WO2009130965A1 - ポリイソシアネート組成物およびそれを用いた2液型塗料組成物 - Google Patents

ポリイソシアネート組成物およびそれを用いた2液型塗料組成物 Download PDF

Info

Publication number
WO2009130965A1
WO2009130965A1 PCT/JP2009/056041 JP2009056041W WO2009130965A1 WO 2009130965 A1 WO2009130965 A1 WO 2009130965A1 JP 2009056041 W JP2009056041 W JP 2009056041W WO 2009130965 A1 WO2009130965 A1 WO 2009130965A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyisocyanate
reaction
allophanate
acid
group
Prior art date
Application number
PCT/JP2009/056041
Other languages
English (en)
French (fr)
Inventor
龍介 岸本
伸一 松下
幸弘 森川
Original Assignee
日本ポリウレタン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ポリウレタン工業株式会社 filed Critical 日本ポリウレタン工業株式会社
Priority to JP2010509119A priority Critical patent/JP5445451B2/ja
Priority to CN200980114114.6A priority patent/CN102015815B/zh
Publication of WO2009130965A1 publication Critical patent/WO2009130965A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/46Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups containing any of the groups, X being a hetero atom, Y being any atom, e.g. acylureas
    • C07C275/58Y being a hetero atom
    • C07C275/60Y being an oxygen atom, e.g. allophanic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • C08G18/092Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • C08G18/2825Alkanols, cycloalkanols or arylalkanols including terpenealcohols having at least 6 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7837Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes

Definitions

  • the present invention relates to a polyisocyanate composition and a two-component coating composition using the same.
  • Two-component urethane-based paints that use polyisocyanate as a component provide coatings with excellent weather resistance and abrasion resistance.
  • coating of outdoor substrates such as buildings and civil engineering structures, and automobiles It is used for repair and plastic coating.
  • this paint generally uses strong solvents such as aromatic hydrocarbon solvents such as toluene and xylene, and ester solvents such as butyl acetate, that is, solvents with strong dissolving power. It was done.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-198928 discloses a polyisocyanate excellent in dilutability with a low polar solvent and a polyol having a dilutability of 100% or more with an alicyclic diisocyanate and a low polar organic solvent. Polyisocyanates obtained by reacting with are disclosed.
  • Patent Document 2 Japanese Patent Laid-Open No. 2008-248278 discloses aliphatic and / or alicyclic diisocyanates and carbon as polyisocyanates having excellent solubility in low-polar organic solvents and compatibility with silicate compounds. Polyisocyanate compounds obtained from several 1 to 20 monoalcohols and having a predetermined allophanate group / isocyanurate group molar ratio and a predetermined molecular weight distribution are disclosed.
  • Patent Document 1 and Patent Document 2 are all excellent in solubility in low-polar organic solvents, various properties such as compatibility with the main component polyol compound and surface hardness of the resulting coating film are obtained. There is room for further improvement in terms of physical properties. There is also room for improvement in the selection of low polarity solvents.
  • the present invention has been made in view of the above circumstances, and provides a coating film that is soluble in a low-polar organic solvent, excellent in compatibility with a polyol compound, and excellent in various physical properties such as surface hardness. It is an object of the present invention to provide a polyisocyanate composition to be obtained and a two-component coating composition using the same.
  • an allophanate group / isocyanurate group of a polyisocyanate obtained by reacting hexamethylene diisocyanate with an aliphatic monoalcohol having 11 to 20 carbon atoms.
  • solubility in low-polar organic solvents is improved, and various physical properties such as surface hardness are improved in coatings obtained from paints containing this polyisocyanate and polyol.
  • the present invention has been completed.
  • a process for producing a polyisocyanate characterized in that hexamethylene diisocyanate and an aliphatic monoalcohol having 11 to 20 carbon atoms are allophanatized and isocyanurated in the presence of a tin octylate catalyst; 5).
  • a two-component coating composition comprising any one of the polyisocyanate compositions 1 to 3 and a polyol compound.
  • the polyisocyanate contained in the composition of the present invention is excellent in solubility in a low-polar organic solvent (weak solvent) and has good compatibility with a fluorine-based or acrylic polyol used in a two-component paint. Since this polyisocyanate has a high isocyanurate content, various coating film properties such as surface hardness can be improved by using this polyisocyanate as a curing agent for a two-component coating composition. In addition, since the two-component coating composition of the present invention is soluble in a low-polar organic solvent (weak solvent), it does not erode the base layer during overcoating, and thus has excellent recoatability. Yes.
  • the polyisocyanate composition according to the present invention includes a polyisocyanate obtained by reacting hexamethylene diisocyanate with an aliphatic monoalcohol having 11 to 20 carbon atoms, a low polar organic solvent having an aniline point of 10 to 70 ° C., or a mixture
  • the polyisocyanate has an allophanate group, isocyanurate group and urethane group in the molecule, and the molar ratio of these allophanate groups to isocyanurate groups is allophanate group.
  • Isocyanurate group 70/30 to 30/70.
  • the urethane group content is not particularly limited, but in the polyisocyanate of the present invention, 0.1 to 2 mol% is preferable with respect to the total molar amount of allophanate groups and isocyanurate groups. 0.5 to 2 mol% is more preferable.
  • the molar ratio of each functional group can be calculated by 1 H-NMR measurement.
  • Examples of the aliphatic monoalcohol having 11 to 20 carbon atoms to be reacted with hexamethylene diisocyanate include isotridecanol, 1-undecanol, 1-dodecanol, 1-eicosanol, 1-heptadecanol, 1-nonadecanol, 1- Tridecanol, 1-tetradecanol, 1-pentadecanol, stearyl alcohol, isostearyl alcohol, 3-ethyl-4,5,6-trimethyloctanol, 4,5,6,7-tetramethylnonanol, 4,5 , 8-trimethyldecanol, 4,7,8-trimethyldecanol, 2-hexyldodecanol, 2-octyldodecanol, 2-dodecyldecanol, 2-hexadecyloctadecanol and the like.
  • 1-tridecanol, isotridecanol, 1-dodecanol, 1-eicosanol, 1-heptadecanol are considered in consideration of further increasing the solubility of the resulting polyisocyanate composition in a low-polar organic solvent.
  • 1-nonadecanol, 1-tetradecanol, 1-pentadecanol, stearyl alcohol, isostearyl alcohol and 2-octyldodecanol are preferable, and 1-tridecanol, isotridecanol and 2-octyldodecanol are more preferable.
  • the reaction of hexamethylene diisocyanate and monoalcohol can be carried out by heating to about 50 to 150 ° C. in the presence or absence of an organic solvent.
  • Allophanatization may be performed simultaneously with urethanization or after urethanization, but in the present invention, it is preferably performed after urethanization.
  • the reaction may be performed in the presence of an allophanatization catalyst.
  • allophanatization is performed after urethanization, the urethanization reaction was performed for a predetermined time in the absence of the allophanatization catalyst. Thereafter, an allophanatization catalyst may be added to carry out the allophanatization reaction.
  • a known catalyst can be appropriately selected and used, for example, a metal salt of a carboxylic acid can be used.
  • the carboxylic acid include saturated aliphatic carboxylic acids such as acetic acid, propionic acid, butyric acid, caproic acid, octylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, 2-ethylhexanoic acid, cyclohexanecarboxylic acid, Saturated monocyclic carboxylic acids such as cyclopentanecarboxylic acid, saturated polycyclic carboxylic acids such as bicyclo (4.4.0) decane-2-carboxylic acid, mixtures of the above-mentioned carboxylic acids such as naphthenic acid, oleic acid, linoleic acid , Monocarboxylic acids such as unsaturated aliphatic carboxylic acids such as linolenic acid, soybean oil fatty acid and
  • the metal constituting the metal salt of carboxylic acid includes alkali metals such as lithium, sodium and potassium; alkaline earth metals such as magnesium, calcium and barium; other typical metals such as tin and lead; manganese, iron, Examples include transition metals such as cobalt, nickel, copper, zinc, and zirconium. These carboxylic acid metal salts can be used alone or in combination of two or more.
  • the amount of the allophanatization catalyst used is preferably 0.0005 to 1% by mass, more preferably 0.001 to 0.1% by mass, based on the total mass of the polyisocyanate and the alcohol.
  • organic solvents that do not affect the reaction can be used.
  • organic solvents include aliphatic hydrocarbons such as n-hexane and octane; cyclohexane, methylcyclohexane, and the like.
  • Alicyclic hydrocarbons such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; esters such as methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate; ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, Glycol ether esters such as 3-methyl-3-methoxybutyl acetate and ethyl-3-ethoxypropionate; ethers such as diethyl ether, tetrahydrofuran and dioxane; methyl chloride, methylene chloride, chloroform, Carbon, methyl bromide, methylene iodide, halogenated hydrocarbons dichloroethane; N- methylpyrrolidone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, such as a polar a
  • a reaction terminator such as phosphoric acid or phosphoric acid ester is added to the reaction system, and a termination reaction is performed at 30 to 100 ° C. for 1 to 2 hours to terminate the allophanatization reaction.
  • allophanate-modified polyisocyanate can be obtained by removing unreacted components by a known method such as thin film distillation.
  • the obtained allophanate-modified polyisocyanate can be used as it is as a polyisocyanate composition (when it satisfies the above-mentioned allophanate group / isocyanurate group range).
  • the allophanate-modified polyisocyanate obtained as described above mainly has allophanate groups, but side reactions occur due to reactions under conditions where isocyanate groups are present in excess, and isocyanurate groups are generated. To do. Therefore, the molar ratio of allophanate groups to isocyanurate groups in the obtained polyisocyanate is adjusted to about 70/30 to 30/70 by appropriately adjusting various conditions such as the ratio of [NCO] / [OH] in allophanate formation. It can adjust suitably in the range.
  • the polyisocyanate allophanated by the above method can be further isocyanurated to adjust the allophanate group / isocyanurate group molar ratio.
  • the isocyanuration reaction include a method in which polyisocyanate is modified (trimerized) in the presence of an isocyanuration catalyst. As such a modification method, for example, methods described in Japanese Patent Nos. 3371480 and 2002-241458 can be used.
  • Examples of the isocyanuration catalyst include metal salts of aliphatic carboxylic acids, phenolates such as potassium phenolate, 2,4,6-tris (dimethylaminomethyl) phenol, 2,4-bis (dimethylaminomethyl) phenol, Amines such as 2,6-di-t-butyl-4-dimethylaminotrimethylsilanephenol, triethylamine, N, N ′, N ′′ -tris (dimethylaminopropyl) hexahydro-S-triazine, diazabicycloundecene Compounds can be used.
  • metal salts of aliphatic carboxylic acids are preferable, and for example, sodium salts, potassium salts, and tin salts of carboxylic acids such as acetic acid, propionic acid, undecyl acid, capric acid, octylic acid, and myristic acid are preferable.
  • carboxylic acids such as acetic acid, propionic acid, undecyl acid, capric acid, octylic acid, and myristic acid are preferable.
  • DABCO TMR 2-hydroxypropyltrimethylammonium octylate
  • DABCO K-15 potassium octylate
  • the polyisocyanate of the present invention can be produced by a technique in which allophanatization and isocyanuration are performed simultaneously, or a technique in which allophanation and isocyanuration are performed in stages, The method of simultaneously performing the allophanatization reaction and the isocyanurate reaction is optimal.
  • the catalyst it is preferable to use tin octylate among the above-mentioned various catalysts from the viewpoint of easy reaction control. Further, two or more polyisocyanates can be used as a mixture.
  • the polyisocyanate satisfies the molar ratio of the allophanate group and the isocyanurate group as long as the mixture satisfies the molar ratio of the allophanate group and isocyanurate group described above.
  • Some non-polyisocyanates can also be used.
  • the viscosity of the polyisocyanate used in the present invention is not particularly limited, but is preferably 2,000 mPa ⁇ s or less at 25 ° C., more preferably 1,500 mPa ⁇ s or less, and 1,000 mPa. -More preferably, it is s or less. If the viscosity of the polyisocyanate exceeds 2,000 mPa ⁇ s, the viscosity of the coating composition may increase and it may be difficult to handle. On the other hand, the lower limit of the viscosity is not particularly limited, but is preferably 50 mPa ⁇ s or more from the viewpoint of handling.
  • the other component to be reacted and cured may be appropriately selected from polyol compounds generally used for the application.
  • polyol compounds generally used for the application.
  • Specific examples include acrylic polyols and fluorine polyols.
  • fluorine polyols are preferable in consideration of weather resistance
  • acrylic polyols are preferable in consideration of the balance between weather resistance and cost. is there.
  • a polyol compound that is soluble in a low-polar organic solvent is also preferred because of the property of the polyisocyanate that the solubility in a low-polar organic solvent is good.
  • the acrylic polyol soluble in the low-polar organic solvent is not particularly limited, and a known weak solvent-soluble acrylic polyol can be used. Specific examples thereof include commercially available products such as ACRICID HU-596 (Dainippon Ink Chemical Co., Ltd.), Excelol 410 (Asia Kogyo Co., Ltd.), and Hitaroid 6500 (Hitachi Chemical Industry Co., Ltd.). ) And the like.
  • the fluorine-based polyol soluble in the low-polar organic solvent is not particularly limited, and a known weak solvent-soluble fluorine-based polyol can be used. Specific examples thereof include fluoroethylene-vinyl ether (vinyl ester) copolymers. As a commercial item, Lumiflon LF800 (Asahi Glass Co., Ltd. product) etc. are mentioned.
  • the hydroxyl value and acid value of the polyol compound are not particularly limited, but in the coating material of the present invention, the hydroxyl value is preferably 1 to 300 mgKOH / g, more preferably 1 to 250 mgKOH / g. preferable.
  • the hydroxyl value is less than 1 mgKOH / g, the coating film is not sufficiently crosslinked, and the physical properties such as the coating film strength tend to decrease.
  • the hydroxyl value exceeds 300 mgKOH / g, the crosslinking density of the coating film becomes too high and becomes hard. In some cases, followability and flexibility with respect to the substrate may be reduced.
  • the number average molecular weight of the polyol compound is preferably from 5,000 to 20,000, more preferably from 7,000 to 15,000, considering the strength of the resulting coating film and the handleability of the paint.
  • the number average molecular weight is a measured value (polystyrene equivalent value) by gel permeation chromatography (GPC) measurement by differential refractometer detection.
  • the blending ratio of the polyisocyanate composition and the polyol compound in the coating composition of the present invention is preferably 1 to 150 parts by mass of the polyisocyanate composition with respect to 100 parts by mass of the polyol compound. More preferred is 1 to 100 parts by mass.
  • the polyisocyanate composition used in the coating composition of the present invention contains a low polarity organic solvent having an aniline point of 10 to 70 ° C. or a low polarity organic solvent having a mixed aniline point of 5 to 50 ° C.
  • These low polar organic solvents may be added in advance to the polyisocyanate, or may be added to the polyisocyanate for the purpose of adjusting the viscosity before mixing the polyisocyanate and the polyol.
  • a low polar organic solvent may be added at the time of preparation of a polyol composition as needed, and may be further added at the time of mixing a polyisocyanate composition and a polyol.
  • the “aniline point” is a minimum temperature at which an equal volume of aniline and a sample (organic solvent) exist as a uniform mixed solution.
  • the “mixed aniline point” is the lowest temperature at which 2 volumes of aniline, 1 volume of sample, and 1 volume of 1-heptane exist as a uniform mixed solution.
  • the aniline point and mixed aniline point can be measured according to the aniline point and mixed aniline point test method described in JIS K 2256. Since aniline has a freezing point of ⁇ 6 ° C., the aniline point cannot be measured at temperatures below that. Therefore, a mixed aniline point is used in order to measure the solubility of the organic solvent over a wider area by mixing aniline with heptane.
  • the aniline point is preferably 10 to 70 ° C, more preferably 10 to 60 ° C, and more preferably 10 to 50 ° C. In the case of a mixed aniline point, 5 to 50 ° C. is preferable. If the aniline point is less than 10 ° C. or the mixed aniline point is less than 5 ° C., the base is likely to be eroded.
  • organic solvents examples include methylcyclohexane (aniline point: 40 ° C.), ethylcyclohexane (aniline point: 44 ° C.), mineral spirit (aniline point: 56 ° C.), and turpentine oil (aniline point: 44 ° C.).
  • HAWS High Aromatic White Spirit
  • LAWS Low Aromatic White Spirit
  • an organic solvent having an aniline point of 10 ° C. or higher or a mixed aniline point of 5 ° C. or higher is characterized by low odor. Therefore, the coating composition of the present invention containing such a low polarity organic solvent is excellent from the viewpoint of environmental resistance. Moreover, since the low polar organic solvent as described above has a low dissolving power and does not easily attack the base, the coating composition can be repeatedly applied and is also useful as a repair coating.
  • the said coating composition may contain the various additives generally used for a coating material.
  • additives include plasticizers, antiseptics, antifungal agents, algaeproofing agents, antifoaming agents, leveling agents, pigment dispersants, anti-settling agents, anti-sagging agents, catalysts, curing accelerators, dehydrating agents, and gloss.
  • examples include an eraser, an ultraviolet absorber, an antioxidant, a pigment, and a surfactant.
  • a coating film is produced from the coating composition of the present invention
  • brushing, roller coating, spraying is applied to an appropriate base material such as concrete, mortar, siding board, extrusion board, porcelain tile, metal, glass, wood, plastic, etc. It may be applied by a method such as dip coating, and dried and cured by an appropriate method.
  • a dry type building material you may precoat in a factory etc. with a flow coater or a roll coater.
  • the coating composition may be applied directly to the substrate, or may be applied from above the sealing, electrodeposition, undercoating (primer coating), or intermediate coating (coloring, etc.).
  • a base material is a metal, you may apply
  • the viscosity is a value measured with a B-type rotational viscometer.
  • Modified polyisocyanates S-2 to S-4 were obtained in the same manner as in Example 1, except that the amount of the catalyst and the like and the NCO content were changed as shown in Table 1.
  • Example 5 In a 1-liter four-necked flask equipped with a stirrer, a thermometer, a condenser tube, and a nitrogen gas inlet tube, 850 g of HDI (manufactured by Nippon Polyurethane Industry Co., Ltd., NCO content: 49.9% by mass) and Calcoal 200GD 150 g (2-octyldodecanol, manufactured by Kao Co., Ltd.) was charged, and the mixture was heated to 85 ° C. with stirring, and urethanized for 3 hours.
  • HDI manufactured by Nippon Polyurethane Industry Co., Ltd., NCO content: 49.9% by mass
  • Calcoal 200GD 150 g (2-octyldodecanol, manufactured by Kao Co., Ltd.
  • Modified polyisocyanate S-6 was obtained in the same procedure as in Example 5 except that the amount of catalyst and the like and the NCO content were changed as shown in Table 1.
  • Example 7 In a 1-liter four-necked flask equipped with a stirrer, a thermometer, a cooling pipe, and a nitrogen gas introduction pipe, 130 g of the polyisocyanate S-4 obtained in Example 4 and the polyisocyanate obtained in Comparative Example 2 were used. 70 g of isocyanate H-2 was charged and stirred and mixed for 1 hour to obtain a modified polyisocyanate S-7 having an NCO content of 16.0% by mass, a viscosity (25 ° C.) of 240 mPa ⁇ s, and a free HDI content of 0.2% by mass. It was.
  • Weight drop resistance JIS K-5600 uses a weight of 10.3 mm in diameter and a weight of 0.5 kg to determine whether the coating film is cracked or peeled off from the steel sheet when subjected to deformation due to weight drop. -5-3: Evaluated according to 1999 weight drop test. The minimum drop height (cm) at which the coating film cracked and peeled was defined as the weight drop resistance.
  • Coating Film Hardness The hardness of the coating film surface was measured according to a scratch hardness test (pencil method) of JIS K-5600-5-4: 1999. The hardness of the hardest pencil with no scratch marks on the surface of the coating film was defined as the coating film hardness.
  • Adhesiveness The adhesiveness of the paint film is determined from the substrate when a cross-cut tape peeling test according to JIS K-5600-5-6: 1999, and a right-angle lattice pattern is cut into the paint film and penetrates to the substrate. The coating film was evaluated for resistance to peeling (cross-cut method).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

 ヘキサメチレンジイソシアネートと炭素数11~20の脂肪族モノアルコールとを反応させて得られるポリイソシアネート、およびアニリン点が10~70°Cの低極性有機溶剤または混合アニリン点が5~50°Cの低極性有機溶剤を含み、ポリイソシアネートが、アロファネート基、イソシアヌレート基およびウレタン基を分子内に有するとともに、アロファネート基とイソシアヌレート基とのモル比が、アロファネート基/イソシアヌレート基=70/30~30/70であるポリイソシアネート組成物。この組成物は、低極性有機溶剤に可溶であるとともに、ポリオール化合物との相溶性に優れ、表面硬度をはじめとする各種物性に優れた塗膜を与え得る。

Description

ポリイソシアネート組成物およびそれを用いた2液型塗料組成物
 本発明は、ポリイソシアネート組成物およびそれを用いた2液型塗料組成物に関する。
 ポリイソシアネートを一成分として用いる2液型のウレタン系塗料は、耐候性や耐摩耗性に優れた塗膜を与えることから、従来、建築物、土木構築物等の屋外基材の塗装や、自動車の補修、プラスチックの塗装などに使用されている。
 この塗料では、ポリイソシアネートの極性の高さから、一般的に、トルエンやキシレン等の芳香族炭化水素溶剤や、酢酸ブチル等のエステル系溶剤などの強溶剤、すなわち、溶解力の強い溶剤が用いられていた。
 これらの強溶剤は、臭気が強いため、作業環境の改善や地球環境負荷の低減という点から近年は敬遠される傾向にある。さらに、旧塗膜の上から新たに塗装して補修や塗り替えを行う際、補修用塗料中に高い溶解力を有する強溶剤が含まれている場合、旧塗膜が膨潤ないしは溶解し、旧塗膜まで補修する必要が生じることがある。その結果、塗装作業の拡大化と煩雑化、塗装費用の増大、工期の延長などの問題が生じる場合がある。
 以上の点に鑑み、近年、低極性有機溶剤に溶解し易いポリイソシアネートの開発が進められている。
 例えば、特許文献1(特開平8-198928号公報)には、低極性溶剤による希釈性に優れているポリイソシアネートとして、脂環式ジイソシアネートと、低極性有機溶剤による希釈性が100%以上のポリオールとを反応させて得られたポリイソシアネートが開示されている。
 また、特許文献2(特開2008-24828号公報)には、低極性有機溶剤に対する溶解性およびシリケート化合物との相溶性に優れているポリイソシアネートとして、脂肪族および/または脂環式ジイソシアネートと炭素数1~20のモノアルコールとから得られ、所定のアロファネート基/イソシアヌレート基のモル比および所定の分子量分布を有するポリイソシアネート化合物が開示されている。
 上記特許文献1および特許文献2のポリイソシアネートは、いずれも低極性有機溶剤に対する溶解性には優れているものの、主剤であるポリオール化合物との相溶性や、得られる塗膜の表面硬度などの各種物性の点において、さらなる改善の余地がある。また、低極性溶剤の選択にも改善の余地がある。
特開平8-198928号公報 特開2008-24828号公報
 本発明は、上記事情に鑑みてなされたものであり、低極性有機溶剤に可溶であるとともに、ポリオール化合物との相溶性に優れ、表面硬度をはじめとする各種物性に優れた塗膜を与え得るポリイソシアネート組成物およびそれを用いた2液型塗料組成物を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意検討を重ねた結果、ヘキサメチレンジイソシアネートと炭素数11~20の脂肪族モノアルコールとを反応させて得られるポリイソシアネートの、アロファネート基/イソシアヌレート基のモル比を所定範囲とすることで、低極性有機溶剤に対する溶解性が向上するとともに、このポリイソシアネートとポリオールとを含む塗料から得られた塗膜において、表面硬度をはじめとした各種物性が向上することを見出し、本発明を完成した。
 すなわち、本発明は、
1. ヘキサメチレンジイソシアネートと炭素数11~20の脂肪族モノアルコールとを反応させて得られるポリイソシアネート、およびアニリン点が10~70℃の低極性有機溶剤または混合アニリン点が5~50℃の低極性有機溶剤を含み、前記ポリイソシアネートが、アロファネート基、イソシアヌレート基およびウレタン基を分子内に有するとともに、前記アロファネート基とイソシアヌレート基とのモル比が、アロファネート基/イソシアヌレート基=70/30~30/70であることを特徴とするポリイソシアネート組成物、
2. 前記反応が、アロファネート化反応とイソシアヌレート化反応とを同時に行うものである1のポリイソシアネート組成物、
3. 前記アロファネート化反応およびイソシアヌレート化反応の触媒が、オクチル酸スズである2のポリイソシアネート組成物、
4. ヘキサメチレンジイソシアネートと炭素数11~20の脂肪族モノアルコールとを、オクチル酸スズ触媒の存在下、アロファネート化反応およびイソシアヌレート化反応させることを特徴とするポリイソシアネートの製造方法、
5. 1~3のいずれかのポリイソシアネート組成物と、ポリオール化合物とを含む2液型塗料組成物
を提供する。
 本発明の組成物に含まれるポリイソシアネートは、低極性有機溶剤(弱溶剤)に対する溶解性に優れるとともに、2液型塗料に用いられるフッ素系やアクリル系のポリオールとの相溶性が良好である。
 このポリイソシアネートはイソシアヌレート含量が高いため、これを2液型塗料組成物の硬化剤として用いることで、表面硬度をはじめとした各種塗膜物性を向上させることができる。
 また、本発明の2液型塗料組成物は、低極性有機溶剤(弱溶剤)に可溶であることから、重ね塗りする際に下地層を侵食することがないため、再コート性に優れている。
 以下、本発明についてさらに詳しく説明する。
 本発明に係るポリイソシアネート組成物は、ヘキサメチレンジイソシアネートと炭素数11~20の脂肪族モノアルコールとを反応させて得られるポリイソシアネート、およびアニリン点が10~70℃の低極性有機溶剤、または混合アニリン点が5~50℃の低極性有機溶剤を含み、ポリイソシアネートが、アロファネート基、イソシアヌレート基およびウレタン基を分子内に有するとともに、これらアロファネート基とイソシアヌレート基とのモル比が、アロファネート基/イソシアヌレート基=70/30~30/70を満たすものである。
 本発明において、アロファネート基/イソシアヌレート基(モル比)が上記範囲を外れると、得られるポリイソシアネートの低極性有機溶剤に対する溶解性が低下するとともに、この組成物を用いて得られた塗膜の物性が低下する。
 より好ましくは、アロファネート基/イソシアヌレート基(モル比)=60/40~30/70、より一層好ましくは、40/60~30/70である。
 また、ウレタン基の含有量は特に限定されるものではないが、本発明のポリイソシアネートにおいては、アロファネート基とイソシアヌレート基の総モル量に対して、0.1~2モル%が好適であり、0.5~2モル%がより好ましい。
 なお、上記各官能基のモル比は、1H-NMR測定により算出することができる。
 ヘキサメチレンジイソシアネートと反応させる炭素数11~20の脂肪族モノアルコールとしては、例えば、イソトリデカノール、1-ウンデカノール、1-ドデカノール、1-エイコサノール、1-ヘプタデカノール、1-ノナデカノール、1-トリデカノール、1-テトラデカノール、1-ペンタデカノール、ステアリルアルコール、イソステアリルアルコール、3-エチル-4,5,6-トリメチルオクタノール、4,5,6,7-テトラメチルノナノール、4,5,8-トリメチルデカノール、4,7,8-トリメチルデカノール、2-ヘキシルドデカノール、2-オクチルドデカノール、2-ドデシルデカノール、2-ヘキサデシルオクタデカノールなどが挙げられる。これらは、単独で用いても、2種以上組み合わせて用いてもよい。
 これらのアルコールの中でも、得られるポリイソシアネート組成物の低極性有機溶剤に対する溶解性をより高めることを考慮すると、1-トリデカノール、イソトリデカノール、1-ドデカノール、1-エイコサノール、1-ヘプタデカノール、1-ノナデカノール、1-テトラデカノール、1-ペンタデカノール、ステアリルアルコール、イソステアリルアルコール、2-オクチルドデカノールが好ましく、1-トリデカノール、イソトリデカノール、2-オクチルドデカノールがより好ましい。
 ヘキサメチレンジイソシアネートとモノアルコールとの反応は、有機溶剤の存在下または非存在下、50~150℃程度に加熱して行うことができる。
 アロファネート化は、ウレタン化と同時に行っても、ウレタン化後に行ってもよいが、本発明ではウレタン化後に行うことが好ましい。ウレタン化とアロファネート化とを同時に行う場合、アロファネート化触媒の存在下で反応を行えばよく、ウレタン化後にアロファネート化を行う場合、アロファネート化触媒の非存在下で、所定時間ウレタン化反応を行った後、アロファネート化触媒を添加してアロファネート化反応を行えばよい。
 アロファネート化触媒としては、公知の触媒から適宜選択して用いることができ、例えば、カルボン酸の金属塩を用いることができる。上記カルボン酸としては、例えば、酢酸,プロピオン酸,酪酸,カプロン酸,オクチル酸,ラウリン酸,ミリスチン酸,パルミチン酸,ステアリン酸,2-エチルヘキサン酸等の飽和脂肪族カルボン酸、シクロヘキサンカルボン酸,シクロペンタンカルボン酸等の飽和単環カルボン酸、ビシクロ(4.4.0)デカン-2-カルボン酸等の飽和複環カルボン酸、ナフテン酸等の上述したカルボン酸の混合物、オレイン酸,リノール酸,リノレン酸,大豆油脂肪酸,トール油脂肪酸等の不飽和脂肪族カルボン酸、ジフェニル酢酸等の芳香脂肪族カルボン酸、安息香酸,トルイル酸等の芳香族カルボン酸等のモノカルボン酸類;フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、コハク酸、酒石酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、グルタコン酸、アゼライン酸、セバシン酸、1,4-シクロヘキシルジカルボン酸、α-ハイドロムコン酸、β-ハイドロムコン酸、α-ブチル-α-エチルグルタル酸、α,β-ジエチルサクシン酸、マレイン酸、フマル酸、トリメリット酸、ピロメリット酸等のポリカルボン酸類が挙げられる。
 また、カルボン酸の金属塩を構成する金属としては、リチウム、ナトリウム、カリウム等のアルカリ金属;マグネシウム、カルシウム、バリウム等のアルカリ土類金属;スズ、鉛等のその他の典型金属;マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ジルコニウム等の遷移金属などが挙げられる。
 これらのカルボン酸金属塩は、単独でまたは2種以上を組み合わせて用いることができる。なお、アロファネート化触媒の使用量は、ポリイソシアネートとアルコールとの合計質量に対して0.0005~1質量%が好ましく、0.001~0.1質量%がより好ましい。
 有機溶媒の存在下で反応を行う場合、反応に影響を与えない各種有機溶媒を用いることができ、その具体例としては、n-ヘキサン、オクタン等の脂肪族炭化水素類;シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル等のエステル類;エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート、エチル-3-エトキシプロピオネート等のグリコールエーテルエステル類;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;塩化メチル、塩化メチレン、クロロホルム、四塩化炭素、臭化メチル、ヨウ化メチレン、ジクロロエタン等のハロゲン化炭化水素類;N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミド等の極性非プロトン溶媒などが挙げられる。これらの溶媒は単独で、または2種以上組み合わせて用いることができる。
 反応終了後、リン酸やリン酸エステル等の反応停止剤を反応系内に加え、30~100℃で1~2時間停止反応を行い、アロファネート化反応を停止させる。
 反応停止後は、薄膜蒸留等の公知の手法により未反応成分を除去してアロファネート変性ポリイソシアネートを得ることができる。
 得られたアロファネート変性ポリイソシアネートは、(上述のアロファネート基/イソシアヌレート基の範囲を満たすものである場合)そのままポリイソシアネート組成物とすることができる。
 なお、以上のようにして得られるアロファネート変性ポリイソシアネートは、アロファネート基を主として有するものであるが、イソシアネート基が過剰に存在する条件下で反応を行うなどによって副反応が生じ、イソシアヌレート基が生成する。
 したがって、アロファネート化における[NCO]/[OH]の比などの各種条件を適宜調整することで、得られるポリイソシアネートにおけるアロファネート基とイソシアヌレート基とのモル比を、70/30~30/70程度の範囲で適宜調整することができる。
 また、以上の方法でアロファネート化したポリイソシアネートを、さらにイソシアヌレート化して、アロファネート基/イソシアヌレート基のモル比を調整することもできる。
 イソシアヌレート化反応としては、イソシアヌレート化触媒の存在下、ポリイソシアネートを変性(三量体化)する方法が挙げられる。このような変性方法としては、例えば、特許第3371480号公報、特開2002-241458号公報に記載の方法を用いることができる。
 イソシアヌレート化触媒としては、例えば、脂肪族カルボン酸の金属塩、カリウムフェノラート等のフェノラート、2,4,6-トリス(ジメチルアミノメチル)フェノール、2,4-ビス(ジメチルアミノメチル)フェノール、2,6-ジ-t-ブチル-4-ジメチルアミノトリメチルシランフェノール、トリエチルアミン、N,N',N''-トリス(ジメチルアミノプロピル)ヘキサヒドロ-S-トリアジン、ジアザビシクロウンデセン等のアミン系化合物を用いることができる。中でも、脂肪族カルボン酸の金属塩が好ましく、例えば、酢酸、プロピオン酸、ウンデシル酸、カプリン酸、オクチル酸、ミリスチル酸等のカルボン酸のナトリウム塩、カリウム塩、スズ塩などが好適である。また、市販品として、2-ヒドロキシプロピルトリメチルアンモニウム・オクチル酸塩(DABCO TMR、エアープロダクツジャパン(株)製)、オクチル酸カリウム(DABCO K-15、エアープロダクツジャパン(株)製)を用いることもできる。
 以上のように、本発明のポリイソシアネートは、アロファネート化とイソシアヌレート化とを同時に行う手法、またはアロファネート化とイソシアヌレート化とを段階的に行う手法により製造することができるが、本発明においては、アロファネート化反応とイソシアヌレート化反応とを同時に行う手法が最適である。
 この際、触媒としては、反応制御を行い易いという点から、上述した各種触媒の中でもオクチル酸スズを用いることが好ましい。
 また、ポリイソシアネートは2種以上混合して用いることもでき、この際、混合物として上述したアロファネート基とイソシアヌレート基とのモル比を満たす限り、上記アロファネート基とイソシアヌレート基とのモル比を満たさないポリイソシアネートを一部用いることもできる。
 本発明で用いるポリイソシアネートの粘度は、特に限定されるものではないが、25℃で2,000mPa・s以下であることが好ましく、1,500mPa・s以下であることがより好ましく、1,000mPa・s以下であることがさらに好ましい。ポリイソシアネートの粘度が、2,000mPa・sを超えると、塗料組成物の粘度が高くなり、取り扱い難くなる場合がある。一方、粘度の下限値は特に制限されないが、取り扱いの観点から、50mPa・s以上であることが好ましい。
 本発明の塗料組成物は、上述したポリイソシアネートに特徴があるため、これと反応硬化させるもう一方の成分としては、当該用途に一般に用いられているポリオール化合物から適宜選択すればよい。
 具体例としては、アクリル系ポリオール、フッ素系ポリオールなどが挙げられ、これらの中でも、耐候性を考慮するとフッ素系ポリオールが好適であり、耐候性とコスト面のバランスを考慮するとアクリル系ポリオールが好適である。
 また、本発明においては、低極性有機溶剤に対する溶解性が良好であるという上記ポリイソシアネートの特性から、ポリオール化合物も低極性有機溶剤に可溶なものが好適である。
 低極性有機溶剤に可溶なアクリル系ポリオールとしては、特に限定されるものではなく、公知の弱溶剤可溶型アクリル系ポリオールを用いることができる。その具体例としては、市販品である、アクリディックHU-596(大日本インキ化学工業(株)製)、エクセロール410(亜細亜工業(株)製)、ヒタロイド6500(日立化成工業(株)製)等が挙げられる。
 低極性有機溶剤に可溶なフッ素系ポリオールとしては、特に限定されるものではなく、公知の弱溶剤可溶型フッ素系ポリオールを用いることができる。その具体例としては、フルオロエチレン-ビニルエーテル(ビニルエステル)共重合体等が挙げられる。市販品としては、ルミフロンLF800(旭硝子(株)製)等が挙げられる。
 上記ポリオール化合物の水酸基価および酸価は特に限定されるものではないが、本発明の塗料では、水酸基価は、1~300mgKOH/gであることが好ましく、1~250mgKOH/gであることがより好ましい。水酸基価が1mgKOH/g未満では、塗膜の架橋が不十分となり、塗膜強度等の物性が低下する傾向があり、300mgKOH/gを超えると、塗膜の架橋密度が高くなり過ぎて硬くなり、基材に対する追従性および柔軟性が低下する場合がある。
 また、ポリオール化合物の数平均分子量は、得られる塗膜の強度や、塗料の取り扱い性などを考慮すると、5,000~20,000が好ましく、7,000~15,000がより好ましい。数平均分子量は、示差屈折率計検出によるゲルパーミェーションクロマトグラフィー(GPC)測定による測定値(ポリスチレン換算値)である。
 本発明の塗料組成物中における、ポリイソシアネート組成物とポリオール化合物との配合割合は、ポリオール化合物100質量部に対し、ポリイソシアネート組成物1~150質量部であることが好ましく、1~130質量部であることがより好ましく、1~100質量部であることがより好ましい。
 本発明の塗料組成物に用いられるポリイソシアネート組成物は、アニリン点が10~70℃の低極性有機溶剤または混合アニリン点が5~50℃の低極性有機溶剤を含有する。これらの低極性有機溶剤は、ポリイソシアネートに予め添加しておいてもよく、ポリイソシアネートとポリオールとの混合前に粘度を調整する目的でポリイソシアネートに添加してもよい。
 また、低極性有機溶剤は、必要に応じてポリオール組成物の調製時に添加してもよく、ポリイソシアネート組成物とポリオールとの混合時にさらに添加してもよい。
 ここで、「アニリン点」とは、等容量のアニリンと試料(有機溶剤)とが均一な混合溶液として存在する最低温度のことである。また、「混合アニリン点」とは、アニリン2容量、試料1容量および1-ヘプタン1容量が均一な混合溶液として存在する最低温度のことである。アニリン点および混合アニリン点はJIS K 2256に記載のアニリン点および混合アニリン点試験方法に準じて測定することができる。
 なお、アニリンは凝固点が-6℃であるため、それ以下の温度ではアニリン点は測定できない。そこで、アニリンにヘプタンを混合して有機溶剤の溶解力をより広域に測定するために、混合アニリン点が用いられる。
 上記アニリン点は10~70℃が好ましく、10~60℃がより好ましく、10~50℃がより好ましい。また、混合アニリン点の場合は5~50℃が好ましい。アニリン点が10℃未満または混合アニリン点が5℃未満では下地を侵し易くなり、アニリン点が70℃を超えるまたは混合アニリン点が50℃を超えると本発明のポリイソシアネートを溶解し難くなる。
 このような有機溶剤としては、例えば、メチルシクロヘキサン(アニリン点:40℃)、エチルシクロヘキサン(アニリン点:44℃)、ミネラルスピリット(アニリン点:56℃)、テレビン油(アニリン点:44℃)が挙げられ、また、石油系炭化水素として市販されている商品名で、High Aromatic White Spirit(HAWS)(シェルケミカルズジャパン製、アニリン点:17℃)、Low Aromatic White Spirit(LAWS)(シェルケミカルズジャパン製、アニリン点:44℃)、エッソナフサNo.6(エクソンモービル社製、アニリン点:43℃)、ペガゾール3040(エクソンモービル社製、アニリン点:55℃)、Aソルベント(新日本石油社製、アニリン点:45℃)、クレンゾル(新日本石油社製、アニリン点:64℃)、ミネラルスピリットA(新日本石油社製、アニリン点:43℃)、ハイアロム2S(新日本石油社製、アニリン点:44℃)、ソルベッソ100(エクソンモービル社製、混合アニリン点:14℃)、ソルベッソ150(エクソンモービル社製、混合アニリン点:18.3℃)、スワゾール100(丸善石油化学社製、混合アニリン点:24.6℃)、スワゾール200(丸善石油化学社製、混合アニリン点:23.8℃)、スワゾール1000(丸善石油化学社製、混合アニリン点:12.7℃)、スワゾール1500(丸善石油化学社製、混合アニリン点:16.5℃)、スワゾール1800(丸善石油化学社製、混合アニリン点:15.7℃)、出光イプゾール100(出光興産社製、混合アニリン点:13.5℃)、出光イプゾール150(出光興産社製、混合アニリン点:15.2℃)、ペガゾールARO-80(エクソンモービル社製、混合アニリン点:25℃)、ペガゾールR-100(エクソンモービル社製、混合アニリン点:14℃)、昭石特ハイゾール(シェルケミカルズジャパン社製、混合アニリン点:12.6℃)、日石ハイゾール(新日本石油社製、混合アニリン点:17℃以下)などが挙げられる。これらの有機溶剤は、1種を単独でまたは2種以上を混合して用いることができる。
 アニリン点が10℃以上または混合アニリン点が5℃以上である有機溶剤は臭気が少ないという特徴がある。そのため、このような低極性有機溶剤を含有する本発明の塗料組成物は、耐環境性の観点からも優れるものとなる。
 また、上記のような低極性有機溶剤は、溶解力が低く、下地を侵し難いため、塗料用組成物の重ね塗りが可能となり、補修用の塗料としても有用である。
 なお、上記塗料組成物は、一般的に塗料に用いられる各種添加剤を含んでいてもよい。添加剤としては、例えば、可塑剤、防腐剤、防黴剤、防藻剤、消泡剤、レベリング剤、顔料分散剤、沈降防止剤、たれ防止剤、触媒、硬化促進剤、脱水剤、艶消し剤、紫外線吸収剤、酸化防止剤、顔料、界面活性剤などが挙げられる。
 本発明の塗料組成物から塗膜を作製する場合、コンクリート、モルタル、サイディングボード、押出成形板、磁器タイル、金属、ガラス、木材、プラスチックなどの適宜な基材に、ハケ塗り、ローラー塗り、吹きつけ塗装などの方法により塗布し、適宜な手法で乾燥、硬化させればよい。
 また、乾式建材に塗装を行う場合は、フローコーターまたはロールコーターにより工場等でプレコートしてもよい。
 なお、塗料用組成物は基材に直接塗布してもよく、目止め、電着や下塗り(プライマー塗布)、中塗り(着色等)の上から塗布してもよい。また、基材が金属の場合、リン酸鉄処理またはリン酸亜鉛処理等の表面処理が施された上に塗布してもよい。
 以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は、下記の実施例に限定されるものではない。なお、以下において、粘度はB型回転粘度計による測定値である。
[1]ポリイソシアネートの製造
[実施例1]
 攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、ヘキサメチレンジイソシアネート(日本ポリウレタン工業(株)製、NCO含量:49.9質量%、以下HDIという)880g、およびトリデカノール(協和発酵工業(株)製)120gを仕込み、これらを撹拌しながら85℃に加熱し、3時間ウレタン化反応を行った。
 その後、この反応液中にアロファネート化およびイソシアヌレート化触媒であるオクチル酸スズ(日本化学産業(株)製)0.1gを添加し、110℃にて所定のNCO含量に達するまで反応させた後、反応停止剤である酸性リン酸エステル(JP-508、城北化学工業(株)製)0.4gを添加し、50℃で1時間停止反応を行った。
 この反応生成物から、薄膜蒸留(条件:140℃,0.04kPa)により過剰のHDIを除去し、NCO含量15.8質量%、粘度(25℃)320mPa・s、遊離のHDI含量0.1質量%の変性ポリイソシアネートS-1を得た。
[実施例2~4]
 触媒などの仕込み量やNCO含量を表1に示すとおりに変更した以外は、実施例1と同様の手順にて、変性ポリイソシアネートS-2~S-4を得た。
[実施例5]
 攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDI(日本ポリウレタン工業(株)製、NCO含量:49.9質量%)850g、およびカルコール200GD(2-オクチルドデカノール,花王(株)製)150gを仕込み、これらを撹拌しながら85℃に加熱し、3時間ウレタン化反応を行った。
 その後、この反応液中にアロファネート化およびイソシアヌレート化触媒であるオクチル酸スズ(日本化学産業(株)製)0.2gを添加し、110℃にて所定のNCO含量に達するまで反応させた後、反応停止剤である酸性リン酸エステル(JP-508、城北化学工業(株)製)0.8gを添加し、50℃で1時間停止反応を行った。
 この反応生成物から、薄膜蒸留(条件:140℃,0.04kPa)により過剰のHDIを除去し、NCO含量15.7質量%、粘度(25℃)560mPa・s、遊離のHDI含量0.2質量%の変性ポリイソシアネートS-5を得た。
[実施例6]
 触媒などの仕込み量やNCO含量を表1に示すとおりに変更した以外は、実施例5と同様の手順にて、変性ポリイソシアネートS-6を得た。
[比較例1]
 攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDI850g、およびカルコール200GD(2-オクチルドデカノール,花王(株)製)150gを仕込み、これらを撹拌しながら85℃に加熱し、3時間ウレタン化反応を行った。
 その後、この反応液中にこの反応液中にアロファネート化およびイソシアヌレート化触媒であるオクチル酸スズ(日本化学産業(株)製)0.4gを添加し、110℃にて所定のNCO含量に達するまで反応させた後、反応停止剤である酸性リン酸エステル(JP-508、城北化学工業(株)製)2.0gを添加し、50℃で1時間停止反応を行った。
 この反応生成物から、薄膜蒸留(条件:140℃,0.04kPa)により過剰のHDIを除去し、NCO含量15.3質量%、粘度(25℃)2,500mPa・s、遊離のHDI含量0.1質量%の変性ポリイソシアネートH-1を得た。
[比較例2]
 攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDI880g、トリデカノール(協和発酵工業(株)製)120gを仕込み、これらを撹拌しながら85℃に加熱し、3時間ウレタン化反応を行った。
 その後、この反応液中にアロファネート化触媒であるオクチル酸ジルコニウム(第一稀元素化学工業(株)製)0.1gを添加し、110℃にて所定のNCO含量に達するまで反応させた後、反応停止剤である酸性リン酸エステル(JP-508、城北化学工業(株)製)0.2gを添加し、50℃で1時間停止反応を行った。
 この反応生成物から、薄膜蒸留(条件:140℃,0.04kPa)により過剰のHDIを除去し、NCO含量14.8質量%、粘度(25℃)130mPa・s、遊離のHDI含量0.1質量%の変性ポリイソシアネートH-2を得た。
[比較例3]
 攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDI910g、2-エチルヘキサノール90gを仕込み、直ちに80℃に加熱し、2時間ウレタン化反応を行った。
 その後、イソシアヌレート化触媒である2-ヒドロキシプロピルトリメチルアンモニウム・オクチル酸塩(DABCO TMR、エアープロダクツジャパン(株)製)0.1gを添加し、80℃にて所定のNCO含量に達するまで反応させた後、反応停止剤である酸性リン酸エステル(JP-508、城北化学工業(株)製)0.8gを添加し、50℃で1時間停止反応を行った。
 この反応生成物から、薄膜蒸留(条件:130℃,0.04kPa)により過剰のHDIを除去し、NCO含量19.1質量%、粘度(25℃)700mPa・s、遊離のHDI含量0.2質量%の変性ポリイソシアネートH-3を得た。
[実施例7]
 攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、上記実施例4で得られたポリイソシアネートS-4 130g、上記比較例2で得られたポリイソシアネートH-2 70gを仕込み、1時間撹拌・混合し、NCO含量16.0質量%、粘度(25℃)240mPa・s、遊離のHDI含量0.2質量%の変性ポリイソシアネートS-7を得た。
[比較例4]
 攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、上記実施例4で得られたポリイソシアネートS-4 100g、上記比較例2で得られたポリイソシアネートH-2 100gを仕込み、1時間撹拌・混合し、NCO含量15.8質量%、粘度(25℃)210mPa・s、遊離のHDI含量0.2質量%の変性ポリイソシアネートH-4を得た。
 上記実施例1~7および比較例1~4で得られた各ポリイソシアネートについて、それぞれアロファネート基、イソシアヌレート基およびウレタン基の(生成)モル比を下記手法により測定した。結果を表1に示す。
[測定法]
 1H-NMR(バリアン製Gemini2000(300MHz))を用いて、8.5ppm付近のアロファネート基の窒素原子に結合した水素原子のシグナルと、3.7ppm付近のイソシアヌレート基の窒素原子に隣接したメチレン基の水素原子のシグナルと、7.0ppm付近のウレタン基の窒素原子に結合した水素原子のシグナルの面積比から求めた。具体的な測定条件は以下のとおりである。
    測定温度:23℃
    試料濃度:0.1g/1ml
    積算回数:32回
    緩和時間:5秒
      溶媒:重水素ジメチルスルホキシド
 化学シフト基準:重水素ジメチルスルホキシド中のメチル基の水素原子のシグナル(2.5ppm)
 また、実施例1~7および比較例1~4で得られた各ポリイソシアネートについて、ミネラルスピリットA(新日本石油(株)製)に対する20℃での溶解性を以下の手法により測定した。結果を併せて表1に示す。
[測定法]
 ポリイソシアネート1gを量り取り、ここへミネラルスピリットAを加えていき、濁ったところを終点とし、その時点のミネラルスピリットAの添加量(g)を求めた。
 この添加量を用い、下記式(1)からトレランスを算出した。
 トレランス=有機溶剤の所要量(g)/サンプル量(1g)  (1)
Figure JPOXMLDOC01-appb-T000001
[2]2液型塗料組成物の製造
[実施例8~14,比較例5~8]
 実施例1~7および比較例1~4で得られた各ポリイソシアネートおよびミネラルスピリットA(新日本石油(株)製)(ポリイソシアネート組成物)と、アクリルポルオール(アクリディック HU-596、大日本インキ化学工業(株)製)、酸化チタン(CR-90、石原産業(株)製)、およびミネラルスピリットA(新日本石油(株)製)とを表2に示される割合で配合して2液型塗料組成物を調製した。
Figure JPOXMLDOC01-appb-T000002
 上記実施例8~14および比較例6,8で調製した2液型塗料組成物を、それぞれメチルエチルケトンで脱脂した鋼板(JIS G3141 商品名SPCC-SB、PF-1077処理、日本テストパネル工業(株)製)にアプリケーターを用い、ウェット膜厚100μmで塗布し、温度20℃、相対湿度65%の環境下で7日間養生を行い、乾燥膜厚40~50μmの塗膜を形成させた。得られた塗膜について、下記の各特性について評価を行った。結果を表3に示す。
 なお、比較例5,7で調製した2液型塗料組成物は、低極性溶剤に対するトレランス不足のため試験を行わなかった。
(1)耐屈曲性
 円筒形マンドレルにより折り曲げられた場合の塗膜の割れ、および鋼板からの剥がれの有無を、直径2mmの円筒形マンドレルを使用し、JIS K-5600-5-1:1999の耐屈曲性試験に準拠して評価した。塗膜の割れ、剥がれが生じないものを合格とした。
(2)耐カッピング性
 押し込みによって、部分変形を受けた場合の塗膜の割れ、および鋼板からの剥がれの有無を、押し込み器を使用し、JIS K-5600-5-2:1999の耐カッピング試験に準拠して評価した。押し込み器によって、塗膜の割れ、剥がれが生じる押し込み深さ(mm)を耐カッピング性とした。
(3)耐おもり落下性
 おもり落下によって、変形を受けた場合の塗膜の割れ、および鋼板からの剥がれの有無を、直径10.3mm、質量0.5kgのおもりを使用し、JIS K-5600-5-3:1999の耐おもり落下試験に準拠して評価した。塗膜の割れ、剥がれが生じる最低の落下高さ(cm)を耐おもり落下性とした。
(4)塗膜硬度
 塗膜表面の硬度は、JIS K-5600-5-4:1999の引っかき硬度試験(鉛筆法)に準拠して測定した。塗膜表面にキズ跡が生じなかった最も硬い鉛筆の硬度を塗膜硬度とした。
(5)密着性
 塗膜の密着性をJIS K-5600-5-6:1999に準拠した碁盤目テープ剥離試験、直角の格子パターンが塗膜に切り込まれ、素地まで貫通するときの素地からの剥離に対して塗膜の耐性を評価した(クロスカット法)。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、実施例8~14の塗料組成物から得られた塗膜は、硬度に優れているとともに、その他の諸特性も良好であることがわかる。

Claims (5)

  1.  ヘキサメチレンジイソシアネートと炭素数11~20の脂肪族モノアルコールとを反応させて得られるポリイソシアネート、およびアニリン点が10~70℃の低極性有機溶剤または混合アニリン点が5~50℃の低極性有機溶剤を含み、
     前記ポリイソシアネートが、アロファネート基、イソシアヌレート基およびウレタン基を分子内に有するとともに、
     前記アロファネート基とイソシアヌレート基とのモル比が、アロファネート基/イソシアヌレート基=70/30~30/70であることを特徴とするポリイソシアネート組成物。
  2.  前記反応が、アロファネート化反応とイソシアヌレート化反応とを同時に行うものである請求項1記載のポリイソシアネート組成物。
  3.  前記アロファネート化反応およびイソシアヌレート化反応の触媒が、オクチル酸スズである請求項2記載のポリイソシアネート組成物。
  4.  ヘキサメチレンジイソシアネートと炭素数11~20の脂肪族モノアルコールとを、オクチル酸スズ触媒の存在下、アロファネート化反応およびイソシアヌレート化反応させることを特徴とするポリイソシアネートの製造方法。
  5.  請求項1~3のいずれか1項記載のポリイソシアネート組成物と、ポリオール化合物とを含む2液型塗料組成物。
PCT/JP2009/056041 2008-04-24 2009-03-26 ポリイソシアネート組成物およびそれを用いた2液型塗料組成物 WO2009130965A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010509119A JP5445451B2 (ja) 2008-04-24 2009-03-26 ポリイソシアネート組成物およびそれを用いた2液型塗料組成物
CN200980114114.6A CN102015815B (zh) 2008-04-24 2009-03-26 多异氰酸酯组合物及使用其的双组分型涂料组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008114223 2008-04-24
JP2008-114223 2008-04-24

Publications (1)

Publication Number Publication Date
WO2009130965A1 true WO2009130965A1 (ja) 2009-10-29

Family

ID=41216704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056041 WO2009130965A1 (ja) 2008-04-24 2009-03-26 ポリイソシアネート組成物およびそれを用いた2液型塗料組成物

Country Status (4)

Country Link
JP (1) JP5445451B2 (ja)
CN (1) CN102015815B (ja)
TW (1) TWI481633B (ja)
WO (1) WO2009130965A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060778A (ja) * 2014-09-16 2016-04-25 旭化成ケミカルズ株式会社 ポリイソシアネート組成物、塗料組成物及び塗装方法
WO2016098772A1 (ja) * 2014-12-15 2016-06-23 三井化学株式会社 自己修復性ポリウレタン樹脂原料、自己修復性ポリウレタン樹脂、自己修復性コーティング材料、自己修復性エラストマー材料、自己修復性ポリウレタン樹脂原料の製造方法、および、自己修復性ポリウレタン樹脂の製造方法
JP7361565B2 (ja) 2019-10-24 2023-10-16 Dicグラフィックス株式会社 リキッド印刷インキ、印刷物、及び包装材料

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104059215B (zh) * 2013-03-19 2016-05-18 万华化学(北京)有限公司 一种tdi异氰脲酸酯的制备方法
TWI572633B (zh) 2014-05-02 2017-03-01 Asahi Kasei Chemicals Corp Polyisocyanate hardening, and polyisocyanate hardening
JP2017082076A (ja) * 2015-10-27 2017-05-18 旭化成株式会社 ポリイソシアネート組成物、塗料組成物及び塗装方法
CN107304244B (zh) * 2016-04-18 2020-08-25 合肥科天水性科技有限责任公司 一种改性的多异氰酸酯组合物及其制备方法
KR102050921B1 (ko) * 2018-08-02 2019-12-03 에스케이이노베이션 주식회사 유기용제 조성물 및 이를 포함하는 도료 조성물
JP7206089B2 (ja) * 2018-10-04 2023-01-17 旭化成株式会社 ポリイソシアネート組成物、塗料組成物及び塗膜
CN116535612B (zh) * 2022-11-16 2023-11-14 江苏奥斯佳材料科技股份有限公司 一种聚氨酯固化剂

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250872A (ja) * 1988-12-28 1990-10-08 Takeda Chem Ind Ltd ポリイソシアネート,その製造法および用途
JPH0570444A (ja) * 1991-01-22 1993-03-23 Miles Inc アロフアネート基とイソシアヌレート基とを有するポリイソシアネート、その製造方法および2−成分被覆組成物におけるその使用
JPH0641270A (ja) * 1992-04-14 1994-02-15 Takeda Chem Ind Ltd アロフアネート基及びイソシアヌレート基を有するポリイソシアネート及びその製造方法
JPH07330860A (ja) * 1994-06-15 1995-12-19 Asahi Chem Ind Co Ltd ポリイソシアネート組成物
JP2003137966A (ja) * 2001-10-31 2003-05-14 Dainippon Ink & Chem Inc ポリイソシアネート硬化剤
JP2008024828A (ja) * 2006-07-21 2008-02-07 Asahi Kasei Chemicals Corp ポリイソシアネート組成物、及びコーティング組成物
WO2008065732A1 (fr) * 2006-11-27 2008-06-05 Nippon Polyurethane Industry Co., Ltd. Procédé de production d'un mélange à base d'isocyanate modifié contenant une liaison allophanate et une liaison isocyanurate
JP2009007472A (ja) * 2007-06-28 2009-01-15 Nippon Polyurethane Ind Co Ltd 2液硬化型塗料用樹脂組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0566037A2 (en) * 1992-04-14 1993-10-20 Takeda Chemical Industries, Ltd. Polyisocyanates, their production and use
JP4849736B2 (ja) * 2001-05-17 2012-01-11 旭化成ケミカルズ株式会社 ポリイソシアネート組成物の製造方法
US7268202B2 (en) * 2001-09-20 2007-09-11 Asahi Kasei Chemicals Corporation Polyisocyanate composition having allophanate group and high-solid coating material
EP1721920B1 (en) * 2004-03-01 2015-05-06 Asahi Kasei Chemicals Corporation Blocked polyisocyanate composition and coating composition using same
US8952120B2 (en) * 2005-09-22 2015-02-10 Asahi Kasei Chemicals Corporation Polyisocyanate composition and coating composition containing the same
JP4943004B2 (ja) * 2005-12-28 2012-05-30 三井化学株式会社 アロファネート基含有ポリイソシアネートの製造方法、ならびにウレタンプレポリマーおよびポリウレタン樹脂組成物
JP5388405B2 (ja) * 2006-03-31 2014-01-15 旭化成ケミカルズ株式会社 ポリイソシアネート組成物、及び二液型ポリウレタン組成物
EP2083056A4 (en) * 2006-10-05 2013-07-24 Mitsui Chemicals Inc COMPOSITION FOR BICOMPONENT FLUORINE COATING MATERIAL

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250872A (ja) * 1988-12-28 1990-10-08 Takeda Chem Ind Ltd ポリイソシアネート,その製造法および用途
JPH0570444A (ja) * 1991-01-22 1993-03-23 Miles Inc アロフアネート基とイソシアヌレート基とを有するポリイソシアネート、その製造方法および2−成分被覆組成物におけるその使用
JPH0641270A (ja) * 1992-04-14 1994-02-15 Takeda Chem Ind Ltd アロフアネート基及びイソシアヌレート基を有するポリイソシアネート及びその製造方法
JPH07330860A (ja) * 1994-06-15 1995-12-19 Asahi Chem Ind Co Ltd ポリイソシアネート組成物
JP2003137966A (ja) * 2001-10-31 2003-05-14 Dainippon Ink & Chem Inc ポリイソシアネート硬化剤
JP2008024828A (ja) * 2006-07-21 2008-02-07 Asahi Kasei Chemicals Corp ポリイソシアネート組成物、及びコーティング組成物
WO2008065732A1 (fr) * 2006-11-27 2008-06-05 Nippon Polyurethane Industry Co., Ltd. Procédé de production d'un mélange à base d'isocyanate modifié contenant une liaison allophanate et une liaison isocyanurate
JP2009007472A (ja) * 2007-06-28 2009-01-15 Nippon Polyurethane Ind Co Ltd 2液硬化型塗料用樹脂組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060778A (ja) * 2014-09-16 2016-04-25 旭化成ケミカルズ株式会社 ポリイソシアネート組成物、塗料組成物及び塗装方法
WO2016098772A1 (ja) * 2014-12-15 2016-06-23 三井化学株式会社 自己修復性ポリウレタン樹脂原料、自己修復性ポリウレタン樹脂、自己修復性コーティング材料、自己修復性エラストマー材料、自己修復性ポリウレタン樹脂原料の製造方法、および、自己修復性ポリウレタン樹脂の製造方法
KR20170078817A (ko) * 2014-12-15 2017-07-07 미쓰이 가가쿠 가부시키가이샤 자기 수복성 폴리유레테인 수지 원료, 자기 수복성 폴리유레테인 수지, 자기 수복성 코팅 재료, 자기 수복성 엘라스토머 재료, 자기 수복성 폴리유레테인 수지 원료의 제조 방법, 및 자기 수복성 폴리유레테인 수지의 제조 방법
JPWO2016098772A1 (ja) * 2014-12-15 2017-11-02 三井化学株式会社 自己修復性ポリウレタン樹脂原料、自己修復性ポリウレタン樹脂、自己修復性コーティング材料、自己修復性エラストマー材料、自己修復性ポリウレタン樹脂原料の製造方法、および、自己修復性ポリウレタン樹脂の製造方法
KR101943242B1 (ko) * 2014-12-15 2019-01-28 미쓰이 가가쿠 가부시키가이샤 자기 수복성 폴리유레테인 수지 원료, 자기 수복성 폴리유레테인 수지, 자기 수복성 코팅 재료, 자기 수복성 엘라스토머 재료, 자기 수복성 폴리유레테인 수지 원료의 제조 방법, 및 자기 수복성 폴리유레테인 수지의 제조 방법
JP7361565B2 (ja) 2019-10-24 2023-10-16 Dicグラフィックス株式会社 リキッド印刷インキ、印刷物、及び包装材料

Also Published As

Publication number Publication date
TW200948837A (en) 2009-12-01
CN102015815B (zh) 2014-03-05
JP5445451B2 (ja) 2014-03-19
TWI481633B (zh) 2015-04-21
JPWO2009130965A1 (ja) 2011-08-18
CN102015815A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
JP5445451B2 (ja) ポリイソシアネート組成物およびそれを用いた2液型塗料組成物
JP6281280B2 (ja) アロファネート・イソシアヌレート化触媒、該触媒を用いたポリイソシアネート組成物、該組成物の製造方法、及び該組成物を用いた二液型塗料組成物
JP6165419B2 (ja) 水系2成分型コーティング組成物、インキ組成物、及び接着剤組成物、並びにその使用方法
JP5290504B2 (ja) 水性塗料組成物
RU2417236C1 (ru) Композиции для нанесения покрытий способом катодного электроосаждения с улучшенным внешним видом, противокоррозионной устойчивостью и пластичностью
WO2009113407A1 (ja) ポリイソシアネート組成物およびそれを用いた2液型塗料組成物
JP5125308B2 (ja) 塗料用硬化剤組成物、二液硬化型塗料及び塗膜形成方法
JP5370736B2 (ja) 2液型ポリウレタン樹脂塗料用硬化剤およびその製造方法ならびに2液型ポリウレタン樹脂塗料
JPWO2009044595A1 (ja) 二液型含フッ素コーティング組成物
JP5245741B2 (ja) フッ素系ポリオール用ポリイソシアネート硬化剤組成物およびそれを用いた2液型塗料組成物
JP4498850B2 (ja) ポリイソシアネート組成物および2液型ポリウレタンコーティング組成物
JP5522506B2 (ja) 2液型ポリウレタン樹脂塗料用硬化剤およびその製造方法ならびに2液型ポリウレタン樹脂塗料
JP5499474B2 (ja) 2液硬化型塗料用硬化剤組成物
WO2009119206A1 (ja) ポリイソシアネート及び二液型コーティング剤
WO2010024330A1 (ja) ポリイソシアネート組成物およびそれを用いた2液型塗料組成物
JP5136964B2 (ja) 変性ポリイソシアネート組成物及びこれを用いた2液型ポリウレタンコーティング剤組成物
WO2021020534A1 (ja) ブロックポリイソシアネート組成物、一液型コーティング組成物、塗膜及び塗装物品
JP2020196870A (ja) 水系2成分型硬化樹脂組成物及び物品のコーティング方法
JP7474125B2 (ja) ブロックポリイソシアネート組成物、樹脂組成物、樹脂膜及び積層体
JP2010215870A (ja) ポリイソシアネート組成物およびそれを用いた2液型塗料組成物
JP2023101150A (ja) ブロックポリイソシアネート組成物、樹脂組成物、樹脂膜及び積層体
JP2010195903A (ja) ポリイソシアネート組成物およびそれを用いた2液型塗料組成物
JP2020128503A (ja) 水系2成分型硬化樹脂組成物及び物品のコーティング方法
JP2022014951A (ja) コーティング組成物及びコーティング基材
JP2023070109A (ja) ブロックポリイソシアネート組成物及びその製造方法、樹脂組成物、樹脂膜及びその製造方法、並びに、積層体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114114.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733968

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010509119

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7721/DELNP/2010

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 09733968

Country of ref document: EP

Kind code of ref document: A1