WO2019131862A1 - リチウムイオン二次電池用負極材 - Google Patents

リチウムイオン二次電池用負極材 Download PDF

Info

Publication number
WO2019131862A1
WO2019131862A1 PCT/JP2018/048100 JP2018048100W WO2019131862A1 WO 2019131862 A1 WO2019131862 A1 WO 2019131862A1 JP 2018048100 W JP2018048100 W JP 2018048100W WO 2019131862 A1 WO2019131862 A1 WO 2019131862A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
negative electrode
less
mass
ion secondary
Prior art date
Application number
PCT/JP2018/048100
Other languages
English (en)
French (fr)
Inventor
貴行 栗田
石井 伸晃
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2019537190A priority Critical patent/JPWO2019131862A1/ja
Publication of WO2019131862A1 publication Critical patent/WO2019131862A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material for a lithium ion secondary battery.
  • the speed-up of the power saving of the electronic components has advanced the multifunctionalization of portable electronic devices, and the power consumption of the portable electronic devices is increasing. Therefore, there is a strong demand for higher capacity and smaller size of the lithium ion secondary battery, which is the main power source of portable electronic devices. In addition, demand for electric vehicles is increasing, and there is a strong demand for higher capacity in lithium ion secondary batteries used therein.
  • Patent Document 1 is a negative electrode material made of a Si-based alloy for a storage device accompanied by migration of lithium ions during discharge, and the negative electrode material made of the Si-based alloy is Si main phase and other than Si and Si. It has a compound phase consisting of one or more elements, and the compound phase has a phase consisting of a phase consisting of Si and Cu, and the Si crystallite size of the Si main phase is 30 nm or less, and Si And a negative electrode material made of a Si-based alloy for a power storage device in which the crystallite size of the compound phase consisting of and Cu is 40 nm or less.
  • Patent Document 2 is silicon mainly used as a negative electrode active material for lithium ion secondary batteries, and has a crystallite size of 1 to 200 nm by powder X-ray diffraction, and an average particle size of 0.1 to 5 ⁇ m by a laser method. Further, silicon fine particles having a specific surface area of 10 m 2 / g or more according to the BET method are disclosed.
  • Patent Document 1 attempts to reduce the crystalline size, it is unclear which crystal plane is focused on, and the Si particle size is not described.
  • the invention of Patent Document 2 has an allowable Si crystallite size too large compared to Patent Document 1, and may not lead to expansion suppression.
  • the expansion suppression of the negative electrode is the point that the negative electrode material is formed of Si alone or the Si particle diameter is 0.1 ⁇ m or more.
  • An object of the present invention is to provide a negative electrode material for a lithium ion secondary battery having a small electrode expansion coefficient accompanying use and a long life.
  • the present invention includes the following aspects.
  • the particles (A2) have a 50% particle diameter DV50 in the volume-based cumulative particle size distribution of 2.0 ⁇ m to 20.0 ⁇ m, and a BET specific surface area (S BET ) of 1.0 m 2 / g to 10
  • the negative electrode material for a lithium ion secondary battery according to the above 1 or 2 which has a surface area of not more than 0 m 2 / g.
  • the particle (A2) has a ratio I 110 / I 004 of the peak intensity I 110 of the ( 110 ) plane to the peak intensity I 004 of the (004) plane by powder X-ray diffraction method of 0.10 or more 0.35 or less, the average interplanar spacing d 002 of the (002) plane by powder X-ray diffraction is 0.3360 nm or less, and the total fineness of pores with a diameter of 0.4 ⁇ m or less measured by nitrogen gas adsorption
  • a negative electrode material for a lithium ion secondary battery according to an embodiment of the present invention is a composite (particles (A1), an amorphous carbon coating layer (A1C), particles (A2), and a carbonaceous material (A3) A) is included.
  • the particles (A1) used in one embodiment of the present invention contain Si as a main component capable of inserting and extracting lithium ions.
  • the content of Si is preferably 90% by mass or more, more preferably 95% by mass or more.
  • the particles (A1) may be composed of a simple substance of Si or a compound containing a Si element, a mixture, a eutectic or a solid solution.
  • the particles (A1) before being complexed with the particles (A2) and the carbonaceous material (A3) may be aggregations of a plurality of fine particles, that is, secondary particles.
  • grains (A1) a lump shape, scale shape, spherical shape, fibrous shape etc. can be mentioned. Among these, spherical or massive is preferable.
  • the substance is a compound, a mixture, a eutectic or a solid solution containing the element M in a ratio of m moles to 1 mole of Si.
  • the element M which is an element other than Li include B, C, N, O, S, P, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Ru, Rh, Pd, Pt, Be, Nb, Nd, Ce, W, Ta, Ag, Au, Cd, Ga, In, Sb, Ba and the like can be mentioned.
  • m is preferably 0.01 or more, more preferably 0.10 or more, and still more preferably 0.30 or more.
  • the substance containing Si element include elemental Si, an alloy of Si and an alkaline earth metal; an alloy of Si and a transition metal; an alloy of Si and a semimetal; Si, Be, Ag, Al, Au , Cd, Ga, in, solid-solution alloys or KyoTorusei alloy of Sb or Zn; CaSi, CaSi 2, Mg 2 Si, BaSi 2, Cu 5 Si, FeSi, FeSi 2, CoSi 2, Ni 2 Si, NiSi 2, MnSi, MnSi 2, MoSi 2, CrSi 2, Cr 3 Si, TiSi 2, Ti 5 Si 3, NbSi 2, NdSi 2, CeSi 2, WSi 2, W 5 Si 3, TaSi 2, Ta 5 Si 3, It may be mentioned SiO 2, SiC, Si 3 N 4 and the like; PtSi, V 3 Si, VSi 2, PdSi, RuSi, silicides such RhSi.
  • the lower limit of the average particle diameter d AV of the primary particles of the particles (A1) is 5 nm, preferably 10 nm, and more preferably 35 nm. Further, the upper limit value of d AV of the primary particles is 95 nm, preferably 70 nm.
  • the d AV of the primary particles of the particles (A1) is larger than 95 nm, the particles (A1) expand and shrink in volume due to charge and discharge and the influence on the structure of the composite (A) containing the particles (A1) increases. Maintenance rate decreases.
  • the d AV of the primary particles is smaller than 5 nm, the specific surface area of the particles (A1) is increased, and the amount of side reaction is increased.
  • Average particle diameter d AV [nm] 6 x 10 3 / ( ⁇ x S BET ) Defined by Here, [[g / cm 3 ] is the true density of Si particles, and the theoretical value of 2.3 [g / cm 3 ] was adopted. S BET [m 2 / g] is a specific surface area measured by the BET method using N 2 gas as an adsorption gas.
  • the particles (A1) are preferably coated at their surface with a thin amorphous carbon coating layer (A1C).
  • the upper limit of the thickness of the amorphous carbon coating layer (A1C) is 20 nm, preferably 10 nm, more preferably 5 nm. is there. This is to suppress the side reaction between the electrolytic solution and the amorphous carbon coating layer (A1C).
  • the lower limit of the thickness of the amorphous carbon coating layer (A1C) is 1 nm, preferably 2 nm, and more preferably It is 3 nm.
  • the thickness of the amorphous carbon coating layer (A1C) can be determined by measuring the film thickness in an image taken by observation with a transmission electron microscope (TEM). An example of a specific TEM observation is shown below.
  • Device H9500 manufactured by Hitachi, Ltd. Acceleration voltage: 300 kV.
  • Preparation of sample A small amount of sample is taken in ethanol and dispersed by ultrasonic irradiation, and then placed on a microgrid observation mesh (without a supporting film) to make an observation sample.
  • Observation magnification 50,000 times (at the time of particle shape observation) and 400,000 times (at the time of thickness observation of an amorphous carbon layer)
  • a core-shell structure (hereinafter referred to as a structure comprising the particles (A1) and an amorphous carbon coating layer (A1C) covering the particles (A1)
  • the body preferably has a BET specific surface area of 25 m 2 / g or more and 70 m 2 / g or less, more preferably 52 m 2 / g or more and 67 m 2 / g or less.
  • the density of primary particles is 2.2 g / cm 3 or more.
  • the BET specific surface area (S BET ) of the structure ( ⁇ ) is 25 m 2 / g or more, the particle diameter of the structure ( ⁇ ) does not become too large, and the electron transfer path in the solid of the structure ( ⁇ ) and Li The ion diffusion path will not be long. That is, the resistance at the time of charge and discharge is kept low. Furthermore, the absolute value of the amount of expansion per particle of the structure ( ⁇ ) does not increase, and the possibility of destruction of the structure of the complex (A) around the structure ( ⁇ ) is low. In addition, when the density of the structure ( ⁇ ) is 2.2 g / cm 3 or more, it is also advantageous in terms of volumetric energy density.
  • the content of particles (A1) in the composite (A) is preferably 2% by mass to 95% by mass, more preferably 5% by mass to 80% by mass, and still more preferably 10% by mass to 70% by mass It is.
  • the content of particles (A1) is 95% by mass or less, the electrical resistance can be suppressed low.
  • the content of the particles (A1) is 2% by mass or more, the superiority in terms of volume or mass energy density is maintained.
  • the structure ( ⁇ ) composed of the particles (A1) and the amorphous carbon coating layer (A1C) can be produced by any of the solid phase method, liquid phase method and gas phase method, but the gas phase method is preferable.
  • the graphite particles contained in the particles (A2) in the preferred embodiment of the present invention are preferably artificial graphite particles.
  • the size and shape of the optical structure are in a specific range, and an artificial graphite particle having an appropriate degree of graphitization can provide an electrode material having both excellent crushing characteristics and battery characteristics.
  • D V 50 represents a 50% particle size in a volume-based particle size distribution measured by a laser diffraction particle size distribution analyzer, and represents an apparent diameter of particles.
  • the 50% particle diameter D V50 in the volume-based cumulative particle size distribution of the graphite particles contained in the particles (A2) in the preferred embodiment of the present invention is preferably 2.0 ⁇ m or more and 20.0 ⁇ m or less, more preferably 5.0 ⁇ m or more 18 .0 ⁇ m or less. If the D V 50 is 2.0 ⁇ m or more, it is not necessary to grind with a special device at the time of grinding, and energy can be saved. Moreover, since it is hard to cause aggregation, the handling property at the time of coating is also good. Furthermore, since the specific surface area does not become excessively large, the decrease in the initial charge and discharge efficiency does not occur.
  • D V 50 is 20.0 ⁇ m or less, it does not take time to diffuse lithium in the negative electrode material, and hence the input / output characteristics are good. Further, since silicon-containing particles are uniformly compounded on the surface of the graphite particles, good cycle characteristics can be obtained.
  • Graphite particles contained in the particle (A2) in a preferred embodiment of the present invention BET specific surface area of preferably 1.0 m 2 / g or more 10.0 m 2 / g or less by N 2 gas adsorption method, 3.0 m 2 / g or more and 7.5 m 2 / g or less is more preferable.
  • BET specific surface area of the graphite particles is in the above range, a large area in contact with the electrolytic solution can be secured while suppressing an irreversible side reaction as a negative electrode material, so that the input / output characteristics are improved.
  • the artificial graphite particles contained in the particles (A2) in the preferred embodiment of the present invention have peak intensities I 110 of the (110) plane of the graphite crystal and peaks of the (004) plane in the diffraction peak profile obtained by powder X-ray diffraction. It preferably has a specific I 110 / I 004 intensity I 004 is 0.10 or more 0.35 or less.
  • the ratio is more preferably 0.18 or more and 0.30 or less, and still more preferably 0.21 or more and 0.30 or less. If the ratio is 0.10 or more, the orientation is not too high, and the current collector surface of the electrode is due to expansion and contraction associated with insertion and desorption (occluding and releasing) of lithium ions to Si and graphite in the negative electrode material.
  • the average interplanar spacing d 002 of the (002) plane according to powder X-ray diffraction method is preferably 0.3360 nm or less.
  • the thickness Lc in the C-axis direction of the crystallite of the artificial graphite particle is preferably 50 nm or more and 1000 nm or less from the viewpoint of mass energy density and crushability.
  • d 002 and Lc can be measured by powder X-ray diffraction (XRD) according to a known method (Michio Inagaki, “carbon”, 1963, No. 36, pages 25-34; Iwashita et al., Carbon vol. 42 (2004), p. 701-714).
  • XRD powder X-ray diffraction
  • the artificial graphite particles contained in the particles (A2) in the preferred embodiment of the present invention have a total pore volume of 5.0 ⁇ L / g or more of pores with a diameter of 0.4 ⁇ m or less according to nitrogen gas adsorption BET method under liquid nitrogen cooling. It is preferably 40.0 ⁇ L / g or less. More preferably, it is 25.0 ⁇ L / g or more and 40.0 ⁇ L / g or less.
  • An artificial graphite particle having a total pore volume of 5.0 ⁇ L / g or more tends to be complexed with the particle (A1) and the carbonaceous material (A3), and is preferable in terms of improvement of the cycle capacity retention rate.
  • the artificial graphite particles contained in the particles (A2) in a preferred embodiment of the present invention have a peak intensity I D of 1580 to 1620 cm of the peak derived from the amorphous component in the range of 1300 to 1400 cm.sup.- 1 measured by Raman spectroscopy.
  • the ratio I D / I G (R value) to the intensity I G of the peak derived from the graphite component in the range of -1 is preferably 0.04 or more and 0.18 or less, preferably 0.08 or more and 0.16 or less It is further preferred that If the R value is 0.04 or more, the crystallinity of graphite is not too high, and good rapid charge / discharge characteristics can be obtained.
  • the Raman spectrum can be measured, for example, by observing with a microscope attached using a laser Raman spectrophotometer (NRS-5100 manufactured by JASCO Corporation).
  • the graphite particles contained in the particles (A2) may be produced by heating particles obtained by crushing coke having a heat history of 1000 ° C. or less. it can.
  • a raw material of coke for example, petroleum pitch, coal pitch, coal pitch coke, petroleum coke and mixtures thereof can be used. That is, as the graphite particles contained in the particles (A2), it is preferable to use a material derived from petroleum-based coke and / or coal-based coke. Among these, those subjected to delayed coking under specific conditions are desirable.
  • the raw material to be passed through a delayed coker is a decanted oil from which the catalyst has been removed after fluid bed catalytic cracking has been performed on heavy fractions at the time of crude oil refining, coal tar extracted from bituminous coal, etc. And those obtained by sufficiently distilling the tar obtained by raising the temperature to 100 ° C. or higher.
  • the temperature of these liquids be raised to 450 ° C. or higher, 500 ° C. or higher, or even 510 ° C. or higher at least at the entrance of the drum.
  • the carbon content increases and the yield improves.
  • the pressure in the drum is preferably maintained at normal pressure or higher, more preferably 300 kPa or higher, and still more preferably 400 kPa or higher. This further increases the capacity as the negative electrode. As described above, by performing coking under more severe conditions than usual, the liquid can be reacted more and coke having a higher degree of polymerization can be obtained.
  • the obtained coke is cut out from the inside of the drum by a jet water flow, and the obtained mass is roughly crushed to about 5 cm with a gold crucible or the like.
  • a twin-roll crusher or a jaw crusher can also be used for the coarse grinding, it is preferable that the 1 mm sieve is ground to have 90% by mass or more.
  • the coke is then crushed.
  • the pulverization property is significantly reduced, so it is preferable to previously dry it at about 100 to 1000.degree. More preferably, it is 100 to 500 ° C.
  • the crushing strength becomes strong and the crushability deteriorates, and the crystal anisotropy develops, so that the cleavage property becomes strong and it becomes easy to be a scaly powder.
  • a known jet mill, hammer mill, roller mill, pin mill, vibration mill or the like can be used. Milling is preferably carried out as D V50 becomes 2.0 ⁇ m or 20.0 ⁇ m or less, and more preferably more than 5.0 .mu.m 18.0.
  • Graphitization is preferably performed at a temperature of 2400 ° C. or higher, more preferably 2800 ° C. or higher, still more preferably 3050 ° C. or higher, still more preferably 3150 ° C. or higher under an inert atmosphere (eg, nitrogen gas or argon gas atmosphere) Do.
  • an inert atmosphere eg, nitrogen gas or argon gas atmosphere
  • the graphitization temperature is preferably 3600 ° C. or less.
  • the carbon raw material be calcined to remove organic volatile components, that is, the fixed carbon content is 95% or more, more preferably 98% or more, and still more preferably 99% or more.
  • This firing can be performed, for example, by heating at 700 to 1500.degree. Since the reduction in mass at the time of graphitization is reduced by firing, the throughput of the graphitization processing apparatus can be increased once.
  • the carbonaceous material (A3) in a preferred embodiment of the present invention is a carbon material which is different from the particles (A2) and in which the development of crystals formed by carbon atoms is low, and a Raman spectrum by Raman scattering spectroscopy. Has a peak near 1360 cm -1 .
  • the carbonaceous material (A3) may be the same as the amorphous carbon coating layer (A1C).
  • the carbonaceous material (A3) can be produced, for example, by carbonizing a carbon precursor.
  • the carbon precursor is not particularly limited, but includes, but not limited to, thermal heavy oil, pyrolysis oil, straight asphalt, blown asphalt, petroleum-derived substances such as tar or petroleum pitch by-produced during ethylene production, coal tar produced during coal distillation,
  • the heavy component obtained by distilling off the low-boiling component of coal tar, and coal-derived materials such as coal tar pitch (coal pitch) are preferred, and petroleum pitch or coal pitch is particularly preferred.
  • Pitch is a mixture of multiple polycyclic aromatic compounds. When pitch is used, a carbonaceous material (A3) with few impurities can be produced at a high carbonization rate. Since the pitch has a low oxygen content, when the particles (A1) are coated with the carbonaceous material, the particles (A1) are less likely to be oxidized.
  • the pitch as a precursor of the carbonaceous material (A3) preferably has a softening point of 80 ° C. or more and 300 ° C. or less. If the softening point of pitch is 80 ° C. or higher, the average molecular weight of the polycyclic aromatic compound constituting it is not too small, and the volatile content is also relatively small, so the carbonization rate decreases, the manufacturing cost increases, and further There is no problem that a carbonaceous material (A3) having a large specific surface area containing many pores can be easily obtained. If the softening point of the pitch is 300 ° C. or less, the viscosity is not too high, so that it can be uniformly mixed with the particles (A1). The softening point of pitch can be measured by the Mettler method described in ASTM-D 3104-77.
  • the pitch of the carbonaceous material (A3) as a precursor is preferably 20% by mass to 70% by mass, and more preferably 25% by mass to 60% by mass, as a residual carbon ratio.
  • the residual carbon ratio of the pitch is 20% by mass or more, problems such as an increase in manufacturing cost and a carbonaceous material having a large specific surface area do not occur.
  • the residual carbon ratio of the pitch is 70% by mass or less, the viscosity is not too high, and therefore, it can be uniformly mixed with the particles (A1).
  • the residual coal rate is determined by the following method.
  • the solid pitch is ground in a mortar or the like, and the ground product is subjected to mass thermal analysis under a nitrogen gas flow.
  • the ratio of mass to charged mass at 1100 ° C. is defined as the residual carbon ratio.
  • the pitch used in the present invention preferably has a QI (quinoline insoluble content) content of 10% by mass or less, more preferably 5% by mass or less, and still more preferably 2% by mass or less.
  • the QI content of pitch is a value corresponding to the amount of free carbon.
  • the pitch containing a large amount of free carbon is heat-treated, the free carbon adheres to the surface of the sphere to form a three-dimensional network in the process of appearance of mesophase spheres, thereby hindering the growth of the sphere, and thus it tends to be a mosaic structure.
  • heat treatment is performed on a pitch having a small amount of free carbon, mesophase spheres grow large and tend to generate needle coke.
  • the QI content is in the above range, the electrode characteristics are further improved.
  • the pitch used in the present invention preferably has a TI (toluene insoluble content) content of 10% by mass to 70% by mass.
  • the pitch with low TI content has a low average carbon weight and high volatile content because the polycyclic aromatic compound constituting it has a low carbonization rate, an increase in production cost, and a large specific surface area including many pores. Carbonaceous materials are easily obtained.
  • the pitch with a high TI content has a high carbonization rate because the average molecular weight of the polycyclic aromatic compound constituting it is high, but the pitch with a high TI content is uniformly mixed with the particles (A1) since the viscosity is high. It tends to be difficult. When the TI content is in the above-mentioned range, it is possible to uniformly mix the pitch and the other components, and to obtain a negative electrode material having characteristics suitable as a battery active material.
  • the QI content and the TI content of the pitch used in the present invention can be measured by the method described in JIS K2425 or a method according thereto.
  • the mass ratio of the carbonaceous material (A3) to the total mass of the particles (A1), the particles (A2) and the carbonaceous material (A3) is preferably 2% by mass to 40% by mass, and more preferably 4% % Or more and 30% by mass or less.
  • the proportion of the carbonaceous material (A3) is 2% by mass or more, sufficient bonding between the particles (A1) and the particles (A2) can be obtained, and the surface of the particles (A1) can be a carbonaceous material (A3)
  • conductivity is easily imparted to the particles (A1), and an effect of suppressing surface reactivity of the particles (A1) and an effect of alleviating expansion and contraction are obtained, and good cycle characteristics are obtained.
  • the proportion of the carbonaceous material (A3) is 40% by mass or less, the initial efficiency does not decrease even if the proportion of the carbonaceous material (A3) is high.
  • the composite (A) according to one embodiment of the present invention comprises the particles (A1) or the structure ( ⁇ ) (when the particles (A1) are coated with the amorphous carbon coating layer (A1C)), and the particles (A2) and a carbonaceous material (A3), wherein at least a part of the particles (A1) or the structural body ( ⁇ ), the particles (A2) and the carbonaceous material (A3) are complexed with each other Is preferred.
  • the complexing is, for example, a state in which the particle (A1) or the structure ( ⁇ ) and the particle (A2) are fixed and bound by the carbonaceous material (A3), or the particle (A1) or the structure ( ⁇ ) And / or particles (A2) are coated with the carbonaceous material (A3).
  • the particle (A1) or the structure ( ⁇ ) is completely covered with the carbonaceous material (A3), and the surface of the particle (A1) or the structure ( ⁇ ) is not exposed.
  • the state in which the particles (A1) or the structural body ( ⁇ ) and the particles (A2) are linked via the carbonaceous material (A3) and the whole is covered with the carbonaceous material (A3)
  • the structure ( ⁇ ) and the particles (A2) are in direct contact, and the whole is preferably covered with the carbonaceous material (A3).
  • the surface of the particles (A1) or the structure ( ⁇ ) is not exposed, so that the electrolytic solution decomposition reaction is suppressed and the coulombic efficiency can be maintained high, and the carbonaceous material (A3)
  • the conductivity between the particles (A2) and the particles (A1) or the structure ( ⁇ ) can be enhanced by linking the particles (A2), and the particles (A1) or the structure ( ⁇ ) are carbonaceous.
  • the particle (A2), the carbonaceous material (A3), the particle (A1) or the structure ( ⁇ ) alone is included, which is not complexed. May be It is preferable that the amount of the particles (A2), the carbonaceous material (A3), the particles (A1) or the structures ( ⁇ ) contained alone without being complexed is small, and specifically, the complex (A) Preferably it is 10 mass% or less with respect to the mass of.
  • DV50 of the complex (A) which concerns on one Embodiment of this invention
  • 2.0 micrometers or more and 20.0 micrometers or less are preferable. More preferably, it is 2.0 micrometers or more and 18.0 micrometers or less. If DV50 is 2.0 micrometers or more, economical manufacture is possible. Also, there is no difficulty in increasing the electrode density. Furthermore, since the specific surface area is not excessively increased, the decrease in the initial charge and discharge efficiency due to the side reaction with the electrolytic solution does not occur. Further, if the DV50 is 20.0 ⁇ m or less, good input / output characteristics and cycle characteristics can be obtained.
  • the BET specific surface area (S BET ) of the composite (A) is preferably 1.0 m 2 / g or more and 10.0 m 2 / g or less. More preferably, it is 1.0 m 2 / g or more and 5.0 m 2 / g or less. If the BET specific surface area (S BET ) is 1.0 m 2 / g or more, uniform distribution in the electrode is maintained without deterioration of input / output characteristics, and good cycle characteristics can be obtained. When the BET specific surface area (S BET ) is 10.0 m 2 / g or less, the handleability is good without the decrease in the coatability. In addition, it is easy to increase the electrode density without requiring a large amount of binder for electrode production, and it is possible to suppress a decrease in initial charge and discharge efficiency due to a side reaction with the electrolytic solution.
  • the complex (A) has a half value width of (111) plane diffraction peak (peak appearing at 28.0 ° ⁇ 2 ⁇ ⁇ 29.0 °) of particle (A1) in X-ray diffraction measurement
  • the size of 1 is 1, the diffraction peak of the (220) plane (peak appearing at 46.8 ° ⁇ 2 ⁇ ⁇ 47.8 °) and the diffraction peak of the (311) plane (55.6 ° ⁇ 2 ⁇ ⁇ 56.
  • the magnitudes of the full width at half maximum of the peak appearing at 6 ° are preferably 1.50 or less, more preferably 1.40 or less.
  • the full width at half maximum ratio of the (220) and (311) plane diffraction peaks exceeds 1.50, the expansion of the particles (A1) becomes more anisotropic and the electrode expansion coefficient increases.
  • the complex (A) has a peak intensity I D of a peak in the range of 1300 to 1400 cm ⁇ 1 in a Raman spectrum obtained by measuring the particle end face with a microscopic Raman spectrometer.
  • the ratio I D / I G (R value) of the peak intensity to the peak intensity I G in the range of 1580 to 1620 cm -1 is preferably 0.15 or more and 1.0 or less. More preferably, it is 0.2 or more and 1.0 or less, still more preferably 0.4 or more and 1.0 or less.
  • the fact that the R value is too small means that the surface of the particles (A2) is exposed to a certain amount.
  • the particles (A2) and the particles (A1) are covered with the carbonaceous material (A3), and the effect of suppressing the surface reactivity of the particles (A1) or expansion and contraction Good cycle characteristics can be obtained because the effect of relieving is increased.
  • the R value is too large, it indicates that the carbonaceous material (A3) containing a large amount of amorphous carbon having a large initial irreversible capacity covers the surface of the particles (A2). Therefore, if R value is 1.0 or less, the fall of initial stage discharge efficiency is suppressed.
  • the complex (A) according to an embodiment of the present invention can be produced according to a known method.
  • the particles (A1) or the structure ( ⁇ ), the particles (A2), and the precursor of the carbonaceous material (A3) are mixed, and the resulting mixture is heat-treated to convert the precursor into a carbonaceous material Complex (A) can be obtained by the method including the step of A3).
  • the mixture of the particles (A1) or the structure ( ⁇ ), the particles (A2), and the precursor of the carbonaceous material (A3) melts, for example, pitch which is one of the precursors of the carbonaceous material (A3)
  • pitch which is one of the precursors of the carbonaceous material (A3)
  • the means of grinding mainly by impact and shear such as a pin mill and a rotary cutter mill, tends to transmit shear force preferentially to large particle size particles and less to small particle size particles.
  • Such an apparatus can be used to grind or mix the particles (A1) or the structure ( ⁇ ) without promoting oxidation.
  • the non-oxidizing atmosphere an atmosphere filled with an inert gas such as argon gas or nitrogen gas can be mentioned.
  • the heat treatment for converting the carbonaceous material (A3) precursor to the carbonaceous material (A3) is preferably 200 ° C. or more and 2000 ° C. or less, more preferably 500 ° C. or more and 1500 ° C. or less, particularly preferably 600 ° C. or more and 1200 ° C. or less At a temperature of By this heat treatment, the carbonaceous material (A3) covers the structural body ( ⁇ ) and / or the particles (A2), and the carbonaceous material (A3) is between the particles (A1) or the structural body ( ⁇ ) Between the particles (A2) and between the particles (A1) and the particles (A2) or between the structure ( ⁇ ) and the particles (A2) to form a connected form it can.
  • the heat treatment is preferably performed in a non-oxidative atmosphere.
  • a non-oxidative atmosphere an atmosphere filled with an inert gas such as argon gas or nitrogen gas can be mentioned.
  • an inert gas such as argon gas or nitrogen gas
  • a crushing method a pulperizer using an impact force such as a hammer, a jet mill using a collision of objects to be crushed and the like are preferable.
  • a material containing the composite (A) and carbon for the purpose of improving battery performance as the negative electrode material for lithium ion secondary batteries and for the purpose of adjusting the capacity of the negative electrode material for lithium ion secondary batteries May be mixed.
  • a plurality of types of materials containing carbon to be mixed may be used.
  • As a material containing carbon graphite having a high capacity is preferable.
  • the graphite can be selected from natural graphite and artificial graphite.
  • the material containing carbon for adjusting the volume may be mixed with the composite (A) in advance, and additives such as a binder, a solvent, and a conductive additive may be added thereto to prepare a negative electrode paste.
  • the negative electrode paste may be prepared by simultaneously mixing the composite (A), a material containing carbon, a binder, a solvent, an additive such as a solvent, a conductive additive, and the like. The order and method of mixing may be appropriately determined in consideration of powder handling and the like.
  • the paste for an anode according to one embodiment of the present invention contains the above-mentioned anode material, a binder, a solvent, and, if necessary, an additive such as a conductive aid.
  • This negative electrode paste can be obtained, for example, by kneading the negative electrode material, the binder, the solvent, and the conductive auxiliary agent as needed.
  • the negative electrode paste can be formed into a sheet, a pellet, or the like.
  • Examples of the material used as the binder include polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, acrylic rubber, and a polymer compound having a large ion conductivity.
  • Examples of the polymer compound having large ion conductivity include polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphasphazen, polyacrylonitrile and the like.
  • the amount of the binder is preferably 0.5 parts by mass to 100 parts by mass with respect to 100 parts by mass of the negative electrode material.
  • the conductive aid is not particularly limited as long as it plays the role of imparting conductivity and electrode stability (buffering action against volume change in insertion and detachment of lithium ions) to the electrode.
  • carbon nanotubes, carbon nanofibers, vapor-grown carbon fibers for example, “VGCF (registered trademark)” manufactured by Showa Denko KK
  • conductive carbon for example, “Denka Black (registered trademark)” Electric Chemical Industry Co., Ltd.
  • the amount of the conductive additive is preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the negative electrode material.
  • the solvent is not particularly limited, and N-methyl-2-pyrrolidone, dimethylformamide, isopropanol, water and the like can be used.
  • the binder which uses water as a solvent it is preferable to use a thickener together.
  • the amount of the solvent may be adjusted to have a viscosity such that the paste can be easily applied to the current collector.
  • Negative electrode sheet The negative electrode sheet which concerns on one Embodiment of this invention has an electrode layer which coat
  • a collector sheet-like things, such as nickel foil, copper foil, nickel mesh, or a copper mesh, are mentioned, for example.
  • the electrode layer contains a binder and the above-mentioned negative electrode material.
  • the electrode layer can be obtained, for example, by applying the above-mentioned paste on a current collector and drying it.
  • the application method of the paste is not particularly limited.
  • the thickness of the electrode layer is preferably 50 to 200 ⁇ m. If the electrode layer is too thick, it may not be possible to accommodate the negative electrode sheet in a standardized battery container. The thickness of the electrode layer can be adjusted by the amount of paste applied.
  • the electrode density of the negative electrode sheet can be calculated as follows. That is, the negative electrode sheet after pressing is punched into a circular shape having a diameter of 16 mm, and its mass and thickness are measured. The mass and thickness of the current collector foil (punched into a circular shape of 16 mm in diameter) separately measured therefrom are subtracted to obtain the mass and thickness of the electrode layer, and the electrode density is calculated based on the values.
  • a lithium ion secondary battery according to an embodiment of the present invention comprises at least one selected from the group consisting of a non-aqueous electrolytic solution and a non-aqueous polymer electrolyte, a positive electrode sheet and the negative electrode sheet.
  • a positive electrode sheet a sheet conventionally used in lithium ion secondary batteries, specifically, a sheet containing a positive electrode active material can be used.
  • the positive electrode active material include LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , LiNi 0.34 Mn 0.33 Co 0.33 O 2 , LiFePO 4 and the like.
  • the non-aqueous electrolytic solution and the non-aqueous polymer electrolyte used for the lithium ion secondary battery are not particularly limited.
  • lithium carbonates such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , CH 3 SO 3 Li, CF 3 SO 3 Li, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, propylene Organic electrolytes dissolved in non-aqueous solvents such as carbonate, butylene carbonate, acetonitrile, propionitrile, dimethoxyethane, tetrahydrofuran, ⁇ -butyrolactone, etc. containing polyethylene oxide, polyacrylonitrile, polyfluorinated bilinidene, polymethyl methacrylate and the like Examples thereof include solid polymer electrolytes containing gel-like polymer electrolytes, polymers having ethylene oxide bonds, and the like.
  • a small amount of a substance that causes a decomposition reaction when charging a lithium ion secondary battery may be added to the electrolytic solution.
  • the substance include vinylene carbonate (VC), biphenyl, propane sultone (PS), fluoroethylene carbonate (FEC), ethylene sultone (ES) and the like.
  • VC vinylene carbonate
  • PS propane sultone
  • FEC fluoroethylene carbonate
  • ES ethylene sultone
  • the lithium ion secondary battery can be provided with a separator between the positive electrode sheet and the negative electrode sheet.
  • a separator for example, non-woven fabric mainly made of polyolefin such as polyethylene and polypropylene, cloth, microporous film, or a combination thereof can be mentioned.
  • Lithium-ion secondary batteries are used to power electronic devices such as mobile phones, personal computers and personal digital assistants; power sources for electric drills, electric vacuum cleaners and electric motors such as electric cars; fuel cells, solar power, wind power, etc. It can be used for storage of stored power.
  • the present invention will be described in more detail by way of Examples and Comparative Examples. Note that these are merely illustrative for the purpose of illustration, and the present invention is in no way limited thereto.
  • the average particle diameter d AV of the primary particles of the particles (A1), the thickness of the amorphous carbon coating layer (A1C), and the (002) plane of the artificial graphite particles by X-ray diffraction method FWHM of (111) plane diffraction peak of C-axis direction of the thickness L C and Si particles having an average spacing d 002 and crystallite (A1), R value in Raman spectrum is performed to "the invention herein It measures by the method described in "form". Moreover, the measurement of other physical properties and battery evaluation were performed as follows.
  • the resulting (004) intensity ratio becomes orientation index from the peak intensity I 110 between the peak intensity I 004 (110) plane of the surface was calculated I 110 / I 004.
  • the peak of each surface selected the thing of the largest intensity among the following ranges as each peak. (004) plane: 54.0 to 55.0 deg, (110) plane: 76.5 to 78.0 deg.
  • Specific surface area Specific surface area / pore distribution measurement device (Quantam Chrome Instruments, NOVA 4200e), using nitrogen gas as a probe, BET specific surface area according to BET multipoint method with relative pressure of 0.1, 0.2, and 0.3 S BET (m 2 / g) was measured.
  • CMC carboxymethylcellulose
  • CMC1300 carboxymethylcellulose
  • VGCF vapor grown carbon fiber
  • the negative electrode paste was uniformly coated on a copper foil with a thickness of 20 ⁇ m using a doctor blade with a gap of 300 ⁇ m, dried on a hot plate, and then vacuum dried to obtain a negative electrode sheet.
  • the dried electrode was pressed by a uniaxial press at a pressure of 300 MPa to obtain a negative electrode sheet for battery evaluation.
  • the negative electrode sheet evaluates the amount of discharge per mass of active material in the half cell of the counter electrode Li in advance, and the negative electrode with respect to the capacity (Q C ) of the positive electrode sheet
  • the capacity of the negative electrode sheet was finely adjusted so that the ratio of the sheet capacity (Q A ) was a constant value of 1.2.
  • the electrolytic solution was prepared by mixing 1% by mass of vinylene carbonate (VC) and 10 parts of fluoroethylene carbonate (FEC) in a solvent in which ethylene carbonate, ethyl methyl carbonate and diethyl carbonate were mixed in a volume ratio of 3: 5: 2. mixed mass%, a further liquid electrolyte LiPF 6 was dissolved to a concentration of 1 mol / L to this.
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • Charging refers to applying a voltage to the cell
  • discharging refers to an operation that consumes the voltage of the cell.
  • the counter electrode is not Li metal, and a material having a higher redox potential than the negative electrode sheet is applied. Therefore, the negative electrode sheet is treated as a negative electrode. Therefore, in the bipolar laminate full cell, charging means an operation of inserting Li into the negative electrode sheet, and discharging means an operation of releasing Li from the negative electrode operation.
  • the discharge was carried out in CC mode up to 2.7 V with a current value of 0.1C.
  • the third cycle and the fourth cycle of the aging were under the same condition, and the current value in the second and the fifth cycle of the aging was replaced with 0.1 C to 0.2 C.
  • a charge / discharge cycle test was performed by the following method.
  • the charging was performed to a voltage of 4.3 V in the CC mode with a current value of 1 C, and then switched to the discharge in the CV mode, and was performed with a cutoff current value of 0.05 C.
  • Discharge was performed up to 3.0 V in CC mode with a current value of 1C.
  • This charge / discharge operation was performed as one cycle for 20 cycles, and at the 21st cycle, a low rate test was performed in which 1 C of the charge / discharge was replaced with 0.1 C.
  • This 21 cycle test was repeated 24 times for a total of 504 cycles of test.
  • the first discharge capacity in this equation means the first cycle after the end of aging.
  • the thickness of the negative electrode mixture layer after the 504 cycle test The value obtained by subtracting the copper foil thickness of the current collector from the thickness of the negative electrode is referred to as “the thickness of the negative electrode mixture layer after the 504 cycle test”.
  • the thickness of the negative electrode mixture layer as a reference is a copper foil from the average value of 20 points measured on the negative electrode immediately after pressing with a dial gauge.
  • Si fine particles Silicon-containing particles
  • Table 1 Physical properties of Si particles and Si (1) to Si (3) used for the particles (A1) in Examples and Comparative Examples are shown in Table 1.
  • is the true density (2.3 [g / cm 3 as theoretical value) of Si particles
  • S BET is the specific surface area [m 2 / g] measured by the BET method.
  • Si (1) and Si (2) are continuously CVD using acetylene gas as a raw material Method to form a 2 nm thick carbon coating layer (carbon coat) to obtain structure ( ⁇ ) -1 and structure ( ⁇ ) -2 showing the thickness of the carbon coating layer in Table 1 (Table 1) .
  • preparation of a structure ((alpha)) was not performed about Si fine particle Si (3).
  • Pitch Petroleum pitch (softening point 220 ° C.) was used. It was 52 mass% when the residual carbon rate in 1100 degreeC was measured by thermal analysis under nitrogen gas distribution about this petroleum pitch. Further, the QI content of the petroleum pitch measured by the method described in JIS K2425 or a method according to the same was 0.62% by mass, and the TI content was 48.9% by mass.
  • Example 1 After petroleum-based coke is crushed by a bantam mill (manufactured by Hosokawa Micron Corporation), it is further crushed by a jet mill (manufactured by Seishin Enterprise Co., Ltd.) and heat-treated at 3000 ° C. in an Achison furnace to give a D V 50 of 7.5 ⁇ m. Artificial graphite particles (A2) -a having a BET specific surface area of 4.9 m 2 / g were obtained. Next, 16.4 parts by mass of the structure ( ⁇ ) -1 and 15.4 parts by mass of the petroleum pitch (as a mass after carbonizing the petroleum pitch), which is a precursor of the carbonaceous material (A3), are separated. It was charged into a bull flask.
  • Nitrogen gas was circulated to maintain an inert atmosphere, and the temperature was raised to 250 ° C.
  • the mixer was rotated at 500 rpm for agitation to uniformly mix the pitch and the silicon-containing particles. It was cooled and solidified to obtain a mixture.
  • 68.2 parts by mass of the above-mentioned artificial graphite particles which are particles (A2) -a are added to this mixture, charged into a rotary cutter mill, and mixed at a high speed of 25000 rpm and mixed while maintaining an inert atmosphere by flowing nitrogen gas. I did. This was put into a baking furnace, heated to 1100 ° C. at 150 ° C./h under nitrogen gas flow, and held at 1100 ° C.
  • FIG. 1 is a view showing an X-ray diffraction pattern of a composite (negative electrode material for lithium ion secondary battery) according to Example 1.
  • the half width ratios of diffraction peaks obtained by performing X-ray diffraction measurement on this complex (A) -a are shown in Table 3.
  • the half width of the (111) plane diffraction peak is 1, and the ratio of the half width of the (220) plane diffraction peak to the half width of the (311) plane diffraction peak is 1 with respect to this.
  • pulverized petroleum coke in a bantam mill manufactured by Hosokawa Micron Corporation, which was heat-treated at 3000 ° C.
  • BET specific surface area in the D V50 is 12.1 ⁇ m is 2.5 m 2 / g Graphite (1) was obtained. Further, after pulverizing the petroleum coke with a bantam mill (manufactured by Hosokawa Micron Corporation), and further pulverized with a jet mill (Seishin Ltd. company), which was heat-treated at 3000 ° C. the at Acheson furnace, D V50 is 6. Graphite (2) having a BET specific surface area of 6.1 m 2 / g at 7 ⁇ m was obtained.
  • Example 2 A complex (A) -b was obtained in the same manner as in Example 1 except that the structure ( ⁇ ) -1 was replaced with the structure ( ⁇ ) -2 of Table 1. The X-ray diffraction measurement was performed on this complex (A) -b. The half width ratios of the obtained diffraction peaks are shown in Table 3.
  • Comparative Example 1 A complex (A) -c was obtained in the same manner as in Example 1 except that the structure ( ⁇ ) -1 was changed to Si (3) in Table 1. The half width ratios of diffraction peaks obtained by performing X-ray diffraction measurement on this complex (A) -c are shown in Table 3.
  • Example 1 and 2 are compared with Comparative Example 1, as the crystallite size ratio of (220) and (311) faces is closer to 1.00, the negative electrode mixture layer after 500 cycles test It can be seen that the expansion rate is reduced. This indicates that the crystallite size of each crystallite size is more uniform, and the expansion of Si particles is more isotropic. Moreover, compared with Comparative Example 1, Examples 1 and 2 are improved in the 500 cycle full cell capacity retention rate. This is because the expansion coefficient of the negative electrode mixture layer is suppressed after the 500 cycle test, and the side reaction with the electrolytic solution is suppressed.

Abstract

本発明は、一次粒子の平均粒子径dAVが5nm以上95nm以下であるSiを含む粒子(A1)と、黒鉛を含む物質からなる粒子(A2)と、炭素質材料(A3)とを含む複合体(A)を含むリチウムイオン二次電池用負極材であって、前記複合体(A)のX線回折測定における前記粒子(A1)の(111)面回折ピークの半値幅に対する(220)面回折ピークの半値幅の比、及び(111)面回折ピークの半値幅に対する(311)面回折ピークの半値幅の比が、共に1.40以下であるリチウムイオン二次電池用負極材、負極シート及びリチウムイオン二次電池に関する。本発明の負極材によれば、Si粒子を小さくしつつ結晶子サイズを小さくすることにより、電極膨張率が小さく電池寿命が長いリチウムイオン二次電池を得ることができる。

Description

リチウムイオン二次電池用負極材
 本発明はリチウムイオン二次電池用負極材に関する。
 電子部品の省電力化を上回る速さで携帯電子機器の多機能化が進み、携帯電子機器の消費電力が増加している。そのため、携帯電子機器の主電源であるリチウムイオン二次電池の高容量化及び小型化が今まで以上に強く求められている。また、電気自動車の需要が伸び、それに使われるリチウムイオン二次電池にも高容量化が強く求められている。
 このような要求に応えるために、珪素(Si)粒子と炭素材料とを複合化した負極用材料が提案されている。しかし、Si粒子と炭素材料の複合材料を用いたリチウムイオン二次電池は、高容量ではあるがSi特有の充電放電時の体積変化により大きく劣化する。これに対応するため、Siのナノ粒子化、Siへのコート材の適用、Siへの異種金属ドープなど種々の対応がとられ、これら対応により高容量を維持しつつサイクル寿命は改善されつつある。
 しかし、Siナノ粒子を小さくしても、結晶子が大きいと、Siナノ粒子の膨張が異方的となり、Si含有負極電極全体の膨張率は増大してしまう。また、仮に膨張率を抑える観点で適切なSi結晶子サイズを有するSi粒子を提供できても、十分な導電性が得られなければ、また電解液との副反応を抑制するコート材がなければ、長期寿命を有する電池は実現できない。
 そこで、Si粒子の結晶子サイズを小さくする試みがいくつかなされている。例えば、特許文献1は、放電時にリチウムイオンの移動が伴う蓄電デバイス用Si系合金からなる負極材料であって、前記Si系合金からなる負極材料がSiからなるSi主要相とSiとSi以外の1種以上の元素とからなる化合物相を有し、前記化合物相がSiとCuからなる相を含んでなる相を有し、前記Si主要相のSi結晶子サイズが30nm以下であり、かつSiとCuからなる化合物相の結晶子サイズが40nm以下である蓄電デバイス用Si系合金からなる負極材料を開示している。
 特許文献2は、主としてリチウムイオン二次電池用の負極活物質として使用するシリコンであって、粉末エックス線回折による結晶子サイズが1~200nmであり、レーザー法による平均粒径が0.1~5μmであり、さらにBET法による比表面積が10m2/g以上であるシリコン微細粒子を開示している。
特開第2014-160554号公報 特開第2016-15299号公報
 特許文献1の発明は結晶性サイズの低減を図っているものの、どの面の結晶面に注目しているかが不明であり、またSi粒径についても記載されていない。
 特許文献2の発明は特許文献1に比べると許容できるSi結晶子サイズが大きすぎ、膨張抑制につながらない可能性がある。また、Siの結晶子サイズが特許文献1と同じ30nm以下であるとしても、Si単体で負極材を形成している点や、Si粒径が0.1μm以上である点は、負極の膨張抑制、電池寿命改善の手法としては不利である。
 本発明の課題は、使用に伴う電極膨張率が小さく寿命が長いリチウムイオン二次電池のための負極材を提供することにある。
 本発明は、以下の態様を包含する。
[1]一次粒子の平均粒子径dAVが5nm以上95nm以下であるSiを含む粒子(A1)と、黒鉛を含む物質からなる粒子(A2)と、炭素質材料(A3)とを含む複合体(A)を含むリチウムイオン二次電池用負極材であって、前記複合体(A)のX線回折測定における前記粒子(A1)の(111)面回折ピークの半値幅に対する(220)面回折ピークの半値幅の比、及び(111)面回折ピークの半値幅に対する(311)面回折ピークの半値幅の比が、共に1.40以下であることを特徴とするリチウムイオン二次電池用負極材。
[2]粒子(A1)を被覆する厚さ1nm以上20nm以下の非晶質炭素被覆層(A1C)を含む前項1に記載のリチウムイオンで二次電池用負極材。
[3]前記粒子(A2)は、体積基準累積粒度分布における50%粒子径DV50が2.0μm以上20.0μm以下であり、BET比表面積(SBET)が1.0m2/g以上10.0m2/g以下である前項1または2に記載のリチウムイオン二次電池用負極材。
[4]前記粒子(A2)は、粉末X線回折法による黒鉛結晶の(110)面のピーク強度I110と(004)面のピーク強度I004の比I110/I004が0.10以上0.35以下であり、粉末X線回折法による(002)面の平均面間隔d002が0.3360nm以下であり、窒素ガス吸着法によって測定される直径0.4μm以下の細孔の全細孔容積が5.0μL/g以上40.0μL/g以下である黒鉛粒子である前項1~3のいずれか1項に記載のリチウム二次イオン電池用負極材。
[5]前記複合体(A)中の前記粒子(A1)の含有率が10質量%以上70質量%以下である前項1~4のいずれか1項に記載のリチウムイオン二次電池用負極材。
[6]シート状集電体及び該集電体を被覆する負極層を有し、前記負極層はバインダー、導電助剤及び前項1~5のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極シート。
[7]前項6に記載の負極シートを有するリチウムイオン二次電池。
 本発明によれば、使用に伴う電極膨張率が小さく寿命が長いリチウムイオン二次電池のための負極材を提供することができる。
実施例1に係る複合材(リチウムイオン二次電池用負極材)のXRDパターンを示す図である。
 本発明の一実施形態に係るリチウムイオン二次電池用負極材は、粒子(A1)と非晶質炭素被覆層(A1C)と粒子(A2)と炭素質材料(A3)とを含む複合体(A)を含む。
(1)粒子(A1)
 本発明の一実施形態に用いられる粒子(A1)は、リチウムイオンを吸蔵・放出可能なSiを主成分とする。Siの含有率は好ましくは90質量%以上であり、より好ましくは95質量%以上である。粒子(A1)はSi単体またはSi元素を含む化合物、混合体、共融体または固溶体からなるものでもよい。また、粒子(A2)及び炭素質材料(A3)との複合化前の粒子(A1)は複数の微粒子が凝集したもの、すなわち二次粒子化したものでもよい。粒子(A1)の形状としては、塊状、鱗片状、球状、繊維状などを挙げることができる。これらのうち、球状または塊状が好ましい。
 Si元素を含む物質としては、Si単体、またはSiとLi以外の元素Mとを含む一般式:M(=Ma+Mb+Mc+Md・・・)mSiで表される物質を挙げることができる。該物質はSi1モルに対してmモルとなる比で元素Mを含む化合物、混合体、共融体または固溶体である。
 Li以外の元素である元素Mの具体例としては、B、C、N、O、S、P、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mo、Ru、Rh、Pd、Pt、Be、Nb、Nd、Ce、W、Ta、Ag、Au、Cd、Ga、In、Sb、Baなどを挙げることができる。式中、mは好ましくは0.01以上、より好ましくは0.10以上、さらに好ましくは0.30以上である。
 Si元素を含む物質の具体例としては、Si単体、Siとアルカリ土類金属との合金;Siと遷移金属との合金;Siと半金属との合金;Siと、Be、Ag、Al、Au、Cd、Ga、In、SbまたはZnとの固溶性合金または共融性合金;CaSi、CaSi2、Mg2Si、BaSi2、Cu5Si、FeSi、FeSi2、CoSi2、Ni2Si、NiSi2、MnSi、MnSi2、MoSi2、CrSi2、Cr3Si、TiSi2、Ti5Si3、NbSi2、NdSi2、CeSi2、WSi2、W5Si3、TaSi2、Ta5Si3、PtSi、V3Si、VSi2、PdSi、RuSi、RhSiなどのケイ化物;SiO2、SiC、Si34などを挙げることができる。
 粒子(A1)は、一次粒子の平均粒子径dAVの下限値が5nmであり、好ましくは10nm、より好ましくは35nmである。また、一次粒子のdAVの上限値は95nmであり、好ましくは70nmである。粒子(A1)の一次粒子のdAVが95nmより大きくなると、充放電により粒子(A1)が体積膨張収縮して粒子(A1)を含む複合体(A)の構造に与える影響が大きくなり、容量維持率が低下する。また、一次粒子のdAVが5nmより小さくなると粒子(A1)の比表面積が増え、副反応量が増大する。
 平均粒子径dAV[nm]は、
  dAV[nm]=6×103/(ρ×SBET
により定義される。ここでρ[g/cm3]はSi粒子の真密度であり、理論値の2.3[g/cm3]を採用した。SBET[m2/g]はN2ガスを吸着ガスとするBET法により測定した比表面積である。
 粒子(A1)は、その表面が薄い非晶質炭素被覆層(A1C)により被覆されていることが好ましい。粒子(A1)が非晶質炭素被覆層(A1C)で被覆されている場合、非晶質炭素被覆層(A1C)の厚さの上限値は20nmであり、好ましくは10nm、より好ましくは5nmである。電解液と非晶質炭素被覆層(A1C)との副反応を抑制するためである。粒子(A1)が非晶質炭素被覆層(A1C)で被覆されている場合、非晶質炭素被覆層(A1C)の厚さの下限値は1nmであり、好ましくは2nmであり、より好ましくは3nmである。粒子(A1)の酸化と粒子(A1)同士の凝集が抑制されるためである。また、非晶質炭素被覆層(A1C)よりも電解液との副反応が多く進行する粒子(A1)が、非晶質炭素被覆層(A1C)により被覆されているので、初期クーロン効率が大幅に向上する。また、副反応が抑えられることにより、フルオロエチレンカーボネート(FEC)等の電解液消費量を抑えることができる。
 非晶質炭素被覆層(A1C)の厚さは透過型電子顕微鏡(TEM)による観察で撮影した画像において膜厚を計測することにより求めることができる。具体的なTEMによる観察の一例を以下に示す。
 装置:日立製作所製 H9500、
 加速電圧:300kV。
 サンプル作製:エタノール中に試料を少量採取し超音波照射により分散させた後、マイクログリッド観察用メッシュ(支持膜無し)に載せて観察用試料とする。
 観察倍率:5万倍(粒子形状観察時)及び40万倍(非晶質炭素層の厚さ観察時)
 粒子(A1)が非晶質炭素被覆層(A1C)で被覆されている場合は、粒子(A1)とこれを覆う非晶質炭素被覆層(A1C)からなるコア・シェル構造体(以降、構造体(α)と呼ぶ。)は、BET比表面積が好ましくは25m2/g以上70m2/g以下、より好ましくは52m2/g以上67m2/g以下である。また、一次粒子の密度は2.2g/cm3以上である。構造体(α)のBET比表面積(SBET)が25m2/g以上であると、構造体(α)の粒径が大きくなりすぎず、構造体(α)固体内の電子移動経路とLiイオン拡散経路が長くなることはない。つまり、充放電時の抵抗が低く保たれる。さらに、構造体(α)1粒子あたりの膨張量の絶対値も大きくならず、構造体(α)周囲の複合体(A)の構造が破壊される可能性は低い。また、構造体(α)の密度が2.2g/cm3以上であれば、体積エネルギー密度の点からも優位性がある。
 複合体(A)中の粒子(A1)の含有率は、好ましくは2質量%以上95質量%以下、より好ましくは5質量%以上80質量%以下、さらに好ましくは10質量%以上70質量%以下である。粒子(A1)の含有率が95質量%以下の場合は、電気抵抗を低く抑えることができる。粒子(A1)の含有率が2質量%以上の場合は、体積または質量エネルギー密度の点で優位性が保たれる。
 粒子(A1)と非晶質炭素被覆層(A1C)からなる構造体(α)は固相法、液相法、気相法のいずれでも作製可能であるが、気相法が好ましい。特にモノシランのような気相Si原料からCVD法でSi粒子を作製し、その後アセチレンやエチレンのような炭素原料を用いてCVD法で均一な非晶質炭素被覆層(A1C)を作製する方法などが好ましい。
(2)粒子(A2)
 本発明の好ましい実施態様における粒子(A2)に含まれる黒鉛粒子は人造黒鉛粒子であることが好ましい。光学組織の大きさ及び形状が特定の範囲にあり、適切な黒鉛化度を有する人造黒鉛粒子により、つぶれ特性と電池特性が共に優れた電極材料を得ることができる。
 本明細書においてDV50とはレーザー回折式粒度分布計により測定される体積基準粒度分布における50%粒子径を表し、粒子の外見上の径を示す。
 本発明の好ましい実施態様における粒子(A2)に含まれる黒鉛粒子の体積基準累積粒度分布における50%粒子径DV50は、好ましくは2.0μm以上20.0μm以下、より好ましくは5.0μm以上18.0μm以下である。DV50が2.0μm以上であれば、粉砕時に特殊な機器により粉砕する必要がなく、エネルギーも節約できる。また、凝集が起こりにくいため、塗工時のハンドリング性もよい。さらに、比表面積が過度に大きくなることがないため、初期充放電効率の低下も起こらない。一方、DV50が20.0μm以下であれば、負極材中のリチウム拡散にも時間がかからないため、入出力特性が良好である。また、黒鉛粒子の表面にケイ素含有粒子が均一に複合化することから、良好なサイクル特性が得られる。
 本発明の好ましい実施態様における粒子(A2)に含まれる黒鉛粒子は、N2ガス吸着法によるBET比表面積が1.0m2/g以上10.0m2/g以下が好ましく、3.0m2/g以上7.5m2/g以下がより好ましい。黒鉛粒子のBET比表面積が上記の範囲にあると、負極材として不可逆な副反応を抑制しつつ電解液と接触する面積を大きく確保できるため、入出力特性が向上する。
 本発明の好ましい実施態様における粒子(A2)に含まれる人造黒鉛粒子は、粉末X線回折法により得られる回折ピークプロファイルにおいて黒鉛結晶の(110)面のピーク強度I110と(004)面のピーク強度I004の比I110/I004が0.10以上0.35以下であることが好ましい。前記の比は、より好ましくは0.18以上0.30以下であり、より一層好ましくは0.21以上0.30以下である。前記の比が0.10以上であれば配向性が高過ぎず、負極材中のSiや黒鉛へのリチウムイオンの挿入・脱離(吸蔵・放出)に伴う膨張収縮により、電極の集電体面に対して垂直方向への電極膨張が起こることがなく、良好なサイクル寿命が得られる。また黒鉛の炭素網面が電極面と平行にならないためLiの挿入が起こり易く、良好な急速充放電特性が得られる。前記の比が0.35以下であれば配向性が低すぎず、その負極材を用いた電極作製時のプレスを行う際に電極密度が上がり易くなる。
 本発明の好ましい実施態様における粒子(A2)に含まれる人造黒鉛粒子は、粉末X線回折法による(002)面の平均面間隔d002が0.3360nm以下であることが好ましい。これにより負極材中の人造黒鉛粒子自身も質量あたりのリチウム挿入、脱離量が多く、すなわち負極材としても質量エネルギー密度が高くなる。また、負極材としてのSiへのリチウム挿入、脱離に伴う膨張収縮を緩和しやすくなりサイクル寿命が良くなる。
 人造黒鉛粒子の結晶子のC軸方向の厚みLcとしては50nm以上1000nm以下が、質量エネルギー密度やつぶれ性の観点から好ましい。
 本明細書において、d002及びLcは、既知の方法により粉末X線回折(XRD)法を用いて測定することができる(稲垣道夫、「炭素」、1963、No.36、25-34頁;Iwashita et al.,Carbon vol.42(2004),p.701-714)。
 本発明の好ましい実施態様における粒子(A2)に含まれる人造黒鉛粒子は、液体窒素冷却下における窒素ガス吸着BET法による直径0.4μm以下の細孔の全細孔容積が5.0μL/g以上40.0μL/g以下であることが好ましい。さらに好ましくは25.0μL/g以上40.0μL/g以下である。全細孔容積が5.0μL/g以上の人造黒鉛粒子は粒子(A1)と炭素質材料(A3)との複合化がされやすく、サイクル容量維持率の改善の点で好ましい。X線回折法で測定されるLcが100nm以上の炭素材料において、前記全細孔容積が40.0μL/g以下であると、充放電時の黒鉛層の異方的な膨張収縮に起因する構造の不可逆変化が起こりにくく、負極材としてのサイクル特性もさらに向上する。また、人造黒鉛粒子の全細孔容積がこの範囲のとき、その負極材を活物質として用いた際に電解液が浸透しやすくなるので急速充放電特性の点でも好ましい。
 本発明の好ましい実施態様における粒子(A2)に含まれる人造黒鉛粒子は、ラマン分光スペクトルで測定される1300~1400cm-1の範囲にある非晶質成分由来のピークの強度IDと1580~1620cm-1の範囲にある黒鉛成分由来のピークの強度IGとの比ID/IG(R値)が0.04以上0.18以下であることが好ましく、0.08以上0.16以下であることがさらに好ましい。R値が0.04以上であれば黒鉛の結晶性が高過ぎず、良好な急速充放電特性が得られる。R値が0.18以下であれば欠陥の存在により充放電時に副反応が生じることなく、良好なサイクル特性が得られる。
 ラマンスペクトルは、例えばレーザラマン分光光度計(日本分光株式会社製、NRS-5100)を用いて、付属の顕微鏡で観察することによって測定することができる。
(3)粒子(A2)の製造方法
 本発明の一実施形態に係る粒子(A2)に含まれる黒鉛粒子は、熱履歴が1000℃以下のコークスを粉砕した粒子を加熱することにより製造することができる。
 コークスの原料としては、例えば、石油ピッチ、石炭ピッチ、石炭ピッチコークス、石油コークス及びこれらの混合物を用いることができる。すなわち、粒子(A2)に含まれる黒鉛粒子としては、石油系コークス及び/または石炭系コークス由来の物質を用いることが好ましい。これらの中でも、特定の条件下でディレイドコーキングを行ったものが望ましい。
 ディレイドコーカーに通す原料としては、原油精製時の重質溜分に対して、流動床接触分解を行った後に触媒を除去したデカントオイルや、瀝青炭等から抽出されたコールタールを200℃以上の温度で蒸留し、得られたタールを100℃以上に昇温することによって十分に流動性を持たせたものが挙げられる。ディレイドコーキングプロセス中、少なくともドラム内入り口においては、これらの液体が450℃以上、さらには500℃、よりさらには510℃以上に昇温されていることが好ましく、それにより後工程での熱処理時に残炭率が高くなり、収率が向上する。また、ドラム内での圧力は好ましくは常圧以上、より好ましくは300kPa以上、さらに好ましくは400kPa以上に維持する。これにより負極としての容量がより高まる。以上の通り、通常よりも過酷な条件においてコーキングを行うことにより、液体をより反応させ、より重合度の高いコークスを得ることができる。
 得られたコークスをドラム内からジェット水流により切り出し、得られた塊を5cm程度まで金槌等で粗粉砕する。粗粉砕には、二軸ロールクラッシャーやジョークラッシャーを用いることもできるが、好ましくは1mm篩上が90質量%以上となるように粉砕する。上記のように粉砕を行うことにより、以降の加熱の工程等において、乾燥後、コークス粉が舞い上がったり、焼損が増えるなどの不都合を防ぐことができる。
 次にコークスを粉砕する。
 乾式で粉砕を行う場合、粉砕時にコークスに水が含まれていると粉砕性が著しく低下するので、100~1000℃程度で予め乾燥させることが好ましい。より好ましくは100~500℃である。コークスが高い熱履歴を有していると圧砕強度が強くなり粉砕性が悪くなり、また結晶の異方性が発達してしまうので劈開性が強くなり鱗片状の粉末になり易くなる。粉砕する手法に特に制限はなく、公知のジェットミル、ハンマーミル、ローラーミル、ピンミル、振動ミル等が用いて行うことができる。
 粉砕は、DV50が2.0μm以上20.0μm以下となるように行うことが好ましく、5.0μm以上18.0μm以下がより好ましい。
 黒鉛化は、不活性雰囲気(例えば、窒素ガスやアルゴンガス雰囲気)下で、好ましくは2400℃以上、より好ましくは2800℃以上、より一層好ましくは3050℃以上、さらに好ましくは3150℃以上の温度で行う。より高い温度で処理すると、より黒鉛結晶が成長し、リチウムイオンをより高容量で蓄えることが可能な電極を得ることができる。一方、温度が高過ぎると黒鉛粉の昇華を防ぐことが困難であり、必要とされるエネルギーも大きくなるため、黒鉛化温度は3600℃以下であることが好ましい。
 これらの温度を達成するためには電気エネルギーを用いることが好ましい。電気エネルギーは他の熱源と比べると高価であり、特に2000℃以上を達成するためには、極めて大きな電力を消費する。そのため、黒鉛化以外に電気エネルギーは消費されない方が好ましい。黒鉛化に先んじて炭素原料は焼成され、有機揮発分が除去された状態、すなわち固定炭素分が95%以上、より好ましくは98%以上、さらに好ましくは99%以上となっていることが好ましい。この焼成は例えば700~1500℃で加熱することにより行うことができる。焼成により黒鉛化時の質量減少が低減するため、黒鉛化処理装置で一度の処理量を高めることができる。
 黒鉛化後は粉砕処理を行わないことが好ましい。ただし、黒鉛化後に粒子が粉砕しない程度に解砕することはできる。
 黒鉛粒子を活物質として用いて電極を作製すると、電極圧縮時に電極内部で活物質が均一に分布しやすくなり、また隣接する粒子との接触も安定し、よって繰り返し充放電に一層優れた電池とすることができる。
(4)炭素質材料(A3)
 本発明の好ましい実施態様における炭素質材料(A3)は、粒子(A2)とは異なるものであって、炭素原子により形成される結晶の発達が低い炭素材料であり、ラマン散乱分光法によるラマンスペクトルにおいて1360cm-1近傍にピークを持つ。また、炭素質材料(A3)は非晶質炭素被覆層(A1C)と同一であっても良い。
 炭素質材料(A3)は、例えば、炭素前駆体を炭素化することによって製造することができる。前記炭素前駆体は、特に限定されないが、熱重質油、熱分解油、ストレートアスファルト、ブローンアスファルト、エチレン製造時に副生するタールまたは石油ピッチなどの石油由来物質、石炭乾留時に生成するコールタール、コールタールの低沸点成分を蒸留除去した重質成分、コールタールピッチ(石炭ピッチ)などの石炭由来物質が好ましく、特に石油系ピッチまたは石炭系ピッチが好ましい。ピッチは複数の多環芳香族化合物の混合物である。ピッチを用いると、高い炭素化率で、不純物の少ない炭素質材料(A3)を製造できる。ピッチは酸素含有率が少ないので、粒子(A1)を炭素質材料で被覆する際に、粒子(A1)が酸化されにくい。
 炭素質材料(A3)の前駆体としてのピッチは、軟化点が、好ましくは80℃以上300℃以下である。ピッチの軟化点が80℃以上であれば、それを構成する多環芳香族化合物の平均分子量が小さ過ぎず、かつ揮発分も比較的少ないため、炭素化率の低下、製造コストの上昇、さらに細孔を多く含んだ比表面積の大きい炭素質材料(A3)が得られやすいといった問題は生じない。ピッチの軟化点が300℃以下であれば、粘度が高過ぎることがないため、粒子(A1)と均一に混ぜ合わせることができる。ピッチの軟化点はASTM-D3104-77に記載のメトラー法で測定することができる。
 炭素質材料(A3)の前駆体としてのピッチは、残炭率が好ましくは20質量%以上70質量%以下、より好ましくは25質量%以上60質量%以下である。ピッチの残炭率が20質量%以上であれば、製造コストの上昇や、比表面積の大きい炭素質材料が得られるといった問題は生じない。ピッチの残炭率が70質量%以下であれば、粘度が高過ぎることがないため、粒子(A1)と均一に混合することができる。
 残炭率は以下の方法で決定される。固体状のピッチを乳鉢等で粉砕し、粉砕物を窒素ガス流通下で質量熱分析する。1100℃における質量の仕込み質量に対する割合を残炭率と定義する。
 本発明に用いられるピッチは、QI(キノリン不溶分)含量が、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下である。ピッチのQI含量はフリーカーボン量に対応する値である。フリーカーボンを多く含むピッチを熱処理すると、メソフェーズ球体が出現してくる過程で、フリーカーボンが球体表面に付着し三次元ネットワークを形成して、球体の成長を妨げるため、モザイク状の組織となりやすい。一方、フリーカーボンが少ないピッチを熱処理すると、メソフェーズ球体が大きく成長してニードルコークスを生成しやすい。QI含量が上記の範囲にあることにより、電極特性が一層良好になる。
 また、本発明に用いられるピッチは、TI(トルエン不溶分)含量が、好ましくは10質量%以上70質量%以下である。TI含量が低いピッチは、それを構成する多環芳香族化合物の平均分子量が小さく、揮発分が多いので、炭素化率が低くなり製造コストが上昇し、細孔を多く含んだ比表面積が大きい炭素質材料が得られやすい。TI含量が高いピッチは、それを構成する多環芳香族化合物の平均分子量が大きいので炭素化率が高くなるが、TI含量の高いピッチは粘度が高いので、粒子(A1)と均一に混合させ難い傾向がある。TI含量が上記範囲にあることによりピッチとその他の成分とを均一に混合でき、かつ、電池用活物質として好適な特性を示す負極材を得ることができる。
 本発明に用いられるピッチのQI含量及びTI含量はJIS K2425に記載されている方法またはそれに準じた方法により測定することができる。
 前記の粒子(A1)、粒子(A2)及び炭素質材料(A3)の合計質量に対する炭素質材料(A3)の質量割合は好ましくは2質量%以上40質量%以下であり、より好ましくは4質量%以上30質量%以下である。
 炭素質材料(A3)の割合が2質量%以上であれば、粒子(A1)と粒子(A2)の十分な結合が得られ、また、粒子(A1)の表面を炭素質材料(A3)で覆うことが可能となるため、粒子(A1)に導電性が付与され易くなり、粒子(A1)の表面反応性を抑制する効果や膨張収縮を緩和する効果が得られ、良好なサイクル特性が得られる。一方、炭素質材料(A3)の割合が40質量%以下であれば、炭素質材料(A3)の割合が高くても初期効率が低くなることはない。
(5)複合体(A)
 本発明の一実施形態に係る複合体(A)は、粒子(A1)または構造体(α)(粒子(A1)が非晶質炭素被覆層(A1C)で被覆されている場合)と、粒子(A2)と、炭素質材料(A3)とを含み、粒子(A1)または構造体(α)と粒子(A2)と炭素質材料(A3)とは少なくともその一部が互いに複合化していることが好ましい。複合化とは、例えば、粒子(A1)または構造体(α)と粒子(A2)とが炭素質材料(A3)により固定されて結合している状態、あるいは粒子(A1)または構造体(α)及び/または粒子(A2)が炭素質材料(A3)により被覆されている状態を挙げることができる。本発明においては粒子(A1)または構造体(α)が炭素質材料(A3)によって完全に被覆され、粒子(A1)または構造体(α)の表面が露出していない状態となっていることが好ましく、その中でも粒子(A1)または構造体(α)と、粒子(A2)とが炭素質材料(A3)を介して連結し、その全体が炭素質材料(A3)により被覆されている状態、及び構造体(α)と粒子(A2)とが直接接触し、その全体が炭素質材料(A3)により被覆されている状態が好ましい。
 負極材として電池に用いた際に、粒子(A1)または構造体(α)の表面が露出しないことにより電解液分解反応が抑制されクーロン効率を高く維持することができ、炭素質材料(A3)を介して、粒子(A2)、及び粒子(A1)または構造体(α)が連結することによりそれぞれの間の導電性を高めることができ、粒子(A1)または構造体(α)が炭素質材料(A3)により被覆されることによりその膨張及び収縮に伴う体積変化を緩衝することができる。
 本発明の一実施形態に係る複合体(A)には、複合化されていない、粒子(A2)、炭素質材料(A3)、粒子(A1)または構造体(α)が単独で含まれていてもよい。複合化されずに単独で含まれている粒子(A2)、炭素質材料(A3)、粒子(A1)または構造体(α)の量は少ない方が好ましく、具体的には、複合体(A)の質量に対して、好ましくは10質量%以下である。
 本発明の一実施形態に係る複合体(A)のDV50は2.0μm以上20.0μm以下が好ましい。より好ましくは2.0μm以上18.0μm以下である。DV50が2.0μm以上であれば、経済性のよい製造が可能である。また、電極密度を上げることにも困難はない。さらに、比表面積が過度に大きくならないため、電解液との副反応による初期充放電効率の低下も起こらない。また、DV50が20.0μm以下であれば、良好な入出力特性とサイクル特性が得られる。
 本発明の一実施形態に係る複合体(A)のBET比表面積(SBET)は1.0m2/g以上10.0m2/g以下が好ましい。より好ましくは1.0m2/g以上5.0m2/g以下である。BET比表面積(SBET)が1.0m2/g以上であれば、入出力特性が低下することなく、電極中での均一分布性が維持され、良好なサイクル特性が得られる。BET比表面積(SBET)が10.0m2/g以下であれば、塗工性が低下することなくハンドリング性が良好である。また、電極作製にバインダーを多く必要とすることもなく、電極密度を上げやすく、電解液との副反応による初期充放電効率の低下を抑制できる。
 本発明の一実施形態に係る複合体(A)は、X線回折測定おける粒子(A1)の(111)面回折ピーク(28.0°≦2θ≦29.0°に現れるピーク)の半値幅の大きさを1としたとき、(220)面の回折ピーク(46.8°≦2θ≦47.8°に現れるピーク)及び(311)面の回折ピーク(55.6°≦2θ≦56.6°に現れるピーク)の半値幅の大きさが共に好ましくは1.50以下、より好ましくは1.40以下である。(220)及び(311)面回折ピークの半値幅比が共に1.50を超えると、粒子(A1)の膨張がより異方的になり、電極膨張率が増大する。
 本発明の一実施形態に係る複合体(A)は、顕微ラマン分光測定器で粒子端面を測定して得られたラマン分光スペクトルにおいて、1300~1400cm-1の範囲にあるピークのピーク強度IDと1580~1620cm-1の範囲にあるピークのピーク強度IGとの比ID/IG(R値)が0.15以上1.0以下であることが好ましい。より好ましくは、0.2以上1.0以下、より一層好ましくは0.4以上1.0以下である。R値が小さ過ぎることは、粒子(A2)の表面が一定量露出していることを表す。よって、R値が0.15以上であれば、粒子(A2)と粒子(A1)が炭素質材料(A3)で覆われており、粒子(A1)の表面反応性を抑制する効果や膨張収縮を緩和する効果が高くなるために良好なサイクル特性が得られる。一方、R値が大きすぎることは、初期不可逆容量の大きな非晶質炭素を多量に含む炭素質材料(A3)が粒子(A2)の表面を覆っていることを表す。よって、R値が1.0以下であれば、初期放電効率の低下が抑えられる。
(6)複合体(A)の製造方法
 本発明の一実施形態に係る複合体(A)は、公知の方法に従って製造することができる。
 例えば、粒子(A1)または構造体(α)と、粒子(A2)と、炭素質材料(A3)の前駆体とを混ぜ合わせ、得られた混合物を熱処理して前記前駆体を炭素質材料(A3)とすることを含む方法によって複合体(A)を得ることができる。
 粒子(A1)または構造体(α)と、粒子(A2)と、炭素質材料(A3)の前駆体との混合物は、例えば、炭素質材料(A3)前駆体の一つであるピッチを溶融させ、該溶融ピッチと、粒子(A1)または構造体(α)とを不活性雰囲気にて混合し、該混合物を固化させた後に粉砕し、該粉砕物を粒子(A2)と混合することによって;粒子(A1)または構造体(α)と、粒子(A2)とを混合し、次いで、粒子(A1)または構造体(α)、及び粒子(A2)の混合物と炭素質材料(A3)前駆体とを混合してメカノケミカル処理を行うことによって;または炭素質材料(A3)前駆体を溶媒に溶解し、該前駆体溶液に粒子(A1)または構造体(α)と、粒子(A2)とを添加混合し、溶媒を除去して得られた固形物を粉砕することによって;得ることができる。メカノケミカル処理は、例えば、ハイブリダイザー(登録商標、株式会社奈良機械製作所製)などの公知の装置を用いることができる。
 粉砕や混合のために、ボールミル、ジェットミル、ロッドミル、ピンミル、ロータリーカッターミル、ハンマーミル、アトマイザー、乳鉢等の公知の装置・器具を用いることができるが、粒子(A1)または構造体(α)の酸化度合いが高くならないような方法を採用することが好ましい。一般的に酸化は比表面積の大きい小粒径粒子ほど進みやすいと考えられるため、大粒径粒子の粉砕が優先的に進行し、小粒径粒子の粉砕はあまり進まない装置が好ましい。例えば、ロッドミル、ハンマーミルなどのような、主に衝撃によって粉砕する手段は、衝撃力が大粒径粒子に優先的に伝わり、小粒径粒子にはあまり伝わらない傾向がある。ピンミル、ロータリーカッターミルなどのような、主に衝撃とせん断によって粉砕する手段は、せん断力が大粒径粒子に優先的に伝わり、小粒径粒子にはあまり伝わらない傾向がある。このような装置を使用し、粒子(A1)または構造体(α)の酸化を進ませずに、粉砕や混合することができる。
 また、粒子(A1)または構造体(α)の酸化進行を抑えるために、前記の粉砕・混合は非酸化性雰囲気で行うことが好ましい。非酸化性雰囲気としては、アルゴンガス、窒素ガスなどの不活性ガスを充満させた雰囲気が挙げられる。
 炭素質材料(A3)前駆体を炭素質材料(A3)とするための熱処理は、好ましくは200℃以上2000℃以下、より好ましくは500℃以上1500℃以下、特に好ましくは600℃以上1200℃以下の温度で行う。この熱処理によって、炭素質材料(A3)が構造体(α)及び/または粒子(A2)を被覆し、また炭素質材料(A3)が、粒子(A1)相互の間、または構造体(α)相互の間、粒子(A2)相互の間、及び粒子(A1)と粒子(A2)との間または構造体(α)と粒子(A2)との間に入り込みこれらを連結した形態にすることができる。熱処理温度が低すぎると炭素質材料(A3)前駆体の炭素化が十分に終了せず、負極材中に水素や酸素が残留し、それらが電池特性に悪影響を及ぼすことがある。逆に熱処理温度が高過ぎると結晶化が進みすぎて充電特性が低下したり、粒子(A1)構成元素と炭素とが結合してLiイオンに対し不活性な状態を生じさせることがある。熱処理は、非酸化性雰囲気で行うことが好ましい。非酸化性雰囲気としては、アルゴンガス、窒素ガスなどの不活性ガスを充満させた雰囲気が挙げられる。また、熱処理により粒子が融着しで塊になっていることがあるため、熱処理品を電極活物質として用いるためには解砕することが好ましい。解砕方法としては、ハンマーなどの衝撃力を利用したパルベライザー、被解砕物同士の衝突を利用したジェットミルなどが好ましい。
(7)容量の調整
 リチウムイオン二次電池用負極材として、電池性能を向上する目的やリチウムイオン二次電池用負極材の容量を調節する目的で、複合体(A)と炭素とを含む材料を混合してもよい。混合する炭素を含む材料は複数種類用いてもよい。炭素を含む材料としては容量の高い黒鉛が好ましい。黒鉛としては天然黒鉛、人造黒鉛から選択して用いることができる。この際、複合体(A)は比較的高容量(700mAh/g以上)である複合体を用いた方がリチウムイオン二次電池用負極材のコストが低減できるため好ましい。この容量調整用の炭素を含む材料は、予め複合体(A)と混合しておき、これにバインダー、溶剤、導電助剤等の添加剤を加えて負極用ペーストを作製してもよい。また、複合体(A)、炭素を含む材料、バインダー、溶剤、導電助剤等の添加剤を同時に混合して負極用ペーストを作製してもよい。混合の順序や方法は粉体のハンドリング等を考慮して適宜決めればよい。
(8)負極用ペースト
 本発明の一実施形態に係る負極用ペーストは、前記負極材とバインダーと溶媒と必要に応じて導電助剤などの添加剤を含む。この負極用ペーストは、例えば、前記負極材とバインダーと溶媒と必要に応じて導電助剤などを混練することによって得ることができる。負極用ペーストは、シート状、ペレット状などの形状に成形することができる。
 バインダーとして用いられる材料としては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、アクリルゴム、イオン伝導率の大きな高分子化合物などが挙げられる。イオン伝導率の大きな高分子化合物としては、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリファスファゼン、ポリアクリロニトリルなどが挙げられる。バインダーの量は、負極材100質量部に対して、好ましくは0.5質量部以上100質量部以下である。
 導電助剤は電極に対し導電性及び電極安定性(リチウムイオンの挿入・脱離における体積変化に対する緩衝作用)を付与する役目を果たすものであれば特に限定されない。例えば、カーボンナノチューブ、カーボンナノファイバー、気相法炭素繊維(例えば、「VGCF(登録商標)」昭和電工株式会社製)、導電性カーボン(例えば、「デンカブラック(登録商標)」電気化学工業株式会社製、「Super C65」TIMCAL社製、「Super C45」TIMCAL社製、「KS6L」TIMCAL社製)などが挙げられる。導電助剤の量は、負極材100質量部に対して、好ましくは10質量部以上100質量部以下である。
 溶媒は、特に制限はなく、N-メチル-2-ピロリドン、ジメチルホルムアミド、イソプロパノール、水などが使用できる。溶媒として水を使用するバインダーの場合は、増粘剤を併用することが好ましい。溶媒の量はペーストが集電体に塗布しやすいような粘度となるように調整すればよい。
(9)負極シート
 本発明の一実施形態に係る負極シートは、集電体と集電体を被覆する電極層とを有する。
 集電体としては、例えば、ニッケル箔、銅箔、ニッケルメッシュまたは銅メッシュなどシート状のものが挙げられる。
 電極層は、バインダーと前記の負極材とを含有する。電極層は、例えば、前記のペーストを集電体上に塗布し乾燥させることによって得ることができる。ペーストの塗布方法は特に制限されない。電極層の厚さは、好ましくは50~200μmである。電極層が厚くなりすぎると、規格化された電池容器に負極シートを収容できなくなることがある。電極層の厚さは、ペーストの塗布量によって調整できる。また、ペーストを乾燥させた後、加圧成形することによっても調整することができる。加圧成形法としては、ロール加圧、プレス加圧などの成形法が挙げられる。プレス成形するときの圧力は、好ましくは100~500MPa程度である。
 負極シートの電極密度は次のようにして計算することができる。すなわち、プレス後の負極シートを直径16mmの円形状に打ち抜き、その質量と厚みを測定する。そこから別途測定しておいた集電体箔(直径16mmの円形状に打ち抜いたもの)の質量と厚みを差し引いて電極層の質量と厚みを求め、その値を元に電極密度を計算する。
(10)リチウムイオン二次電池
 本発明の一実施形態に係るリチウムイオン二次電池は、非水系電解液及び非水系ポリマー電解質からなる群から選ばれる少なくとも一つ、正極シート、及び前記負極シートを有する。
 正極シートとしては、リチウムイオン二次電池に従来から使われていたもの、具体的には正極活物質を含んでなるシートを用いることができる。正極活物質としては、LiNiO2、LiCoO2、LiMn24、LiNi0.34Mn0.33Co0.332、LiFePO4などが挙げられる。
 リチウムイオン二次電池に用いられる非水系電解液及び非水系ポリマー電解質は特に制限されない。例えば、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3、CH3SO3Li、CF3SO3Liなどのリチウム塩を、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、アセトニトリル、プロピオニトリル、ジメトキシエタン、テトラヒドロフラン、γ-ブチロラクトンなどの非水系溶媒に溶かしてなる有機電解液;ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビリニデン、及びポリメチルメタクリレートなどを含有するゲル状のポリマー電解質;エチレンオキシド結合を有するポリマーなどを含有する固体状のポリマー電解質が挙げられる。
 また、電解液には、リチウムイオン二次電池の充電時に分解反応が起きる物質を少量添加してもよい。該物質としては、例えば、ビニレンカーボネート(VC)、ビフェニール、プロパンスルトン(PS)、フルオロエチレンカーボネート(FEC)、エチレンスルトン(ES)などが挙げられる。添加量としては0.01質量%以上50質量%以下が好ましい。
 リチウムイオン二次電池には正極シートと負極シートとの間にセパレータを設けることができる。セパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルムまたはそれらを組み合わせたものなどが挙げられる。
 リチウムイオン二次電池は、携帯電話、携帯パソコン、携帯情報端末などの電子機器の電源;電動ドリル、電気掃除機、電動自動車などの電動機の電源;燃料電池、太陽光発電、風力発電などによって得られた電力の貯蔵などに用いることができる。
 以下に本発明について実施例及び比較例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。なお、実施例及び比較例において、粒子(A1)の一次粒子の平均粒子径dAV、非晶質炭素被覆層(A1C)の厚さ、人造黒鉛粒子のX線回折法による(002)面の平均面間隔d002及び結晶子のC軸方向の厚さLC及びSi粒子(A1)の(111)面回折ピークの半値幅、ラマン分光スペクトルにおけるR値は本明細書の「発明を実施するための形態」に記載した方法により測定する。また、その他の物性の測定及び電池評価は下記のように行った。
[粉末X線回折法によるI110/I004の測定]
 炭素粉末試料をガラス製試料板(試料板窓18×20mm、深さ0.2mm)に充填し、以下の条件で測定を行った。
  X線回折装置:リガク製SmartLab(登録商標)、
  X線種:Cu-Kα線、
  Kβ線除去方法:Niフィルター、
  X線出力:45kV、200mA、
  測定範囲:5.0~10.0deg、
  スキャンスピード:10.0deg/min。
 得られた波形に対し、平滑化、バックグラウンド除去、Kα2除去を行い、プロファイルフィッティングを行った。その結果得られた(004)面のピーク強度I004と(110)面のピーク強度I110から配向性の指標となる強度比I110/I004を算出した。なお、各面のピークは以下の範囲のうち最大の強度のものをそれぞれのピークとして選択した。
  (004)面:54.0~55.0deg、
  (110)面:76.5~78.0deg。
[粒子径DV50
 粉体を極小型スパーテル2杯分、及び非イオン性界面活性剤(TRITON(登録商標)-X;Roche Applied Science製)2滴を水50mlに添加し、3分間超音波分散させた。この分散液をレーザー回折式粒度分布測定器(LMS-2000e、株式会社セイシン企業製)に投入し、体積基準累積粒度分布を測定して50%粒子径Dv50(μm)を求めた。
[比表面積]
 比表面積/細孔分布測定装置(カンタムクローム・インスツルメンツ社製、NOVA 4200e)を用い、窒素ガスをプローブとして相対圧0.1、0.2、及び0.3のBET多点法によりBET比表面積SBET(m2/g)を測定した。
[細孔容積]
 炭素材料約5gをガラス製セルに秤量し、1kPa以下の減圧下300℃で約3時間乾燥して、水分等の吸着成分を除去した後、炭素材料の質量を測定した。その後、液体窒素冷却下における乾燥後の炭素材料の窒素ガスの吸着等温線をカンタクローム(Quantachrome)社製Autosorb-1で測定した。得られた吸着等温線のP/P0=0.992~0.995での測定点における窒素吸着量と乾燥後の炭素材料の質量から直径0.4μm以下の全細孔容積(μL/g)を求めた。
[粉末X線回折法による(111)、(220)及び(311)面回折ピーク半値幅測定]
 炭素粉末試料をガラス製試料板(試料板窓18×20mm、深さ0.2mm)に充填し、以下の条件で測定を行った。
  X線回折装置:リガク製SmartLab(登録商標)、
  X線種:Cu-Kα線、
  Kβ線除去方法:Niフィルター、
  X線出力:45kV、200mA、
  測定範囲:5.0~80.0deg、
  スキャンスピード:10.0deg/min。
 得られた波形に対し、平滑化、バックグラウンド除去、Kα2除去を行い、プロファイルフィッティングを行った。その結果得られた(220)面及び(311)面回折ピークから半値幅を算出した。
[正極シートの製造]
 LiNi0.6Mn0.2Co0.22を192g、導電助剤としてカーボンブラック4g、及び結着材としてポリフッ化ビニリデン(PVdF)4gにN-メチルピロリドンを適宜加えながら撹拌・混合し、スラリー状の正極用ペーストを得た。
 前記の正極用ペーストを厚さ20μmのアルミ箔上にロールコーターにより塗布し、乾燥させて正極用シートを得た。乾燥した電極はロールプレスにより密度を3.6g/cm3とし、電池評価用正極シートを得た。
[負極シートの製造]
 バインダーとしてカルボキシメチルセルロース(CMC;株式会社ダイセル製、CMC1300)を用いた。具体的には、固形分比2%のCMC粉末を溶解した水溶液を得た。
 導電助剤としてカーボンブラック、カーボンナノチューブ(CNT)、及び気相成長法炭素繊維(VGCF(登録商標)-H,昭和電工株式会社製)を用意し、それぞれ3:1:1(質量比)で混合したものを混合導電助剤とした。
 後述の実施例及び比較例で製造した複合体(A)と、容量を調節する目的の炭素を含む材料としての黒鉛の混合物を90質量部、混合導電助剤2質量部、CMC固形分8質量部となるようにCMC水溶液を混合し、自転・公転ミキサーにて混練し負極用ペーストを得た。
 または、実施例及び比較例で製造した複合体(A)を90質量部、混合導電助剤2質量部、CMC固形分8質量部となるようにCMC水溶液を混合し、自転・公転ミキサーにて混練し負極用ペーストを得た。
 前記の負極用ペーストを厚み20μmの銅箔上に300μmギャップのドクターブレードを用いて均一に塗布し、ホットプレートにて乾燥後、真空乾燥させて負極シートを得た。乾燥した電極は300MPaの圧力にて一軸プレス機によりプレスして電池評価用負極シートを得た。
[正負極容量比の微調整]
 正極シートと負極シートを対向させてリチウムイオン電池を作製する際、両者の容量バランスを考慮する必要がある。すなわち、リチウムイオンを受け入れる側の負極の容量が少な過ぎると過剰なLiが負極側に析出してサイクル劣化の原因となり、逆に負極の容量が多過ぎるとサイクル特性は向上するものの負荷の小さい状態での充放電となるためエネルギー密度は低下する。これを防ぐために、正極シートは同一のものを使用しつつ、負極シートは対極Liのハーフセルにて事前に活物質質量当たりの放電量を評価しておき、正極シートの容量(QC)に対する負極シートの容量(QA)の比が1.2で一定値となるよう負極シートの容量を微調整した。
[評価用電池の作製]
 露点-80℃以下の乾燥アルゴンガス雰囲気に保ったグローブボックス内で下記の操作を実施した。
[二極式ラミネート型フルセル]
 上記負極シート及び正極シートを打ち抜いて面積20cm2の負極片及び正極片を得た。正極片のAl箔にAlタブを、負極片のCu箔にNiタブをそれぞれ取り付けた。ポリプロピレン製フィルム微多孔膜を負極片と正極片との間に挟み入れ、その状態でアルミラミネート包材でパックし電解液を700μL注液した。その後、開口部を熱融着によって封止して評価用の電池を作製した。なお、電解液は、エチレンカーボネート、エチルメチルカーボネート、及びジエチルカーボネートが体積比で3:5:2の割合で混合した溶媒にビニレンカーボネート(VC)を1質量%、フルオロエチレンカーボネート(FEC)を10質量%混合し、さらにこれに電解質LiPF6を1mol/Lの濃度になるように溶解させた液である。
[充電、放電の定義]
 充電とはセルに対して電圧を付与することであり、放電とはセルの電圧を消費する操作である。二極式ラミネート型フルセルの場合、対極はLi金属でなく、上記負極シートよりも高い酸化還元電位を有する材料を適用する。そのため、負極シートは負極として扱われる。従って、二極式ラミネート型フルセルにおいて、充電とは上記負極シートに対してLiを挿入する操作を意味し、放電とは上記負極操作からLiを放出する操作を意味する。
[二極式ラミネート型フルセルを用いた充放電サイクル試験]
 二極式ラミネート型フルセルを用いたサイクル試験では、エージングは5サイクル実施した。エージングの内1サイクル目は、レストポテンシャルから0.025Cの電流値で6時間45分間CCモードにて充電し、12時間の休止を導入した。その後さらに4.2Vまで0.05CでCC充電を実施した。放電は、0.05Cの電流値にて2.7VまでCCモードで放電した。エージングの2サイクル目、5サイクル目は同一の条件であり、充電は、4.3Vまで電流値0.1CでCC充電したあと、4.3VでCV充電に切り替え、カットオフ電流値を0.025Cで充電を行った。放電は、0.1Cの電流値にて2.7VまでCCモードで実施した。エージングの3サイクル目、4サイクル目は同一の条件であり、エージング2サイクル目、5サイクル目の電流値を0.1Cから0.2Cに置き換えた。
 上記エージングを行った後、次の方法で充放電サイクル試験を行った。
 充電は、電流値1CのCCモードで4.3Vまで行った後、CVモードの放電に切り替え、カットオフ電流値を0.05Cにして実施した。
 放電は、電流値1CのCCモードで3.0Vまで行った。
この充放電操作を1サイクルとして20サイクル行い、21サイクル目に上記充放電の1Cを0.1Cに置き換えた低レート試験を行った。この21サイクル試験を24回繰り返し、計504サイクルの試験とした。
 Nサイクル目の放電容量維持率を次式で定義して計算した。
  (Nサイクル後放電容量維持率(%))=
      {(Nサイクル時放電容量)/(初回放電容量)}×100
 この式における初回放電容量とはエージング終了後の1サイクル目を意味する。
[504サイクル充放電試験後負極電極合剤層膨張率測定]
 二極式ラミネート型フルセルを用いた504サイクルのサイクル試験後、放電状態(3.0~3.4V範囲内の電圧を有する)のフルセルをAr不活性雰囲気で解体し、負極電極を抜き取った。抜き取った電極は同雰囲気中でエチルメチルカーボネート(EMC)により洗浄、乾燥した後、ダイアルゲージ(株式会社ミツトヨ製;高精度タイプ[最小表示量0.001mm])により負極電極の厚みを測定した。負極電極厚みは負極電極全体をランダムに20点測定して平均化した厚みを採用した。この負極電極厚みから、集電体の銅箔厚みを差し引いた値を「504サイクル試験後の負極電極合剤層厚み」とした。
 504サイクル試験後の負極電極合剤層膨張率を計算するにあたり、基準とする負極電極合剤層の厚みは、プレス直後の負極電極をダイアルゲージで20点測定した値の平均値から、銅箔集電体の厚みを差し引いて「プレス直後負極電極合剤層厚み」とした。
 従って、「504サイクル試験後の負極電極合剤層膨張率」は次式により計算した。
  (504サイクル試験後の負極電極合剤層膨張率(%))=
       {(504サイクル試験後の負極電極合剤層厚み)
            /(プレス直後負極電極合剤層厚み)}×100
 下記の実施例及び比較例で使用した材料は以下の通りである。
(1)ケイ素含有粒子(Si微粒子)
 実施例及び比較例で、粒子(A1)に使用したSi粒子、Si(1)~Si(3)の物性を表1に示す。
 一次粒子の平均粒子径dAVは前述の通り、dAV[nm]=6×103/(ρ×SBET)である。ここで、ρはSi粒子の真密度(理論値としての2.3[g/cm3])であり、SBETはBET法により測定した比表面積[m2/g]である。
Figure JPOXMLDOC01-appb-T000001
(2)構造体(α)の作製
 Si微粒子Si(1)~Si(3)をCVD法で作製後、Si(1)及びSi(2)については連続してアセチレンガスを原料に用いてCVD法で厚さ2nmの炭素被覆層(カーボンコート)を形成させることにより表1にカーボンコート層の厚みを示す構造体(α)-1及び構造体(α)-2を得た(表1)。なお、Si微粒子Si(3)については、構造体(α)の作製は行わなかった。
(3)ピッチ
 石油ピッチ(軟化点220℃)を使用した。この石油ピッチについて、窒素ガス流通下の熱分析により1100℃における残炭率を測定したところ、52質量%であった。
 また、JIS K2425に記載されている方法またはそれに準じた方法で測定した石油ピッチのQI含量は0.62質量%、TI含量は48.9質量%であった。
(4)黒鉛粒子
 実施例及び比較例で、粒子(A2)と共に、容量調節の目的で炭素を含む材料として使用した黒鉛粒子の物性を表2に示す。
Figure JPOXMLDOC01-appb-T000002
実施例1:
 石油系コークスをバンタムミル(ホソカワミクロン株式会社製)で粉砕した後、さらにジェットミル(株式会社セイシン企業製)で粉砕し、これをアチソン炉にて3000℃で熱処理して、DV50が7.5μm、BET比表面積が4.9m2/gの人造黒鉛粒子(A2)-aを得た。
 次に、構造体(α)-1 16.4質量部と炭素質材料(A3)の前駆体である前記の石油ピッチ15.4質量部(石油ピッチを炭化した後の質量として)とをセパラブルフラスコに投入した。窒素ガスを流通させて不活性雰囲気を保ち、250℃まで昇温した。ミキサーを500rpmで回転させて撹拌し、ピッチとケイ素含有粒子とを均一に混合させた。これを冷却し固化させて混合物を得た。
 この混合物に、粒子(A2)-aである前記の人造黒鉛粒子68.2質量部を加え、ロータリーカッターミルに投入し、窒素ガスを流通させて不活性雰囲気を保ちつつ25000rpmで高速撹拌し混合させた。
 これを焼成炉に入れ、窒素ガス流通下で、150℃/hで1100℃まで昇温し、1100℃にて1時間保持し、(A3)前駆体を(A3)に変換した。室温まで冷やし焼成炉から取り出しロータリーカッターミルで解砕後、45μm目開きの篩にて篩分した篩下を複合体(A)-aとして得た。
 図1は、実施例1に係る複合体(リチウムイオン二次電池用負極材)のX線回折パターンを示す図である。この複合体(A)-aについてX線回折測定を行って得られた回折ピークの半値幅比を表3に示す。ここで、半値幅比は、(111)面回折ピークの半値幅を1とし、これに対する(220)面回折ピークの半値幅の比及び(311)面回折ピークの半値幅の比である。以下の実施例及び比較例についても同様である。
 上記とは別に、石油系コークスをバンタムミル(ホソカワミクロン株式会社製)で粉砕し、これをアチソン炉にて3000℃で熱処理して、DV50が12.1μmでBET比表面積が2.5m2/gである黒鉛(1)を得た。また、石油系コークスをバンタムミル(ホソカワミクロン株式会社製)で粉砕した後、さらにジェットミル(株式会社セイシン企業製)で粉砕し、これをアチソン炉にて3000℃で熱処理して、DV50が6.7μmでBET比表面積が6.1m2/gの黒鉛(2)を得た。
 複合体(A)-a単体、及び複合体(A)-a 67.0質量部と黒鉛(1)16.5質量部と黒鉛(2)16.5質量部との混合物を用いて負極シートを作製し、フルセルによる500サイクル後の容量維持率を測定した。結果を表3に示す。また500サイクル後の負極電極合剤層膨張率の測定結果も表3に示す。
実施例2:
 構造体(α)-1を表1の構造体(α)-2に替えた以外は、実施例1と同じ方法で複合体(A)-bを得た。この複合体(A)-bについてX線回折測定を行った。得られた回折ピークの半値幅比を表3に示す。
 複合体(A)-b単体、及び複合体(A)-b 67.0質量部と黒鉛(1)16.5質量部と黒鉛(2)16.5質量部との混合物を用いて負極シートを作製し、フルセルによる500サイクル後の容量維持率を測定した。結果を表3に示す。また500サイクル後の負極電極合剤層膨張率の測定結果も表3に示す。
比較例1:
 構造体(α)-1を表1のSi(3)に替えた以外は、実施例1と同じ方法で複合体(A)-cを得た。この複合体(A)-cについてX線回折測定を行って得られた回折ピークの半値幅比を表3に示す。
 複合体(A)-c単体、及び複合体(A)-c 67.0質量部と黒鉛(1)16.5質量部と黒鉛(2)16.5質量部との混合物を用いて負極シートを作製し、フルセルによる500サイクル後の容量維持率を測定した。結果を表3に示す。また500サイクル後の負極電極合剤層膨張率の測定結果も表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果において、実施例1及び2を比較例1と比べると、(220)及び(311)面の結晶子サイズ比が1.00に近いほど、500サイクル試験後負極電極合剤層膨張率が小さくなっていることが分かる。これは、各結晶子サイズの結晶子サイズがより均一になり、Si粒子の膨張がより等方的になったことを示している。また、実施例1及び2は比較例1と比べると500サイクルフルセル容量維持率が改善されている。これは500サイクル試験後負極電極合剤層の膨張率が抑制され、電解液との副反応が抑制されたことによる。

Claims (7)

  1.  一次粒子の平均粒子径dAVが5nm以上95nm以下であるSiを含む粒子(A1)と、黒鉛を含む物質からなる粒子(A2)と、炭素質材料(A3)とを含む複合体(A)を含むリチウムイオン二次電池用負極材であって、前記複合体(A)のX線回折測定における前記粒子(A1)の(111)面回折ピークの半値幅に対する(220)面回折ピークの半値幅の比、及び(111)面回折ピークの半値幅に対する(311)面回折ピークの半値幅の比が、共に1.40以下であることを特徴とするリチウムイオン二次電池用負極材。
  2.  粒子(A1)を被覆する厚さ1nm以上20nm以下の非晶質炭素被覆層(A1C)を含む請求項1に記載のリチウムイオンで二次電池用負極材。
  3.  前記粒子(A2)は、体積基準累積粒度分布における50%粒子径DV50が2.0μm以上20.0μm以下であり、BET比表面積(SBET)が1.0m2/g以上10.0m2/g以下である請求項1または2に記載のリチウムイオン二次電池用負極材。
  4.  前記粒子(A2)は、粉末X線回折法による黒鉛結晶の(110)面のピーク強度I110と(004)面のピーク強度I004の比I110/I004が0.10以上0.35以下であり、粉末X線回折法による(002)面の平均面間隔d002が0.3360nm以下であり、窒素ガス吸着法によって測定される直径0.4μm以下の細孔の全細孔容積が5.0μL/g以上40.0μL/g以下である黒鉛粒子である請求項1~3のいずれか1項に記載のリチウム二次イオン電池用負極材。
  5.  前記複合体(A)中の前記粒子(A1)の含有率が10質量%以上70質量%以下である請求項1~4のいずれか1項に記載のリチウムイオン二次電池用負極材。
  6.  シート状集電体及び該集電体を被覆する負極層を有し、前記負極層はバインダー、導電助剤及び請求項1~5のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極シート。
  7.  請求項6に記載の負極シートを有するリチウムイオン二次電池。
PCT/JP2018/048100 2017-12-28 2018-12-27 リチウムイオン二次電池用負極材 WO2019131862A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019537190A JPWO2019131862A1 (ja) 2017-12-28 2018-12-27 リチウムイオン二次電池用負極材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017253374 2017-12-28
JP2017-253374 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131862A1 true WO2019131862A1 (ja) 2019-07-04

Family

ID=67067535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048100 WO2019131862A1 (ja) 2017-12-28 2018-12-27 リチウムイオン二次電池用負極材

Country Status (3)

Country Link
JP (1) JPWO2019131862A1 (ja)
TW (1) TW201931646A (ja)
WO (1) WO2019131862A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326723A (zh) * 2020-02-26 2020-06-23 宁夏博尔特科技有限公司 锂离子电池用硅碳复合负极材料及其制备方法
WO2021004204A1 (zh) * 2019-07-08 2021-01-14 宁波杉杉新材料科技有限公司 一种天然石墨负极材料及其制备方法、锂离子电池
WO2021241750A1 (ja) * 2020-05-28 2021-12-02 昭和電工株式会社 複合粒子、負極材およびリチウムイオン二次電池
CN114583107A (zh) * 2022-03-21 2022-06-03 珠海冠宇电池股份有限公司 一种电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019994A1 (ja) * 2013-08-05 2015-02-12 昭和電工株式会社 リチウムイオン電池用負極材及びその用途
JP2016115418A (ja) * 2014-12-11 2016-06-23 中央電気工業株式会社 ケイ素黒鉛複合粒子の使用方法、非水系二次電池用黒鉛負極の放電容量改良材、混合粒子、電極および非水電解質二次電池
US20160211511A1 (en) * 2015-01-20 2016-07-21 Shenzhen Btr New Energy Materials Inc. Nano-silicon composite negative electrode material used for lithium ion battery, process for preparing the same and lithium ion battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071542A (ja) * 2002-06-14 2004-03-04 Japan Storage Battery Co Ltd 負極活物質、それを用いた負極、それを用いた非水電解質電池、ならびに負極活物質の製造方法
KR101126202B1 (ko) * 2010-11-04 2012-03-22 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
WO2013140595A1 (ja) * 2012-03-23 2013-09-26 株式会社 東芝 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法
KR20150036132A (ko) * 2012-07-06 2015-04-07 도레이 카부시키가이샤 리튬 이온 이차 전지용 부극 재료, 리튬 이온 이차 전지용 복합 부극 재료, 리튬 이온 이차 전지 부극용 수지 조성물, 리튬 이온 이차 전지용 부극 및 리튬 이온 이차 전지
WO2017002959A1 (ja) * 2015-07-02 2017-01-05 昭和電工株式会社 リチウムイオン電池用負極材及びその用途
JP6914615B2 (ja) * 2016-04-06 2021-08-04 日新化成株式会社 リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極材料の製造方法及びその製造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019994A1 (ja) * 2013-08-05 2015-02-12 昭和電工株式会社 リチウムイオン電池用負極材及びその用途
JP2016115418A (ja) * 2014-12-11 2016-06-23 中央電気工業株式会社 ケイ素黒鉛複合粒子の使用方法、非水系二次電池用黒鉛負極の放電容量改良材、混合粒子、電極および非水電解質二次電池
US20160211511A1 (en) * 2015-01-20 2016-07-21 Shenzhen Btr New Energy Materials Inc. Nano-silicon composite negative electrode material used for lithium ion battery, process for preparing the same and lithium ion battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021004204A1 (zh) * 2019-07-08 2021-01-14 宁波杉杉新材料科技有限公司 一种天然石墨负极材料及其制备方法、锂离子电池
CN111326723A (zh) * 2020-02-26 2020-06-23 宁夏博尔特科技有限公司 锂离子电池用硅碳复合负极材料及其制备方法
WO2021241750A1 (ja) * 2020-05-28 2021-12-02 昭和電工株式会社 複合粒子、負極材およびリチウムイオン二次電池
JP7420241B2 (ja) 2020-05-28 2024-01-23 株式会社レゾナック 複合粒子、負極材およびリチウムイオン二次電池
CN114583107A (zh) * 2022-03-21 2022-06-03 珠海冠宇电池股份有限公司 一种电池

Also Published As

Publication number Publication date
JPWO2019131862A1 (ja) 2019-12-26
TW201931646A (zh) 2019-08-01

Similar Documents

Publication Publication Date Title
JP5956690B2 (ja) リチウムイオン電池用負極材及びその用途
US11031587B2 (en) Negative electrode material for lithium-ion batteries including non-flaky artificial graphite including silicon-containing particles, artificial graphite particles and carbonaceous material
EP3032616B1 (en) Method for producing composite
JPWO2018047939A1 (ja) リチウムイオン二次電池用負極材
EP3032620B1 (en) Negative electrode material for lithium ion batteries and use thereof
EP2924783B1 (en) Method for producing negative electrode material for lithium ion batteries
WO2019131862A1 (ja) リチウムイオン二次電池用負極材
JP6619123B2 (ja) リチウムイオン二次電池用負極材
WO2019131864A1 (ja) リチウムイオン二次電池用負極材
JPWO2014050097A1 (ja) リチウムイオン二次電池負極用炭素材およびその製造方法並びに用途
JP6595145B2 (ja) リチウムイオン二次電池用負極材料、その製造方法、負極用ペースト、負極シート及びリチウムイオン二次電池
JP2015079621A (ja) 非水系二次電池負極用複合黒鉛粒子、非水系二次電池用負極及び非水系二次電池
WO2019131860A1 (ja) リチウムイオン二次電池用負極材
KR20220087143A (ko) 리튬 이온 이차전지용 음극재, 이의 제조방법 및 이를 포함하는 리튬 이온 이차전지
WO2019131863A1 (ja) リチウムイオン二次電池用負極材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019537190

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895194

Country of ref document: EP

Kind code of ref document: A1