WO2009131175A1 - 金属材料中微粒子の粒度分布測定方法 - Google Patents

金属材料中微粒子の粒度分布測定方法 Download PDF

Info

Publication number
WO2009131175A1
WO2009131175A1 PCT/JP2009/058072 JP2009058072W WO2009131175A1 WO 2009131175 A1 WO2009131175 A1 WO 2009131175A1 JP 2009058072 W JP2009058072 W JP 2009058072W WO 2009131175 A1 WO2009131175 A1 WO 2009131175A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
particle size
metal material
measuring
size distribution
Prior art date
Application number
PCT/JP2009/058072
Other languages
English (en)
French (fr)
Inventor
水上 和実
村上 健一
新井 聡
宣郷 森重
久保 祐治
穂高 本間
英一 難波
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2010509216A priority Critical patent/JP4572001B2/ja
Priority to EP09733952.7A priority patent/EP2270469B1/en
Priority to PL09733952T priority patent/PL2270469T3/pl
Priority to CN2009801145433A priority patent/CN102016543B/zh
Priority to KR1020107023637A priority patent/KR101165162B1/ko
Priority to US12/934,031 priority patent/US8384897B2/en
Publication of WO2009131175A1 publication Critical patent/WO2009131175A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/0005Field flow fractionation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2022Non-metallic constituents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective

Definitions

  • the present invention provides field flow fractionation (FFF).
  • FFF field flow fractionation
  • the present invention relates to a method for measuring the particle size of fine particles (precipitates and non-metallic inclusions) in a metal material using a Flow Fractionation method.
  • Patent Document 1 describes a method aiming to compensate for such a low number density in microscopic observation.
  • this conventional method first, steel is electrolyzed, and the extracted residue is dropped and dried on a support film to prepare a sample having an extremely large number of residue particles. Next, this sample is subjected to optical microscope analysis, scanning electron microscope (SEM) analysis, transmission electron microscope (TEM) analysis, and the like.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • Patent Document 2 Another evaluation method different from the microscope test method is described in Patent Document 2 and Non-Patent Document 2.
  • a spark discharge emission analysis of about 2000 pulses is performed on a metal sample, and the oxide particle size is obtained from discharge data obtained by removing preliminary discharge data of initial several hundred pulses.
  • a very strong light emission (abnormal light emission) intensity of an oxide-forming element emits light from one oxide.
  • Non-Patent Document 3 describes another method for obtaining the size and frequency of alumina inclusions.
  • a spark discharge emission analysis is performed on a metal sample, and in the obtained emission analysis data, it is assumed that only pulse data exceeding a certain threshold is inclusions, etc. I'm looking for size and frequency.
  • compositional analysis utilizing simultaneous multi-element light emission can be performed because optical information such as light emission intensity is processed as data.
  • the solid solution component contained in the matrix since the fine particles such as inclusions that contribute to light emission are in principle larger than several ⁇ m, the solid solution component contained in the matrix must be a fine particle of such a size. Cannot be compared with the pulse intensity. That is, the emission analysis method cannot be applied to fine particles smaller than several ⁇ m, and accurate analysis cannot be performed.
  • JP 2004-317203 A Japanese Patent Laid-Open No. 10-300659 Japanese Patent Laid-Open No. 2005-62166
  • the present invention is capable of quickly and accurately quantitatively analyzing the size and number density of fine particles contained in a metal material, and preferably capable of quickly and accurately quantitatively analyzing the composition and crystal structure of the fine particles. It is an object of the present invention to provide a method for measuring the particle size distribution of medium fine particles.
  • the present invention has been made to solve the above-mentioned problems, and the gist thereof is as follows.
  • Process A method for measuring the particle size distribution of fine particles in a metal material.
  • the size and number density of fine particles contained in a metal material can be quantified quickly and with good reproducibility. For this reason, the particle size distribution can be accurately measured.
  • FIG. 1 is a flowchart showing a basic flow of a particle size distribution measuring method for fine particles in a metal material according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of the in-steel particle extraction device 1.
  • FIG. 3 is a diagram illustrating an example of a method for preparing a solution used in the particle fine dispersion device 2.
  • FIG. 4 is a diagram showing the size separation principle of the FFF method.
  • FIG. 5 is a graph showing the measurement results of the relationship between the particle size and the number density distribution.
  • FIG. 6 is a graph showing a comparison result of the number of days required for the number density analysis between the embodiment of the present invention and the conventional method.
  • FIG. 7 is a graph showing the composition analysis results of fine particles sieved for each nanosize.
  • An important matter in the present invention is to enable quick and accurate quantitative analysis of the particle size and number density of fine particles contained in a metal material to be measured. In addition to overcoming the problems inherent in sensory tests, such as errors and time, and providing a method for clearly grasping the number density of fine particles of several ⁇ m or less that cannot be detected by the estimation method using emission spectrometry. It is important to be able to measure size and number density with high reproducibility.
  • the inventors examined sieving for each particle size before photographing.
  • a minimum size of about 20 ⁇ m is the smallest currently available, and it is difficult to divide a smaller size by size. Therefore, the present inventors have repeated research specialized in a method of sieving fine particles of 20 ⁇ m or less for each size.
  • the size and amount can be determined by ionizing them as they are and subjecting them to mass spectrometry or separating and extracting them by ion chromatography.
  • the fine particles in steel are much larger than biological samples and are difficult to soft ionize.
  • dissolves for ionization the information regarding a size will disappear. For this reason, it cannot be dissolved.
  • positive ions and negative ions are not clearly charged in the solution, and therefore cannot be separated by ion chromatography or the like.
  • a size separation method by GPC gel permeation chromatography was also examined, but it is unsuitable for high-precision separation of minute amounts.
  • the measurable molecular weight range is as wide as several hundred to several tens of millions, the fine particles in actual metal materials range from several nanometers to several tens of micrometers, so the molecular weight is low at tens of millions of orders. This is because it is impossible to separate the sample and a large amount of sample is required.
  • FFF Field Flow Fractionation
  • the fine particles are sieved in advance for each size.
  • FIG. 1 shows a basic flow of a method for measuring the particle size distribution of fine particles in a metal material according to an embodiment of the present invention.
  • the fine particle analyzer used for carrying out the present embodiment mainly includes a steel particle extracting device 1, a particle fine dispersing device 2, and an FFF device 3.
  • the fine particle size distribution measuring method according to the present embodiment first, the fine particles contained in the metal material are stably extracted using the in-steel particle extracting device 1. Next, the fine particle in the above-described metal material is finely dispersed in the solution by the fine particle dispersion device 2 without being aggregated in the solution. Then, the fine particles in the metal material finely dispersed in the solution are put into the FFF device 3 and the fine particles are classified by size, measured for size, and measured for number density. An example of the operation of the FFF device 3 is shown below.
  • the particles are divided into the sizes by focusing, and then the small particles are sequentially separated from the large particles. Let it flow out in order.
  • Laser light is applied to the obtained solution, the absolute value of the size is determined from the angle dependence of the reflection intensity, and the absolute value of the number density is determined from the intensity of the reflection intensity.
  • the steel particle extraction apparatus 1 is an apparatus that stably extracts fine particles from metal.
  • FIG. 2 is a diagram illustrating an example of the in-steel particle extraction device 1.
  • the extraction method of fine particles in a metal sample in this embodiment is, for example, an acid decomposition method in which an iron matrix of a steel sample is dissolved in an acid solution, an iron matrix of a steel sample is dissolved in an iodine methanol mixed solution or a bromine methanol mixed solution.
  • SPEED Selective-potentiostatic-Etching-by-Electrolytic-Dissolution-Method
  • the SPEED method is preferable because the composition and size hardly change when the fine particles are dispersed in the solvent, and even unstable fine particles can be stably extracted.
  • the content of the SPEED method is described in Non-Patent Document 4, for example.
  • the present embodiment will be described by taking as an example a method for evaluating fine particles in a steel material by a non-aqueous solvent system constant potential electrolysis method (SPEED method), but the extraction method in the present invention is limited to the SPEED method.
  • the metal material is not limited to the steel material.
  • the metal sample 4 is processed into a size of, for example, 20 mm ⁇ 40 mm ⁇ 2 mm, and the oxide film such as the scale of the surface layer is removed by chemical polishing or mechanical polishing, and the metal layer is taken out. deep. Conversely, when analyzing the fine particles contained in the oxide film layer, it is left as it is.
  • this metal sample 4 is electrolyzed using the SPEED method.
  • the electrolytic bath 9 is filled with the electrolytic solution 9, the metal sample 4 is immersed therein, and the reference electrode 7 is brought into contact with the metal sample 4.
  • the platinum electrode 6 and the metal sample 4 are connected to the electrolysis device 8.
  • the electrolytic potential of fine particles in steel such as precipitates has a higher electrolytic potential than the electrolytic potential of the metal portion serving as the matrix of the metal sample 4. Therefore, it is possible to selectively dissolve only the matrix by setting a voltage between the electrolysis potential that dissolves the matrix of the metal sample 4 using the electrolysis apparatus 8 and does not dissolve fine particles such as precipitates. It becomes.
  • the electrolytically extracted particles 5 are dispersed in the surface layer portion of the metal sample 4 and the electrolytic solution 9.
  • the solvent may be an aqueous solvent or an organic solvent, but an organic solvent is preferable in order to stably retain the electrolytic extraction particles 5 such as inclusions without dissolving them.
  • organic solvents alcohol solvents such as methanol and ethanol are easily available and have high stability.
  • TMAC tetramethylammonium chloride
  • a 2% by mass TMAC-methanol solution is used as the electrolytic solution.
  • a chelating reagent that forms a chelate complex with a metal ion such as methyl salicylate and an electrolyte for passing an electric current such as tetramethylammonium chloride (TMAC) are used as an electrolytic solution dissolved in a methanol solvent that is a non-aqueous solvent.
  • TMAC tetramethylammonium chloride
  • the present inventors further stabilize the electrolytic extraction particles 5 such as inclusions by using, as the electrolytic solution 9, a solution obtained by further adding a dispersant mainly composed of a surfactant, which will be described later, to these electrolytic solutions. Newly found that it can be captured. When the surfactant is added, the surfactant stably wraps around the electrolytic extraction particles 5 immediately after being separated from the metal matrix and released into the electrolytic solution 9.
  • the electrolytic extraction particles 5 such as inclusions away from the metal material 9 such as steel come into contact with air. It is stably incorporated in the dispersant before and the extraction effect is improved. Furthermore, when the electrolytically extracted particles 5 such as inclusions are subsequently redispersed in a solvent, the effect of being easily dispersed into single particles can be obtained. For this purpose, it is important to carry out the processes from the extraction of the electrolytically extracted particles 5 to the separation into the particle sizes described later in the liquid so that the electrolytically extracted particles 5 do not come into contact with air.
  • the concentration of the surfactant to be added is preferably 0.0001% by mass to 10% by mass. If the concentration is less than 0.0001% by mass, the action is too weak. Moreover, since it will become easy to produce
  • FIG. 3 is a diagram showing an example of a method for preparing a solution used in the particle fine dispersion device 2.
  • the particle extraction solution 13 produced through ultrasonic irradiation or the like that is, the particle extraction solution 13 including the electrolytic extraction particles 5 extracted from the metal sample 4 using the in-steel particle extraction apparatus 1 is used as a solution holding container.
  • a dispersant 12 is added to finely disperse the electrolytically extracted particles 5.
  • the dispersant for example, a surfactant is used.
  • the surface potential of the electrolytically extracted particles 5 can be increased and dispersed by adjusting the zeta potential with PH. However, it is more effective to mainly use a surfactant as the dispersant.
  • the surfactant has in its molecule a part that is easy to adjust to water (hydrophilic group) and a part that is easy to adjust to oil (lipophilic group / hydrophobic group).
  • hydrophilic group a surfactant is added to the surface of the particles to change the periphery of the particles into a positive or negative charge.
  • the particles obtain repulsive forces having the same polarity, and the individual particles are dispersed.
  • Surfactants are roughly classified into those having a hydrophilic portion that is ionic (cationic / anionic) and nonionic (nonionic).
  • Anionic surfactants dissociate in water to become anions, and the structure of the hydrophilic group is typically a carboxylic acid structure, a sulfonic acid structure, or a phosphoric acid structure.
  • carboxylic acid surfactants include fatty acid salts and cholate salts, which are the main components of soap, and typical sulfonic acid surfactants include sodium linear alkylbenzene sulfonate and sodium lauryl sulfate. It is.
  • Typical cationic surfactants are those that dissociate in water to become cations and have tetraalkylammonium as their hydrophilic groups.
  • alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkylbenzyldimethylammonium salt and the like are representative.
  • both the anionic surfactant and the cationic surfactant are effective as the dispersant 12.
  • sodium salts of sulfuric acid mono-long-chain alkyl esters such as sodium lauryl sulfate (C 12 H 25 NaO 4 S: SDS (sodium dodecyl sulfate)) that are relatively easily available and are used in the field of biochemistry, etc. preferable. This is because it is also used as daily necessities such as toothpaste and shampoo, and is safe and inexpensive for the human body.
  • an amphoteric surfactant having both an anionic portion and a cationic portion in the molecule, a nonionic surfactant having a hydrophilic portion that does not ionize the hydrophilic portion, and the like may be used as the dispersant 12. it can.
  • a particle extraction solution 13 containing electrolytically extracted particles 5 such as inclusions extracted from a metal material 4 such as steel is collected in a solution holding container 11 such as a test tube and the concentration of SDS. Is added in an amount of 0.0001 mass% to 10 mass%, preferably 0.05 mass% or less of dispersion liquid 12 and dispersed by irradiating with ultrasonic waves for 1 to 10 minutes, preferably 3 minutes.
  • the particle extraction solution 13 may have a very dense density or a very thin density, and it may be overloaded to the measuring apparatus. For this reason, it is preferable to accommodate at least 1 ml and at most 20 ml.
  • the concentration of SDS may be within a range in which the ability to disperse the electrolytically extracted particles 5 can be maintained, but is preferably as thin as possible. However, if it is thinner than 0.0001% by mass, the dispersion effect is low, and if it is too thick, there is a problem that costs are increased and bubbles are easily generated.
  • the ultrasonic irradiation time varies depending on the output and the amount of liquid, but if left for more than 10 minutes, it is heated and the content of the mixture of the particle extraction solution 13 and the dispersant 12 is likely to change. On the other hand, if it is less than 1 minute, dispersion may be insufficient.
  • the size of the electrolytic extraction particles 5 contained in the solution is wide, and depending on the measurement method, the coarse electrolytic extraction particles 5 may be dispersed inside the FFF device 3. There is a possibility of blocking small holes and filters. For this reason, it is preferable to remove the coarse electrolytically extracted particles 5 in advance. For example, it may be pre-filtered with a filter of several ⁇ m mesh. Alternatively, coarse particles having a size of 1 ⁇ m or more are allowed to settle downward by taking a few minutes or more with a centrifugal separator, and an upper supernatant liquid of the obtained liquid may be collected and applied to the FFF device 3.
  • the size separation principle of the FFF method will be described with reference to FIG.
  • a separation solution containing a surfactant is used, and a liquid flow called a cross flow 14 is first generated from the upper side of the cell toward the lower cell, while the left side of the separation cell 16 is left.
  • the liquid is also flowed from the right side, and the sample solution 15 containing fine particles is added therebetween.
  • the large particles 20 having a large size are pressed and stuck to the lower separation membrane 21 by the flow of the cross flow 14, while the medium particles 19 and the small particles 18 having a relatively large size are flown by the cross flow 14.
  • the liquid separated for each size is directly guided to a laser light irradiation detection unit disposed inside the FFF device 3, and the light intensity scattered by the laser light is obtained from photodetectors installed at a plurality of angles.
  • the angle dependency is very small and an omnidirectional scattering phenomenon is exhibited.
  • the size of the electrolytic extraction particles 5 can be uniquely determined by taking the inclination of the angle dependency.
  • the size of the electrolytically extracted particles 5 can be calculated from the angle dependency using the Zim plot method.
  • the Zimm plot method is demonstrated easily.
  • the relationship between the scattering angle, the concentration, the molecular weight, and the second virial coefficient indicating the dispersion state of the particles is expressed by the following Rayleigh equation.
  • This formula has variables related to concentration and angle as described above, and becomes a proportional formula when the concentration is fixed.
  • the values of the angle 0 degree and the concentration 0 indicate the molecular weight, and the plot of these values is called a Zim-Berry plot.
  • the point where the concentration is constant and the angle ⁇ is extrapolated to 0 is the reciprocal of the molecular weight
  • the slope of the plot represents the root mean square radius of inertia. From this, by taking the inclination of the angle dependency, the size of the electrolytically extracted particles 5, that is, the fine particles in the metal material 4 can be uniquely determined.
  • the scattering intensity reflected is higher in proportion to the number density of the electrolytic extraction particles 5 contained therein, it is easy to create a relational expression between the scattering intensity and the number density in advance.
  • the number density in the solution can be known.
  • the lower limit value of the application size of the FFF device 3 is, for example, 1 nm.
  • the separation performance of the regenerated cellulose membrane that separates the electrolytically extracted particles 5 and the solution is close, and the possibility of passing through the regenerated cellulose membrane increases, so that application becomes difficult.
  • the composition of the fine particles in the electrolytically extracted particles 5, that is, the fine particles in the metal material 4 can be further analyzed with respect to the solution separated for each size.
  • any method such as various mass spectrometry methods, spectroscopic analysis methods, and chemical analysis methods can be applied.
  • composition analysis By performing composition analysis on the solution after the particle size measurement, it is possible to clarify which component in the metal material 4 the fine particles having the measured particle size are derived from.
  • the size and number density were measured by the fine particle analysis method according to the present embodiment using an FFF apparatus.
  • a high-Si steel sample (Si: 3% by mass, Mn: 0.1% by mass, S: 0.03% by mass, Al: 0.03% by mass, N: 0.01% by mass) is 20 mm ⁇ 40 mm ⁇ 0.
  • the metal layer was processed by removing the oxide film such as the surface scale by chemical polishing.
  • the high Si-based steel samples were sampled from steel materials manufactured under the conditions that the heating temperature in the manufacturing process was a normal temperature (1000 ° C.) and a high temperature (1100 ° C.) higher by about 100 ° C. than normal. Metal sample pieces having different manufacturing conditions were prepared.
  • This metal sample piece was electrolyzed by the SPEED method using the particle extraction apparatus in steel shown in FIG.
  • the electrolytic solution a 3% by mass methyl salicylate + 1% by mass salicylic acid + 1% by mass TMAC + 0.05% by mass SDS dispersing agent system capable of stably electrolyzing a sulfide system was used.
  • the metal sample piece was lightly washed with methanol and left in a beaker containing another clean methanol.
  • the electrolytic solution was filtered through a filter, and the obtained filter was placed in the beaker and irradiated with ultrasonic waves for about 1 minute to disperse the fine particles deposited on the surface of the metal sample piece in the methanol solution.
  • FIG. 6 shows the result of comparing the time required to measure the size and number density distribution function of the fine particles.
  • the conventional method of measuring the number density distribution from the photo determination by microscopic observation requires about 30 days, and the person in charge of the work needs a high level of TEM observation operation ability.
  • the time when performed in the above embodiment was about 1 day including the melting work.
  • FIG. 7 shows an example of the result of component analysis using a normal ICP (inductively coupled plasma) mass spectrometer for the solution discharged after size and number density measurement after separation for each size by an FFF device. Indicates. The horizontal axis indicates the size of the fine particles. As shown in FIG. 7, it was possible to clearly grasp that the component change of Al, Cu, and Mn occurred at every pitch of about 10 nm. Further, the drain solution for each size obtained here is information on the crystal structure of fine particles extracted for each size, if the solution is dried and then analyzed by a normal X-ray crystal structure analyzer (XRD). Can be obtained.
  • XRD normal X-ray crystal structure analyzer
  • the number density distribution of fine particles contained in a steel material can be obtained accurately and quickly. Therefore, it is possible to quickly feed back the preferred density and size of fine particles in the production of high quality steel and factory operating conditions. Even when a large-scale production process of new products is implemented or when a normal analysis method requires a great deal of labor and cost, the application of the present invention enables quick and inexpensive material evaluation. Therefore, the present invention has great industrial utility value.
  • the present invention has an extremely high industrial value as a measurement technique suitable for, for example, a quality control test for a metal material and an inspection for optimizing the operating conditions of a factory.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

 本発明は、微粒子抽出手段を用いて、測定対象の金属材料中の微粒子を溶液中で分離抽出する工程と、該分離抽出された微粒子を溶媒に分散させて分散液を作製し、フィールドフローフラクショネーション装置を用いて、該分散液を所定のサイズ毎に複数の微粒子分散溶液に分離する工程と、該所定のサイズ毎に分離された各微粒子分散溶液にレーザ光を照射し、その反射強度の角度依存性から微粒子のサイズの絶対値を計測すると共に、反射強度の強さから個数密度を計測する工程と、を有する。

Description

金属材料中微粒子の粒度分布測定方法
 本発明は、フィールドフローフラクショネーション(FFF: Field
Flow Fractionation)法を利用した金属材料中微粒子(析出物及び非金属介在物)の粒度測定方法に関する。
 近年、金属材料の高品質化への要求が高まっている。鉄鋼の脱酸過程等で生成する比較的大きな介在物は、鋼材の品質を著しく劣化させる原因である。例えば、アルミナ系酸化物は、自動車用薄板鋼板での表面疵、飲料缶の製缶時の割れ、線材製品の伸線時の断線原因等、多くの弊害を引き起こす。そこで、このような介在物の量及びサイズを低減する多くの努力がなされている。
 その一方で、人為的に微細析出物の量及びサイズを増減させて、鋼材の品質を更に向上させる多くの努力もなされている。例えば、熱間圧延、冷間圧延、連続焼鈍、歪取り焼鈍、溶接等の多くの熱処理過程において、鋼中に有意な微細析出物を多く析出させたり、鋼材の結晶粒径を微細化させて強度及び溶接部靭性を向上させたりしている。また、微細な析出物を少なくし、結晶粒径を粗大化させて、鉄損を向上させたりもしている。
 従って、これらの高品質の鋼を再現性よく産業的に大量生産するためには、従来の成分の分析値だけでは、正確な把握が不足しており、鋼材に含まれる微粒子の量及び大きさを正確かつ再現性よく評価できる微粒子粒度分布測定方法の開発が重要である。
 鋼中微粒子の従来の検査方法としては、ASTM法、JIS法、MICHELIN社が開発したMICHELIN法等の顕微鏡試験法が知られている。例えば、非特許文献1に定められている顕微鏡試験法は、金属試料を研磨した後、顕微鏡の倍率を原則400倍として少なくとも視野数60以上を観察し、介在物等の微粒子が占める面積率より鋼の清浄度を判定するものである。これらの従来の方法では、いずれも光学顕微鏡による目視検査を行うため、検査速度が遅い。また、介在物等と、塵埃、研磨疵、錆等の誤認要因とを分別するための一定尺度が明確でないために誤差が大きく、高い精度で測定を行いにくいという問題もある。
 特許文献1では、このような顕微鏡観察における個数密度が低いことを補うことを目的とした方法が記載されている。この従来の方法では、先ず、鋼を電解して、抽出した残渣を支持膜上に滴下乾燥させて、極めて多数の残渣粒子を有する試料を作成している。次いで、この試料を光学顕微鏡分析、走査型電子顕微鏡(SEM)分析、透過型電子顕微鏡(TEM)分析等に供することとしている。また、特許文献1には、このような方法の効果として、多数の粒子を含む代表性の高い粒度分布データが得られると記載されている。
 しかしながら、この方法では、試料に大きな粒子及び小さな粒子が混在する。従って、顕微鏡分析時に各写真から全サイズの粒度分布を測定するためには、数多くの写真撮影及び画像処理が必要とされ、また、人間による個数カウントも必要とされる。このため、検査速度を向上させることができず、また、個人差が出易く高い再現性を得にくい。
 また、顕微鏡試験法とは異なる別の評価方法が特許文献2及び非特許文献2に記載されている。この評価方法では、金属試料に対して約2000パルスのスパーク放電発光分析を行い、初期数百パルスの予備放電データを除去した放電データから、酸化物粒径を求めている。この評価方法では、酸化物形成元素の非常に強い発光(異常発光)強度は、1個の酸化物が発光するものと仮定している。
 非特許文献3には、アルミナ介在物の大きさ及び頻度を求める他の方法が記載されている。この方法では、金属試料に対してスパーク放電発光分析を行い、得られた発光分析データ中、ある閾値を超えたパルスデータのみが介在物等であると仮定して、その強度からアルミナ介在物の大きさ及び頻度を求めている。
 これらの方法では、発光強度という光学的情報をデータ処理しているため、個人差が少なく、多元素同時発光を利用した組成解析が行えるという利点がある。
 しかしながら、特許文献2及び非特許文献2に記載された方法における仮定が正確ではないため、精度が高いとはいえない。つまり、直径が数mmの実際の放電痕跡を観察する限りは「1回のパルス発光は複数個の介在物(酸化物)の発光である」と考えることが自然であり、上記の仮定は不正確である。
 また、これらの発光分析法では、発光に寄与する介在物等の微粒子は、原理上、数μmより大きなものであるため、このような大きさの微粒子でなければ、マトリックスに含まれる固溶成分とのパルス強度の比較が不可能である。つまり、数μmより小さな微粒子には発光分析法を適用することができず、正確な分析を行うことができない。
 このように、金属材料の品質管理を行う上で、金属中の微粒子の粒径、頻度、組成を迅速かつ正確に定量解析することは、非常に重要であるが、従来の技術では、これを実現することができない。
特開2004-317203号公報 特開平10-300659号公報 特開2005-62166号公報
JIS-G-0555 CAMP-ISIJ、14巻、2001年、813頁 ISIJ International、37巻、1997年、No.6、637頁 日本金属学会誌、43巻1068頁(1979年11月20日発行) J.P.Wyatt,D.N.Villalpando,Langmuir,13 (1997) 3913
 本発明は、金属材料中に含まれる微粒子のサイズ及び個数密度を迅速かつ正確に定量解析することができ、好ましくは、微粒子の組成及び結晶構造も迅速かつ正確に定量解析することができる金属材料中微粒子の粒度分布測定方法を提供することを目的とする。
 本発明は、上述の問題を解決するためになされたものであり、その要旨は、以下のとおりである。
 (1) 微粒子抽出手段を用いて、測定対象の金属材料中の微粒子を溶液中で分離抽出する工程と、
 該分離抽出された微粒子を溶媒に分散させて分散液を作製し、フィールドフローフラクショネーション装置を用いて、該分散液を所定のサイズ毎に複数の微粒子分散溶液に分離する工程と、
 該所定のサイズ毎に分離された各微粒子分散溶液にレーザ光を照射し、その反射強度の角度依存性から微粒子のサイズの絶対値を計測すると共に、反射強度の強さから個数密度を計測する工程と、
 を有することを特徴とする金属材料中微粒子の粒度分布測定方法。
 (2) 前記微粒子のサイズが20μm以下であることを特徴とする(1)に記載の金属材料中微粒子の粒度分布測定方法。
 (3) 前記溶媒が有機溶媒であることを特徴とする(1)又は(2)に記載の金属材料中微粒子の粒度分布測定方法。
 (4) 前記溶媒として界面活性剤を含むものを用いることを特徴とする(1)~(3)のいずれかに記載の金属材料中微粒子の粒度分布測定方法。
 (5) 前記微粒子の分離抽出を、非水溶媒系電解法により行うことを特徴とする(1)~(4)のいずれかに記載の金属材料中微粒子の粒度分布測定方法。
 (6) 前記非水溶媒系電解法が非水溶媒系定電位電解法であることを特徴とする(5)に記載の金属材料中微粒子の粒度分布測定方法。
 (7) 前記非水溶媒系電解法による微粒子の分離抽出を、界面活性剤を含む非水溶媒系電解液を用いて行うことを特徴とする(5)又は(6)に記載の金属材料中微粒子の粒度分布測定方法。
 (8) 前記個数密度を計測する工程の後に、更に、前記微粒子の組成分析を行う工程を有することを特徴とする(1)~(7)のいずれかに記載の金属材料中微粒子の粒度分布測定方法。
 (9) 前記個数密度を計測する工程の後に、更に、前記微粒子の結晶構造解析を行う工程を有することを特徴とする(1)~(8)に記載の金属材料中微粒子の粒度分布測定方法。
 本発明によれば、金属材料に含まれる微粒子のサイズ及び個数密度を迅速かつ再現性よく定量することができる。このため、粒度分布を正確に測定することができる。
図1は、本発明の一実施形態に係る金属材料中微粒子の粒度分布測定方法の基本フローを示す流れ図である。 図2は、鋼中粒子抽出装置1の一例を示す図である。 図3は、粒子微細分散装置2に用いる溶液の作成法の一例を示す図である。 図4は、FFF法のサイズ分離原理を示す図である。 図5は、粒子サイズと個数密度分布との関係の測定結果を示すグラフである。 図6は、本発明の実施形態と従来の方法との個数密度解析所要日数の比較結果を示すグラフである。 図7は、ナノサイズごとに篩い分けた微粒子の組成分析結果を示すグラフである。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 本発明において重要な事項は、測定対象である金属材料に含まれる微粒子の粒径及び個数密度を迅速かつ正確に定量解析できるようにすることである。従来の官能検査特有の誤差と時間がかかると言う問題点を克服すると共に、発光分析法による推定法では、検知し得ない数μm以下の微粒子の個数密度を明確に把握する方法を提供するには、高い再現性でサイズ及び個数密度を測定することができるようにすることが重要である。
 微粒子を含んだ顕微鏡写真から、個数をカウントする作業を考えると、非常に大きな粒子と、非常に小さな粒子とが複数サイズ混合されて、一枚の写真に納まっており、個数をカウントするときには、作業者は、各粒子のサイズを一個ずつ測ると共に、最終的にはその数を計測しなければならない。また、試料代表性を考慮すると、一枚の写真の中で、非常に大きな粒子が検出される確率は低く、数多くの視野を撮影する必要がある。一方、非常に小さな粒子の場合は、一枚の写真の中でも数千個以上に及ぶ場合もあり、不必要な負荷をかけて、同一面積中に存在する個数をカウントする必要がある。しかも、サイズによってはnmから数十μmまでの広いダイナミックレンジにわたるため、倍率を変えながら写真撮影をする必要もある。これらの作業を繰り返すなかで、何が最も作業効率を阻害しているのかを考えて突き詰めていった結果、発明者らは、複数サイズの微粒子を一つの写真の中で撮影してカウントすること自体に無理があると考えざるを得ないことに至った。
 即ち、大きなサイズの粒子は、倍率を低くしてより多くの視野を確保しないと、統計的に代表性のあるデータは採取できない。小さな粒子は、より倍率をあげて撮影しないと正確なサイズと個数が判別できないが、大きな粒子の影等に邪魔されて正確な値を得るのが困難となってくる。これらの矛盾点を解決するためには、予め粒子をサイズ毎に分けてから、各々をサイズに合わせた方法で測定評価することが正確かつ迅速に評価する上で、重要であると考えるに至った。
 そこで、発明者らは、粒子のサイズ毎に篩い分けてから、撮影することを検討した。しかし、従来の金属製篩網であれば、最小でも20μmほどが、現在手に入る一番小さいものであり、これより小さいサイズは、サイズ毎に分けることが困難である。そこで、本発明者らは、測定対象は20μm以下の微粒子を、サイズ毎に篩い分ける方法に特化して研究を重ねた。
 また、質量数が異なる原子、分子であれば、そのままイオン化して質量分析法にかけたり、イオンクロマトグラフィー法で分離抽出したりすることにより、サイズと量を決定することが可能である。しかしながら、鋼中の微粒子は、生体試料と比べてはるかに大きく、ソフトイオン化するのは困難である。また、イオン化するために溶解すると、サイズに関する情報が消えてしまう。このため、溶解することはできない。また、通常は、溶液中でプラスイオン及びマイナスイオンには明確に荷電していないため、イオンクロマトグラフィー等で分離することも不可能である。
 GPC(ゲルパーミッションクロマトグラフィー)によるサイズ分離法も検討したが、微小量の高精度分離には不適である。これは、測定可能な分子量範囲が、数百~数千万と広いものの、実際の金属材料中の微粒子は、数nmから上は数十μmまであるために、分子量が数千万オーダーでは低過ぎて、分離することが不可能であり、かつ試料必要量が多いためである。
 このようにして、複数の分離分析手段を実際に試しながら、最終的にサイズ毎に篩い分ける方法として実用化に耐えるのが、フィールドフローフラクショネーション(FFF:Field Flow Fractionation)法であることに辿り着くことができた。
 本発明では、金属材料中の微粒子の個数密度を迅速かつ再現性よく定量するために、予め微粒子をサイズ毎に、篩い分ける。
 図1に本発明の一実施形態に係る金属材料中微粒子の粒度分布測定方法の基本フローを示す。本実施形態の実施に用いる微粒子分析装置は、鋼中粒子抽出装置1と、粒子微細分散装置2と、FFF装置3と、を主に備える。本実施形態に係る粒度分布測定方法では、まず始めに、鋼中粒子抽出装置1を用いて金属材料中に含有される微粒子を安定的に抽出する。次に、粒子微細分散装置2で、上述した金属材料中の微粒子を溶液中に凝集させることなく微細分散させる。そして、溶液中に微細分散させた金属材料中の微粒子をFFF装置3に入れて、微粒子のサイズ別篩い分けとサイズ測定と個数密度測定を行う。このFFF装置3の作用の例を以下に示す。
 例えば、非特許文献5に示されるFFF法を用いたサイズ別篩い分け法により、溶液中の微粒子をFFF装置に注入して、フォーカシングでサイズ毎に分けてから、順次、小さな粒子から大きな粒子の順に流出させる。得られた溶液にレーザ光を当てて、その反射強度の角度依存性から、サイズの絶対値を決定し、反射強度の強さから、個数密度の絶対値を決定する。
 以下、上記知見を踏まえながら、本実施形態に係る金属材料中の微粒子分析方法について、詳細に説明する。
 鋼中粒子抽出装置1は、金属中から微粒子を安定的に抽出する装置である。図2は、鋼中粒子抽出装置1の一例を示す図である。本実施形態における金属試料中の微粒子の抽出方法は、例えば、酸溶液中で鉄鋼試料の鉄マトリックスを溶解する酸分解法、ヨウ素メタノール混合溶液あるいは臭素メタノール混合溶液中で鉄鋼試料の鉄マトリックスを溶解するハロゲン溶解法、非水溶媒系定電流電解法、又は、非水溶媒系定電位電解(SPEED:Selective Potentiostatic Etching by Electrolytic Dissolution Method)法等である。これらの内、SPEED法は、溶媒中に微粒子が分散された際に、組成やサイズの変化が起こり難く、不安定な微粒子でも安定的に抽出できるため好適である。SPEED法の内容は、例えば非特許文献4に記載されている。本実施形態に関して、非水溶媒系定電位電解法(SPEED法)による鉄鋼材料中の微粒子の評価方法を例に取り、説明を行うが、本発明における抽出の方法はSPEED法に限定されるものではなく、また、金属材料は鉄鋼材料に限定されるものではない。
 まず初めに、金属試料4を、例えば、20mm×40mm×2mmの大きさに加工して、表層のスケール等の酸化皮膜等を化学的研磨又は機械的研磨等により除去し、金属層を出しておく。逆に、酸化皮膜層に含まれる微粒子を解析する場合は、そのままの形態で残しておく。
 次に、この金属試料4を、SPEED法を用いて電解する。具体的には、電解槽10に電解溶液9を満たし、その中に金属試料4を浸漬させて、参照電極7を金属試料4に接触させる。白金電極6と金属試料4を電解装置8に接続する。一般的に上記電解法を用いると、金属試料4のマトリックスとなる金属部分の電解電位に比べて、析出物等の鋼中微粒子の電解電位は、高い電解電位を持つ。そこで、電解装置8を用いて金属試料4のマトリックスを溶解し、かつ析出物等の微粒子を溶解しない電解電位の間に、電圧を設定することにより、マトリックスのみを選択的に溶解することが可能となる。電解抽出粒子5が金属試料4の表層部及び電解溶液9中に分散する。
 その後、電解溶液9中に分散した電解抽出粒子5をろ過によって分離捕集し、この電解抽出粒子5を、金属試料4と共に清浄な溶媒中に入れる。そして、これらに超音波照射等を行うことにより、金属試料4の表層部分に付着していた電解抽出粒子5を金属試料4から離脱させる。この結果、金属試料4から抽出された電解抽出粒子5を含む粒子抽出溶液が得られる。溶媒としては、水系、有機溶媒系等問わないが、介在物等の電解抽出粒子5を溶解せず安定的に保持するために、有機溶媒が好ましい。有機溶媒の中でも、特に、アルコール系溶媒、例えば、メタノール及びエタノール等は容易に入手でき、安定性が高い。
 従来の定電位電解法では、例えば、10質量%アセチルアセトン(以降“AA”と称す)-1質量%テトラメチルアンモニウムクロライド(以降“TMAC”と称す)-メタノール溶液、又は10質量%無水マレイン酸-2質量%TMAC-メタノール溶液が電解溶液として用いられている。また、サリチル酸メチル等の金属イオンとキレート錯体を形成するキレート試薬と、テトラメチルアンモニウムクロライド(TMAC)等の電流を流すための電解質を、非水溶媒であるメタノール溶媒に溶かしこんだ電解溶液として用いられることもある。これらの電解溶液は、作業性及び抽出安定性の観点で好ましいため、多用されている。
 本発明者らは、これらの電解溶液の中に、後述する界面活性剤を主体とする分散剤を更に加えたものを電解溶液9として用いることにより、介在物等の電解抽出粒子5を更に安定的に捕獲することができることを新しく見出した。界面活性剤が添加されていると、金属マトリックスから分離して電解溶液9に放出された直後の電解抽出粒子5の周囲を、界面活性剤が安定的に保護して包み込む。
 このように、非水溶媒電解液である電解溶液9の中にも分散剤を予め入れておくことにより、鋼等の金属材料9から離れた介在物等の電解抽出粒子5が空気と接触する前に分散剤に安定的に取り込まれ、抽出効果が向上する。更に、介在物等の電解抽出粒子5をその後に溶媒中に再分散する際にも、速やかに単一粒子に分散しやすいという効果も得られる。そのためにも、電解抽出粒子5の抽出から、後述の各粒子サイズへの分離までの処理を、電解抽出粒子5が空気と接触しないように全て液中で行うことが重要である。
 この作用により、電解抽出粒子5が例えば薬剤及び/又は水分等に非常に不安定なものであっても、安定かつ効率的に抽出することが可能となる。添加する界面活性剤の濃度は、0.0001質量%~10質量%であることが望ましい。濃度が0.0001質量%未満であると薄すぎて作用が弱くなる。また、濃度が濃すぎると、泡が生成しやすくなるため作業上好ましくない。
 図3は、粒子微細分散装置2に用いる溶液の作成法の一例を示す図である。上述のように、超音波照射等を経て作製された粒子抽出溶液13、即ち鋼中粒子抽出装置1を用いて金属試料4から抽出した電解抽出粒子5を含む粒子抽出溶液13を、溶液保持容器11に入れ、更に、電解抽出粒子5を微細に分散させるために、分散剤12を添加する。分散剤としては、例えば界面活性剤を用いる。また、ゼータ電位をPHで調整したりすることにより、電解抽出粒子5の表面の電位を上げて分散させることも可能である。但し、分散剤として主に界面活性剤を用いる方が効果的である。
 界面活性剤は、分子内に水になじみやすい部分(親水基)、及び油になじみやすい部分(親油基・疎水基)を備えている。一般的に、溶液中に粒子を分散する場合は、粒子の表面に界面活性剤を付加させて、粒子の周りをプラス又はマイナス電荷に変える。この結果、粒子同士が同じ極性同士の反発力を得るようになり、個々の粒子が分散するようになる。界面活性剤は、親水性部分がイオン性(カチオン性・アニオン性)のものと非イオン性(ノニオン性)のものとに大別される。
 アニオン性界面活性剤は、水中で解離して陰イオンとなり、その親水基の構造としては、カルボン酸構造、スルホン酸構造、及びリン酸構造等が代表的である。カルボン酸系界面活性剤としては、石鹸の主成分である脂肪酸塩及びコール酸塩が代表的であり、スルホン酸系界面活性剤としては、直鎖アルキルベンゼンスルホン酸ナトリウム及びラウリル硫酸ナトリウム等が代表的である。
 カチオン性界面活性剤は、水中で解離して陽イオンとなり、その親水基としてテトラアルキルアンモニウムを持つものが代表的である。例えば、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩等が代表的である。
 そして、これらの多種の界面活性剤の有効性について種々検討を行った結果、アニオン性界面活性剤及びカチオン性界面活性剤の両方とも、分散剤12として有効であることが判明した。その中でも、比較的入手し易く、生物化学分野等で活用されているラウリル硫酸ナトリウム(C1225NaOS:SDS(sodium dodecyl sulfate))等の硫酸のモノ長鎖アルキルエステルのナトリウム塩が好ましい。歯磨き粉、シャンプー等の日用品としても使用され、人体に安全で安価なためである。
 その他、分子内にアニオン性部位とカチオン性部位の両方を持っている両性界面活性剤や、親水部がイオン化しない親水性部分を持つ非イオン性界面活性剤等も分散剤12として使用することができる。
 鋼等の金属材料4から抽出した介在物等の電解抽出粒子5を含む粒子抽出溶液13を、約1mlから20ml、好ましくは10mlほど試験管等の溶液保持容器11に採取して、SDSの濃度が0.0001質量%~10質量%、好ましくは0.05質量%以下の分散液12を2ml添加して、超音波を1分~10分、好ましくは3分ほど照射して分散させる。粒子抽出溶液13は、非常に濃い密度の場合と非常に薄い密度の場合があり、測定装置に過負荷を与えるため、最適とされる個数密度範囲に収めることが好ましい。そのため、少なくとも1ml、多くても20mlほどに収めることが好ましい。SDSの濃度は、電解抽出粒子5を分散できる能力を保持できる範囲内であればよいが、できるだけ薄い方が好ましい。但し、0.0001質量%より薄いと分散効果が低く、濃過ぎると、コストがかかり、泡が発生し易くなる等の弊害も発生する。
 超音波の照射時間は、出力と液体量によっても変わるが、10分を超えて放置すると熱を帯びてしまい、粒子抽出溶液13及び分散剤12の混合液の内容が変化する可能性が高い。一方、1分未満では、分散が不十分になることがある。
 このようにして電解抽出粒子5が分散した溶液が得られるが、この溶液に含まれる電解抽出粒子5のサイズは幅広く、測定方法によっては、粗大な電解抽出粒子5が、FFF装置3の内部の小穴をふさいだり、フィルターをふさいだりする可能性がある。このため、事前に粗大な電解抽出粒子5を取り除くことが好ましい。例えば、数μmメッシュのフィルターで事前ろ過してもよい。また、遠心分離装置で数分以上かけて、1μm以上の粗大な粒子を下方に沈降させ、得られた液の、上方の上澄み液を採取して、FFF装置3にかけてもよい。
 図4を用いて、FFF法のサイズ分離原理を説明する。FFF装置3の溶離流出液としては、界面活性剤を含む分離溶液を用いて、最初、クロスフロー14と呼ばれる液の流れをセルの上方から下方セルに向かって生じさせながら、分離セル16の左側と右側からも液を流し、その間に微粒子を含むサンプル溶液15を添加する。すると、下方の分離膜21には大きなサイズの大粒子20がクロスフロー14の流れによって押し付けられて張り付く、一方で、比較的サイズが大きな中粒子19及び小さな小粒子18は、クロスフロー14の流れに打ち勝つだけのブラウン運動を起こすため、分離セル16の下側に位置する分離膜21に押し付けられることなく、分離セル16の中にサイズ毎に浮遊する状態になる。これをフォーカシングと呼ぶ。この状態にすることで、分離セル16の中に粒子がサイズ毎に並び替えられることとなる。その後、分離セル16の左右から押し付けていた流れを変えて、チャンネルフロー17により、例えば図4の左から右に向かって分離セル16に存在する粒子を右側に押し出していく。
 このとき、上から分離膜21に向かって押さえつける役割のクロスフロー14の圧力を徐々にゼロまで減らしていくと、分離膜21に押さえつけられていた粒子が、徐々に小さな粒子から大きな粒子の順で右側から排出される。
 なお、ここでは、分離するためにクロスフロー液による押さえつけ力とブラウン運動とを組み合わせることにより、サイズ分離する例を示したが、FFFの分離原理としては、この他にも、重力、電場、磁場、温度勾配等をかけることにより、より精密に粒子を分離することができる。
 サイズ毎に分離された液は、そのままFFF装置3の内部に配置されたレーザ光照射検出部に導かれ、複数角度に設置された光検出器より、レーザ光散乱された光強度を得る。小さな粒子の場合は、角度依存性が非常に少なく全方位散乱現象を示す。一方、粗大な粒子になるにつれて、前方散乱現象が強くなるため、この角度依存性の傾きを取ることにより電解抽出粒子5のサイズを一義的に決定できる。
 より詳細には、例えば、Zimmプロット法を利用して、角度依存性から電解抽出粒子5のサイズを算出することが可能である。以下に、Zimmプロット法について、簡単に説明する。散乱角度、濃度、分子量及び粒子の分散状態を示す第二ビリアル係数の関係は、以下のレイリーの式で表される。
  KC/Ra=(1/M+2A・C)P(θ)
   K:光学定数
   C:濃度
   Ra:溶媒のレイリー比
   M:分子量
   A:第二ビリアル係数
   P(θ):角度に依存する関数
 この式は、上記のように、濃度及び角度に関する変数を有しており、濃度を固定した場合には、比例式となる。ここで、濃度と散乱角度変化による散乱光量変化を測定した場合には、角度0度、濃度0の値が分子量を示し、これらの値をプロットしたものを、Zimm-Berryプロットと称する。
 本実施形態に係る粒度測定方法では、濃度一定で角度θを0に外挿した点が、分子量の逆数となり、プロットの傾きが、自乗平均慣性半径を表すこととなる。これより、角度依存性の傾きを取ることで、電解抽出粒子5、即ち金属材料4中の微粒子のサイズを一義的に決定できる。
 また、反射してくる散乱強度は、含まれる電解抽出粒子5の個数密度に比例して高くなることが分かっているため、予め散乱強度と個数密度の関係式を作成しておけば、容易に溶液中の個数密度を知ることができる。
 なお、FFF装置3の適用サイズの下限値は、例えば1nmである。これよりも小さな粒子の場合は、電解抽出粒子5と溶液とを分離する再生セルロース膜の分離性能と近くなり、再生セルロース膜を通過する可能性が多くなるため、適用は難しくなる。
 さらに、本実施形態に係る粒度測定方法では、粒度測定が行われた、サイズ毎に分離された溶液に対して、更に電解抽出粒子5、即ち金属材料4中の微粒子の組成分析を行うことが可能である。微粒子の組成分析を行う方法として、例えば、種々の質量分析法、分光分析法、及び化学的な分析方法等の任意の方法を適用することが可能である。粒度測定後の溶液に対して組成分析を行うことで、測定された粒度を有する微粒子が、金属材料4中のどの成分に由来するものであるかを明らかにすることが可能となる。
 次に、本発明の実施例について説明をする。但し、本発明は実施例で採用した条件に限定されるものではない。
 図1に示すフローに従って、鉄鋼材料中の微粒子を抽出して溶液中に分散した後、FFF装置により、本実施形態に係る微粒子分析方法でサイズと個数密度を測定した。
 高Si系鉄鋼試料(Si:3質量%、Mn:0.1質量%、S:0.03質量%、Al:0.03質量%、N:0.01質量%)を20mm×40mm×0.3mmの大きさに加工して、表層のスケール等の酸化皮膜等を化学的研磨により除去し、金属層を出した。このとき、高Si系鉄鋼試料は、製造工程における加熱温度を、通常温度(1000℃)と、通常より約100℃高い高温(1100℃)とした条件で製造した鋼材からそれぞれサンプリングし、2種類の製造条件の異なる金属試料片を作成した。
 図2に示す鋼中粒子抽出装置を用いて、この金属試料片をSPEED法で電解した。電解液としては、硫化物系を安定的に電解できる3質量%サリチル酸メチル+1質量%サリチル酸+1質量%TMAC+0.05質量%SDS分散剤系を用いた。電解後に金属試料片を軽くメタノールで洗浄して、別の清浄なメタノールを入れたビーカーの中に静置した。電解溶液をフィルターでろ過し、得られたフィルターも上記ビーカーの中に入れて超音波を約1分照射して、金属試料片の表層に析出していた微粒子をメタノール溶液中に分散させた。
 図3に示す微細分散用の溶液保持容器に、上記で作製した溶液を8ml入れ、0.05質量%SDS分散溶液を2ml添加して、超音波で約5分間照射して分散を行った。
 図4に示すFFF装置に、分散した溶液を100μl添加して、FFFで測定を行った。結果を図5に示す。図5の横軸は粒径を示し、縦軸は個数密度を示す。図5に示すように、試料の加熱温度を通常と高温の2種類で比較した結果、通常材は、50nm以下に微細な粒子が数多く生じているのに対して、高温で処理した材料は、温度が高過ぎたために、50nm以下の微細な粒子が合体成長して粗大化してしまっていることが判明した。
 同じ溶液を用いてTEM観察して実際に、粒度分布グラフを作成した結果、図5の測定結果が正しいことが裏付けられた。
 図6は、微粒子のサイズ、個数密度分布関数を測定するのに必要な時間を比較した結果を示す。従来の顕微鏡観察して写真判定から個数密度分布を測定する方法は、約30日必要であり、作業を担当する人間には、高度なTEM観察操作能力が必要であった。これに対し、上記の実施形態で行った場合の時間は、溶解作業も含めて約1日であった。
 図7は、FFF装置でサイズごとに分離してサイズ、個数密度計測を終わった後に排出される溶液を、通常のICP(inductively coupled plasma)質量分析装置を用いて成分分析を行った結果の例を示す。横軸は微粒子のサイズを示す。図7に示すように、約10nmピッチごとに、Al、Cu、Mnの成分変化が起きていることを明瞭に把握することができた。また、ここで得られたサイズごとの排出溶液は、溶液を乾燥した後に、通常のX線結晶構造解析装置(XRD)にて解析すれば、同じくサイズごとに抽出された微粒子の結晶構造に関して情報を得ることができる。
 以上説明したように、本発明により、鋼材に含まれる微粒子の個数密度分布を精度よく、かつ迅速に得ることが可能となる。よって高品質鋼の作り込みや、工場操業条件における好ましい微粒子の密度、サイズを迅速にフィードバックすることが可能となる。そして、新商品の大量生産プロセスを実機化する場合や、通常の解析法では、多大な労力、コストがかかる場合でも、本発明の適用により迅速で安価な材料評価をすることができる。よって、本発明は、産業上の利用価値が大きいものである。
 更に、予め分析条件を決めておけば、作業を標準化でき、作業効率を大幅に向上することができる。また、従来の方法では、人によりカウント方法に差異が出る等、官能試験特有の個人差が発生しやすいが、本発明によれば、分析条件さえ決定されていれば、このような個人差が生じ難く、粒度分布解析結果を再現性よく得ることができる。従って、金属材料中の微粒子の分析を必要とする多くの分析箇所に技術トランスファーすることが可能である。
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 本発明は、例えば、金属材料の品質管理用試験、及び工場の操業条件の適正化の検査等に好適な測定技術として産業上の価値が極めて高い。
 

Claims (9)

  1.  微粒子抽出手段を用いて、測定対象の金属材料中の微粒子を溶液中で分離抽出する工程と、
     該分離抽出された微粒子を溶媒に分散させて分散液を作製し、フィールドフローフラクショネーション装置を用いて、該分散液を所定のサイズ毎に複数の微粒子分散溶液に分離する工程と、
     該所定のサイズ毎に分離された各微粒子分散溶液にレーザ光を照射し、その反射強度の角度依存性から微粒子のサイズの絶対値を計測すると共に、反射強度の強さから個数密度を計測する工程と、
     を有することを特徴とする金属材料中微粒子の粒度分布測定方法。
  2.  前記微粒子のサイズが20μm以下であることを特徴とする請求項1に記載の金属材料中微粒子の粒度分布測定方法。
  3.  前記溶媒が有機溶媒であることを特徴とする請求項1に記載の金属材料中微粒子の粒度分布測定方法。
  4.  前記溶媒として界面活性剤を含むものを用いることを特徴とする請求項1に記載の金属材料中微粒子の粒度分布測定方法。
  5.  前記微粒子の分離抽出を、非水溶媒系電解法により行うことを特徴とする請求項1に記載の金属材料中微粒子の粒度分布測定方法。
  6.  前記非水溶媒系電解法が非水溶媒系定電位電解法であることを特徴とする請求項5に記載の金属材料中微粒子の粒度分布測定方法。
  7.  前記非水溶媒系電解法による微粒子の分離抽出を、界面活性剤を含む非水溶媒系電解液を用いて行うことを特徴とする請求項5に記載の金属材料中微粒子の粒度分布測定方法。
  8.  前記個数密度を計測する工程の後に、更に、前記微粒子の組成分析を行う工程を有することを特徴とする請求項1に記載の金属材料中微粒子の粒度分布測定方法。
  9.  前記個数密度を計測する工程の後に、更に、前記微粒子の結晶構造解析を行う工程を有することを特徴とする請求項1に記載の金属材料中微粒子の粒度分布測定方法。
PCT/JP2009/058072 2008-04-25 2009-04-23 金属材料中微粒子の粒度分布測定方法 WO2009131175A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010509216A JP4572001B2 (ja) 2008-04-25 2009-04-23 金属材料中微粒子の粒度分布測定方法
EP09733952.7A EP2270469B1 (en) 2008-04-25 2009-04-23 Method of analyzing particle size distribution of particles in metal material
PL09733952T PL2270469T3 (pl) 2008-04-25 2009-04-23 Sposób analizy dystrybucji wielkości cząstek w przypadku cząstek w materiale metalowym
CN2009801145433A CN102016543B (zh) 2008-04-25 2009-04-23 金属材料中微粒的粒度分布测定方法
KR1020107023637A KR101165162B1 (ko) 2008-04-25 2009-04-23 금속 재료 중 미립자의 입도 분포 측정 방법
US12/934,031 US8384897B2 (en) 2008-04-25 2009-04-23 Method of analyzing particle size distribution of particles in metal material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-114801 2008-04-25
JP2008114801 2008-04-25

Publications (1)

Publication Number Publication Date
WO2009131175A1 true WO2009131175A1 (ja) 2009-10-29

Family

ID=41216904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058072 WO2009131175A1 (ja) 2008-04-25 2009-04-23 金属材料中微粒子の粒度分布測定方法

Country Status (8)

Country Link
US (1) US8384897B2 (ja)
EP (1) EP2270469B1 (ja)
JP (1) JP4572001B2 (ja)
KR (1) KR101165162B1 (ja)
CN (1) CN102016543B (ja)
PL (1) PL2270469T3 (ja)
TW (1) TWI403714B (ja)
WO (1) WO2009131175A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213654A (zh) * 2011-05-13 2011-10-12 江阴兴澄特种钢铁有限公司 有机溶液电解萃取和检测钢中非金属夹杂物的方法
JP2014021060A (ja) * 2012-07-23 2014-02-03 Jfe Steel Corp 金属中微粒子の粒径分布測定方法
JP2016197031A (ja) * 2015-04-02 2016-11-24 新日鐵住金株式会社 ナノ粒子の粒径測定方法
JP2017511882A (ja) * 2014-02-14 2017-04-27 パーキンエルマー・ヘルス・サイエンシーズ・インコーポレイテッドPerkinelmer Health Sciences, Inc. 単一粒子誘導結合プラズマ質量分析における出力および類似データセットの自動化された分析のためのシステムおよび方法
JP2018130670A (ja) * 2017-02-15 2018-08-23 新日鐵住金株式会社 分散剤、フィールドフローフラクショネーション用の分散剤、鉄鋼材料中の微粒子の分別方法および鉄鋼材料中の微粒子の分析方法
US10181394B2 (en) 2014-02-14 2019-01-15 Perkinelmer Health Sciences, Inc. Systems and methods for automated optimization of a multi-mode inductively coupled plasma mass spectrometer
JP2019056694A (ja) * 2017-09-18 2019-04-11 アクツィエン−ゲゼルシャフト デア ディリンジャー ヒュッテンベルケ 鉄鋼中の粒子を分析、とりわけ析出または/および隔離するための方法
US10431444B2 (en) 2014-02-14 2019-10-01 Perkinelmer Health Sciences, Inc. Systems and methods for automated analysis of output in single particle inductively coupled plasma mass spectrometry and similar data sets
JP2020148696A (ja) * 2019-03-15 2020-09-17 Jfeスチール株式会社 金属試料中の介在物および/または析出物の捕集方法、および、金属試料中の介在物および/または析出物の分析方法、ならびに、電解液
WO2021235169A1 (ja) * 2020-05-20 2021-11-25 国立研究開発法人産業技術総合研究所 個数基準粒子径分布計測方法及び計測システム
JPWO2022014636A1 (ja) * 2020-07-15 2022-01-20

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8798338B2 (en) * 2006-01-09 2014-08-05 University Of Wyoming Method and system for counting particles in a laminar flow with an imaging device
JP5518598B2 (ja) * 2010-07-02 2014-06-11 東京エレクトロン株式会社 パーティクル分布解析支援方法及びその方法を実施するためのプログラムを記録した記録媒体
KR101346633B1 (ko) * 2011-10-24 2014-01-02 주식회사 랩웍스 시료채취 이송배관 내 입자침적에 의한 손실량 측정을 위한 장치
US9138663B2 (en) * 2012-02-17 2015-09-22 California Institute Of Technology Opposed migration aerosol classifier gas and heat exchanger
TWI475225B (zh) * 2014-01-24 2015-03-01 China Steel Corp 鋼材韌性之評估方法
CN104777081B (zh) * 2015-04-01 2018-12-25 上海交通大学 一种纳米颗粒物的分离检测方法
PL3418711T3 (pl) * 2016-02-18 2021-11-08 Nippon Steel Corporation Urządzenie do elektrolitycznego wytrawiania i rozpuszczania oraz sposób ekstrakcji cząstek związków metali
JP6690699B2 (ja) * 2016-02-18 2020-04-28 日本製鉄株式会社 金属化合物粒子の抽出方法、その金属化合物粒子の分析方法、およびそれらに用いられる電解液
WO2018092573A1 (ja) * 2016-11-16 2018-05-24 株式会社堀場製作所 粒子径分布測定装置、粒子径分布測定方法、及び粒子径分布測定装置用プログラム
CN108037046A (zh) * 2017-12-26 2018-05-15 上海交通大学 一种分离检测污水中纳米级颗粒尺度分布的方法
JP7215366B2 (ja) * 2019-07-17 2023-01-31 株式会社島津製作所 非対称流流動場分画装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346387A (ja) * 1992-06-15 1993-12-27 Nkk Corp 金属材の清浄度判定方法
JPH1026618A (ja) * 1995-05-19 1998-01-27 Nippon Steel Corp 金属中介在物の迅速評価方法
JPH10300659A (ja) 1997-04-30 1998-11-13 Kawasaki Steel Corp 金属中酸化物系介在物の粒度分布測定方法
JP2004317203A (ja) 2003-04-14 2004-11-11 Nippon Steel Corp 金属中の介在物および析出物の評価方法、および治具
JP2005062166A (ja) 2003-08-13 2005-03-10 Wyatt Technol Corp 溶液中の単分散の粒子の数密度、および、多分散の粒子の懸濁液についての分別した差異数分布の算定方法
JP2008000724A (ja) * 2006-06-26 2008-01-10 Shimadzu Corp フィールドフローフラクショネーション装置
JP2008039539A (ja) * 2006-08-04 2008-02-21 Shimadzu Corp 光散乱検出装置
WO2009005111A1 (ja) * 2007-06-29 2009-01-08 Jfe Steel Corporation 金属材料の分析方法
JP2009019956A (ja) * 2007-07-11 2009-01-29 Jfe Steel Kk 金属試料中の析出物及び/又は介在物の分析方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216253A (ja) 1984-04-11 1985-10-29 Nippon Steel Corp 非水溶媒系電解液
US4724134A (en) * 1985-06-10 1988-02-09 Aluminum Company Of America Production of tailor-made particle size distributions of substantially spherical metal hydroxide/oxide particles comprising single or multiple hydroxides by hydrolysis of one or more metal alkoxide aerosols
CA1332103C (en) * 1988-10-31 1994-09-27 James Kenneth Melton Hypochlorous acid process
EP0760480B1 (en) * 1995-03-14 2004-06-02 Nippon Steel Corporation Device for evaluating cleanliness of metal and method therefor
EP1322953A2 (en) 2000-09-30 2003-07-02 Aviva Biosciences Corporation Apparatuses and methods for field flow fractionation of particles using acoustic and other forces
US7294513B2 (en) * 2002-07-24 2007-11-13 Wyatt Technology Corporation Method and apparatus for characterizing solutions of small particles
GB0502229D0 (en) 2005-02-03 2005-03-09 Univ Leeds Method and apparatus for solids phase chromatography
JP4134144B2 (ja) 2005-11-01 2008-08-13 株式会社四国総合研究所 金属材料の分析方法、およびその装置
US8030082B2 (en) 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346387A (ja) * 1992-06-15 1993-12-27 Nkk Corp 金属材の清浄度判定方法
JPH1026618A (ja) * 1995-05-19 1998-01-27 Nippon Steel Corp 金属中介在物の迅速評価方法
JPH10300659A (ja) 1997-04-30 1998-11-13 Kawasaki Steel Corp 金属中酸化物系介在物の粒度分布測定方法
JP2004317203A (ja) 2003-04-14 2004-11-11 Nippon Steel Corp 金属中の介在物および析出物の評価方法、および治具
JP2005062166A (ja) 2003-08-13 2005-03-10 Wyatt Technol Corp 溶液中の単分散の粒子の数密度、および、多分散の粒子の懸濁液についての分別した差異数分布の算定方法
JP2008000724A (ja) * 2006-06-26 2008-01-10 Shimadzu Corp フィールドフローフラクショネーション装置
JP2008039539A (ja) * 2006-08-04 2008-02-21 Shimadzu Corp 光散乱検出装置
WO2009005111A1 (ja) * 2007-06-29 2009-01-08 Jfe Steel Corporation 金属材料の分析方法
JP2009019956A (ja) * 2007-07-11 2009-01-29 Jfe Steel Kk 金属試料中の析出物及び/又は介在物の分析方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ATSUSHI CHINO ET AL.: "Kyokutei Sanso Hagane Chu no Alumina Kaizaibutsu no Ryudo Bunpu Sokuteiho", JOURNAL OF THE IRON & STEEL INSTITUTE OF JAPAN, vol. 77, no. 12, 1991, pages 95 - 102, XP008143051 *
CAMP-ISIJ, vol. 14, 2001, pages 813
ISIJ INTERNATIONAL, vol. 37, no. 6, 1997, pages 637
J.P.WYATT; D.N.VILLALPANDO, LANGMUIR, vol. 13, 1997, pages 3913
JOURNAL OF JAPAN INSTITUTE OF METALS, vol. 43, 20 November 1979 (1979-11-20), pages 1068

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213654A (zh) * 2011-05-13 2011-10-12 江阴兴澄特种钢铁有限公司 有机溶液电解萃取和检测钢中非金属夹杂物的方法
JP2014021060A (ja) * 2012-07-23 2014-02-03 Jfe Steel Corp 金属中微粒子の粒径分布測定方法
US10431444B2 (en) 2014-02-14 2019-10-01 Perkinelmer Health Sciences, Inc. Systems and methods for automated analysis of output in single particle inductively coupled plasma mass spectrometry and similar data sets
JP2017511882A (ja) * 2014-02-14 2017-04-27 パーキンエルマー・ヘルス・サイエンシーズ・インコーポレイテッドPerkinelmer Health Sciences, Inc. 単一粒子誘導結合プラズマ質量分析における出力および類似データセットの自動化された分析のためのシステムおよび方法
US10181394B2 (en) 2014-02-14 2019-01-15 Perkinelmer Health Sciences, Inc. Systems and methods for automated optimization of a multi-mode inductively coupled plasma mass spectrometer
JP2016197031A (ja) * 2015-04-02 2016-11-24 新日鐵住金株式会社 ナノ粒子の粒径測定方法
JP2018130670A (ja) * 2017-02-15 2018-08-23 新日鐵住金株式会社 分散剤、フィールドフローフラクショネーション用の分散剤、鉄鋼材料中の微粒子の分別方法および鉄鋼材料中の微粒子の分析方法
JP2019056694A (ja) * 2017-09-18 2019-04-11 アクツィエン−ゲゼルシャフト デア ディリンジャー ヒュッテンベルケ 鉄鋼中の粒子を分析、とりわけ析出または/および隔離するための方法
JP2020148696A (ja) * 2019-03-15 2020-09-17 Jfeスチール株式会社 金属試料中の介在物および/または析出物の捕集方法、および、金属試料中の介在物および/または析出物の分析方法、ならびに、電解液
WO2021235169A1 (ja) * 2020-05-20 2021-11-25 国立研究開発法人産業技術総合研究所 個数基準粒子径分布計測方法及び計測システム
JPWO2022014636A1 (ja) * 2020-07-15 2022-01-20
WO2022014636A1 (ja) * 2020-07-15 2022-01-20 国立研究開発法人産業技術総合研究所 粒子密度測定方法及びそのシステム
JP7296172B2 (ja) 2020-07-15 2023-06-22 国立研究開発法人産業技術総合研究所 粒子密度測定方法及びそのシステム

Also Published As

Publication number Publication date
US8384897B2 (en) 2013-02-26
TWI403714B (zh) 2013-08-01
EP2270469A1 (en) 2011-01-05
CN102016543A (zh) 2011-04-13
US20110019187A1 (en) 2011-01-27
KR20100137539A (ko) 2010-12-30
JP4572001B2 (ja) 2010-10-27
JPWO2009131175A1 (ja) 2011-08-18
KR101165162B1 (ko) 2012-07-11
TW201000878A (en) 2010-01-01
PL2270469T3 (pl) 2020-11-16
CN102016543B (zh) 2013-04-10
EP2270469B1 (en) 2020-06-03
EP2270469A4 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4572001B2 (ja) 金属材料中微粒子の粒度分布測定方法
Schwaferts et al. Methods for the analysis of submicrometer-and nanoplastic particles in the environment
KR101163299B1 (ko) 금속시료의 분석방법
KR101152438B1 (ko) 금속재료의 분석방법
JP4737278B2 (ja) 金属材料中の析出物および/または介在物の分析方法
Kim et al. Nanometrology and its perspectives in environmental research
JP5223665B2 (ja) 金属材料中の析出物及び/又は介在物の分析方法
JP5277906B2 (ja) 微粒子の粒径分布測定方法
Dutschke et al. Optimisation of an extraction/leaching procedure for the characterisation and quantification of titanium dioxide (TiO 2) nanoparticles in aquatic environments using SdFFF-ICP-MS and SEM-EDX analyses
JP7020447B2 (ja) 金属試料中の介在物および/または析出物の分析方法、および、金属試料中の介在物および/または析出物の捕集方法
JP6911368B2 (ja) 鉄鋼材料中の微粒子の分析方法
JP4972784B2 (ja) 鋼中微粒子の分析方法
JP5298810B2 (ja) 金属材料中の析出物および/または介在物の定量方法
JP3943488B2 (ja) 鉄鋼試料中の非金属介在物の組成および/または粒径の分析法
Picó et al. Analytical tools able to detect ENP/NM/MNs in both artificial and natural environmental water media
JP5088305B2 (ja) 金属材料中の析出物及び/又は介在物の分析方法
JP5359244B2 (ja) 金属試料中の析出物及び/又は介在物の分析方法
JP2009019956A (ja) 金属試料中の析出物及び/又は介在物の分析方法
JP2016176802A (ja) 金属異物の回収方法および重合体の金属異物検査方法
Wang et al. A Simple Spectral Method for Nanoplastic Identification and Characterisation
KR20220082069A (ko) 석출물 및/또는 개재물의 추출 방법, 석출물 및/또는 개재물의 정량 분석 방법, 그리고, 전해액
Kinoshiro et al. Determination of Micro-alloyed Elements Containing in the Solid Solution Phase in High Tensile Steel
TW200837341A (en) The system and method of monitoring the particle size distribution of wastewater suspended solids.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114543.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733952

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010509216

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12934031

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107023637

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009733952

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE