JP6619123B2 - リチウムイオン二次電池用負極材 - Google Patents

リチウムイオン二次電池用負極材 Download PDF

Info

Publication number
JP6619123B2
JP6619123B2 JP2019537189A JP2019537189A JP6619123B2 JP 6619123 B2 JP6619123 B2 JP 6619123B2 JP 2019537189 A JP2019537189 A JP 2019537189A JP 2019537189 A JP2019537189 A JP 2019537189A JP 6619123 B2 JP6619123 B2 JP 6619123B2
Authority
JP
Japan
Prior art keywords
particles
negative electrode
ion secondary
less
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2019537189A
Other languages
English (en)
Other versions
JPWO2019131861A1 (ja
Inventor
貴行 栗田
貴行 栗田
祐司 伊藤
祐司 伊藤
石井 伸晃
伸晃 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Application granted granted Critical
Publication of JP6619123B2 publication Critical patent/JP6619123B2/ja
Publication of JPWO2019131861A1 publication Critical patent/JPWO2019131861A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明はリチウムイオン二次電池用の負極材に関する。
電子部品の省電力化を上回る速さで携帯電子機器の多機能化が進み、携帯電子機器の消費電力が増加している。そのため、携帯電子機器の主電源であるリチウムイオン二次電池の高容量化及び小型化が今まで以上に強く求められている。また、電気自動車の需要が伸び、それに使われるリチウムイオン二次電池にも高容量化が強く求められている。
このような要求に応えるために、珪素(Si)粒子と炭素材料とを複合化した負極用材料が提案されている。しかし、Si粒子と炭素材料の複合材料を用いたリチウムイオン二次電池は、高容量ではあるがSi特有の充電放電時の体積変化により大きく劣化する。これに対応するため、Siのナノ粒子化、Siへのコート材の適用、Siへの異種金属ドープなど種々の対応がとられ、これら対応により高容量を維持しつつサイクル寿命は改善されつつある。
しかし、複合材料に含まれるSiのナノ粒子化や、Siへのコート材の適用等を行っても、根本的なSi粒子の膨張率はほぼ一定であるため、電極膨張の増大や電極構造の劣化が進行しやすくなる等の問題は残ったままである。
そこで、Si粒子の形状を制御する提案がされている。例えば、特許文献1は、平均直径は30nmないし300nmのシリコン粒子を含む二次電池用負極活物質で、前記シリコン粒子は、下記式
球形度=2×(πA)1/2/P
(式中、Aは2次元的に投影された粒子の投影面積で、Pは2次元的に投影された粒子の周長である。)によって決定される球形度が0.5以上0.9以下である二次電池用負極活物質を開示している。
特表2017−514280号公報(米国特許出願第2017−047580号)
特許文献1はSi粒子の形状を楕円球状にすることで、膨張によるSi粒子のクラック発生を解消しようとしている。しかしながら、Si粒子の形状が真球から離れるにつれて、粒子の膨張方向はより異方的になり、電極膨張率が大きくなる。その結果、電解液添加剤、例えばフルオロエチレンカーボネート(FEC)を多く消費し、サイクル特性が低下する。
本発明の課題は、使用に伴う電解液添加剤の消費量が少なく、電極膨張率が低く、高いクーロン効率及び高い容量維持率を有するリチウムイオン二次電池を得るための負極材を提供することにある。
本発明は、以下の態様を包含する。
[1]一次粒子の平均粒子径dAVが5nm以上95nm以下であるSiを含む粒子(A1)と、黒鉛を含む物質からなる粒子(A2)と、粒子(A1)の表面に形成される炭素質材料(A3)とを含む複合体(A)を含むリチウムイオン二次電池用負極材であって、複合体(A)の断面を走査型電子顕微鏡で測定した像において、ランダムに選択した100個の粒子(A1)中に、短径/長径比が0.70以上の粒子(A1)が80個以上存在するリチウムイオン二次電池用負極材。
[2]粒子(A1)を被覆する厚さ1nm以上20nm以下の非晶質炭素被覆層(A1C)を含む前項1に記載のリチウムイオン二次電池用負極材。
[3]前記複合体(A)に含まれる粒子(A1)が、粉末X線回折法における(111)回折ピークの半値幅が0.38度以上0.71度以下である前項1または2に記載のリチウムイオン二次電池用負極材。
[4]前記粒子(A2)は、体積基準累積粒度分布における50%粒子径DV50が2.0μm以上20.0μm以下であり、BET比表面積(SBET)が1.0m2/g以上10.0m2/g以下である前項1〜3のいずれか1項に記載のリチウムイオン二次電池用負極材。
[5]前記粒子(A2)は、粉末X線回折法による黒鉛結晶の(110)面のピーク強度I110と(004)面のピーク強度I004の比I110/I004が0.10以上0.35以下であり、粉末X線回折法による(002)面の平均面間隔d002が0.3360nm以下であり、窒素ガス吸着法によって測定される直径0.4μm以下の細孔の全細孔容積が5.0μL/g以上40.0μL/g以下である黒鉛粒子である、前項4に記載のリチウムイオン二次電池用負極材。
[6]前記複合体(A)中の粒子(A1)の含有率が10質量%以上70質量%以下である、前項1〜5のいずれか1項に記載のリチウムイオン二次電池用負極材。
[7]シート状集電体及び集電体を被覆する負極層を有し、前記負極層はバインダー、導電助剤及び前項1〜6のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極シート。
[8]前項7に記載の負極シートを有するリチウムイオン二次電池。
本発明により、使用に伴う電解液添加剤の消費量が少なく、電極膨張率が低く、高いクーロン効率及び高い容量維持率を有するリチウムイオン二次電池を得るための負極材を提供することができる。
本発明の一実施形態に係るリチウムイオン二次電池用負極材は、粒子(A1)と粒子(A2)と炭素質材料(A3)とを含む複合体(A)を含む。
(1)粒子(A1)
本発明の一実施形態に用いられる粒子(A1)は、リチウムイオンを吸蔵・放出可能なSiを主成分とする。Siの含有率は好ましくは90質量%以上であり、より好ましくは95質量%以上である。粒子(A1)はSi単体またはSi元素を含む化合物、混合体、共融体または固溶体からなるものでもよい。また、粒子(A2)及び炭素質材料(A3)との複合化前の粒子(A1)は複数の微粒子が凝集したもの、すなわち二次粒子化したものでもよい。粒子(A1)の形状としては、塊状、鱗片状、球状、繊維状などを挙げることができる。これらのうち、球状または塊状が好ましい。
Si元素を含む物質としては、Si単体、またはSiとLi以外の元素Mとを含む一般式:M(=Ma+Mb+Mc+Md・・・)mSiで示される物質を挙げることができる。該物質はSi1モルに対してmモルとなる比で元素Mを含む化合物、混合体、共融体または固溶体である。
Li以外の元素である元素Mの具体例としては、B、C、N、O、S、P、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mo、Ru、Rh、Pd、Pt、Be、Nb、Nd、Ce、W、Ta、Ag、Au、Cd、Ga、In、Sb、Baなどを挙げることができる。式中、mは好ましくは0.01以上、より好ましくは0.10以上、さらに好ましくは0.30以上である。
Si元素を含む物質の具体例としては、Si単体、Siとアルカリ土類金属との合金;Siと遷移金属との合金;Siと半金属との合金;Siと、Be、Ag、Al、Au、Cd、Ga、In、SbまたはZnとの固溶性合金または共融性合金;CaSi、CaSi2、Mg2Si、BaSi2、Cu5Si、FeSi、FeSi2、CoSi2、Ni2Si、NiSi2、MnSi、MnSi2、MoSi2、CrSi2、Cr3Si、TiSi2、Ti5Si3、NbSi2、NdSi2、CeSi2、WSi2、W5Si3、TaSi2、Ta5Si3、PtSi、V3Si、VSi2、PdSi、RuSi、RhSiなどのケイ化物;SiO2、SiC、Si34などを挙げることができる。
粒子(A1)は、一次粒子の平均粒子径dAVの下限値が5nmであり、好ましくは10nm、より好ましくは35nmである。また、一次粒子のdAVの上限値は95nmであり、好ましくは70nmである。粒子(A1)の一次粒子のdAVが95nmより大きくなると、充放電により粒子(A1)の体積が膨張収縮して粒子(A1)を含む複合体(A)の構造に与える影響が大きくなり、容量維持率が低下する。また、一次粒子のdAVが5nmより小さくなると、粒子(A1)の比表面積が増え、副反応量が増大する。
平均粒子径dAV[nm]は、
AV[nm]=6×103/(ρ×SBET
により定義される。ここで、ρ[g/cm3]はSi粒子の真密度であり、理論値の2.3[g/cm3]を採用した。SBET[m2/g]はN2ガスを吸着ガスとするBET法により測定した比表面積である。
粒子(A1)は、その表面が薄い非晶質炭素被覆層(A1C)により被覆されていることが好ましい。粒子(A1)が非晶質炭素被覆層(A1C)で被覆されている場合、非晶質炭素被覆層(A1C)の厚さの上限値は20nm、好ましくは10nm、より好ましくは5nmである。電解液と非晶質炭素被覆層(A1C)との副反応を抑制するためである。粒子(A1)が非晶質炭素被覆層(A1C)で被覆されている場合、非晶質炭素被覆層(A1C)の厚さの下限値は1nmであり、好ましくは2nmであり、より好ましくは3nmである。粒子(A1)の酸化と粒子(A1)同士の凝集が抑制されるためである。また、非晶質炭素被覆層(A1C)よりも電解液との副反応が多く進行する粒子(A1)が、非晶質炭素被覆層(A1C)により被覆されているので、初期クーロン効率が大幅に向上する。また、副反応が抑えられることにより、フルオロエチレンカーボネート(FEC)等の電解液消費量を抑えることができる。
非晶質炭素被覆層(A1C)の厚さは透過型電子顕微鏡(TEM)による観察で撮影した画像において膜厚を計測することにより求めることができる。具体的なTEMによる観察の一例を以下に示す。
装置:日立製作所製 H9500、
加速電圧:300kV。
サンプル作製:エタノール中に試料を少量採取し超音波照射により分散させた後、マイクログリッド観察用メッシュ(支持膜無し)に載せて観察用試料とする。
観察倍率:5万倍(粒子形状観察時)及び40万倍(非晶質炭素層の厚さ観察時)
粒子(A1)が非晶質炭素被覆層(A1C)で被覆されている場合は、粒子(A1)とこれを覆う非晶質炭素被覆層(A1C)からなるコア・シェル構造体(以降、構造体(α)と呼ぶ。)は、BET比表面積は好ましくは25m2/g以上70m2/g以下、より好ましくは52m2/g以上67m2/g以下である。また、一次粒子の密度は2.2g/cm3/g以上である。構造体(α)のBET比表面積(SBET)が25m2/g以上であると、構造体(α)の粒径が大きくなりすぎず、構造体(α)固体内の電子移動経路とLiイオン拡散経路が長くなることはない。つまり、充放電時の抵抗が低く保たれる。さらに、構造体(α)1粒子あたりの膨張量の絶対値も大きくならず、構造体(α)周囲の複合体(A)の構造が破壊される可能性は低い。また、構造体(α)の密度が2.2g/cm3以上であれば、体積エネルギー密度の点からも優位性がある。
粒子(A1)は、複合体(A)の断面を走査型電子顕微鏡(SEM)で測定した像において、ランダムに選択した100個の粒子(A1)中に、短径/長径比が0.70以上の粒子(A1)が80個以上存在し、好ましくは短径/長径比が0.80以上の粒子(A1)が80個以上、より好ましくは短径/長径比が0.80以上の粒子(A1)が85個以上存在する。短径/長径比が0.70以上の粒子(A1)がランダムに選択した100個中に80個未満しか存在しないときは、Si粒子の膨張は等方的な傾向になり、電極膨張率が高くなる。その結果、フルオロエチレンカーボネート(FEC)などの電解液添加剤の消費量が多くなり、サイクル特性が低下する。
ここで、「短径/長径比」は、複合体(A)の断面において観察される粒子(A1)の断面形状(平面図形)における最大の長さを長径とし、この長径に垂直方向の幅である短径との比(短径を長径で割った値)である。「長径」は、粒子の輪郭線上の任意の2点間の最大距離として定義される。「短径」は、「長径」に平行な2直線で粒子の断面形状を挟んだときの2直線間の距離として定義される。
短径/長径比が1に近い程、粒子(A1)の切断面は正円に近づく。短径/長径比が1に近い粒子(=切断面が正円に近い粒子)の存在頻度が高いほど、粒子(A1)が球形である確率が高くなる。
充放電の際の粒子(A1)の膨張を考えると、粒子(A1)の形状は球形である方が粒子(A1)周りへのストレスが均一に分散され、電極膨張と電極構造劣化が改善される。従って、粒子(A1)は短径/長径比が1に近いものがより多く存在した方が良い。
複合体(A)中の粒子(A1)の含有率は、好ましくは2質量%以上95質量%以下、より好ましくは5質量%以上80質量%以下、さらにより一層好ましくは10質量%以上70質量%以下である。粒子(A1)の含有率が95質量%以下の場合は、電気抵抗を低く抑えることができる。粒子(A1)の含有率が2質量%以上の場合は、体積または質量エネルギー密度の点で優位性が保たれる。
粒子(A1)と非晶質炭素被覆層(A1C)からなる構造体(α)は固相法、液相法、気相法のいずれでも作製可能であるが、気相法が好ましい。特にモノシランのような気相Si原料からCVD法でSi粒子を作製し、その後アセチレンやエチレンのような炭素原料を用いてCVD法で均一な非晶質炭素被覆層(A1C)を作製する方法などが好ましい。
X線回折法により測定される粒子(A1)の(111)回折ピークの半値幅は、好ましくは0.38度以上0.71度以下、より好ましくは0.40度以上0.71度以下である。粒子(A1)の(111)半値幅が0.38度以上であれば、粒子(A1)の結晶子サイズが大きくならず、粒子(A1)の膨張が比較的等方的である。その結果、電極膨張率も抑えられ、良好なサイクル容量維持率が得られる。なお、粒子(A1)の(111)半値幅が0.71度を上回ることは、結晶子サイズが0nmを下回ることなり、実際にはあり得ない。
(2)粒子(A2)
本発明の好ましい実施態様における粒子(A2)に含まれる黒鉛粒子は人造黒鉛粒子であることが好ましい。光学組織の大きさ及び形状が特定の範囲にあり、適切な黒鉛化度を有する人造黒鉛粒子により、つぶれ特性と電池特性がともに優れた電極材料を得ることができる。
本明細書においてDV50とはレーザー回折式粒度分布計により測定される体積基準粒度分布における50%粒子径を表し、粒子の外見上の径を示す。
本発明の好ましい実施態様における粒子(A2)に含まれる黒鉛粒子の体積基準累積粒度分布における50%粒子径DV50は、好ましくは2.0μm以上20.0μm以下、より好ましくは5.0μm以上18.0μm以下である。DV50が2.0μm以上であれば、粉砕時に特殊な機器により粉砕する必要がなく、エネルギーも節約できる。また、凝集が起こりにくいため、塗工時のハンドリング性もよい。さらに、比表面積が過度に大きくなることがないため、初期充放電効率の低下も起こらない。一方、DV50が20.0μm以下であれば、負極材中のリチウム拡散にも時間がかからないため、入出力特性が良好である。また、黒鉛粒子の表面にケイ素含有粒子が均一に複合化することから、良好なサイクル特性が得られる。
本発明の好ましい実施態様における粒子(A2)に含まれる黒鉛粒子は、N2ガス吸着法によるBET比表面積が1.0m2/g以上10.0m2/g以下が好ましく、3.0m2/g以上7.5m2/g以下がより好ましい。黒鉛粒子のBET比表面積が上記の範囲にあると、負極材として不可逆な副反応を抑制しつつ電解液と接触する面積を大きく確保できるため、入出力特性が向上する。
本発明の好ましい実施態様における粒子(A2)に含まれる人造黒鉛粒子は、粉末X線回折法により得られる回折ピークプロファイルにおいて黒鉛結晶の(110)面のピーク強度I110と(004)面のピーク強度I004の比I110/I004が0.10以上0.35以下であることが好ましい。前記の比は、より好ましくは0.18以上0.30以下であり、より一層好ましくは0.21以上0.30以下である。前記の比が0.10以上であれば配向性が高過ぎず、負極材中のSiや黒鉛へのリチウムイオンの挿入・脱離(吸蔵・放出)に伴う膨張収縮により、電極の集電体面に対して垂直方向への電極膨張が起こることがなく、良好なサイクル寿命が得られる。また、黒鉛の炭素網面が電極面と平行にならないためLiの挿入が起こり易く、良好な急速充放電特性が得られる。前記の比が0.35以下であれば配向性が低すぎず、その負極材を用いた電極作製時のプレスを行う際に電極密度が上がり易くなる。
本発明の好ましい実施態様における粒子(A2)に含まれる人造黒鉛粒子は、粉末X線回折法による(002)面の平均面間隔d002が0.3360nm以下であることが好ましい。これにより負極材中の人造黒鉛粒子自身も質量あたりのリチウム挿入、脱離量が多く、すなわち負極材としても質量エネルギー密度が高くなる。また、負極材としてのSiへのリチウム挿入、脱離に伴う膨張収縮を緩和しやすくなりサイクル寿命が良くなる。
人造黒鉛粒子の結晶子のC軸方向の厚みLcとしては50nm以上1000nm以下が、質量エネルギー密度やつぶれ性の観点から好ましい。
本明細書において、d002及びLcは、既知の方法により粉末X線回折(XRD)法を用いて測定することができる(稲垣道夫、「炭素」、1963、No.36、25−34頁;Iwashita et al.,Carbon vol.42(2004),p.701−714)。
本発明の好ましい実施態様における粒子(A2)に含まれる人造黒鉛粒子は、液体窒素冷却下における窒素ガス吸着BET法による直径0.4μm以下の細孔の全細孔容積が5.0μL/g以上40.0μL/g以下であることが好ましい。さらに好ましくは25.0μL/g以上40.0μL/g以下である。全細孔容積が5.0μL/g以上の人造黒鉛粒子は粒子(A1)と炭素質材料(A3)との複合化がされやすく、サイクル容量維持率の改善の点で好ましい。X線回折法で測定されるLcが100nm以上の炭素材料において、前記全細孔容積が40.0μL/g以下であると、充放電時の黒鉛層の異方的な膨張収縮に起因する構造の不可逆変化が起こりにくく、負極材としてのサイクル特性もさらに向上する。また、人造黒鉛粒子の全細孔容積がこの範囲のとき、その負極材を活物質として用いた際に電解液が浸透しやすくなるので急速充放電特性の点でも好ましい。
本発明の好ましい実施態様における粒子(A2)に含まれる人造黒鉛粒子は、ラマン分光スペクトルで測定される1300〜1400cm-1の範囲にある非晶質成分由来のピークの強度IDと1580〜1620cm-1の範囲にある黒鉛成分由来のピークの強度IGとの比ID/IG(R値)が0.04以上0.18以下であることが好ましく、0.08以上0.16以下であることがさらに好ましい。R値が0.04以上であれば黒鉛の結晶性が高過ぎず、良好な急速充放電特性が得られる。R値が0.18以下であれば欠陥の存在により充放電時に副反応が生じることなく、良好なサイクル特性が得られる。
ラマンスペクトルは、例えばレーザラマン分光光度計(日本分光株式会社製、NRS−5100)を用いて、付属の顕微鏡で観察することによって測定することができる。
(3)粒子(A2)の製造方法
本発明の一実施形態に係る粒子(A2)に含まれる黒鉛粒子は、熱履歴が1000℃以下のコークスを粉砕した粒子を加熱することにより製造することができる。
コークスの原料としては、例えば、石油ピッチ、石炭ピッチ、石炭ピッチコークス、石油コークス及びこれらの混合物を用いることができる。すなわち、粒子(A2)に含まれる黒鉛粒子としては、石油系コークス及び/または石炭系コークス由来の物質を用いることが好ましい。これらの中でも、特定の条件下でディレイドコーキングを行ったものが望ましい。
ディレイドコーカーに通す原料としては、原油精製時の重質溜分に対して、流動床接触分解を行った後に触媒を除去したデカントオイルや、瀝青炭等から抽出されたコールタールを200℃以上の温度で蒸留し、得られたタールを100℃以上に昇温することによって十分に流動性を持たせたものが挙げられる。ディレイドコーキングプロセス中、少なくともドラム内入り口においては、これらの液体が450℃以上、さらには500℃、よりさらには510℃以上に昇温されていることが好ましく、それにより後工程での熱処理時に残炭率が高くなり、収率が向上する。また、ドラム内での圧力は好ましくは常圧以上、より好ましくは300kPa以上、さらに好ましくは400kPa以上に維持する。これにより負極としての容量がより高まる。以上の通り、通常よりも過酷な条件においてコーキングを行うことにより、液体をより反応させ、より重合度の高いコークスを得ることができる。
得られたコークスをドラム内からジェット水流により切り出し、得られた塊を5cm程度まで金槌等で粗粉砕する。粗粉砕には、二軸ロールクラッシャーやジョークラッシャーを用いることもできるが、好ましくは1mm篩上が90質量%以上となるように粉砕する。上記のように粉砕を行うことにより、以降の加熱の工程等において、乾燥後、コークス粉が舞い上がったり、焼損が増えるなどの不都合を防ぐことができる。
次にコークスを粉砕する。
乾式で粉砕を行う場合、粉砕時にコークスに水が含まれていると粉砕性が著しく低下するので、100〜1000℃程度で予め乾燥させることが好ましい。より好ましくは100〜500℃である。コークスが高い熱履歴を有していると圧砕強度が強くなり粉砕性が悪くなり、また結晶の異方性が発達してしまうので劈開性が強くなり鱗片状の粉末になり易くなる。粉砕する手法に特に制限はなく、公知のジェットミル、ハンマーミル、ローラーミル、ピンミル、振動ミル等が用いて行うことができる。
粉砕は、D V50 が2.0μm以上20.0μm以下となるように行うことが好ましく、5.0μm以上18.0μm以下がより好ましい。
黒鉛化は、不活性雰囲気(例えば、窒素ガスやアルゴンガス雰囲気)下で、好ましくは2400℃以上、より好ましくは2800℃以上、より一層好ましくは3050℃以上、さらに好ましくは3150℃以上の温度で行う。より高い温度で処理すると、より黒鉛結晶が成長し、リチウムイオンをより高容量で蓄えることが可能な電極を得ることができる。一方、温度が高過ぎると黒鉛粉の昇華を防ぐことが困難であり、必要とされるエネルギーも大きくなるため、黒鉛化温度は3600℃以下であることが好ましい。
これらの温度を達成するためには電気エネルギーを用いることが好ましい。電気エネルギーは他の熱源と比べると高価であり、特に2000℃以上を達成するためには、極めて大きな電力を消費する。そのため、黒鉛化以外に電気エネルギーは消費されない方が好ましい。黒鉛化に先んじて炭素原料は焼成され、有機揮発分が除去された状態、すなわち固定炭素分が95%以上、より好ましくは98%以上、さらに好ましくは99%以上となっていることが好ましい。この焼成は例えば700〜1500℃で加熱することにより行うことができる。焼成により黒鉛化時の質量減少が低減するため、黒鉛化処理装置で一度の処理量を高めることができる。
黒鉛化後は粉砕処理を行わないことが好ましい。ただし、黒鉛化後に粒子が粉砕しない程度に解砕することはできる。
黒鉛粒子を活物質として用いて電極を作製すると、電極圧縮時に電極内部で活物質が均一に分布しやすくなり、また隣接する粒子との接触も安定し、よって繰り返し充放電に一層優れた電池とすることができる。
(4)炭素質材料(A3)
本発明の好ましい実施態様における炭素質材料(A3)は、粒子(A2)とは異なるものであって、炭素原子により形成される結晶の発達が低い炭素材料であり、ラマン散乱分光法によるラマンスペクトルにおいて1360cm-1近傍にピークを持つ。また、炭素質材料(A3)は非晶質炭素被覆層(A1C)と同一であっても良い。
炭素質材料(A3)は、例えば、炭素前駆体を炭素化することによって製造することができる。前記炭素前駆体は、特に限定されないが、熱重質油、熱分解油、ストレートアスファルト、ブローンアスファルト、エチレン製造時に副生するタールまたは石油ピッチなどの石油由来物質、石炭乾留時に生成するコールタール、コールタールの低沸点成分を蒸留除去した重質成分、コールタールピッチ(石炭ピッチ)などの石炭由来物質が好ましく、特に石油系ピッチまたは石炭系ピッチが好ましい。ピッチは複数の多環芳香族化合物の混合物である。ピッチを用いると、高い炭素化率で、不純物の少ない炭素質材料(A3)を製造できる。ピッチは酸素含有率が少ないので、粒子(A1)を炭素質材料で被覆する際に、粒子(A1)が酸化されにくい。
炭素質材料(A3)の前駆体としてのピッチは、軟化点が、好ましくは80℃以上300℃以下である。ピッチの軟化点が80℃以上であれば、それを構成する多環芳香族化合物の平均分子量が小さ過ぎず、かつ揮発分も比較的少ないため、炭素化率の低下、製造コストの上昇、さらに細孔を多く含んだ比表面積の大きい炭素質材料(A3)が得られやすいといった問題は生じない。ピッチの軟化点が300℃以下であれば、粘度が高過ぎることがないため、粒子(A1)と均一に混ぜ合わせることができる。ピッチの軟化点はASTM−D3104−77に記載のメトラー法で測定することができる。
炭素質材料(A3)の前駆体としてのピッチは、残炭率が好ましくは20質量%以上70質量%以下、より好ましくは25質量%以上60質量%以下である。ピッチの残炭率が20質量%以上であれば、製造コストの上昇や、比表面積の大きい炭素質材料が得られるといった問題は生じない。ピッチの残炭率が70質量%以下であれば、粘度が高過ぎることがないため、粒子(A1)と均一に混合することができる。
残炭率は以下の方法で決定される。固体状のピッチを乳鉢等で粉砕し、粉砕物を窒素ガス流通下で質量熱分析する。1100℃における質量の仕込み質量に対する割合を残炭率と定義する。
本発明に用いられるピッチは、QI(キノリン不溶分)含量が、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下である。ピッチのQI含量はフリーカーボン量に対応する値である。フリーカーボンを多く含むピッチを熱処理すると、メソフェーズ球体が出現してくる過程で、フリーカーボンが球体表面に付着し三次元ネットワークを形成して、球体の成長を妨げるため、モザイク状の組織となりやすい。一方、フリーカーボンが少ないピッチを熱処理すると、メソフェーズ球体が大きく成長してニードルコークスを生成しやすい。QI含量が上記の範囲にあることにより、電極特性が一層良好になる。
また、本発明に用いられるピッチは、TI(トルエン不溶分)含量が、好ましくは10質量%以上70質量%以下である。TI含量が低いピッチは、それを構成する多環芳香族化合物の平均分子量が小さく、揮発分が多いので、炭素化率が低くなり製造コストが上昇し、細孔を多く含んだ比表面積が大きい炭素質材料が得られやすい。TI含量が高いピッチは、それを構成する多環芳香族化合物の平均分子量が大きいので炭素化率が高くなるが、TI含量の高いピッチは粘度が高いので、粒子(A1)と均一に混合させ難い傾向がある。TI含量が上記範囲にあることによりピッチとその他の成分とを均一に混合でき、かつ、電池用活物質として好適な特性を示す負極材を得ることができる。
本発明に用いられるピッチのQI含量及びTI含量はJIS K2425に記載されている方法またはそれに準じた方法により測定することができる。
前記の粒子(A1)、粒子(A2)及び炭素質材料(A3)の合計質量に対する炭素質材料(A3)の質量割合は好ましくは2質量%以上40質量%以下であり、より好ましくは4質量%以上30質量%以下である。
炭素質材料(A3)の割合が2質量%以上であれば、粒子(A1)と粒子(A2)の十分な結合が得られ、また、粒子(A1)の表面を炭素質材料(A3)で覆うことが可能となるため、粒子(A1)に導電性が付与され易くなり、粒子(A1)の表面反応性を抑制する効果や膨張収縮を緩和する効果が得られ、良好なサイクル特性が得られる。一方、炭素質材料(A3)の割合が40質量%以下であれば、炭素質材料(A3)の割合が高くても初期効率が低くなることはない。
(5)複合体(A)
本発明の一実施形態に係る複合体(A)は、粒子(A1)または構造体(α)(粒子(A1)が非晶質炭素被覆層(A1C)で被覆されている場合)と、粒子(A2)と、炭素質材料(A3)とを含み、粒子(A1)または構造体(α)と粒子(A2)と炭素質材料(A3)とは少なくともその一部が互いに複合化していることが好ましい。複合化とは、例えば、粒子(A1)または構造体(α)と粒子(A2)とが炭素質材料(A3)により固定されて結合している状態、あるいは粒子(A1)または構造体(α)及び/または粒子(A2)が炭素質材料(A3)により被覆されている状態を挙げることができる。本発明においては粒子(A1)または構造体(α)が炭素質材料(A3)によって完全に被覆され、粒子(A1)または構造体(α)の表面が露出していない状態となっていることが好ましく、その中でも粒子(A1)または構造体(α)と、粒子(A2)と、が炭素質材料(A3)を介して連結し、その全体が炭素質材料(A3)により被覆されている状態、及び構造体(α)と粒子(A2)とが直接接触し、その全体が炭素質材料(A3)により被覆されている状態が好ましい。
負極材として電池に用いた際に、粒子(A1)または構造体(α)の表面が露出しないことにより電解液分解反応が抑制されクーロン効率を高く維持することができ、炭素質材料(A3)を介して、粒子(A2)と粒子(A1)または構造体(α)が連結することによりそれぞれの間の導電性を高めることができ、粒子(A1)または構造体(α)が炭素質材料(A3)により被覆されることによりその膨張及び収縮に伴う体積変化を緩衝することができる。
本発明の一実施形態に係る複合体(A)には、複合化されていない、粒子(A2)、炭素質材料(A3)、粒子(A1)または構造体(α)が単独で含まれていてもよい。複合化されずに単独で含まれている粒子(A2)、炭素質材料(A3)、粒子(A1)または構造体(α)の量は少ない方が好ましく、具体的には、複合体(A)の質量に対して、好ましくは10質量%以下である。
本発明の一実施形態に係る複合体(A)のDV50は2.0μm以上20.0μm以下が好ましい。より好ましくは2.0μm以上18.0μm以下である。DV50が2.0μm以上であれば、経済性のよい製造が可能である。また、電極密度を上げることにも困難はない。さらに、比表面積が過度に大きくならないため、電解液との副反応による初期充放電効率の低下も起こらない。また、DV50が20.0μm以下であれば、良好な入出力特性とサイクル特性が得られる。
本発明の一実施形態に係る複合体(A)のBET比表面積(SBET)は1.0m2/g以上10.0m2/g以下が好ましい。より好ましくは1.0m2/g以上5.0m2/g以下である。BET比表面積(SBET)が1.0m2/g以上であれば、入出力特性が低下することなく、電極中での均一分布性が維持され、良好なサイクル特性が得られる。BET比表面積(SBET)が10.0m2/g以下であれば、塗工性が低下することなくハンドリング性が良好である。また、電極作製にバインダーを多く必要とすることもなく、電極密度を上げやすく、電解液との副反応による初期充放電効率の低下を抑制できる。
(6)複合体(A)の製造方法
本発明の一実施形態に係る複合体(A)は、公知の方法に従って製造することができる。
例えば、粒子(A1)または構造体(α)と、粒子(A2)と、炭素質材料(A3)の前駆体とを混ぜ合わせ、得られた混合物を熱処理して前記前駆体を炭素質材料(A3)とすることを含む方法によって複合体(A)を得ることができる。
粒子(A1)または構造体(α)と、粒子(A2)と、炭素質材料(A3)の前駆体との混合物は、例えば、炭素質材料(A3)前駆体の一つであるピッチを溶融させ、該溶融ピッチと、粒子(A1)または構造体(α)と、を不活性雰囲気にて混合し、該混合物を固化させた後に粉砕し、該粉砕物を粒子(A2)と混合することによって;粒子(A1)または構造体(α)と、粒子(A2)とを混合し、次いで、粒子(A1)または構造体(α)、及び粒子(A2)の混合物と炭素質材料(A3)前駆体とを混合してメカノケミカル処理を行うことによって;または炭素質材料(A3)前駆体を溶媒に溶解し、該前駆体溶液に粒子(A1)または構造体(α)と、粒子(A2)とを添加混合し、溶媒を除去して得られた固形物を粉砕することによって;得ることができる。メカノケミカル処理は、例えば、ハイブリダイザー(登録商標、株式会社奈良機械製作所製)などの公知の装置を用いることができる。
粉砕や混合のために、ボールミル、ジェットミル、ロッドミル、ピンミル、ロータリーカッターミル、ハンマーミル、アトマイザー、乳鉢等の公知の装置・器具を用いることができるが、粒子(A1)または構造体(α)の酸化度合いが高くならないような方法を採用することが好ましい。一般的に酸化は比表面積の大きい小粒径粒子ほど進みやすいと考えられるため、大粒径粒子の粉砕が優先的に進行し、小粒径粒子の粉砕はあまり進まない装置が好ましい。例えば、ロッドミル、ハンマーミルなどのような、主に衝撃によって粉砕する手段は、衝撃力が大粒径粒子に優先的に伝わり、小粒径粒子にはあまり伝わらない傾向がある。ピンミル、ロータリーカッターミルなどのような、主に衝撃とせん断によって粉砕する手段は、せん断力が大粒径粒子に優先的に伝わり、小粒径粒子にはあまり伝わらない傾向がある。このような装置を使用し、粒子(A1)または構造体(α)の酸化を進ませずに、粉砕や混合することができる。
また、粒子(A1)または構造体(α)の酸化進行を抑えるために、前記の粉砕・混合は非酸化性雰囲気で行うことが好ましい。非酸化性雰囲気としては、アルゴンガス、窒素ガスなどの不活性ガスを充満させた雰囲気が挙げられる。
炭素質材料(A3)前駆体を炭素質材料(A3)とするための熱処理は、好ましくは200℃以上2000℃以下、より好ましくは500℃以上1500℃以下、特に好ましくは600℃以上1200℃以下の温度で行う。この熱処理によって、炭素質材料(A3)が構造体(α)及び/または粒子(A2)を被覆し、また炭素質材料(A3)が、粒子(A1)相互の間、または構造体(α)相互の間、粒子(A2)相互の間、及び粒子(A1)と粒子(A2)との間または構造体(α)と粒子(A2)との間に入り込みこれらを連結した形態にすることができる。熱処理温度が低すぎると炭素質材料(A3)前駆体の炭素化が十分に終了せず、負極材中に水素や酸素が残留し、それらが電池特性に悪影響を及ぼすことがある。逆に熱処理温度が高過ぎると結晶化が進みすぎて充電特性が低下したり、粒子(A1)構成元素と炭素とが結合してLiイオンに対し不活性な状態を生じさせることがある。熱処理は、非酸化性雰囲気で行うことが好ましい。非酸化性雰囲気としては、アルゴンガス、窒素ガスなどの不活性ガスを充満させた雰囲気が挙げられる。また、熱処理により粒子が融着しで塊になっていることがあるため、熱処理品を電極活物質として用いるためには解砕することが好ましい。解砕方法としては、ハンマーなどの衝撃力を利用したパルベライザー、被解砕物同士の衝突を利用したジェットミルなどが好ましい。
(7)容量の調整
リチウムイオン二次電池用負極材として、電池性能を向上する目的やリチウムイオン二次電池用負極材の容量を調節する目的で、複合体(A)と炭素とを含む材料を混合してもよい。混合する炭素を含む材料は複数種類用いてもよい。炭素を含む材料としては容量の高い黒鉛が好ましい。黒鉛としては天然黒鉛、人造黒鉛から選択して用いることができる。この際、複合体(A)は比較的高容量(700mAh/g以上)である複合体を用いた方がリチウムイオン二次電池用負極材のコストが低減できるため好ましい。この容量調整用の炭素を含む材料は、予め複合体(A)と混合しておき、これにバインダー、溶剤、導電助剤等の添加剤を加えて負極用ペーストを作製してもよい。また、複合体(A)、炭素を含む材料、バインダー、溶剤、導電助剤等の添加剤を同時に混合して負極用ペーストを作製してもよい。混合の順序や方法は粉体のハンドリング等を考慮して適宜決めればよい。
(8)負極用ペースト
本発明の一実施形態に係る負極用ペーストは、前記負極材とバインダーと溶媒と必要に応じて導電助剤などの添加剤を含む。この負極用ペーストは、例えば、前記負極材とバインダーと溶媒と必要に応じて導電助剤などを混練することによって得ることができる。負極用ペーストは、シート状、ペレット状などの形状に成形することができる。
バインダーとして用いられる材料としては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、アクリルゴム、イオン伝導率の大きな高分子化合物などが挙げられる。イオン伝導率の大きな高分子化合物としては、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリファスファゼン、ポリアクリロニトリルなどが挙げられる。バインダーの量は、負極材100質量部に対して、好ましくは0.5質量部以上100質量部以下である。
導電助剤は電極に対し導電性及び電極安定性(リチウムイオンの挿入・脱離における体積変化に対する緩衝作用)を付与する役目を果たすものであれば特に限定されない。例えば、カーボンナノチューブ、カーボンナノファイバー、気相法炭素繊維(例えば、「VGCF(登録商標)」昭和電工株式会社製)、導電性カーボン(例えば、「デンカブラック(登録商標)」電気化学工業株式会社製、「Super C65」TIMCAL社製、「Super C45」TIMCAL社製、「KS6L」TIMCAL社製)などが挙げられる。導電助剤の量は、負極材100質量部に対して、好ましくは10質量部以上100質量部以下である。
溶媒は、特に制限はなく、N−メチル−2−ピロリドン、ジメチルホルムアミド、イソプロパノール、水などが使用できる。溶媒として水を使用するバインダーの場合は、増粘剤を併用することが好ましい。溶媒の量はペーストが集電体に塗布しやすいような粘度となるように調整すればよい。
(9)負極シート
本発明の一実施形態に係る負極シートは、集電体と、集電体を被覆する電極層とを有する。
集電体としては、例えば、ニッケル箔、銅箔、ニッケルメッシュまたは銅メッシュなどシート状のものが挙げられる。
電極層は、バインダーと前記の負極材とを含有する。電極層は、例えば、前記のペーストを集電体上に塗布し乾燥させることによって得ることができる。ペーストの塗布方法は特に制限されない。電極層の厚さは、好ましくは50〜200μmである。電極層が厚くなりすぎると、規格化された電池容器に負極シートを収容できなくなることがある。電極層の厚さは、ペーストの塗布量によって調整できる。また、ペーストを乾燥させた後、加圧成形することによっても調整することができる。加圧成形法としては、ロール加圧、プレス加圧などの成形法が挙げられる。プレス成形するときの圧力は、好ましくは100〜500MPa程度である。
負極シートの電極密度は次のようにして計算することができる。すなわち、プレス後の負極シートを直径16mmの円形状に打ち抜き、その質量と厚みを測定する。そこから別途測定しておいた集電体箔(直径16mmの円形状に打ち抜いたもの)の質量と厚みを差し引いて電極層の質量と厚みを求め、その値を元に電極密度を計算する。
(10)リチウムイオン二次電池
本発明の一実施形態に係るリチウムイオン二次電池は、非水系電解液及び非水系ポリマー電解質からなる群から選ばれる少なくとも一つ、正極シート、及び前記負極シートを有する。
正極シートとしては、リチウムイオン二次電池に従来から使われていたもの、具体的には正極活物質を含んでなるシートを用いることができる。正極活物質としては、LiNiO2、LiCoO2、LiMn24、LiNi0.34Mn0.33Co0.332、LiFePO4などが挙げられる。
リチウムイオン二次電池に用いられる非水系電解液及び非水系ポリマー電解質は特に制限されない。例えば、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3、CH3SO3Li、CF3SO3Liなどのリチウム塩を、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、アセトニトリル、プロピオニトリル、ジメトキシエタン、テトラヒドロフラン、γ−ブチロラクトンなどの非水系溶媒に溶かしてなる有機電解液;ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビリニデン、及びポリメチルメタクリレートなどを含有するゲル状のポリマー電解質;エチレンオキシド結合を有するポリマーなどを含有する固体状のポリマー電解質が挙げられる。
また、電解液には、リチウムイオン二次電池の初回充電時に分解反応が起きる物質を少量添加してもよい。該物質としては、例えば、ビニレンカーボネート(VC)、ビフェニール、プロパンスルトン(PS)、フルオロエチレンカーボネート(FEC)、エチレンスルトン(ES)などが挙げられる。添加量としては0.01質量%以上50質量%以下が好ましい。
リチウムイオン二次電池には正極シートと負極シートとの間にセパレータを設けることができる。セパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルムまたはそれらを組み合わせたものなどが挙げられる。
リチウムイオン二次電池は、携帯電話、携帯パソコン、携帯情報端末などの電子機器の電源;電動ドリル、電気掃除機、電動自動車などの電動機の電源;燃料電池、太陽光発電、風力発電などによって得られた電力の貯蔵などに用いることができる。
以下に本発明について実施例及び比較例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。なお、実施例及び比較例において、粒子(A1)の一次粒子の平均粒子径dAV、非晶質炭素被覆層(A1C)の厚さ、人造黒鉛粒子のX線回折法による(002)面の平均面間隔d002及び結晶子のC軸方向の厚さLC、ラマン分光スペクトルにおけるR値は本明細書の「発明を実施するための形態」に記載した方法により測定する。また、その他の物性の測定及び電池評価は下記のように行った。
[粒子径DV50
粉体を極小型スパーテル2杯分、及び非イオン性界面活性剤(TRITON(登録商標)−X;Roche Applied Science製)2滴を水50mlに添加し、3分間超音波分散させた。この分散液をレーザー回折式粒度分布測定器(LMS−2000e、株式会社セイシン企業製)に投入し、体積基準累積粒度分布を測定して50%粒子径DV50を求めた。
[比表面積]
比表面積/細孔分布測定装置(カンタムクローム・インスツルメンツ社製、NOVA 4200e)を用い、窒素ガスをプローブとして相対圧0.1、0.2、及び0.3のBET多点法によりBET比表面積SBET(m2/g)を測定した。
[細孔容積]
炭素材料約5gをガラス製セルに秤量し、1kPa以下の減圧下300℃で約3時間乾燥して、水分等の吸着成分を除去した後、炭素材料の質量を測定した。その後、液体窒素冷却下における乾燥後の炭素材料の窒素ガスの吸着等温線をカンタクローム(Quantachrome)社製Autosorb−1で測定した。得られた吸着等温線のP/P0=0.992〜0.995での測定点における窒素吸着量と乾燥後の炭素材料の質量から直径0.4μm以下の全細孔容積(μL/g)を求めた。
[粒子(A1)の短径/長径比]
粒子(A1)の短径/長径比は、負極シートをカッター等の刃物で切断したときの切断面を、クロスセクションポリッシャーを用いて研磨した後、走査型電子顕微鏡(SEM)で観察した像を用いて測定した。具体的には、3.0〜5.0kV範囲の走査電圧で、10万倍の倍率でSEM観察を行い、視野内が複合体粒子(A)のみであり、かつ粒子(A2)が視えない視野で像を撮影した。撮影した像において粒子(A1)の短径/長径比を計測した。具体的には、画像処理ソフトウェアを用いて、上記像から以下のようにして求めた。まず、粒子の輪郭線上の任意の2点間の最大距離として長径を求めた。次に、長径の線分に平行な2直線で粒子の断面形状を挟んだときの2直線間の距離として短径を求めた。短径を長径で割って短径/長径比とした。
[(111)回折ピークの半値幅]
粒子(A1)の(111)回折ピークの半値幅は、粉末X線回折法により以下のようにして測定した。
Si粉末試料をガラス製試料板(試料板窓18×20mm、深さ0.2mm)に充填し、以下の条件で測定した。
XRD装置:リガク製SmartLab(登録商標)、
X線種:Cu−Kα線、
Kβ線除去方法:Niフィルター、
X線出力:45kV、200mA、
測定範囲:5.0〜60.0deg、
スキャンスピード:10.0deg./min。
[(110)面と(004)面の回折ピーク強度比I110/I004
粒子(A2)の黒鉛結晶の(110)面の回折ピーク強度I110と(004)面の回折ピーク強度I004の比I110/I004は、粉末X線回折法により以下のようにして測定した。
炭素粉末試料をガラス製試料板(試料板窓18×20mm、深さ0.2mm)に充填し、下記条件で測定した。
X線回折装置:リガク製SmartLab(登録商標)、
X線種:Cu−Kα線、
Kβ線除去方法:Niフィルター、
X線出力:45kV、200mA、
測定範囲:5.0〜10.0deg、
スキャンスピード:10.0deg/min。
得られた波形に対し、平滑化、バックグラウンド除去、Kα2除去を行い、プロファイルフィッティングを行った。その結果得られた(004)面のピーク強度I004と(110)面のピーク強度I110から配向性の指標となる強度比I110/I004を算出した。なお、各面のピークは以下の範囲のうち最大の強度のものをそれぞれのピークとして選択した。
(004)面:54.0〜55.0deg
(110)面:76.5〜78.0deg
[正極シートの製造]
LiNi0.6Mn0.2Co0.22を192g、導電助剤としてカーボンブラック4g、及び結着材としてポリフッ化ビニリデン(PVdF)4gにN−メチルピロリドンを適宜加えながら撹拌・混合し、スラリー状の正極用ペーストを得た。
前記の正極用ペーストを厚さ20μmのアルミ箔上にロールコーターにより塗布し、乾燥させて正極用シートを得た。乾燥した電極はロールプレスにより密度を3.6g/cm3とし、電池評価用正極シートを得た。
[負極シートの製造]
バインダーとしてカルボキシメチルセルロース(CMC;株式会社ダイセル製、CMC1300)を用いた。具体的には、固形分比2%のCMC粉末を溶解した水溶液を得た。
導電助剤としてカーボンブラック、カーボンナノチューブ(CNT)、及び気相成長法炭素繊維(VGCF(登録商標)−H,昭和電工株式会社製)を用意し、それぞれ3:1:1(質量比)で混合したものを混合導電助剤とした。
後述の実施例及び比較例で製造した複合体(A)と、容量を調節する目的の炭素を含む材料としての黒鉛の混合物を90質量部、混合導電助剤2質量部、CMC固形分8質量部となるようにCMC水溶液を混合し、自転・公転ミキサーにて混練し負極用ペーストを得た。
または、実施例及び比較例で製造した複合体(A)を90質量部、混合導電助剤2質量部、CMC固形分8質量部となるようにCMC水溶液を混合し、自転・公転ミキサーにて混練し負極用ペーストを得た。
前記の負極用ペーストを厚み20μmの銅箔上に300μmギャップのドクターブレードを用いて均一に塗布し、ホットプレートにて乾燥後、真空乾燥させて負極シートを得た。乾燥した電極は300MPaの圧力にて一軸プレス機によりプレスして電池評価用負極シートを得た。
[正負極容量比の微調整]
正極シートと負極シートを対向させてリチウムイオン電池を作製する際、両者の容量バランスを考慮する必要がある。すなわち、リチウムイオンを受け入れる側の負極の容量が少な過ぎると過剰なLiが負極側に析出してサイクル劣化の原因となり、逆に負極の容量が多過ぎるとサイクル特性は向上するものの負荷の小さい状態での充放電となるためエネルギー密度は低下する。これを防ぐために、正極シートは同一のものを使用しつつ、負極シートは対極Liのハーフセルにて事前に活物質質量当たりの放電量を評価しておき、正極シートの容量(QC)に対する負極シートの容量(QA)の比が1.2で一定値となるよう負極シートの容量を微調整した。
[評価用電池の作製]
露点−80℃以下の乾燥アルゴンガス雰囲気に保ったグローブボックス内で下記の操作を実施した。
[二極式ラミネート型フルセル]
上記負極シート及び正極シートを打ち抜いて面積20cm2の負極片及び正極片を得た。正極片のAl箔にAlタブを、負極片のCu箔にNiタブをそれぞれ取り付けた。ポリプロピレン製フィルム微多孔膜を負極片と正極片との間に挟み入れ、その状態でアルミラミネート包材でパックし、電解液を700μL注液した。その後、開口部を熱融着によって封止して評価用の電池を作製した。なお、電解液は、エチレンカーボネート、エチルメチルカーボネート、及びジエチルカーボネートが体積比で3:5:2の割合で混合した溶媒にビニレンカーボネート(VC)を1質量%、フルオロエチレンカーボネート(FEC)を10質量%混合し、さらにこれに電解質LiPF6を1mol/Lの濃度になるように溶解させた液である。
[三極式ラミネート型ハーフセル]
上記負極シートを打ち抜いた面積4cm2(Cu箔タブ付き)の負極片及び、Liロールを切り抜いた面積7.5cm2(3.0cm×2.5cm)の対極用Li片と、面積3.75cm2(1.5cm×2.5cm)の参照極用Li片を得た。対極、参照極用の5mm幅のNiタブを用意し、その先端5mmの部分と重なるように5mm×20mmのNiメッシュを取り付けた。この際、Niタブの5mm幅とNiメッシュの5mm幅が一致するようにした。作用極のNiタブには上記負極片のCu箔タブを取り付けた。対極用Niタブ先端のNiメッシュは対極用Li片の3.0cm辺と垂直になるように、Li片の角に貼り付けた。参照極用Niタブ先端のNiメッシュは参照極用Li片の1.5cm辺と垂直になるように、Li片の1.5cm辺中央に貼り付けた。ポリプロピレン製フィルム微多孔膜を作用極と対極の間に挟み入れ、参照極は短絡しないように作用極の近くかつポリプロピレン製フィルム微多孔膜を介して液絡させ、その状態でアルミラミネート包材でパックし、電解液を注液した。その後、開口部を熱融着によって封止して評価用の電池を作製した。なお、電解液は二極式ラミネート型フルセルと同じく、エチレンカーボネート、エチルメチルカーボネート、及びジエチルカーボネートが体積比で3:5:2の割合で混合した溶媒にビニレンカーボネート(VC)を1質量%、フルオロエチレンカーボネート(FEC)を10質量%混合し、さらにこれに電解質LiPF6を1mol/Lの濃度になるように溶解させて得られた液である。
[充電、放電の定義]
下記実施例及び比較例においては、三極式ラミネート型ハーフセルと二極式ラミネート型フルセルの両者について評価を実施した。ここで、両者においては負極シートに対する充電放電の意味が異なる。
充電とはセルに対して電圧を付与することであり、放電とはセルの電圧を消費する操作である。
三極式ラミネート型ハーフセルの場合は、対極はLi金属となり、上記負極シートは実質正極として扱われる。従って、三極式ラミネート型ハーフセルでの充電とは、上記負極シートからLiを放出する操作となる。一方で三極式ラミネート型ハーフセルの放電とは、上記負極シートに対してLiを挿入する操作となる。
一方、二極式ラミネート型フルセルの場合、対極はLi金属でなく、上記負極シートよりも高い酸化還元電位を有する材料を適用する。そのため、負極シートは負極として扱われる。従って、二極式ラミネート型フルセルにおいて、充電とは上記負極シートに対してLiを挿入する操作を意味し、放電とは上記負極操作からLiを放出する操作を意味する。
[初期脱Li容量、初期クーロン効率の測定試験]
三極式ラミネート型ハーフセルを用いて試験を行った。レストポテンシャルから0.005V vs.Li/Li+まで電流値0.1CでCC(コンスタントカレント:定電流)放電を行った。次に0.005V vs.Li/Li+でCV(コンスタントボルト:定電圧)放電に切り替え、カットオフ電流値0.005Cで放電を行った。
上限電位1.5V vs.Li/Li+としてCCモードで電流値0.1Cで充電を行った。
試験は25℃に設定した恒温槽内で行った。この際、初回の作用極からのLi放出時の容量を初期脱Li容量とした。また初回充放電時の電気量の比率、すなわちLi放出電気量/Li挿入電気量を百分率で表した結果を初期クーロン効率とした。
[三極式ラミネート型ハーフセルを用いた充放電サイクル試験]
三極式ラミネート型ハーフセルを用いたサイクル試験は、上記初期脱Li容量、初期クーロン効率の測定試験とは異なる充放電スキームで実施した。
エージングは6サイクル行った。エージングの内1サイクル目は、レストポテンシャルから0.005V vs.Li/Li+まで電流値0.05CのCC放電を行った。充電は0.05CのCCモードで1.5V vs.Li/Li+まで行った。エージングの内2〜6サイクル目は、0.005Vvs.Li/Li+まで0.2Cの電流でCC放電したあと、0.005V vs.Li/Li+でCV放電に切り替え、カットオフ電流値を0.025Cで放電を行った。充電は0.2Cの電流で1.5V vs.Li/Li+までCCモードで実施した。
上記エージングを行った後、次の方法で充放電サイクル試験を行った。
放電は、電流値1CのCCモードで0.005V vs.Li/Li+まで行った後、CVモードの放電に切り替え、カットオフ電流値を0.025Cにして実施した。
充電は、電流値1CのCCモードで1.5V vs.Li/Li+まで行った。
この充放電操作を1サイクルとして20サイクル行い、21サイクル目に上記充放電の1Cを0.1Cに置き換えた低レート試験を行った。この21サイクル試験を5回繰り返し、計105サイクルの試験とした。
100サイクル目の充電(脱Li)容量維持率を次式で定義して計算した。
Figure 0006619123
また、1サイクル目から100サイクル目までの平均クーロン効率は次式で定義した。
Figure 0006619123
上記の式における1サイクル目充電容量はエージング終了後の1サイクル目を意味する。Nサイクル目におけるクーロン効率は(Nサイクル目Li放出電気量)/(Nサイクル目Li挿入電気量)を百分率にすることで計算した。
充放電カーブは縦軸を電位、横軸を電気容量で表すことができる。このうち、Li放出(充電)開始から終了までの電位を加算平均することで充電平均電位を求めた。
[二極式ラミネート型フルセルを用いた充放電サイクル試験]
二極式ラミネート型フルセルを用いたサイクル試験では、エージングは5サイクル実施した。エージングの内1サイクル目は、レストポテンシャルから0.025Cの電流値で6時間45分間CCモードにて充電し、12時間の休止を導入した。その後さらに4.2Vまで0.05CでCC充電を実施した。放電は、0.05Cの電流値にて2.7VまでCCモードで実施した。エージングの2サイクル目、5サイクル目は同一の条件であり、充電は、4.3Vまで電流値0.1CでCC充電したあと、4.3VでCV充電に切り替え、カットオフ電流値を0.025Cで充電を行った。放電は、0.1Cの電流値にて2.7VまでCCモードで実施した。エージングの3サイクル目、4サイクル目は同一の条件であり、エージング2サイクル目、5サイクル目の電流値を0.1Cから0.2Cに置き換えた。
上記エージングを行った後、次の方法で充放電サイクル試験を行った。
充電は、電流値1CのCCモードで4.3Vまで行った後、CVモードの放電に切り替え、カットオフ電流値を0.05Cにして実施した。
放電は、電流値1CのCCモードで3.0Vまで行った。
この充放電操作を1サイクルとして20サイクル行い、21サイクル目に上記充放電の1Cを0.1Cに置き換えた低レート試験を行った。この21サイクル試験を繰り返し、計500サイクルの試験とした。
Nサイクル目の放電容量維持率を次式により計算した。
(Nサイクル後放電容量維持率(%))=
{(Nサイクル時放電容量)/(初回放電容量)}×100
この式における初回放電容量とはエージング終了後の1サイクル目を意味する。
[電解液添加剤フルオロエチレンカーボネート(FEC)消費量の定量]
上記504サイクルの試験が終わった放電後の二極式ラミネート型フルセルを回収後、露点−80℃以下の乾燥アルゴンガス雰囲気に保ったグローブボックス内で、フルセルの一辺(注液を行った辺)をはさみで切り取り開封した。フルセル内部電解液700μLに対し、セル開口部から4300μLのエチルメチルカーボネート(EMC)を注液した。フルセル内部電解液700μLと、追加投入したEMC4300μLをフルセル内部で均一に撹拌し、この均一溶液を回収した。回収した溶媒をGC−MSにかけることで定量を行った。GC−MSの条件は次の通りである。
GC(Agilent製 7890A)
Column:DB−5MS(J&W Scientific)
[30mm×0.32mm,0.25μm]、
Oven:40℃(5min)→[20℃/min]
→320℃(10min)、
Inlet Temperature:250℃、
Split:1:20、
Flow:He,1.5ml/min(Constant Flow)、
Injection:0.2μL、
MS(JEOL製 JMS−Q1000)
Mass Range:m/z10−500
(※Quantification;m/z=106)、
Mode:Scan
Detector Voltage:−1000V、
Ionization Current:300μA、
Ionization Energy:70eV、
Ion Source Temperature:200℃、
GC−ITF Temperature:250℃、
Ionization:EI。
[電極膨張率の測定]
上記504サイクルの試験が終わった放電後の二極式ラミネート型フルセルを回収後、露点−80℃以下の乾燥アルゴンガス雰囲気に保ったグローブボックス内で解体し、負極を取り出した。負極をエチルメチルカーボネート(EMC)で洗浄した後、ダイヤルゲージ(株式会社ミツトヨ製;Code.No547−401 目盛り0.001mm)を用いて電極の厚みを測定した。測定箇所はタブ取り付けの側電極短辺に沿った9箇所とし、その測定値の平均値を電極厚みとした。電極膨張率を求める際の基準となる電極としてはプレス直後の電極を使用した。なお、ここでの電極厚みは、全て銅箔集電体の厚みを差し引いた値を意味している。
実施例及び比較例で使用した材料は以下の通りである。
(1)ケイ素含有粒子(Si微粒子)
下記の実施例及び比較例で、粒子(A1)に使用したSi粒子、Si(1)〜Si(3)の物性を表1に示す。
一次粒子の平均粒子径dAVは前述の通り、dAV[nm]=6×103/(ρ×SBET)である。ここで、ρはSi粒子の真密度(理論値としての2.3[g/cm3])であり、SBETはBET法により測定した比表面積[m2/g]である。
Figure 0006619123
(2)構造体(α)の作製
Si微粒子Si(1)をCVD法で作製後、連続してアセチレンガスを原料に用いてCVD法で厚さ2nmの炭素被覆層形成させることにより構造体(α)−1を得た(表1)。なお、Si微粒子Si(2)及びSi(3)については、構造体(α)の作製は行わなかった。
(3)ピッチ
石油ピッチ(軟化点220℃)を使用した。この石油ピッチについて、窒素ガス流通下の熱分析により1100℃における残炭率を測定したところ、52質量%であった。
また、JIS K2425に記載されている方法またはそれに準じた方法で測定した石油ピッチのQI含量は0.62質量%、TI含量は48.9質量%であった。
(4)黒鉛粒子
実施例及び比較例で、粒子(A2)と共に、容量調節の目的で炭素を含む材料として使用した黒鉛粒子の物性を表2に示す。
Figure 0006619123
実施例1:
石油系コークスをバンタムミル(ホソカワミクロン株式会社製)で粉砕した後、さらにジェットミル(株式会社セイシン企業製)で粉砕し、これをアチソン炉にて3000℃で熱処理して、DV50が7.5μm、BET比表面積が4.9m2/gの人造黒鉛粒子(A2)−aを得た。
次に、構造体(α)−1 16.4質量部と炭素質材料(A3)の前駆体である前記の石油ピッチ15.4質量部(石油ピッチを炭化した後の質量として)とをセパラブルフラスコに投入した。窒素ガスを流通させて不活性雰囲気を保ち、250℃まで昇温した。ミキサーを500rpmで回転させて撹拌し、ピッチとケイ素含有粒子とを均一に混合させた。これを冷却し固化させて混合物を得た。
この混合物に、粒子(A2)−aである前記の人造黒鉛粒子68.2質量部を加え、ロータリーカッターミルに投入し、窒素ガスを流通させて不活性雰囲気を保ちつつ25000rpmで高速撹拌し混合させた。
これを焼成炉に入れ、窒素ガス流通下で、150℃/hで1100℃まで昇温し、1100℃にて1時間保持し、(A3)前駆体を(A3)に変換した。室温まで冷やし焼成炉から取り出しロータリーカッターミルで解砕後、45μm目開きの篩にて篩分した篩下を複合体(A)−aとして得た。この複合体(A)−aについてD V50 を測定した結果を表3に示す。
上記とは別に、石油系コークスをバンタムミル(ホソカワミクロン株式会社製)で粉砕し、これをアチソン炉にて3000℃で熱処理して、DV50が12.1μm、BET比表面積が2.5m2/gの黒鉛(1)を得た。また、石油系コークスをバンタムミル(ホソカワミクロン株式会社製)で粉砕した後、さらにジェットミル(株式会社セイシン企業製)で粉砕し、これをアチソン炉にて3000℃で熱処理して、DV50が6.7μmでBET比表面積が6.1m2/gの黒鉛(2)を得た。
複合体(A)−a単体を負極活物質として負極シートを作製し、これを用いて三極式ラミネート型ハーフセルを作製した。また、複合体(A)−a67.0質量部と黒鉛(1)16.5質量部と黒鉛(2)16.5質量部との混合物を負極活物質として負極シートを作製し、これを用いて三極式ラミネート型ハーフセルと二極式ラミネート型フルセルを作製した。これら3種類のセルについて電池特性を測定した結果を表3に示す。
実施例2:
構造体(α)−1を表1のSi(2)に替えた以外は、実施例1と同じ方法で複合体(A)−bを得た。この複合体(A)−bについてD V50 を測定した結果を表3に示す。
複合体(A)−aの代わりに複合体(A)−bを用いた以外は実施例1と同様にして3種類のセルを作製した。これら3種類のセルについて電池特性を測定した結果を表3に示す。

比較例1:
構造体(α)−1を表1のSi(3)に替えた以外は、実施例1と同じ方法で複合体(A)−cを得た。この複合体(A)−cについてDV50を測定した結果を表3に示す。
複合体(A)−aの代わりに複合体(A)−cを用いた以外は実施例1と同様にして3種類のセルを作製した。これら3種類のセルについて電池特性を測定した結果を表3に示す。
Figure 0006619123
表3に示す結果において、実施例1及び2と、比較例1とを比べると、粒子(A)の短径/長径比が0.70以上の粒子(A)の割合が多い実施例1及び2では、この割合が小さい比較例1に較べて高い容量維持率(サイクル特性)が得られている。また、実施例1及び2の方がFECの消費量も少なくなっている。

Claims (8)

  1. 一次粒子の平均粒子径dAVが5nm以上95nm以下であるSiを含む粒子(A1)と、黒鉛を含む物質からなる粒子(A2)と、粒子(A1)の表面に形成される炭素質材料(A3)とを含む複合体(A)を含むリチウムイオン二次電池用負極材であって、複合体(A)の断面を走査型電子顕微鏡で測定した像において、ランダムに選択した100個の粒子(A1)中に、短径/長径比が0.70以上の粒子(A1)が80個以上存在するリチウムイオン二次電池用負極材。
  2. 粒子(A1)を被覆する厚さ1nm以上20nm以下の非晶質炭素被覆層(A1C)を含む請求項1に記載のリチウムイオン二次電池用負極材。
  3. 前記複合体(A)に含まれる粒子(A1)が、粉末X線回折法における(111)回折ピークの半値幅が0.38度以上0.71度以下である請求項1または2に記載のリチウムイオン二次電池用負極材。
  4. 前記粒子(A2)は、体積基準累積粒度分布における50%粒子径DV50が2.0μm以上20.0μm以下であり、BET比表面積(SBET)が1.0m2/g以上10.0m2/g以下である請求項1〜3のいずれか1項に記載のリチウムイオン二次電池用負極材。
  5. 前記粒子(A2)は、粉末X線回折法による黒鉛結晶の(110)面のピーク強度I110と(004)面のピーク強度I004の比I110/I004が0.10以上0.35以下であり、粉末X線回折法による(002)面の平均面間隔d002が0.3360nm以下であり、窒素ガス吸着法によって測定される直径0.4μm以下の細孔の全細孔容積が5.0μL/g以上40.0μL/g以下である黒鉛粒子である、請求項4に記載のリチウムイオン二次電池用負極材。
  6. 前記複合体(A)中の粒子(A1)の含有率が10質量%以上70質量%以下である、請求項1〜5のいずれか1項に記載のリチウムイオン二次電池用負極材。
  7. シート状集電体及び集電体を被覆する負極層を有し、前記負極層はバインダー、導電助剤及び請求項1〜6のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極シート。
  8. 請求項7に記載の負極シートを有するリチウムイオン二次電池。
JP2019537189A 2017-12-28 2018-12-27 リチウムイオン二次電池用負極材 Expired - Fee Related JP6619123B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017253373 2017-12-28
JP2017253373 2017-12-28
PCT/JP2018/048099 WO2019131861A1 (ja) 2017-12-28 2018-12-27 リチウムイオン二次電池用負極材

Publications (2)

Publication Number Publication Date
JP6619123B2 true JP6619123B2 (ja) 2019-12-11
JPWO2019131861A1 JPWO2019131861A1 (ja) 2020-01-16

Family

ID=67063812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019537189A Expired - Fee Related JP6619123B2 (ja) 2017-12-28 2018-12-27 リチウムイオン二次電池用負極材

Country Status (3)

Country Link
JP (1) JP6619123B2 (ja)
TW (1) TW201933660A (ja)
WO (1) WO2019131861A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220352493A1 (en) * 2019-10-09 2022-11-03 Umicore A powder for use in the negative electrode of a battery and a battery comprising such a powder
WO2021189317A1 (zh) * 2020-03-25 2021-09-30 宁德新能源科技有限公司 负极材料、电化学装置以及电子装置
KR20230017259A (ko) 2020-05-28 2023-02-03 쇼와 덴코 가부시키가이샤 복합체 입자, 부극 활물질 및 리튬 이온 이차 전지
WO2021241750A1 (ja) * 2020-05-28 2021-12-02 昭和電工株式会社 複合粒子、負極材およびリチウムイオン二次電池
WO2021256558A1 (ja) * 2020-06-18 2021-12-23 Eneos株式会社 リチウムイオン二次電池負極用人造黒鉛材料、及びその製造方法
JP7490079B2 (ja) 2021-09-08 2024-05-24 寧徳時代新能源科技股▲分▼有限公司 負極シート及び二次電池、電池パック、電池モジュール並びに電力消費装置
CN116190592A (zh) * 2022-12-14 2023-05-30 贝特瑞新材料集团股份有限公司 负极材料及锂离子电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5257740B2 (ja) * 2008-01-30 2013-08-07 東海カーボン株式会社 リチウム二次電池の負極材用複合炭素材料及びその製造方法
JP2013157339A (ja) * 2013-05-23 2013-08-15 Jfe Chemical Corp リチウムイオン二次電池用負極合剤
KR101857981B1 (ko) * 2013-08-05 2018-05-15 쇼와 덴코 가부시키가이샤 리튬 이온 전지용 부극재 및 그 용도

Also Published As

Publication number Publication date
WO2019131861A1 (ja) 2019-07-04
TW201933660A (zh) 2019-08-16
JPWO2019131861A1 (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6619123B2 (ja) リチウムイオン二次電池用負極材
KR102132618B1 (ko) 리튬 이온 전지용 부극재 및 그 용도
EP3133678B1 (en) Negative electrode material for lithium-ion battery, and use therefor
CN110098399B (zh) 复合体的制造方法和锂离子电池用负极材料
WO2018047939A1 (ja) リチウムイオン二次電池用負極材
WO2019131862A1 (ja) リチウムイオン二次電池用負極材
JP6291414B2 (ja) リチウムイオン二次電池負極用炭素材およびその製造方法並びに用途
JPWO2014092141A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極シート及びリチウム二次電池
WO2019131864A1 (ja) リチウムイオン二次電池用負極材
JP2014186955A (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
WO2019131860A1 (ja) リチウムイオン二次電池用負極材
JP2015219989A (ja) リチウムイオン2次電池用負極活物質およびその製造方法
WO2019131863A1 (ja) リチウムイオン二次電池用負極材

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190708

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190708

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191113

R150 Certificate of patent or registration of utility model

Ref document number: 6619123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees