Ltd 検査装置及び検査システム
CN113687206A (zh) * 2021-10-21 2021-11-23 常州欣盛半导体技术股份有限公司 晶片测试板、晶片测试系统和晶片测试方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044143A1 (ja) * 2008-10-14 2010-04-22 株式会社アドバンテスト 試験装置および製造方法
US20120286818A1 (en) * 2011-05-11 2012-11-15 Qualcomm Incorporated Assembly for optical backside failure analysis of wire-bonded device during electrical testing
US9817029B2 (en) 2011-12-07 2017-11-14 Taiwan Semiconductor Manufacturing Co., Ltd. Test probing structure
KR101977699B1 (ko) * 2012-08-20 2019-08-28 에스케이하이닉스 주식회사 멀티 칩 반도체 장치 및 그것의 테스트 방법
JP6374642B2 (ja) * 2012-11-28 2018-08-15 株式会社日本マイクロニクス プローブカード及び検査装置
CN110911301A (zh) * 2019-12-26 2020-03-24 苏州科阳光电科技有限公司 一种晶圆级封装检测结构及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210685A (ja) * 1999-11-19 2001-08-03 Hitachi Ltd テストシステムおよび半導体集積回路装置の製造方法
JP2001338953A (ja) * 2000-05-29 2001-12-07 Mitsubishi Electric Corp 半導体試験装置、半導体試験方法および半導体装置
JP2003084047A (ja) * 2001-06-29 2003-03-19 Sony Corp 半導体装置の測定用治具
JP2007134048A (ja) * 2001-08-07 2007-05-31 Shinozaki Seisakusho:Kk バンプ付き薄膜シートの製造方法及びバンプ付き薄膜シート

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293934A (ja) * 1987-05-27 1988-11-30 Hitachi Ltd 半導体素子検査装置
JPH0286147A (ja) * 1988-09-22 1990-03-27 Hitachi Ltd 半導体装置
JPH04188863A (ja) 1990-11-22 1992-07-07 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2948018B2 (ja) 1992-03-17 1999-09-13 三菱電機株式会社 半導体装置およびその製造方法
JPH07231021A (ja) * 1994-02-21 1995-08-29 Aging Tesuta Kaihatsu Kyodo Kumiai ウエハーバーンイン装置
JP2679684B2 (ja) * 1995-05-12 1997-11-19 日本電気株式会社 異方導電フィルム及び異方導電フィルムを用いた半導体ウェハ測定治具
JPH08335610A (ja) 1995-06-08 1996-12-17 Advantest Corp 半導体デバイス解析装置
US6400173B1 (en) * 1999-11-19 2002-06-04 Hitachi, Ltd. Test system and manufacturing of semiconductor device
JP2001153886A (ja) * 1999-11-26 2001-06-08 Mitsubishi Electric Corp プローブカード、及びこれを備えたテスト装置
JP2002222839A (ja) * 2001-01-29 2002-08-09 Advantest Corp プローブカード
JP2003133538A (ja) 2001-10-26 2003-05-09 Nippon Hoso Kyokai <Nhk> 半導体装置およびその製造方法
KR20030086042A (ko) * 2002-05-03 2003-11-07 주식회사 하이닉스반도체 반도체소자의 테스트 장치
KR101104287B1 (ko) * 2004-02-27 2012-01-13 가부시키가이샤 아드반테스트 프로브 카드
JP2006194620A (ja) * 2005-01-11 2006-07-27 Tokyo Electron Ltd プローブカード及び検査用接触構造体
JP2007171140A (ja) * 2005-12-26 2007-07-05 Apex Inc プローブカード、インターポーザおよびインターポーザの製造方法
JP4946110B2 (ja) 2006-03-17 2012-06-06 富士通セミコンダクター株式会社 半導体装置試験方法、半導体装置試験装置および半導体装置試験プログラム
JP4708269B2 (ja) * 2006-06-22 2011-06-22 シャープ株式会社 半導体装置、及び半導体装置の検査方法
JP2008089461A (ja) * 2006-10-03 2008-04-17 Tohoku Univ 半導体集積回路検査用プローバ
US7733102B2 (en) * 2007-07-10 2010-06-08 Taiwan Semiconductor Manufacturing Company, Ltd. Ultra-fine area array pitch probe card

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210685A (ja) * 1999-11-19 2001-08-03 Hitachi Ltd テストシステムおよび半導体集積回路装置の製造方法
JP2001338953A (ja) * 2000-05-29 2001-12-07 Mitsubishi Electric Corp 半導体試験装置、半導体試験方法および半導体装置
JP2003084047A (ja) * 2001-06-29 2003-03-19 Sony Corp 半導体装置の測定用治具
JP2007134048A (ja) * 2001-08-07 2007-05-31 Shinozaki Seisakusho:Kk バンプ付き薄膜シートの製造方法及びバンプ付き薄膜シート

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110254000A1 (en) * 2010-04-15 2011-10-20 Hynix Semiconductor Inc. Semiconductor chip embedded with a test circuit
KR101123802B1 (ko) 2010-04-15 2012-03-12 주식회사 하이닉스반도체 반도체 칩
US8586983B2 (en) 2010-04-15 2013-11-19 Kwon Whan Han Semiconductor chip embedded with a test circuit
JP2013088288A (ja) * 2011-10-18 2013-05-13 Fujitsu Semiconductor Ltd 検査装置及び検査システム
CN113687206A (zh) * 2021-10-21 2021-11-23 常州欣盛半导体技术股份有限公司 晶片测试板、晶片测试系统和晶片测试方法

Also Published As

Publication number Publication date
JPWO2009139070A1 (ja) 2011-09-15
TWI382486B (zh) 2013-01-11
TW201001583A (en) 2010-01-01
US8441274B2 (en) 2013-05-14
KR101148917B1 (ko) 2012-05-22
KR20100112629A (ko) 2010-10-19
US20110084721A1 (en) 2011-04-14
JP5208208B2 (ja) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5208208B2 (ja) 製造方法および試験用ウエハユニット
JP5282082B2 (ja) プローブ装置および試験システム
JP5113905B2 (ja) 試験システムおよびプローブ装置
US20110095777A1 (en) Test wafer unit and test system
JPH10239372A (ja) 基板検査装置および基板検査方法
JP2008256632A (ja) 半導体集積回路の試験方法及びicテスタ
WO2010044143A1 (ja) 試験装置および製造方法
JP2802849B2 (ja) プローブカードの反り補正機構
WO2009130793A1 (ja) 試験システムおよびプローブ装置
JP5351151B2 (ja) 試験システム
JP2008286657A (ja) プローブカードおよびそれを備えた電子部品試験装置
JP2737774B2 (ja) ウェハテスタ
JP5368440B2 (ja) 試験システム
JP2010122108A (ja) プローブカード及びそれを用いたテスト方法半導体試験装置
KR20090075515A (ko) 프로브 카드 및 이를 포함하는 테스트 장비
JP2004031463A (ja) 半導体集積回路の検査方法
JP2004095802A (ja) 半導体試験装置
JP2000310660A (ja) 基板検査装置および基板検査方法
JPH05281260A (ja) ウエハの上の装置の検査装置
JP2005121553A (ja) プローブカード及び半導体チップの試験方法
JP2002071718A (ja) 半導体検査装置および半導体装置の製造方法
JP2002176078A (ja) プローブカード
JP2018132459A (ja) 半導体ウェハ並びにそれを用いたプローブテスト
JP2009229135A (ja) テストチップを備えたモジュール
JPH0722478A (ja) プローブテスト装置およびプローブテスト方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764330

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511830

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107018692

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08764330

Country of ref document: EP

Kind code of ref document: A1