WO2009113407A1 - ポリイソシアネート組成物およびそれを用いた2液型塗料組成物 - Google Patents

ポリイソシアネート組成物およびそれを用いた2液型塗料組成物 Download PDF

Info

Publication number
WO2009113407A1
WO2009113407A1 PCT/JP2009/053669 JP2009053669W WO2009113407A1 WO 2009113407 A1 WO2009113407 A1 WO 2009113407A1 JP 2009053669 W JP2009053669 W JP 2009053669W WO 2009113407 A1 WO2009113407 A1 WO 2009113407A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyisocyanate
allophanate
acid
composition
base
Prior art date
Application number
PCT/JP2009/053669
Other languages
English (en)
French (fr)
Inventor
龍介 岸本
伸一 松下
幸弘 森川
Original Assignee
日本ポリウレタン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ポリウレタン工業株式会社 filed Critical 日本ポリウレタン工業株式会社
Priority to JP2010502763A priority Critical patent/JPWO2009113407A1/ja
Priority to CN2009801090534A priority patent/CN102216363A/zh
Publication of WO2009113407A1 publication Critical patent/WO2009113407A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • C08G18/2825Alkanols, cycloalkanols or arylalkanols including terpenealcohols having at least 6 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3215Polyhydroxy compounds containing aromatic groups or benzoquinone groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7837Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups

Definitions

  • the present invention relates to a polyisocyanate composition and a two-component coating composition using the same.
  • Two-component urethane paints that use polyisocyanate as a component provide coatings with excellent weather resistance and abrasion resistance.
  • coating of outdoor base materials such as buildings and civil engineering structures, repairing automobiles, etc. Used for plastic coating.
  • this paint generally uses strong solvents such as aromatic hydrocarbon solvents such as toluene and xylene, and ester solvents such as butyl acetate, that is, solvents with strong dissolving power. It was done.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-198928 discloses a polyisocyanate excellent in dilutability with a low polar solvent and a polyol having a dilutability of 100% or more with an alicyclic diisocyanate and a low polar organic solvent.
  • Polyisocyanates obtained by reacting with are disclosed.
  • This document also discloses that a coating film obtained using this polyisocyanate as a curing agent is excellent in extensibility.
  • Patent Document 2 Japanese Patent Laid-Open No. 2008-248278 discloses aliphatic and / or alicyclic diisocyanates and carbon as polyisocyanates having excellent solubility in low-polar organic solvents and compatibility with silicate compounds. Polyisocyanate compounds obtained from several 1 to 20 monoalcohols and having a predetermined allophanate group / isocyanurate group molar ratio and a predetermined molecular weight distribution are disclosed.
  • the polyisocyanate of Patent Document 1 is excellent in solubility in a low-polar organic solvent, the elongation at break of the obtained coating film is about 50%, and there is room for improvement in terms of extensibility. On the other hand, the extensibility of the coating film obtained using the polyisocyanate compound of Patent Document 1 is also insufficient. Further, any polyisocyanate is required to be further improved in terms of compatibility with the polyol compound as the main agent.
  • the present invention has been made in view of the above circumstances, and is a polyisocyanate composition that is soluble in a low-polar organic solvent, has excellent compatibility with a polyol compound, and can provide a coating film excellent in extensibility.
  • An object is to provide a two-component coating composition using the same.
  • the inventors of the present invention have found that in the polyisocyanate composition obtained by urethanation reaction of base polyisocyanate and polyether polyol, allophanate groups / By using the isocyanurate group having a molar ratio within a predetermined range, the solubility in a low-polar organic solvent is improved, and the flexibility and extension of the coating film obtained from the paint containing the polyisocyanate composition and the polyol are increased. As a result, the present invention has been completed.
  • a polyisocyanate composition obtained by subjecting a base polyisocyanate and a polyether polyol to a urethanization reaction, wherein the base polyisocyanate comprises an allophanate group and an isocyanurate group, an allophanate group / isocyanurate group 90/10 to A polyisocyanate composition comprising 100/0 (molar ratio), 2.
  • the base polyisocyanate is an allophanate-modified polyisocyanate obtained by reacting an aliphatic or alicyclic diisocyanate with a monoalcohol having 1 to 20 carbon atoms in the presence of an allophanate catalyst, and an aliphatic or alicyclic diisocyanate.
  • One polyisocyanate composition comprising a mixture of polyisocyanurates; 4).
  • a polyisocyanate composition obtained by subjecting a base polyisocyanate and a polyether polyol to a urethanization reaction, wherein allophanate groups and isocyanurate groups are allophanate groups / isocyanurate groups 90/10 to 100/0 (molar ratio).
  • the base polyisocyanate is an allophanate-modified polyisocyanate obtained by reacting an aliphatic or cycloaliphatic diisocyanate with a monoalcohol having 1 to 20 carbon atoms in the presence of an allophanate catalyst, and an aliphatic or A polyisocyanate composition comprising a mixture of polyisocyanurates of alicyclic diisocyanates, 5).
  • the polyisocyanate composition according to any one of 1 to 4, wherein the polyether polyol has a number average molecular weight of 1,000 to 10,000; 6).
  • a two-component coating composition comprising any of the polyisocyanate compositions 1 to 4 and a polyol compound; 7).
  • a six-component two-component coating composition containing a low polar organic solvent having an aniline point of 10 to 80 ° C. or a low polar organic solvent having a mixed aniline point of 5 to 50 ° C. is provided.
  • the polyisocyanate composition of the present invention is excellent in solubility in a low-polar organic solvent (weak solvent) and has good compatibility with fluorine-based and acrylic polyols used in two-component paints.
  • a coating film obtained from a two-component coating composition using this polyisocyanate composition is excellent in flexibility, has a large tensile strength and tensile elongation, and is tough.
  • the two-component coating composition of the present invention is soluble in a low-polar organic solvent (weak solvent), it does not erode the base layer during overcoating, and thus has excellent recoatability. Yes.
  • allophanate group / isocyanurate group 92/8 to 100/0 (molar ratio), and still more preferably 92/8 to 99/1. This molar ratio can be calculated by 1 H-NMR measurement.
  • the polyisocyanate can be appropriately selected from conventionally known various polyisocyanates.
  • aliphatic diisocyanate and alicyclic diisocyanate are preferred in view of further improving the weather resistance of the resulting coating film.
  • Diphenylmethane diisocyanate and norbornane diisocyanate are preferred.
  • the alcohol is not particularly limited.
  • a monool having 1 to 20 carbon atoms is preferable, and a monool having 3 to 20 carbon atoms is more preferable in consideration of further increasing the solubility of the resulting polyisocyanate composition in a low-polar organic solvent.
  • a monool having 3 to 18 carbon atoms is most suitable.
  • the allophanatization reaction can be performed by heating the polyisocyanate and alcohol as described above to about 50 to 150 ° C. in the presence or absence of an organic solvent. Allophanatization may be performed simultaneously with urethanization or after urethanization. When urethanization and allophanatization are performed simultaneously, the reaction may be performed in the presence of an allophanatization catalyst. When allophanatization is performed after urethanization, the urethanization reaction was performed for a predetermined time in the absence of the allophanatization catalyst. Thereafter, an allophanatization catalyst may be added to carry out the allophanatization reaction.
  • the allophanatization catalyst can be appropriately selected from known catalysts, and for example, a zirconium salt of a carboxylic acid can be used.
  • carboxylic acid include saturated aliphatic carboxylic acids such as acetic acid, propionic acid, butyric acid, caproic acid, octylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, 2-ethylhexanoic acid, cyclohexanecarboxylic acid, Saturated monocyclic carboxylic acids such as cyclopentanecarboxylic acid, saturated polycyclic carboxylic acids such as bicyclo (4.4.0) decane-2-carboxylic acid, mixtures of the above-mentioned carboxylic acids such as naphthenic acid, oleic acid, linoleic acid , Monocarboxylic acids such as unsaturated aliphatic carboxylic acids such as linolenic acid, soybean oil fatty acid and
  • zirconium carboxylates can be used alone or in combination of two or more.
  • a monocarboxylic acid zirconium salt having 10 or less carbon atoms such as zirconium octylate and zirconium 2-ethylhexanoate.
  • the amount of the allophanatization catalyst used is preferably 0.0005 to 1% by mass, more preferably 0.001 to 0.1% by mass, based on the total mass of the polyisocyanate and the alcohol.
  • organic solvents that do not affect the reaction can be used.
  • organic solvents include aliphatic hydrocarbons such as n-hexane and octane; cyclohexane, methylcyclohexane, and the like.
  • Alicyclic hydrocarbons such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; esters such as methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate; ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, Glycol ether esters such as 3-methyl-3-methoxybutyl acetate and ethyl-3-ethoxypropionate; ethers such as diethyl ether, tetrahydrofuran and dioxane; methyl chloride, methylene chloride, chloroform, Carbon, methyl bromide, methylene iodide, halogenated hydrocarbons dichloroethane; N- methylpyrrolidone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, polar aprotic solvents
  • a reaction terminator such as phosphoric acid or phosphoric acid ester is added to the reaction system, and a termination reaction is performed at 30 to 100 ° C. for 1 to 2 hours to terminate the allophanatization reaction.
  • the desired allophanate-modified polyisocyanate can be obtained by removing unreacted components by a known method such as thin film distillation.
  • the obtained allophanate-modified polyisocyanate can be used as the base polyisocyanate as it is (when the above allophanate group / isocyanurate group is satisfied).
  • the allophanate-modified polyisocyanate obtained as described above mainly has allophanate groups, but side reactions occur due to reactions under conditions where isocyanate groups are present in excess, and isocyanurate groups are generated. To do. Therefore, the molar ratio of allophanate groups to isocyanurate groups in the resulting polyisocyanate is adjusted to about 100: 0 to 70:30 by appropriately adjusting various conditions such as the ratio of [NCO] / [OH] in allophanate formation. It can adjust suitably in the range.
  • the polyisocyanate allophanated by the above method can be further isocyanurated to adjust the allophanate group / isocyanurate group molar ratio.
  • the isocyanuration reaction include a method in which polyisocyanate is modified (trimerized) in the presence of an isocyanuration catalyst. As such a modification method, for example, methods described in Japanese Patent Nos. 3371480 and 2002-241458 can be used.
  • Examples of the isocyanurate-forming catalyst include alkali metal salts of aliphatic carboxylic acids, phenolates such as potassium phenolate, 2,4,6-tris (dimethylaminomethyl) phenol, 2,4-bis (dimethylaminomethyl) phenol.
  • Amines such as 2,6-di-t-butyl-4-dimethylaminotrimethylsilanephenol, triethylamine, N, N ′, N ′′ -tris (dimethylaminopropyl) hexahydro-S-triazine, diazabicycloundecene System compounds can be used.
  • alkali metal salts of aliphatic carboxylic acids are preferable, and examples thereof include sodium salts and potassium salts of carboxylic acids such as acetic acid, propionic acid, undecyl acid, capric acid, octylic acid, and myristic acid.
  • carboxylic acids such as acetic acid, propionic acid, undecyl acid, capric acid, octylic acid, and myristic acid.
  • DABCO TMR 2-hydroxypropyltrimethylammonium octylate
  • DABCO K-15 potassium octylate
  • the base polyisocyanate of the present invention may be a blend of allophanate-modified polyisocyanate and polyisocyanurate of polyisocyanate.
  • allophanate-modified polyisocyanate and polyisocyanurate may be mixed at a ratio satisfying the above-described allophanate group / isocyanurate group molar ratio, taking into account the isocyanurate group present in the allophanate-modified polyisocyanate.
  • the reaction product polyisocyanate composition
  • Examples of the raw polyisocyanate for allophanate-modified polyisocyanate and polyisosinurate include those described above, and in this case, aliphatic or alicyclic polyisocyanate is preferable.
  • Examples of the alcohol used for allophanate modification include the same alcohols as described above. In this case, monools having 1 to 20 carbon atoms are preferable.
  • the isocyanurated raw material polyisocyanate may contain an isocyanate-terminated urethane prepolymer obtained by reacting a part of the polyisocyanate with a polyol.
  • the polyisocyanate composition of the present invention can be obtained by reacting the base polyisocyanate described above with a polyether polyol in the presence or absence of a solvent.
  • the reaction conditions of the base polyisocyanate and the polyether polyol are not particularly limited. For example, if necessary, an excess amount of the base polyisocyanate and the polyether polyol at 20 to 150 ° C. in the presence of a urethanization catalyst. And a method of reacting with.
  • the reaction between the base polyisocyanate and the polyether polyol can be carried out without a solvent or in the presence of a solvent. Examples of the solvent include the same ones as described above.
  • the molar ratio of [NCO] of the base polyisocyanate and [OH] of the polyether polyol is not particularly limited as long as [NCO] is excessive, but the resulting polyisocyanate composition and polyol are obtained.
  • [NCO] / [OH] 1.2 or more is preferable, 1.5 or more is more preferable, in consideration of increasing compatibility with the compound and increasing the crosslink density to improve the coating film performance. 7 or more is even more preferable.
  • the urethanization catalyst used as needed can be suitably selected from well-known things, for example, dibutyltin laurate, dioctyltin laurate, etc. can be used.
  • polyether polyol examples include polyethylene glycol, polypropylene glycol, and polytetramethylene obtained by ring-opening polymerization of ethylene oxide, propylene oxide, tetrahydrofuran, etc. using a low molecular polyol, a low molecular polyamine, and a low molecular amino alcohol as an initiator.
  • examples thereof include glycols and copolymers thereof. These polyols can be used singly or in combination of two or more. However, in consideration of enhancing the solubility in a low-polar solvent and the extensibility of the resulting coating film, it may contain at least polypropylene glycol. preferable.
  • the average number of functional groups of the polyether polyol is not particularly limited, but the gelation during the reaction with the base polyisocyanate is suppressed, and the compatibility between the obtained polyisocyanate composition and the polyol compound is reduced. 2 to 4 is preferable in view of improving the image quality.
  • the number average molecular weight is not particularly limited, but considering the viscosity of the modified polyisocyanate, the solubility in a low polar solvent, the viscosity after dissolution, etc., the number average molecular weight is 1,000 to 10,000. Is preferable, and 1,000 to 8,000 is more preferable.
  • the number average molecular weight is a value measured by gel permeation chromatography (hereinafter abbreviated as GPC) by differential refractometer detection (polystyrene conversion value).
  • Examples of commercially available polyether polyols include Sannix PP-1000, PP-2000, PP-3000, GP-1000, GP-3000 (manufactured by Sanyo Chemical Industries, Ltd.), Exenol-823, 828, 830, 837, 840, 850, 851B, 1020, 2020, 3020, 510, 1030, 4030, 5030 (above made by Asahi Glass Urethane Co., Ltd.), Preminol-3005, 4002, 5001, 7001 (above made by Asahi Glass Urethane Co., Ltd.) ) And the like.
  • the viscosity of the polyisocyanate composition of the present invention is preferably 2,000 mPa ⁇ s or less at 25 ° C., more preferably 1,500 mPa ⁇ s or less, and further preferably 1,000 mPa ⁇ s or less. preferable.
  • the viscosity of the polyisocyanate composition exceeds 2,000 mPa ⁇ s, the viscosity of the coating composition increases and it may be difficult to handle.
  • the lower limit of the viscosity is not particularly limited, but is preferably 50 mPa ⁇ s or more from the viewpoint of handling.
  • the other component to be reacted and cured with the coating composition may be appropriately selected from polyol compounds generally used for the application.
  • polyol compounds generally used for the application.
  • Specific examples include acrylic polyols and fluorine polyols.
  • fluorine polyols are preferable in consideration of weather resistance
  • acrylic polyols are preferable in consideration of the balance between weather resistance and cost. is there.
  • a polyol compound that is soluble in a low-polar organic solvent is also preferred because of the property of the polyisocyanate composition of the present invention that the solubility in a low-polar organic solvent is good.
  • the acrylic polyol soluble in the low-polar organic solvent is not particularly limited, and a known weak solvent-soluble acrylic polyol can be used. Specific examples thereof include commercially available products such as ACRICID A-801, HU-596 (manufactured by DIC Corporation), Excelol 410 (manufactured by Asia Industries), and Hitaroid 6500 (Hitachi Chemical Industry Co., Ltd.). )) And the like.
  • the fluorine-based polyol soluble in the low-polar organic solvent is not particularly limited, and a known weak solvent-soluble fluorine-based polyol can be used. Specific examples thereof include fluoroethylene-vinyl ether (vinyl ester) copolymers. As a commercial item, Lumiflon LF800 (Asahi Glass Co., Ltd. product) etc. are mentioned.
  • the hydroxyl value and acid value of the polyol compound are not particularly limited, but in the coating composition of the present invention, the hydroxyl value is preferably 1 to 300 mgKOH / g, and 1 to 250 mgKOH / g. Is more preferable.
  • the hydroxyl value is less than 1 mgKOH / g, the coating film is not sufficiently crosslinked, and the physical properties such as the coating film strength tend to decrease.
  • the hydroxyl value exceeds 300 mgKOH / g, the crosslinking density of the coating film becomes too high and becomes hard. In some cases, followability and flexibility with respect to the substrate may be reduced.
  • the blending ratio of the polyisocyanate composition and the polyol compound in the coating composition of the present invention is preferably 1 to 150 parts by mass of the polyisocyanate composition with respect to 100 parts by mass of the polyol compound. More preferred is 1 to 100 parts by mass.
  • the coating composition of the present invention may contain a low polarity organic solvent having an aniline point of 10 to 80 ° C. or a low polarity organic solvent having a mixed aniline point of 5 to 50 ° C., if necessary. These low-polar organic solvents may be added at the time of preparing the polyisocyanate composition and / or polyol, respectively, or may be added for viscosity adjustment at the time of mixing the polyisocyanate composition and the polyol.
  • the “aniline point” is a minimum temperature at which an equal volume of aniline and a sample (organic solvent) exist as a uniform mixed solution.
  • the “mixed aniline point” is the lowest temperature at which 2 volumes of aniline, 1 volume of sample, and 1 volume of 1-heptane exist as a uniform mixed solution.
  • the aniline point and mixed aniline point can be measured according to the aniline point and mixed aniline point test method described in JIS K 2256. Since aniline has a freezing point of ⁇ 6 ° C., the aniline point cannot be measured at temperatures below that. Therefore, a mixed aniline point is used in order to measure the solubility of the organic solvent over a wider area by mixing aniline with heptane.
  • the aniline point is preferably 10 to 80 ° C, more preferably 10 to 70 ° C, and still more preferably 10 to 50 ° C. In the case of a mixed aniline point, 5 to 50 ° C. is preferable. When the aniline point is less than 10 ° C. or the mixed aniline point is less than 5 ° C., the base is likely to be attacked, and when the aniline point exceeds 80 ° C. or the mixed aniline point exceeds 50 ° C., it becomes difficult to dissolve the polyisocyanate.
  • organic solvents examples include methylcyclohexane (aniline point: 40 ° C.), ethylcyclohexane (aniline point: 44 ° C.), mineral spirit (aniline point: 56 ° C.), and turpentine oil (aniline point: 44 ° C.).
  • HAWS High Aromatic White Spirit
  • LAWS Low Aromatic White Spirit
  • an organic solvent having an aniline point of 10 ° C. or higher or a mixed aniline point of 5 ° C. or higher is characterized by low odor. Therefore, the coating composition of the present invention containing such a low polarity organic solvent is excellent from the viewpoint of environmental resistance. Moreover, since the low polar solvent as described above has a low dissolving power and does not easily attack the base, the coating composition can be repeatedly applied, and is also useful as a repair coating.
  • the said coating composition may contain the various additives generally used for a coating material.
  • additives include plasticizers, antiseptics, antifungal agents, algaeproofing agents, antifoaming agents, leveling agents, pigment dispersants, anti-settling agents, anti-sagging agents, catalysts, curing accelerators, dehydrating agents, and gloss.
  • examples include an eraser, an ultraviolet absorber, an antioxidant, a pigment, and a surfactant.
  • a coating film is produced from the coating composition of the present invention
  • brushing, roller coating, spraying is applied to an appropriate base material such as concrete, mortar, siding board, extrusion board, porcelain tile, metal, glass, wood, plastic, etc. It may be applied by a method such as dip coating, and dried and cured by an appropriate method.
  • a dry type building material you may precoat in a factory etc. with a flow coater or a roll coater.
  • the coating composition may be applied directly to the base material, or may be applied from the top, electrodeposition, undercoating (primer coating), or intermediate coating (coloring, etc.).
  • a base material is a metal, you may apply
  • the viscosity is a value measured with a B-type rotational viscometer.
  • Example 2 Obtained in 189 g of modified polyisocyanate B-1 obtained in Synthesis Example 1 as a base polyisocyanate and Synthesis Example 2 in a four-necked flask with a capacity of 1 liter equipped with a stirrer, thermometer, cooling pipe, and nitrogen gas introduction pipe
  • the resulting modified polyisocyanate B-2 (21 g) and polyether polyol (Excenol-851B, number average molecular weight 6,700, manufactured by Asahi Glass Urethane Co., Ltd.) 90 g were charged, heated to 85 ° C., and subjected to a urethanization reaction for 4 hours.
  • 300 g of a polyisocyanate composition S-2 having an NCO content of 13.2% by mass and a viscosity (25 ° C.) of 830 mPa ⁇ s was obtained.
  • NMR measurement of the modified polyisocyanate B-3 confirmed allophanate groups and isocyanurate groups.
  • 216 g of the modified polyisocyanate B-3 obtained above as a base polyisocyanate and a polyether polyol were added to a 1-liter four-necked flask equipped with a stirrer, a thermometer, a cooling pipe, and a nitrogen gas introduction pipe.
  • Coating film appearance The appearance of the cured composition was visually observed. Those with no cloudiness or turbidity and forming a uniform coating film were judged as acceptable ( ⁇ ), and those with cloudiness or turbidity were judged as unacceptable (x). Appearance evaluation was performed on a coating film obtained by curing the following composition containing no pigment by the above method.
  • the indentation depth (mm) at which the coating film was cracked or peeled off by the indenter was defined as cupping resistance.
  • the cupping resistance is a value indicating the substrate followability and flexibility of the coating film, and it can be said that the greater the numerical value of the indentation depth, the higher the followability and flexibility.
  • Weight drop resistance JIS K-5600 uses a weight of 10.3 mm in diameter and 0.5 kg in weight to determine whether the coating film cracks or peels off from the steel sheet when it is deformed by weight drop. Evaluation was made in accordance with the weight drop test of -5-3. The minimum drop height (cm) at which the coating film cracked and peeled was defined as the weight drop resistance.
  • Coating film hardness The hardness of the coating film surface was measured in accordance with the scratch hardness test (pencil method) of JIS K-5600-5-4. The hardness of the hardest pencil with no scratch marks on the surface of the coating film was defined as the coating film hardness.
  • Adhesiveness The adhesiveness of the coating film is determined by a cross-cut tape peeling test in accordance with JIS K-5600-5-6. A right-angle lattice pattern is cut into the coating film and peeled off from the substrate. The resistance of the coating film was evaluated. (7) Extensibility of coating film Each liquid mixture shown in Table 3 is applied to a glass plate with release paper and guides attached, and cured for 7 days in an environment of a temperature of 20 ° C.
  • a coating film having a thickness of 200 ⁇ m was formed.
  • a test piece was prepared from the obtained coating film using a dumbbell cutter, and tensile measurement was performed in order to evaluate the extensibility of the coating film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

 ベースポリイソシアネートとポリエーテルポリオールとをウレタン化反応させて得られるポリイソシアネート組成物であって、ベースポリイソシアネートが、アロファネート基とイソシアヌレート基とを、アロファネート基/イソシアヌレート基=90/10~100/0(モル比)で含有するポリイソシアネート組成物。この組成物は、低極性有機溶剤に可溶であるとともに、ポリオール化合物との相溶性に優れ、伸展性に優れた塗膜を与え得る。

Description

ポリイソシアネート組成物およびそれを用いた2液型塗料組成物
 本発明は、ポリイソシアネート組成物およびそれを用いた2液型塗料組成物に関する。
 ポリイソシアネートを一成分として用いる2液型のウレタン系塗料は、耐候性や耐摩耗性に優れた塗膜を与えることから、従来、建築物、土木構築物等の屋外基材の塗装、自動車の補修、プラスチックの塗装などに使用されている。
 この塗料では、ポリイソシアネートの極性の高さから、一般的に、トルエンやキシレン等の芳香族炭化水素溶剤や、酢酸ブチル等のエステル系溶剤などの強溶剤、すなわち、溶解力の強い溶剤が用いられていた。
 これらの強溶剤は、臭気が強いため、近年は作業環境の改善や地球環境負荷の低減という点から敬遠される傾向にある。さらに、旧塗膜の上から新たに塗装して補修や塗り替えを行う際、補修用塗料中に高い溶解力を有する強溶剤が含まれている場合、旧塗膜が膨潤ないしは溶解し、旧塗膜まで補修する必要が発生する虞がある。その結果、塗装作業の拡大化と煩雑化、塗装費用の増大、工期の延長などの問題が生じる場合がある。
 以上の点に鑑み、近年、低極性有機溶剤に溶解し易いポリイソシアネートの開発が進められている。
 例えば、特許文献1(特開平8-198928号公報)には、低極性溶剤による希釈性に優れているポリイソシアネートとして、脂環式ジイソシアネートと、低極性有機溶剤による希釈性が100%以上のポリオールとを反応させて得られたポリイソシアネートが開示されている。また、この文献では、このポリイソシアネートを硬化剤として得られた塗膜が伸展性に優れていることも開示されている。
 また、特許文献2(特開2008-24828号公報)には、低極性有機溶剤に対する溶解性およびシリケート化合物との相溶性に優れているポリイソシアネートとして、脂肪族および/または脂環式ジイソシアネートと炭素数1~20のモノアルコールとから得られ、所定のアロファネート基/イソシアヌレート基のモル比および所定の分子量分布を有するポリイソシアネート化合物が開示されている。
 上記特許文献1のポリイソシアネートは、低極性有機溶剤に対する溶解性には優れているものの、得られた塗膜の破断伸度は50%程度であり、伸展性という点では改良の余地がある。
 一方、特許文献1のポリイソシアネート化合物を用いて得られた塗膜の伸展性も不十分である。
 また、いずれのポリイソシアネートも、主剤であるポリオール化合物との相溶性という点において、さらなる改善が求められている。
特開平8-198928号公報 特開2008-24828号公報
 本発明は、上記事情に鑑みてなされたものであり、低極性有機溶剤に可溶であるとともに、ポリオール化合物との相溶性に優れ、伸展性に優れた塗膜を与え得るポリイソシアネート組成物およびそれを用いた2液型塗料組成物を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、ベースポリイソシアネートとポリエーテルポリオールとをウレタン化反応させて得られるポリイソシアネート組成物において、ベースポリイソシアネートとして、アロファネート基/イソシアヌレート基のモル比が所定範囲のものを用いることで、低極性有機溶剤に対する溶解性が向上するとともに、このポリイソシアネート組成物とポリオールとを含む塗料から得られた塗膜の柔軟性、伸展性および強度が向上することを見出し、本発明を完成した。
 すなわち、本発明は、
1. ベースポリイソシアネートとポリエーテルポリオールとをウレタン化反応させて得られるポリイソシアネート組成物であって、前記ベースポリイソシアネートが、アロファネート基とイソシアヌレート基とを、アロファネート基/イソシアヌレート基=90/10~100/0(モル比)で含有することを特徴とするポリイソシアネート組成物、
2. 前記ベースポリイソシアネートが、脂肪族または脂環式ジイソシアネートと、炭素数1~20のモノアルコールとを、アロファネート触媒の存在下で反応させて得られたものである1のポリイソシアネート組成物、
3. 前記ベースポリイソシアネートが、脂肪族または脂環式ジイソシアネートと炭素数1~20のモノアルコールとをアロファネート触媒の存在下で反応させて得られたアロファネート変性ポリイソシアネート、および脂肪族または脂環式ジイソシアネートのポリイソシアヌレートの混合物からなる1のポリイソシアネート組成物、
4. ベースポリイソシアネートとポリエーテルポリオールとをウレタン化反応させて得られるポリイソシアネート組成物であって、アロファネート基とイソシアヌレート基とを、アロファネート基/イソシアヌレート基=90/10~100/0(モル比)で含有し、前記ベースポリイソシアネートが、脂肪族または脂環式ジイソシアネートと炭素数1~20のモノアルコールとをアロファネート触媒の存在下で反応させて得られたアロファネート変性ポリイソシアネート、および脂肪族または脂環式ジイソシアネートのポリイソシアヌレートの混合物からなることを特徴とするポリイソシアネート組成物、
5. 前記ポリエーテルポリオールの数平均分子量が1,000~10,000である1~4のいずれかのポリイソシアネート組成物、
6. 1~4のいずれかのポリイソシアネート組成物と、ポリオール化合物とを含む2液型塗料組成物、
7. アニリン点が10~80℃の低極性有機溶剤、または混合アニリン点が5~50℃の低極性有機溶剤を含む6の2液型塗料組成物
を提供する。
 本発明のポリイソシアネート組成物は、低極性有機溶剤(弱溶剤)に対する溶解性に優れるとともに、2液型塗料に用いられるフッ素系やアクリル系のポリオールとの相溶性が良好である。
 このポリイソシアネート組成物を用いた2液型塗料組成物から得られた塗膜は、柔軟性に優れ、かつ、引張強度および引張伸びが大きく、強靱である。
 また、本発明の2液型塗料組成物は、低極性有機溶剤(弱溶剤)に可溶であることから、重ね塗りする際に下地層を侵食することがないため、再コート性に優れている。
 以下、本発明についてさらに詳しく説明する。
 本発明に係るポリイソシアネート組成物は、アロファネート基とイソシアヌレート基とを、アロファネート基/イソシアヌレート基=90/10~100/0(モル比)で含有するベースポリイソシアネートと、ポリエーテルポリオールとをウレタン化反応させて得られたものである。
 本発明において、アロファネート基/イソシアヌレート基(モル比)が上記範囲を外れると、得られるポリイソシアネートの低極性有機溶剤に対する溶解性が低下するとともに、この組成物を用いて得られた塗膜の伸展性が低下する。
 より好ましくは、アロファネート基/イソシアヌレート基(モル比)=92/8~100/0(モル比)、より一層好ましくは、92/8~99/1である。
 なお、このモル比は、1H-NMR測定により算出することができる。
 上記ベースポリイソシアネートとしては、例えば、ポリイソシアネートとアルコールとをアロファネート化させたものを用いることができる。
 この場合、ポリイソシアネートとしては、従来公知の各種ポリイソシアネートから適宜選択して用いることができ、例えば、ヘキサメチレンジイソシアネート、1,4-テトラメチレンジイソシアネート、2-メチルペンタン-1,5-ジイソシアネート、リジンジイソシアネート等の脂肪族ジイソシアネート;イソホロンジイソシアネート、ノルボルナンジイソシアネート、水添化トリレンジイソシアネート、水添化キシレンジイソシアネート、水添化ジフェニルメタンジイソシアネート、水添化テトラメチルキシレンジイソシアネート等の脂環式ジイソシアネート;2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、2,4′-ジフェニルメタンジイソシアネート、2,2′-ジフェニルメタンジイソシアネート、4,4′-ジフェニルエーテルジイソシアネート、2-ニトロジフェニル-4,4′-ジイソシアネート、2,2′-ジフェニルプロパン-4,4′-ジイソシアネート、3,3′-ジメチルジフェニルメタン-4,4′-ジイソシアネート、4,4′-ジフェニルプロパンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、ナフチレン-1,4-ジイソシアネート、ナフチレン-1,5-ジイソシアネート、3,3′-ジメトキシジフェニル-4,4′-ジイソシアネート等の芳香族ジイソシアネート;キシリレン-1,4-ジイソシアネート、キシリレン-1,3-ジイソシアネート等の芳香脂肪族ジイソシアネート等を用いることができる。これらのポリイソシアネートは、単独で用いても、2種以上混合して用いてもよい。
 これらの中でも、得られる塗膜の耐候性をより高めることを考慮すると、脂肪族ジイソシアネート、脂環式ジイソシアネートが好適であり、特に、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、水添化キシリレンジイソシアネート、水添化ジフェニルメタンジイソシアネート、ノルボルナンジイソシアネートが好ましい。
 一方、アルコールとしても特に限定されるものではなく、例えば、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール、n-ペンタノール、iso-ペンタノール、n-ヘキサノール、n-へプタノール、n-オクタノール、2-エチルヘキサノール、エチルジメチル-1-ヘキサノール、メチル-1-ノナノール、ジメチル-1-オクタノール、テトラメチル-1-ヘキサノール、3-エチル-4,5,6-トリメチルオクタノール、4,5,6,7-テトラメチルノナノール、4,5,8-トリメチルデカノール、4,7,8-トリメチルデカノール、トリデカノール、テトラデカノール、2-ヘキシルドデカノール、2-オクチルドデカノール、2-ドデシルデカノール、2-ヘキサデシルオクタデカノール等の炭素数1~20のモノオール類;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2-メチル-1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,8-オクタンジオール、1,9-ノナンジオール、2,2-ジエチル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-n-ヘキサデカン-1,2-エチレングリコール、2-n-エイコサン-1,2-エチレングリコール、2-n-オクタコサン-1,2-エチレングリコール、ジエチレングリコール、ジプロピレングリコール、1,4-シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイドまたはプロピレンオキサイド付加物、水添化ビスフェノールA、3-ヒドロキシ-2,2-ジメチルプロピル-3-ヒドロキシ-2,2-ジメチルプロピオネート等のジオール類;トリメチロールプロパン、グリセリン等のトリオール類などが挙げられる。これらは、単独で用いても、2種以上組み合わせて用いてもよい。
 これらのアルコールの中でも、得られるポリイソシアネート組成物の低極性有機溶剤に対する溶解性をより高めることを考慮すると、炭素数1~20のモノオールが好ましく、炭素数3~20のモノオールがより好ましく、炭素数3~18のモノオールが最適である。
 アロファネート化反応は、上述のようなポリイソシアネートとアルコールとを有機溶剤の存在下または非存在下、50~150℃程度に加熱して行うことができる。
 アロファネート化は、ウレタン化と同時に行っても、ウレタン化後に行ってもよい。ウレタン化とアロファネート化とを同時に行う場合、アロファネート化触媒の存在下で反応を行えばよく、ウレタン化後にアロファネート化を行う場合、アロファネート化触媒の非存在下で、所定時間ウレタン化反応を行った後、アロファネート化触媒を添加してアロファネート化反応を行えばよい。
 アロファネート化触媒としては、公知の触媒から適宜選択して用いることができ、例えば、カルボン酸のジルコニウム塩を用いることができる。上記カルボン酸としては、例えば、酢酸,プロピオン酸,酪酸,カプロン酸,オクチル酸,ラウリン酸,ミリスチン酸,パルミチン酸,ステアリン酸,2-エチルヘキサン酸等の飽和脂肪族カルボン酸、シクロヘキサンカルボン酸,シクロペンタンカルボン酸等の飽和単環カルボン酸、ビシクロ(4.4.0)デカン-2-カルボン酸等の飽和複環カルボン酸、ナフテン酸等の上述したカルボン酸の混合物、オレイン酸,リノール酸,リノレン酸,大豆油脂肪酸,トール油脂肪酸等の不飽和脂肪族カルボン酸、ジフェニル酢酸等の芳香脂肪族カルボン酸、安息香酸,トルイル酸等の芳香族カルボン酸等のモノカルボン酸類;フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、コハク酸、酒石酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、クルタコン酸、アゼライン酸、セバシン酸、1,4-シクロヘキシルジカルボン酸、α-ハイドロムコン酸、β-ハイドロムコン酸、α-ブチル-α-エチルグルタル酸、α,β-ジエチルサクシン酸、マレイン酸、フマル酸、トリメリット酸、ピロメリット酸等のポリカルボン酸類が挙げられる。これらのカルボン酸ジルコニウム塩は、単独でまたは2種以上を組み合わせて用いることができる。特に、オクチル酸ジルコニウム、2-エチルヘキサン酸ジルコニウム等の炭素数10以下のモノカルボン酸ジルコニウム塩を用いることがより好ましい。
 なお、アロファネート化触媒の使用量は、ポリイソシアネートとアルコールとの合計質量に対して0.0005~1質量%が好ましく、0.001~0.1質量%がより好ましい。
 有機溶媒の存在下で反応を行う場合、反応に影響を与えない各種有機溶媒を用いることができ、その具体例としては、n-ヘキサン、オクタン等の脂肪族炭化水素類;シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル等のエステル類;エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート、エチル-3-エトキシプロピオネート等のグリコールエーテルエステル類;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;塩化メチル、塩化メチレン、クロロホルム、四塩化炭素、臭化メチル、ヨウ化メチレン、ジクロロエタン等のハロゲン化炭化水素類;N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミド等の極性非プロトン溶媒等が挙げられる。これらの溶媒は単独で、または2種以上組み合わせて用いることができる。
 反応終了後、リン酸やリン酸エステル等の反応停止剤を反応系内に加え、30~100℃で1~2時間停止反応を行い、アロファネート化反応を停止させる。
 反応停止後は、薄膜蒸留等の公知の手法により未反応成分を除去して目的とするアロファネート変性ポリイソシアネートを得ることができる。
 得られたアロファネート変性ポリイソシアネートは、(上述のアロファネート基/イソシアヌレート基の範囲を満たすものである場合)そのままベースポリイソシアネートとすることができる。
 なお、以上のようにして得られるアロファネート変性ポリイソシアネートは、アロファネート基を主として有するものであるが、イソシアネート基が過剰に存在する条件下で反応を行うなどによって副反応が生じ、イソシアヌレート基が生成する。
 したがって、アロファネート化における[NCO]/[OH]の比などの各種条件を適宜調整することで、得られるポリイソシアネートにおけるアロファネート基とイソシアヌレート基とのモル比を、100:0~70:30程度の範囲で適宜調整することができる。
 また、以上の方法でアロファネート化したポリイソシアネートを、さらにイソシアヌレート化して、アロファネート基/イソシアヌレート基のモル比を調整することもできる。
 イソシアヌレート化反応としては、イソシアヌレート化触媒の存在下、ポリイソシアネートを変性(三量体化)する方法が挙げられる。このような変性方法としては、例えば、特許第3371480号公報、特開2002-241458号公報に記載の方法を用いることができる。
 イソシアヌレート化触媒としては、例えば、脂肪族カルボン酸のアルカリ金属塩、カリウムフェノラート等のフェノラート、2,4,6-トリス(ジメチルアミノメチル)フェノール、2,4-ビス(ジメチルアミノメチル)フェノール、2,6-ジ-t-ブチル-4-ジメチルアミノトリメチルシランフェノール、トリエチルアミン、N,N',N''-トリス(ジメチルアミノプロピル)ヘキサヒドロ-S-トリアジン、ジアザビシクロウンデセン等のアミン系化合物を用いることができる。中でも、脂肪族カルボン酸のアルカリ金属塩が好ましく、例えば、酢酸、プロピオン酸、ウンデシル酸、カプリン酸、オクチル酸、ミリスチル酸等のカルボン酸のナトリウム塩、カリウム塩が挙げられる。また、市販品として、2-ヒドロキシプロピルトリメチルアンモニウム・オクチル酸塩(DABCO TMR、三共エアープロダクツ(株)製)、オクチル酸カリウム(DABCO K-15、三共エアープロダクツ(株)製)を用いることもできる。
 また、本発明のベースポリイソシアネートは、アロファネート変性ポリイソシアネートと、ポリイソシアネートのポリイソシアヌレートとを配合したものでもよい。
 この場合、アロファネート変性ポリイソシアネートとポリイソシアヌレートとを、上述したアロファネート基/イソシアヌレート基のモル比を満たす割合で混合してもよく、アロファネート変性ポリイソシアネート中に存在するイソシアヌレート基を考慮して、後述するポリエーテルポリオールとの反応生成物(ポリイソシアネート組成物)中において、アロファネート基とイソシアヌレート基とを、アロファネート基/イソシアヌレート基=90/10~100/0(モル比)を満たすようにしてもよい。
 アロファネート変性ポリイソシアネートおよびポリイソシヌレートの原料ポリイソシアネートとしては、上述と同様のものが挙げられるが、この場合も脂肪族または脂環式ポリイソシアネートが好ましい。
 また、アロファネート変性させる場合に用いられるアルコールとしても、上述と同様のものが挙げられるが、この場合も炭素数1~20のモノオールが好適である。
 なお、イソシアヌレート化の原料ポリイソシアネートには、その一部にポリイソシアネートと、ポリオールとを反応させて得られたイソシアネート末端ウレタンプレポリマーを含んでいてもよい。
 以上説明したベースポリイソシアネートと、ポリエーテルポリオールとを、溶媒の存在下または非存在下で反応させることで、本発明のポリイソシアネート組成物を得ることができる。
 ベースポリイソシアネートと、ポリエーテルポリオールとの反応条件は特に限定されるものではなく、例えば、必要に応じてウレタン化触媒の存在下、20~150℃で過剰量のベースポリイソシアネートと、ポリエーテルポリオールとを反応させる手法が挙げられる。
 ベースポリイソシアネートとポリエーテルポリオールとの反応は、無溶媒でも、溶媒の存在下でも行うことができる。溶媒としては、上述と同様のものが挙げられる。
 この際、ベースポリイソシアネートの[NCO]と、ポリエーテルポリオールの[OH]とのモル比は、[NCO]が過剰であれば特に限定されるものではないが、得られるポリイソシアネート組成物とポリオール化合物との相溶性を高め、かつ、架橋密度を高めて塗膜性能を高めることを考慮すると、[NCO]/[OH]=1.2以上が好ましく、1.5以上がより好ましく、1.7以上がより一層好ましい。
 なお、必要に応じて用いられるウレタン化触媒は公知のものから適宜選択することができ、例えば、ジブチル錫ラウレート、ジオクチル錫ラウレートなどを用いることができる。
 上記ポリエーテルポリオールとしては、低分子ポリオール、低分子ポリアミン、低分子アミノアルコールを開始剤として、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等を開環重合して得られる、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、およびこれらの共重合体等が挙げられる。
 なお、これらのポリオールは、単独で、または2種以上組み合わせて用いることができるが、低極性溶剤に対する溶解性および得られる塗膜の伸展性を高めることを考慮すると、少なくともポリプロピレングリコールを含むことが好ましい。
 本発明において、ポリエーテルポリオールの平均官能基数は、特に限定されるものではないが、ベースポリイソシアネートとの反応時のゲル化の抑制や、得られたポリイソシアネート組成物とポリオール化合物との相溶性を良好にするということを考慮すると、2~4が好ましい。
 また、その数平均分子量も特に限定されるものではないが、変性したポリイソシアネートの粘度や低極性溶剤への溶解性や溶解後の粘度などを考慮すると、数平均分子量1,000~10,000が好ましく、1,000~8,000がより好ましい。
 なお、数平均分子量は、示差屈折率計検出によるゲルパーミェーションクロマトグラフィー(以下、GPCと略称する)測定による測定値(ポリスチレン換算値)である。
 ポリエーテルポリオールの市販品としては、サンニックスPP-1000,PP-2000,PP-3000,GP-1000、GP-3000(以上、三洋化成工業(株)製)、エクセノール-823,828,830,837,840,850,851B,1020,2020,3020,510,1030,4030,5030(以上、旭硝子ウレタン(株)製)、プレミノール-3005,4002,5001,7001(以上、旭硝子ウレタン(株)製)等が挙げられる。
 本発明のポリイソシアネート組成物の粘度は、25℃で2,000mPa・s以下であることが好ましく、1,500mPa・s以下であることがより好ましく、1,000mPa・s以下であることがさらに好ましい。ポリイソシアネート組成物の粘度が、2,000mPa・sを超えると、塗料組成物の粘度が高くなり、取り扱い難くなる場合がある。一方、粘度の下限値は特に制限されないが、取り扱いの観点から、50mPa・s以上であることが好ましい。
 本発明の塗料組成物は、上述したポリイソシアネート組成物に特徴があるため、これと反応硬化させるもう一方の成分としては、当該用途に一般に用いられているポリオール化合物から適宜選択すればよい。
 具体例としては、アクリル系ポリオール、フッ素系ポリオールなどが挙げられ、これらの中でも、耐候性を考慮するとフッ素系ポリオールが好適であり、耐候性とコスト面のバランスを考慮するとアクリル系ポリオールが好適である。
 また、本発明においては、低極性有機溶剤に対する溶解性が良好であるという本発明のポリイソシアネート組成物の特性から、ポリオール化合物も低極性有機溶剤に可溶なものが好適である。
 低極性有機溶剤に可溶なアクリル系ポリオールとしては、特に限定されるものではなく、公知の弱溶剤可溶型アクリル系ポリオールを用いることができる。その具体例としては、市販品である、アクリディックA-801,HU-596(以上、DIC(株)製)、エクセロール410(亜細亜工業(株)製)、ヒタロイド6500(日立化成工業(株)製)等が挙げられる。
 低極性有機溶剤に可溶なフッ素系ポリオールとしては、特に限定されるものではなく、公知の弱溶剤可溶型フッ素系ポリオールを用いることができる。その具体例としては、フルオロエチレン-ビニルエーテル(ビニルエステル)共重合体等が挙げられる。市販品としては、ルミフロンLF800(旭硝子(株)製)等が挙げられる。
 上記ポリオール化合物の水酸基価および酸価は特に限定されるものではないが、本発明の塗料組成物では、水酸基価は、1~300mgKOH/gであることが好ましく、1~250mgKOH/gであることがより好ましい。水酸基価が1mgKOH/g未満では、塗膜の架橋が不十分となり、塗膜強度等の物性が低下する傾向があり、300mgKOH/gを超えると、塗膜の架橋密度が高くなり過ぎて硬くなり、基材に対する追従性および柔軟性が低下する場合がある。
 本発明の塗料組成物中における、ポリイソシアネート組成物とポリオール化合物との配合割合は、ポリオール化合物100質量部に対し、ポリイソシアネート組成物1~150質量部であることが好ましく、1~130質量部であることがより好ましく、1~100質量部であることがより好ましい。
 本発明の塗料組成物は、必要に応じて、アニリン点が10~80℃の低極性有機溶剤、または混合アニリン点が5~50℃の低極性有機溶剤を含有することができる。これらの低極性有機溶剤は、ポリイソシアネート組成物および/またはポリオールの調製時にそれぞれ添加してもよく、ポリイソシアネート組成物とポリオールとの混合時に粘度調整用に添加してもよい。
 ここで、「アニリン点」とは、等容量のアニリンと試料(有機溶剤)とが均一な混合溶液として存在する最低温度のことである。また、「混合アニリン点」とは、アニリン2容量、試料1容量および1-ヘプタン1容量が均一な混合溶液として存在する最低温度のことである。アニリン点および混合アニリン点はJIS K 2256に記載のアニリン点および混合アニリン点試験方法に準じて測定することができる。
 なお、アニリンは凝固点が-6℃であるため、それ以下の温度ではアニリン点は測定できない。そこで、アニリンにヘプタンを混合して有機溶剤の溶解力をより広域に測定するために、混合アニリン点が用いられる。
 上記アニリン点は10~80℃が好ましく、10~70℃がより好ましく、10~50℃がより一層好ましい。また、混合アニリン点の場合は5~50℃が好ましい。アニリン点が10℃未満または混合アニリン点が5℃未満では下地を侵し易くなり、アニリン点が80℃を超えるまたは混合アニリン点が50℃を超えるとポリイソシアネートを溶解し難くなる。
 このような有機溶剤としては、例えば、メチルシクロヘキサン(アニリン点:40℃)、エチルシクロヘキサン(アニリン点:44℃)、ミネラルスピリット(アニリン点:56℃)、テレビン油(アニリン点:44℃)が挙げられ、また、石油系炭化水素として市販されている商品名で、High Aromatic White Spirit(HAWS)(シェルケミカルズジャパン製、アニリン点:17℃)、Low Aromatic White Spirit(LAWS)(シェルケミカルズジャパン製、アニリン点:44℃)、エッソナフサNo.6(エクソンモービル社製、アニリン点:43℃)、ペガゾール3040(エクソンモービル社製、アニリン点:55℃)、Aソルベント(新日本石油社製、アニリン点:45℃)、クレンゾル(新日本石油社製、アニリン点:64℃)、ミネラルスピリットA(新日本石油社製、アニリン点:43℃)、ハイアロム2S(新日本石油社製、アニリン点:44℃)、ソルベッソ100(エクソンモービル社製、混合アニリン点:14℃)、ソルベッソ150(エクソンモービル社製、混合アニリン点:18.3℃)、スワゾール100(丸善石油化学社製、混合アニリン点:24.6℃)、スワゾール200(丸善石油化学社製、混合アニリン点:23.8℃)、スワゾール1000(丸善石油化学社製、混合アニリン点:12.7℃)、スワゾール1500(丸善石油化学社製、混合アニリン点:16.5℃)、スワゾール1800(丸善石油化学社製、混合アニリン点:15.7℃)、出光イプゾール100(出光興産社製、混合アニリン点:13.5℃)、出光イプゾール150(出光興産社製、混合アニリン点:15.2℃)、ペガゾールARO-80(エクソンモービル社製、混合アニリン点:25℃)、ペガゾールR-100(エクソンモービル社製、混合アニリン点:14℃)、昭石特ハイゾール(シェルケミカルズジャパン社製、混合アニリン点:12.6℃)、日石ハイゾール(新日本石油社製、混合アニリン点:17℃以下)などが挙げられる。これらの有機溶剤は、1種を単独でまたは2種以上を混合して用いることができる。
 アニリン点が10℃以上または混合アニリン点が5℃以上である有機溶剤は臭気が少ないという特徴がある。そのため、このような低極性有機溶剤を含有する本発明の塗料組成物は、耐環境性の観点からも優れるものとなる。
 また、上記のような低極性溶剤は、溶解力が低く下地を侵し難いため、塗料組成物の重ね塗りが可能となり、補修用の塗料としても有用である。
 なお、上記塗料組成物は、一般的に塗料に用いられる各種添加剤を含んでいてもよい。添加剤としては、例えば、可塑剤、防腐剤、防黴剤、防藻剤、消泡剤、レベリング剤、顔料分散剤、沈降防止剤、たれ防止剤、触媒、硬化促進剤、脱水剤、艶消し剤、紫外線吸収剤、酸化防止剤、顔料、界面活性剤などが挙げられる。
 本発明の塗料組成物から塗膜を作製する場合、コンクリート、モルタル、サイディングボード、押出成形板、磁器タイル、金属、ガラス、木材、プラスチックなどの適宜な基材に、ハケ塗り、ローラー塗り、吹きつけ塗装などの方法により塗布し、適宜な手法で乾燥、硬化させればよい。
 また、乾式建材に塗装を行う場合は、フローコーターまたはロールコーターにより工場等でプレコートしてもよい。
 なお、塗料組成物は基材に直接塗布してもよく、目止め、電着や下塗り(プライマー塗布)、中塗り(着色等)の上から塗布してもよい。また、基材が金属の場合、リン酸鉄処理またはリン酸亜鉛処理等の表面処理が施された上に塗布してもよい。
 以下、合成例、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は、下記の実施例に限定されるものではない。なお、以下において、粘度はB型回転粘度計による測定値である。
[1]変性ポリイソシアネートの製造
[合成例1]アロファネート変性ポリイソシアネートの合成
 攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、ヘキサメチレンジイソシアネート(日本ポリウレタン工業(株)製、NCO含量:49.9質量%、以下HDIという)950g、およびイソプロパノール50gを仕込み、これらを撹拌しながら85℃に加熱し、3時間ウレタン化反応を行った。
 その後、この反応液中にアロファネート化触媒であるオクチル酸ジルコニウム(第1稀元素化学工業(株)製)0.1gを添加し、110℃にて3時間反応させた後、反応停止剤である酸性リン酸エステル(JP-508、城北化学工業(株)製)0.1gを添加し、50℃で1時間停止反応を行った。
 この反応生成物から、薄膜蒸留(条件:140℃,0.04kPa)により過剰のHDIを除去し、NCO含量19.3質量%、粘度(25℃)100mPa・s、遊離のHDI含量0.1質量%の変性ポリイソシアネートB-1を310g得た。変性ポリイソシアネートB-1について赤外吸収分析(IR)をしたところ、アロファネート基の強い吸収が確認されるとともに、イソシアヌレート基の弱い吸収も確認された。変性ポリイソシアネートB-1について、NMR測定をしたところ、アロファネート基と少量のイソシアヌレート基が確認された。
[合成例2]HDIのポリイソシアヌレートの合成
 攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDI997g、1,3-ブタンジオール2g、およびフェノール1gを仕込み、さらに、イソシアヌレート化触媒であるカプリン酸カリウム0.2gを仕込み、50℃で1.5時間反応させた。その後、直ちに65℃に昇温して1時間反応させ、NCO含量が44.8質量%に到達した時点で反応停止剤であるリン酸0.1gを添加し、1時間停止反応を行った。
 この反応生成物から、薄膜蒸留(条件:130℃,0.04kPa)により過剰のHDIを除去し、NCO含量23.2質量%、粘度(25℃)1,180mPa・s、遊離のHDI含量0.2質量%の変性ポリイソシアネートB-2を130g得た。変性ポリイソシアネートB-2について赤外吸収分析(IR)をしたところ、イソシアヌレート基の強い吸収が確認されるとともに、アロファネート基の弱い吸収も確認された。変性ポリイソシアネートB-2について、NMR測定をしたところ、イソシアヌレート基と少量のアロファネート基が確認された。
[2]ポリイソシアネート組成物の製造
[実施例1]
 攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、ベースポリイソシアネートとして合成例1で得られた変性ポリイソシアネートB-1 210g、およびポリエーテルポリオール(エクセノール-851B、数平均分子量6,700、旭硝子ウレタン(株)製)90gを仕込み、85℃に加熱し、4時間ウレタン化反応を行い、NCO含量12.9質量%、粘度(25℃)720mPa・sのポリイソシアネート組成物S-1を300g得た。
[実施例2]
 攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、ベースポリイソシアネートとして合成例1で得られた変性ポリイソシアネートB-1 189gおよび合成例2で得られた変性ポリイソシアネートB-2 21g、並びにポリエーテルポリオール(エクセノール-851B、数平均分子量6,700、旭硝子ウレタン(株)製)90gを仕込み、85℃に加熱し、4時間ウレタン化反応を行い、NCO含量13.2質量%、粘度(25℃)830mPa・sのポリイソシアネート組成物S-2を300g得た。
[比較例1]
 攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、ベースポリイソシアネートとして合成例1で得られた変性ポリイソシアネートB-1 168gおよび合成例2で得られた変性ポリイソシアネートB-2 42g、並びにポリエーテルポリオール(エクセノール-851B、数平均分子量6,700、旭硝子ウレタン(株)製)90gを仕込み、85℃に加熱し、4時間ウレタン化反応を行い、NCO含量13.5質量%、粘度(25℃)1,000mPa・sのポリイソシアネート組成物S-3を300g得た。
[比較例2]
 攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDI910g、および2-エチルヘキサノール90gを仕込み、直ちに80℃に加熱し、2時間ウレタン化反応を行った。
 その後、この反応液中にイソシアヌレート化触媒である2-ヒドロキシプロピルトリメチルアンモニウム・オクチル酸塩(DABCO TMR、三共エアープロダクツ(株)製)0.05gを添加し、60℃にて2時間反応させた後、反応停止剤であるリン酸0.2gを添加し、1時間停止反応を行った。
 この反応生成物から、薄膜蒸留(条件:130℃,0.04kPa)により過剰のHDIを除去し、NCO含量17.3質量%、粘度(25℃)470mPa・s、遊離のHDI含量0.2質量%の変性ポリイソシアネートB-3(ベースポリイソシアネート)を460g得た。変性ポリイソシアネートB-3について赤外吸収分析(IR)をしたところ、イソシアヌレート基の強い吸収が確認されるとともに、アロファネート基の弱い吸収も確認された。変性ポリイソシアネートB-3について、NMR測定をしたところ、アロファネート基とイソシアヌレート基が確認された。
 次に、攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、ベースポリイソシアネートとして上記で得られた変性ポリイソシアネートB-3 216g、およびポリエーテルポリオール(エクセノール-851B、数平均分子量6,700、旭硝子ウレタン(株)製)84gを仕込み、85℃に加熱し、4時間ウレタン化反応を行い、NCO含量12.1質量%、粘度(25℃)1,500mPa・sのポリイソシアネート組成物S-4を300g得た。
 上記実施例1,2および比較例1,2で得られたポリイソシアネート組成物S-1,S-2,S-3,S-4について、それぞれアロファネート基とイソシアヌレート基との(生成)モル比を下記手法により測定した。結果を表1に示す。
 なお、S-1およびS-3におけるアロファネート基とイソシアヌレート基との(生成)モル比は、使用した各ベースポリイソシアネートB-1およびB-3のモル比と同一である。
[測定法]
 1H-NMR(ECX400M、日本電子製)を用いて、8.55ppm付近のアロファネート基の窒素原子に結合した水素原子のシグナルと、3.85ppm付近のイソシアヌレート基の窒素原子に隣接したメチレン基の水素原子のシグナルの面積比から求めた。具体的な測定条件は以下のとおりである。
    測定温度:23℃
    試料濃度:0.1g/1ml
    積算回数:16回
    緩和時間:5秒
      溶媒:重水素クロロホルム
 化学シフト基準:CDCl3中のCHCl3の水素原子のシグナル(7.24ppm)
 また、実施例1,2および比較例1,2で得られたポリイソシアネート組成物S-1,S-2,S-3,S-4について、ミネラルスピリットA(新日本石油(株)製)に対する20℃での溶解性を以下の手法により測定した。結果を表1に示す。
[測定法]
 ポリイソシアネート組成物1gを量り取り、ここへミネラルスピリットAを加えていき、濁ったところを終点とし、その時点のミネラルスピリットAの添加量(g)を求めた。
 この添加量を用い、下記式(1)からトレランスを算出した。
 トレランス=有機溶剤の所要量(g)/サンプル量(1g)  (1)
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1および2で得られたポリイソシアネート組成物は、低極性溶剤であるミネラルスピリットAに対する溶解性に優れていることがわかる。
[3]2液型塗料組成物の製造
[実施例3~6,比較例3~5]
 実施例1,2および比較例1,2で得られたポリイソシアネート組成物S-1,S-2,S-3,S―4と、含フッ素ポリオール(ルミフロンLF-800、旭硝子ウレタン(株)製)またはアクリルポリオール(アクリディックA-801,HU-596、DIC(株)製)、酸化チタン(CR-90、石原産業(株)製)、ミネラルスピリットA(新日本石油(株)製)およびソルベッソ100(エクソン化学製)を表2に示される割合で配合して2液型塗料組成物を調製した。
Figure JPOXMLDOC01-appb-T000002
 上記実施例3~6および比較例3~5で調製した2液型塗料組成物を、それぞれメチルエチルケトンで脱脂した鋼板(JIS G3141 商品名SPCC-SB、PF-1077処理、日本テストパネル工業(株)製)にアプリケーターを用い、ウェット膜厚100μmで塗布し、温度20℃、相対湿度65%の環境下で7日間養生を行い、乾燥膜厚40~50μmの塗膜を形成させた。得られた塗膜について、下記の各特性について評価を行った。結果を表4に示す。
(1)塗膜外観
 硬化した組成物の外観を目視により観察した。
 曇りや濁りなど無く、均一な塗膜を形成しているものを合格(○)とし、曇りや濁りなどが発生しているものを不合格(×)とした。なお、外観評価は、顔料を配合していない下記組成物を上記手法にて硬化させた塗膜について行った。
Figure JPOXMLDOC01-appb-T000003
(2)耐屈曲性
 円筒形マンドレルにより折り曲げられた場合の塗膜の割れ、および鋼板からの剥がれの有無を、直径2mmの円筒形マンドレルを使用し、JIS K-5600-5-1の耐屈曲性試験に準拠して評価した。塗膜の割れ、剥がれが生じないものを合格とした。
(3)耐カッピング性
 押し込みによって、部分変形を受けた場合の塗膜の割れ、および鋼板からの剥がれの有無を、押し込み器を使用し、JIS K-5600-5-2の耐カッピング試験に準拠して評価した。押し込み器によって、塗膜の割れ、剥がれが生じる押し込み深さ(mm)を耐カッピング性とした。耐カッピング性は、塗膜の基材追従性および柔軟性を示す値であり、上記押し込み深さの数値が大きいほど追従性および柔軟性が高いといえる。
(4)耐おもり落下性
 おもり落下によって、変形を受けた場合の塗膜の割れ、および鋼板からの剥がれの有無を、直径10.3mm、質量0.5kgのおもりを使用し、JIS K-5600-5-3の耐おもり落下試験に準拠して評価した。塗膜の割れ、剥がれが生じる最低の落下高さ(cm)を耐おもり落下性とした。
(5)塗膜硬度
 塗膜表面の硬度は、JIS K-5600-5-4の引っかき硬度試験(鉛筆法)に準拠して測定した。塗膜表面にキズ跡が生じなかった最も硬い鉛筆の硬度を塗膜硬度とした。
(6)密着性
 塗膜の密着性をJIS K-5600-5-6に準拠した碁盤目テープ剥離試験、直角の格子パターンが塗膜に切り込まれ、素地で貫通するときの素地からの剥離に対して塗膜の耐性を評価した。
(7)塗膜の伸展性
 表3に示す各配合液を離型紙とガイドを貼り付けたガラス板に塗布し、温度20℃、相対湿度65%の環境下で7日間養生を行い、乾燥膜厚200μmの塗膜を形成させた。得られた塗膜からダンベルカッターを用いて試験片を作製し、塗膜の伸展性を評価するために引張測定を実施した。
  試験片:4号ダンベル型
 引張速度:200mm/min
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、実施例3~6の塗料組成物から得られた塗膜は、伸展性に優れているとともに、その他の諸特性も良好であることがわかる。

Claims (7)

  1.  ベースポリイソシアネートとポリエーテルポリオールとをウレタン化反応させて得られるポリイソシアネート組成物であって、
     前記ベースポリイソシアネートが、アロファネート基とイソシアヌレート基とを、アロファネート基/イソシアヌレート基=90/10~100/0(モル比)で含有することを特徴とするポリイソシアネート組成物。
  2.  前記ベースポリイソシアネートが、脂肪族または脂環式ジイソシアネートと、炭素数1~20のモノアルコールとを、アロファネート触媒の存在下で反応させて得られたものである請求項1記載のポリイソシアネート組成物。
  3.  前記ベースポリイソシアネートが、脂肪族または脂環式ジイソシアネートと炭素数1~20のモノアルコールとをアロファネート触媒の存在下で反応させて得られたアロファネート変性ポリイソシアネート、および脂肪族または脂環式ジイソシアネートのポリイソシアヌレートの混合物からなる請求項1記載のポリイソシアネート組成物。
  4.  ベースポリイソシアネートとポリエーテルポリオールとをウレタン化反応させて得られるポリイソシアネート組成物であって、
     アロファネート基とイソシアヌレート基とを、アロファネート基/イソシアヌレート基=90/10~100/0(モル比)で含有し、
     前記ベースポリイソシアネートが、脂肪族または脂環式ジイソシアネートと炭素数1~20のモノアルコールとをアロファネート触媒の存在下で反応させて得られたアロファネート変性ポリイソシアネート、および脂肪族または脂環式ジイソシアネートのポリイソシアヌレートの混合物からなることを特徴とするポリイソシアネート組成物。
  5.  前記ポリエーテルポリオールの数平均分子量が1,000~10,000である請求項1~4のいずれか1項記載のポリイソシアネート組成物。
  6.  請求項1~4のいずれか1項記載のポリイソシアネート組成物と、ポリオール化合物とを含む2液型塗料組成物。
  7.  アニリン点が10~80℃の低極性有機溶剤、または混合アニリン点が5~50℃の低極性有機溶剤を含む請求項6記載の2液型塗料組成物。
PCT/JP2009/053669 2008-03-14 2009-02-27 ポリイソシアネート組成物およびそれを用いた2液型塗料組成物 WO2009113407A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010502763A JPWO2009113407A1 (ja) 2008-03-14 2009-02-27 ポリイソシアネート組成物およびそれを用いた2液型塗料組成物
CN2009801090534A CN102216363A (zh) 2008-03-14 2009-02-27 多异氰酸酯组合物和使用其的双液型涂料组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-065764 2008-03-14
JP2008065764 2008-03-14

Publications (1)

Publication Number Publication Date
WO2009113407A1 true WO2009113407A1 (ja) 2009-09-17

Family

ID=41065075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053669 WO2009113407A1 (ja) 2008-03-14 2009-02-27 ポリイソシアネート組成物およびそれを用いた2液型塗料組成物

Country Status (4)

Country Link
JP (1) JPWO2009113407A1 (ja)
CN (1) CN102216363A (ja)
TW (1) TWI431030B (ja)
WO (1) WO2009113407A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105733434B (zh) * 2014-12-26 2019-09-24 中国涂料株式会社 光固化性树脂组合物、及固化膜、带膜基材及其制造方法
JP7075813B2 (ja) * 2018-03-29 2022-05-26 Ube株式会社 土木建築用コーティング樹脂組成物、硬化物、土木建築構造物、及び土木建築構造物のコーティング方法
JP7123004B2 (ja) * 2018-05-16 2022-08-22 Ube三菱セメント株式会社 土木建築用コーティング樹脂組成物、硬化物、土木建築構造物、及び土木建築構造物のコーティング方法
JP7172893B2 (ja) * 2018-07-19 2022-11-16 荒川化学工業株式会社 熱硬化性コーティング剤、硬化物及びフィルム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250872A (ja) * 1988-12-28 1990-10-08 Takeda Chem Ind Ltd ポリイソシアネート,その製造法および用途
JPH04306218A (ja) * 1991-01-24 1992-10-29 Asahi Chem Ind Co Ltd 低粘度ポリイソシアネート
JPH05222007A (ja) * 1991-07-22 1993-08-31 Miles Inc アロファネート基およびイソシアヌレート基を有するポリイソシアネートの製造方法
JP2001064352A (ja) * 1999-08-31 2001-03-13 Asahi Chem Ind Co Ltd ポリイソシアネート組成物
JP2005048179A (ja) * 2003-07-16 2005-02-24 Asahi Kasei Chemicals Corp ポリイソシアネート組成物およびコーティング組成物
JP2006052265A (ja) * 2004-08-10 2006-02-23 Asahi Kasei Chemicals Corp ポリイソシアネート組成物および2液型ポリウレタンコーティング組成物
JP2007197642A (ja) * 2006-01-30 2007-08-09 Asahi Kasei Chemicals Corp 二液型ポリウレタン組成物
JP2007269954A (ja) * 2006-03-31 2007-10-18 Asahi Kasei Chemicals Corp ポリイソシアネート組成物、及び二液型ポリウレタン組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5055106B2 (ja) * 2007-12-21 2012-10-24 旭化成ケミカルズ株式会社 ポリイソシアネート組成物、及び二液型ポリウレタン組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250872A (ja) * 1988-12-28 1990-10-08 Takeda Chem Ind Ltd ポリイソシアネート,その製造法および用途
JPH04306218A (ja) * 1991-01-24 1992-10-29 Asahi Chem Ind Co Ltd 低粘度ポリイソシアネート
JPH05222007A (ja) * 1991-07-22 1993-08-31 Miles Inc アロファネート基およびイソシアヌレート基を有するポリイソシアネートの製造方法
JP2001064352A (ja) * 1999-08-31 2001-03-13 Asahi Chem Ind Co Ltd ポリイソシアネート組成物
JP2005048179A (ja) * 2003-07-16 2005-02-24 Asahi Kasei Chemicals Corp ポリイソシアネート組成物およびコーティング組成物
JP2006052265A (ja) * 2004-08-10 2006-02-23 Asahi Kasei Chemicals Corp ポリイソシアネート組成物および2液型ポリウレタンコーティング組成物
JP2007197642A (ja) * 2006-01-30 2007-08-09 Asahi Kasei Chemicals Corp 二液型ポリウレタン組成物
JP2007269954A (ja) * 2006-03-31 2007-10-18 Asahi Kasei Chemicals Corp ポリイソシアネート組成物、及び二液型ポリウレタン組成物

Also Published As

Publication number Publication date
CN102216363A (zh) 2011-10-12
TWI431030B (zh) 2014-03-21
TW201000509A (en) 2010-01-01
JPWO2009113407A1 (ja) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5445451B2 (ja) ポリイソシアネート組成物およびそれを用いた2液型塗料組成物
JP6281280B2 (ja) アロファネート・イソシアヌレート化触媒、該触媒を用いたポリイソシアネート組成物、該組成物の製造方法、及び該組成物を用いた二液型塗料組成物
KR101791283B1 (ko) 수성 음이온 폴리우레탄 분산액
WO2009113407A1 (ja) ポリイソシアネート組成物およびそれを用いた2液型塗料組成物
WO2018070531A1 (ja) ポリイソシアネート混合物、塗料組成物及び塗膜
JP5370736B2 (ja) 2液型ポリウレタン樹脂塗料用硬化剤およびその製造方法ならびに2液型ポリウレタン樹脂塗料
JP6031734B2 (ja) アロファネート・イソシアヌレート化触媒を用いたポリイソシアネート組成物、該組成物の製造方法、及び該組成物を用いた二液型塗料組成物
WO2009133673A1 (ja) 多孔質基材用プライマー及び多孔質基材のプライマー処理方法
JP5522506B2 (ja) 2液型ポリウレタン樹脂塗料用硬化剤およびその製造方法ならびに2液型ポリウレタン樹脂塗料
WO2010024330A1 (ja) ポリイソシアネート組成物およびそれを用いた2液型塗料組成物
JPWO2009044595A1 (ja) 二液型含フッ素コーティング組成物
JP5245741B2 (ja) フッ素系ポリオール用ポリイソシアネート硬化剤組成物およびそれを用いた2液型塗料組成物
JP2015052041A (ja) アロファネート・イソシアヌレート化触媒、該触媒の製造方法、該触媒を用いたポリイソシアネート組成物、該組成物の製造方法、及び該組成物を用いた伸展性塗料組成物
WO2009119206A1 (ja) ポリイソシアネート及び二液型コーティング剤
CN116209693A (zh) 水可分散的改性聚异氰酸酯
JP5499474B2 (ja) 2液硬化型塗料用硬化剤組成物
JP5136964B2 (ja) 変性ポリイソシアネート組成物及びこれを用いた2液型ポリウレタンコーティング剤組成物
JP2020196870A (ja) 水系2成分型硬化樹脂組成物及び物品のコーティング方法
JP2019199551A (ja) ポリイソシアネート組成物およびそれを用いた塗料組成物
JP2010195903A (ja) ポリイソシアネート組成物およびそれを用いた2液型塗料組成物
JP7474125B2 (ja) ブロックポリイソシアネート組成物、樹脂組成物、樹脂膜及び積層体
JP2020019877A (ja) 水分散ブロックポリイソシアネート組成物、水分散体、水系コーティング組成物及びコーティング基材
JP2023064931A (ja) 塗料組成物、塗膜及び塗装物品
JP2023101150A (ja) ブロックポリイソシアネート組成物、樹脂組成物、樹脂膜及び積層体
JP2023070109A (ja) ブロックポリイソシアネート組成物及びその製造方法、樹脂組成物、樹脂膜及びその製造方法、並びに、積層体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109053.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719426

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010502763

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09719426

Country of ref document: EP

Kind code of ref document: A1