WO2009133807A1 - リチウム二次電池負極用炭素材、その製造方法、リチウム二次電池負極およびリチウム二次電池 - Google Patents

リチウム二次電池負極用炭素材、その製造方法、リチウム二次電池負極およびリチウム二次電池 Download PDF

Info

Publication number
WO2009133807A1
WO2009133807A1 PCT/JP2009/058101 JP2009058101W WO2009133807A1 WO 2009133807 A1 WO2009133807 A1 WO 2009133807A1 JP 2009058101 W JP2009058101 W JP 2009058101W WO 2009133807 A1 WO2009133807 A1 WO 2009133807A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
secondary battery
negative electrode
lithium secondary
particles
Prior art date
Application number
PCT/JP2009/058101
Other languages
English (en)
French (fr)
Inventor
龍朗 佐々木
哲志 小野
毅 渡邉
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to US12/990,219 priority Critical patent/US20110039157A1/en
Priority to CN2009801154574A priority patent/CN102017246A/zh
Priority to JP2010510091A priority patent/JPWO2009133807A1/ja
Publication of WO2009133807A1 publication Critical patent/WO2009133807A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a carbon material for a lithium secondary battery negative electrode, a manufacturing method thereof, a lithium secondary battery negative electrode, and a lithium secondary battery.
  • lithium secondary batteries are required to be smaller and lighter or have higher energy density.
  • tin, silicon, germanium, aluminum, or an oxide or alloy thereof, which is alloyed with lithium as a negative electrode material.
  • the negative electrode material as described above expands in volume during charging to occlude lithium ions, and conversely shrinks in volume during discharge to release lithium ions. For this reason, it is known that the volume of the negative electrode material changes according to the repetition of the charge / discharge cycle, and as a result, the negative electrode material is pulverized and the negative electrode collapses.
  • a catalyst is attached to the surface of an active material nucleus containing a metal or a metalloid capable of forming a lithium alloy, and then subjected to chemical vapor deposition treatment to thereby obtain the active material.
  • a negative electrode material is known in which a plurality of carbon fibers are bonded at one end to the surface of a material nucleus (for example, Patent Document 1). According to the negative electrode material described in Patent Document 1, the conductivity between the active material nuclei is ensured by the entanglement of innumerable carbon fibers. No.
  • the carbon fiber described in Patent Document 1 is formed by chemical vapor deposition, and is distinguished from that formed by carbonization of a carbon precursor.
  • a current collector at least silicon-containing particles capable of occluding and releasing lithium ions, and carbon nano particles attached to the surface of the silicon-containing particles
  • a composite negative electrode active material comprising a fiber and a catalyst element that promotes the growth of the carbon nanofiber, and further binding a first binder to the silicon-containing particles and the current collector;
  • a negative electrode for a non-aqueous electrolyte secondary battery in which a carbon nanofiber is bound to each other is known (Patent Document 2).
  • Patent Document 2 a non-aqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics is provided.
  • the carbon nanofiber described in Patent Document 2 is formed by a vapor phase growth method, and is distinguished from that formed by carbonization treatment of a carbon precursor.
  • the negative electrode material of the lithium secondary battery includes carbon particles and fibrous carbon in which a carbonaceous material containing Si and / or Si compound is attached to at least a part of the surface of carbon particles having a graphite structure, and the carbonaceous material is A carbon material obtained by heat-treating a composition containing a polymer is known (Patent Document 3). According to the carbon material provided with fibrous carbon described in Patent Document 3, contact between the particles is sufficiently maintained even after repeated charge and discharge, and the cycle characteristics of the secondary battery are improved.
  • the fibrous carbon described in Patent Document 3 is formed by a vapor phase growth method, and is distinguished from that formed by carbonization treatment of a carbon precursor.
  • the negative electrodes for lithium secondary batteries described in Patent Documents 1 to 3 contain carbon nanofibers to suppress to some extent the decrease in conductivity caused by the volume expansion / contraction of the negative electrode active material due to the charge / discharge cycle.
  • the inventions described in Patent Documents 1 and 2 cannot prevent the negative electrode collapse due to the pulverization of the negative electrode active material due to the charge / discharge cycle.
  • the adhesion between the negative electrode active material and the fibrous carbon is reduced by the volume expansion / contraction of the negative electrode active material due to the charge / discharge cycle, and as a result, the conductivity is lowered.
  • the negative electrodes for lithium secondary batteries described in Patent Documents 1 to 3 cannot be said to have sufficient charge / discharge cycle characteristics. Accordingly, an object of the present invention is to further improve the charge / discharge cycle characteristics of the carbon material for a lithium secondary battery negative electrode.
  • Carbon or metal or metalloid which can occlude / release lithium ions, or a particle containing an alloy, oxide, nitride or carbide, A resin carbon material surrounding the particles;
  • a carbon material for a negative electrode of a lithium secondary battery comprising a network structure composed of carbon nanofibers and / or carbon nanotubes which are bonded to the surfaces of the particles and surround the particles.
  • the carbon precursor comprises a graphitizable material and / or a non-graphitizable material selected from the group consisting of petroleum pitch, coal pitch, phenol resin, furan resin, epoxy resin and polyacrylonitrile. Or carbon material for a lithium secondary battery negative electrode according to (3).
  • a lithium secondary battery negative electrode comprising the carbon material for a lithium secondary battery negative electrode according to any one of (1) to (5) above.
  • the pulverization of the carbon material for the negative electrode due to the charge / discharge cycle is suppressed, and the decrease in the conductivity of the carbon material is suppressed by maintaining the adhesion with the carbon nanofiber and / or the carbon nanotube. Therefore, a carbon material for a lithium secondary battery negative electrode that exhibits unprecedented excellent charge / discharge cycle characteristics is provided.
  • the carbon material for a negative electrode of a lithium secondary battery according to the present invention includes a resin carbon material and carbon nanofibers and / or carbon nanotubes formed from the same carbon precursor at the time of carbonization treatment. It is not necessary to prepare carbon nanotubes by a vapor phase method, and the manufacturing process is simple.
  • the carbon material for a negative electrode of a lithium secondary battery according to the present invention surrounds carbon, metal or metalloid, or an alloy, oxide, nitride, or carbide containing particles capable of occluding and releasing lithium ions, and the particles.
  • a resin carbon material and a network structure composed of carbon nanofibers and / or carbon nanotubes (hereinafter referred to as “carbon nanofibers”) that bind to and surround the surface of the particles. .
  • the network structure made of carbon nanofibers and the like is formed by carbonizing a carbon precursor starting from the surface of the particles.
  • a network structure composed of carbon nanofibers or the like that bind to and surround the surface of particles capable of occluding and releasing lithium ions It is thought that it is entangled with the network structure caused by the particles. For this reason, the adhesion between the carbon nanofibers and the particles becomes high, and the carbon nanofibers and the like are hardly separated from the particles when the particle volume expands and contracts due to charge and discharge.
  • the network structure of a plurality of adjacent particles is entangled with each other to form a stretchable network structure as a whole, the conductivity of the entire negative electrode is maintained when the particle volume expands and contracts due to charge and discharge. .
  • Such a network structure peculiar to the present invention cannot be formed only by adding carbon nanofibers or the like separately formed by a vapor phase method as in the prior art.
  • Examples of carbon that can occlude and release lithium ions include carbon black, acetylene black, graphite, heat-fired carbon, and charcoal.
  • Examples of metals or metalloids capable of inserting and extracting lithium ions include silicon (Si), tin (Sn), germanium (Ge), and aluminum (Al).
  • examples of these metal or metalloid alloys, oxides, nitrides or carbides include silicon monoxide (SiO), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), tin oxide (SnO), nitriding Tin (SnN), tin carbide (SnC), germanium monoxide (GeO), germanium nitride (Ge 3 N 4 ), germanium carbide (GeC), aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), aluminum carbide (Al 4 C 3 ), aluminum lithium alloy (Al—Li system), titanium silicon alloy (Ti—Si system), and the like can be given.
  • Si and Sn are preferable in terms of high energy density, and oxides thereof are more preferable because they have a smaller expansion coefficient during charging than the corresponding Si and Sn.
  • the carbon or metal or metalloid particles capable of occluding and releasing lithium ions are not particularly limited in shape, and can have any particle shape such as a lump shape, a scale shape, a spherical shape, and a fiber shape.
  • the lower limit of the particle size of these particles is set to 0.
  • the thickness is 1 ⁇ m or more, preferably 1.0 ⁇ m or more.
  • the particle size is increased, the gap between the particles is increased, the particle packing density is decreased, the thickness of the negative electrode is excessively increased, and the adhesion with the current collector is decreased.
  • the upper limit of the diameter D50 is 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the particle size distribution may be adjusted using a known pulverization method or classification method.
  • the pulverizer include a hammer mill, a jaw crusher, and a collision pulverizer.
  • the classification method air classification and classification with a sieve are possible.
  • the air classification apparatus include a turbo classifier and a turboplex.
  • Such a network structure unique to the present invention includes the above-described carbon or metal or metalloid capable of occluding and releasing lithium ions, particles containing an alloy, oxide, nitride or carbide, a carbon precursor, By mixing with a catalyst, the catalyst adheres to the surface of the particles, and a mixture in which the particles are dispersed in the carbon precursor is formed, and then the mixture is carbonized. be able to.
  • the carbon precursor examples include an easily graphitizable material or a hardly graphitized material selected from the group consisting of petroleum pitch, coal pitch, phenol resin, furan resin, epoxy resin, and polyacrylonitrile.
  • a mixture of an easily graphitizable material and a hardly graphitized material may be used.
  • the catalyst examples include at least one element selected from the group consisting of copper (Cu), iron (Fe), cobalt (Co), nickel (Ni), molybdenum (Mo) and manganese (Mn) Is mentioned.
  • the catalytic element may be contained as an impurity in the carbon precursor. In that case, it may not be necessary to intentionally prepare and mix a separate catalyst.
  • These catalytic elements are preferably mixed with the particles as a solution in order to adhere to the surface of the particles. In order to provide such a solution, the catalyst element is preferably prepared as a metal salt compound.
  • metal salt compounds examples include copper nitrate, iron nitrate, cobalt nitrate, nickel nitrate, molybdenum nitrate, manganese nitrate. Etc.
  • the solvent used in such a solution may be appropriately selected from water, an organic solvent, and a mixture of water and an organic solvent.
  • the organic solvent include ethanol, isopropyl alcohol, toluene, benzene, hexane. , Tetrahydrofuran and the like.
  • the carbon precursor is converted into a resin carbon material, and the catalyst attached to the surface of the particle is used as a starting point.
  • a nanofiber or the like grows, and a network structure entangled with carbon nanofiber or the like grown from another adjacent particle is formed.
  • the particles may be blended so as to occupy preferably 5 to 95% by mass, more preferably 10 to 80% by mass in the carbon material after carbonization.
  • the carbon precursor may be blended so that the carbonized resin carbon material occupies preferably 5 to 95% by mass, more preferably 20 to 90% by mass in the carbon material.
  • the catalyst may be blended in an amount of preferably 0.001 to 20% by mass, more preferably 0.01 to 5% by mass with respect to the above particles.
  • the mixture is preferably added in an amount of 70% by mass or less, more preferably 50% by mass or less.
  • the method of mixing the particles, the carbon precursor, and the catalyst there are no particular restrictions on the method of mixing the particles, the carbon precursor, and the catalyst. Melting or solution mixing with a stirrer such as a homodisper or homogenizer; pulverizing and mixing with a pulverizer such as a centrifugal pulverizer, free mill, or jet mill Kneading and mixing with a mortar and pestle can be employed.
  • a stirrer such as a homodisper or homogenizer
  • pulverizing and mixing with a pulverizer such as a centrifugal pulverizer, free mill, or jet mill Kneading and mixing with a mortar and pestle
  • the order in which the particles, the carbon precursor, and the catalyst are mixed is not particularly limited, but may be added to the solvent (when used) in the order of the carbon precursor and the particles (supported in advance with the catalyst).
  • a normal pulverizer such as a free mill, a jet mill, a vibration mill, or a ball
  • the heating temperature for the carbonization treatment may be suitably set within a range of preferably 600 to 1400 ° C, more preferably 800 to 1300 ° C. There is no particular limitation on the rate of temperature rise until the heating temperature is reached, and it may be set appropriately within a range of preferably 0.5 to 600 ° C./hour, more preferably 20 to 300 ° C./hour.
  • the holding time at the heating temperature is suitably set within 48 hours, more preferably within a range of 1 to 12 hours.
  • reducing atmosphere such as argon, nitrogen, a carbon dioxide, and hydrogen.
  • the carbon material for a negative electrode of the lithium secondary battery according to the present invention is formed by combining the resin carbon material and carbon nanofibers from the same carbon precursor at the time of carbonization treatment. There is no need to prepare by the phase method, and the manufacturing process is simple.
  • the negative electrode of the lithium secondary battery according to the present invention can be produced.
  • the lithium secondary battery negative electrode according to the present invention can be produced by a conventionally known method.
  • a carbon material according to the present invention as a negative electrode active material is added with a binder, a conductive agent, etc. to prepare a slurry having a predetermined viscosity with an appropriate solvent or dispersion medium, and this is applied to a current collector such as a metal foil. Then, a coating having a thickness of several ⁇ m to several hundred ⁇ m is formed.
  • the negative electrode according to the present invention can be obtained.
  • the binder used for preparing the negative electrode according to the present invention may be any conventionally known material, such as polyvinylidene fluoride resin, polytetrafluoroethylene, styrene / butadiene copolymer, polyimide resin, polyamide resin, polyvinyl alcohol, polyvinyl Butyral or the like can be used.
  • the conductive agent used in the production of the negative electrode according to the present invention may be any material that is usually used as a conductive auxiliary material, and examples thereof include graphite, acetylene black, and ketjen black.
  • the solvent or dispersion medium used for the preparation of the negative electrode according to the present invention may be any material that can uniformly mix the negative electrode active material, the binder, the conductive agent, and the like. Examples thereof include N-methyl-2-pyrrolidone, methanol, And acetanilide.
  • the lithium secondary battery according to the present invention can be fabricated by using the lithium secondary battery negative electrode according to the present invention.
  • the lithium secondary battery according to the present invention can be produced by a conventionally known method.
  • the lithium secondary battery includes a negative electrode according to the present invention, a positive electrode, and an electrolyte, and further includes a separator that prevents the negative electrode and the positive electrode from being short-circuited. Including.
  • the electrolyte is a solid electrolyte combined with a polymer and has the function of a separator, an independent separator is not necessary.
  • the positive electrode used for the production of the lithium secondary battery according to the present invention can be produced by a conventionally known method.
  • a slurry having a predetermined viscosity is prepared with a suitable solvent or dispersion medium by adding a binder, a conductive agent, etc. to the positive electrode active material, and this is applied to a current collector such as a metal foil, and a thickness of several ⁇ m to A solvent or dispersion medium may be removed by forming a coating of several hundred ⁇ m and heat-treating the coating at about 50 to 200 ° C.
  • the positive electrode active material may be a conventionally known material, for example, a cobalt composite oxide such as LiCoO 2 , a manganese composite oxide such as LiMn 2 O 4 , a nickel composite oxide such as LiNiO 2 , and a mixture of these oxides. , LiNiO 2 in which part of nickel is replaced with cobalt or manganese, iron composite oxides such as LiFeVO 4 and LiFePO 4 , and the like can be used.
  • a conventionally known electrolyte may be used, and lithium salt as an essential component, a room temperature molten salt, a polymer, a flame retardant electrolyte solubilizer, a plasticizer and other What contains an additive can be used.
  • Such an electrolyte can be prepared by a conventionally known method. For example, it can be prepared by dissolving a lithium salt in the plasticizer or the room temperature molten salt.
  • an electrolyte can be prepared by preparing a solution in which the above components are dissolved in an organic solvent such as alcohol or acetonitrile, and then removing the organic solvent by heating or the like.
  • an electrolyte containing a room temperature molten salt In order to improve the charge / discharge characteristics of the lithium secondary battery, it is preferable to use an electrolyte containing a room temperature molten salt, and it is more preferable to use an anion component of the room temperature molten salt having a fluorosulfonyl group.
  • lithium salt examples include LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiBF 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 , room temperature molten salts containing Li ions as a cation component, such as lithium salts described in JP-A No. 2004-307481.
  • the lithium salts may be used alone or in combination of two or more.
  • the lithium salt is generally used in a content of 0.1% by mass to 89.9% by mass, preferably 1.0% by mass to 79.0% by mass, based on the entire electrolyte. Components other than the lithium salt of the electrolyte can be added in an appropriate amount on condition that the content of the lithium salt is within the above range.
  • the ambient temperature molten salt is composed of a cation component and an anion component.
  • a cation component a compound containing an element having a lone electron pair such as nitrogen, sulfur, phosphorus, oxygen, selenium, tin, iodine, antimony, or the like is used. Examples thereof include a cation having at least one group generated by coordination of an ionic type atomic group.
  • the polymer used in the electrolyte is not particularly limited as long as it is electrochemically stable and has high ionic conductivity.
  • an acrylate polymer, polyvinylidene fluoride, or the like can be used.
  • polymers synthesized from those containing a salt monomer composed of an onium cation having a polymerizable functional group and an organic anion having a polymerizable functional group have particularly high ionic conductivity, which further improves charge / discharge characteristics. It is more preferable at the point which can contribute.
  • the polymer content in the electrolyte is preferably in the range of 0.1% to 50% by weight, more preferably 1% to 40% by weight.
  • the flame retardant electrolyte solubilizer is not particularly limited as long as it is a compound that exhibits self-extinguishing properties and can dissolve the electrolyte salt in the presence of the electrolyte salt.
  • phosphate ester, halogen compound Phosphazene etc. can be used.
  • plasticizer examples include cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as ethyl methyl carbonate and diethyl carbonate.
  • cyclic carbonates such as ethylene carbonate and propylene carbonate
  • chain carbonates such as ethyl methyl carbonate and diethyl carbonate.
  • the above plasticizers may be used alone or in combination of two or more.
  • a separator When a separator is used in the lithium secondary battery according to the present invention, a conventionally known material that can prevent a short circuit between the positive electrode and the negative electrode and is electrochemically stable may be used.
  • the separator include a polyethylene separator, a polypropylene separator, a cellulose separator, a nonwoven fabric, an inorganic separator, a glass filter, and the like.
  • the electrolyte When a polymer is included in the electrolyte, the electrolyte may also have a separator function, and in that case, an independent separator is unnecessary.
  • the lithium secondary battery according to the present invention can be produced by a conventionally known method.
  • the positive electrode and the negative electrode are prepared by cutting into a predetermined shape and size, and then the positive electrode and the negative electrode are bonded together via a separator to produce a single-layer cell.
  • An electrolyte can then be injected between the electrodes of the single layer cell.
  • a single-layer cell may be produced by previously impregnating an electrode, a separator, or the like with an electrolyte, and then superimposing the electrode and the separator.
  • a lithium secondary battery can be obtained by inserting and enclosing the thus obtained cell in an outer package made of, for example, a three-layer laminate film of polyester film / aluminum film / modified polyolefin film. .
  • the polymer When using a polymer synthesized from a material containing the above-mentioned salt monomer as the separator, it is possible to use a mixture of a polymer, a lithium salt and a room temperature molten salt.
  • the polymer can be diluted with a low boiling point solvent such as tetrahydrofuran, methanol and acetonitrile.
  • the diluted solvent may be removed, and a single layer cell is produced by sandwiching an electrolyte containing this polymer between the positive electrode and the negative electrode, and a lithium secondary battery can be obtained in the same manner.
  • Example 1 135 parts by weight of novolak type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by weight of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Ltd.) as a carbon precursor were mixed with 86 mL of ethanol, and the novolak type phenolic resin and hexagonal resin were mixed. An ethanol solution in which the total amount with methylenetetramine accounted for 70% by mass of the whole was obtained.
  • novolak type phenolic resin PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.
  • hexamethylenetetramine manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • the 300 g of the above compounded resin was transferred to a container (mullite mortar) and placed in a carbonization furnace (manufactured by Sankei Vacuum Co., Ltd.). First, in order to remove volatile components from the compounded resin, heating was started by setting the temperature rising rate of the carbonization furnace to 100 ° C./hour, and when the temperature reached 600 ° C., the temperature rising was stopped and held at that temperature for 1 hour. Then, after standing to cool to room temperature, the container was taken out from the carbonization furnace.
  • the compounded resin was transferred to a pulverizer (manufactured by Chuo Kako Co., Ltd.) and pulverized until the center particle size D50 by the laser diffraction particle size distribution measurement method was 10 ⁇ m or less.
  • the obtained pulverized product was transferred again to the vessel and placed in the carbonization furnace.
  • heating was started at a temperature increase rate of the carbonization furnace of 100 ° C./hour, and when the temperature reached 1100 ° C., the temperature increase was stopped and held at that temperature for 6 hours.
  • the container was taken out from the carbonization furnace and allowed to cool to room temperature to obtain a composite carbon material.
  • Example 2 The procedure of Example 1 was repeated, except that the 1100 ° C. holding time of the compounded resin pulverized product in the carbonization step was changed from 6 hours to 1 hour.
  • the result (electron micrograph) of observing the obtained composite carbon material with a scanning electron microscope is shown in FIG. As can be seen from FIG. 3, it was confirmed that carbon nanofibers and the like were generated from the particle surface of the composite carbon material and surrounded these particles.
  • Example 3 100 parts by mass of silicon monoxide powder (average particle size 6 ⁇ m) and Fe 110 ppm (0.07 parts by mass of iron nitrate) were added to 228 parts by mass of the 70% by mass ethanol solution obtained in the same manner as in Example 1. In the high-speed stirrer, mixing was performed in the same manner as in Example 1 to obtain 328 g of a compounded resin. A composite carbon material was obtained from 300 g of the compounded resin in the same manner as in Example 1.
  • Example 4 1 part by mass of iron nitrate is added to 100 parts by mass of silicon powder (average particle size 50 ⁇ m), and then kneaded with a mortar and pestle. 55249) 535 parts by mass were added, and pulverized and mixed simultaneously using a coffee mill to obtain a compounded resin.
  • a composite carbon material was obtained from 500 g of the compounded resin in the same manner as in Example 1.
  • Example 5 300 parts by weight of a novolak-type modified phenolic resin (PR-55249, manufactured by Sumitomo Bakelite Co., Ltd.) is placed in a container (mullite mortar) and placed in a carbonization furnace (manufactured by Sankei Vacuum Co., Ltd.). Setting was started and heating was started. When the temperature reached 600 ° C., the temperature increase was stopped and the temperature was maintained for 1 hour. Then, after standing to cool to room temperature, the container was taken out from the carbonization furnace.
  • a novolak-type modified phenolic resin PR-55249, manufactured by Sumitomo Bakelite Co., Ltd.
  • the heat-treated product was transferred to a pulverizer (manufactured by Chuo Kako Co., Ltd.), and pulverized until the center particle size D50 by the laser diffraction particle size distribution measurement method was 10 ⁇ m or less.
  • 1 part by mass of iron nitrate was added to 100 parts by mass of silicon monoxide powder (average particle size 6 ⁇ m), and then kneaded with a mortar and pestle.
  • This kneaded product was mixed with 83 parts by mass of the pulverized product obtained as a carbon precursor, transferred again to the vessel and placed in the carbonization furnace, and a composite carbon material was obtained in the same manner as in Example 1. .
  • Example 4 Except not adding iron nitrate, the procedure of Example 4 was repeated to obtain a composite carbon material.
  • FIG. 4 shows the result of observation of the obtained composite carbon material with a scanning electron microscope (electron micrograph). As can be seen from FIG. 4, it was confirmed that the composite carbon material particles were not surrounded by carbon nanofibers.
  • Example 5 Except not adding iron nitrate, the procedure of Example 5 was repeated to obtain a composite carbon material.
  • Initial charge / discharge efficiency (%) initial discharge capacity (mAh / g) / initial charge capacity (mAh / g) ⁇ 100 Further, the percentage obtained by dividing the discharge capacity after repeating 30 cycles with the set of the charging step and the discharging step as one cycle divided by the initial discharge capacity was calculated as the discharge capacity maintenance rate after 30 cycles. The evaluation results are shown in Table 1.
  • the lithium ion secondary batteries of Examples 1 to 5 have a discharge capacity maintenance rate of 80% or more after 30 cycles, and charge / discharge compared to Comparative Examples 1 and 2 of 10% or less.
  • the cycle characteristics were significantly improved.
  • FIGS. 1 to 3 in the examples, carbon nanofibers and the like are generated from the particle surface of the composite carbon material, and as a result of surrounding these particles, the carbon for the negative electrode by the charge / discharge cycle is used. This is considered to be because the pulverization accompanying the expansion and contraction of the material was suppressed.
  • FIG. 4 since there is no carbon nanofiber or the like surrounding the particle, pulverization accompanying the expansion and contraction of the carbon material for the negative electrode due to the charge / discharge cycle proceeds, and the electrode substantially Collapsed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 リチウム二次電池負極用炭素材の充放電サイクル特性を向上させる。  本発明によるリチウム二次電池負極用炭素材は、リチウムイオンの吸蔵・放出が可能な炭素または金属もしくは半金属もしくはこれらの合金、酸化物、窒化物もしくは炭化物を含む粒子と、該粒子を包囲する樹脂炭素材と、該粒子の表面に結合し、かつ、該粒子を包囲するカーボンナノファイバーおよび/またはカーボンナノチューブからなる網状構造体とを含んでなる。

Description

リチウム二次電池負極用炭素材、その製造方法、リチウム二次電池負極およびリチウム二次電池
 本発明は、リチウム二次電池負極用炭素材、その製造方法、リチウム二次電池負極およびリチウム二次電池に関する。
 電子機器類のポータブル化、コードレス化が進むにつれ、リチウム二次電池の小型軽量化、或いは高エネルギー密度化が、より一層求められている。リチウム二次電池を高密度化するため、その負極材料として、リチウムと合金化するスズ、ケイ素、ゲルマニウム、アルミニウムまたはこれらの酸化物もしくは合金を採用することが知られている。しかしながら、上述のような負極材料は、リチウムイオンを吸蔵する充電時に体積膨張し、反対にリチウムイオンを放出する放電時には体積収縮する。このため充放電サイクルの繰り返しに応じて負極材料の体積が変化し、その結果負極材料が微粉化して負極が崩壊してしまうことが知られている。
 充放電サイクル特性に優れたリチウム二次電池用負極材料として、リチウム合金を形成しうる金属または半金属を含む活物質核の表面に触媒を添着させ、次いで化学蒸着処理をすることにより、該活物質核の表面に複数の炭素繊維をその一端で結合させた負極材料が知られている(例えば、特許文献1)。特許文献1に記載の負極材料によると、無数の炭素繊維の交絡によって活物質核間の導電性が確保されるため、充放電サイクルによる負極材料の体積膨張・収縮が導電性に与える悪影響はほとんど無い。特許文献1に記載の炭素繊維は、化学蒸着法で形成されるものであって、炭素前駆体の炭化処理で形成されるものとは区別される。
 また、特許文献1に記載されている負極を長寿命化する技術として、集電体および、少なくともリチウムイオンの吸蔵放出が可能な含ケイ素粒子と、該含ケイ素粒子の表面に付着されたカーボンナノファイバーと、該カーボンナノファイバーの成長を促進する触媒元素とからなる複合負極活物質を含み、さらに第1結着剤を該含ケイ素粒子と該集電体に結着させ、第2結着剤を該カーボンナノファイバー同士に結着させた非水電解質二次電池用負極が知られている(特許文献2)。特許文献2に記載の負極によると、高容量でかつサイクル特性に優れた非水電解質二次電池が提供される。特許文献2に記載のカーボンナノファイバーは、気相成長法で形成されるものであって、炭素前駆体の炭化処理で形成されるものとは区別される。
 リチウム二次電池の負極材として、黒鉛構造を有する炭素粒子の表面の少なくとも一部にSiおよび/またはSi化合物を含む炭素質材料が付着した炭素粒子および繊維状炭素を含み、該炭素質材料が重合体を含む組成物を熱処理して得られるものである炭素材料が知られている(特許文献3)。特許文献3に記載の繊維状炭素が具備された炭素材料によると、充放電を繰り返しても粒子同士の接触が十分に保たれ、二次電池のサイクル特性が向上する。特許文献3に記載の繊維状炭素は、気相成長法で形成されるものであって、炭素前駆体の炭化処理で形成されるものとは区別される。
特開2004-349056号公報 特開2007-165078号公報 特開2004-182512号公報
 特許文献1~3に記載のリチウム二次電池用負極は、いずれもカーボンナノファイバーを含めることによって、充放電サイクルによる負極活物質の体積膨張・収縮に起因する導電性低下をある程度抑えている。しかしながら、特許文献1、2に記載の発明では、充放電サイクルによる負極活物質の微粉化に起因する負極崩壊を防止することができない。また特許文献3に記載の発明では、充放電サイクルによる負極活物質の体積膨張・収縮によって負極活物質と繊維状炭素の間の密着性が低下し、その結果導電性が低下する。このように、特許文献1~3に記載のリチウム二次電池用負極は充放電サイクル特性が十分であるとはいえない。したがって、本発明は、リチウム二次電池負極用炭素材の充放電サイクル特性を一層向上させることを目的とする。
 上述の目的は、下記(1)~(8)を構成とする本発明によって達成される。
 (1)リチウムイオンの吸蔵・放出が可能な炭素または金属もしくは半金属もしくはこれらの合金、酸化物、窒化物もしくは炭化物を含む粒子と、
 該粒子を包囲する樹脂炭素材と、
 該粒子の表面に結合し、かつ、該粒子を包囲するカーボンナノファイバーおよび/またはカーボンナノチューブからなる網状構造体と
を含んでなる、リチウム二次電池負極用炭素材。
 (2)該樹脂炭素材および該網状構造体が、触媒を含有する炭素前駆体の炭化処理により生成したものである、上記(1)に記載のリチウム二次電池負極用炭素材。
 (3)該触媒が、銅、鉄、コバルト、ニッケル、モリブデンおよびマンガンからなる群より選ばれた少なくとも1種の元素を含む、上記(2)に記載のリチウム二次電池負極用炭素材。
 (4)該炭素前駆体が、石油ピッチ、石炭ピッチ、フェノール樹脂、フラン樹脂、エポキシ樹脂およびポリアクリロニトリルからなる群より選択された易黒鉛化材料および/または難黒鉛化材料を含む、上記(2)または(3)に記載のリチウム二次電池負極用炭素材。
 (5)該金属もしくは半金属が、ケイ素、スズ、ゲルマニウムおよびアルミニウムからなる群より選ばれた少なくとも1種の元素を含む、上記(1)~(4)のいずれか1項に記載のリチウム二次電池負極用炭素材。
 (6)リチウムイオンの吸蔵・放出が可能な炭素または金属もしくは半金属もしくはこれらの合金、酸化物、窒化物もしくは炭化物を含む粒子と、炭素前駆体と、触媒とを混合することにより、該粒子の表面に該触媒が付着し、かつ、該粒子が該炭素前駆体に分散された混合物を形成し、次いで該混合物に炭化処理を施すことを特徴とする、リチウム二次電池負極用炭素材の製造方法。
 (7)上記(1)~(5)のいずれか1項に記載のリチウム二次電池負極用炭素材を含むリチウム二次電池負極。
 (8)上記(7)に記載のリチウム二次電池負極を含むリチウム二次電池。
 本発明によると、充放電サイクルによる負極用炭素材の微粉化が抑制されると共に、カーボンナノファイバーおよび/またはカーボンナノチューブとの密着性が維持されることにより該炭素材の導電性の低下が抑えられるため、これまでにない優れた充放電サイクル特性を示すリチウム二次電池負極用炭素材が提供される。また、本発明よるリチウム二次電池負極用炭素材は、樹脂炭素材とカーボンナノファイバーおよび/またはカーボンナノチューブとが同一の炭素前駆体から炭化処理時に一緒に形成されるため、別途カーボンナノファイバーおよび/またはカーボンナノチューブを気相法で用意する必要がなく、製造プロセスが簡便である。
実施例1で得られた炭素材の粒子形状を示す、図面に代わる走査型電子顕微鏡写真である。 実施例1で得られた炭素材の粒子形状を示す、図面に代わる透過型電子顕微鏡写真である。 実施例2で得られた炭素材の粒子形状を示す、図面に代わる走査型電子顕微鏡写真である。 比較例1で得られた炭素材の粒子形状を示す、図面に代わる走査型電子顕微鏡写真である。
 以下、本発明によるリチウム二次電池負極用炭素材、その製造方法、リチウム二次電池負極およびリチウム二次電池について詳細に説明する。
 本発明によるリチウム二次電池負極用炭素材は、リチウムイオンの吸蔵・放出が可能な炭素または金属もしくは半金属もしくはこれらの合金、酸化物、窒化物もしくは炭化物を含む粒子と、該粒子を包囲する樹脂炭素材と、該粒子の表面に結合し、かつ、該粒子を包囲するカーボンナノファイバーおよび/またはカーボンナノチューブ(以下、「カーボンナノファイバー等」という。)からなる網状構造体とを含んでなる。このカーボンナノファイバー等からなる網状構造体は、該粒子の表面を起点に炭素前駆体の炭化処理により形成される。
 特定の理論に束縛されるものではないが、リチウムイオンの吸蔵・放出が可能な粒子の表面に結合し、かつ、該粒子を包囲するカーボンナノファイバー等からなる網状構造体は、隣接する別の粒子に起因する網状構造体と交絡しているものと考えられる。このため、カーボンナノファイバー等と粒子の間の密着性が高くなり、充放電による粒子体積の膨張収縮に際してカーボンナノファイバー等が粒子から離れにくくなる。また、隣接する複数の粒子の網状構造体同士が交絡することで全体として伸縮性のある網状構造体が形成されるため、充放電による粒子体積の膨張収縮に際して負極全体の導電性が維持される。このような本発明特有の網状構造体は、従来技術のように別途気相法で形成されたカーボンナノファイバー等を添加しただけでは、形成されない。
 リチウムイオンの吸蔵・放出が可能な炭素の例として、カーボンブラック、アセチレンブラック、黒鉛、熱焼成炭素、木炭等を挙げることができる。また、リチウムイオンの吸蔵・放出が可能な金属または半金属の例として、ケイ素(Si)、スズ(Sn)、ゲルマニウム(Ge)、アルミニウム(Al)等を挙げることができる。さらに、これら金属または半金属の合金、酸化物、窒化物または炭化物の例として、一酸化ケイ素(SiO)、窒化ケイ素(Si)、炭化ケイ素(SiC)、酸化スズ(SnO)、窒化スズ(SnN)、炭化スズ(SnC)、一酸化ゲルマニウム(GeO)、窒化ゲルマニウム(Ge)、炭化ゲルマニウム(GeC)、酸化アルミニウム(Al)、窒化アルミニウム(AlN)、炭化アルミニウム(Al)、アルミニウムリチウム合金(Al-Li系)、チタンシリコン合金(Ti-Si系)等を挙げることができる。これら金属または半金属の中では、エネルギー密度が高い点でSiおよびSnが好ましく、またそれらの酸化物は、対応するSi単体およびSn単体より充電時の膨張率が小さいためより好ましい。
 リチウムイオンの吸蔵・放出が可能な炭素または金属もしくは半金属の粒子は、その形状に特に制限はなく、塊状、鱗片状、球状、繊維状等の任意の粒子形状を有することができる。また、これら粒子の大きさは、表面積が大きくなると充放電反応に伴う副反応の影響で充放電効率が著しく低下するため、レーザー回折式粒度分布測定法による中心粒径D50として下限値を0.1μm以上、好ましくは1.0μm以上とすることが好ましい。反対に、粒度が大きくなると、粒子間の間隙が大きくなって粒子充填密度が低下する、負極の厚さが過大となる、集電体との密着性が低下する等の理由から、上記中心粒径D50として上限値を100μm以下、好ましくは50μm以下とすることが好ましい。粒度分布の調整は、公知の粉砕方法、分級方法を採用すればよい。粉砕装置の例としては、ハンマーミル、ジョークラッシャー、衝突式粉砕器等が挙げられる。また、分級方法の例としては、気流分級、篩による分級が可能であり、特に気流分級装置の例として、ターボクラシファイヤー、ターボプレックス等が挙げられる。
 このような本発明特有の網状構造体は、上述したリチウムイオンの吸蔵・放出が可能な炭素または金属もしくは半金属もしくはこれらの合金、酸化物、窒化物もしくは炭化物を含む粒子と、炭素前駆体と、触媒とを混合することにより、該粒子の表面に該触媒が付着し、かつ、該粒子が該炭素前駆体に分散された混合物を形成し、次いで該混合物に炭化処理を施すことにより形成することができる。
 炭素前駆体の例としては、石油ピッチ、石炭ピッチ、フェノール樹脂、フラン樹脂、エポキシ樹脂およびポリアクリロニトリルからなる群より選択された易黒鉛化材料または難黒鉛化材料を挙げることができる。易黒鉛化材料と難黒鉛化材料の混合物を使用してもよい。また、フェノール樹脂等に硬化剤(例、ヘキサメチレンテトラミン)を含めてもよく、その場合、硬化剤も炭素前駆体の一部となり得る。
 触媒の例としては、銅(Cu)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、モリブデン(Mo)およびマンガン(Mn)からなる群より選ばれた少なくとも1種の元素を含むものが挙げられる。触媒元素は、炭素前駆体に不純物として含まれるものであってもよく、その場合、意図的に別途触媒を用意して混合する必要のない場合もある。これらの触媒元素は、上記粒子の表面に付着させるため、溶液として粒子と混合することが好ましい。このような溶液を提供するため、触媒元素は金属塩化合物として用意することが好ましく、そのような金属塩化合物の例としては、硝酸銅、硝酸鉄、硝酸コバルト、硝酸ニッケル、硝酸モリブデン、硝酸マンガン等が挙げられる。また、このような溶液に用いる溶媒としては、水、有機溶媒および水と有機溶媒の混合物の中から適宜選択すればよく、特に有機溶媒の例としては、エタノール、イソプロピルアルコール、トルエン、ベンゼン、ヘキサン、テトラヒドロフラン等が挙げられる。
 上記の粒子と、炭素前駆体と、触媒とを混合して得られた混合物を炭化処理することにより、炭素前駆体が樹脂炭素材に転化すると共に、粒子の表面に付着した触媒を起点にカーボンナノファイバー等が成長し、隣接する別の粒子から成長してきたカーボンナノファイバー等とも交絡した網状構造体が形成される。上記の粒子は、炭化処理後の炭素材中、好ましくは5~95質量%、より好ましくは10~80質量%を占めるように配合すればよい。炭素前駆体は、炭化処理後の樹脂炭素材が炭素材中、好ましくは5~95質量%、より好ましくは20~90質量%を占めるように配合すればよい。なお、炭素前駆体の配合量を決める際には、樹脂炭素材への転化率に影響を与える因子、例えば、炭素前駆体の種類、後述の炭化処理条件等を考慮に入れるべきである。触媒は、上記の粒子に対して、好ましくは0.001~20質量%、より好ましくは0.01~5質量%の量で配合すればよい。溶媒を使用する場合、上記混合物の好ましくは70質量%以下、より好ましくは50質量%以下の量で配合すればよい。
 粒子と、炭素前駆体と、触媒とを混合する方法に特に制限はなく、ホモディスパー、ホモジナイザー等の撹拌機による溶融または溶液混合;遠心粉砕機、自由ミル、ジェットミル等の粉砕機による粉砕混合;乳鉢、乳棒による混練混合;等を採用することができる。粒子と、炭素前駆体と、触媒とを混合する順序にも特に制限はないが、溶媒(使用する場合)に、炭素前駆体、(予め触媒を担持させた)粒子の順に添加すればよい。また、炭化処理に際して粉砕処理を施す場合、自由ミル、ジェットミル、振動ミル、ボールミル等の通常の粉砕機を使用すればよい。
 炭化処理のための加熱温度は、好ましくは600~1400℃、より好ましくは800~1300℃の範囲内で適宜設定すればよい。上記加熱温度に至るまでの昇温速度に特に制限はなく、好ましくは0.5~600℃/時、より好ましくは20~300℃/時の範囲内で適宜設定すればよい。上記加熱温度での保持時間は、好ましくは48時間以内、より好ましくは1~12時間の範囲内で適宜設定すればよい。また、炭化処理は、アルゴン、窒素、二酸化炭素、水素等の還元雰囲気において実施すればよい。
 このように、本発明よるリチウム二次電池負極用炭素材は、樹脂炭素材とカーボンナノファイバー等とが同一の炭素前駆体から炭化処理時に一緒に形成されるため、別途カーボンナノファイバー等を気相法で用意する必要がなく、製造プロセスが簡便である。
 上述のようにして得られた炭素材を負極活物質として用いることにより、本発明によるリチウム二次電池負極を作製することができる。本発明によるリチウム二次電池負極は、従来公知の方法で作製することができる。例えば、負極活物質としての本発明による炭素材に、バインダー、導電剤等を加えて適当な溶媒または分散媒で所定粘度としたスラリーを調製し、これを金属箔等の集電体に塗工し、厚さ数μm~数百μmのコーティングを形成させる。そのコーティングを50~200℃程度で熱処理することにより溶媒または分散媒を除去することにより、本発明による負極を得ることができる。
 本発明による負極の作製に用いられるバインダーは、従来公知の材料であればよく、例えば、ポリフッ化ビニリデン樹脂、ポリテトラフルオロエチレン、スチレン・ブタジエン共重合体、ポリイミド樹脂、ポリアミド樹脂、ポリビニルアルコール、ポリビニルブチラール等を使用することができる。また、本発明による負極の作製に用いられる導電剤は、導電補助材として通常使用されている材料であればよく、例として、黒鉛、アセチレンブラック、ケッチャンブラック等が挙げられる。さらに、本発明による負極の作製に用いられる溶媒または分散媒は、負極活物質、バインダー、導電剤等を均一に混合できる材料であればよく、例として、N‐メチル‐2‐ピロリドン、メタノール、アセトアニリド等が挙げられる。
 さらに、本発明によるリチウム二次電池負極を用いることにより、本発明によるリチウム二次電池を作製することができる。本発明によるリチウム二次電池は、従来公知の方法で作製することができ、一般に、本発明による負極と、正極と、電解質とを含み、さらにこれらの負極と正極が短絡しないようにするセパレータを含む。電解質がポリマーと複合化された固体電解質であってセパレータの機能を併せ持つものである場合には、独立したセパレータは不要である。
 本発明によるリチウム二次電池の作製に用いられる正極は、従来公知の方法で作製することができる。例えば、正極活物質に、バインダー、導電剤等を加えて適当な溶媒または分散媒で所定粘度としたスラリーを調製し、これを金属箔等の集電体に塗工し、厚さ数μm~数百μmのコーティングを形成させ、そのコーティングを50~200℃程度で熱処理することにより溶媒または分散媒を除去すればよい。正極活物質は、従来公知の材料であればよく、例えば、LiCoO等のコバルト複合酸化物、LiMn等のマンガン複合酸化物、LiNiO等のニッケル複合酸化物、これら酸化物の混合物、LiNiOのニッケルの一部をコバルトやマンガンに置換したもの、LiFeVO、LiFePO等の鉄複合酸化物、等を使用することができる。
 本発明によるリチウム二次電池の作製に用いられる電解質としては、従来公知の電解質を使用すればよく、リチウム塩を必須成分として、常温溶融塩、ポリマー、難燃性電解質溶解剤、可塑剤その他の添加剤を含むものを用いることができる。このような電解質は、従来公知の方法で調製することができ、例えば、上記可塑剤または上記常温溶融塩にリチウム塩を溶解させることにより調製することができる。また、ポリマーを含める場合、アルコール、アセトニトリル等の有機溶媒に上記成分を溶かした溶液を調製し、その後その有機溶媒を加熱等により除去することによって電解質を調製することもできる。リチウム二次電池の充放電特性を高めるため、常温溶融塩を含む電解質を用いることが好ましく、さらに常温溶融塩のアニオン成分がフルオロスルホニル基を有するものを用いることがより好ましい。
 上記リチウム塩の例としては、LiPF、LiClO、LiCFSO、LiBF、LiAsF、LiN(CFSO、LiN(CSOおよびLiC(CFSO、特開2004-307481号公報に記載のリチウム塩のようにLiイオンをカチオン成分として含有する常温溶融塩等が挙げられる。上記リチウム塩は、単独で用いても、また2種以上を組み合わせて用いてもよい。上記リチウム塩は、電解質全体に対して、一般に0.1質量%~89.9質量%、好ましくは1.0質量%~79.0質量%の含有量で用いられる。電解質のリチウム塩以外の成分は、リチウム塩の含有量が上記範囲内にあることを条件に、適当な量で添加することができる。
 常温溶融塩は、カチオン成分とアニオン成分から構成されており、カチオン成分としては、窒素、硫黄、リン、酸素、セレン、スズ、ヨウ素、アンチモン等の孤立電子対を有する元素を含む化合物に、陽イオン型の原子団が配位して生じる少なくとも一つの基を有するカチオンが挙げられる。常温溶融塩のアニオン成分としては、アルコラート、フェノラート等の水酸基含有有機化合物のプロトンが脱離したアニオンRO;チオレート、チオフェノラート等のプロトンが脱離したアニオンRS;スルホン酸アニオンRSO ;カルボン酸アニオンRCOO;リン酸、亜リン酸等の水酸基の一部が有機基で置換された含リン誘導体アニオンR(OR)(O)(但し、x、y、zは0以上の整数で、かつ、x+y+2z=3またはx+y+2z=5の関係を満たす。);置換ボレートアニオンR(OR)(但し、x、yは0以上の整数で、かつ、x+y=4の関係を満たす。);置換アルミニウムアニオンR(OR)Al(但し、x、yは0以上の整数で、かつ、x+y=4の関係を満たす。);窒素アニオン(EA)、カルボアニオン(EA)等(但し、EAは水素原子または電子吸引基を表す。)の有機アニオン;ハロゲンイオン、含ハロゲンイオン等の無機アニオン、等が挙げられる。
 上記電解質に用いられるポリマーとしては、電気化学的に安定であり、イオン伝導度が高いものであれば特に制限はなく、例えば、アクリレート系ポリマー、ポリフッ化ビニリデン等を使用することができる。また、重合性官能基を有するオニウムカチオンと重合性官能基を有する有機アニオンとから構成される塩モノマーを含むものから合成されたポリマーは、特にイオン伝導度が高く、充放電特性のさらなる向上に寄与し得る点で、より好ましい。電解質中のポリマー含有量は、好ましくは0.1質量%~50質量%、より好ましくは1質量%~40質量%の範囲内である。
 上記難燃性電解質溶解剤としては、自己消火性を示し、かつ、電解質塩が共存した状態で電解質塩を溶解させることができる化合物であれば特に制限はなく、例えば、リン酸エステル、ハロゲン化合物、フォスファゼン等を使用することができる。
 上記可塑剤の例としては、エチレンカーボネート、プロピレンカーボネート等の環状炭酸エステル、エチルメチルカーボネート、ジエチルカーボネート等の鎖状炭酸エステル、等が挙げられる。上記可塑剤は、単独で用いても、また2種以上を組み合わせて用いてもよい。
 本発明によるリチウム二次電池にセパレータを用いる場合、正極と負極の間の短絡を防止することができ、電気化学的に安定である従来公知の材料を使用すればよい。セパレータの例としては、ポリエチレン製セパレータ、ポリプロピレン製セパレータ、セルロース製セパレータ、不織布、無機系セパレータ、グラスフィルター等が挙げられる。電解質にポリマーを含める場合には、その電解質がセパレータの機能を兼ね備える場合もあり、その場合、独立したセパレータは不要である。
 本発明によるリチウム二次電池は、従来公知の方法で作製することができる。例えば、上記正極および負極を、所定の形状と大きさに切断して用意し、次いで、これらの正極と負極を、セパレータを介して貼り合わせることにより単層セルを作製する。次いで、単層セルの電極間に電解質を注入することができる。また、予め電極、セパレータ等に電解質を含浸させてから、電極とセパレータを重ね合わせることによって単層セルを作製してもよい。このようにして得られたセルを、例えば、ポリエステルフィルム/アルミニウムフィルム/変性ポリオレフィンフィルムの3層構造ラミネートフィルムからなる外装体に装入して封入することにより、リチウム二次電池を得ることができる。
 上記セパレータとして、上記塩モノマーを含むものから合成されたポリマーを使用する場合、ポリマー、リチウム塩および常温溶融塩を混合したものを使用することができる。しかし、作業性を向上するため、テトラヒドロフラン、メタノールおよびアセトニトリル等の低沸点溶媒を用いて上記ポリマーを希釈して用いることができる。この場合、希釈溶媒を除去すればよく、このポリマーを含む電解質を正極と負極の間に挟み込むことで単層セルを作製し、同様にリチウム二次電池を得ることができる。
 以下、本発明をより具体的に説明するための実施例を提供する。
実施例1
 炭素前駆体としてのノボラック型フェノール樹脂(住友ベークライト株式会社製PR-50237)135質量部およびヘキサメチレンテトラミン(三菱ガス化学株式会社製)25質量部をエタノール86mLと混合し、ノボラック型フェノール樹脂とヘキサメチレンテトラミンとの合計が全体の70質量%を占めるエタノール溶液を得た。
 このエタノール溶液228質量部に、一酸化ケイ素粉末(平均粒径6μm)100質量部、硝酸鉄0.0043質量部、硝酸銅0.00076質量部、硝酸モリブデン0.00104質量部およびアルミニウム粉末0.0011質量部(以上、関東化学株式会社製)を添加し、これらを室温下、高速撹拌機(プライミクス株式会社製ホモディスパー)において回転数3000rpmで3分間混合し、配合樹脂325gを得た。
 上記配合樹脂300gを容器(ムライトこう鉢)に移し、これを炭化炉(サンケイ真空株式会社製)に配置した。まず、配合樹脂から揮発分を除去するため、炭化炉の昇温速度を100℃/時に設定して加熱を始め、600℃に達したところで昇温を止めてその温度で1時間保持した。その後、室温まで放冷してから容器を炭化炉から取り出した。次いで、配合樹脂を粉砕機(中央化工株式会社製)に移し、レーザー回折式粒度分布測定法による中心粒径D50が10μm以下になるまで粉砕処理した。
 得られた粉砕物を再度上記容器に移し、これを上記炭化炉に配置した。次いで、炭化工程として、炭化炉の昇温速度を100℃/時に設定して加熱を始め、1100℃に達したところで昇温を止めてその温度で6時間保持した。その後、容器を炭化炉から取り出して室温にまで放冷し、複合炭素材を得た。
 得られた複合炭素材を走査型電子顕微鏡で観察した結果(電子顕微鏡写真)を図1に示す。図1からわかるように、カーボンナノファイバー等が複合炭素材の粒子表面から発生し、これらの粒子を包囲していることが確認された。また、得られた複合炭素材を透過型電子顕微鏡で観察した結果(電子顕微鏡写真)を図2(a)、(b)に示す。(b)は(a)の拡大写真である。図2からわかるように、カーボンナノチューブが複合炭素材の粒子表面から発生し、これらの粒子を包囲していることが確認された。
実施例2
 実施例1の手順を繰り返したが、但し、炭化工程における配合樹脂粉砕物の1100℃保持時間を6時間から1時間に変更した。
 得られた複合炭素材を走査型電子顕微鏡で観察した結果(電子顕微鏡写真)を図3に示す。図3からわかるように、カーボンナノファイバー等が複合炭素材の粒子表面から発生し、これらの粒子を包囲していることが確認された。
実施例3
 実施例1と同様にして得られた70質量%エタノール溶液228質量部に、一酸化ケイ素粉末(平均粒径6μm)100質量部、Fe110ppm(硝酸鉄0.07質量部)を添加し、これらを上記高速撹拌機において実施例1と同様に混合して配合樹脂328gを得た。上記配合樹脂300gから、実施例1と同様にして、複合炭素材を得た。
 得られた複合炭素材を走査型電子顕微鏡で観察したところ、図1と同様に、カーボンナノファイバー等が複合炭素材の粒子表面から発生し、これらの粒子を包囲していることが確認された(図示なし)。
実施例4
 ケイ素粉末(平均粒径50μm)100質量部に、硝酸鉄1質量部を添加した後、乳鉢と乳棒にて混練し、さらに炭素前駆体であるノボラック型変性フェノール樹脂(住友ベークライト株式会社製PR-55249)535質量部を添加し、コーヒーミルを用いて、同時に粉砕混合し、配合樹脂を得た。
 上記配合樹脂500gから、実施例1と同様にして、複合炭素材を得た。
実施例5
 ノボラック型変性フェノール樹脂(住友ベークライト株式会社製PR-55249)300質量部を容器(ムライトこう鉢)に入れ、これを炭化炉(サンケイ真空株式会社製)に配置し、昇温速度100℃/時に設定し加熱を始め、600℃に達したところで昇温を止めて、その温度で1時間保持した。その後、室温まで放冷後、容器を炭化炉から取り出した。次いで、熱処理品を粉砕機(中央化工機株式会社製)に移し、レーザー回折式粒度分布測定法による中心粒径D50が10μm以下になるまで粉砕処理をした。
 一酸化ケイ素粉末(平均粒径6μm)100質量部に硝酸鉄1質量部を添加した後、乳鉢と乳棒にて混練した。この混練物を、炭素前駆体として得られた上記粉砕物83質量部に混合し、再度、上記容器に移して上記炭化炉に配置し、実施例1と同様にして、複合炭素材を得た。
比較例1
 硝酸鉄を添加しないことを除き、実施例4の手順を繰り返して複合炭素材を得た。
 得られた複合炭素材を走査型電子顕微鏡で観察した結果(電子顕微鏡写真)を図4に示す。図4からわかるように、複合炭素材の粒子はカーボンナノファイバー等で包囲されていないことが確認された。
比較例2
 硝酸鉄を添加しないことを除き、実施例5の手順を繰り返して複合炭素材を得た。
充放電特性の評価
(1)負極の作製
 上記で得られた複合炭素材を用い、これに対してバインダーとしてポリフッ化ビニリデン10質量%、導電剤としてアセチレンブラック3質量%の割合でそれぞれ配合し、さらに、溶媒としてN-メチル-2-ピロリドンを適量加えて混合し、負極用スラリーを調製した。この負極用スラリーを、集電体として厚み10μmの銅箔の両面に塗布して塗膜を形成し、その後、塗膜を110℃で1時間真空乾燥した。真空乾燥後、ロールプレスで加圧成形することにより厚み100μmの電極を得た。これを幅40mm、長さ290mmの大きさに切り出し負極を作製した。この負極から、リチウムイオン二次電池用電極としてφ13mmの径で打ち抜き負極とした。
(2)リチウムイオン二次電池の作製
 上記負極、セパレータ(ポリプロピレン製多孔質フィルム:幅45mm、厚さ25μm)、作用極としてリチウム金属(厚さ1mm)の順で、充放電試験用二極セル(宝泉株式会社製)内の所定の位置に配置した。さらに、エチレンカーボネートとジエチレンカーボネートの混合液(体積比1:1)に過塩素酸リチウムを1モル/リットルの濃度で溶解させた電解液をセルに注入し、リチウムイオン二次電池を作製した。
(3)評価
 充電容量については、充電時の電流密度を25mA/gとして定電流充電を行い、電位が0Vに達した時点から、0Vで定電圧充電を行い、電流密度が1.25mA/gになるまでに充電した電気量を充電容量とした。
 一方、放電容量については、放電時の電流密度も25mA/gとして定電流放電を行い、電位が2.5Vになるまでに放電した電気量を放電容量とした。
また、以下の式により初回の充放電効率を定義した。
 初回充放電効率(%)=初回放電容量(mAh/g)/初回充電容量(mAh/g)×100
 さらに、上記充電工程と上記放電工程のセットを1サイクルとして30サイクル繰り返した後の放電容量を、上記初回放電容量で除した百分率を、30サイクル後の放電容量維持率として算出した。
 評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~5のリチウムイオン二次電池は、30サイクル後の放電容量維持率が80%以上あり、同10%以下の比較例1、2と比べ、充放電サイクル特性が顕著に向上した。これは、図1~図3に代表されるように、実施例ではカーボンナノファイバー等が複合炭素材の粒子表面から発生し、これらの粒子を包囲している結果、充放電サイクルによる負極用炭素材の膨張収縮に伴う微粉化が抑制されたためであると考えられる。比較例では、図4に代表されるように、粒子を包囲するカーボンナノファイバー等が存在しないため、充放電サイクルによる負極用炭素材の膨張収縮に伴う微粉化が進行し、実質的に電極が崩壊した。

Claims (8)

  1.  リチウムイオンの吸蔵・放出が可能な炭素または金属もしくは半金属もしくはこれらの合金、酸化物、窒化物もしくは炭化物を含む粒子と、
     該粒子を包囲する樹脂炭素材と、
     該粒子の表面に結合し、かつ、該粒子を包囲するカーボンナノファイバーおよび/またはカーボンナノチューブからなる網状構造体と
    を含んでなる、リチウム二次電池負極用炭素材。
  2.  該樹脂炭素材および該網状構造体が、触媒を含有する炭素前駆体の炭化処理により生成したものである、請求項1に記載のリチウム二次電池負極用炭素材。
  3.  該触媒が、銅、鉄、コバルト、ニッケル、モリブデンおよびマンガンからなる群より選ばれた少なくとも1種の元素を含む、請求項2に記載のリチウム二次電池負極用炭素材。
  4.  該炭素前駆体が、石油ピッチ、石炭ピッチ、フェノール樹脂、フラン樹脂、エポキシ樹脂およびポリアクリロニトリルからなる群より選択された易黒鉛化材料および/または難黒鉛化材料を含む、請求項2または3に記載のリチウム二次電池負極用炭素材。
  5.  該金属もしくは半金属が、ケイ素、スズ、ゲルマニウムおよびアルミニウムからなる群より選ばれた少なくとも1種の元素を含む、請求項1~4のいずれか1項に記載のリチウム二次電池負極用炭素材。
  6.  リチウムイオンの吸蔵・放出が可能な炭素または金属もしくは半金属もしくはこれらの合金、酸化物、窒化物もしくは炭化物を含む粒子と、炭素前駆体と、触媒とを混合することにより、該粒子の表面に該触媒が付着し、かつ、該粒子が該炭素前駆体に分散された混合物を形成し、次いで該混合物に炭化処理を施すことを特徴とする、リチウム二次電池負極用炭素材の製造方法。
  7.  請求項1~5のいずれか1項に記載のリチウム二次電池負極用炭素材を含むリチウム二次電池負極。
  8.  請求項7に記載のリチウム二次電池負極を含むリチウム二次電池。
PCT/JP2009/058101 2008-04-30 2009-04-23 リチウム二次電池負極用炭素材、その製造方法、リチウム二次電池負極およびリチウム二次電池 WO2009133807A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/990,219 US20110039157A1 (en) 2008-04-30 2009-04-23 Anodic carbon material for lithium secondary battery, method for manufacturing the same, lithium secondary battery anode, and lithium secondary battery
CN2009801154574A CN102017246A (zh) 2008-04-30 2009-04-23 锂二次电池负极用碳材及其制造方法、锂二次电池负极以及锂二次电池
JP2010510091A JPWO2009133807A1 (ja) 2008-04-30 2009-04-23 リチウム二次電池負極用炭素材、その製造方法、リチウム二次電池負極およびリチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-118759 2008-04-30
JP2008118759 2008-04-30

Publications (1)

Publication Number Publication Date
WO2009133807A1 true WO2009133807A1 (ja) 2009-11-05

Family

ID=41255023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058101 WO2009133807A1 (ja) 2008-04-30 2009-04-23 リチウム二次電池負極用炭素材、その製造方法、リチウム二次電池負極およびリチウム二次電池

Country Status (5)

Country Link
US (1) US20110039157A1 (ja)
JP (1) JPWO2009133807A1 (ja)
KR (1) KR101571917B1 (ja)
CN (1) CN102017246A (ja)
WO (1) WO2009133807A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969111A (zh) * 2010-09-30 2011-02-09 湛江市聚鑫新能源有限公司 锂离子电池硅碳合金负极材料及其制备方法
WO2011075489A1 (en) 2009-12-18 2011-06-23 Designed Nanotubes, LLC High performance energy storage and collection devices containing exfoliated microtubules and spatially controlled attached nanoscale particles and layers
KR101085048B1 (ko) 2010-03-31 2011-11-21 한국화학연구원 개선된 핏치의 제조방법, 및 이를 이용한 석유화학 부산물로부터 고용량 금속-탄소 음극재료의 제조 방법
KR101162588B1 (ko) 2010-05-14 2012-07-04 삼화콘덴서공업주식회사 음극활물질 및 그 제조방법과 그 음극활물질을 포함하는 2차 전지 및 슈퍼 커패시터
JP2014203828A (ja) * 2013-04-03 2014-10-27 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 リチウムイオン電池用黒鉛負極材及びその製造方法
CN105958025A (zh) * 2016-06-16 2016-09-21 浙江理工大学 一种无定形锗氧化物/多孔碳纳米纤维及其制备方法
JP2018170250A (ja) * 2017-03-30 2018-11-01 Tdk株式会社 リチウムイオン二次電池用負極活物質、負極及びリチウムイオン二次電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263221B (zh) * 2011-06-23 2014-04-02 复旦大学 取向碳纳米管/聚合物复合膜及其制备方法和应用
JP2013191529A (ja) * 2012-02-16 2013-09-26 Hitachi Chemical Co Ltd 複合材料、複合材料の製造方法、リチウムイオン二次電池用電極材料、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
CN102646812A (zh) * 2012-04-24 2012-08-22 东华大学 一种锂离子电池负极材料的结构
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN105958026B (zh) * 2016-06-18 2018-10-02 湖南中科星城石墨有限公司 一种锂离子电池负极用石墨锡复合材料的制备方法
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN114031079B (zh) * 2021-11-03 2023-10-27 北京化工大学 碳化钼碳纳米纤维复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196064A (ja) * 1999-12-10 2001-07-19 Samsung Sdi Co Ltd リチウム二次電池用負極活物質及びその製造方法
WO2006067891A1 (ja) * 2004-12-22 2006-06-29 Matsushita Electric Industrial Co., Ltd. 複合負極活物質およびその製造法ならびに非水電解質二次電池
JP2008066053A (ja) * 2006-09-06 2008-03-21 Fuji Heavy Ind Ltd 蓄電デバイス用負極活物質およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101483123B1 (ko) * 2006-05-09 2015-01-16 삼성에스디아이 주식회사 금속 나노결정 복합체를 포함하는 음극 활물질, 그 제조방법 및 이를 채용한 음극과 리튬 전지
JP2007214137A (ja) * 2007-03-12 2007-08-23 Mitsubishi Chemicals Corp 非水系炭素被覆リチウム二次電池用負極活物質

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196064A (ja) * 1999-12-10 2001-07-19 Samsung Sdi Co Ltd リチウム二次電池用負極活物質及びその製造方法
WO2006067891A1 (ja) * 2004-12-22 2006-06-29 Matsushita Electric Industrial Co., Ltd. 複合負極活物質およびその製造法ならびに非水電解質二次電池
JP2008066053A (ja) * 2006-09-06 2008-03-21 Fuji Heavy Ind Ltd 蓄電デバイス用負極活物質およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011075489A1 (en) 2009-12-18 2011-06-23 Designed Nanotubes, LLC High performance energy storage and collection devices containing exfoliated microtubules and spatially controlled attached nanoscale particles and layers
KR101085048B1 (ko) 2010-03-31 2011-11-21 한국화학연구원 개선된 핏치의 제조방법, 및 이를 이용한 석유화학 부산물로부터 고용량 금속-탄소 음극재료의 제조 방법
KR101162588B1 (ko) 2010-05-14 2012-07-04 삼화콘덴서공업주식회사 음극활물질 및 그 제조방법과 그 음극활물질을 포함하는 2차 전지 및 슈퍼 커패시터
CN101969111A (zh) * 2010-09-30 2011-02-09 湛江市聚鑫新能源有限公司 锂离子电池硅碳合金负极材料及其制备方法
CN101969111B (zh) * 2010-09-30 2013-09-04 湛江市聚鑫新能源有限公司 锂离子电池硅碳合金负极材料及其制备方法
JP2014203828A (ja) * 2013-04-03 2014-10-27 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 リチウムイオン電池用黒鉛負極材及びその製造方法
US10096822B2 (en) 2013-04-03 2018-10-09 Shenzhen Brt New Energy Materials Inc. Lithium ion battery graphite negative electrode material and preparation method thereof
CN105958025A (zh) * 2016-06-16 2016-09-21 浙江理工大学 一种无定形锗氧化物/多孔碳纳米纤维及其制备方法
JP2018170250A (ja) * 2017-03-30 2018-11-01 Tdk株式会社 リチウムイオン二次電池用負極活物質、負極及びリチウムイオン二次電池

Also Published As

Publication number Publication date
KR101571917B1 (ko) 2015-11-25
KR20110018301A (ko) 2011-02-23
JPWO2009133807A1 (ja) 2011-09-01
CN102017246A (zh) 2011-04-13
US20110039157A1 (en) 2011-02-17

Similar Documents

Publication Publication Date Title
WO2009133807A1 (ja) リチウム二次電池負極用炭素材、その製造方法、リチウム二次電池負極およびリチウム二次電池
JP5482660B2 (ja) リチウム二次電池負極用炭素材、リチウム二次電池負極、リチウム二次電池およびリチウム二次電池負極用炭素材の製造方法
KR101951488B1 (ko) 리튬 이온 이차 전지용 정극재 및 그 제조방법
JP7192499B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
US10693135B2 (en) Method for producing composite, and negative electrode material for lithium ion battery
KR101513520B1 (ko) 리튬계 전지용 전극 및 리튬계 전지
JP5593663B2 (ja) リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池
JP5593665B2 (ja) リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池
US9768447B2 (en) Negative electrode material for lithium ion secondary battery
US20170040602A1 (en) Negative electrode for secondary battery and manufacturing method of the same
JP2008277231A (ja) リチウム二次電池用負極材料、その製造方法及びそれを用いたリチウム二次電池負極、リチウム二次電池
KR101728753B1 (ko) 음극 활물질, 이를 채용한 음극과 리튬 전지, 및 상기 음극 활물질의 제조방법
JP2022550820A (ja) 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池
JP2015079621A (ja) 非水系二次電池負極用複合黒鉛粒子、非水系二次電池用負極及び非水系二次電池
WO2019131862A1 (ja) リチウムイオン二次電池用負極材
JP2015179593A (ja) 負極および蓄電装置
JPWO2016140368A1 (ja) 非水電解質二次電池用混合負極材料の製造方法及びその製造方法によって得られる非水電解質二次電池用混合負極材料
JP5573149B2 (ja) リチウム2次電池負極用炭素材、リチウム2次電池負極およびリチウム2次電池
JP5499636B2 (ja) リチウム2次電池負極用炭素材、リチウム2次電池負極およびリチウム2次電池
WO2015040891A1 (ja) リチウムイオン二次電池
JP5482094B2 (ja) リチウム二次電池負極用炭素材、リチウム二次電池負極、リチウム二次電池およびリチウム二次電池負極用炭素材の製造方法
JP5540631B2 (ja) リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池
JP6217978B2 (ja) 負極および蓄電装置
JP2017183236A (ja) リチウムイオン二次電池用負極及びこれを用いたリチウムイオン二次電池
JP2016181405A (ja) 非水電解質二次電池負極用複合難黒鉛化性炭素質材料及び非水電解質二次電池負極用複合難黒鉛化性炭素質材料の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115457.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738744

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010510091

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107024242

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12990219

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09738744

Country of ref document: EP

Kind code of ref document: A1