WO2009110480A1 - 難燃性樹脂組成物 - Google Patents

難燃性樹脂組成物 Download PDF

Info

Publication number
WO2009110480A1
WO2009110480A1 PCT/JP2009/053993 JP2009053993W WO2009110480A1 WO 2009110480 A1 WO2009110480 A1 WO 2009110480A1 JP 2009053993 W JP2009053993 W JP 2009053993W WO 2009110480 A1 WO2009110480 A1 WO 2009110480A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
flame
retardant resin
acid
Prior art date
Application number
PCT/JP2009/053993
Other languages
English (en)
French (fr)
Inventor
古河 弘昭
三好 貴章
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to EP09716642.5A priority Critical patent/EP2256167B1/en
Priority to CN200980107277.1A priority patent/CN101959960B/zh
Priority to JP2010501924A priority patent/JP5560185B2/ja
Publication of WO2009110480A1 publication Critical patent/WO2009110480A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/126Polyphenylene oxides modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the present invention relates to a flame retardant resin composition and a heat resistant connector using the same.
  • thermoplastic resins The flame retardant of thermoplastic resins has been actively developed due to the demand for alternatives to conventional halogen-based compounds and antimony-based compounds to non-halogen flame retardants due to increasing environmental awareness. .
  • Patent Literature 1 disclose techniques using phosphinic acid metal salts in thermoplastic resins.
  • Patent Document 4 and Patent Document 5 include a flame retardant synergist containing nitrogen element represented by melamine or the like (hereinafter referred to as “nitrogen-containing synergist”). And a technique for combining melamine polyphosphate and a metal salt of phosphinic acid (Patent Document 4 and Patent Document 5).
  • Patent Document 6 uses a flame retardant of a phosphinic acid metal salt and a nitrogen-containing synergist, and 20 to 50% by mass of the flame retardant of the phosphinic acid metal salt.
  • a technique using a basic or amphoteric metal compound at a relatively high concentration is disclosed.
  • the above heat-resistant polymer often has a processing temperature exceeding 320 ° C.
  • a nitrogen-containing synergist is used in combination as in Patent Document 6, a phosphinic acid metal salt flame retardant is used alone. It is highly corrosive compared to the case of using it.
  • a nitrogen-containing synergist is not used, it is difficult to maintain flame retardancy when a basic or amphoteric metal compound is used at a high concentration of 20 to 50% by mass with respect to the flame retardant of the phosphinic acid metal salt. It becomes.
  • the present invention has been made in view of the above circumstances, and is excellent in heat resistance, flame retardancy, extrusion processability, injection molding stability, and further, a flame retardant resin composition with reduced corrosiveness to metal and It aims at providing the heat-resistant connector using it.
  • the present inventors have determined that a basic compound having a specific number average particle size is compared with a phosphinic acid salt in a combination of a thermoplastic resin and a specific phosphinic acid salt.
  • the inventors have found that the above-mentioned problems can be solved by blending a specific amount, and the present invention has been completed.
  • the present invention is as follows. 1. (A) a thermoplastic resin; (B) at least one phosphinic acid salt selected from phosphinic acid salts represented by the following general formula (I), diphosphinic acid salts represented by the following general formula (II) and condensates thereof; (C) a flame retardant resin composition comprising a basic compound, A flame-retardant resin composition comprising 0.01 to 10 parts by mass of the component (C) with respect to 100 parts by mass of the component (B).
  • R 1 and R 2 may be the same or different and are linear or branched C 1 -C 6 -alkyl and / or aryl or phenyl
  • R 3 is linear or Branched C 1 -C 10 -alkylene, C 6 -C 10 -arylene, C 6 -C 10 -alkylarylene or C 6 -C 10 -arylalkylene
  • M is calcium (ion), magnesium (ion) , Aluminum (ion), zinc (ion), bismuth (ion), manganese (ion), sodium (ion), potassium (ion) and protonated nitrogen base
  • m is 2 Or 3
  • n is an integer of 1 to 3
  • x is 1 or 2.
  • the basic compound (C) has a number average particle size of 100 nm to 25 ⁇ m, and is one or more selected from hydroxides and oxides of one or more elements selected from Group IIA elements of the periodic table and aluminum. There is 1 above.
  • the basic compound (C) is calcium hydroxide and / or calcium oxide having a number average particle size of 100 nm to 25 ⁇ m.
  • the basic compound (C) is calcium hydroxide having a number average particle diameter of 100 nm to 10 ⁇ m.
  • the component (C) contains 0.2 to 5 parts by mass with respect to 100 parts by mass of the component (B).
  • thermoplastic resin is polyphenylene ether, styrene resin, olefin resin, polyester (polybutylene terephthalate, polypropylene terephthalate, liquid crystal polyester), polyamide, polyarylene sulfide, polyarylate, polyethersulfone, polyether. 1 or more selected from imides, polysulfones, polyaryl ketones, and mixtures thereof.
  • the flame-retardant resin composition as described in 2. 9.
  • the above (A), wherein the thermoplastic resin is a polyamide having a melting point of 280 ° C. or higher.
  • the flame-retardant resin composition as described in 2. 10. 8.
  • thermoplastic resin is a polyamide having an aromatic ring in a repeating structural unit.
  • the flame-retardant resin composition as described in 2. 11.
  • the polyphenylene ether is a homopolymer composed of 2,6-dimethylphenol or a copolymer composed of 2,6-dimethylphenol and 2,3,6-trimethylphenol.
  • the flame-retardant resin composition as described in 2. 12 The polyphenylene ether is a copolymer composed of 2,6-dimethylphenol and 2,3,6-trimethylphenol, and the amount of 2,3,6-trimethylphenol in the polyphenylene ether is 10-30.
  • the above 8. which is% by mass.
  • the flame-retardant resin composition as described in 2. 13.
  • the polyphenylene ether is a polyphenylene ether having a reduced viscosity (0.5 g / dl chloroform solution, 30 ° C.) in the range of 0.25 dl / g to 0.35 dl / g.
  • the flame-retardant resin composition as described in 2. 14 8.
  • the polyarylene sulfide is a polyphenylene sulfide having a chlorine concentration of 1500 ppm or less.
  • the above (A) thermoplastic resin contains polyphenylene ether and thermoplastic resin other than polyphenylene ether.
  • the flame-retardant resin composition as described in 2. 16. 15.
  • the thermoplastic resin other than the polyphenylene ether is a polyamide.
  • the melting point of the polyamide is 280 ° C. or higher.
  • (D) The above 1., further comprising an inorganic reinforcing material.
  • a heat resistant connector comprising the flame retardant resin composition according to any one of the above.
  • a flame retardant resin composition which is excellent in heat resistance, flame retardancy, extrusion processability and injection molding stability and has low corrosiveness to metals, and a heat resistant connector using the same.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be appropriately modified within the scope of the gist.
  • the (A) thermoplastic resin of the present embodiment is not particularly limited, and a known one can be used.
  • preferable resins include polyphenylene ether, styrene resin, olefin resin, polyester (polybutylene terephthalate, polypropylene terephthalate, liquid crystal polyester), polyamide, polyarylene sulfide, polyarylate, polyethersulfone, polyetherimide, Examples thereof include at least one selected from polysulfone, polyaryl ketone, and a mixture thereof.
  • each of polyphenylene ether, polyester, and polyamide is used alone; (i) one or more resins selected from polyphenylene ether, polyester, and polyamide; and (ii) homopolystyrene, rubber-modified polystyrene, Styrene elastomer, acrylonitrile-styrene copolymer, N-phenylmaleimide and styrene copolymer, polypropylene, olefin elastomer, liquid crystal polyester, polyamide, polyphenylene sulfide, polyetherimide, polyethersulfone, polysulfone, polyaryl ketone It is a mixture with 1 or more types of resin chosen from these.
  • the polyphenylene ether usable in the present embodiment is a homopolymer and / or a copolymer having a repeating structural unit represented by the following formula (1).
  • R 4 to R 7 are each independently hydrogen, halogen, primary or secondary C1-C7 alkyl group, phenyl group, C1-C7 haloalkyl group, C1 Represents a -C7 aminoalkyl group, a C1-C7 hydrocarbyloxy group, or a halohydrocarbyloxy group, provided that at least two carbon atoms separate the halogen atom from the oxygen atom.
  • the production method of polyphenylene ether used in the present embodiment is not particularly limited, and a known method can be used.
  • a known method can be used.
  • a production method described in JP-B 63-152628 JP-B 63-152628.
  • polyphenylene ether of the present embodiment examples include, for example, poly (2,6-dimethylphenylene ether), poly (2-methyl-6-ethyl-1,4-phenylene ether), poly (2-methyl-6) -Phenyl-1,4-phenylene ether), poly (2,6-dichloro-1,4-phenylene ether) and other homopolymers, and copolymers of 2,6-dimethylphenol and other phenols ( Examples thereof include polyphenylene ether copolymers such as a copolymer with 2,3,6-trimethylphenol and a copolymer with 2-methyl-6-butylphenol. Among these, from the viewpoint of industrial productivity and heat resistance, poly (2,6-dimethylphenylene ether), a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, or It is a mixture of these.
  • the ratio of each monomer unit is a polyphenylene ether copolymer from the viewpoint of heat resistance and processability.
  • the total amount is 100% by mass, it is preferable to contain 10-30% by mass of 2,3,6-trimethylphenol. More preferably, it is 15 to 25% by mass, and still more preferably 20 to 25% by mass.
  • the reduced viscosity of polyphenylene ether ( ⁇ sp / c: dl / g, 0.5 g / dl concentration chloroform solution, measured at 30 ° C.) is in the range of 0.20 to 0.55 dl / g. preferable.
  • the upper limit value is more preferably 0.53 dl / g, further preferably 0.45 dl / g, and still more preferably 0.35 dl / g.
  • the upper limit of the reduced viscosity is preferably 0.55 dl / g.
  • the lower limit of the reduced viscosity is preferably 0.25 dl / g from the viewpoint of not lowering the mechanical properties when alloyed with other resins.
  • a blend of two or more polyphenylene ethers having different reduced viscosities can be used.
  • examples include, but are not limited to, a mixture of polyphenylene ether of about 0.50 dl / g.
  • the reduced viscosity of the polyphenylene ether mixture is preferably in the range of 0.20 to 0.55 dl / g.
  • the polyphenylene ether may be modified with a modifying agent.
  • the modifying agent include saturated or unsaturated dicarboxylic acids such as maleic anhydride, N-phenylmaleimide, malic acid, citric acid, fumaric acid, and the like.
  • vinyl compounds such as styrene, acrylic acid ester, and methacrylic acid ester.
  • a modifier may be added and simultaneously modified when the flame retardant resin composition of the present embodiment is produced by melt extrusion.
  • Other known additives that can be added to the polyphenylene ether may be added in an amount of less than 10 parts by mass with respect to 100 parts by mass of the polyphenylene ether.
  • styrenic resin examples include homopolystyrene, rubber-modified polystyrene (generally referred to as high-impact polystyrene), and styrene-based elastomer (styrene-butadiene block copolymer and / or hydrogenated product thereof). Styrene-isoprene block copolymer and / or hydrogenated product thereof), and a copolymer of styrene and a vinyl monomer capable of radical copolymerization.
  • vinyl monomers capable of radical copolymerization with styrene include vinyl cyanide compounds such as acrylonitrile and methacrylonitrile, vinyl carboxyls such as acrylic acid, butyl acrylate, methacrylic acid, methyl methacrylate, and ethylhexyl methacrylate.
  • vinyl carboxyls such as acrylic acid, butyl acrylate, methacrylic acid, methyl methacrylate, and ethylhexyl methacrylate.
  • unsaturated dicarboxylic acid anhydrides and derivatives thereof such as acids and esters thereof, maleic anhydride and N-phenylmaleimide
  • diene compounds such as butadiene and isoprene. Copolymerization of two or more types is also possible. is there.
  • styrene resins examples include homopolystyrene, rubber-modified polystyrene, styrene elastomers, acrylonitrile-styrene copolymers, copolymers of N-phenylmaleimide and styrene, and mixtures thereof.
  • Homopolystyrene or rubber-modified polystyrene preferably has a reduced viscosity (measured at a concentration of 0.5 g / 100 ml in a 30 ° C. toluene solution) in the range of 0.5 to 2.0 dl / g.
  • a more preferred lower limit is 0.7 dl / g, and even more preferably 0.8 dl / g.
  • a more preferable upper limit is 1.5 dl / g, and still more preferably 1.2 dl / g.
  • Styrenic elastomer is a polymer block mainly composed of at least one aromatic vinyl compound, (i) a polymer block mainly composed of a conjugated diene compound, and (ii) a conjugated diene compound and an aromatic vinyl compound. It is a block copolymer containing at least one polymer block selected from random copolymer blocks.
  • “Mainly” in a polymer block mainly composed of an aromatic vinyl compound refers to a block in which at least 90% by mass or more of the block is an aromatic vinyl compound.
  • “mainly” in a polymer block mainly composed of a conjugated diene compound refers to a block in which at least 97% by mass or more is a conjugated diene compound.
  • the random copolymer block comprising a conjugated diene compound and an aromatic vinyl compound refers to a block obtained by random copolymerization of 3 to 90% by mass of an aromatic vinyl compound and 97 to 10% by mass of a conjugated diene compound.
  • the vinyl aromatic compound of the random copolymerization part may be distributed uniformly, or may be distributed in taper shape.
  • a plurality of portions where the vinyl aromatic compound is uniformly distributed and / or a portion where the vinyl aromatic compound is distributed in a tapered shape may coexist.
  • a plurality of portions having different vinyl aromatic compound contents may coexist in the copolymer block.
  • 90% by mass of the block is formed from the aromatic vinyl compound.
  • it is regarded as a block copolymer mainly composed of an aromatic vinyl compound.
  • a conjugated diene compound if 97% by mass is formed of a conjugated diene compound, it is regarded as a block copolymer mainly composed of a conjugated diene.
  • any one of the following general formula (2) can be used as a block copolymer comprising a polymer block A mainly composed of this vinyl aromatic compound and a polymer block B mainly composed of (i) a conjugated diene compound.
  • a block copolymer having such a structure is exemplified.
  • Z represents a residue of a coupling agent or a residue of an initiator of a polyfunctional organolithium compound.
  • X, y and z are each an integer of 1 or more, generally 1 to 5)
  • a preferable block type of the block copolymer is a block copolymer having a bond type selected from AB type, ABA type, and ABAB type. . ABA type and ABAB type are more preferable, and ABA type is more preferable. These may be a mixture.
  • a polymer block A mainly composed of a vinyl aromatic compound, (i) a polymer block B mainly composed of a conjugated diene compound, and (ii) a vinyl aromatic compound and a conjugated diene compound are randomly copolymerized.
  • the polymer block include at least one polymer block selected from the random copolymer block C.
  • a block copolymer having any structure represented by the following general formula (3) Coalescence is illustrated.
  • the coupling agent a bifunctional or higher functional coupling agent described later can be used.
  • the polyfunctional initiator a reaction product of diisopropenylbenzene and sec-butyllithium, a reaction product of divinylbenzene, sec-butyllithium and a small amount of 1,3-butadiene can be used.
  • the boundaries between the blocks need not be clearly distinguished.
  • the vinyl aromatic compound used in the vinyl aromatic compound-conjugated diene compound block copolymer is not particularly limited.
  • styrene ⁇ -methylstyrene, vinyltoluene, p-tert-butylstyrene, diphenylethylene, etc. 1 type or 2 types or more can be selected.
  • styrene is preferable from the viewpoint of compatibility with polyphenylene ether and industrial productivity when used in combination with polyphenylene ether.
  • the content of the vinyl aromatic compound in the block copolymer containing at least one polymer block selected from is not particularly limited, and can be suitably selected from 1 to 70% by mass. When used in combination with polyphenylene ether, the content is more preferably 5 to 55% by mass, and still more preferably 10 to 55% by mass, from the viewpoint of heat resistance.
  • the conjugated diene compound in such a block copolymer is not particularly limited, and for example, one or more of butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, etc. Is mentioned. Among these, butadiene, isoprene and a combination thereof are preferable from the viewpoint of impact resistance.
  • the block copolymer that can be used in the present embodiment is more preferably a hydrogenated block copolymer.
  • a hydrogenated block copolymer is an aliphatic double bond of a polymer block mainly composed of a conjugated diene compound by hydrogenating the block copolymer of the aromatic vinyl compound and the conjugated diene compound. In which the amount (hydrogenation rate) exceeds 0 and is in the range of 100% or less.
  • a preferable hydrogenation rate of the hydrogenated block copolymer is 50% or more, more preferably 80% or more, and further preferably 98% or more. The hydrogenation rate can be measured with a nuclear magnetic resonance apparatus.
  • a hydrogenation catalyst and hydrogen gas are added in a hydrocarbon solvent, and a hydrogenation reaction is carried out, whereby an olefinic non-olefin derived from a conjugated diene compound present in the polymer is used.
  • a hydrogenated block copolymer can be obtained by reducing the saturation bond.
  • the production method is not limited and any production method may be used.
  • Vinyl aromatic compound-conjugated diene compound having a functional group obtained by reacting the block copolymer with an unsaturated compound having a functional group for example, carboxylic acid group, acid anhydride group, ester group, hydroxyl group, etc.
  • an unsaturated compound having a functional group for example, carboxylic acid group, acid anhydride group, ester group, hydroxyl group, etc.
  • a block copolymer or a hydrogenated block copolymer having a functional group that is a hydrogenated product thereof it is also possible to use a block copolymer or a hydrogenated block copolymer having a functional group that is a hydrogenated product thereof.
  • the block copolymer may be a mixture of a non-hydrogenated block copolymer and a hydrogenated block copolymer.
  • a block copolymer modified in whole or in part, as described in WO 02/094936, or a block copolymer premixed with oil is also preferably used. can do.
  • a suitable copolymer as the acrylonitrile-styrene copolymer is a copolymer having an acrylonitrile content of 3 to 30% by mass when the acrylonitrile-styrene copolymer is 100% by mass.
  • the lower limit of the acrylonitrile content is more preferably 5% by mass, and even more preferably 7% by mass or more.
  • the upper limit of the acrylonitrile content is preferably 20% by mass, more preferably 15% by mass, and still more preferably 10% by mass.
  • butadiene may be contained up to 30 parts by mass with respect to 100 parts by mass of the total amount of acrylonitrile-styrene copolymer.
  • An example of a suitable copolymer as a copolymer of N-phenylmaleimide and styrene is as follows. When the copolymer of N-phenylmaleimide and styrene is 100% by mass, the N-phenylmaleimide content is 15 to 70% by mass. The copolymer which is is mentioned. The lower limit of the amount of N-phenylmaleimide is more preferably 20% by mass and even more preferably 25% by mass. Further, the upper limit of the N-phenylmaleimide content is more preferably 65% by mass, and still more preferably 60% by mass.
  • the acrylonitrile component may be contained up to 30 parts by mass with respect to 100 parts by mass of the total amount of the copolymer of N-phenylmaleimide and styrene.
  • the glass transition temperature of the copolymer of N-phenylmaleimide and styrene is preferably in the range of 140 to 220 ° C.
  • the glass transition temperature is a glass transition temperature that can be observed when measured with a DSC measuring device at a heating rate of 20 ° C./min.
  • the olefin resin that can be used in this embodiment will be described.
  • the olefin-based resin is not particularly limited, and examples thereof include polyethylene, polypropylene, olefin-based elastomer (copolymer of ethylene and ⁇ -olefin), a copolymer of ethylene and acrylate, and the like.
  • PP polypropylene
  • olefin elastomers olefin elastomers.
  • PP that can be used in the present embodiment is, for example, (i) crystalline propylene homopolymer, (ii) crystalline propylene homopolymer portion obtained in the first step of polymerization, and propylene, ethylene in the second and subsequent steps of polymerization. And / or a propylene-ethylene random copolymer portion obtained by copolymerizing at least one other ⁇ -olefin (for example, butene-1, hexene-1, etc.), and a crystalline propylene-ethylene block copolymer And the like. Further, it may be a mixture of these crystalline propylene homopolymer and crystalline propylene-ethylene block copolymer.
  • PPs are usually used in the presence of a titanium trichloride catalyst or a titanium halide catalyst supported on a carrier such as magnesium chloride and an alkylaluminum compound in a polymerization temperature range of 0 to 100 ° C. and a polymerization pressure of 3 to 100 atm. It is obtained by polymerization in the range of At this time, a chain transfer agent such as hydrogen can be added in order to adjust the molecular weight of the polymer.
  • the polymerization method may be either a batch method or a continuous method.
  • methods such as solution polymerization and slurry polymerization in a solvent such as butane, pentane, hexane, heptane, and octane can be selected.
  • bulk polymerization in a monomer without solvent and vapor phase polymerization in a gaseous monomer. A method or the like can be used.
  • an electron donating compound can be used as an internal donor component or an external donor component as a third component in order to increase the isotacticity and polymerization activity of the PP obtained.
  • known compounds can be used, for example, ester compounds such as ⁇ -caprolactone, methyl methacrylate, ethyl benzoate, methyl toluate, triphenyl phosphite, tributyl phosphite, and the like.
  • Phosphoric acid derivatives such as phosphate esters and hexamethylphosphoric triamides, alkoxy ester compounds, aromatic monocarboxylic acid esters and / or aromatic alkyl alkoxy silanes, aliphatic hydrocarbon alkoxy silanes, various ether compounds, various alcohols And / or various phenols.
  • the density of the propylene polymer portion in PP is usually 0.900 g / cm 3 or more, preferably 0.90 to 0.93 g / cm 3 , more preferably 0.90 to 0.92 g / cm 3. It is.
  • the method for measuring the density of the propylene polymer portion can be easily determined by the JIS K-7112 underwater substitution method.
  • PP is a copolymer with an ⁇ -olefin mainly composed of propylene
  • the copolymer component is extracted from the copolymer using a solvent such as hexane, and the density of the remaining propylene polymer portion is determined. It can be easily determined by the above-described JIS K-7112 underwater substitution method.
  • the crystal nucleating agent is not particularly limited as long as it improves the crystallinity of PP.
  • Organic nucleating agents such as aromatic carboxylic acid metal salts, sorbitol derivatives, organic phosphates, aromatic amide compounds, talc, etc. Inorganic nucleating agents can be mentioned. However, it is not limited to these.
  • the PP used in this embodiment preferably has a melt flow rate (MFR; measured according to JIS K-6758, temperature 230 ° C., load 2.16 kgf) of 10 g / 10 min or more, preferably 20 to 50 g / 10 minutes, more preferably 25 to 40 g / 10 minutes, still more preferably 30 to 40 g / 10 minutes.
  • MFR melt flow rate
  • the ethylene / ⁇ -olefin copolymer will be described.
  • the ethylene / ⁇ -olefin copolymer that can be used in the present embodiment is a copolymer of ethylene and at least one of ⁇ -olefins having 3 to 20 carbon atoms.
  • ⁇ -olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-decene, Undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 3-methyl-1-butene, 3-methyl- 1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4- Ethyl-1-hexene, 3-ethyl-1-hexene, 9-methyl-1-decene,
  • the ⁇ -olefin content is preferably 1 to 30 mol%, more preferably 2 to 25 mol%, and still more preferably 3 to 20 mol%.
  • non-conjugated dienes such as 1,4-hexadiene, dicyclopentadiene, 2,5-norbornadiene, 5-ethylidene norbornene, 5-ethyl-2,5-norbornadiene, 5- (1'-propenyl) -2-norbornene, etc. At least one kind may be copolymerized.
  • This ethylene / ⁇ -olefin copolymer is a copolymer having the structure shown above. Generally, these ethylene / ⁇ -olefin copolymers are further converted into functional groups (for example, carboxylic acid groups, acid anhydride groups). , An ethylene / ⁇ -olefin copolymer having a functional group obtained by reacting with an unsaturated compound having an ester group, a hydroxyl group, etc., or containing ethylene and a functional group (for example, an epoxy group, a carboxylic acid group, an acid anhydride). A copolymer with a monomer, an ethylene / ⁇ -olefin / functional group-containing monomer, and the like.
  • polyesters examples include polybutylene terephthalate, polypropylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polypropylene naphthalate, and liquid crystal polyesters. These may be a mixture. Among these, liquid crystal polyester is preferable.
  • the liquid crystal polyester that can be preferably used in the present embodiment is a polyester called a thermotropic liquid crystal polymer, and known ones can be used.
  • a thermotropic liquid crystal polyester mainly comprising p-hydroxybenzoic acid and polyethylene terephthalate a thermotropic liquid crystal polyester mainly comprising p-hydroxybenzoic acid and 2-hydroxy-6-naphthoic acid, p-hydroxybenzoic acid
  • thermotropic liquid crystal polyesters mainly composed of acid, 4,4'-dihydroxybiphenyl and terephthalic acid and are not particularly limited.
  • the liquid crystalline polyester used in the present embodiment those containing the following structural units (a) and (b) and, if necessary, (c) and / or (d) are preferably used.
  • the structural units (a) and (b) are respectively a structural unit of polyester formed from p-hydroxybenzoic acid and a structural unit generated from 2-hydroxy-6-naphthoic acid.
  • the structural units (a) and (b) it is possible to obtain the thermoplastic resin composition of the present embodiment having an excellent balance of mechanical properties such as excellent heat resistance, fluidity and rigidity.
  • X in the structural units (c) and (d) can be arbitrarily selected from one or more of the following formulas.
  • Y represents a halogen atom, an alkyl group, or an aryl group, and n is an integer of 1 to 6.
  • structural units of ethylene glycol, hydroquinone, 4,4′-dihydroxybiphenyl, 2,6-dihydroxynaphthalene and bisphenol A are preferred, and ethylene glycol, 4,4 ′ is more preferred.
  • -Structural units of dihydroxybiphenyl and hydroquinone more preferably structural units of ethylene glycol and 4,4'-dihydroxybiphenyl.
  • terephthalic acid preferred are structural units of terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid, and more preferred are structural units of 2,6-naphthalenedicarboxylic acid and terephthalic acid.
  • the structural formula (c) and the structural formula (d) at least one or two or more of the structural units listed above can be used in combination. Specifically, when two or more kinds are used in combination, in the structural formula (c), (1) a structural unit generated from ethylene glycol / a structural unit generated from hydroquinone, (2) a structural unit generated from ethylene glycol / 4 , 4'-dihydroxybiphenyl, (3) structural unit generated from hydroquinone / 4 structural unit generated from 4,4'-dihydroxybiphenyl, and the like.
  • terephthalic acid structural unit / isophthalic acid structural unit (2) terephthalic acid structural unit / 2,6-naphthalenedicarboxylic acid structural unit, and the like. it can.
  • the proportion of the structural units (a), (b), (c), and (d) in the liquid crystal polyester is not particularly limited.
  • the structural units (c) and (d) are basically in equimolar amounts.
  • the following structural unit (e) composed of the structural units (c) and (d) can also be used as the structural unit in the liquid crystal polyester. Specifically, (1) a structural unit composed of ethylene glycol and terephthalic acid, (2) a structural unit composed of hydroquinone and terephthalic acid, (3) a structural unit composed of 4,4′-dihydroxybiphenyl and terephthalic acid, (4 ) Structural units composed of 4,4'-dihydroxybiphenyl and isophthalic acid, (5) structural units composed of bisphenol A and terephthalic acid, (6) structural units composed of hydroquinone and 2,6-naphthalenedicarboxylic acid, and the like. it can.
  • the liquid crystal polyester of the present embodiment has a structure formed from other aromatic dicarboxylic acid, aromatic diol, and aromatic hydroxycarboxylic acid within a small range that does not impair the characteristics and effects of the present embodiment as necessary. Units can be introduced.
  • the temperature at which the liquid crystal polyester of the present embodiment starts to show a liquid crystal state at the time of melting (hereinafter referred to as a liquid crystal start temperature) is preferably 150 to 350 ° C., more preferably 180 to 320 ° C. By setting the liquid crystal starting temperature within this range, the obtained flame-retardant resin composition can have a favorable balance of color tone, heat resistance and molding processability.
  • the dielectric loss tangent (tan ⁇ ) at 25 ° C. and 1 MHz of the liquid crystal polyester of the present embodiment is preferably 0.03 or less, and more preferably 0.025 or less.
  • the generated electric noise is preferably suppressed.
  • the dielectric loss tangent (tan ⁇ ) is preferably 0.03 or less, and more preferably 0.025 or less.
  • the apparent melt viscosity (liquid crystal starting temperature + 30 ° C. and shear rate of 100 / sec) of the liquid crystal polyester of the present embodiment is preferably 10 to 3,000 Pa ⁇ s, more preferably 10 to 2,000 Pa ⁇ s, and still more preferably. 10 to 1,000 Pa ⁇ s. Setting the apparent melt viscosity within this range makes the flowability of the resulting composition preferable.
  • polyamide that can be used in the present embodiment is not particularly limited as long as it has an amide bond ⁇ —NH—C ( ⁇ O) — ⁇ in the repeating structure of the polymer.
  • polyamide is obtained by ring-opening polymerization of lactams, polycondensation of diamine and dicarboxylic acid, polycondensation of aminocarboxylic acid, and the like, but is not limited to these in this embodiment.
  • lactams include ⁇ -caprolactam, enantolactam, and ⁇ -laurolactam.
  • diamine examples include aliphatic, alicyclic and aromatic diamines. Specific examples include tetramethylenediamine, hexamethylenediamine, undecamethylenediamine, dodecamethylenediamine, tridecamethylenediamine, 2-methyl-1,5-pentanediamine, 1,9-nonanediamine, 2-methyl-1, 8-octanediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 5-methylnonamethylenediamine, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethyl Examples include cyclohexane, m-phenylenediamine, p-phenylenediamine, m-xylylenediamine, and p-xylylenediamine.
  • dicarboxylic acid examples include aliphatic, alicyclic and aromatic dicarboxylic acids. Specific examples include adipic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, 1,1,3-tridecanedioic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, terephthalic acid, Examples include isophthalic acid, naphthalenedicarboxylic acid, and dimer acid.
  • aminocarboxylic acid examples include ⁇ -aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, and 13-aminotriic acid.
  • a decanoic acid is mentioned.
  • copolymerized polyamides obtained by polycondensation of these lactams, diamines, dicarboxylic acids, and aminocarboxylic acids alone or in a mixture of two or more types can also be used.
  • those obtained by polymerizing these lactams, diamines, dicarboxylic acids, and aminocarboxylic acids up to a low molecular weight oligomer stage in a polymerization reactor and increasing the molecular weight with an extruder or the like can be suitably used.
  • Polyamides that can be used in this embodiment include polyamide 6, polyamide 66, polyamide 46, polyamide 11, polyamide 12, polyamide 610, polyamide 612, polyamide 6/66, polyamide 6/612, polyamide MXD (m-xylylenediamine) 6, polyamide 6T, polyamide 6I, polyamide 6 / 6T, polyamide 6 / 6I, polyamide 66 / 6T, polyamide 66 / 6I, polyamide 6T / 6I, polyamide 6 / 6T / 6I, polyamide 6 / 6T / 6I, polyamide 66 / 6T / 6I, polyamide 6 / 12 / 6T, polyamide 66/12 / 6T, polyamide 6/12 / 6I, polyamide 66/12 / 6I, polyamide 9T, polyamide 6C, polyamide 6/66 / 6C, polyamide 66 / 6C, etc.
  • T is te Phthalic acid
  • C is an abbreviation of cyclohexanedicarboxylic acid.
  • Polyamides obtained by copolymerizing two or more of these polyamides with an extruder or the like can also be used.
  • a preferable polyamide is a polyamide having an aromatic ring in a repeating structural unit from the viewpoint of heat resistance.
  • polyamide MXD m-xylylenediamine
  • polyamide 6T polyamide 6I
  • polyamide 6 / 6T polyamide 6 / 6I
  • polyamide 66 / 6T polyamide 66 / 6I
  • polyamide 6T / 6I polyamide 6T / 6I
  • polyamide 6 / 6T / 6I polyamide 66 / 6T / 6I
  • polyamide 6/12 / 6T polyamide 66/12 / 6T
  • polyamide 6/12 / 6I polyamide 6/12 / 6I
  • polyamide 66/12 / 6I polyamide 9T, etc.
  • 6T / 6I, polyamide 66 / 6T / 6I, and polyamide 9T is polyamide 9T.
  • These preferred polyamides may be a mixture.
  • the melting point of polyamide in the present embodiment can be measured using a differential scanning calorimeter (for example, trade name: DSC-7, manufactured by Perkin Elmer).
  • DSC-7 differential scanning calorimeter
  • the temperature of polyamide pellets is increased from 40 ° C. to 50 ° C./340° C., held for 2 minutes, the polyamide is sufficiently melted, and then cooled to 20 ° C./20° C./40° C. And hold for 2 minutes. Then, it represents with the peak top of the endothermic peak observed when it heated up at the speed
  • the melting point of the polyamide is preferably 280 ° C. or higher, more preferably 290 ° C. or higher, more preferably 300 ° C. or higher. By using a polyamide having such a melting point, the effect of this embodiment becomes more remarkable.
  • the upper limit of the melting point is preferably 360 ° C, more preferably 340 ° C, and still more preferably 330 ° C.
  • the preferred viscosity range of the polyamide is that the viscosity number measured in 96% sulfuric acid in accordance with ISO 307 is in the range of 50 to 400 ml / g, more preferably in the range of 70 to 300 ml / g, even more Preferably, it is in the range of 100 to 200 ml / g.
  • the polyamide may be a mixture of a plurality of polyamides having different viscosity numbers.
  • the viscosity number of the polyamide mixture is preferably within the above-described range. It can be easily confirmed that the polyamide mixture is within the above-mentioned range of the viscosity number by actually measuring the viscosity number of the polyamide mixture mixed at a desired mixing ratio.
  • the concentration of the terminal amino group of the polyamide is not particularly limited, but when mixed with polyphenylene ether, the concentration is preferably in the range of 10 to 80 ⁇ mol / g, more preferably 15 to 65 ⁇ mol / g, in order to improve compatibility. And more preferably in the range of 20 to 40 ⁇ mol / g.
  • concentration of the terminal amino group is preferable because a polymer alloy having an excellent balance of physical properties can be obtained.
  • the terminal carboxyl group concentration of the polyamide is not particularly limited, but the lower limit is preferably 20 ⁇ mol / g, more preferably 30 ⁇ mol / g. Moreover, as an upper limit, 150 micromol / g is preferable, 100 micromol / g is more preferable, and 80 micromol / g is still more preferable.
  • the ratio between the terminal amino group concentration and the terminal carboxyl group concentration affects the mechanical properties of the flame retardant resin composition, and therefore has a preferable range.
  • the ratio of the terminal amino group concentration to the terminal carboxyl group concentration is preferably 1.0 or less. More preferably, it is 0.9 or less, more preferably 0.8 or less, and still more preferably 0.7 or less. Since it is a concentration ratio, there is no particular lower limit, but it is preferable to set it to 0.1 or more because strand take-up during extrusion or the like can be carried out stably.
  • a method for adjusting the terminal group concentration of these polyamides a known method can be used.
  • Examples thereof include a method of adding a terminal adjusting agent.
  • Aliphatic monocarboxylic acids such as isobutyric acid, alicyclic monocarboxylic acids such as cyclohexanecarboxylic acid, benzoic acid, toluic acid, ⁇ -naphthalenecarboxylic acid, ⁇ -naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, phenylacetic acid, etc.
  • Aromatic monocarboxylic acids and mixtures thereof can be mentioned.
  • Benzoic acid is preferred, and benzoic acid is more preferred.
  • Alicyclic monoamines such as aliphatic monoamines, cyclohexylamine and dicyclohexylamine, aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine, and mixtures thereof.
  • butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline are preferable from the viewpoints of reactivity, boiling point, sealing end stability, price, and the like.
  • the concentration of the amino terminal group and the carboxyl terminal group can be determined from the integrated value of the characteristic signal corresponding to each terminal group by 1 H-NMR. As a specific method, it is recommended to follow the method described in JP-A-7-228775. Heavy trifluoroacetic acid can be used as a measurement solvent. Even when measurement is performed with a nuclear magnetic resonance measuring apparatus having sufficient resolution, at least 300 scans are required for the integration of 1 H-NMR.
  • the active end is sealed.
  • a monoamine compound, a monocarboxylic acid compound or the like the active end is sealed.
  • benzoic acid is used as the monocarboxylic acid
  • a terminal group sealed with a terminal phenyl group is generated.
  • concentration of the end groups of these sealed polyamides There are preferred upper and lower limits for the concentration of the end groups of these sealed polyamides.
  • the lower limit of the end-capping rate of the polyamide is preferably 20%, more preferably 40%, still more preferably 45%, and still more preferably 50%.
  • the upper limit of the end capping rate of polyamide is preferably 85%, more preferably 80%, and even more preferably 75%.
  • the polyamide used in this embodiment has a moisture content in the range of 500 ppm or more and 3000 ppm or less. More preferably, it is 500 ppm or more and 2000 ppm or less.
  • the water content is preferably 500 ppm or more from the viewpoint of suppressing deterioration of the color tone of the pellets when producing the flame retardant resin composition, and the water content is 3000 ppm or less from the viewpoint of suppressing a significant decrease in viscosity during processing. It is preferable that
  • polyphenylene sulfide As the polyarylene sulfide usable in the present embodiment, polyphenylene sulfide can be preferably used.
  • Polyphenylene sulfide (hereinafter abbreviated as “PPS”) is a polymer containing a repeating unit of phenylene sulfide represented by the following general formula. The content of this repeating unit is usually 50 mol%, preferably 70 mol%, more preferably 90 mol% or more.
  • S represents a sulfur atom
  • Ar represents an arylene group
  • examples of the arylene group include a p-phenylene group, an m-phenylene group, and a substituted phenylene group (the substituent is an alkyl group having 1 to 10 carbon atoms). And a phenyl group are preferred.
  • P p'-diphenylenesulfone group, p, p'-biphenylene group, p, p'-diphenylenecarbonyl group, naphthylene group and the like.
  • PPS may be a homopolymer having one type of arylene group as a structural unit, and is a copolymer obtained by mixing two or more different arylene groups from the viewpoint of processability and heat resistance. Also good. Among these, PPS having a repeating unit of p-phenylene sulfide as a main constituent element is preferable because it is excellent in processability and heat resistance and is easily available.
  • the chlorine concentration of PPS is preferably 1500 ppm or less, more preferably 900 ppm or less from the viewpoint of suppressing corrosiveness, and the measurement of the chlorine concentration was determined by the Japan Printed Circuit Industry Association (JPCA). It can be measured according to JPCA-ES01 (halogen-free copper clad laminate test method). The analysis method can be performed by flask combustion treatment ion chromatography.
  • the method for producing PPS is not particularly limited, and a known method can be used. Usually, a method in which a halogen-substituted aromatic compound (eg, p-dichlorobenzene) is polymerized in the presence of sulfur and sodium carbonate; sodium sulfide or sodium hydrogen sulfide and sodium hydroxide or hydrogen sulfide and sodium hydroxide in a polar solvent or Polymerization in the presence of sodium aminoalkanoate; self-condensation of p-chlorothiophenol and the like.
  • a halogen-substituted aromatic compound eg, p-dichlorobenzene
  • sodium sulfide is used in amide solvents such as N-methylpyrrolidone and dimethylacetamide, and sulfone solvents such as sulfolane.
  • amide solvents such as N-methylpyrrolidone and dimethylacetamide
  • sulfone solvents such as sulfolane.
  • a method of reacting p-dichlorobenzene with p-dichlorobenzene is preferred.
  • trichlorobenzene may be used as a branching agent as necessary.
  • PPS can be obtained by the methods described in JP-B-46-27255, Belgian Patent No. 29437, JP-A-5-222196, and the like.
  • the PPS obtained by this polymerization reaction is usually a linear PPS.
  • cross-linked PPS after the polymerization reaction, heat treatment is performed at a temperature not higher than the melting point of PPS (for example, 200 to 250 ° C.) in the presence of oxygen to promote oxidative crosslinking to appropriately increase the polymer molecular weight and viscosity ( Cross-linked PPS) may also be used.
  • This cross-linked PPS also includes semi-cross-linked PPS whose degree of cross-linking is controlled to be low.
  • the PPS any one or two of the above-described linear PPS and cross-linked PPS can be used in combination.
  • the PPS has a melt viscosity at 300 ° C. at a shear rate of 100 seconds ⁇ 1 of preferably 10 to 150 Pa ⁇ s, more preferably 10 to 100 Pa ⁇ s, and still more preferably 10 to 80 Pa ⁇ s.
  • PPS uses linear type PPS and cross-linked type PPS together to produce an effect that the particle size of the polyphenylene ether dispersed phase can be reduced when an alloy of PPS and polyphenylene ether is used.
  • the melt viscosity of the PPS can be measured with a capillary rheometer.
  • a capillograph manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the oligomer contained in PPS means a substance obtained by extracting PPS to be supplied with methylene chloride, and is a substance generally known as an impurity of PPS.
  • the measurement of the oligomer content can be obtained by the following method. Add 5 g of PPS powder to 80 ml of methylene chloride, perform Soxhlet extraction for 6 hours, cool to room temperature, and transfer the extracted methylene chloride solution to a weighing bottle. Furthermore, the container used for the extraction is washed in three portions with a total of 60 ml of methylene chloride, and the washing solution is collected in the weighing bottle. Next, the methylene chloride in the weighing bottle is evaporated and removed by heating to about 80 ° C., the residue is weighed, and the amount extracted from the methylene chloride from the amount of the residue, that is, the proportion of the oligomer present in the PPS. Can be requested.
  • the polyarylate usable in the present embodiment is a polymer containing an aromatic ring and an ester bond as a structural unit, and is also called a polyaryl ester.
  • a polyarylate having a repeating unit represented by the following formula (4) consisting of bisphenol A and terephthalic acid and / or isophthalic acid is preferable.
  • the molar ratio of terephthalic acid to isophthalic acid is preferably about 1: 1 from the balance of heat resistance and toughness.
  • polyarylate a commercially available product can be used.
  • a trade name “U polymer” manufactured by Unitika Ltd. can be used.
  • the molecular weight of the polyarylate is not particularly limited, but the polystyrene-equivalent number average molecular weight measured by gel permeation chromatography (GPC) is preferably 5,000 to 300,000, more preferably 10,000 to 300,000. Is 10,000 to 100,000.
  • GPC gel permeation chromatography
  • the polyether sulfone, polyether imide, and polysulfone that can be used in the present embodiment can be appropriately used from the group of known amorphous super engineering plastics.
  • examples of commercially available polyethersulfone include “Radel A (registered trademark)”, “Radel R (registered trademark)” manufactured by Solvay Advanced Polymers, “MITUI PES” manufactured by Mitsui Chemicals, and BASF Japan "Ultra Zone E (registered trademark)” and the like.
  • Specific examples of polyetherimide include Ultem (registered trademark) manufactured by SABIC Innovative Plastics.
  • Examples of commercially available products of polysulfone include Udel (registered trademark), Mindel (registered trademark) manufactured by Solvay Advanced Polymers, and Ultrazone S (registered trademark) manufactured by BASF Japan.
  • the polyaryl ketone that can be used in the present embodiment is a resin that includes an aromatic ring, an ether bond, and a ketone bond in its structural unit.
  • polyether ketone, polyether ether ketone, polyether ketone Examples include ketones.
  • polyetheretherketone having a repeating unit represented by the following formula (5) is preferably used.
  • polyether ether ketone commercially available products can be used.
  • PEK registered trademark
  • trade name “Ultrapek (registered trademark)” polyetherketone etherketone ketone: PEKEKK
  • a polyaryl ketone may be used individually by 1 type, or may be used in combination of 2 or more type.
  • a trade name “PEEK (registered trademark)” manufactured by VICTREX is preferably used.
  • the melt viscosity of the polyaryl ketone is preferably in the range of 50 to 5000 Pa ⁇ s (500 to 50000 Poise). More preferably, it is 70 to 3000 Pa ⁇ s, still more preferably 100 to 2500 Pa ⁇ s, and still more preferably 200 to 1000 Pa ⁇ s. If the melt viscosity of the polyaryl ketone is 50 Pa ⁇ s or more, the mechanical strength tends to be more excellent, and if it is 5000 Pa ⁇ s or less, the moldability tends to be more excellent.
  • the melt viscosity is an apparent melt viscosity measured when a resin heated to 400 ° C. is extruded from a nozzle having an inner diameter of 1 mm and a length of 10 mm with a load of 100 kg.
  • polyamide / polyphenylene ether polyphenylene ether / polystyrene, polyphenylene ether / polyphenylene sulfide are used from the viewpoint of flame retardancy and low moisture absorption.
  • the combination of polyamide / polyphenylene ether is more preferable from the viewpoint of flame retardancy and low moisture absorption.
  • thermoplastic resins other than polyphenylene ether homopolystyrene, rubber-modified polystyrene, styrene elastomer, acrylonitrile-styrene copolymer, and copolymer of N-phenylmaleimide and styrene, which are resins having relatively high affinity with polyphenylene ether
  • the polyphenylene ether content in the thermoplastic resin of the present embodiment is 10 to 90. It is preferable to be within the range of mass%.
  • a more preferable lower limit of the polyphenylene ether content is 20% by mass, and more preferably 30% by mass.
  • a more preferable upper limit value of the polyphenylene ether content is 80% by mass, more preferably 70% by mass, and still more preferably 60% by mass.
  • the polyphenylene ether content in the flame-retardant thermoplastic resin of this embodiment is 1 It is preferably in the range of ⁇ 60% by mass.
  • the more preferable lower limit of the polyphenylene ether content is 5% by mass, more preferably 10% by mass, and still more preferably 15% by mass.
  • a more preferable upper limit value of the polyphenylene ether content is 45% by mass, further preferably 40% by mass, and still more preferably 35% by mass.
  • 1 selected from polypropylene, liquid crystal polyester, polyamide, polyphenylene sulfide, polyetherimide, polyethersulfone, polysulfone, polyarylketone, and mixtures thereof, which are resins having relatively low affinity with polyphenylene ether.
  • a compatibilizer for polyphenylene ether and a thermoplastic resin other than polyphenylene ether it is more preferable to include a compatibilizer for polyphenylene ether and a thermoplastic resin other than polyphenylene ether.
  • the compatibilizer is not particularly limited, and examples thereof include inorganic metal oxides, organic functional group-containing compounds, and copolymers having polystyrene chains and polyolefin chains. These may be known ones depending on the thermoplastic resin combined with the polyphenylene ether.
  • Examples of the inorganic metal oxide include oxides of one or more metals selected from zinc, titanium, calcium, magnesium, and silicon. Among these, zinc oxide is preferable from the viewpoint of compatibilizing power.
  • Examples of the organic functional group-containing compound include compounds having one or more functional groups selected from an epoxy group, an oxazolyl group, an imide group, a carboxylic acid group, and an acid anhydride group.
  • the number of these functional groups may include only one or two or more.
  • two or more types of functional groups may be included, two or more types of functional groups may be included, and one type of functional group may be included.
  • One or more other functional groups may be included.
  • two or more types of functional groups may be included.
  • Examples of the copolymer having a polystyrene chain-polyolefin chain include a styrene-ethylenebutylene copolymer.
  • a preferred compatibilizer in the combination of polyphenylene ether and polypropylene (PP) will be described. Since polyphenylene ether and PP are essentially incompatible, it is preferable to use a compatibilizing agent.
  • a polymer alloy composed of polyphenylene ether and PP has a structure in which polyphenylene ether is dispersed in a PP continuous phase, and polyphenylene ether is important for reinforcing the heat resistance of the amorphous portion of PP above the glass transition temperature. Indicates role.
  • a copolymer having a segment chain highly compatible with polyphenylene ether and a segment chain highly compatible with PP can be used as an admixture.
  • the compatible copolymer include a copolymer having a polystyrene chain-polyolefin chain, a copolymer having a polyphenylene ether chain-polyolefin chain, and at least two polymers mainly composed of a vinyl aromatic compound.
  • Examples thereof include a hydrogenated block copolymer obtained by hydrogenating a block copolymer comprising block A and at least one polymer block B mainly composed of a conjugated diene compound.
  • a hydrogenated block copolymer is preferable from the viewpoint of thermal stability.
  • Examples of the hydrogenated block copolymer as a compatibilizer for polyphenylene ether and PP mentioned here include, for example, ABA, ABAB, (AB-) 4 -Si, A Examples thereof include a hydrogenated block copolymer obtained by hydrogenating a block copolymer having a structure such as —BAABA.
  • A means a polymer block mainly composed of a vinyl aromatic compound
  • B means a polymer block mainly composed of a conjugated diene compound.
  • the content of the vinyl aromatic compound in the polymer block A and the content of the conjugated diene compound in the polymer block B are each at least 70% by mass or more.
  • the hydrogenated block copolymer is an olefinic unsaturated bond derived from a conjugated diene compound in a block copolymer composed of an aromatic vinyl compound-conjugated diene compound, and is preferably 50% or less, preferably 30% or less, more preferably Is a block copolymer reduced to 10% or less by a hydrogenation reaction.
  • the block copolymer useful as a compatibilizer for polyphenylene ether and PP is the same as the above-mentioned block copolymer as a styrenic elastomer, and when PP is used as a thermoplastic resin other than polyphenylene ether.
  • the block copolymer has both a function as a compatibilizing agent and a function as an impact modifier.
  • those that can be more suitably used as compatibilizers for polyphenylene ether and PP are conjugated diene compounds, and the amount of 1,2-vinyl bonds in the polybutadiene portion is 50% to 90%.
  • compatibilizers in the combination of polyphenylene ether and polyamide are described in detail in JP-A-8-8869 and JP-A-9-124926. In the present embodiment, all of these known compatibilizers can be used and can be used in combination.
  • compatibilizers maleic acid or derivatives thereof, citric acid or derivatives thereof, fumaric acid or derivatives thereof, and polyphenylene ether pellets modified beforehand by these are preferable.
  • the preferable amount of the compatibilizing agent in this embodiment is 0.01 to 25 parts by mass with respect to 100 parts by mass of the mixture of polyamide and polyphenylene ether.
  • the amount is more preferably 0.05 to 10 parts by mass, still more preferably 0.1 to 5 parts by mass.
  • the polyphenylene ether particles are preferably present in the polyamide continuous phase as a dispersed phase having an average particle size of 0.1 to 5 ⁇ m. More preferably, it is in the range of 0.3 to 3 ⁇ m, and still more preferably 0.5 to 2 ⁇ m.
  • the impact resistance agent described later is preferably present in the polyphenylene ether dispersed phase.
  • the preferred upper limit of the reduced viscosity of polyphenylene ether is 0.55 dl / g. More preferably, it is 0.45 dl / g, More preferably, it is 0.35 dl / g.
  • a preferable lower limit is 0.20 dl / g, more preferably 0.25 dl / g, and still more preferably 0.29 dl / g.
  • the composition comprising polyphenylene ether and PPS preferably exhibits a structure in which polyphenylene ether is dispersed in a PPS matrix.
  • the polyphenylene ether plays an important role in reinforcing the heat resistance above the glass transition temperature of the amorphous part of the PPS by utilizing its high glass transition temperature. Both are incompatible, and a compound containing an epoxy group and / or a compound containing an oxazolyl group is useful for improving compatibility (sometimes referred to as miscibility).
  • a copolymer of an unsaturated monomer having an epoxy group and / or an oxazolyl group and a monomer having styrene as a main component can be preferably used.
  • the monomer having styrene as the main component is not a problem when the styrene component is 100% by mass, but when there is another monomer copolymerizable with styrene, the copolymer chain is in phase with polyphenylene ether.
  • epoxy group-containing unsaturated monomer examples include glycidyl methacrylate, glycidyl acrylate, vinyl glycidyl ether, hydroxyalkyl (meth) acrylate glycidyl ether, polyalkylene glycol (meth) acrylate glycidyl ether, glycidyl itaconate, and the like. .
  • glycidyl methacrylate is preferable.
  • vinyloxazoline compound which is an oxazolyl group-containing unsaturated monomer for example, 2-isopropenyl-2-oxazoline is easily available and can be preferably used.
  • unsaturated monomers copolymerized with an unsaturated monomer having an epoxy group and / or an oxazolyl group in addition to a vinyl aromatic compound such as styrene, a vinyl cyanide monomer such as acrylonitrile as a copolymerization component, vinyl acetate, (Meth) acrylic acid esters and the like are mentioned, but in order to effectively act as a compatibilizing agent for PPS and polyphenylene ether, a styrene monomer is added to the component excluding unsaturated monomers having an epoxy group and / or an oxazolyl group. It is preferable to contain at least 65% by mass or more.
  • the unsaturated monomer having an epoxy group and / or oxazolyl group is preferably contained in the copolymer in an amount of 0.3 to 20% by mass, more preferably 1 to 15% by mass, and further preferably 3 to 10% by mass.
  • the amount of the unsaturated monomer having an epoxy group and / or oxazolyl group of the copolymer is preferably 0.3% by mass or more and 20% by mass or less.
  • copolymers examples include, for example, styrene-glycidyl methacrylate copolymer, styrene-glycidyl methacrylate-methyl methacrylate copolymer, styrene-glycidyl methacrylate-acrylonitrile copolymer, styrene-vinyl oxazoline copolymer, styrene-vinyl. And oxazoline-acrylonitrile copolymer.
  • a preferred blending amount of the compatibilizer is 0.5 to 5 parts by weight, preferably 1 to 5 parts by weight, more preferably 1 to 3 parts by weight with respect to 100 parts by weight of the total of the polyphenylene ether and PPS. is there. If the compounding amount of the compatibilizing agent is 0.5 parts by mass or more, the compatibility between PPS and polyphenylene ether is improved, and if it is 5 parts by mass or less, the average particle diameter of the polyphenylene ether forming the dispersed phase is 10 ⁇ m. In addition to greatly suppressing the occurrence of burrs in molded products molded using the obtained flame retardant resin composition, it has an excellent balance of heat resistance (impact strength), toughness and mechanical strength. Can be.
  • the polyphenylene ether particles are preferably present in the PPS continuous phase as a dispersed phase having an average particle size of 10 ⁇ m or less. More preferably, it is 8 micrometers or less, More preferably, it is 5 micrometers or less. In order to prevent appearance deterioration and peeling phenomenon of the composition obtained, it is effective that the dispersion average particle diameter does not exceed 10 ⁇ m.
  • the impact resistance agent described later is preferably present in the polyphenylene ether dispersed phase.
  • a compound having an epoxy group, an oxazolyl group, an imide group, or an acid anhydride group is preferable.
  • the compound which has an epoxy group is more preferable.
  • glycidyl methacrylate / styrene copolymer examples include glycidyl methacrylate / styrene copolymer, glycidyl methacrylate / styrene / methyl methacrylate copolymer, glycidyl methacrylate / styrene / methyl methacrylate / methacrylate copolymer, glycidyl methacrylate / styrene / acrylonitrile copolymer, vinyl oxazoline / Examples thereof include styrene copolymers, N-phenylmaleimide / styrene copolymers, N-phenylmaleimide / styrene / maleic anhydride copolymers, styrene / maleic anhydride copolymers, and the like.
  • a graft copolymer such as an ethylene / glycidyl methacrylate copolymer and a polystyrene graft copolymer may be used.
  • glycidyl methacrylate / styrene copolymer, vinyloxazoline / styrene copolymer, N-phenylmaleimide / styrene copolymer, and N-phenylmaleimide / styrene / maleic anhydride copolymer are preferable, and glycidyl methacrylate / styrene copolymer is preferable. More preferred are polymers.
  • the ratio of the compound having one or more functional groups selected from epoxy group, oxazolyl group, imide group, carboxylic acid group, and acid anhydride group in the copolymer and the styrene compound is not particularly limited. From the viewpoint of the generation of silver and the surface during extrusion processing, the compound having at least one functional group selected from an epoxy group, an oxazolyl group, an imide group, a carboxylic acid group, and an acid anhydride group is 50% by mass or less. It is preferable.
  • the compatibilizing agent As a preferable blending amount of the compatibilizing agent, it is 0.1 parts by mass or more from the viewpoint of tensile strength, and 10 parts by mass or less from the viewpoint of flame retardancy, with respect to a total of 100 parts by mass of polyphenylene ether and liquid crystal polyester. More preferably, they are 1 mass part or more and 7 mass parts or less, More preferably, they are 3.5 mass parts or more and 6 mass parts or less.
  • the method of adding the compatibilizing agent is not particularly limited, but a method of adding it with polyphenylene ether or adding a polyphenylene ether after preparing a master batch previously melt-kneaded with liquid crystal polyester is preferable. At this time, it is necessary that the polyphenylene ether forms a dispersed phase and the liquid crystalline polyester forms a continuous phase.
  • the liquid crystal polyester is excellent in chemical resistance and rigidity by forming a continuous phase. These dispersion forms can be easily determined by observing with a transmission microscope, for example.
  • a preferable dispersed particle size of polyphenylene ether is 40 ⁇ m or less. More preferably, it is 20 ⁇ m or less.
  • the impact agent is preferably present in the polyphenylene ether dispersed phase. It is also useful for the flame-retardant resin composition of the present embodiment to adopt a sea-island lake structure in which a liquid crystal polyester is further present in a polyphenylene ether phase that is a dispersed phase.
  • An example of a specific method for making a sea-island lake structure is as follows. Using an extruder having one or more supply ports in the middle of the extruder, a part of polyphenylene ether and liquid crystal polyester from the extruder supply port, and If necessary, both compatibilizers may be supplied, and the remaining liquid crystal polyester may be supplied from a supply port in the middle of the extruder.
  • a compatibilizing agent in the case of using a resin such as polyarylate, polyetherimide, polyethersulfone, polysulfone, polyarylketone together with polyphenylene ether, as described above, for example, polypropylene, polyamide, PPS,
  • all of the liquid crystal polymer and the compatibilizer of polyphenylene ether can be used. Since these resins generally have high processing temperatures, the terminal functional groups are often inactivated by the reaction, causing some kind of reaction (such as heat or breakage of molecular chains by peroxides). After that, it is preferable to select and use the above-mentioned compatibilizer as appropriate.
  • the above reaction can be performed without causing the above reaction.
  • the phosphinic acid salt represented by the following formula (I) and / or the diphosphinic acid salt represented by the following formula (II) of the component (B) of this embodiment, or a condensate thereof is selected. At least one phosphinic acid salt will be described.
  • R 1 and R 2 may be the same or different and are linear or branched C 1 -C 6 -alkyl and / or aryl or phenyl
  • R 3 is linear or Branched C 1 -C 10 -alkylene, C 6 -C 10 -arylene, C 6 -C 10 -alkylarylene or C 6 -C 10 -arylalkylene
  • M is calcium (ion), magnesium (ion) , Aluminum (ion), zinc (ion), bismuth (ion), manganese (ion), sodium (ion), potassium (ion) and protonated nitrogen base
  • m is 2 Or 3
  • n is 1 to 3
  • x is 1 or 2.
  • the phosphinic acid salts of the component (B) in this embodiment are phosphinic acid, metal carbonate, metal hydroxide as described in, for example, European Patent Application No. 699708 and Japanese Patent Application Laid-Open No. 08-73720. What was manufactured in aqueous solution using a thing or a metal oxide can be used effectively. Although these are essentially monomeric compounds, depending on the reaction conditions, polymeric phosphinic acid salts which are condensates having a degree of condensation of 1 to 3 are also included depending on the environment.
  • the phosphinic acid salts of the present embodiment may be mixed in any composition as long as the effects of the present embodiment are not impaired. From the viewpoint of flame retardancy and suppression of mold deposit, the following general formula (I)
  • the phosphinic acid salt represented by the formula is preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 98% by mass or more.
  • R 1 and R 2 are the same or different and are linear or branched C 1 -C 6 -alkyl and / or aryl or phenyl
  • M is calcium (ion), magnesium (ion) , Aluminum (ion), zinc (ion), bismuth (ion), manganese (ion), sodium (ion), potassium (ion) and protonated nitrogen base
  • m is 2 Or 3.
  • Examples of preferred phosphinic acids for forming the phosphinic acid salts of this embodiment include dimethylphosphinic acid, ethylmethylphosphinic acid, diethylphosphinic acid, methyl-n-propylphosphinic acid, methandi (methylphosphinic acid), benzene -1,4- (dimethylphosphinic acid), methylphenylphosphinic acid, diphenylphosphinic acid and mixtures thereof, and among them, dimethylphosphinic acid, ethylmethylphosphinic acid, diethylphosphinic acid, And one or more selected from these and mixtures thereof are preferred.
  • the preferred metal component for forming the phosphinates of this embodiment is one or more selected from calcium ions, magnesium ions, aluminum ions, zinc ions, bismuth ions, manganese ions, sodium ions, potassium ions) More preferably, one or more selected from calcium ions, magnesium ions, aluminum ions, and zinc ions can be used.
  • Preferred protonated nitrogen bases are ammonia, melamine, triethanolamine protonated bases, particularly preferably NH 4 + .
  • Preferred examples of formed phosphinates include calcium dimethylphosphinate, magnesium dimethylphosphinate, aluminum dimethylphosphinate, zinc dimethylphosphinate, calcium ethylmethylphosphinate, magnesium ethylmethylphosphinate, aluminum ethylmethylphosphinate, Zinc ethyl methylphosphinate, calcium diethylphosphinate, magnesium diethylphosphinate, aluminum diethylphosphinate, zinc diethylphosphinate, calcium methyl-n-propylphosphinate, magnesium methyl-n-propylphosphinate, methyl-n-propylphosphine Aluminum oxide, zinc methyl-n-propylphosphinate, calcium dimethane (methylphosphinate), methane (Methylphosphinic acid) magnesium, methanedi (methylphosphinic acid) aluminum, methanedi (methylphosphinic acid) zinc, benzene-1,
  • aluminum diethylphosphinate and zinc diethylphosphinate are preferred, and aluminum diethylphosphinate is more preferred.
  • the phosphinic acid salts in the present embodiment may be left unreacted or by-products as long as the effects of the present embodiment are not impaired.
  • the content of phosphinates is preferably 1 to 80 parts by mass with respect to 100 parts by mass of (A) the thermoplastic resin. More preferably, it is 2 to 60 parts by mass, still more preferably 2 to 40 parts by mass, and still more preferably 4 to 30 parts by mass. In order to exhibit sufficient flame retardancy, the content of phosphinates is preferably 1 part by mass or more, and the amount of phosphinates is 80 parts by mass or less from the viewpoint of maintaining mechanical properties and suppressing corrosiveness. preferable.
  • the particle diameter of the phosphinic acid salt may be any size as long as it does not impair the characteristics of the present embodiment, but the preferred lower limit of the number average particle diameter is 0.1 ⁇ m, more preferably 0.5 ⁇ m. is there. Moreover, the upper limit of a preferable number average particle diameter is 200 micrometers, More preferably, it is 45 micrometers.
  • the lower limit of the number average particle diameter of the phosphinic acid salts is preferably 0.1 ⁇ m in order not to deteriorate the handleability and biting into an extruder, etc., and the mechanical strength of the flame retardant resin composition is exhibited.
  • the upper limit is preferably 200 ⁇ m.
  • the basic compound (C) of the present embodiment is not particularly limited as long as it is basic, but from the viewpoint of suppressing corrosiveness, water of one or more elements selected from Group IIA elements of the periodic table and aluminum 1 or more types chosen from an oxide and an oxide are preferable, for example, 1 or more types of hydroxides and oxides chosen from calcium, magnesium, and aluminum are mentioned. More preferably, it is a hydroxide of one or more elements selected from Group IIA elements of the periodic table and aluminum from the viewpoint of the efficiency of suppressing the corrosiveness depending on the amount added, for example, selected from calcium, magnesium, and aluminum.
  • One or more hydroxides may be mentioned.
  • specific examples of preferable basic compounds are calcium hydroxide and / or calcium oxide from the viewpoints of suppression of corrosiveness depending on the amount added, flame retardancy, and reflow resistance, and still more preferably calcium hydroxide. is there.
  • the basic compound (C) needs to be in the range of 0.01 to 10 parts by weight, preferably 0.08 to 7 parts by weight, more preferably 100 parts by weight of the component (B). 0.2 to 5 parts by mass.
  • the amount is 0.01 parts by mass or more, the corrosiveness of the flame retardant resin composition can be suppressed.
  • the amount is 10 parts by mass or less, the extrusion processability and the injection molding stability are improved, and the reflow resistance after water absorption is improved. It is preferable because improvement in furnace properties, flame retardancy, improvement in molding processability, and improvement in mechanical properties can be achieved.
  • the number average particle diameter of the basic compound is not particularly limited, but is preferably in the range of 50 nm to 100 ⁇ m, more preferably 100 nm to 25 ⁇ m, still more preferably 100 nm to 10 ⁇ m, and still more preferably 100 nm to 5000 nm.
  • B From the viewpoint of reactivity with corrosive components that are considered to be derived from phosphinic acid salts, it is preferably finely dispersed. However, when a basic compound having a number average particle size of 100 nm to 25 ⁇ m is used, flame retardancy is used. The improvement of the reflow furnace resistance after water absorption of the resin composition and the effect of inhibiting corrosion are also exhibited more remarkably.
  • the number average particle size of the basic compound is determined by taking a photograph with a scanning electron microscope and measuring the particle size.
  • the number of particles to be measured is 450 to 550.
  • the particle size may be measured manually using a suitably enlarged photograph or semi-automatically using an appropriate image processing apparatus.
  • the purity of calcium hydroxide (Ca [OH] 2 ) usable in the present embodiment may be any purity as long as the characteristics of the present embodiment are not impaired.
  • slaked lime As an example of calcium hydroxide that is generally distributed, slaked lime is mentioned. Various characteristics of slaked lime are defined as industrial lime (JIS R9001: 2006) in Japanese Industrial Standards.
  • industrial lime JIS R9001: 2006
  • the preferred purity of calcium oxide in the slaked lime is that of industrial slaked lime No. 2 or higher.
  • the purity of calcium hydroxide is expressed by the content of calcium oxide in JIS R9001: 2006.
  • a preferable purity is 65% by mass or more as calcium oxide in slaked lime. More preferably, it is 70 mass% or more, More preferably, it is 72.5 mass% or more, More preferably, it is 75 mass% or more.
  • Other components contained in industrial slaked lime include CO 2 , SiO 2 , Al 2 O 3 , Fe 2 O 3 , MgO, etc.
  • the total content of MgO is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 3% by mass or less in slaked lime.
  • the particle diameter of calcium hydroxide those having substantially no residual fineness of 590 ⁇ m as defined by JIS R9001: 2006 are preferable. More preferably, the fineness residue of 149 ⁇ m is 15% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass or less.
  • the average particle size is preferably 100 ⁇ m or less, more preferably 25 ⁇ m or less, still more preferably 10 ⁇ m or less, and even more preferably 5000 nm or less. As a lower limit, if it is 50 nm or more, it can be used without a problem. However, for example, when the handleability is improved by granulation, etc., those having an average particle size of 50 nm or less can be preferably used.
  • the above characteristics may be satisfied if it is industrial slaked lime No. 2 or more, but as calcium hydroxide having purity, number average particle size and specific reactivity, called highly reactive calcium hydroxide, BET specific surface area and calcium hydroxide or 30 m 2 / g, and a BET specific surface area of 30 m 2 / g or more, an average particle size of effective following ultrafine calcium hydroxide 5000 nm.
  • the purity of calcium oxide (CaO) that can be used in the present embodiment may be any purity as long as the characteristics of the present embodiment are not impaired.
  • An example of calcium oxide that is generally distributed is quicklime.
  • Various characteristics of quick lime are defined as industrial lime (JIS R9001: 2006) in Japanese Industrial Standards.
  • the preferred purity of calcium oxide in quicklime when using industrial quicklime as calcium carbonate is the purity of industrial slaked lime No. 2 or higher.
  • a preferable purity is 80% by mass or more as calcium oxide in slaked lime. More preferably, it is 90 mass% or more, More preferably, it is 93 mass% or more, More preferably, it is 95 mass% or more.
  • Other components contained in industrial quicklime include CO 2 , SiO 2 , Al 2 O 3 , Fe 2 O 3 , MgO, etc.
  • SiO 2 , Al 2 O 3 , Fe 2 O 3 , MgO total content is preferably 10% by mass or less in quicklime, more preferably 5% by mass or less, and still more preferably 3% by mass or less.
  • the average particle diameter of calcium oxide is preferably 100 ⁇ m or less, more preferably 25 ⁇ m or less, still more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less. As a lower limit, if it is 50 nm or more, it can be used without any particular problem. In order to exhibit a high corrosion-inhibiting effect and maintain the high mechanical strength of the flame retardant resin composition, the average particle size is preferably 100 ⁇ m or less. In order not to deteriorate the handleability, the average particle diameter is preferably 50 nm or more. However, for example, when the handleability is improved by granulation, etc., those having an average particle size of 50 nm or less can be preferably used.
  • This embodiment preferably further contains an inorganic filler as the component (D) from the viewpoint of improving mechanical properties and heat resistance.
  • the inorganic filler that can be used in the present embodiment include glass fiber, potassium titanate fiber, gypsum fiber, brass fiber, stainless steel fiber, steel fiber, ceramic fiber, boron whisker fiber, mica, talc, silica, calcium carbonate, and kaolin. , Calcined kaolin, wollastonite, zonotlite, apatite, glass beads, glass flakes, titanium oxide, carbon black for coloring, and the like, and fibrous, granular, plate-like, or needle-like inorganic reinforcing materials. Two or more of these inorganic fillers may be used in combination.
  • inorganic fillers include glass fiber, carbon fiber, glass bead, talc, mica, wollastonite, and kaolin.
  • the inorganic filler may be a surface treated by a known method using a surface treating agent such as a silane coupling agent.
  • the amount of the inorganic filler used as the component (D) is preferably 65% by mass when the flame-retardant resin composition is defined as 100% by mass for the purpose of imparting mechanical strength and heat resistance. Preferably it is 55 mass%, More preferably, it is 50 mass%, More preferably, it is 45 mass%.
  • a preferable lower limit value is 5% by mass, more preferably 10% by mass, and further preferably 20% by mass, when the flame retardant resin composition is 100% by mass.
  • the upper limit of the inorganic filler is preferably set to 65% by mass in order not to further deteriorate the metal corrosion, and higher heat distortion temperature and mechanical strength. Is preferably 5% by mass as a lower limit.
  • Specified inorganic fillers act as polyamide nucleating agents.
  • examples of inorganic fillers that act as polyamide nucleating agents include mica, talc, silica, calcium carbonate, kaolin, wollastonite, apatite, glass flakes, titanium oxide and the like.
  • a preferable upper limit when adding these inorganic fillers as a core material to the present composition is 5% by mass, more preferably 3% by mass, when the flame-retardant resin composition is 100% by mass. More preferably, it is 2% by mass, and still more preferably 1% by mass.
  • a preferable lower limit value is 0.05% by mass, more preferably 0.1% by mass, and further preferably 0.5% by mass when the flame-retardant resin composition is 100% by mass. .
  • the upper limit of the inorganic filler is 5% by mass. It is preferable to set 5 mass% as a lower limit.
  • the flame retardant resin composition of the present embodiment may further contain a flame retardant other than the component (B) as long as the characteristics of the present embodiment are not impaired.
  • a flame retardant in this case, an inorganic or organic flame retardant containing substantially no bromine and chlorine is more preferable.
  • Substantially free of bromine and chlorine in the present embodiment means that the total concentration of bromine and chlorine in the flame retardant is less than 1% by mass. More preferably, it is less than 5000 ppm, More preferably, it is less than 1000 ppm. In this case, the lower limit is zero.
  • the bromine and chlorine contents in this embodiment can be measured in accordance with JPCA-ES01 (halogen-free copper-clad laminate test method) defined by the Japan Printed Circuit Industry Association (JPCA).
  • JPCA-ES01 halogen-free copper-clad laminate test method
  • JPCA Japan Printed Circuit Industry Association
  • the analysis method can be performed by flask combustion treatment ion chromatography.
  • a phosphazene compound as described in JP-A-11-181429 a flame retardant, an organic phosphate ester represented by triphenyl phosphate, hydroxylated triphenyl phosphate, bisphenol A bis (diphenyl phosphate), etc.
  • examples include silicone oils, red phosphorus and other known flame retardants.
  • R 8 and R 9 each independently represents an aliphatic group or an aromatic group having 1 to 20 carbon atoms, and n is an integer of 3 or more.
  • These compounds may be crosslinked by one or more crosslinking groups selected from the group consisting of a phenylene group, a biphenylene group, and a group represented by the following general formula (7).
  • T represents —C (CH 3 ) 2 —, —SO 2 —, —S— or —O—).
  • the phosphazene compound represented by the general formula (6) is a known compound, for example, James E.I. Mark, Harry R. Allcock, Robert West, “Inorganic Polymers”, Prentice-Hall International, Inc. , 1992, P61-140.
  • a phosphazene compound is preferable as the phosphorus-based flame retardant of the present embodiment.
  • the phosphazene compound has a higher phosphorus content in the compound than a normal phosphate ester compound, so sufficient flame retardancy can be ensured even with a small amount of addition, and it is also excellent in hydrolyzability and thermal decomposability. Since the physical property fall of a flame retardant resin composition is suppressed, it is preferable.
  • a phosphazene compound having an acid value of 0.5 or less is more preferable from the viewpoint of flame retardancy, water resistance and electrical properties.
  • a fluorine-based polymer typified by tetrafluoroethylene which is known as an anti-dripping agent, can be used as long as it is less than 2% by mass in the flame-retardant resin composition.
  • the flame retardant resin composition of the present embodiment may contain a nitrogen-containing compound as long as the characteristics of the present embodiment are not impaired.
  • Preferred compounds as nitrogen-containing compounds include adducts formed from melamine and phosphoric acid.
  • Specific examples of adducts formed from melamine and phosphoric acid include (i) a reaction product of melamine and polyphosphoric acid, and / or a reaction product of a condensate of melamine and polyphosphoric acid, (ii) Nitrogen-containing phosphoric acid represented by (NH 4 ) y H (3-y) PO 4 or (NH 4 PO 3 ) z (wherein y is 1 to 3 and z is 1 to 10,000) 1 or more types chosen from a salt, ammonium hydrogenphosphate, ammonium dihydrogenphosphate, and / or ammonium polyphosphate are mentioned.
  • Chemical formula (C 3 H 6 N 6 .HPO 3 ) n (where n represents the degree of condensation), among which (i) melamine and (ii) phosphoric acid, pyrophosphoric acid, Those obtained from a substantially equimolar reaction product of at least one of polyphosphoric acids can be preferably used. More specifically, at least one selected from dimelamine pyrophosphate, melamine polyphosphate, melem polyphosphate, melam polyphosphate, melon polyphosphate, and mixed polysalts thereof can be used. Among these, melamine polyphosphate is more preferable. There is no restriction
  • phosphoric acid constituting melamine phosphate include orthophosphoric acid, phosphorous acid, hypophosphorous acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, etc.
  • Melamine polyphosphate obtained by condensing an adduct with melamine using pyrophosphoric acid is preferable because of its high effect as a flame retardant.
  • meltamine polyphosphate may be an equimolar addition salt of melamine and polyphosphoric acid, and examples of polyphosphoric acid forming an addition salt with melamine include chain polyphosphoric acid called cyclic phosphoric acid and cyclic polymetaphosphoric acid.
  • the condensation degree n of these polyphosphoric acids is not particularly limited and is usually from 3 to 50. However, the condensation degree n of the polyphosphoric acid used here is preferably 5 or more from the viewpoint of the heat resistance of the resulting melamine addition salt of polyphosphoric acid.
  • the production method of the melamine polyphosphate addition salt is, for example, a slurry in which a mixture of melamine and polyphosphoric acid is dispersed in water, which is mixed well to form both reaction products in the form of fine particles. There is a method of filtering, washing and drying, further baking if necessary, and pulverizing the obtained solid to obtain a powder.
  • an unreacted product or a by-product may remain or be mixed as long as the effects of the present embodiment are not impaired.
  • the zinc-containing compound that can be used in the present embodiment is not particularly limited, and includes all organic zinc-containing compounds such as zinc stearate and inorganic zinc-containing compounds such as zinc oxide.
  • the zinc compound is an inorganic zinc-containing compound.
  • at least one selected from zinc oxide, zinc sulfide, zinc borate, and zinc stannate is more preferable, and ⁇ ZnO ⁇ ⁇ B 2 O 3 ⁇ ⁇ H 2 O ( ⁇ > 0, ⁇ > 0, ⁇ ⁇ 0).
  • the zinc borate represented is more preferred.
  • Zinc-containing compounds increase the flame retardancy by suppressing the generation of gas as fuel in the decomposition of the resin by blocking the heat from the flame that is the heat source during combustion as a flame retardant aid (heat insulation ability) It plays the role of forming a non-combustible layer (or carbonized layer) necessary for this.
  • These zinc-containing compounds may be treated with a surface treatment agent such as a silane coupling agent or a titanate coupling agent.
  • a preferable content of the zinc-containing compound is 0.1 to 15 parts by mass with respect to 100 parts by mass of the phosphinic acid salts. The amount is more preferably 1 to 10 parts by mass, and further preferably 2 to 7 parts by mass. From the viewpoint of enhancing the stability of the flame retardant, the zinc-containing compound is preferably within the above-described range.
  • organic stabilizers include hindered phenolic antioxidants typified by “Irganox 1098” (manufactured by Ciba Japan), and phosphorus processing typified by “Irgaphos 168” (manufactured by Ciba Japan).
  • organic stabilizers include hindered phenolic antioxidants typified by “Irganox 1098” (manufactured by Ciba Japan), and phosphorus processing typified by “Irgaphos 168” (manufactured by Ciba Japan).
  • examples thereof include a heat stabilizer, a lactone processing heat stabilizer represented by “HP-136” (manufactured by Ciba Japan), a sulfur heat resistance stabilizer, a hindered amine light stabilizer, and the like.
  • a hindered phenol antioxidant, a phosphorus processing heat stabilizer, or a combination thereof is more preferable.
  • inorganic stabilizers include metal stabilizers such as zinc oxide, zinc sulfide, and copper compounds described above.
  • a preferable blending amount of the stabilizer is 0.001 to 5 parts by mass, and more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • conductive fillers can be used for the flame retardant resin composition of the present embodiment.
  • conductive carbon black, carbon nanotube (carbon fibril), graphite, carbon fiber and the like can be mentioned. These may be used in a mixture of two or more. Among these, conductive carbon black and carbon nanotubes (carbon fibrils) are preferable.
  • the blending amount of the conductive filler is preferably in the range of 0.5 to 20% by mass when the flame retardant resin composition is 100% by mass. More preferably, it is 1 to 10% by mass, and still more preferably 1 to 5% by mass. Even more preferably, it is 1 to 3% by mass.
  • the method for adding the conductive filler is not particularly limited, but a preferable method is a method in which the conductive filler is added in the form of a conductive masterbatch obtained by melt-kneading the polyamide in advance.
  • a preferable blending amount of the conductive filler in the master batch is 5 to 30% by mass when the conductive master batch is 100% by mass.
  • conductive carbon black is used as the conductive filler, 5 to 15% by mass is more preferable, and 8 to 12% by mass is even more preferable.
  • the blending amount is preferably 10 to 30% by mass, and 15 to 25% by mass. Is more preferable.
  • a method for producing the conductive masterbatch a method of producing using a twin screw extruder is preferred.
  • a method in which a conductive filler is added to molten polyamide and further melt-kneaded is preferable.
  • additional components may be added at any stage as necessary within a range that does not impair the effects of the present embodiment.
  • additional components include other thermoplastic resins such as polyester and polyolefin, plasticizers (low molecular weight polyolefin, polyethylene glycol, fatty acid esters, etc.), antistatic agents, nucleating agents, fluidity improvers, fillers , Reinforcing agents, various peroxides, spreading agents, copper heat stabilizers, organic heat stabilizers typified by hindered phenolic antioxidants, antioxidants, UV absorbers, light stabilizers, etc. is there.
  • the specific preferable addition amount of these components is 10 mass% or less in a flame-retardant resin composition, respectively.
  • a more preferable addition amount is less than 5% by mass, and further preferably 3% by mass or less.
  • Specific processing machines for obtaining the flame retardant resin composition of the present embodiment include, for example, a single screw extruder, a twin screw extruder, a roll, a kneader, a Brabender plastograph, a Banbury mixer, and the like.
  • a twin screw extruder is preferable, and a twin screw extruder provided with an upstream supply port and one or more downstream supply ports is more preferable.
  • the production method of the present embodiment is not particularly limited as long as the effects of the present embodiment are exhibited, but preferred examples will be described below.
  • (1) A method in which a thermoplastic resin, phosphinates, and a basic compound are supplied all at once using a twin screw extruder, and further melt kneaded.
  • (2) Using a twin-screw extruder having one supply port on the upstream side and one on the downstream side, a thermoplastic resin and a basic compound are supplied from the upstream supply port, melt kneaded, and phosphinic acid from the downstream supply port A method in which salts are supplied and further melt kneaded.
  • the resin temperature is not limited as long as it does not impair the effects of this embodiment, but is preferably in the range of 200 to 360 ° C. By making it 360 degrees C or less, it becomes possible to suppress deterioration of a thermoplastic resin, and if it is 340 degrees C or less, it is still more preferable.
  • the rotation speed of the extruder during processing is preferably 150 to 800 rpm, more preferably 250 to 700 rpm.
  • the rotational speed is preferably 150 rpm or more, and in order to suppress the decomposition of the resin, it is preferably 800 rpm or less.
  • the flame retardant resin composition of the present embodiment has a total combustion time of 250 seconds or less measured by vertical flame contact according to UL94VB in 0.8 mm, 1.6 mm, and 3.2 mm thickness test pieces. It can be suitably used for various applications. More preferably, in accordance with the same measurement method, it has flame retardancy without cotton ignition by dripping, and more preferably the total combustion time is 50 seconds or less.
  • the flame-retardant resin composition of the present embodiment is excellent in heat resistance, flame retardancy, extrusion processability, and injection molding stability, and further has low corrosiveness to metals and excellent mechanical properties and molding processability. .
  • the flame-retardant resin composition of the present embodiment can be applied to a reflow apparatus used in surface mounting technology (SMT) in the field of electric / electronic components, and preferably applicable to a reflow furnace having a maximum temperature of 250 ° C. Yes, more preferably, it can be applied to a reflow furnace of 260 ° C. or higher.
  • the flame-retardant resin composition of this embodiment can be suitably used particularly for electric and electronic parts and automobile electric and electronic parts. Especially, it can be used suitably especially for surface mount technology (SMT) -compatible components.
  • SMT surface mount technology
  • As a component for surface mounting technology (SMT) it can be suitably used for heat-resistant connectors and jacks.
  • Polyphenylene ether Polyphenylene ether
  • PPE-1 Zylon (registered trademark) S201A obtained from Asahi Kasei Chemicals Corporation Reduced viscosity ⁇ sp / c: 0.51 dl / g -Polymer polyphenylene ether (PPE-2) composed of 2,6-dimethylphenol: Zylon (registered trademark) S202A obtained from Asahi Kasei Chemicals Corporation Reduced viscosity ⁇ sp / c: 0.42 dl / g Polymer composed of 2,6-dimethylphenol, polyphenylene ether (PPE-3): polyphenylene ether polymerized according to Japanese Patent Publication No.
  • Polyamide 9T Aromatic polyamide (PA9T-1) consisting of terephthalic acid, nonamethylenediamine and 2-methyl-1,8-octamethylenediamine Melting point: 308 ° C Viscosity number: 150 ml / g Terminal sealing rate: 90%, Terminal amino group concentration: 19 ⁇ mol / g It was prepared according to the production of polyamide 9T in the examples of WO 2007/058169.
  • Polyamide 9T Aromatic polyamide consisting of terephthalic acid, nonamethylenediamine and 2-methyl-1,8-octamethylenediamine (PA9T-2) Melting point: 304 ° C. Viscosity number: 210 ml / g, Terminal sealing rate: 90%, Terminal amino group concentration: 50 ⁇ mol / g It was prepared according to the production of polyamide 9T in the examples of WO 2007/058169.
  • Polyamide 6T / 66 Aromatic polyamide consisting of hexamethylenediamine, terephthalic acid and adipic acid (PA6T / 66) Melting point: 314 ° C Terminal amino group concentration: 80 ⁇ mol / g Product name: “Amodel A-4000 (manufactured by Solvay Advanced Polymers)”
  • the melting point of the obtained aromatic polyamide was increased from 40 ° C. to 50 ° C./min to 340 ° C. using a differential scanning calorimeter (trade name: DSC-7, manufactured by Perkin Elmer). And held for 2 minutes, after sufficiently melting the polyamide, the temperature was lowered to 40 ° C. at 20 ° C./minute, held for 2 minutes, and then the endothermic peak observed when the temperature was raised at a rate of 20 ° C./minute. The peak top temperature of was measured as the melting point.
  • the viscosity number of the aromatic polyamide is a value measured in 96% sulfuric acid in accordance with ISO307.
  • Terminal sealing rate (%) [( ⁇ ) / ⁇ ] ⁇ 100 (In the formula, ⁇ represents the total number of terminal groups of the molecular chain, and ⁇ represents the total number of carboxyl group terminals and amino group terminals remaining without being sealed.)
  • Polyphenylene sulfide ⁇ Polyphenylene sulfide (PPS-1): Cross-linked poly (p-phenylene sulfide) Melt viscosity: 130 Pa ⁇ s (shear rate 100 sec ⁇ 1 , 300 ° C.) Oligomer amount: 0.6% by mass ⁇ Polyphenylene sulfide (PPS-2): Semi-crosslinked poly (p-phenylene sulfide) Melt viscosity: 140 Pa ⁇ s (shear rate 100 sec ⁇ 1 , 300 ° C.) Oligomer amount: 0.5% by mass ⁇ Polyphenylene sulfide (PPS-3): Linear type poly (p-phenylene sulfide) Melt viscosity: 110 Pa ⁇ s (shear rate 100 sec ⁇ 1 , 300 ° C.) Oligomer amount: 0.3% by mass
  • Number average particle size 1.3 ⁇ m
  • V-0 Total combustion time of 50 seconds or less, maximum combustion time per bottle of 10 seconds or less, no flaming dripping
  • V-1 Total combustion time of 250 seconds or less, Maximum combustion time per bottle of 30 seconds or less
  • flame No dripping V-2 Total burning time of 250 seconds or less, maximum burning time of 30 seconds or less per one, flaming dripping
  • Non-standard those not corresponding to the above three items and the clamp holding the test piece burned up
  • the total burning time (seconds) is the total burning time for the five test specimens, each of which is in contact with the flame twice, for a total of 10 flames, and until the flame extinguishes. (Second) represents the longest time to extinction.
  • a carbon steel test piece was taken out from the melted and solidified pellet, and the resin adhering to the carbon steel test piece was dissolved and removed using HFIP (hexafluoroisopropanol) or hot toluene as appropriate.
  • HFIP hexafluoroisopropanol
  • the resin is heated and decomposed in a heating furnace at 700 ° C. for 60 minutes to thermally decompose the resin, and after cooling, ultrasonic cleaning is performed in distilled water. Removed.
  • the weight increase by oxidation of the carbon steel specimen by thermal decomposition was heated using the untested carbon steel specimen under the same conditions as a reference.
  • the carbon steel test piece was dried, weighed to the nearest 0.01 mg, and divided in advance by the weight of the carbon steel test piece before the corrosion test, and the weight loss rate before and after the test was determined in mass ppm.
  • Reflow test A reflow furnace set to be heated for 10 seconds at 23 ° C and 50% relative humidity for 168 hours after making the same specimen as molded in the combustion test and then heated for 10 seconds at each temperature condition. Through the observation, changes in the test piece in a reflow environment were observed, and the maximum temperature at which no blistering occurred on the test piece surface was measured. In addition, what cannot clear the heating conditions of 250 degreeC is difficult to respond
  • VTM-0 Total combustion time of 50 seconds or less, maximum combustion time per bottle of 10 seconds or less, no flaming dripping
  • VTM-1 Total combustion time of 250 seconds or less, Maximum combustion time per bottle of 30 seconds or less
  • flame No dripping VTM-2 Total burning time of 250 seconds or less, maximum burning time of 30 seconds or less per one
  • flaming dripping Non-standard burned up to those that do not fall under the above three items, and the clamp holding the test piece Things.
  • the pellets were dried in a dehumidifying dryer set at 80 ° C., and then put in an aluminum-coated moisture-proof bag.
  • the moisture content of the pellets at this time was approximately 250 to 500 ppm.
  • the screw speed at this time was 250 rpm, and the discharge rate was 15 kg / h.
  • openings were provided in the block immediately before the cylinder block having the central supply port and the cylinder block immediately before the die, and the remaining volatile components and oligomers were removed by vacuum suction.
  • the degree of vacuum (absolute pressure) at this time was 60 Torr.
  • Tables 1 to 9 show the results together with the compositions.
  • Examples 1 to 5 were excellent in flame retardancy, sufficiently low in corrosivity, and excellent in stability during injection molding.
  • Comparative Example 1 there was no problem with flame retardancy and low-temperature reflow resistance, but the corrosivity was large.
  • Comparative Examples 2 and 3 there was no problem in flame retardancy and corrosivity, but extrusion processability and injection molding stability were inferior.
  • Comparative Example 4 in addition to inferior flame retardancy, the strand breakage occurred frequently during the extrusion process as the collection of pellets for evaluation was more difficult, and the injection molding stability was very poor.
  • Examples 6 to 10 were excellent in flame retardancy, sufficiently corrosive, and excellent in stability during injection molding. Comparative Examples 5 and 6 were very corrosive. Comparative Examples 7 to 9 had no problem with corrosivity, but were inferior in extrusion processability and injection molding stability. Moreover, the heat resistance in the reflow test after water absorption significantly decreased.
  • Examples 11 to 19 were excellent in flame retardancy, sufficiently low in corrosivity, and excellent in stability during injection molding. Comparative Examples 10 to 12 were very corrosive. Comparative Examples 13 to 14 have no problem with corrosivity, but lack extrudability and injection molding stability. Moreover, the heat resistance in the reflow test after water absorption is remarkably lowered.
  • Examples 20 to 36 were excellent in flame retardancy, sufficiently low in corrosiveness, high in heat resistance in a reflow test, and excellent in stability during injection molding.
  • Examples 27 and 28 it was shown that when the number average particle diameter of the basic compound is less than 25 ⁇ m, the corrosivity is remarkably suppressed.
  • Comparative Examples 15 to 18, these Examples showed that corrosion inhibition, reflow resistance, flame retardancy, extrusion processability, and molding stability were all excellent only within a specific blending amount range.
  • Example 30 A comparison between Examples 37 to 41 and Example 30 showed that there was an excellent effect even if the type of the compatibilizer, the amount of the compatibilizer, or the modified polyphenylene ether was used. Moreover, it was shown that it has an excellent effect regardless of the polyamide species. Comparison between Examples 40 and 41 and Examples 24 and 30 showed that each characteristic was remarkably improved when polyphenylene ether having a specific viscosity was used.
  • Comparing Examples 47 to 49 and Comparative Example 21 in Examples 47 to 49, the strands during extrusion were stable, and all of the flame retardancy test, surface gloss test, and corrosion test were superior to Comparative Example 21. It was. In Comparative Example 21, foaming of the strands was observed during extrusion.
  • the pellets obtained in Examples 47 and 48 and Comparative Examples 26 and 27 were formed into a sheet, and the evaluation of flame resistance and the evaluation of flame retardancy were performed by sheet forming. Examples 50 and 51 were excellent in extrusion processability, and no occurrence of scouring was observed during sheet preparation. In addition, the flame retardancy (UL-94 VTM) of the sheet is also excellent.
  • the flame retardant resin composition of the present invention is excellent in flame retardancy, heat resistance, extrusion processability, and injection molding stability, remarkably reduced in corrosiveness to metals, excellent in high temperature reflow oven resistance, and mechanical. Since it is excellent in physical properties, it can be suitably used particularly for electric and electronic parts and automobile parts. Among these, it can be more suitably used particularly as an electric / electronic component that can cope with the surface mounting technology (SMT).
  • SMT surface mounting technology

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】耐熱性、難燃性、押出加工性、及び射出成型安定性に優れ、かつ金属への腐食性が低減された難燃性樹脂組成物、並びにそれを用いた耐熱コネクターを提供すること。 【解決手段】(A)熱可塑性樹脂と、(B)特定の構造を有するホスフィン酸塩類と、(C)塩基性化合物と、を含む難燃性樹脂組成物であって、(B)成分100質量部に対して、(C)成分を0.01~10質量%含む、難燃性樹脂組成物とすること。

Description

難燃性樹脂組成物
 本発明は、難燃性樹脂組成物及びそれを用いた耐熱コネクターに関する。
 熱可塑性樹脂の難燃化は、環境意識への高まりにより、従来のハロゲン系化合物及びアンチモン系化合物から、非ハロゲン難燃への代替要求があり、それらの技術開発が活発に行われてきている。
 非ハロゲン難燃化のための難燃剤としては、リン酸エステル系難燃剤やホスフィン酸金属塩系難燃剤、金属水酸化物系難燃剤等が実用化されている。これらの中でもホスフィン酸金属塩系難燃剤が最近注目されており、特許文献1、特許文献2及び特許文献3には、熱可塑性樹脂にホスフィン酸金属塩類を用いる技術が開示されている。
 更に、上記技術の難燃性を改良する技術として、特許文献4及び特許文献5には、メラミン等に代表される窒素元素を含有する難燃剤の相乗化剤(以下、「窒素含有相乗剤」という)やメラミンポリホスファートとホスフィン酸金属塩を組合せる技術(特許文献4及び特許文献5)が開示されている。
 加工時のポリマー分解や変色を抑制する技術として、特許文献6には、ホスフィン酸金属塩と窒素含有相乗剤の難燃剤を用い、ホスフィン酸金属塩の難燃剤に対して20~50質量%の比較的高濃度で塩基性又は両性の金属化合物を用いる技術が開示されている。
 一方、近年、熱可塑性樹脂への高耐熱性、低吸水性、高機械物性、高加工性への要求が高まっている。
ドイツ特許出願公開第2,252,258号明細書 ドイツ特許出願公開第2,447,727号明細書 欧州特許出願公開第0,699,708号明細書 ドイツ特許出願公開第19614424号明細書 ドイツ特許出願公開第19933901号明細書 特表2005-537372号公報
 ところが、上記した高耐熱性のポリマーはその加工時の温度が320℃を超えることが多く、上記特許文献6のように窒素含有相乗剤を併用する場合、ホスフィン酸金属塩の難燃剤を単独で使用する場合に比べて、高い腐食性を持っている。一方、窒素含有相乗剤を用いない場合、塩基性又は両性の金属化合物を、ホスフィン酸金属塩の難燃剤に対して20~50質量%という高濃度条件で使用すると、難燃性の維持が困難となる。
 本発明は、上記事情を鑑みなされたものであり、耐熱性、難燃性、押出加工性、射出成型安定性に優れ、更に、金属への腐食性が低減された難燃性樹脂組成物及びそれを用いた耐熱コネクターを提供することを目的とする。
 本発明者らは、上記した課題を解決するために検討を重ねた結果、熱可塑性樹脂と、特定のホスフィン酸塩類の組み合わせにおいて、特定の数平均粒子径の塩基性化合物をホスフィン酸塩類に対して特定量配合することにより、上記した課題を解決できることを見出し、本発明を完成した。
 すなわち、本発明は以下の通りである。
1.
 (A)熱可塑性樹脂と、
 (B)下記一般式(I)で表されるホスフィン酸塩、下記一般式(II)で表されるジホスフィン酸塩及びこれらの縮合物の中から選ばれる少なくとも1種のホスフィン酸塩類と、
 (C)塩基性化合物と、を含む難燃性樹脂組成物であって、
 前記(B)成分100質量部に対し、前記(C)成分を0.01~10質量部含む、難燃性樹脂組成物。
Figure JPOXMLDOC01-appb-C000002

(式中、R及びRは、同一又は異なっていてもよく、直鎖状若しくは分岐状のC~C-アルキル及び/又はアリール若しくはフェニルであり、Rは、直鎖状若しくは分岐状のC~C10-アルキレン、C~C10-アリーレン、C~C10-アルキルアリーレン又はC~C10-アリールアルキレンであり、Mはカルシウム(イオン)、マグネシウム(イオン)、アルミニウム(イオン)、亜鉛(イオン)、ビスマス(イオン)、マンガン(イオン)、ナトリウム(イオン)、カリウム(イオン)及びプロトン化された窒素塩基から選ばれる1種以上であり、mは、2又は3であり、nは、1~3の整数であり、xは、1又は2である。)
2.
 前記(C)塩基性化合物が、数平均粒子径100nm~25μmであり、周期律表第IIA族元素及びアルミニウムから選ばれる1種以上の元素の水酸化物、酸化物から選ばれる1種以上である、上記1.に記載の難燃性樹脂組成物。
3.
 前記(C)塩基性化合物が、カルシウム、マグネシウム、アルミニウムから選ばれる1種以上の水酸化物、酸化物から選ばれる1種以上である、上記1.に記載の難燃性樹脂組成物。
4.
 前記(C)塩基性化合物が、数平均粒子径100nm~25μmである水酸化カルシウム、及び/又は酸化カルシウムである、上記1.に記載の難燃性樹脂組成物。
5.
 前記(C)塩基性化合物が、数平均粒子径100nm~10μmの水酸化カルシウムである、上記1.に記載の難燃性樹脂組成物。
6.
 前記水酸化カルシウムが、数平均粒子径100nm~5000nmの水酸化カルシウムである、上記5.に記載の難燃性樹脂組成物。
7.
 前記(B)成分100質量部に対して、前記(C)成分0.2~5質量部を含有する、上記1.に記載の難燃性樹脂組成物。
8.
 前記(A)熱可塑性樹脂が、ポリフェニレンエーテル、スチレン系樹脂、オレフィン系樹脂、ポリエステル(ポリブチレンテレフタレート、ポリプロピレンテレフタレート、液晶ポリエステル類)、ポリアミド、ポリアリーレンスルフィド、ポリアリレート、ポリエーテルサルフォン、ポリエーテルイミド、ポリサルフォン、ポリアリールケトン、及びこれらの混合物から選ばれる1種以上である、上記1.に記載の難燃性樹脂組成物。
9.
 前記(A)熱可塑性樹脂が、280℃以上の融点を有するポリアミドである、上記8.に記載の難燃性樹脂組成物。
10.
 前記(A)熱可塑性樹脂が、繰り返し構造単位中に芳香環を有するポリアミドである、上記8.に記載の難燃性樹脂組成物。
11.
 前記ポリフェニレンエーテルが、2,6-ジメチルフェノールからなる単独重合体、又は2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとからなる共重合体である、上記8.に記載の難燃性樹脂組成物。
12.
 前記ポリフェニレンエーテルが、2,6-ジメチルフェノールと、2,3,6-トリメチルフェノールとからなる共重合体であり、該ポリフェニレンエーテル中の2,3,6-トリメチルフェノールの量が、10~30質量%である、上記8.に記載の難燃性樹脂組成物。
13.
 前記ポリフェニレンエーテルが、還元粘度(0.5g/dlクロロホルム溶液、30℃)が、0.25dl/g~0.35dl/gの範囲内であるポリフェニレンエーテルである、上記8.に記載の難燃性樹脂組成物。
14.
 前記ポリアリーレンスルフィドが、含有塩素濃度が1500ppm以下のポリフェニレンスルフィドである、上記8.に記載の難燃性樹脂組成物。
15.
 前記(A)熱可塑性樹脂が、ポリフェニレンエーテルと、ポリフェニレンエーテル以外の熱可塑性樹脂と、を含む、上記8.に記載の難燃性樹脂組成物。
16.
 前記ポリフェニレンエーテル以外の熱可塑性樹脂が、ポリアミドである、上記15.に記載の難燃性樹脂組成物。
17.
 前記ポリアミドの融点が280℃以上である、上記16.に記載の難燃性樹脂組成物。
18.
 (D)無機補強材を更に含む、上記1.に記載の難燃性樹脂組成物。
19.
 上記1.~18.のいずれか一項に記載の難燃性樹脂組成物よりなる、耐熱コネクター。
 本発明によれば、耐熱性、難燃性、押出加工性、射出成型安定性に優れ、更に、金属への腐食性が低い難燃性樹脂組成物及びそれを用いた耐熱コネクターを提供できる。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜変形して実施できる。
 本実施形態の(A)熱可塑性樹脂は、特に限定されず、公知のものを用いることができる。その中でも好ましい樹脂としては、ポリフェニレンエーテル、スチレン系樹脂、オレフィン系樹脂、ポリエステル(ポリブチレンテレフタレート、ポリプロピレンテレフタレート、液晶ポリエステル類)、ポリアミド、ポリアリーレンスルフィド、ポリアリレート、ポリエーテルサルフォン、ポリエーテルイミド、ポリサルフォン、ポリアリールケトン及びこれらの混合物から選ばれる少なくとも1種が挙げられる。
 これらの中でも、より好ましくは、ポリフェニレンエーテル、ポリエステル、ポリアミドのそれぞれ単独使用;(i)ポリフェニレンエーテル、ポリエステル、ポリアミドの中から選ばれる1種以上の樹脂と、(ii)ホモポリスチレン、ゴム変性ポリスチレン、スチレン系エラストマー、アクリロニトリル-スチレン共重合体、N-フェニルマレイミドとスチレンの共重合体、ポリプロピレン、オレフィン系エラストマー、液晶ポリエステル、ポリアミド、ポリフェニレンスルフィド、ポリエーテルイミド、ポリエーテルサルフォン、ポリサルフォン、ポリアリールケトンから選ばれる1種以上の樹脂と、の混合物である。
 本実施形態で使用可能なポリフェニレンエーテルとは、下記式(1)で表される繰り返し構造単位を有する、単独重合体及び/又は共重合体である。
Figure JPOXMLDOC01-appb-C000003
 (式中、Oは酸素原子を表し、R~Rは、それぞれ独立に、水素、ハロゲン、第一級若しくは第二級のC1~C7アルキル基、フェニル基、C1~C7ハロアルキル基、C1~C7アミノアルキル基、C1~C7ヒドロカルビロキシ基、又はハロヒドロカルビロキシ基(ただし、少なくとも2個の炭素原子がハロゲン原子と酸素原子を隔てている)を表す。)
 本実施形態で用いるポリフェニレンエーテルの製造方法は、特に限定されず、公知の方法を用いることができる。例えば、米国特許第3306874号明細書、米国特許第3306875号明細書、米国特許第3257357号明細書及び米国特許第3257358号明細書、特開昭50-51197号公報、特公昭52-17880号公報及び特公昭63-152628号公報等に記載された製造方法等が挙げられる。
 本実施形態のポリフェニレンエーテルの具体例としては、例えば、ポリ(2,6-ジメチルフェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)等の単独重合体や、2,6-ジメチルフェノールと他のフェノール類との共重合体(例えば、2,3,6-トリメチルフェノールとの共重合体や2-メチル-6-ブチルフェノールとの共重合体)等のポリフェニレンエーテル共重合体が挙げられる。これらの中でも好ましくは、工業的生産性と耐熱性能の観点から、ポリ(2,6-ジメチルフェニレンエーテル)、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体、又はこれらの混合物である。
 また、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体を使用する場合の各単量体ユニットの比率は、耐熱性と加工性の観点から、ポリフェニレンエーテル共重合体全量を100質量%としたときに2,3,6-トリメチルフェノールを10~30質量%含むことが好ましい。より好ましくは15~25質量%であり、更に好ましくは20~25質量%である。
 本実施形態において、ポリフェニレンエーテルの還元粘度(ηsp/c:dl/g、0.5g/dl濃度のクロロホルム溶液、30℃測定)は、0.20~0.55dl/gの範囲であることが好ましい。より好ましい上限値は0.53dl/gであり、更に好ましくは0.45dl/gであり、より更に好ましくは0.35dl/gである。加工性の観点より、還元粘度の上限値は0.55dl/gであることが好ましい。他の樹脂とアロイ化した際に機械物性の低下を発しない観点から、還元粘度の下限値は0.25dl/gが好ましい。
 本実施形態においては、還元粘度が異なる2種以上のポリフェニレンエーテルをブレンドしたものも使用できる。例えば、還元粘度0.40dl/g程度のポリフェニレンエーテルと、還元粘度0.50dl/g程度のポリフェニレンエーテルの混合物や、還元粘度0.08~0.12dl/g程度の低分子量ポリフェニレンエーテルと還元粘度0.50dl/g程度のポリフェニレンエーテルの混合物等が挙げられるが、これらに限定されない。この際においても、ポリフェニレンエーテルの混合物の還元粘度は、0.20~0.55dl/gの範囲であることが好ましい。
 上記ポリフェニレンエーテルは変性剤で変性されたものであってもよく、変性剤としては、例えば、無水マレイン酸、N-フェニルマレイミド、りんご酸、クエン酸、フマル酸等の飽和又は不飽和ジカルボン酸及びそれらの誘導体、スチレン、アクリル酸エステル、メタクリル酸エステル等のビニル化合物等が挙げられる。この場合、予め変性されていてもよく、本実施形態の難燃性樹脂組成物を溶融押し出し製造する際に変性剤を添加して同時に変性させることもできる。
 ポリフェニレンエーテルに添加することが可能な他の公知の添加剤等も、ポリフェニレンエーテル100質量部に対して10質量部未満の量で添加してもよい。
 本実施形態で使用可能なスチレン系樹脂としては、ホモポリスチレン、ゴム変性ポリスチレン(一般にハイインパクトポリスチレンと称されているもの)、スチレン系エラストマー(スチレン-ブタジエンブロック共重合体及び/又はその水素添加物、スチレン-イソプレンブロック共重合体及び又はその水素添加物)、スチレンとラジカル共重合可能なビニル単量体との共重合体等が挙げられる。
 スチレンとラジカル共重合可能なビニル単量体の具体例としては、アクリロニトリルやメタクリロニトリル等のシアン化ビニル化合物、アクリル酸、アクリル酸ブチル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチルヘキシル等のビニルカルボン酸及びそのエステル、無水マレイン酸、N-フェニルマレイミド等の不飽和ジカルボン酸無水物及びその誘導体、ブタジエン、イソプレン等のジエン化合物等が挙げられ、2種以上を組み合わせて共重合することも可能である。
 上述した中で好ましいスチレン系樹脂の例としては、ホモポリスチレン、ゴム変性ポリスチレン、スチレン系エラストマー、アクリロニトリル-スチレン共重合体、N-フェニルマレイミドとスチレンの共重合体及び、これらの混合物が挙げられる。
 ホモポリスチレンやゴム変性ポリスチレンは、使用する際の好ましい還元粘度(30℃トルエン溶液中で0.5g/100mlの濃度で測定)が0.5~2.0dl/gの範囲であることが好ましい。より好ましい下限値は0.7dl/gであり、更に好ましくは0.8dl/gである。また、より好ましい上限値は1.5dl/gであり、更に好ましくは1.2dl/gである。
 スチレン系エラストマーとは、少なくとも1個の芳香族ビニル化合物を主体とする重合体ブロックと、(i)共役ジエン化合物を主体とする重合体ブロック、(ii)共役ジエン化合物と芳香族ビニル化合物とからなるランダム共重合体ブロックから選ばれる少なくとも1つの重合体ブロックを含むブロック共重合体である。
 芳香族ビニル化合物を主体とする重合体ブロックにおける「主体とする」とは、当該ブロックにおいて、少なくとも90質量%以上が芳香族ビニル化合物であるブロックを指す。また、共役ジエン化合物を主体とする重合体ブロックにおける「主体とする」に関しても同様で、少なくとも97質量%以上が共役ジエン化合物であるブロックを指す。さらに、共役ジエン化合物と芳香族ビニル化合物とからなるランダム共重合体ブロックにおいては、3~90質量%の芳香族ビニル化合物と97~10質量%の共役ジエン化合物ランダム共重合したブロックを指す。そして、ブロック共重合体中には、ランダム共重合部分のビニル芳香族化合物は均一に分布していても、又はテーパー状に分布していてもよい。また該共重合体ブロックには、ビニル芳香族化合物が均一に分布している部分及び/又はテーパー状に分布している部分がそれぞれ複数個共存していてもよい。
 さらに該共重合体ブロックには、ビニル芳香族化合物含有量が異なる部分が複数個共存していてもよい。この場合、例えば芳香族ビニル化合物ブロック中にランダムに少量の共役ジエン化合物若しくは他の化合物が結合されているブロックの場合であっても、該ブロックの90質量%が芳香族ビニル化合物より形成されていれば、芳香族ビニル化合物を主体とするブロック共重合体とみなす。また、共役ジエン化合物の場合においては97質量%が共役ジエン化合物で形成されていれば共役ジエンを主体とするブロック共重合体とみなす。
 このビニル芳香族化合物を主体とする重合体ブロックAと、(i)共役ジエン化合物を主体とする重合体ブロックBとからなるブロック共重合体としては、下記一般式(2)で表されるいずれかの構造を有するブロック共重合体が例示される。
(A-B)
A-(B-A)-B、
B-(A-B)(x+1)
[(A-B)(y+1)-Z、       ・・・(2)
[(A-B)-A](y+1)-Z、
[(B-A)(y+1)-Z、
[(B-A)-B](y+1)-Z
 (式中、Zはカップリング剤の残基又は多官能有機リチウム化合物の開始剤の残基を表す。x、y及びzはそれぞれ1以上の整数、一般的には1~5である。)
 これらの中でも、該ブロック共重合体の好ましい結合形式は、A-B型、A-B-A型、A-B-A-B型の中から選ばれる結合形式を有するブロック共重合体が好ましい。A-B-A型、A-B-A-B型がより好ましく、A-B-A型が更に好ましい。これらは混合物であってもよい。
 さらに、ビニル芳香族化合物を主体とする重合体ブロックAと、(i)共役ジエン化合物を主体とする重合体ブロックB、(ii)ビニル芳香族化合物と共役ジエン化合物がランダムに共重合してなるランダム共重合体ブロックCから選ばれる少なくとも1種の以上の重合体ブロックが挙げられるが、このような重合体ブロックとして、下記一般式(3)で表されるいずれかの構造を有するブロック共重合体が例示される。
A-B-(C-A)
A-B-(A-C)
A-B-(C-A)-C、
[(A-C-B)-W、
B-(C-A)
B-(A-C)
B-(A-C-A)
B-(C-A-C)、        ・・・(3)
[A-(C-B)-W、
[(A-C)-B]-W、
[(A-C-A)-B]-W、
[(C-A-C)-B]-W、
[(B-C-A)-W、
[B-(C-A)-W、
[B-(A-C-A)-W、
[B-(C-A-C)-W
(A-C)(x+1)
 A-(C-A)
 C-(A-C)(x+1)
 [(A-C)-W、
 [(C-A)-C]y-W、
 [(A-C)-A]-W、
 [(C-A)(x+1)-W
 (式中、x及びyの定義は式(2)と同じである。Wは、それぞれ独立してカップリング剤の残基又は多官能開始剤の残基を表す。)
 カップリング剤としては、後述の2官能以上のカップリング剤を用いることができる。多官能開始剤としては、ジイソプロペニルベンゼンとsec-ブチルリチウムとの反応生成物、ジビニルベンゼンとsec-ブチルリチウムと少量の1,3-ブタジエンとの反応生成物などを用いることができる。
 上記各ブロックの境界は必ずしも明瞭に区別されていなくてもよい。
 ビニル芳香族化合物-共役ジエン化合物ブロック共重合体に用いるビニル芳香族化合物としては、特に限定されず、例えば、スチレン、α-メチルスチレン、ビニルトルエン、p-tert-ブチルスチレン、ジフェニルエチレン等のうちから1種又は2種以上が選択できる。それらの中でも、ポリフェニレンエーテルと混合して使用する場合等には、ポリフェニレンエーテルとの相溶性の観点、工業的生産性の観点から、スチレンが好ましい。
 少なくとも1個の芳香族ビニル化合物を主体とする重合体ブロックと、(i)共役ジエン化合物を主体とする重合体ブロック、(ii)共役ジエン化合物と芳香族ビニル化合物とからなるランダム共重合体ブロックから選ばれる少なくとも1つの重合体ブロックを含むブロック共重合体におけるビニル芳香族化合物の含有量は、特に限定されず、1~70質量%の中から好適に選ぶことが可能である。ポリフェニレンエーテルと混合して使用する場合、耐熱性の観点から、より好ましくは5~55質量%、更に好ましくは10~55質量%である。
 かかるブロック共重合体における共役ジエン化合物としては、特に限定されず、例えば、ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等のうちから1種又は2種以上が挙げられる。それらの中でも、耐衝撃性の観点から、ブタジエン、イソプレン及びこれらの組み合わせが好ましい。
 本実施形態で使用することのできるブロック共重合体は、水素添加されたブロック共重合体であることがより好ましい。水素添加されたブロック共重合体とは、上記の芳香族ビニル化合物と共役ジエン化合物のブロック共重合体を水素添加処理することにより、共役ジエン化合物を主体とする重合体ブロックの脂肪族ニ重結合の量(水素添加率)を、0を超えて100%以下の範囲としたものをいう。該水素添加されたブロック共重合体の好ましい水素添加率は50%以上であり、より好ましくは80%以上、更に好ましくは98%以上である。
 水素添加率の測定は、核磁気共鳴装置によって測定できる。
 具体的な水素添加方法の例としては、炭化水素溶媒中で、水素添加触媒及び水素ガスを添加し、水素添加反応を行うことにより、重合体中に存在する共役ジエン化合物に由来するオレフィン性不飽和結合を低減することにより、水素添加ブロック共重合体を得ることができる。水素添加反応は、ブロック共重合体に存在する共役ジエン化合物に由来するオレフィン性不飽和結合を低減化できるものであれば、その製法に制限はなく、いかなる製造方法でもよい。
 上記ブロック共重合体と、官能基(例えば、カルボン酸基、酸無水物基、エステル基、水酸基等)を有する不飽和化合物と反応させて得られる官能基を有するビニル芳香族化合物-共役ジエン化合物ブロック共重合体、あるいはその水素添加物である官能基を有する水添ブロック共重合体等も使用することが可能である。
 本実施形態においては、ブロック共重合体は水素添加されていないブロック共重合体と水素添加されたブロック共重合体の混合物も使用可能である。
 本実施形態においては、国際公開第02/094936号公報に記載されているような、全部又は一部が変性されたブロック共重合体や、オイルがあらかじめ混合されたブロック共重合体も好適に使用することができる。
 アクリロニトリル-スチレン共重合体として好適な共重合体を例示すると、アクリロニトリル-スチレン共重合体を100質量%としたとき、アクリロニトリル含有量が3~30質量%である共重合体が挙げられる。アクリロニトリル含有量の下限値は、5質量%であることがより好ましく、7質量%以上であることが更に好ましい。また、アクリルニトリル含有量の上限値は、20質量%であることが好ましく、15質量%であることが更に好ましく、10質量%であることがより更に好ましい。本実施形態で、アクリロニトリル-スチレン共重合体の合計量100質量部に対して、ブタジエンを30質量部までであれば含んでもよい。
 N-フェニルマレイミドとスチレンの共重合体として好適な共重合体を例示すると、N-フェニルマレイミドとスチレンの共重合体を100質量%としたとき、N-フェニルマレイミド含有量が15~70質量%である共重合体が挙げられる。N-フェニルマレイミド量の下限値としては20質量%がより好ましく、25質量%が更に好ましい。また、N-フェニルマレイミド含有量の上限値は、65質量%がより好ましく、60質量%が更に好ましい。本実施形態では、N-フェニルマレイミドとスチレンの共重合体の合計量100質量部に対して、アクリロニトリル成分を、30質量部までであれば、含んでもよい。N-フェニルマレイミドとスチレンの共重合体のガラス転移温度は、140~220℃の範囲内であることが好ましい。ガラス転移温度は、DSC測定装置で、20℃/分の昇温速度で測定した際に観察できるガラス転移温度である。
 本実施形態で使用可能なオレフィン系樹脂について説明する。オレフィン系樹脂としては、特に限定されず、ポリエチレン、ポリプロピレン、オレフィン系エラストマー(エチレンとα-オレフィンの共重合体)、エチレンとアクリレート類との共重合体等が挙げられるが、これらの中で好ましいのは、ポリプロピレン(以下、「PP」と略記する。)及びオレフィン系エラストマーである。
 本実施形態で使用可能なPPは、例えば、(i)結晶性プロピレンホモポリマー、(ii)重合の第一工程で得られる結晶性プロピレンホモポリマー部分と、重合の第二工程以降でプロピレン、エチレン及び/又は少なくとも1つの他のα-オレフィン(例えば、ブテン-1、ヘキセン-1等)を共重合して得られるプロピレン-エチレンランダム共重合体部分と、を有する結晶性プロピレン-エチレンブロック共重合体、等が挙げられる。さらにこれら結晶性プロピレンホモポリマーと結晶性プロピレン-エチレンブロック共重合体の混合物であってもかまわない。
 これらのPPは、通常、三塩化チタン触媒又は塩化マグネシウム等の担体に担持したハロゲン化チタン触媒等とアルキルアルミニウム化合物の存在下に、重合温度0~100℃の範囲で、重合圧力3~100気圧の範囲で重合して得られる。この際、重合体の分子量を調整するために水素等の連鎖移動剤を添加することも可能である。重合方法としては、バッチ式、連続式いずれの方法でもよい。また、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン等の溶媒下での溶液重合、スラリー重合等の方法も選択でき、さらには無溶媒下モノマー中での塊状重合、ガス状モノマー中での気相重合方法等を用いることができる。
 上記した重合触媒の他に得られるPPのアイソタクティシティ及び重合活性を高めるため、第三成分として電子供与性化合物を内部ドナー成分又は外部ドナー成分として用いることができる。これらの電子供与性化合物としては公知のものが使用でき、例えば、ε-カプロラクトン、メタクリル酸メチル、安息香酸エチル、トルイル酸メチル等のエステル化合物、亜リン酸トリフェニル、亜リン酸トリブチル等の亜リン酸エステル、ヘキサメチルホスホリックトリアミド等のリン酸誘導体等や、アルコキシエステル化合物、芳香族モノカルボン酸エステル及び/又は芳香族アルキルアルコキシシラン、脂肪族炭化水素アルコキシシラン、各種エーテル化合物、各種アルコール類及び/又は各種フェノール類等が挙げられる。
 PPにおけるプロピレン重合体部分の密度は、通常、0.900g/cm以上であり、好ましくは0.90~0.93g/cmであり、より好ましくは0.90~0.92g/cmである。
 プロピレン重合体部分の密度の測定方法は、JIS K-7112水中置換法によって、容易に求めることができる。またPPがプロピレンを主成分としたα-オレフィンとの共重合体である場合は、かかる共重合体をヘキサン等の溶媒を用いて共重合成分を抽出し、残ったプロピレン重合体部分の密度を上記のJIS K-7112水中置換法によって、容易に求めることができる。
 本実施形態においては、公知となっている結晶核剤を添加し、PPの密度を高くすることが好ましい。結晶核剤としてはPPの結晶性を向上させるものなら特に限定されず、芳香族カルボン酸の金属塩、ソルビトール系誘導体、有機リン酸塩、芳香族アミド化合物等の有機系核剤や、タルク等の無機系核剤を挙げることができる。しかしながら、これらに限定されるものではない。
 本実施形態で用いるPPは、そのメルトフローレート(MFR;JIS K-6758に準拠し、温度230℃、荷重2.16kgfで測定。)が10g/10分以上が好ましく、好ましくは20~50g/10分であり、より好ましくは25~40g/10分、更に好ましくは30~40g/10分である。
 エチレン/α-オレフィン共重合体について説明する。本実施形態で使用可能なエチレン/α-オレフィン共重合体は、エチレンと炭素原子数3~20のα-オレフィンの少なくとも1種以上との共重合体である。上記の炭素数3~20のα-オレフィンとしては、具体的にはプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセン及びこれらの組み合わせが挙げられる。これらの中でも、炭素数3~12のα-オレフィンを用いた共重合体が好ましい。このエチレン/α-オレフィン系共重合体において、α-オレフィンの含有量が好ましくは1~30モル%、より好ましくは2~25モル%、更に好ましくは3~20モル%である。
 更に1,4-ヘキサジエン、ジシクロペンタジエン、2,5-ノルボルナジエン、5-エチリデンノルボルネン、5-エチル-2,5-ノルボルナジエン、5-(1′-プロペニル)-2-ノルボルネン等の非共役ジエンの少なくとも1種が共重合されていてもよい。
 このエチレン/α-オレフィン共重合体は上記で示した構造を有する共重合体であるが、一般に、これらエチレン/α-オレフィン共重合体をさらに官能基(例えば、カルボン酸基、酸無水物基、エステル基、水酸基等)を有する不飽和化合物と反応させて得られる、官能基を有するエチレン/α-オレフィン共重合体や、エチレンと官能基含有(例えば、エポキシ基、カルボン酸基、酸無水物基、エステル基、水酸基等)モノマーとの共重合体及びエチレン/α-オレフィン/官能基含有モノマーの共重合体等も使用できる。
 本実施形態で使用可能なポリエステル類としては、例えば、ポリブチレンテレフタレート、ポリプロピレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリプロピレンナフタレート、及び液晶ポリエステル類等が挙げられる。これらは混合物であってもよい。これらの中でも、液晶ポリエステルが好ましい。
 本実施形態で好ましく使用可能な液晶ポリエステルとは、サーモトロピック液晶ポリマーと呼ばれるポリエステルであり、公知のものを使用できる。例えば、p-ヒドロキシ安息香酸及びポリエチレンテレフタレートを主構成単位とするサーモトロピック液晶ポリエステル、p-ヒドロキシ安息香酸及び2-ヒドロキシ-6-ナフトエ酸を主構成単位とするサーモトロピック液晶ポリエステル、p-ヒドロキシ安息香酸及び4,4′-ジヒドロキシビフェニル並びにテレフタル酸を主構成単位とするサーモトロピック液晶ポリエステル等が挙げられ、特に制限はない。本実施形態で使用される液晶ポリエステルとしては、下記構造単位(a)、(b)、及び必要に応じて(c)及び/又は(d)を含むものが好ましく用いられる。
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006

 
Figure JPOXMLDOC01-appb-C000007
 ここで、構造単位(a)、(b)はそれぞれ、p-ヒドロキシ安息香酸から生成したポリエステルの構造単位と、2-ヒドロキシ-6-ナフトエ酸から生成した構造単位である。構造単位(a)、(b)を使用することで、優れた耐熱性、流動性や剛性等の機械的特性のバランスに優れた本実施形態の熱可塑性樹脂組成物を得ることができる。上記構造単位(c)、(d)中のXは、下記式よりそれぞれ任意に1種又は2種以上選択することができる。
Figure JPOXMLDOC01-appb-C000008

 
 
 (式中、Yはハロゲン原子、アルキル基、又はアリール基を表し、nは1~6の整数である。)
 構造式(c)において好ましいのは、エチレングリコール、ハイドロキノン、4,4′-ジヒドロキシビフェニル、2,6-ジヒドロキシナフタレン、ビスフェノールAの構造単位であり、更に好ましいのは、エチレングリコール、4,4′-ジヒドロキシビフェニル、ハイドロキノンの構造単位であり、より好ましいのは、エチレングリコール、4,4′-ジヒドロキシビフェニルの構造単位である。
 構造式(d)において好ましいのは、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸の構造単位であり、更に好ましいのは、2,6-ナフタレンジカルボン酸、テレフタル酸の構造単位である。
 構造式(c)及び構造式(d)は、上記に挙げた構造単位を少なくとも1種あるいは2種以上を併用することができる。具体的には、2種以上併用する場合、構造式(c)においては、(1)エチレングリコールから生成した構造単位/ハイドロキノンから生成した構造単位、(2)エチレングリコールから生成した構造単位/4,4′-ジヒドロキシビフェニルから生成した構造単位、(3)ハイドロキノンから生成した構造単位/4,4′-ジヒドロキシビフェニルから生成した構造単位、等を挙げることができる。
 また、構造式(d)においては、(1)テレフタル酸の構造単位/イソフタル酸の構造単位、(2)テレフタル酸の構造単位/2,6-ナフタレンジカルボン酸の構造単位、等を挙げることができる。
 液晶ポリエステル中の構造単位(a)、(b)、(c)、(d)の使用割合は特に限定されない。ただし、構造単位(c)と(d)は基本的にほぼ等モル量となる。
 また、構造単位(c)と(d)からなる下記構造単位(e)を、液晶ポリエステル中の構造単位として使用することもできる。具体的には、(1)エチレングリコールとテレフタル酸からなる構造単位、(2)ハイドロキノンとテレフタル酸からなる構造単位、(3)4,4′-ジヒドロキシビフェニルとテレフタル酸からなる構造単位、(4)4,4′-ジヒドロキシビフェニルとイソフタル酸からなる構造単位、(5)ビスフェノールAとテレフタル酸からなる構造単位、(6)ハイドロキノンと2,6-ナフタレンジカルボン酸からなる構造単位等を挙げることができる。
Figure JPOXMLDOC01-appb-C000009
 (式中、Xの定義は、構造単位(c)、(d)と同じである。)
 本実施形態の液晶ポリエステルには、必要に応じて本実施形態の特徴と効果を損なわない程度の少量の範囲で、他の芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシカルボン酸から生成する構造単位を導入することができる。本実施形態の液晶ポリエステルの溶融時での液晶状態を示し始める温度(以下、液晶開始温度という)は、好ましくは150~350℃、更に好ましくは180~320℃である。液晶開始温度をこの範囲にすることは、得られる難燃性樹脂組成物を好ましい色調と耐熱性と成形加工性のバランスをよいものにできる。
 本実施形態の液晶ポリエステルの25℃、1MHzにおける誘電正接(tanδ)は、好ましくは0.03以下であり、更に好ましくは0.025以下である。この誘電正接の値が小さいほど、誘電損失は小さくなり、この難燃性樹脂組成物を電気・電子部品の原料として用いる時、発生する電気的ノイズが抑制され好ましい。特に25℃、高周波数領域下、すなわち1~10GHz領域において、誘電正接(tanδ)は、好ましくは0.03以下であり、更に好ましくは0.025以下である。
 本実施形態の液晶ポリエステルの見かけの溶融粘度(液晶開始温度+30℃でずり速度100/秒)は、好ましくは10~3,000Pa・s、より好ましくは10~2,000Pa・s、更に好ましくは10~1,000Pa・sである。見かけの溶融粘度をこの範囲にすることは、得られる組成物の流動性を好ましいものとする。
 次に、ポリアミドについて説明する。
 本実施形態で使用可能なポリアミドとしては、特に限定されず、ポリマーの繰り返し構造中にアミド結合{-NH-C(=O)-}を有するものであればよい。
 一般に、ポリアミドは、ラクタム類の開環重合、ジアミンとジカルボン酸の重縮合、アミノカルボン酸の重縮合等によって得られるが、本実施形態ではこれらに限定されるものではない。
 上記ラクタム類としては、具体例としては、ε-カプロラクタム、エナントラクタム、ω-ラウロラクタムが挙げられる。
 上記ジアミンとしては、脂肪族、脂環式及び芳香族ジアミンが挙げられる。具体例としては、テトラメチレンジアミン、ヘキサメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、トリデカメチレンジアミン、2-メチル-1,5-ペンタンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミン、1,3-ビスアミノメチルシクロヘキサン、1,4-ビスアミノメチルシクロヘキサン、m-フェニレンジアミン、p-フェニレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン等が挙げられる。
 上記ジカルボン酸としては、脂肪族、脂環式及び芳香族ジカルボン酸が挙げられる。具体例としては、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、1,1,3-トリデカン二酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ダイマー酸が挙げられる。
 上記アミノカルボン酸としては、具体例としては、ε-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、9-アミノノナン酸、11-アミノウンデカン酸、12-アミノドデカン酸、13-アミノトリデカン酸が挙げられる。
 本実施形態においては、これらラクタム類、ジアミン、ジカルボン酸、アミノカルボン酸を、単独あるいは二種以上の混合物にして重縮合を行って得られる共重合ポリアミド類も使用できる。
 また、これらラクタム類、ジアミン、ジカルボン酸、アミノカルボン酸を重合反応機内で低分子量のオリゴマーの段階まで重合し、押出機等で高分子量化したものも好適に使用できる。
 本実施形態で使用できるポリアミドとしては、ポリアミド6、ポリアミド66、ポリアミド46、ポリアミド11、ポリアミド12、ポリアミド610、ポリアミド612、ポリアミド6/66、ポリアミド6/612、ポリアミドMXD(m-キシリレンジアミン)・6、ポリアミド6T、ポリアミド6I、ポリアミド6/6T、ポリアミド6/6I、ポリアミド66/6T、ポリアミド66/6I、ポリアミド6T/6I、ポリアミド6/6T/6I、ポリアミド66/6T/6I、ポリアミド6/12/6T、ポリアミド66/12/6T、ポリアミド6/12/6I、ポリアミド66/12/6I、ポリアミド9T、ポリアミド6C、ポリアミド6/66/6C、ポリアミド66/6C等が挙げられる(Iはイソフタル酸、Tはテレフタル酸、Cはシクロヘキサンジカルボン酸の略である)。また、これらのポリアミドの2種類以上を押出機等で共重合化したポリアミド類も使用することができる。
 本実施形態において好ましいポリアミドとしては、耐熱性の観点から、繰り返し構造単位中に芳香環を有するポリアミドである。具体的には、ポリアミドMXD(m-キシリレンジアミン)・6、ポリアミド6T、ポリアミド6I、ポリアミド6/6T、ポリアミド6/6I、ポリアミド66/6T、ポリアミド66/6I、ポリアミド6T/6I、ポリアミド6/6T/6I、ポリアミド66/6T/6I、ポリアミド6/12/6T、ポリアミド66/12/6T、ポリアミド6/12/6I、ポリアミド66/12/6I、ポリアミド9T等が挙げられ、特に、ポリアミド6T/6I、ポリアミド66/6T/6I、ポリアミド9Tが挙げられる。更に好ましいポリアミドはポリアミド9Tである。これら好ましいポリアミドは混合物であっても構わない。
 また、上記ポリアミドのうち、280℃以上の融点を有するポリアミドを用いると、本実施形態の難燃性樹脂組成物の腐食性の抑制や耐熱性がより顕著になる。
 本実施形態でいうポリアミドの融点とは、示差走査熱量測定装置(例えば、パーキンエルマー社製、商品名:DSC-7)を用いて測定することができる。具体的な測定方法としては、ポリアミドペレットを、40℃から50℃/分で、340℃まで昇温し、2分間保持し、ポリアミドを充分溶融させた後、20℃/分で40℃まで降温し、2分間保持する。その後、20℃/分の速度で昇温する際に観測された吸熱ピークのピークトップをもって表す。
 ポリアミドの融点は、280℃以上が好ましく、更に好ましくは、290℃以上、より好ましくは300℃以上である。かかる融点のポリアミドを用いることで、本実施形態の効果がより顕著になる。融点の上限値は、360℃であることが好ましく、更に好ましくは340℃であり、より更に好ましくは330℃である。
 ポリアミドの好ましい粘度範囲は、ISO 307に準拠して96%硫酸中で測定した粘度数が50~400ml/gの範囲内であり、更に好ましくは70~300ml/gの範囲内であり、より更に好ましくは100~200ml/gの範囲内である。
 ポリアミドは粘度数の異なる複数のポリアミドの混合物であってもよい。複数のポリアミドを使用した場合、そのポリアミド混合物の粘度数も、上述した範囲内にあることが望ましい。ポリアミド混合物が上述の粘度数の範囲内にあることは、所望の混合比で混合したポリアミド混合物の粘度数を実測することで容易に確かめることができる。
 ポリアミドの末端アミノ基の濃度は特に制限されないが、ポリフェニレンエーテルと混合して用いる場合には相溶性を向上させるため、好ましくは10~80μmol/gの範囲が好ましく、より好ましくは15~65μmol/gの範囲内であり、更に好ましくは20~40μmol/gの範囲内である。末端アミノ基の濃度をこれら範囲内にすることにより、ポリアミドの加熱時の変色を未然に防止することができる。また、付加的成分としてポリフェニレンエーテルを配合する場合においても、上記の末端アミノ基濃度であれば、物性バランスの優れたポリマーアロイを得ることができるので好ましい。
 また、ポリアミドの末端カルボキシル基濃度は特に制限されないが、その下限値としては、20μmol/gが好ましく、30μmol/gがより好ましい。また、上限値としては、150μmol/gが好ましく、100μmol/gがより好ましく、80μmol/gが更に好ましい。
 本実施形態においては、末端アミノ基濃度と末端カルボキシル基濃度の比(末端アミノ基濃度/末端カルボキシル基濃度)は、難燃性樹脂組成物の機械的特性に影響を及ぼすため、好ましい範囲が存在する。
 末端アミノ基濃度と末端カルボキシル基濃度の比は、好ましくは1.0以下である。より好ましくは、0.9以下であり、更に好ましくは0.8以下であり、より更に好ましくは0.7以下である。濃度比であるので、下限値は特にないが、0.1以上とすることにより、押出加工等でのストランド引取りを安定的に実施できるため好ましい。
 これらポリアミドの末端基濃度の調整方法としては、公知の方法を用いることができる。例えばポリアミドの重合時に所定の末端濃度となるように、ジアミン化合物、モノアミン化合物、ジカルボン酸化合物、モノカルボン酸化合物、酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類等の末端調整剤を添加する方法が挙げられる。
 末端アミノ基と反応する末端調整剤としては、具体的には、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸、シクロヘキサンカルボン酸等の脂環式モノカルボン酸、安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸、及びこれらの混合物等を挙げることができる。これらの中でも、反応性、封止末端の安定性、価格等の点から、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、安息香酸が好ましく、安息香酸がより好ましい。
 末端カルボキシル基と反応する末端調整剤としては、具体的には、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン、シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン、アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン及びこれらの混合物等を挙げることができる。これらの中でも、反応性、沸点、封止末端の安定性、価格等の点から、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、シクロヘキシルアミン、アニリンが好ましい。
 アミノ末端基及びカルボキシル末端基の濃度は、H-NMRにより、各末端基に対応する特性シグナルの積分値から求めることができる。具体的方法としては、特開平7-228775号公報に記載された方法に従うことが推奨される。測定溶媒としては、重トリフルオロ酢酸を用いることができる。充分な分解能を有する核磁気共鳴測定装置で測定した際においても、H-NMRの積算回数は少なくとも300スキャンは必要である。
 モノアミン化合物やモノカルボン酸化合物等でポリアミドの末端基を調節すると、活性末端が封止された状態となる。例えばモノカルボン酸として安息香酸を用いると、フェニル基末端で封止された末端基が生じる。
これら封止されたポリアミドの末端基の濃度には好ましい上限値と下限値が存在する。ポリアミドの末端封止率の下限値は、好ましくは20%であり、より好ましくは40%であり、更に好ましくは45%、より更に好ましくは50%である。ポリアミドの末端封止率の上限値は、好ましくは85%であり、より好ましくは80%であり、更に好ましくは75%である。
 本実施形態で用いることのできるポリアミドの末端封止率は、ポリアミドに存在する末端カルボキシル基、末端アミノ基及び末端封止剤によって封止された末端基の数をそれぞれ測定し、下記の式に従って求めることができる
 末端封止率(%)=[(α-β)/α]×100 
 (式中、αは分子鎖の末端基の総数(これは通常、ポリアミド分子の数の2倍に等しい)を表し、βは封止されずに残ったカルボキシル基末端及びアミノ基末端の合計数を表す。)
 さらに、本実施形態において使用するポリアミドは、含水率500ppm以上、3000ppm以下の範囲内であることが好ましい。より好ましくは500ppm以上2000ppm以下である。
 難燃性樹脂組成物を製造する際のペレットの色調悪化の抑制の観点から、含水率は500ppm以上であることが好ましく、加工時の大幅な粘度低下を抑制する観点から、含水率は3000ppm以下であることが好ましい。
 本実施形態で使用可能なポリアリーレンスルフィドは、ポリフェニレンスルフィドを好ましく使用できる。ポリフェニレンスルフィド(以下、「PPS」と略記する)は、下記一般式で示されるフェニレンスルフィドの繰返し単位を含む重合体である。この繰り返し単位の含有量は通常50モル%であり、好ましくは70モル%であり、更に好ましくは90モル%以上である。
 
  [-Ar-S-]    
 
 (式中、Sは硫黄原子を表し、Arはアリーレン基を表し、アリーレン基としては、例えば、p-フェニレン基、m-フェニレン基、置換フェニレン基(置換基としては炭素数1~10のアルキル基、フェニル基が好ましい。)、p,p′-ジフェニレンスルホン基、p,p′-ビフェニレン基、p,p′-ジフェニレンカルボニル基、ナフチレン基等が挙げられる。)
 PPSは、構成単位であるアリーレン基が1種であるホモポリマーであってもよく、加工性や耐熱性の観点から、2種以上の異なるアリーレン基を混合して用いて得られるコポリマーであってもよい。これらの中でも、主構成要素としてp-フェニレンスルフィドの繰り返し単位を有するPPSが、加工性及び耐熱性に優れ、かつ入手が容易なことから好ましい。PPSの含有塩素濃度は、腐食性の抑制の観点から1500ppm以下であることが好ましく、900ppm以下であることがより好ましく、塩素濃度の測定は、社団法人日本プリント回路工業会(JPCA)が定めたJPCA-ES01(ハロゲンフリー銅張積層板試験方法)に準拠し測定できる。その分析方法は、フラスコ燃焼処理イオンクロマトグラフ法によって行うことができる。
 PPSの製造方法は、特に限定されず、公知の方法を用いることができる。通常、ハロゲン置換芳香族化合物(例えばp-ジクロルベンゼン)を硫黄と炭酸ソーダの存在下で重合させる方法;極性溶媒中で硫化ナトリウムあるいは硫化水素ナトリウムと水酸化ナトリウム又は硫化水素と水酸化ナトリウムあるいはナトリウムアミノアルカノエートの存在下で重合させる方法;p-クロルチオフェノールの自己縮合等が挙げられるが、中でもN-メチルピロリドン、ジメチルアセトアミド等のアミド系溶媒やスルホラン等のスルホン系溶媒中で硫化ナトリウムとp-ジクロルベンゼンを反応させる方法等が好ましい。分子鎖に分岐構造をもたらすために、必要に応じてトリクロルベンゼンを分岐剤として使用してもよい。
 例えば、米国特許第2513188号明細書、特公昭44-27671号公報、特公昭45-3368号公報、特公昭52-12240号公報、特開昭61-225217号及び米国特許第3274165号明細書、特公昭46-27255号公報、ベルギー特許第29437号明細書、特開平5-222196号公報、等に記載された方法でPPSを得ることができる。この重合反応で得られるPPSは通常リニア型PPSである。本実施形態では、重合反応した後に、酸素の存在下でPPSの融点以下の温度(例えば、200~250℃)で加熱処理し酸化架橋を促進してポリマー分子量や粘度を適度に高めたもの(架橋型PPS)を用いてもよい。この架橋型PPSには、その架橋度を低く制御した半架橋PPSも含まれる。
 PPSは、上記したリニア型PPS、架橋型PPSのいずれか1種又は2種を併用することができる。そして、剪断速度100秒-1における300℃の溶融粘度が、好ましくは10~150Pa・s、より好ましくは10~100Pa・s、更に好ましくは10~80Pa・sの特性を有するPPSである。
 本実施形態においては、PPSは、リニア型PPSと架橋型PPSとを併用することは、PPSとポリフェニレンエーテルのアロイとした際に、ポリフェニレンエーテル分散相の粒子径を小さくできるといった効果を発現するので好ましい。
 なお、このPPSの溶融粘度は、キャピラリー式のレオメータによって測定でき、例えば、キャピログラフ((株)東洋精機製作所製)を用い、キャピラリーは、キャピラリー長=10mm、キャピラリー径=1mmを用いて、温度300℃、剪断速度100秒-1にて測定することができる。
 PPSに起因する成形時の白化、モールドデポジットを低減させるには使用するPPSのオリゴマー含有量が0.7質量%以下のPPSを供する必要がある。ここで、PPSに含まれるオリゴマーとは、供するPPSを塩化メチレンにより抽出される物質を意味し、一般にPPSの不純物として知られている物質である。
 オリゴマーの含有量の測定は以下の方法により求めることができる。PPS粉末5gを塩化メチレン80mlに加え、6時間ソクスレー抽出を実施した後、室温まで冷却し、抽出後の塩化メチレン溶液を秤量瓶に移す。更に、上記抽出に使用した容器を、塩化メチレン合計60mlを用いて、3回に分けて洗浄し、該洗浄液を上記秤量瓶中に回収する。次に、約80℃に加熱して、該秤量瓶中の塩化メチレンを蒸発させて除去し、残渣を秤量し、この残渣量より塩化メチレンによる抽出量、すなわちPPS中に存在するオリゴマー量の割合を求めることができる。
 本実施形態で使用可能なポリアリレートとは、構造単位として、芳香環とエステル結合を含むポリマーであり、ポリアリールエステルともいわれる。ポリアリレートとしては、ビスフェノールAと、テレフタル酸及び/又はイソフタル酸と、からなる、下記式(4)で表される繰り返し単位を有するポリアリレートが好ましい。特にテレフタル酸とイソフタル酸のモル比が約1:1であることが、耐熱性及び靱性のバランスからより好ましい。
Figure JPOXMLDOC01-appb-C000010

 
 ポリアリレートとしては市販品を用いることもでき、例えば、ユニチカ社製の商品名「Uポリマー」等を用いることができる。
 ポリアリレートの分子量としては、特に限定されないが、ゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の数平均分子量が、好ましくは5000~300000であり、より好ましくは10000~300000であり、更に好ましくは10000~100000である。
 ポリアリレートの分子量が5000以上であると、耐熱性が良好になると共に、機械的強度が高くなる傾向にあり、300000以下であると、難燃性樹脂組成物の流動性が良好になり、分散相がより微分散化し易くなる傾向にある。
 本実施形態で使用可能なポリエーテルサルフォン、ポリエーテルイミド、ポリサルフォンは、公知の非晶性スーパーエンジニアリングプラスチック群の中から、適宜使用することができる。ポリエーテルサルフォンの市販品としては、例えば、ソルベイアドバンストポリマーズ社製の「レーデルA(登録商標)」、「レーデルR(登録商標)」、三井化学社製の「MITSUI PES」、BASFジャパン社製の「ウルトラゾーンE(登録商標)」等が挙げられる。ポリエーテルイミドの具体的な製品では、例えば、SABIC イノベーティブプラスチックス社製のウルテム(登録商標)等が挙げられる。ポリサルフォンの市販品としては、例えば、ソルベイアドバンストポリマーズ社製のユーデル(登録商標)、ミンデル(登録商標)、BASFジャパン社製のウルトラゾーンS(登録商標)等が挙げられる。
 本実施形態で使用可能なポリアリールケトンとは、その構造単位に、芳香環と、エーテル結合及びケトン結合を含む樹脂であり、具体的には、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン等が挙げられる。本実施形態においては、特に、下記式(5)で表される繰り返し単位を有するポリエーテルエーテルケトンが好適に用いられる。
Figure JPOXMLDOC01-appb-C000011

 
 ポリエーテルエーテルケトンとしては、市販品を用いることができ、例えば、VICTREX社製の商品名「PEEK151G(登録商標)」、「PEEK90G(登録商標)」、「PEEK381G(登録商標)」、「PEEK450G(登録商標)」、「PEK(登録商標)」、BASF社製の商品名「Ultrapek(登録商標)」(ポリエーテルケトンエーテルケトンケトン:PEKEKK)等を用いることができる。なお、ポリアリールケトンは、1種を単独で用いても、2種類以上を組み合わせて用いてもよい。なかでも、VICTREX社製の商品名「PEEK(登録商標)」が好適に用いられる。
 ポリアリールケトンの溶融粘度としては、50~5000Pa・s(500~50000Poise)の範囲のものが好ましい。より好ましくは70~3000Pa・sであり、更に好ましくは100~2500Pa・sであり、より更に好ましくは200~1000Pa・sである。ポリアリールケトンの溶融粘度が50Pa・s以上であると、機械的強度がより優れる傾向にあり、5000Pa・s以下であると、成形加工性がより優れる傾向にある。
 溶融粘度は、400℃に加熱された樹脂を、内径1mm、長さ10mmのノズルから、負荷荷重100kgで押し出すときに測定される見掛けの溶融粘度である。
 本実施形態において、熱可塑性樹脂を2種類以上選択し混合物として用いる場合の好ましい例としては、難燃化、低吸湿化の観点から、ポリアミド/ポリフェニレンエーテル、ポリフェニレンエーテル/ポリスチレン、ポリフェニレンエーテル/ポリフェニレンスルフィド、ポリフェニレンエーテル/ポリプロピレン、ポリフェニレンエーテル/液晶ポリエステルが挙げられる。これらの中でも、難燃化、低吸湿化の観点からポリアミド/ポリフェニレンエーテルの組み合わせがより好ましい。
 上述の樹脂を混合物として用いる場合、各々好適な量に違いがある。
 ポリフェニレンエーテル以外の熱可塑性樹脂として、ポリフェニレンエーテルと比較的親和性の高い樹脂である、ホモポリスチレン、ゴム変性ポリスチレン、スチレン系エラストマー、アクリロニトリル-スチレン共重合体、N-フェニルマレイミドとスチレンの共重合体、及びこれらの混合物から選ばれる1種を用いる場合、本実施形態の熱可塑性樹脂の合計量を100質量%としたとき、本実施形態の熱可塑性樹脂中のポリフェニレンエーテル含有量が、10~90質量%の範囲内であることが好ましい。ポリフェニレンエーテル含有量のより好ましい下限値は、20質量%であり、更に好ましくは30質量%である。ポリフェニレンエーテル含有量のより好ましい上限値は80質量%であり、更に好ましくは70質量%であり、より更に好ましくは60質量%である。
 ポリフェニレンエーテル以外の熱可塑性樹脂として、ポリフェニレンエーテルと比較的親和性の低い樹脂である、ポリプロピレン、液晶ポリエステル、ポリアミド、ポリフェニレンスルフィド、ポリエーテルイミド、ポリエーテルサルフォン、ポリサルフォン、ポリアリールケトン、及びこれらの混合物から選ばれる1種を用いる場合、本実施形態の難燃性熱可塑性樹脂の合計量を100質量%としたとき、本実施形態の難燃性熱可塑性樹脂中のポリフェニレンエーテル含有量が、1~60質量%の範囲内であることが好ましい。ポリフェニレンエーテル含有量のより好ましい下限値は5質量%であり、更に好ましくは10質量%であり、より更に好ましくは15質量%である。ポリフェニレンエーテル含有量のより好ましい上限値は45質量%であり、更に好ましくは40質量%であり、より更に好ましくは35質量%である。
 本実施形態において、ポリフェニレンエーテルと比較的親和性の低い樹脂であるポリプロピレン、液晶ポリエステル、ポリアミド、ポリフェニレンスルフィド、ポリエーテルイミド、ポリエーテルサルフォン、ポリサルフォン、ポリアリールケトン、及びこれらの混合物から選ばれる1種を用いる場合においては、ポリフェニレンエーテルとポリフェニレンエーテル以外の熱可塑性樹脂との相溶化剤を含むことが、より好ましい。
 相溶化剤としては、特に限定されないが、無機金属酸化物、有機の官能基含有化合物、ポリスチレン鎖-ポリオレフィン鎖を有する共重合体等が挙げられる。これらは、ポリフェニレンエーテルと組み合わせる熱可塑性樹脂に応じて、それぞれ公知のものが使用可能である。
 無機金属酸化物としては、例えば、亜鉛、チタン、カルシウム、マグネシウム、ケイ素から選ばれる1種以上の金属の酸化物が挙げられ、これらの中では、相溶化力の観点から、酸化亜鉛が好ましい。
 有機の官能基含有化合物としては、例えば、エポキシ基、オキサゾリル基、イミド基、カルボン酸基、酸無水物基から選ばれる1種以上の官能基を有する化合物が挙げられる。また、これらの官能基の数としては、1つのみ含んでいても2つ以上含んでいても構わない。官能基を2つ以上含む場合は、1種の官能基を2つ以上含んでいても構わないし、2種以上の官能基をそれぞれ1つずつ含んでいても構わないし、1種の官能基を1つ、それ以外の官能基を2つ以上含んでいても構わない。もちろん、2種以上の官能基をそれぞれ2つ以上含んでいても構わない。また、ポリスチレン鎖-ポリオレフィン鎖を有する共重合体の例としては、スチレン-エチレンブチレン共重合体等が挙げられる。
 ポリフェニレンエーテルとポリプロピレン(PP)の組み合わせにおける好ましい相溶化剤について説明する。ポリフェニレンエーテルとPPは本質的に非相溶性であるので、相溶化剤を用いることが好ましい。ポリフェニレンエーテルとPPとからなるポリマーアロイは、PP連続相中にポリフェニレンエーテルが分散した構造を示し、ポリフェニレンエーテルは、PPの非晶部分のガラス転移温度以上での耐熱性を補強する上で重要な役割を示す。
 両者の相溶性を改善のために、ポリフェニレンエーテルと相溶性の高いセグメント鎖と、PPと相溶性の高いセグメント鎖と、を有する共重合体を、混和剤として利用できる。この相溶性を有する共重合体としては、例えば、ポリスチレン鎖-ポリオレフィン鎖を有する共重合体、ポリフェニレンエーテル鎖-ポリオレフィン鎖を有する共重合体、ビニル芳香族化合物を主体とする少なくとも2個の重合体ブロックAと共役ジエン化合物を主体とする少なくとも1個の重合体ブロックBとからなるブロック共重合体を水素添加してなる水素添加ブロック共重合体が挙げられる。これらの中でも熱安定性の観点から、水素添加ブロック共重合体が好ましい。
 ここでいう、ポリフェニレンエーテルとPPの相溶化剤としての水素添加ブロック共重合体としては、例えば、A-B-A、A-B-A-B、(A-B-)-Si、A-B-A-B-A等の構造を有するブロック共重合体を水素添加してなる水添ブロック共重合体が挙げられる。ここで、Aはビニル芳香族化合物を主体とする重合体ブロックを意味し、Bは共役ジエン化合物を主体とする重合体ブロックを意味する。
 重合体ブロックAにおけるビニル芳香族化合物の含有量、及び重合体ブロックBにおける共役ジエン化合物の含有量は、それぞれ少なくとも70質量%以上である。更に、水素添加ブロック共重合体とは芳香族ビニル化合物-共役ジエン化合物からなるブロック共重合体中の共役ジエン化合物に由来するオレフィン性不飽和結合を50%以下、好ましくは30%以下、より好ましくは10%以下まで水素添加反応により低減化したブロック共重合体である。
 ここでいう、ポリフェニレンエーテルとPPの相溶化剤として有用なブロック共重合体は、前述のスチレン系エラストマーとしてのブロック共重合体と同じであり、ポリフェニレンエーテル以外の熱可塑性樹脂としてPPを用いる場合には、このブロック共重合体は、相溶化剤としての機能と、衝撃改良剤としての機能の両方の機能を有する。このブロック共重合体の中でも、ポリフェニレンエーテルとPPの相溶化剤としてより好適に使用可能なものは、共役ジエン化合物である、ポリブタジエン部分の1,2-ビニル結合量が、50%から90%である、いわゆるハイビニルタイプのブロック共重合体が挙げられる。それ以外のものではもちろん使用は可能である。
 ポリフェニレンエーテルとポリアミドの組み合わせにおける好ましい相溶化剤としては、特開平8-8869号公報及び特開平9-124926号公報等に詳細に記載されている。本実施形態において、これら公知の相溶化剤はすべて使用可能であり、併用も可能である。
 これら、種々の相溶化剤の中でも、マレイン酸又はその誘導体、クエン酸又はその誘導体、フマル酸又はその誘導体、及びこれらによりあらかじめ変性されたポリフェニレンエーテルペレットが好ましい。
 本実施形態における相溶化剤の好ましい量は、ポリアミドとポリフェニレンエーテルの混合物100質量部に対して0.01~25質量部である。より好ましくは0.05~10質量部、更に好ましくは0.1~5質量部である。
 このとき、ポリフェニレンエーテル粒子がポリアミド連続相中に、平均粒子径0.1~5μmの分散相として存在することが好ましい。より好ましくは、0.3~3μmの範囲内であり、更に好ましくは、0.5~2μmである。後述する耐衝撃剤は、ポリフェニレンエーテル分散相中に存在することが好ましい。
 ポリアミドとのポリフェニレンエーテルの混合物において、ポリフェニレンエーテルの還元粘度(ηsp/c:dl/g、0.5g/dl濃度のクロロホルム溶液、30℃測定)の好ましい上限値は、0.55dl/gであり、より好ましくは0.45dl/g、更に好ましくは0.35dl/gである。好ましい下限値は0.20dl/gであり、より好ましくは0.25dl/g、更に好ましくは0.29dl/gである。
 ポリフェニレンエーテルとPPSの組み合わせの場合について説明する。ポリフェニレンエーテルとPPSからなる組成物は、PPSマトリックス中にポリフェニレンエーテルが分散した構造を呈することが好ましい。ここで、ポリフェニレンエーテルは、その高いガラス転移温度を活かして、PPSの非晶部分のガラス転移温度以上での耐熱性を補強する上で重要な役割を示す。両者は非相溶であり、相溶性(混和性ともいうことがある)を向上させるには、エポキシ基を含有する化合物及び/又はオキサゾリル基を含有する化合物が有用である。この混和剤を用いることにより、本実施形態の難燃性樹脂組成物のペレットで成形した際に、成型品のバリ発生を顕著に低減化する効果を奏するが、本効果を期待しない場合等は、相溶化剤を添加する必要は本実施形態においてはない。
 これらの中でも、エポキシ基及び/又はオキサゾリル基を有する不飽和モノマーとスチレンを主たる成分とするモノマーとの共重合体が好ましく利用できる。スチレンを主たる成分とするモノマーとは、スチレン成分が100質量%である場合は問題ないが、スチレンと共重合可能な他のモノマーが存在する場合は、その共重合体鎖がポリフェニレンエーテルとの相溶性を保持する上で、少なくともスチレンモノマーを65質量%以上、より好ましくは75~95質量%含むことが好ましい。具体的には、(i)エポキシ基及び/又はオキサゾリル基を有する不飽和モノマーとスチレンモノマーの共重合体、(ii)エポキシ基及び/又はオキサゾリル基を有する不飽和モノマーとスチレン/アクリロニトリル=90~75質量%/10~25質量%の共重合体、等が挙げられる。
 上記のエポキシ基含有不飽和モノマーとしては、グリシジルメタアクリレート、グリシジルアクリレート、ビニルグリシジルエーテル、ヒドロキシアルキル(メタ)アクリレートのグリシジルエーテル、ポリアルキレングリコール(メタ)アクリレートのグリシジルエーテル、グリシジルイタコネート等が挙げられる。これらの中でもグリシジルメタアクリレートが好ましい。また、上記のオキサゾリル基含有不飽和モノマーであるビニルオキサゾリン化合物としては、例えば2-イソプロペニル-2-オキサゾリンが入手容易であり、好ましく使用できる。
 エポキシ基及び/又はオキサゾリル基を有する不飽和モノマーと共重合する他の不飽和モノマーとしては、スチレン等のビニル芳香族化合物の他に、共重合成分としてアクリロニトリル等のシアン化ビニルモノマー、酢酸ビニル、(メタ)アクリル酸エステル等が挙げられるが、PPSとポリフェニレンエーテルの相溶化剤として有効に作用するためには、エポキシ基及び/又はオキサゾリル基を有する不飽和モノマーを除外した成分中にスチレンモノマーを少なくとも65質量%以上含むことが好ましい。
 エポキシ基及び/又はオキサゾリル基を有する不飽和モノマーは共重合体中に好ましくは0.3~20質量%、より好ましくは1~15質量%、更に好ましくは3~10質量%含有する。共重合体のエポキシ基及び/又はオキサゾリル基を有する不飽和モノマー量は、0.3質量%以上、20質量%以下であることが好ましい。この範囲のものを用いることにより、ポリフェニレンエーテルとPPSとの相溶性を高く維持でき、これにより得られた難燃性樹脂組成物を用いて成形した成型品のバリ発生を大きく抑制でき、耐熱性と靱性(衝撃強度)と機械的強度のバランスを優れたものにできる。
 これら共重合体の例として、例えば、スチレン-グリシジルメタクリレート共重合体、スチレン-グリシジルメタクリレート-メチルメタクリレート共重合体、スチレン-グリシジルメタクリレート-アクリロニトリル共重合体、スチレン-ビニルオキサゾリン共重合体、スチレン-ビニルオキサゾリン-アクリロニトリル共重合体等が挙げられる。
 この相溶化剤の好ましい配合量は、上記したポリフェニレンエーテルとPPSの合計100質量部に対して、0.5~5質量部、好ましくは1~5質量部、更に好ましくは1~3質量部である。相溶化剤の配合量が0.5質量部以上であれば、PPSとポリフェニレンエーテルとの相溶性がよくなり、5質量部以下であれば、分散相を形成するポリフェニレンエーテルの平均粒子径が10μm以下となり、得られた難燃性樹脂組成物を用いて成形した成型品のバリ発生を大きく抑制することができる他に、耐熱性(衝撃強度)と靱性と機械的強度のバランスを優れたものにできる。混和剤を使用しない場合においては、高い耐熱性と耐衝撃性を難燃性樹脂組成物に付与できる。
 このとき、ポリフェニレンエーテル粒子がPPS連続相中に、平均粒子径10μm以下の分散相として存在することが好ましい。より好ましくは、8μm以下であり、更に好ましくは5μm以下である。得られる組成物の外観悪化や、剥離現象を防止するためには、分散平均粒子径が10μmを超えないことが有効である。後述する耐衝撃剤は、ポリフェニレンエーテル分散相中に存在することが好ましい。
 ポリフェニレンエーテルと液晶ポリエステルの組み合わせにおける相溶化剤としては、エポキシ基、オキサゾリル基、イミド基、酸無水物基を有する化合物が好ましい。これらの中では、エポキシ基を有する化合物がより好ましい。
 具体例としては、グリシジルメタクリレート/スチレン共重合体、グリシジルメタクリレート/スチレン/メチルメタクリレート共重合体、グリシジルメタクリレート/スチレン/メチルメタクリレート/メタクリレート共重合体、グリシジルメタクリレート/スチレン/アクリロニトリル共重合体、ビニルオキサゾリン/スチレン共重合体、N-フェニルマレイミド/スチレン共重合体、N-フェニルマレイミド/スチレン/無水マレイン酸共重合体、スチレン/無水マレイン酸共重合体等が挙げられる。また、エチレン/グリシジルメタクリレート共重合体とポリスチレンのグラフト共重合体のようなグラフト共重合体でも構わない。これらの中でもグリシジルメタクリレート/スチレン共重合体、ビニルオキサゾリン/スチレン共重合体、N-フェニルマレイミド/スチレン共重合体、N-フェニルマレイミド/スチレン/無水マレイン酸共重合体が好ましく、グリシジルメタクリレート/スチレン共重合体が更に好ましい。共重合体中のエポキシ基、オキサゾリル基、イミド基、カルボン酸基、酸無水物基から選ばれる1種以上の官能基を有する化合物とスチレン系化合物の比率に特に制限はないが、射出成形時のシルバーの発生や押出加工時のメヤニの観点から、エポキシ基、オキサゾリル基、イミド基、カルボン酸基、酸無水物基から選ばれる1種以上の官能基を有する化合物が50質量%以下であることが好ましい。
 相溶化剤の好ましい配合量としては、ポリフェニレンエーテルと液晶ポリエステルの合計100質量部に対し、引張り強度の観点から0.1質量部以上であり、難燃性の観点から10質量部以下であり、より好ましくは1質量部以上7質量部以下、更に好ましくは3.5質量部以上6質量部以下である。
 また、相溶化剤の添加方法については特に制限はないが、ポリフェニレンエーテルとともに添加するか、液晶ポリエステルと予め溶融混練したマスターバッチを製造した後、ポリフェニレンエーテルと添加する方法が好ましい。この時、ポリフェニレンエーテルが分散相を形成し、液晶ポリエステルが連続相を形成することが必要である。液晶ポリエステルが連続相を形成することにより、耐薬品性と剛性に優れる。
 これら分散形態は、例えば透過型顕微鏡を用いて観察することにより容易に判断することができる。好ましいポリフェニレンエーテルの分散粒子径は、40μm以下である。より好ましくは20μm以下である。後述する耐衝撃剤を配合する場合、耐衝撃剤はポリフェニレンエーテル分散相中に存在することが好ましい。また、分散相であるポリフェニレンエーテル相中に、更に液晶ポリエステルが存在する海島湖構造を採らせることも、本実施形態の難燃性樹脂組成物としては有用である。
 海島湖構造とさせるための具体的な方法の一例を挙げると、押出機途中に1カ所以上の供給口を有する押出機を用いて、押出機供給口よりポリフェニレンエーテルと液晶ポリエステルの一部及び、必要により両者の相溶化剤を供給し、更に押出機途中の供給口より残りの液晶ポリエステルを供給する方法が挙げられる。
 本実施形態において、ポリアリレート、ポリエーテルイミド、ポリエーテルサルフォン、ポリサルフォン、ポリアリールケトン等の樹脂をポリフェニレンエーテルと併用する場合の相溶化剤としては、上述した、例えば、ポリプロピレン、ポリアミド、PPS、及び液晶ポリマーと、ポリフェニレンエーテルの相溶化剤はすべて使用可能である。これらの樹脂は一般的に加工温度が高いため、末端官能基が反応より不活性化されているものが多く、何らかの反応(熱や、過酸化物等による分子鎖の切断反応等)を起こさせた後に、上述の相溶化剤を適宜選択して使用することが好ましい。
 本実施形態では上記の反応を起こさせずに、相溶化させることもできる。具体的には、ポリフェニレンエーテルとポリアリールケトンの相溶化剤として、ポリアリレートを少量添加することは、両者の相溶性を高める上で、非常に有用である。
 次に本実施形態の(B)成分の、下式(I)で表されるホスフィン酸塩及び/又は下式(II)で表されるジホスフィン酸塩、又はこれらの縮合物の中から選ばれる少なくとも1種のホスフィン酸塩類、について説明する。
Figure JPOXMLDOC01-appb-C000012

 
 (式中、R及びRは、同一又は異なっていてもよく、直鎖状若しくは分岐状のC~C-アルキル及び/又はアリール若しくはフェニルであり、Rは、直鎖状若しくは分岐状のC~C10-アルキレン、C~C10-アリーレン、C~C10-アルキルアリーレン又はC~C10-アリールアルキレンであり、Mはカルシウム(イオン)、マグネシウム(イオン)、アルミニウム(イオン)、亜鉛(イオン)、ビスマス(イオン)、マンガン(イオン)、ナトリウム(イオン)、カリウム(イオン)及びプロトン化された窒素塩基から選ばれる1種以上であり、mは、2又は3であり、nは、1~3であり、xは、1又は2である。)
 本実施形態における(B)成分のホスフィン酸塩類は、例えば欧州特許出願公開第699708号明細書や特開平08-73720号公報に記載されているように、ホスフィン酸と金属炭酸塩、金属水酸化物又は金属酸化物を用いて水溶液中で製造されたものが有効に利用可能である。
 これらは、本質的にモノマー性化合物であるが、反応条件に依存して、環境によっては縮合度が1~3の縮合物であるポリマー性ホスフィン酸塩も包含される。
 本実施形態のホスフィン酸塩類は、本実施形態の効果を損ねない範囲において、如何なる組成で混合されていても構わないが、難燃性及びモールドデポジットの抑制の観点から、下記一般式(I)で表されるホスフィン酸塩を好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは98質量%以上含む。
Figure JPOXMLDOC01-appb-C000013
 (式中、R及びRは、同一か又は異なり、直鎖状若しくは分岐状のC~C-アルキル及び/又はアリール若しくはフェニルであり、Mはカルシウム(イオン)、マグネシウム(イオン)、アルミニウム(イオン)、亜鉛(イオン)、ビスマス(イオン)、マンガン(イオン)、ナトリウム(イオン)、カリウム(イオン)及びプロトン化された窒素塩基から選ばれる1種以上であり、mは、2又は3である。)
 本実施形態のホスフィン酸塩類を形成するための、好ましいホスフィン酸の例としては、ジメチルホスフィン酸、エチルメチルホスフィン酸、ジエチルホスフィン酸、メチル-n-プロピルホスフィン酸、メタンジ(メチルホスフィン酸)、ベンゼン-1,4-(ジメチルホスフィン酸)、メチルフェニルホスフィン酸、ジフェニルホスフィン酸及びこれらの混合物から選ばれる1種以上が挙げられ、これらの中でも、ジメチルホスフィン酸、エチルメチルホスフィン酸、ジエチルホスフィン酸、及びこれらの混合物から選ばれる1種以上が好ましい。
 本実施形態のホスフィン酸塩類を形成するための、好ましい金属成分としてはカルシウムイオン、マグネシウムイオン、アルミニウムイオン、亜鉛イオン、ビスマスイオン、マンガンイオン、ナトリウムイオン、カリウムイオン)から選ばれる1種以上であり、より好ましくは、カルシウムイオン、マグネシウムイオン、アルミニウムイオン、亜鉛イオンから選ばれる1種以上が挙げられる。
 好ましいプロトン化された窒素塩基としては、アンモニア、メラミン、トリエタノールアミンのプロトン化塩基、特に好ましくはNH である。
 形成されたホスフィン酸塩類の好ましい例としては、ジメチルホスフィン酸カルシウム、ジメチルホスフィン酸マグネシウム、ジメチルホスフィン酸アルミニウム、ジメチルホスフィン酸亜鉛、エチルメチルホスフィン酸カルシウム、エチルメチルホスフィン酸マグネシウム、エチルメチルホスフィン酸アルミニウム、エチルメチルホスフィン酸亜鉛、ジエチルホスフィン酸カルシウム、ジエチルホスフィン酸マグネシウム、ジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛、メチル-n-プロピルホスフィン酸カルシウム、メチル-n-プロピルホスフィン酸マグネシウム、メチル-n-プロピルホスフィン酸アルミニウム、メチル-n-プロピルホスフィン酸亜鉛、メタンジ(メチルホスフィン酸)カルシウム、メタンジ(メチルホスフィン酸)マグネシウム、メタンジ(メチルホスフィン酸)アルミニウム、メタンジ(メチルホスフィン酸)亜鉛、ベンゼン-1,4-(ジメチルホスフィン酸)カルシウム、ベンゼン-1,4-(ジメチルホスフィン酸)マグネシウム、ベンゼン-1,4-(ジメチルホスフィン酸)アルミニウム、ベンゼン-1,4-(ジメチルホスフィン酸)亜鉛、メチルフェニルホスフィン酸カルシウム、メチルフェニルホスフィン酸マグネシウム、メチルフェニルホスフィン酸アルミニウム、メチルフェニルホスフィン酸亜鉛、ジフェニルホスフィン酸カルシウム、ジフェニルホスフィン酸マグネシウム、ジフェニルホスフィン酸アルミニウム、ジフェニルホスフィン酸亜鉛から選ばれる1種以上が挙げられる。
 難燃性、モールドデポジットの抑制の観点から、ジメチルホスフィン酸カルシウム、ジメチルホスフィン酸アルミニウム、ジメチルホスフィン酸亜鉛、エチルメチルホスフィン酸カルシウム、エチルメチルホスフィン酸アルミニウム、エチルメチルホスフィン酸亜鉛、ジエチルホスフィン酸カルシウム、ジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛から選ばれる1種以上が好ましく、ジエチルホスフィン酸アルミニウムがより好ましい。
 本実施形態におけるホスフィン酸塩類は、本実施形態の効果を損なわなければ、未反応物あるいは副生成物が残存あるいは混在していても構わない。
 本実施形態において、好ましいホスフィン酸塩類の含有量は、(A)熱可塑性樹脂100質量部に対し、1~80質量部である。より好ましくは、2~60質量部、更に好ましくは2~40質量部、より更に好ましくは4~30質量部である。充分な難燃性を発現させるためにはホスフィン酸塩類の含有量は1質量部以上が好ましく、機械的物性の保持と、腐食性を抑制する観点からホスフィン酸塩類の量は80質量部以下が好ましい。
 ホスフィン酸塩類の粒子径は、本実施形態の特徴を損なわない範囲であればいかなる大きさでもかまわないが、好ましい数平均粒子径の下限値は0.1μmであり、より好ましくは0.5μmである。また、好ましい数平均粒子径の上限値は200μmであり、より好ましくは45μmである。
 取扱い性や押出し機等への噛み込み性を悪化させないためには、ホスフィン酸塩類の数平均粒子径の下限値は0.1μmであることが好ましく、難燃性樹脂組成物の機械的強度発現や成形品の表面良外観を悪化させないためには、その上限値は200μmであることが好ましい。
 ホスフィン酸塩類の平均粒子径は、レーザー回折式粒度分布計(例えば、島津製作所社製、商品名:SALD-2000)を用い、メタノール/水=50/50質量%中にホスフィン酸塩類を分散させ測定解析できる。メタノール水へのホスフィン酸塩類の分散は、超音波拡散機及び/又は攪拌機を備えた攪拌槽に、水とホスフィン酸塩類を加えることで可能である。この分散液をポンプを介して測定セルへ送液し、レーザー回折により粒子径を測定する。測定によって得られる、粒子径と粒子数の頻度分布より数平均粒子径を計算できる。
 本実施形態の(C)塩基性化合物は、塩基性であれば特に制限はないが、腐食性の抑制の観点から、周期律表第IIA族元素及びアルミニウムから選ばれる1種以上の元素の水酸化物、酸化物から選ばれる1種以上が好ましく、例えばカルシウム、マグネシウム、アルミニウムから選ばれる1種以上の水酸化物、酸化物が挙げられる。更に好ましくは、添加量による腐食性の抑制の効率の観点から、周期律表第IIA族元素及びアルミニウムから選ばれる1種以上の元素の水酸化物であり、例えばカルシウム、マグネシウム、アルミニウムから選ばれる1種以上の水酸化物が挙げられる。
 これらの中でも好ましい塩基性化合物の具体例は、添加量による腐食性の抑制、難燃性、耐リフロー性の観点から、水酸化カルシウム及び/又は酸化カルシウムであり、より更に好ましくは水酸化カルシウムである。
 (C)塩基性化合物は、(B)成分100質量部に対して、0.01~10質量部の範囲とする必要があり、好ましくは、0.08~7質量部であり、より好ましくは0.2~5質量部である。0.01質量部以上とすると、難燃性樹脂組成物の腐食性を抑制が可能となり好ましく、10質量部以下とすると、押出加工性、射出成型安定性が向上するとともに、吸水後の耐リフロー炉性の向上、難燃性の向上、成型加工性の向上、機械物性の向上が達成可能となり好ましい。
 塩基性化合物の数平均粒子径は、特に限定されず、50nm~100μm範囲が好ましく、より好ましくは100nm~25μmであり、更に好ましくは100nm~10μmであり、より更に好ましくは100nm~5000nmである。(B)ホスフィン酸塩類に由来すると考えられる腐食性成分との反応性の観点からは、微分散していることが好ましいが、数平均粒子径100nm~25μmの塩基性化合物を用いると難燃性樹脂組成物の吸水後の耐リフロー炉性の向上や、腐食抑制効果についても更に顕著に発揮する。
 塩基性化合物の数平均粒子径は、走査型電子顕微鏡等により写真撮影し、粒子径を実測することにより求める。測定する粒子の個数は、450個から550個である。粒子径の測定は適宜拡大した写真を用い手作業にて測定してもよいし、適当な画像処理装置を用い半自動的に測定してもよい。
 塩基性化合物の中でも特に好ましい、水酸化カルシウム及び酸化カルシウムについて説明する。
 本実施形態において使用可能な水酸化カルシウム(Ca[OH])の純度は、本実施形態の特徴を損なわない範囲であれば、いかなる純度の物であってもよい。
 一般的に流通している水酸化カルシウムの例として、消石灰が挙げられる。消石灰は、日本工業規格において工業用石灰(JIS R9001:2006)として、種々の特性が規定されている。水酸化カルシウムとして工業用石灰を用いる場合の、該消石灰中の好ましい酸化カルシウムの純度は、工業用消石灰2号以上の純度である。
 水酸化カルシウムは、酸化カルシウムと水が反応することにより得られるものであるため、JIS R9001:2006においては、水酸化カルシウムの純度は、酸化カルシウムの含有量をもって表される。好ましい純度は、消石灰中に酸化カルシウムとして65質量%以上である。より好ましくは70質量%以上であり、更に好ましくは72.5質量%以上であり、より更に好ましくは75質量%以上である。
 工業用消石灰に含まれる、他の成分としてはCO、SiO、Al、Fe、MgO等が挙げられるが、これらの中でも、SiO、Al、Fe、MgO合計の含有量は、消石灰中において10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることが更に好ましい。難燃性樹脂組成物の機械的特性の低下を抑制するためには、これら無機不純物濃度を低く抑制することが好ましい。
 水酸化カルシウムの粒子径としては、JIS R9001:2006で定義される590μmの粉末度残分が実質的にないものが好ましい。より好ましくは149μmの粉末度残分が15質量%以下のものであり、更に好ましくは10質量%以下であり、より更に好ましくは5質量%以下である。好ましい平均粒子径としては、100μm以下であり、25μm以下であることがより好ましく、10μm以下であることが更に好ましく、5000nm以下がより更に好ましい。下限値としては、50nm以上であれば問題なく使用できる。ただし、例えば、顆粒化処理等により取扱い性を高めた場合においては、50nm以下の平均粒子径のものも好ましく使用可能である。
 上記特性は、工業用消石灰2号以上であれば、満足する可能性があるが、純度、数平均粒子径及び特異的な反応性を有する水酸化カルシウムとして、高反応性水酸化カルシウムと呼ばれる、BET比表面積が30m/g以上の水酸化カルシウムや、BET比表面積が30m/g以上でかつ、平均粒子径が5000nm以下の超微粒子水酸化カルシウムが有効である。
 本実施形態において使用可能な、酸化カルシウム(CaO)の純度は、本実施形態の特徴を損なわない範囲であれば、如何なる純度の物であっても構わない。
 一般的に流通している酸化カルシウムの例として、生石灰が挙げられる。生石灰は、日本工業規格において、工業用石灰(JIS R9001:2006)として種々の特性が規定されている。
 炭酸カルシウムとして、工業用生石灰を用いる場合の、該生石灰中の好ましい酸化カルシウムの純度は、工業用消石灰2号以上の純度である。好ましい純度は、消石灰中に酸化カルシウムとして80質量%以上である。より好ましくは、90質量%以上、更に好ましくは93質量%以上、より更に好ましくは、95質量%以上である。
 工業用生石灰に含まれる、他の成分としてはCO、SiO、Al、Fe、MgO等が挙げられるが、これの中でも、SiO、Al、Fe、MgO合計の含有量は、生石灰中において10質量%以下であることが好ましく、5質量%以下であることが更に好ましく、3質量%以下であることがより更に好ましい。難燃性樹脂組成物の機械的特性や、難燃性の低下を抑制するためには、これら無機不純物濃度を低く抑制することが好ましい。
 酸化カルシウムの平均粒子径は、100μm以下であることが好ましく、25μm以下であることがより好ましく、10μm以下であることが更に好ましく、5μm以下であることがより更に好ましい。下限値としては、50nm以上であれば特に問題なく使用できる。高い腐食抑制効果を発現し、かつ難燃性樹脂組成物の高い機械的強度を維持するため、平均粒子径は100μm以下であることが好ましい。また、取扱い性を悪化させないためには平均粒子径は50nm以上であることが好ましい。ただし、例えば、顆粒化処理等により取扱い性を高めた場合においては、50nm以下の平均粒子径のものも好ましく使用可能である。
 本実施形態には(D)成分として、無機充填材を更に含むことが機械物性向上及び耐熱性向上の観点から好ましい。
 本実施形態において使用可能な無機充填材としては、ガラス繊維、チタン酸カリウム繊維、石膏繊維、黄銅繊維、ステンレス繊維、スチール繊維、セラミックス繊維、ボロンウィスカ繊維、マイカ、タルク、シリカ、炭酸カルシウム、カオリン、焼成カオリン、ウォラストナイト、ゾノトライト、アパタイト、ガラスビーズ、ガラスフレーク、酸化チタン、着色用カーボンブラック等の繊維状、粒状、板状、あるいは針状の無機質強化材が挙げられる。これら無機充填材は2種以上組み合わせて用いても構わない。これらの中でより好ましい無機充填材としては、ガラス繊維、炭素繊維、ガラスビーズ、タルク、マイカ、ワラストナイト、カオリンが挙げられる。また、無機充填材はシランカップリング剤等の表面処理剤を用いて公知の方法で表面処理した物を用いても構わない。
 (D)成分の無機充填材の使用量は、機械的強度や耐熱性付与を目的として好ましい上限値は、難燃性樹脂組成物を100質量%とした場合において、65質量%であり、より好ましくは55質量%であり、更に好ましくは50質量%であり、より更に好ましくは45質量%である。好ましい下限値としては、難燃性樹脂組成物を100質量%とした場合において、5質量%であり、より好ましくは10質量%であり、更に好ましくは20質量%である。押出機や成形機等の金属磨耗を引き起こさないため、金属腐食を更に悪化させないためには、無機充填材の配合上限値は65質量%とすることが好ましく、より高い熱変形温度や機械的強度を付与するためには5質量%を下限値とすることが好ましい。
 特定の無機フィラーは、ポリアミドの核剤として作用する。ポリアミド核剤として作用する無機充填材の例を挙げると、マイカ、タルク、シリカ、炭酸カルシウム、カオリン、ワラストナイト、アパタイト、ガラスフレーク、酸化チタン等が挙げられる。これら無機充填材を本組成物に核材として添加する場合の好ましい上限値は、難燃性樹脂組成物を100質量%とした場合において、5質量%であり、より好ましくは3質量%であり、更に好ましくは、2質量%であり、より更に好ましくは1質量%である。好ましい下限値としては、難燃性樹脂組成物を100質量%とした場合において、0.05質量%であり、より好ましくは0.1質量%であり、更に好ましくは0.5質量%である。難燃性樹脂組成物の耐衝撃性を悪化させないためには、無機充填材の配合上限値は5質量%とすることが望ましく、ポリアミドの結晶化速度を効果的に高めるためには、0.5質量%を下限値とすることが好ましい。
 本実施形態の難燃性樹脂組成物には、本実施形態の特徴を損なわない範囲で(B)成分以外の難燃剤を更に含んでもよい。この場合の難燃剤としても、実質的に臭素と塩素を含まない無機又は有機の難燃剤がより好ましい。
 本実施形態における実質的に臭素と塩素を含まないとは、難燃剤中の臭素及び塩素の合計濃度が1質量%未満の量のことを指す。より好ましくは、5000ppm未満であり、更に好ましくは1000ppm未満である。この場合の下限値はゼロである。本実施形態における臭素及び塩素の含有量の測定は、社団法人日本プリント回路工業会(JPCA)が定めたJPCA-ES01(ハロゲンフリー銅張積層板試験方法)に準拠し測定できる。その分析方法は、フラスコ燃焼処理イオンクロマトグラフ法によって行うことができる。
 本実施形態の難燃性樹脂組成物に含ませてもよい他の難燃剤の具体例としては、含窒素化合物、含亜鉛化合物、水酸化マグネシウムや水酸化アルミニウム等に代表される公知の無機難燃剤、トリフェニルフォスフェートや水酸化トリフェニルフォスフェート、ビスフェノールAビス(ジフェニルホスフェート)等に代表される有機リン酸エステル類、特開平11-181429号公報に記載されてあるようなホスファゼン系化合物、シリコーンオイル類、赤燐やその他公知の難燃剤が挙げられる。
 ホスファゼン化合物は、下記一般式(6)で示される環状及び直鎖状の構造を有するものであるが、環状構造化合物が好ましく、n=3及び4の6員環及び8員環のフェノキシホスファゼン化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000014

 
 (式中、R、Rは、それぞれ独立に、炭素数1~20の脂肪族基又は芳香族基を表し、nは3以上の整数である。)
 これらの化合物は、フェニレン基、ビフェニレン基及び下記一般式(7)で表される基からなる群より選ばれる1種以上の架橋基によって架橋されていてもよい。
Figure JPOXMLDOC01-appb-C000015
 (式中、Tは、-C(CH-、-SO-、-S-又は-O-を表す。)
 一般式(6)で表されるホスファゼン化合物は、公知の化合物であり、例えば、James E.Mark,Harry R.Allcock,Robert West著、“Inorganic Polymers”,Prentice-Hall International,Inc.,1992, P61-140に記載されている。
 上記ホスファゼン化合物を得るための合成例は、特公平3?73590号公報、特開平9?71708号公報、特開平9?183864号公報及び特開平11?181429号公報等に記載されている。
 例えば、非架橋環状フェノキシホスファゼン化合物の合成においては、H.R.Allcock著、“Phosphorus-NitrogenCompounds”,Academic Press,Inc.,(1972)に記載の方法に準じて、ジクロルホスファゼンオリゴマー(3量体62%、4量体38%の混合物)1.0ユニットモル(115.9g)を含む20%クロルベンゼン溶液580gに、ナトリウムフェノラートのトルエン溶液を撹拌下で添加した後、110℃で4時間反応させ、精製後、非架橋環状フェノキシホスファゼン化合物が得られる。
 本実施形態のリン系難燃剤としてはホスファゼン化合物が好ましい。ホスファゼン化合物は、化合物中のリン含有量が通常のリン酸エステル化合物よりも高いため、少量の添加でも十分な難燃性を確保でき、かつ加水分解性や熱分解性にも優れるため、その結果、難燃性樹脂組成物の物性低下が抑えられるので好ましい。更に、酸価が0.5以下のホスファゼン化合物が難燃性、耐水性及び電気特性面からより好ましい。
 本実施形態においては、滴下防止剤として知られるテトラフルオロエチレン等に代表されるフッ素系ポリマーも、難燃性樹脂組成物中に2質量%未満の量であれば使用可能である。
 本実施形態の難燃性樹脂組成物は、本実施形態の特徴を損なわない範囲で、含窒素化合物を含んでもよい。含窒素化合物として好ましい化合物としては、メラミンとリン酸とから形成される付加物が挙げられる。
 メラミンとリン酸とから形成される付加物の具体例としては、(i)メラミンとポリリン酸との反応生成物、及び/又はメラミンの縮合物とポリリン酸との反応生成物、(ii)式(NH(3-y)PO若しくは(NHPO(式中、yは1~3であり、そしてzは1~10000である)で表される窒素含有リン酸塩、リン酸水素アンモニウム、リン酸二水素アンモニウム、及び/又はポリリン酸アンモニウムから選ばれる1種以上、が挙げられる。
 化学式(C・HPO、(式中、nは縮合度を表す)で示されるもので、これらの中でも、(i)メラミンと、(ii)リン酸、ピロリン酸、ポリリン酸の少なくともいずれかと、の実質的に等モルの反応生成物から得られるものが好ましく使用可能である。
 より具体的には、ピロリン酸ジメラミン、ポリリン酸メラミン、ポリリン酸メレム、ポリリン酸メラム、ポリリン酸メロン、これらの混合ポリ塩から選ばれる1種以上が挙げられる。これらの中でもより好ましいのは、ポリリン酸メラミンである。
 これらの製法には特に制約はなく、一例を挙げると、リン酸メラミンを窒素雰囲気下、加熱縮合する方法等が挙げられる。リン酸メラミンを構成するリン酸としては、具体的にはオルトリン酸、亜リン酸、次亜リン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等が挙げられるが、特にオルトリン酸、ピロリン酸を用いたメラミンとの付加物を縮合したポリリン酸メラミンが難燃剤としての効果が高く好ましい。
 また、ポリリン酸メラミンの縮合度nを5以上にすることにより、耐熱性が高くなるので好ましい。
 ポリリン酸メラミンはメラミンとポリリン酸の等モルの付加塩であってもよく、メラミンとの付加塩を形成するポリリン酸としては、いわゆる縮合リン酸と呼ばれる鎖状ポリリン酸、環状ポリメタリン酸が挙げられる。これらポリリン酸の縮合度nには特に制約はなく通常3~50であるが、得られるポリリン酸メラミン付加塩の耐熱性の点でここに用いるポリリン酸の縮合度nは5以上が好ましい。
 ポリリン酸メラミン付加塩の製造方法は、例えば、水中にメラミンとポリリン酸を混合したものが分散したスラリーとし、それをよく混合して両者の反応生成物を微粒子状に形成させた後、このスラリーを濾過、洗浄、乾燥し、さらに必要であれば焼成し、得られた固形物を粉砕して粉末として得る方法が挙げられる。
 メラミンとリン酸とから形成される付加物は、本実施形態の効果を損なわなければ、未反応物あるいは副生成物が残存・混在していても構わない。
 本実施形態で使用可能な含亜鉛化合物とは、特に限定されず、ステアリン酸亜鉛等の有機含亜鉛化合物、及び酸化亜鉛等の無機含亜鉛化合物のすべてを包含するが、これらの中で好ましい含亜鉛化合物は無機含亜鉛化合物である。その中でも、酸化亜鉛、硫化亜鉛、ホウ酸亜鉛、スズ酸亜鉛から選ばれる1種以上がより好ましく、αZnO・βB・γHO(α>0、β>0、γ≧0)で表されるホウ酸亜鉛が更に好ましい。更に好ましい具体例としては、2ZnO・3B・3.5HO、4ZnO・B・HO、及び2ZnO・3Bで表されるホウ酸亜鉛から選ばれる1種以上である。
 含亜鉛化合物は、難燃助剤として燃焼時に熱源である炎から樹脂への熱を遮断すること(断熱能力)によって、樹脂の分解で燃料となるガスの発生を抑制し、難燃性を高めるのに必要な不燃層(又は炭化層)の形成する役割を果たす。これらの含亜鉛化合物はシラン系カップリング剤、チタネート系カップリング剤等の表面処理剤で処理されていてもよい。
 含亜鉛化合物の好ましい含有量は、ホスフィン酸塩類100質量部に対し、0.1~15質量部である。より好ましくは1~10質量部であり、更に好ましくは2~7質量部である。難燃剤の安定性を高める観点から、含亜鉛化合物が上述した範囲内にあることが好ましい。
 本実施形態の難燃性樹脂組成物においては、上述したものの他に、公知の有機・無機安定剤も使用できる。
 有機安定剤の例としては、「イルガノックス1098」(チバ・ジャパン製)等に代表されるヒンダードフェノール系酸化防止剤、「イルガフォス168」(チバ・ジャパン製)等に代表されるリン系加工熱安定剤、「HP-136」(チバ・ジャパン製)に代表されるラクトン系加工熱安定剤、イオウ系耐熱安定剤、ヒンダードアミン系光安定剤等が挙げられる。これらの中では、ヒンダードフェノール系酸化防止剤、リン系加工熱安定剤、あるいはそれらの併用がより好ましい。
 無機安定剤としては、酸化亜鉛、硫化亜鉛、上述した銅化合物等の金属系安定剤が挙げられる。
 安定剤の好ましい配合量は、熱可塑性樹脂100質量部に対して、0.001~5質量部であり、より好ましくは0.01~3質量部である。
 本実施形態の難燃性樹脂組成物には、種々の導電用フィラーを用いることができる。例えば、導電用カーボンブラック、カーボンナノチューブ(カーボンフィブリル)、グラファイト、炭素繊維等が挙げられる。これらは、2種以上の混合物で用いても構わない。これらの中でも、導電用カーボンブラック、カーボンナノチューブ(カーボンフィブリル)が好ましい。
 導電用フィラーの配合量としては、難燃性樹脂組成物を100質量%としたとき、好ましくは0.5~20質量%の範囲である。より好ましくは1~10質量%、更に好ましくは1~5質量%である。より更に好ましくは1~3質量%である。
 本実施形態において、導電性フィラーの添加方法に特に制限はないが、好ましい方法としては導電用フィラーをポリアミド中にあらかじめ溶融混練した導電用マスターバッチの形態で添加する方法が挙げられる。この際、マスターバッチ中の導電用フィラーの好ましい配合量としては、導電用マスターバッチを100質量%とした場合、5~30質量%である。導電用フィラーとして導電用カーボンブラックを用いた際は、5~15質量%がより好ましく、8~12質量%が更に好ましい。
 導電用フィラーとして、カーボンナノチューブ(カーボンフィブリル)、グラファイト、炭素繊維を含む導電用カーボンブラック以外の導電用フィラーを用いた場合は、その配合量は10~30質量%が好ましく、15~25質量%がより好ましい。
 導電用マスターバッチの製造方法としては、二軸押出機を用いて製造する方法が好ましい。特に導電用フィラーを溶融したポリアミド中に添加して更に溶融混練する方法が好ましい。
 本実施形態では、上記した成分のほかに、本実施形態の効果を損なわない範囲で必要に応じて付加的成分を任意の段階で添加しても構わない。
 付加的成分の例としては、ポリエステル、ポリオレフィン等の他の熱可塑性樹脂、可塑剤(低分子量ポリオレフィン、ポリエチレングリコール、脂肪酸エステル類等)及び、帯電防止剤、核剤、流動性改良剤、充填剤、補強剤、各種過酸化物、展着剤、銅系熱安定剤、ヒンダードフェノール系酸化劣化防止剤に代表される有機系熱安定剤、酸化防止剤、紫外線吸収剤、光安定剤等である。
 これらの成分の具体的な好ましい添加量は、難燃性樹脂組成物中にそれぞれ10質量%以下である。より好ましい添加量は5質量%未満であり、更に好ましくは3質量%以下である。
 本実施形態の難燃性樹脂組成物を得るための具体的な加工機械としては、例えば、単軸押出機、二軸押出機、ロール、ニーダー、ブラベンダープラストグラフ、バンバリーミキサー等が挙げられるが、これらの中でも二軸押出機が好ましく、特に、上流側供給口と1カ所以上の下流側供給口を備えた二軸押出機がより好ましい。
 本実施形態の製造方法としては、本実施形態の効果を発現するのであれば特に制限はないが、以下に好ましい例を説明する。
(1)二軸押出機を用い、熱可塑性樹脂、ホスフィン酸塩類、塩基性化合物を一括で供給し、更に溶融混練する方法。
(2)上流側及び下流側に1ヶ所ずつの供給口を有する二軸押出機を用い、上流側供給口より熱可塑性樹脂と塩基性化合物を供給し溶融混練し、下流側供給口よりホスフィン酸塩類を供給し、更に溶融混練する方法。
(3)上流側及び下流側に1ヶ所ずつの供給口を有する二軸押出機を用い、上流側供給口より熱可塑性樹脂を供給し溶融混練し、下流側供給口よりホスフィン酸塩類、塩基性化合物を混合した混合物を供給し、更に溶融混練する方法。
 本実施形態の難燃性樹脂組成物又はその成形体等を得るための、単軸又は二軸以上の押出機内、及び射出成形機内での溶融混練温度(加熱加工時の難燃性樹脂組成物の樹脂温度)は、本実施形態の効果を損ねない範囲であれば、限定されるものではないが、200~360℃の範囲とすることが好ましい。360℃以下にすることにより、熱可塑性樹脂の劣化が抑制可能となり好ましく、340℃以下であれば更に好ましい。
 加工時の押出機の回転数は、150~800rpmが好ましく、250~700rpmがより好ましい。ホスフィン酸塩類の分散性を効率よく高めるためには回転数は150rpm以上とし、樹脂の分解を抑制するためには800rpm以下とすることが好ましい。
 本実施形態の難燃性樹脂組成物としては、0.8mm、1.6mm、3.2mm厚み試験片におけるUL94VBに準拠して垂直接炎で測定した総燃焼時間が250秒以下であるものが、各種用途に好適に用いることができる。より好ましくは、同じ測定方法に則り、滴下による綿着火がない難燃性を持つことであり、更に好ましくは総燃焼時間が50秒以下である。
 本実施形態の難燃性樹脂組成物は、耐熱性、難燃性、押出加工性、射出成形安定性に優れ、さらに、金属への腐食性が低く、機械物性及び成型加工性に優れている。そして、本実施形態の難燃性樹脂組成物は、電気・電子部品分野における表面実装技術(SMT)で使われるリフロー装置に対応可能であり、好ましくは最高温度250℃のリフロー炉に対応可能であり、更に好ましくは260℃以上のリフロー炉に対応可能である。
 本実施形態の難燃性樹脂組成物は、特に電気電子部品及び自動車用電気電子部品に好適に使用可能である。中でも特に、特に表面実装技術(SMT)対応部品へ好適に使用可能である。表面実装技術(SMT)対応部品として、耐熱コネクターやジャックへ好適に使用可能である。
 次に、以下の実施例によって本実施形態を更に詳細に説明するが、本実施形態は以下の実施例に限定されるものではない。
 実施例及び比較例に用いた原材料及び測定方法を以下に示す。
(使用した樹脂)
(ポリフェニレンエーテル)
・ポリフェニレンエーテル(PPE-1):旭化成ケミカルズ(株)より入手したザイロン(登録商標) S201A
  還元粘度ηsp/c:0.51dl/g
・2,6-ジメチルフェノールから構成される重合体ポリフェニレンエーテル(PPE-2):旭化成ケミカルズ(株)より入手したザイロン(登録商標) S202A
  還元粘度ηsp/c:0.42dl/g
  2,6-ジメチルフェノールから構成される重合体
・ポリフェニレンエーテル(PPE-3):特公昭60-34571号公報に従い重合したポリフェニレンエーテル
  還元粘度ηsp/c:0.32dl/g
  2,6-ジメチルフェノールから構成される重合体
・ポリフェニレンエーテル共重合体(PPE-4):特願平6-245982号公報に従い重合したポリフェニレンエーテル共重合体
  還元粘度ηsp/c:0.53dl/g
  2,6-ジメチルフェノール(75質量%)と、2,3,6-トリメチルフェノール(25質量%)から構成される重合体
・無水マレイン酸で変性されたポリフェニレンエーテル(PPE-5):調製例に従い調整した無水マレイン酸変性ポリフェニレンエーテル
  還元粘度ηsp/c:0.43dl/g
[調製例]<PPE-5の製造>
 PPE-2を100質量部に対し、無水マレイン酸2質量部及びラジカル発生剤(「パーヘキサ25B」:日本油脂(株)社製)0.3質量部をドライブレンドし、シリンダー温度を320℃に設定した上流側に1カ所の供給口を有する二軸押出機[ZSK-25:コペリオン社(ドイツ国)製]へ供給し、溶融混練し、ペレット化した。
 次に、得られたペレットを1gとり、内側からポリテトラフロロエチレンシート、アルミシート、鉄板の順に重ねたものの間にはさみ、280℃に温度設定したプレス成形機を用い、100kg/cmで圧縮成形しフィルムを得た。
 得られたフィルムについて、日本分光社製FT/IR-420型フーリエ変換赤外分光光度計を用いて、赤外分光測定を行った。
 当該フィルムに対する測定では、1790cm-1に、ポリフェニレンエーテルに付加した、マレイン酸由来のピークが観測された。
 PPEとMAHの混合物を用いて、あらかじめ作成しておいた検量線式から計算されたMAHの付加率は、0.52質量%であった。
[スチレン系樹脂]
・ポリスチレンブロック-水素添加されたポリブタジエン-ポリスチレンブロック(SEBS-1)
 結合スチレン量:33%、
 ポリブタジエン部分の1,2-ビニル結合量:47%、
 ポリスチレン鎖の数平均分子量:29000、
 ポリブタジエン部の水素添加率:99.8%
・スチレンを主体とする重合体ブロック-スチレンとブタジエンのランダム共重合体を水添した水添ランダム共重合体ブロック(SOE)
 旭化成ケミカルズ(株)製、「S.O.E(登録商標)L605」
[ポリアミド]
・ポリアミド6,6(PA66)
 ソルーシアインク社(米国)製、「バイダイン(登録商標)48BX」
・ポリアミド9T:テレフタル酸とノナメチレンジアミン及び2-メチル-1,8-オクタメチレンジアミンからなる芳香族ポリアミド(PA9T-1)
 融点:308℃、
 粘度数:150ml/g
 末端封止率:90%、
 末端アミノ基濃度:19μmol/g
 国際公開第2007/058169号公報実施例のポリアミド9Tの製造に従い、調製した。
・ポリアミド9T:テレフタル酸とノナメチレンジアミン及び2-メチル-1,8-オクタメチレンジアミンからなる芳香族ポリアミド(PA9T-2)
 融点:304℃、
 粘度数:210ml/g、
 末端封止率:90%、
 末端アミノ基濃度:50μmol/g
 国際公開第2007/058169号公報実施例のポリアミド9Tの製造に従い、調製した。
・ポリアミド6T/66:ヘキサメチレンジアミンと、テレフタル酸及びアジピン酸からなる芳香族ポリアミド(PA6T/66)
 融点:314℃
 末端アミノ基濃度:80μmol/g
 商品名:「アモデルA-4000(ソルベイアドバンスドポリマーズ社製)」
 得られた芳香族ポリアミドの融点は、示差走査熱量測定装置(パーキンエルマー社製、商品名:DSC-7)を用いて、ポリアミドペレットを、40℃から50℃/分で、340℃まで昇温し、2分間保持し、ポリアミドを充分溶融させた後、20℃/分で40℃まで降温し、2分間保持し、その後、20℃/分の速度で昇温する際に観測された吸熱ピークのピークトップ温度を融点として測定した。
 芳香族ポリアミドの粘度数は、ISO307に準拠して96%硫酸中で測定した値である。
 得られた芳香族ポリアミドの末端封止率と末端基濃度の測定は、1H-NMR(500MHz,重水素化トリフルオロ酢酸中、50℃で測定)を用い、各末端基の特性シグナルの積分値よりカルボキシル基末端、アミノ基末端および封止末端の数をそれぞれ測定し、下記式から末端封止率を求めた。
 末端封止率(%)=[(α-β)/α]×100
(式中、αは分子鎖の末端基の総数を表し、βは封止されずに残ったカルボキシル基末端及びアミノ基末端の合計数を表す。)
[ポリアリーレンスルフィド]
・ポリフェニレンスルフィド(PPS-1):架橋タイプポリ(p-フェニレンスルフィド)
 溶融粘度:130Pa・s(剪断速度100秒-1、300℃)、
 オリゴマー量:0.6質量%
・ポリフェニレンスルフィド(PPS-2):半架橋タイプポリ(p-フェニレンスルフィド)
 溶融粘度:140Pa・s(剪断速度100秒-1、300℃)、
 オリゴマー量:0.5質量%
・ポリフェニレンスルフィド(PPS-3):リニアタイプポリ(p-フェニレンスルフィド)
 溶融粘度:110Pa・s(剪断速度100秒-1、300℃)、
 オリゴマー量:0.3質量%
[ホスフィン酸金属塩]
 ジエチルホスフィン酸アルミニウム(FR-1):クラリアント社製、エクソリットOP930
[その他難燃剤]
・ポリリン酸メラミン(FR-2):日産化学工業(株)製、「PHOSMEL-200」
[塩基性化合物]
・水酸化カルシウム(CAOH-1):試薬(和光純薬工業社(株)製)
 数平均粒子径:7.5μm、特号消石灰同等品、純度97%
・水酸化カルシウム(CAOH-2):鈴木工業(株)製、微粒子水酸化カルシウム(カルテック)
 数平均粒子径:5.0μm、純度99%
・水酸化カルシウム(CAOH-3):鈴木工業(株)製、微粒子水酸化カルシウム(カルテックLT) 
 数平均粒子径:1.5μm、純度99%
・酸化カルシウム(CAO-1):試薬(和光純薬工業社製)
 数平均粒子径:25μm、JIS2号生石灰相当品
・酸化カルシウム(CAO-2):試薬(和光純薬工業社製)
 数平均粒子径:10μm、JIS特号生石灰相当品
・酸化亜鉛(ZNO):東邦亜鉛(株)社製、「銀嶺A-1」
 数平均粒子径:0.2μm
・水酸化アルミニウム(ALOH):試薬(和光純薬工業(株)製)
 数平均粒子径:1.0μm
・酸化マグネシウム(MGO):協和化学工業(株)製、「パイロキスマ(登録商標)5Q」
 数平均粒子径:1.3μm
・酸化アルミニウム(ALO):試薬(和光純薬工業(株)製)
 数平均粒子径:1.2μm
・ハイドロタルサイト(DHT):協和化学工業(株)製、「DHT-4A」
 数平均粒子径:4μm
[無機充填材]
・チョップドガラス繊維(GF):日本電気硝子(株)製、「ECS03-T747H」
 繊維直径:10μm
・タルク(Talc):林化成(株)製、「タルカンパウダーPK-C」
[相溶化剤]
・無水マレイン酸(MAH):日本油脂(株)製、「クリスタルMAN-AB」
・クエン酸(CA):試薬(和光純薬工業(株))
・スチレン/グリシジルメタクリレート共重合体(SG-C)
 グリシジルメタクリレートの含有量:5質量%
 重量平均分子量:110,000
[測定方法]
(1)難燃性(UL-94VB)
 UL94(米国Under Writers Laboratories Incで定められた規格)の方法を用いて、1サンプル当たりそれぞれ5本ずつ測定を行った。試験片(長さ127mm、幅12.7mm、厚み0.8mm、厚み1.6mm、又は厚み3.2mmは射出成形機(東芝機械(株)製:IS-80EPN)を用いて成形した。成型時の温度は表1~9にそれぞれ示した。
 難燃等級には、UL94垂直燃焼試験によって分類される難燃性のクラスを示した。ただし、全てのサンプルで試験は5本行い判定した。分類方法の概要は以下の通りである。その他詳細はUL94規格に準じる。
 V-0:総燃焼時間50秒以下、1本あたりの最大燃焼時間10秒以下、有炎滴下なし
 V-1:総燃焼時間250秒以下、1本あたりの最大燃焼時間30秒以下、有炎滴下なし
 V-2:総燃焼時間250秒以下、1本あたりの最大燃焼時間30秒以下、有炎滴下あり
 規格外:上記3項目に該当しないもの及び、試験片を保持するクランプまで燃え上がってしまったもの
 総燃焼時間(秒)とは、各サンプル試験片5本に対し、各2回接炎した計10回接炎後、消炎に至るまでの時間の合計燃焼時間であり、最大燃焼時間(秒)は、消炎に至るまでの時間が最も長かった時間を表している。
(2)物性測定
 得られた難燃性樹脂組成物ペレットを、射出成形機(東芝機械(株)製:IS-80EPN)を用い、厚み4.0mm、のISO多目的試験片を成形した。成型時の温度は表1~9にそれぞれ示した。曲げ強さ(FS)及び曲げ弾性率(FM)はISO178に従い、引張強さ(TS)及び引張破断点伸び(EL)はISO527/1/2に従い、ノッチ付きシャルピー衝撃試験はISO179/1eAに従い測定した。また、0.45MPaの荷重下及び1.80MPa荷重下における荷重たわみ温度は、ISO 75に準拠し測定した。
(3)腐食試験
 得られたペレットを、耐圧2.0MPa、内容量100mlのSUS314製オートクレーブに20g入れ、サイズ縦×横×厚みが10mm×20mm×2.0mmで表面を#2000研磨した炭素鋼(材質:SS400)試験片を入れ、ペレットをさらに20g入れ、炭素鋼試験片を埋没させる。オートクレーブ内部を窒素置換した後、密閉し、330℃に設定した恒温槽に5時間、静置した。流水下にオートクレーブを取出し、室温まで冷却しオートクレーブを開放した。
 溶融固化したペレット中から、炭素鋼試験片を取出し、HFIP(ヘキサフルオロイソプロパノール)や熱トルエンを適宜用い炭素鋼試験片に付着した樹脂を溶解除去した。
 また、溶剤による溶解除去が困難なPPS等の熱可塑性樹脂の場合には、700℃の加熱炉で60分間、過熱し樹脂を加熱分解し、冷却後蒸留水中で超音波洗浄を行い付着物を除去した。なお加熱分解による炭素鋼試験片の酸化による重量増は、未試験の炭素鋼試験片を用い同条件で加熱しリファレンスとした。
 炭素鋼試験片を乾燥し、0.01mg単位まで秤量し、予め測定しておいた、腐食試験前の炭素鋼試験片重量で除算し、試験前後の重量減少率を質量ppmで求めた。
(4)リフロー試験
 燃焼試験にて成形したのと同じ試験片を作成し、23℃、50%相対湿度で168時間吸湿させた後、各温度条件で10秒間加熱されるよう設定したリフロー炉を通し、リフロー環境下での試験片変化を観察し試験片表面に膨れが発生しない最高温度を測定した。
 なお、250℃の加熱条件をクリア出来ないものは、鉛フリーはんだを使用する高温リフロー炉に対応が困難である。
(5)押出加工性
 2軸押出機での組成物製造時の様子を観察し評価した。
 ○:不具合が無い場合。
 △:不具合を各表下に記した。
 × :不具合を各表下に記した。
 ×× :不具合を各表下に記した。
(6)射出成型安定性
 得られたペレットを、射出成形機(ソディックプラステック社製:TR05EH2 型締圧力5トン)を用いて、FPCコネクター(長さ30mm、幅1mm、2個取り、50ピン穴、ピン穴ピッチ:0.5ミリピッチ)金型を用い、表1~9にそれぞれ示した成形温度条件で、射出速度300mm/secで成型した。最初の10ショットの平均射出圧力と100~109ショット目の平均射出圧力を比較し、射出成型の安定性を評価した。
 射出圧力がプラスに変化する場合、成型を継続すると金型への未充填等の不具合が生じる可能性がある。
 射出圧力がマイナスに変化する場合、樹脂の分解による物性低下やバリの生成による不良発生の原因となる。
(7)成型片表面の光沢
 射出成形機(東芝機械(株)製:IS-80EPN)を用い、厚み2.7mm、100mm×100mmの平板試験片を充填時間1秒になる射出圧力・速度条件とし成形温度は表1~9にそれぞれ示した条件にて成形した。
 得られた成型片の中心と4つの角から対角線上に3cm内側の点、計5箇所を堀場製作所製光沢計を用い、入射角20°の光源にて光沢度を測定した。
 数値が高いほど光沢がよい。
(8)フィルム成形によるメヤニの発生の有無
 得られたペレットを、二軸押出フィルム成形機(テクノベル(株)製、「KZW15TW-25MG-NH」、スクリュー径15mm)を用い、シリンダー温度220℃、巾150mmのTダイス、40℃に設定した第一ロール(材質:耐熱ゴムロール)と90℃に設定した第2ロール(材質:金属ロール)を用い、押出フィルム成形を実施した。厚みを400μmに調整した。
 上記シート成形を実施し、ダイスリップに蓄積される褐色~黒色のものを観察することにより、以下の判断基準に基づいて、メヤニの発生状況を判断した。
○:1.5時間以上連続成形しても、メヤニが全く観察されなかった。
×:1.5時間経たないうちに、メヤニが観察された。
(9)シートの難燃性(UL-94VTM)
 UL94(米国Under Writers Laboratories Incで定められた規格)の方法を用いて、各サンプル5本づつ試験を行った。試験片はフィルム試験片(200±5×50±1×0.4mm)を円筒状に巻き、クランプに垂直に取付け、20mm炎による3秒間接炎を2回行い、その燃焼挙動によりVTM-0、VTM-1、VTM-2、Not(規格外)の判定を行う。
 VTM-0:総燃焼時間50秒以下、1本あたりの最大燃焼時間10秒以下、有炎滴下なし
 VTM-1:総燃焼時間250秒以下、1本あたりの最大燃焼時間30秒以下、有炎滴下なし
 VTM-2:総燃焼時間250秒以下、1本あたりの最大燃焼時間30秒以下、有炎滴下あり
 規格外:上記3項目に該当しないもの、及び試験片を保持するクランプまで燃え上がってしまったもの。
[実施例及び比較例]
 上流側に1ヶ所と、下流側に2ヶ所の供給口(押出機シリンダーの全長を1.0とした時、0.4の位置に1ヶ所、0.8の位置に1ヶ所)を有する二軸押出機[ZSK-26MC:コペリオン社製(ドイツ)]を用いた。シリンダー温度は上流側供給口(以下、上流供給口)よりL=0.4の位置の供給口(以下、中央供給口)までと、中央供給口より下流側に分け、各表中に示した温度に設定した。
 表1~9に記載の割合に従い、それぞれの原材料を供給し、溶融混練してペレットを得た。得られたペレットの水分率を調整するため、押出後、80℃に設定した除湿乾燥機中で乾燥した後、アルミニウムコートされた防湿袋に入れた。この時のペレットの水分率は概ね250~500ppmであった。
 なお、このときのスクリュー回転数は250回転/分とし、吐出量は15kg/hとした。また、中央供給口のあるシリンダーブロックの直前のブロックと、ダイ直前のシリンダーブロックにそれぞれ開口部を設け、真空吸引することにより残存揮発分及オリゴマーの除去を行った。この時の真空度(絶対圧力)は60Torrであった。
 得られたペレットを用いて、上述の各種評価を実施した。表1~表9に組成とともに結果を示す。
Figure JPOXMLDOC01-appb-T000016
 実施例1~5は、難燃性に優れ、腐食性も充分に低く、射出成型時の安定性も優れていた。比較例1は、難燃性と低温リフロー耐性は問題なかったが、腐食性が大きかった。比較例2,3は、難燃性と腐食性は問題なかったが、押出加工性と射出成型安定性は劣っていた。比較例4は、難燃性が劣るほか、評価用ペレットの採取が困難なほど押出加工時にストランド切れが多発し、さらに射出成型安定性も非常に悪かった。
Figure JPOXMLDOC01-appb-T000017
 実施例6~10は、難燃性に優れ、腐食性も充分に低く、射出成型時の安定性も優れていた。比較例5,6は腐食性が非常に大きかった。比較例7~9は腐食性に問題はなかったが、押出加工性と射出成型安定性に劣っていた。また、吸水後のリフロー試験での耐熱性が著しく低下した。
Figure JPOXMLDOC01-appb-T000018
 実施例11~19は難燃性に優れ、腐食性も充分に低く、射出成型時の安定性も優れていた。比較例10~12は腐食性が非常に大きかった。比較例13~14は腐食性に問題はないが、押出加工性と射出成型安定性に欠ける。また吸水後のリフロー試験での耐熱性が著しく低下する。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 実施例20~36は難燃性に優れ、腐食性も充分に低く、リフロー試験での耐熱性も高く、射出成型時の安定性も優れていた。特に、実施例27と28に注目すると、塩基性化合物の数平均粒子径が25μmを下回ると、腐食性が顕著に抑制されることが示された。
 これら実施例は、比較例15~18と比較すると、特定配合量の範囲においてのみ、腐食抑制、耐リフロー性、難燃性、押出加工性、成型安定性の全てが優れることが示された。
Figure JPOXMLDOC01-appb-T000022
 実施例37~41と実施例30の比較により、相溶化剤の種類、相溶化剤の量又は、変性されたポリフェニレンエーテルに代えても優れた効果を有することが示された。また、ポリアミド種によらず優れた効果を有することが示された。
 実施例40,41と実施例24,30の比較により、特定粘度のポリフェニレンエーテルを用いると、各特性がより顕著に向上することが示された。
Figure JPOXMLDOC01-appb-T000023
 熱可塑性樹脂にPPS及びPPEを用い、SEBS-1とSG-Cにより相溶化した場合において、本実施形態の難燃剤及び塩基性化合物を用いると、難燃性及び腐食抑制に優れるとともに、押出加工性及び成型安定性が優れることが示された。
Figure JPOXMLDOC01-appb-T000024
 実施例47~49及び比較例21を比較すれば、実施例47~49は押出加工時のストランドが安定し、難燃性試験、表面光沢試験及び腐食性試験のいずれもが比較例21より優れていた。比較例21は押出時にストランドの発泡が認められた。
 実施例47,48及び比較例26,27で得たペレットをシート成形し、シート成形によるメヤニ評価と難燃性評価を行った。
 実施例50,51は押出加工性に優れ、シート作成時のメヤニの発生も認められなかった。また、シートの難燃性(UL-94VTM)にも優れる。
 本出願は、2008年3月3日に日本国特許庁へ出願された日本特許出願(特願2008-052560)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の難燃性樹脂組成物は、難燃性、耐熱性、押出加工性、及び射出成型安定性に優れ、金属への腐食性が著しく低減され、高温リフロー炉耐性に優れ、さらに機械的物性に優れるため、特に電気電子部品及び自動車用部品等に好適に使用可能である。これらの中でも特に表面実装技術(SMT)に対応可能な電気電子部品としてより好適に使用可能である。

Claims (19)

  1.  (A)熱可塑性樹脂と、
     (B)下記一般式(I)で表されるホスフィン酸塩、下記一般式(II)で表されるジホスフィン酸塩及びこれらの縮合物の中から選ばれる少なくとも1種のホスフィン酸塩類と、
     (C)塩基性化合物と、を含む難燃性樹脂組成物であって、
     前記(B)成分100質量部に対し、前記(C)成分を0.01~10質量部含む、難燃性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式中、R及びRは、同一又は異なっていてもよく、直鎖状若しくは分岐状のC~C-アルキル及び/又はアリール若しくはフェニルであり、Rは、直鎖状若しくは分岐状のC~C10-アルキレン、C~C10-アリーレン、C~C10-アルキルアリーレン又はC~C10-アリールアルキレンであり、Mはカルシウム(イオン)、マグネシウム(イオン)、アルミニウム(イオン)、亜鉛(イオン)、ビスマス(イオン)、マンガン(イオン)、ナトリウム(イオン)、カリウム(イオン)及びプロトン化された窒素塩基から選ばれる1種以上であり、mは、2又は3であり、nは、1~3の整数であり、xは、1又は2である。)
  2.  前記(C)塩基性化合物が、数平均粒子径100nm~25μmであり、周期律表第IIA族元素及びアルミニウムから選ばれる1種以上の元素の水酸化物、酸化物から選ばれる1種以上である、請求項1に記載の難燃性樹脂組成物。
  3.  前記(C)塩基性化合物が、カルシウム、マグネシウム、アルミニウムから選ばれる1種以上の水酸化物、酸化物から選ばれる1種以上である、請求項1に記載の難燃性樹脂組成物。
  4.  前記(C)塩基性化合物が、数平均粒子径100nm~25μmである水酸化カルシウム、及び/又は酸化カルシウムである、請求項1に記載の難燃性樹脂組成物。
  5.  前記(C)塩基性化合物が、数平均粒子径100nm~10μmの水酸化カルシウムである、請求項1に記載の難燃性樹脂組成物。
  6.  前記水酸化カルシウムが、数平均粒子径100nm~5000nmの水酸化カルシウムである、請求項5に記載の難燃性樹脂組成物。
  7.  前記(B)成分100質量部に対して、前記(C)成分0.2~5質量部を含有する、請求項1に記載の難燃性樹脂組成物。
  8.  前記(A)熱可塑性樹脂が、ポリフェニレンエーテル、スチレン系樹脂、オレフィン系樹脂、ポリエステル(ポリブチレンテレフタレート、ポリプロピレンテレフタレート、液晶ポリエステル類)、ポリアミド、ポリアリーレンスルフィド、ポリアリレート、ポリエーテルサルフォン、ポリエーテルイミド、ポリサルフォン、ポリアリールケトン、及びこれらの混合物から選ばれる1種以上である、請求項1に記載の難燃性樹脂組成物。
  9.  前記(A)熱可塑性樹脂が、280℃以上の融点を有するポリアミドである、請求項8に記載の難燃性樹脂組成物。
  10.  前記(A)熱可塑性樹脂が、繰り返し構造単位中に芳香環を有するポリアミドである請求項8に記載の難燃性樹脂組成物。
  11.  前記ポリフェニレンエーテルが、2,6-ジメチルフェノールからなる単独重合体、又は2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとからなる共重合体である、請求項8に記載の難燃性樹脂組成物。
  12.  前記ポリフェニレンエーテルが、2,6-ジメチルフェノールと、2,3,6-トリメチルフェノールとからなる共重合体であり、該ポリフェニレンエーテル中の2,3,6-トリメチルフェノールの量が、10~30質量%である、請求項8に記載の難燃性樹脂組成物。
  13.  前記ポリフェニレンエーテルが、還元粘度(0.5g/dlクロロホルム溶液、30℃)が、0.25dl/g~0.35dl/gの範囲内であるポリフェニレンエーテルである、請求項8に記載の難燃性樹脂組成物。
  14.  前記ポリアリーレンスルフィドが、含有塩素濃度が1500ppm以下のポリフェニレンスルフィドである、請求項8に記載の難燃性樹脂組成物。
  15.  前記(A)熱可塑性樹脂が、ポリフェニレンエーテルと、ポリフェニレンエーテル以外の熱可塑性樹脂と、を含む、請求項8に記載の難燃性樹脂組成物。
  16.  前記ポリフェニレンエーテル以外の熱可塑性樹脂が、ポリアミドである、請求項15に記載の難燃性樹脂組成物。
  17.  前記ポリアミドの融点が280℃以上である、請求項16に記載の難燃性樹脂組成物。
  18.  (D)無機補強材を更に含む、請求項1に記載の難燃性樹脂組成物。
  19.  請求項1~18のいずれか一項に記載の難燃性樹脂組成物よりなる、耐熱コネクター。
PCT/JP2009/053993 2008-03-03 2009-03-03 難燃性樹脂組成物 WO2009110480A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09716642.5A EP2256167B1 (en) 2008-03-03 2009-03-03 Flame-retardant resin composition
CN200980107277.1A CN101959960B (zh) 2008-03-03 2009-03-03 阻燃性树脂组合物
JP2010501924A JP5560185B2 (ja) 2008-03-03 2009-03-03 難燃性樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008052560 2008-03-03
JP2008-052560 2008-03-03

Publications (1)

Publication Number Publication Date
WO2009110480A1 true WO2009110480A1 (ja) 2009-09-11

Family

ID=41056034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053993 WO2009110480A1 (ja) 2008-03-03 2009-03-03 難燃性樹脂組成物

Country Status (4)

Country Link
EP (1) EP2256167B1 (ja)
JP (1) JP5560185B2 (ja)
CN (1) CN101959960B (ja)
WO (1) WO2009110480A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128340A1 (ja) * 2011-03-24 2012-09-27 住友化学株式会社 ポリスルホン組成物および成形体
JP2012523469A (ja) * 2009-04-09 2012-10-04 ソルベイ・アドバンスト・ポリマーズ・エルエルシー 改善されたハロゲンを含まない難燃性ポリアミド組成物
US20130081850A1 (en) * 2011-09-30 2013-04-04 Ticona Llc Fire-Resisting Thermoplastic Composition for Plenum Raceways and Other Conduits
TWI414540B (zh) * 2010-05-21 2013-11-11 Nat Univ Chung Hsing 磷系改質聚醚酮及其製造方法及用途
JP2014521765A (ja) * 2011-07-27 2014-08-28 ディーエスエム アイピー アセッツ ビー.ブイ. 難燃性ポリアミド組成物
JP2014210839A (ja) * 2013-04-17 2014-11-13 旭化成ケミカルズ株式会社 難燃性樹脂組成物
JP2015504948A (ja) * 2012-01-09 2015-02-16 金発科技股▲ふん▼有限公司 ハロゲンフリーの難燃性ポリアミド組成物およびその調製方法、並びにその応用
JP2015120891A (ja) * 2013-11-20 2015-07-02 旭化成ケミカルズ株式会社 難燃性熱可塑性樹脂組成物及びその成形品
JP2017175911A (ja) * 2011-02-14 2017-09-28 旭化成株式会社 太陽光発電モジュール用接続構造体
JP2017534737A (ja) * 2014-11-18 2017-11-24 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ 難燃性強化ポリアミド−ポリ(フェニレンエーテル)組成物
WO2018123563A1 (ja) * 2016-12-26 2018-07-05 ユニチカ株式会社 ポリアミド樹脂組成物、その製造方法およびそれからなる成形体
JP2019530758A (ja) * 2016-10-18 2019-10-24 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニーAscend Performance Materials Operations Llc 熱老化に対する耐性を有する低ハロゲンの難燃性のポリアミド組成物
KR20200036019A (ko) * 2017-08-11 2020-04-06 클라리언트 플라스틱스 앤드 코팅즈 리미티드 높은 열변형 온도를 갖는 난연성 폴리아미드 조성물 및 이의 용도
JP2020139110A (ja) * 2019-03-01 2020-09-03 旭化成株式会社 樹脂組成物及び成形品
JP2020527622A (ja) * 2017-07-14 2020-09-10 クラリアント・プラスティクス・アンド・コーティングス・リミテッド 高い耐熱変形性を有する難燃性のポリアミド組成物およびそれらの使用
JP2022518153A (ja) * 2019-01-07 2022-03-14 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニー 非ハロゲン系難燃性ポリアミド組成物

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102140200A (zh) * 2010-12-31 2011-08-03 东莞市迅创实业有限公司 用于线材方面达到ul-v.防火标准的低卤阻燃热塑性弹性体
TWI563034B (en) 2011-05-13 2016-12-21 Dsm Ip Assets Bv Flame retardant semi-aromatic polyamide composition and moulded products made therefrom
US8653167B2 (en) 2011-05-26 2014-02-18 Sabic Innovative Plastics Ip Molding composition for photovoltaic junction boxes and connectors
US8552095B1 (en) * 2012-09-25 2013-10-08 Sabic Innovations Plastics IP B.V. Flame-retardant polymer composition and article
GB201223312D0 (en) 2012-12-21 2013-02-06 Bpb United Kingdom Ltd Calcium sulphate-based products
CN107075254B (zh) * 2014-09-03 2020-02-28 索尔维特殊聚合物美国有限责任公司 砜聚合物组合物
CN105462228B (zh) * 2014-09-25 2017-08-15 旭化成株式会社 树脂组合物和成型体
KR20170106493A (ko) 2015-04-27 2017-09-20 사빅 글로벌 테크놀러지스 비.브이. 폴리(페닐렌 에테르) 조성물 및 물품
CN107548408B (zh) 2015-05-13 2020-02-18 沙特基础工业全球技术有限公司 增强的聚(亚苯基醚)组合物及由其制备的制品
TWI602847B (zh) * 2016-07-22 2017-10-21 國立中興大學 含不飽和基之磷系聚芳香醚衍生物及由其製得之熱固化物
CN107446338A (zh) * 2017-07-14 2017-12-08 广东圆融新材料有限公司 一种高灼热丝阻燃增强ppo/pps复合材料及其制备方法
CN109705342A (zh) * 2019-01-11 2019-05-03 中仑塑业(福建)有限公司 一种耐黄变聚酰胺树脂及其生产原料和生产方法
TWI833938B (zh) * 2019-04-01 2024-03-01 美商阿散德性能材料營運公司 非鹵化阻燃性聚醯胺組合物
CN110054873A (zh) * 2019-05-07 2019-07-26 安徽美佳新材料股份有限公司 一种阻燃性热塑性聚酯树脂组合物
JP7344013B2 (ja) * 2019-06-12 2023-09-13 旭化成株式会社 移動体用電池ユニットの保護筐体部材
CN118339233A (zh) * 2021-11-23 2024-07-12 巴斯夫欧洲公司 包含聚亚芳基(醚)砜的组合物
CN116904025B (zh) * 2023-09-13 2024-01-02 东华大学 一种聚酰胺增韧组合物及其制备方法和应用
CN117727496B (zh) * 2023-12-21 2024-07-02 源鑫线缆有限公司 一种硅橡胶绝缘特种电力电缆

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2513188A (en) 1948-09-10 1950-06-27 Macallum Alexander Douglas Mixed phenylene sulfide resins
US3257357A (en) 1963-04-01 1966-06-21 Du Pont Copolymers of polyphenylene ethers
US3257358A (en) 1963-07-02 1966-06-21 Du Pont 2, 6-dichloro-1, 4-polyphenylene ether
US3274165A (en) 1965-05-10 1966-09-20 Dow Chemical Co Method for preparing linear polyarylene sulfide
US3306874A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols
US3306875A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols and resulting products
JPS4427671B1 (ja) 1964-11-07 1969-11-17
JPS453368B1 (ja) 1964-11-27 1970-02-04
DE2252258A1 (de) 1972-10-25 1974-05-09 Hoechst Ag Schwerentflammbare thermoplastische polyester
JPS5051197A (ja) 1973-09-06 1975-05-07
BE829437A (fr) 1974-05-24 1975-09-15 Revetements protecteurs et leurs utilisations
DE2447727A1 (de) 1974-10-07 1976-04-08 Hoechst Ag Schwerentflammbare polyamidformmassen
JPS5212240A (en) 1975-07-18 1977-01-29 Matsushita Electric Ind Co Ltd Process for preparing transparent coating compounds
JPS5217880A (en) 1975-07-31 1977-02-10 Mitsubishi Heavy Ind Ltd Method to walk inside tube
JPS5217880B2 (ja) * 1974-05-25 1977-05-18
JPS6034571A (ja) 1983-08-04 1985-02-22 Shiyouyou Giken Kogyo Kk 歯車伝動装置
JPS61225217A (ja) 1985-03-29 1986-10-07 Toto Kasei Kk ポリフエニレンサルフアイド樹脂からの不純物の除去方法
JPS62138553A (ja) * 1985-12-06 1987-06-22 ジーイー・ケミカルズ・インコーポレーテッド 熱可塑性ポリアミド−ポリフエニレンエ−テル組成物
JPS63152628A (ja) 1986-12-17 1988-06-25 Asahi Chem Ind Co Ltd 色調の優れたポリフエニレンエ−テル系樹脂の製造法
JPH0373590A (ja) 1989-08-11 1991-03-28 Elna Co Ltd プリント基板の製造方法
JPH05222196A (ja) 1991-12-17 1993-08-31 Tonen Chem Corp ポリアリーレンスルフィドの製造法
JPH06245982A (ja) 1993-02-26 1994-09-06 Kyodo Nyugyo Kk 植物由来の消臭剤
JPH07228775A (ja) 1994-02-17 1995-08-29 Kuraray Co Ltd 難燃性ポリアミド組成物
JPH088869A (ja) 1994-06-16 1996-01-12 Mitsubishi Electric Corp 受信装置
EP0699708A2 (de) 1994-08-31 1996-03-06 Hoechst Aktiengesellschaft Flammengeschützte Polyesterformmassen
JPH0971708A (ja) 1995-06-26 1997-03-18 Mitsubishi Chem Corp 難燃性樹脂組成物
JPH09124926A (ja) 1995-06-07 1997-05-13 General Electric Co <Ge> 改善された溶融強度を示すポリ(フェニレンエーテル)樹脂とポリアミド樹脂の強化組成物
JPH09183864A (ja) 1995-12-28 1997-07-15 Toray Ind Inc 難燃剤および難燃性樹脂組成物
DE19614424A1 (de) 1996-04-12 1997-10-16 Hoechst Ag Synergistische Flammschutzmittel-Kombination für Polymere
JPH11181429A (ja) 1997-02-14 1999-07-06 Otsuka Chem Co Ltd 難燃剤、難燃性樹脂組成物及び難燃性樹脂成形体
DE19933901A1 (de) 1999-07-22 2001-02-01 Clariant Gmbh Flammschutzmittel-Kombination
WO2002094936A1 (fr) 2001-05-24 2002-11-28 Asahi Kasei Kabushiki Kaisha Composition de resine thermoplastique et articles moules
JP2004263188A (ja) * 2003-03-03 2004-09-24 Clariant Gmbh 熱可塑性ポリマー用の難燃剤/安定剤−組合せ物
JP2005036231A (ja) * 2003-07-14 2005-02-10 Clariant Gmbh 難燃性ポリアミド
JP2005537372A (ja) 2002-09-03 2005-12-08 クラリアント・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング 熱可塑性コポリマー用の難燃剤−安定性組合せ物
JP2006274262A (ja) * 2005-03-26 2006-10-12 Clariant Produkte (Deutschland) Gmbh リン含有熱安定性難燃剤集塊物における安定剤の使用
JP2006291207A (ja) * 2005-04-08 2006-10-26 Clariant Produkte (Deutschland) Gmbh 安定化難燃剤
WO2007058169A1 (ja) 2005-11-15 2007-05-24 Asahi Kasei Chemicals Corporation 耐熱性樹脂組成物
JP2007231094A (ja) * 2006-02-28 2007-09-13 Unitika Ltd 難燃性強化ポリアミド樹脂組成物
JP2008038125A (ja) * 2005-11-10 2008-02-21 Asahi Kasei Chemicals Corp 難燃性に優れた樹脂組成物
JP2018027255A (ja) 2016-08-19 2018-02-22 積水ホームテクノ株式会社 入浴介護装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335699A (ja) * 2000-05-30 2001-12-04 Daicel Chem Ind Ltd 難燃性樹脂組成物
JP4307882B2 (ja) * 2003-03-27 2009-08-05 旭化成ケミカルズ株式会社 難燃性ポリアミド樹脂組成物
JP3932199B2 (ja) * 2003-11-07 2007-06-20 旭化成ケミカルズ株式会社 難燃剤組成物
JP4993425B2 (ja) * 2005-07-20 2012-08-08 旭化成ケミカルズ株式会社 難燃性ポリアミド樹脂組成物
JP2007169309A (ja) * 2005-12-19 2007-07-05 Asahi Kasei Chemicals Corp 難燃性樹脂組成物

Patent Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2513188A (en) 1948-09-10 1950-06-27 Macallum Alexander Douglas Mixed phenylene sulfide resins
US3306874A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols
US3306875A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols and resulting products
US3257357A (en) 1963-04-01 1966-06-21 Du Pont Copolymers of polyphenylene ethers
US3257358A (en) 1963-07-02 1966-06-21 Du Pont 2, 6-dichloro-1, 4-polyphenylene ether
JPS4427671B1 (ja) 1964-11-07 1969-11-17
JPS453368B1 (ja) 1964-11-27 1970-02-04
US3274165A (en) 1965-05-10 1966-09-20 Dow Chemical Co Method for preparing linear polyarylene sulfide
DE2252258A1 (de) 1972-10-25 1974-05-09 Hoechst Ag Schwerentflammbare thermoplastische polyester
JPS5051197A (ja) 1973-09-06 1975-05-07
BE829437A (fr) 1974-05-24 1975-09-15 Revetements protecteurs et leurs utilisations
JPS5217880B2 (ja) * 1974-05-25 1977-05-18
DE2447727A1 (de) 1974-10-07 1976-04-08 Hoechst Ag Schwerentflammbare polyamidformmassen
JPS5212240A (en) 1975-07-18 1977-01-29 Matsushita Electric Ind Co Ltd Process for preparing transparent coating compounds
JPS5217880A (en) 1975-07-31 1977-02-10 Mitsubishi Heavy Ind Ltd Method to walk inside tube
JPS6034571A (ja) 1983-08-04 1985-02-22 Shiyouyou Giken Kogyo Kk 歯車伝動装置
JPS61225217A (ja) 1985-03-29 1986-10-07 Toto Kasei Kk ポリフエニレンサルフアイド樹脂からの不純物の除去方法
JPS62138553A (ja) * 1985-12-06 1987-06-22 ジーイー・ケミカルズ・インコーポレーテッド 熱可塑性ポリアミド−ポリフエニレンエ−テル組成物
JPS63152628A (ja) 1986-12-17 1988-06-25 Asahi Chem Ind Co Ltd 色調の優れたポリフエニレンエ−テル系樹脂の製造法
JPH0373590A (ja) 1989-08-11 1991-03-28 Elna Co Ltd プリント基板の製造方法
JPH05222196A (ja) 1991-12-17 1993-08-31 Tonen Chem Corp ポリアリーレンスルフィドの製造法
JPH06245982A (ja) 1993-02-26 1994-09-06 Kyodo Nyugyo Kk 植物由来の消臭剤
JPH07228775A (ja) 1994-02-17 1995-08-29 Kuraray Co Ltd 難燃性ポリアミド組成物
JPH088869A (ja) 1994-06-16 1996-01-12 Mitsubishi Electric Corp 受信装置
EP0699708A2 (de) 1994-08-31 1996-03-06 Hoechst Aktiengesellschaft Flammengeschützte Polyesterformmassen
JPH0873720A (ja) 1994-08-31 1996-03-19 Hoechst Ag 防炎性ポリエステル成形材料
JPH09124926A (ja) 1995-06-07 1997-05-13 General Electric Co <Ge> 改善された溶融強度を示すポリ(フェニレンエーテル)樹脂とポリアミド樹脂の強化組成物
JPH0971708A (ja) 1995-06-26 1997-03-18 Mitsubishi Chem Corp 難燃性樹脂組成物
JPH09183864A (ja) 1995-12-28 1997-07-15 Toray Ind Inc 難燃剤および難燃性樹脂組成物
DE19614424A1 (de) 1996-04-12 1997-10-16 Hoechst Ag Synergistische Flammschutzmittel-Kombination für Polymere
JPH11181429A (ja) 1997-02-14 1999-07-06 Otsuka Chem Co Ltd 難燃剤、難燃性樹脂組成物及び難燃性樹脂成形体
DE19933901A1 (de) 1999-07-22 2001-02-01 Clariant Gmbh Flammschutzmittel-Kombination
WO2002094936A1 (fr) 2001-05-24 2002-11-28 Asahi Kasei Kabushiki Kaisha Composition de resine thermoplastique et articles moules
JP2005537372A (ja) 2002-09-03 2005-12-08 クラリアント・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング 熱可塑性コポリマー用の難燃剤−安定性組合せ物
JP2004263188A (ja) * 2003-03-03 2004-09-24 Clariant Gmbh 熱可塑性ポリマー用の難燃剤/安定剤−組合せ物
JP2005036231A (ja) * 2003-07-14 2005-02-10 Clariant Gmbh 難燃性ポリアミド
JP2006274262A (ja) * 2005-03-26 2006-10-12 Clariant Produkte (Deutschland) Gmbh リン含有熱安定性難燃剤集塊物における安定剤の使用
JP2006291207A (ja) * 2005-04-08 2006-10-26 Clariant Produkte (Deutschland) Gmbh 安定化難燃剤
JP2008038125A (ja) * 2005-11-10 2008-02-21 Asahi Kasei Chemicals Corp 難燃性に優れた樹脂組成物
WO2007058169A1 (ja) 2005-11-15 2007-05-24 Asahi Kasei Chemicals Corporation 耐熱性樹脂組成物
JP2007231094A (ja) * 2006-02-28 2007-09-13 Unitika Ltd 難燃性強化ポリアミド樹脂組成物
JP2018027255A (ja) 2016-08-19 2018-02-22 積水ホームテクノ株式会社 入浴介護装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. R. ALLCOCK: "Phosphorus-Nitrogen Compounds", 1972, ACADEMIC PRESS, INC.
JAMES E. MARK; HARRY R. ALLCOCK; ROBERT WEST: "Inorganic Polymers", 1992, PRENTICE-HALL INTERNATIONAL, INC., pages: 61 - 140

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523469A (ja) * 2009-04-09 2012-10-04 ソルベイ・アドバンスト・ポリマーズ・エルエルシー 改善されたハロゲンを含まない難燃性ポリアミド組成物
TWI414540B (zh) * 2010-05-21 2013-11-11 Nat Univ Chung Hsing 磷系改質聚醚酮及其製造方法及用途
JP2017175911A (ja) * 2011-02-14 2017-09-28 旭化成株式会社 太陽光発電モジュール用接続構造体
JP2012201744A (ja) * 2011-03-24 2012-10-22 Sumitomo Chemical Co Ltd ポリスルホン組成物および成形体
WO2012128340A1 (ja) * 2011-03-24 2012-09-27 住友化学株式会社 ポリスルホン組成物および成形体
JP2014521765A (ja) * 2011-07-27 2014-08-28 ディーエスエム アイピー アセッツ ビー.ブイ. 難燃性ポリアミド組成物
US11015054B2 (en) 2011-07-27 2021-05-25 Dsm Ip Assets B.V. Flame retardant polyamide composition
US20130081850A1 (en) * 2011-09-30 2013-04-04 Ticona Llc Fire-Resisting Thermoplastic Composition for Plenum Raceways and Other Conduits
JP2015504948A (ja) * 2012-01-09 2015-02-16 金発科技股▲ふん▼有限公司 ハロゲンフリーの難燃性ポリアミド組成物およびその調製方法、並びにその応用
KR101746414B1 (ko) * 2012-01-09 2017-06-13 킹파 사이언스 앤 테크놀로지 컴퍼니 리미티드 무할로겐 난연성 폴리아미드 조성물, 및 이의 제조 방법 및 용도
JP2014210839A (ja) * 2013-04-17 2014-11-13 旭化成ケミカルズ株式会社 難燃性樹脂組成物
JP2015120891A (ja) * 2013-11-20 2015-07-02 旭化成ケミカルズ株式会社 難燃性熱可塑性樹脂組成物及びその成形品
JP2017534737A (ja) * 2014-11-18 2017-11-24 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ 難燃性強化ポリアミド−ポリ(フェニレンエーテル)組成物
JP7128743B2 (ja) 2016-10-18 2022-08-31 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニー 熱老化に対する耐性を有する低ハロゲンの難燃性のポリアミド組成物
JP2019530758A (ja) * 2016-10-18 2019-10-24 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニーAscend Performance Materials Operations Llc 熱老化に対する耐性を有する低ハロゲンの難燃性のポリアミド組成物
US11851564B2 (en) 2016-10-18 2023-12-26 Ascend Performance Materials Operations Llc Low-halogen flame retardant polyamide compositions resistant to heat aging
WO2018123563A1 (ja) * 2016-12-26 2018-07-05 ユニチカ株式会社 ポリアミド樹脂組成物、その製造方法およびそれからなる成形体
JP2020527622A (ja) * 2017-07-14 2020-09-10 クラリアント・プラスティクス・アンド・コーティングス・リミテッド 高い耐熱変形性を有する難燃性のポリアミド組成物およびそれらの使用
JP7140821B2 (ja) 2017-07-14 2022-09-21 クラリアント・インターナシヨナル・リミテツド 高い耐熱変形性を有する難燃性のポリアミド組成物およびそれらの使用
KR20200036019A (ko) * 2017-08-11 2020-04-06 클라리언트 플라스틱스 앤드 코팅즈 리미티드 높은 열변형 온도를 갖는 난연성 폴리아미드 조성물 및 이의 용도
JP2020529506A (ja) * 2017-08-11 2020-10-08 クラリアント・プラスティクス・アンド・コーティングス・リミテッド 高い熱たわみ温度を有する難燃性ポリアミド組成物およびそれの使用
JP7252201B2 (ja) 2017-08-11 2023-04-04 クラリアント・インターナシヨナル・リミテツド 高い熱たわみ温度を有する難燃性ポリアミド組成物およびそれの使用
KR102560804B1 (ko) 2017-08-11 2023-07-31 클라리언트 인터내셔널 리미티드 높은 열변형 온도를 갖는 난연성 폴리아미드 조성물 및 이의 용도
JP2022518153A (ja) * 2019-01-07 2022-03-14 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニー 非ハロゲン系難燃性ポリアミド組成物
JP7335962B2 (ja) 2019-01-07 2023-08-30 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニー 非ハロゲン系難燃性ポリアミド組成物
JP2020139110A (ja) * 2019-03-01 2020-09-03 旭化成株式会社 樹脂組成物及び成形品

Also Published As

Publication number Publication date
CN101959960B (zh) 2014-08-27
CN101959960A (zh) 2011-01-26
EP2256167A1 (en) 2010-12-01
EP2256167B1 (en) 2018-08-22
EP2256167A4 (en) 2013-05-01
JP5560185B2 (ja) 2014-07-23
JPWO2009110480A1 (ja) 2011-07-14

Similar Documents

Publication Publication Date Title
JP5560185B2 (ja) 難燃性樹脂組成物
JP6426985B2 (ja) 難燃性熱可塑性樹脂組成物及びその成形品
JP5339577B2 (ja) 長繊維強化樹脂ペレット
JP6581488B2 (ja) 成形品及び成形品の製造方法
US20090275682A1 (en) Resin Composition Excellent in Flame Retardance
US7550534B2 (en) Thermoplastic method, composition, and article
JP5388165B2 (ja) 難燃性樹脂組成物
JP4621648B2 (ja) 耐熱性樹脂組成物
JP4993425B2 (ja) 難燃性ポリアミド樹脂組成物
JP2008038125A (ja) 難燃性に優れた樹脂組成物
JP5284176B2 (ja) 熱可塑性樹脂組成物及びその成形体
JP2008038149A (ja) 難燃性に優れた樹脂組成物
KR20150082511A (ko) 강화된 폴리(페닐렌 에테르)-폴리실록산 블록 코폴리머 조성물, 및 이를 포함하는 물품
KR20170005055A (ko) 폴리(페닐렌 에테르)-폴리실록산 공중합체 조성물을 포함하는 물품
KR20220155567A (ko) 폴리(페닐렌 에테르) 조성물, 이의 제조 방법 및 이로부터 제조된 물품
KR20150063475A (ko) 난연제 폴리머 조성물 및 물품
JP2009197196A (ja) 樹脂組成物
JP2010260995A (ja) 樹脂組成物及びその製造方法
JP2009263461A (ja) 低腐食性樹脂組成物
JP2009263460A (ja) チューブ成形に適した樹脂組成物およびそれからなるチューブ
JP2007154128A (ja) ポリアミド−ポリフェニレンエーテル樹脂組成物
JP2007169309A (ja) 難燃性樹脂組成物
JP6332671B2 (ja) 成形体
JP5590706B2 (ja) 樹脂組成物及びその成形体
WO2020235437A1 (ja) 配線部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107277.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09716642

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010501924

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009716642

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE