WO2009104758A1 - 光ofdm受信器および光伝送システムおよびサブキャリア分離回路およびサブキャリア分離方法 - Google Patents

光ofdm受信器および光伝送システムおよびサブキャリア分離回路およびサブキャリア分離方法 Download PDF

Info

Publication number
WO2009104758A1
WO2009104758A1 PCT/JP2009/053076 JP2009053076W WO2009104758A1 WO 2009104758 A1 WO2009104758 A1 WO 2009104758A1 JP 2009053076 W JP2009053076 W JP 2009053076W WO 2009104758 A1 WO2009104758 A1 WO 2009104758A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
subcarrier
frequency
circuit
optical
Prior art date
Application number
PCT/JP2009/053076
Other languages
English (en)
French (fr)
Inventor
佐野 明秀
英一 山田
小林 孝行
浩一 石原
宮本 裕
理一 工藤
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to EP09713045A priority Critical patent/EP2247012B1/en
Priority to US12/865,827 priority patent/US8355637B2/en
Priority to JP2009554406A priority patent/JP4872003B2/ja
Priority to CN200980104811.3A priority patent/CN101946438B/zh
Publication of WO2009104758A1 publication Critical patent/WO2009104758A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03038Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure
    • H04L25/0305Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure using blind adaptation

Definitions

  • the present invention relates to optical communication.
  • the present invention relates to an optical OFDM receiver, an optical transmission system, a subcarrier separation circuit, and a subcarrier separation method of an optical OFDM (orthogonal frequency division multiplexing) transmission system.
  • This application claims priority based on Japanese Patent Application No. 2008-041306 filed in Japan on February 22, 2008 and Japanese Patent Application No. 2008-241490 filed on September 19, 2008 in Japan, The contents thereof are incorporated herein.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Non-Patent Document 1 As a method for receiving an optical OFDM signal, cocarrier reception is performed, and subcarrier separation using a technique used in wireless technology is performed (for example, see Non-Patent Document 1). Further, as another method of receiving an optical OFDM signal, a method of separating a subcarrier using a Mach-Zehnder delay interferometer in the optical domain and directly receiving (square detection) is performed (for example, Patent Document 1, Non-Patent Document 1). Patent Document 2).
  • Non-Patent Document 1 an optical OFDM signal is received in the same manner as wireless. For this reason, signals other than information data such as guard intervals and training signals have to be transmitted, and there is a problem that the transmission rate increases from 10% to 20%. For this reason, the required speed for the electric circuit is increased, the signal band is expanded, and the frequency utilization efficiency is reduced as compared with the case where only the information data is transmitted.
  • the present invention has been made under such a background, and provides an optical OFDM receiver, an optical transmission system, a subcarrier separation circuit, and a subcarrier separation method that can obtain the following advantages.
  • -Optical OFDM signals can be separated with a simple circuit.
  • ⁇ Reception sensitivity is excellent.
  • -Intersymbol interference due to polarization dispersion, wavelength dispersion, band limitation, etc. can be compensated.
  • -Polarization separation can be performed by an equalizer for polarization multiplexed optical OFDM signals.
  • -Digital signal processing can compensate for chromatic dispersion without being limited by loss, bandwidth, and the like.
  • a subcarrier separation circuit is a subcarrier separation circuit that receives an optical OFDM signal composed of two subcarriers A and B and separates subcarrier components.
  • a first optical receiving circuit that receives the local oscillation light of the baseband and converts it into a baseband electrical signal
  • a first analog-digital conversion circuit that converts the baseband electrical signal into a digital signal
  • the converted digital A first frequency shift circuit for frequency-shifting the signal so that the center frequency of the subcarrier A becomes zero, and the frequency-shifted signal and a signal obtained by delaying the frequency-shifted signal by 1 ⁇ 2 symbol time
  • a first arithmetic circuit for adding and separating the components of the subcarrier A.
  • the first arithmetic circuit includes a delay unit that delays the frequency-shifted signal by 1 ⁇ 2 symbol time, the frequency-shifted signal, and the frequency-shifted signal. And an adder that separates the component of the subcarrier A by adding the signal delayed by 1 ⁇ 2 symbol time.
  • the first arithmetic circuit further subtracts a signal obtained by delaying the frequency shifted signal by 1 ⁇ 2 symbol time from the frequency shifted signal.
  • the components of the subcarrier B may be separated.
  • a second frequency shift circuit that shifts the frequency of the digital signal converted by the first analog / digital conversion circuit so that the center frequency of the subcarrier B becomes zero;
  • a second arithmetic circuit that separates the component of the subcarrier B by adding the frequency shifted signal and a signal obtained by delaying the frequency shifted signal by 1 ⁇ 2 symbol time may be further provided.
  • the second optical receiving circuit that receives the received signal light and the second local oscillation light and converts it into a baseband electric signal, and the second optical receiving circuit that is output.
  • a second analog-to-digital conversion circuit for converting the baseband electrical signal into a digital signal; and the digital signal converted by the second analog-to-digital conversion circuit has a center frequency of the subcarrier B of zero.
  • a second arithmetic circuit that separates the components of the subcarrier B.
  • the optical OFDM receiver of the present invention includes the subcarrier separation circuit of the present invention and a first demodulator, and the first arithmetic circuit performs equalization processing on the components of the separated subcarrier A and Carrier phase recovery processing is performed, and the first demodulator demodulates the signal that has been subjected to the equalization processing and the carrier phase recovery processing by the first arithmetic circuit.
  • An optical OFDM receiver of the present invention includes the subcarrier separation circuit of the present invention and a first demodulator, and the first arithmetic circuit performs equalization processing and carrier on the separated component of the subcarrier B.
  • the optical OFDM receiver of the present invention includes the subcarrier separation circuit of the present invention and a second demodulator, and the second arithmetic circuit performs equalization processing and carrier on the separated component of the subcarrier B.
  • Phase recovery processing is performed, and the second demodulator demodulates the signal that has been subjected to the equalization processing and the carrier phase recovery processing by the second arithmetic circuit.
  • each arithmetic circuit that performs the optical frequency of the subcarrier A or B or the equalization processing and the carrier phase recovery processing of the first local oscillation light is the subcarrier A or B. You may make it set to the optical frequency in the frequency range which can be correct
  • the optical OFDM receiver of the present invention includes the subcarrier separation circuit of the present invention and a second demodulator, and the second arithmetic circuit performs equalization processing and carrier on the separated component of the subcarrier B. Phase recovery processing is performed, and the second demodulator demodulates the signal that has been subjected to the equalization processing and the carrier phase recovery processing by the second arithmetic circuit.
  • the first arithmetic circuit performs equalization processing and carrier phase recovery processing on the separated components of the subcarrier A, and the first optical receiving circuit A frequency range in which one local oscillation light can be corrected to the optical frequency at the center of the subcarrier A or the first arithmetic circuit that performs the equalization processing and the carrier phase recovery processing to the optical frequency at the center of the subcarrier A
  • the second local oscillation light is subjected to the optical frequency of the center of the subcarrier B or the equalization process and the carrier phase recovery process.
  • the second arithmetic circuit may be set to an optical frequency in a frequency range that can be corrected to the optical frequency at the center of the subcarrier B.
  • each arithmetic circuit that performs the optical frequency of the center between the subcarrier A and the subcarrier B or the equalization process and the carrier phase recovery process for the first local oscillation light May be set to an optical frequency in a frequency range that can be corrected to a central optical frequency between the subcarrier A and the subcarrier B.
  • the first arithmetic circuit includes an equalizer configured by a transversal filter, and the coefficients of the transversal filter are input to the first arithmetic circuit and the input. It may be a digital signal processing circuit provided with a setting unit for setting to the first mode in which the signal is set to add a signal delayed by 1 ⁇ 2 symbol time.
  • the setting unit subtracts the signal obtained by delaying the input signal by 1/2 symbol time from the input signal to the first mode or the first arithmetic circuit.
  • One of the second modes to be set is selected, and the first demodulator acquires the signal of the subcarrier A when the first mode is set, and the second mode
  • the subcarrier B signal may be acquired at the time of setting.
  • the subcarrier separation circuit of the present invention is a subcarrier separation circuit that receives an optical OFDM signal composed of N (N is an integer of 2 or more) subcarriers and separates subcarrier components, each of which is a received signal. At least one optical receiving circuit that receives light and at least one local oscillation light and converts it into a baseband electrical signal, and at least one analog / analog circuit that converts the baseband electrical signal into a digital signal. Digital conversion circuit, N frequency shift circuits for frequency shifting the converted digital signal so that the center frequency of a desired subcarrier is zero, and signals frequency-shifted by these N frequency shift circuits, respectively.
  • the at least one system of local oscillation light is N systems of local oscillation light
  • the at least one system of optical reception circuits includes the received signal light and the N systems of local oscillation light.
  • each of the at least one analog / digital converter circuit outputs the baseband output from each of the N systems of optical receiver circuits.
  • N systems of analog / digital conversion circuits for converting electrical signals into digital signals, respectively, wherein the N systems of frequency shift circuits convert the digital signals converted by the N systems of analog / digital conversion circuits into the desired signals, respectively.
  • Each frequency shift so that the center frequency of the subcarrier becomes zero. Good.
  • An optical OFDM receiver of the present invention includes a subcarrier separation circuit of the present invention, N digital signal processing circuits for performing equalization processing and carrier phase recovery processing on the N subcarrier components, respectively, and these N systems And N systems of demodulators for demodulating the signals subjected to the equalization processing and the carrier phase recovery processing, respectively.
  • the N-system local oscillation light is subjected to the center frequency of the desired subcarrier or the equalization process and the carrier phase recovery process for each of the N-system optical reception circuits.
  • Each of the digital signal processing circuits in the system may be set to an optical frequency in a frequency range that can be corrected to the center optical frequency of the desired subcarrier.
  • the subcarrier separation circuit of the present invention is a subcarrier separation circuit that receives an optical OFDM signal composed of N subcarriers and separates subcarrier components.
  • Optical receiver circuit for converting the signal analog-to-digital converter circuit for converting the baseband electric signal to a digital signal, and the center frequency of the lowest or highest subcarrier for the converted digital signal is zero
  • the symbol phase of the electrical signal output from the frequency shift circuit is determined by (k / N) T (k is an integer from 0 to N-1 and T is one symbol time). Multiplying N signals Ek delayed by time and N coefficients included in each of the N phase related coefficients.
  • N pieces of multiplied signal included in the system of N multiplication signals determined by (j is an imaginary unit) are obtained, N multiplication signals included in each system are added to obtain N addition signals, and the N subcarrier components are separated. And an arithmetic circuit.
  • the arithmetic circuit is connected to the branching unit that branches the electrical signal output from the frequency shift circuit into N branches, and the branching unit is connected to the branching unit, and the symbol phases of the branched signals are respectively ( k / N) a delay unit that outputs the N signals Ek delayed by the time determined by T, an N adders that adds the N signals Ek delayed by the delay unit, Provided between the delay unit and the adder unit, to the signal Ek input to the k-th signal among the signals input to the l-th adder unit, to the l-th system among the phase-related coefficients.
  • a multiplication unit that multiplies the included k-th coefficient.
  • the optical OFDM receiver of the present invention includes the subcarrier separation circuit of the present invention and N demodulators, and the arithmetic circuit performs equalization processing on the separated N subcarrier components, respectively. And the carrier phase recovery process, and the N demodulators demodulate the signals of the N subcarriers from the output signal of the arithmetic circuit, respectively.
  • the arithmetic circuit is a digital signal processing circuit that performs the equalization process and the carrier phase recovery process on the electrical signal output from the frequency shift circuit.
  • the processing circuit includes an Nth-order transversal filter type adaptive equalizer having N tap (1 / N) T delay taps, and the transversal filter type adaptive equalizer is input to the l-th output terminal.
  • the kth input signal Ek to be multiplied by the tap coefficient It is also possible to have a multiplier that outputs a multiplication signal determined by
  • the optical receiver circuit may be an optical orthogonal receiver circuit.
  • the signal light is a polarization multiplexed signal
  • each of the optical reception circuits is a polarization diversity type optical reception circuit
  • each of the analog / digital conversion circuits is an X polarization signal. It is composed of two sets of analog-digital conversion circuits for wave signals and Y-polarization signals, and each of the demodulators may demodulate the X-polarization signal and the Y-polarization signal. good.
  • the optical OFDM receiver of the present invention may be provided with a chromatic dispersion compensation circuit that compensates the chromatic dispersion of the transmission line by digital signal processing for the digital signal converted by each of the analog / digital conversion circuits. .
  • the chromatic dispersion compensation circuit may be constituted by a transversal filter.
  • the chromatic dispersion compensation circuit performs a discrete Fourier transform to convert a time domain signal into a frequency domain signal, and a Fourier transformed signal of each frequency component.
  • An equalizer that gives a phase rotation opposite to the phase rotation due to wavelength dispersion, and a discrete inverse Fourier transform performed on the frequency domain signal output from this equalization unit to convert it to a time domain signal and output it.
  • An inverse Fourier transform unit may be provided.
  • the optical OFDM receiver of the present invention may include a dispersion measuring unit that measures the chromatic dispersion amount of the transmission fiber from the propagation delay time difference between the subcarriers and sets the dispersion compensation amount of the chromatic dispersion compensation circuit.
  • the optical OFDM receiver of the present invention may include a differential decoder that performs differential decoding on each output signal of the demodulator for each subcarrier.
  • the present invention can also be viewed from the viewpoint of an optical transmission system including the optical OFDM receiver of the present invention.
  • the subcarrier separation method according to the present invention is a subcarrier separation method that receives an optical OFDM signal composed of two subcarriers A and B and separates subcarrier components.
  • An electric signal the baseband electric signal is converted into a digital signal, the converted digital signal is frequency-shifted so that the center frequency of the subcarrier A becomes zero, and the frequency-shifted signal and the signal
  • the subcarrier A component is separated by adding the frequency-shifted signal and a signal delayed by 1/2 symbol time.
  • an optical OFDM signal can be separated using a simple circuit such as a delay device, an adder, or a subtracter.
  • a simple circuit such as a delay device, an adder, or a subtracter.
  • equalization is performed by digital signal processing, so that intersymbol interference due to polarization dispersion, chromatic dispersion, band limitation, and the like can be compensated.
  • polarization separation can be performed by an equalizer for a polarization multiplexed optical OFDM signal.
  • the present invention does not require transmission of signals other than information data such as guard intervals and training signals, the required speed for the electric circuit does not increase, and the signal band is expanded to reduce the frequency utilization efficiency.
  • chromatic dispersion can be compensated by digital signal processing without being restricted by loss, bandwidth, etc., so that the amount of dispersion compensation can be greatly improved.
  • FIG. 16 is a diagram showing a transversal filter of the chromatic dispersion compensation circuit shown in FIG. 15. It is a block diagram which shows the structure of the chromatic dispersion compensation circuit by 11th embodiment.
  • FIG. 18 is a diagram for explaining the operation of the chromatic dispersion compensation circuit shown in FIG.
  • FIG. 1 is a block diagram showing a configuration of an optical OFDM receiver according to a first embodiment of the present invention.
  • the signal light is an optical OFDM signal of two subcarriers, and each subcarrier is modulated by, for example, QPSK (4-phase phase shift modulation).
  • QPSK 4-phase phase shift modulation
  • the local oscillation light is abbreviated as local light.
  • the local light 1 is continuous light.
  • the modulation format of each subcarrier can be any modulation scheme such as BPSK (two-phase phase shift modulation), intensity modulation, quadrature amplitude modulation, multi-level phase modulation, etc. in addition to QPSK.
  • the information transmission speed is 22.2 Gbit / s.
  • an OFDM signal a composite signal composed of a plurality of subcarriers is called an OFDM block or an OFDM frame, and on the transmission side, it is desirable that the start time and end time of symbols of all subcarriers coincide. That there is no skew. Further, in the optical transmission system and optical transmission method using the optical OFDM receiver of the present invention, there is no guard interval or training symbol, the length of the OFDM block and the length of each subcarrier match, and one OFDM block has one symbol. Is equal to Therefore, the present invention will be described without distinguishing one OFDM block and one symbol.
  • Signal light and local light 1 are incident on an optical orthogonal receiver circuit 2 composed of a 90-degree optical hybrid coupler and a photodetector.
  • the I-phase component and the Q-phase component of the signal light are separated at the output of the 90-degree optical hybrid coupler, and the I-phase component and the Q-phase component are each converted into an electric signal by the photodetector.
  • the photodetector a balanced receiver and a normal photodetector that is not a balanced receiver can be considered, but a balanced receiver is more preferable from the viewpoint of reception sensitivity and removal of a DC offset.
  • the 90-degree optical hybrid coupler is normally configured to have a polarization diversity configuration. That is, the signal light component is separated into an X polarization and a Y polarization by a polarization beam splitter, and the local light is branched into two parts at 1: 1, and is incident on two 90-degree optical hybrid couplers.
  • a 90-degree optical hybrid coupler for X polarization enters an X-polarized component of the signal light and a component in which half of the local light is matched to the X-polarized light
  • the output of the 90-degree optical hybrid coupler The X-polarized component is separated into an I-phase component and a Q-phase component, and the I-phase component and the Q-phase component of the X-polarized component are each converted into an electric signal by the photodetector.
  • a 90-degree optical hybrid coupler for Y polarization when incident with a Y-polarization component of signal light and a component in which half of the local light is matched with Y-polarization, the output of the 90-degree optical hybrid coupler generates signal light.
  • the Y-polarized component is separated into an I-phase component and a Q-phase component, and the I-polarized component and the Q-phase component of the Y-polarized component are each converted into an electric signal by the photodetector.
  • the polarization direction of the local light may be controlled to coincide with the polarization of the signal light without using the polarization diversity configuration.
  • the polarization direction of the local light is controlled using a polarization controller or the like so that the I-phase component and Q-phase component of the signal light generated from the output of the 90-degree optical hybrid coupler is maximized.
  • a polarization detector that detects the polarization direction of the signal light is installed in the optical orthogonal receiver circuit, and the polarization direction of the local light is aligned with the polarization of the signal light by using a polarization controller or the like. The polarization direction of light emission may be controlled.
  • the analog / digital conversion circuit 3 divides the analog electric signal composed of the I-phase component and Q-phase component of the signal light in time (sampling or sampling) and converts it into a digital signal that is numerically quantized. Is done. Since there are two components, ie, an I-phase component and a Q-phase component of signal light, two analog / digital conversion circuits are used. In addition, when using the polarization diversity configuration, there are four analog-digital conversions because there are four components, the I-phase component and Q-phase component of the X-polarization component, and the I-phase component and Q-phase component of the Y-polarization component. Use a circuit. As an analog / digital conversion circuit, an accuracy of about 4 to 16 bits is used. In the verification by our experiments, an 8-bit precision analog-digital conversion circuit was used.
  • the sampling speed is related to the operation of the equalizer that constitutes the digital signal processing circuit 8 described later.
  • the sampling time is optimized to the center of the symbol, for example, Information can be obtained and the signal can be equalized, but if the sampling time cannot be optimized to the center of the symbol, the equalization performance is degraded. If the sampling time cannot be optimized to the center of the symbol, sampling at a fractional interval and equalization using a fractional interval equalizer eliminates the need to consider the sampling timing phase. Therefore, it is desirable to oversample at more than twice the symbol rate and equalize using a fractional interval equalizer.
  • Digital signals can be handled collectively as complex numbers when I and Q signals are handled together.
  • I and Q signals are handled separately, each is handled as a separate real number, and respective circuits are required for the I signal and the Q signal.
  • the I and Q signals are separately treated as real numbers, and after being converted into digital signals, they are collectively treated as complex numbers.
  • the frequency shift circuit 4 is to detect the frequency shift and phase shift of the subcarrier frequency in the digital signal processing circuit 8 described later, and to shift the frequency of the signal in the frequency shift circuit 4 so that the shift becomes zero. It is in. Since the input signal to the frequency shift circuit 4 is a digital signal, shifting the frequency of the signal by f is realized by multiplying the digital signal by exp (j2 ⁇ ft) (j is an imaginary unit, and t is time).
  • the adder 6 calculates the sum of the signal obtained by delaying the output signal of the frequency shift circuit 4 by 1/2 symbol (equal to 1/2 OFDM block) using the delay device 5 and the signal not to be delayed. Do.
  • the subcarrier A component is extracted from the two subcarriers by the sum operation, and the other subcarrier B component is removed.
  • the subtractor 7 calculates the difference between the signal obtained by delaying the output signal of the frequency shift circuit 4 by 1/2 symbol (equal to 1/2 OFDM block) and the signal not delayed (that is, frequency-shifted).
  • the subcarrier A component is removed and the subcarrier B component is taken out by subtracting the signal obtained by delaying the frequency shifted signal by 1/2 symbol time from the received signal.
  • the digital signal processing circuit 8 there is a configuration including an adaptive equalizer and a carrier phase recovery circuit, which equalizes the extracted subcarrier component signal and estimates the modulated signal of the transmitter.
  • the equalizer (first equalizer), a linear equalizer including a transversal filter can be used. Also, a nonlinear equalizer with decision feedback can be used.
  • CMA Constant Modulus Algorithm
  • CMA Constant Modulus Algorithm
  • a second signal using a LMS (Least Mean Square) or RLS (Recursive Least Square) algorithm is used instead of the training signal as a signal demodulated by CMA equalization and carrier phase recovery. It is possible to further equalize with an equalizer and improve the equalization performance.
  • LMS Least Mean Square
  • RLS Recursive Least Square
  • a signal demodulated based on the equalized output of the first equalizer using CMA is equalized by the second equalizer using the LMS or RLS algorithm instead of the training signal, and the second equalizer is obtained.
  • the demodulated signal based on the output of the second equalizer is trained instead of the signal demodulated based on the equalized output of the first equalizer using CMA.
  • the signal may be returned to the second equalizer for equalization.
  • Equalizer compensates for various intersymbol interference such as polarization dispersion, chromatic dispersion, band limitation, etc.
  • polarization dispersion tolerance, chromatic dispersion tolerance, and band limiting tolerance can be increased.
  • the polarization dispersion tolerance and the chromatic dispersion tolerance can be improved without using a guard interval constituted by a cyclic prefix or the like used in Non-Patent Document 1 or the like.
  • Execute carrier phase recovery after equalization by equalizer In the case of QPSK, the carrier phase is corrected using the fourth power method, and the absolute phase of each subcarrier signal is determined. In general, in the case of N-value phase modulation, the carrier signal is corrected by raising the input signal to the equalizer to the Nth power, and the absolute phase of each subcarrier signal is determined. Further, the frequency shift circuit 4 is controlled using the information on the phase shift. Since the phase change speed is a frequency, a frequency shift can be detected. Finally, the demodulator 9 demodulates the signal and determines the sign.
  • FIG. 2 shows the configuration including these specific examples.
  • Reference numeral 21 is a 90-degree optical hybrid coupler
  • reference numeral 22 is a balanced receiver
  • reference numeral 23 is a signal sampled at a sample rate different from an integer multiple of the symbol rate, and resampled at a multiple of the symbol rate using numerical interpolation.
  • Reference numeral 24 denotes an adaptive equalizer using the CMA algorithm
  • reference numeral 25 denotes a carrier phase recovery circuit
  • reference numeral 26 denotes an adaptive equalizer using the LMS algorithm.
  • the carrier phase recovery circuit 25 detects a frequency or phase error and controls the frequency shift circuit 4.
  • the adaptive equalizer 26 performs adaptive equalization using the LMS algorithm using the output of the demodulator 9 on the CMA side as a reference signal.
  • FIG. 3 is a diagram illustrating a method for setting the frequency of local light emission in the first embodiment.
  • the frequency of the local light 1 is set to be equal to or close to the center frequency of the subcarrier to be received, for example, subcarrier A (abbreviated as SC-A in the figure) of the signal light OFDM signal.
  • SC-A subcarrier A
  • “near” means an optical frequency in a frequency range in which the equalizer and the carrier phase recovery circuit can correct the frequency of the local light 1 to, for example, the center frequency of the subcarrier A. This frequency range is determined according to, for example, the laser used and the symbol rate of the signal to be handled.
  • One setting method is as follows. Since the frequency of the signal light is determined by a frequency called an ITU-T grid, the wavelength of the signal light is determined by measuring using an optical filter, a wavelength meter, an optical spectrum analyzer, or the like. Then, the frequency of the local light is controlled so as to coincide with or be located near the center frequency of the subcarrier to be received in the OFDM signal of the signal light by using an optical filter, a wavelength meter, an optical spectrum analyzer, or the like.
  • the center frequency of the subcarrier A is located in the vicinity of zero in the electric spectrum converted into the baseband that appears at the output of the optical orthogonal reception circuit. Therefore, the center frequency of the subcarrier A can be controlled to zero by slightly moving the frequency shift circuit 4. Furthermore, by setting in this way, the frequency band of the baseband electric circuit necessary for demodulation of subcarrier A can be reduced.
  • FIG. 4A to 4D are diagrams for explaining separation of OFDM signals of two subcarriers in the first embodiment.
  • the frequency shift is performed so that the center frequency of the component of the subcarrier A becomes zero.
  • the center frequency of the subcarrier component B is shifted by the subcarrier interval.
  • a signal in which the output of the frequency shift circuit 4 is delayed by 1/2 symbol (equal to 1/2 OFDM block) and a signal not to be delayed (see FIG. 4A) are added by 1: 1 (FIG. 4C).
  • the subcarrier component B is canceled and only the subcarrier component A appears.
  • the subcarrier components A and B are mixed in the hatched portion in FIG. 4C. Accordingly, the coefficient of the transversal filter type equalizer included in the digital signal processing circuit 8 is determined by reducing the coefficient of the hatched portion and increasing the coefficient of the portion where only the subcarrier component A appears.
  • the subcarrier component A can be extracted from the output signal of the equalizer.
  • the same symbol overlaps.
  • the subcarrier component A is canceled and only the subcarrier component B appears.
  • subcarrier components A and B are mixed.
  • an OFDM frame (also referred to as an OFDM block) in which a guard interval is formed by a cyclic prefix is formed.
  • a guard interval is unnecessary.
  • each subcarrier is separated by performing FFT on an OFDM frame having a guard interval, but in the present invention, FFT is not used for subcarrier separation.
  • guard equalization is not used and blind equalization without using a training signal is used
  • subcarriers are separated and received directly using a Mach-Zehnder delay interferometer in the optical domain (square detection).
  • code configuration method and transmitter configuration are the same, and the transmitter can be used in the same manner as the direct reception method.
  • optical OFDM signal generator transmitter, generation method
  • each of the parallel signals is modulated by QPSK or the like, and then batch IFFT (reverse)
  • An optical OFDM signal can be generated by generating a modulation signal by performing Fourier transform), performing D / A conversion on the modulation signal, and driving the optical modulator with the analog modulation signal.
  • an optical OFDM signal can be generated by a method similar to that of the transmitter shown in Non-Patent Document 2 even with a configuration that does not use guard intervals and training symbols.
  • FIG. 5 is a block diagram showing a configuration of an optical OFDM receiver according to the second embodiment of the present invention.
  • the portion up to the analog / digital conversion circuit 3 is the same as that of the first embodiment of the present invention.
  • the digital signal output from the analog / digital conversion circuit 3 is divided into two branches, and the frequency shift circuit 4 and subsequent configurations are provided for subcarrier A and subcarrier B.
  • the frequency shift circuit 4A shifts the frequency so that the center frequency of one subcarrier A of the OFDM signal composed of the two subcarriers A and B of the electrical signal converted into digital becomes zero.
  • the digital signal processing circuit 8A the frequency shift and phase shift of the subcarrier frequency are detected, and the frequency shift circuit 4A is controlled so that the shift becomes zero.
  • the adder 6A adds the signal obtained by delaying the output of the frequency shift circuit 4A by 1/2 symbol (equal to 1/2 OFDM block) using the delay device 5A and the signal not delayed by 1: 1. Perform the operation. Of the two subcarriers, subcarrier component A is extracted, and subcarrier component B is removed. After equalization and carrier phase recovery are performed by the digital signal processing circuit 8A, the signal is demodulated by the demodulator 9A.
  • the frequency shift circuit 4B shifts the frequency so that the center frequency of one subcarrier B of the OFDM signal composed of the two subcarriers A and B of the electric signal converted into digital becomes zero.
  • the digital signal processing circuit 8B the frequency shift and phase shift of the subcarrier frequency are detected, and the frequency shift circuit 4B is controlled so that the shift becomes zero. After that, it is demodulated in the same manner as subcarrier A.
  • FIG. 6 is a block diagram showing a configuration of an optical OFDM receiver according to the third embodiment of the present invention.
  • Two optical OFDM receivers (system A and system B) are provided, and the signal light is branched into two and incident on each optical OFDM receiver.
  • the optical frequency of the local light 1A is set close to or coincident with the center frequency of one subcarrier A of the optical OFDM signal composed of two subcarriers A and B.
  • the signal light and the local light 1A are incident on an optical orthogonal reception circuit 2A composed of a 90-degree optical hybrid coupler and a photodetector.
  • the output of the 90-degree optical hybrid coupler is separated into an I-phase component and a Q-phase component of signal light, converted into an electrical signal by a photodetector, and converted from an I-phase component and a Q-phase component of signal light by an analog / digital conversion circuit 3A.
  • the analog electrical signal is discretized and quantized and converted to a digital signal.
  • the frequency shift circuit 4A shifts the frequency so that the center frequency of one subcarrier A of the OFDM signal becomes zero.
  • the digital signal processing circuit 8A the frequency shift and phase shift of the subcarrier frequency are detected, and the frequency shift circuit 4A is controlled so that the shift becomes zero.
  • the adder 6A adds the signal obtained by delaying the output of the frequency shift circuit 4A by 1/2 symbol (equal to 1/2 OFDM block) using the delay unit 5A and the signal not delayed by 1: 1. I do. Of the two subcarriers, subcarrier component A is extracted, and subcarrier component B is removed. Further, after equalization and carrier phase recovery are performed by the digital signal processing circuit 8A, the subcarrier component A is demodulated by the demodulator 9A.
  • the optical frequency of the local light 1B is set in the vicinity or matched with the center frequency of one subcarrier B of the optical OFDM signal composed of the two subcarriers A and B.
  • Subcarrier component B is demodulated by the same operation as system A after optical orthogonal reception circuit 2B.
  • FIGS. 7A and 7B are diagrams illustrating a method for setting the frequency of local light emission in the third embodiment.
  • the frequency of the local light 1A is set near the center frequency of the subcarrier A of the signal light so that the center frequency of the subcarrier A when converted to the baseband is near zero.
  • the frequency shift amount of the frequency shift circuit 4A becomes small.
  • the frequency band of the baseband analog electric circuit necessary for demodulation of subcarrier A can be reduced.
  • the frequency of the local light 1B in the vicinity of the center frequency of the subcarrier B of the signal light, the same effect can be obtained for the subcarrier B (see FIG. 7B).
  • FIG. 8 illustrates a method for setting a local light emission frequency in the fourth embodiment.
  • the frequency of local light 1 is set near the center optical frequency between subcarriers A and B.
  • “near” means light in a frequency range in which the equalizer and the carrier phase recovery circuit can correct the frequency of the local light 1 to the center optical frequency between the subcarriers A and B. Say frequency.
  • the center optical frequency between the subcarriers A and B is close to zero, and the center frequencies of the subcarriers A and B are each half the frequency of the subcarrier interval. Will only shift.
  • the center frequency of the subcarrier A or B can be set near zero, and the first or second Demodulation can be performed with the same configuration as in the embodiment.
  • FIG. 9 is a block diagram showing a configuration of an optical OFDM receiver according to the fifth embodiment of the present invention.
  • Reference numeral 10 denotes a digital signal processing circuit, but the digital signal processing circuit of the fifth embodiment is an equalizer set so that the coefficient of the transversal filter matches the OFDM subcarrier separation calculation.
  • a first mode in which a coefficient of the transversal filter is set so as to add an input signal to the transversal filter and a signal obtained by delaying the input signal by 1 ⁇ 2 symbol time, and a transversal filter Means for selecting one of the second modes for setting the coefficient of the transversal filter so as to subtract a signal obtained by delaying the input signal by 1 ⁇ 2 symbol time from the input signal.
  • the coefficients are optimized by an adaptive equalization algorithm, and subcarrier component A or subcarrier component B is obtained.
  • FIG. 10 is a block diagram showing a configuration of an optical OFDM receiver according to the sixth embodiment of the present invention.
  • the received signal (signal light) is an N subcarrier optical OFDM signal, which is different from the second embodiment.
  • the frequency shift circuits 4-1, 4-2,... are arranged so that the center frequency of a desired subcarrier becomes zero with respect to the electrical signal converted into digital. . . , 4-N to shift the frequency, and band limiting filters 11-1, 11-2,. . . , 11-N, the band is limited so that a signal in the same passband as the signal bandwidth of the desired subcarrier passes, and then the operation after the subcarrier separation circuit is performed. Thereby, a signal of a desired subcarrier can be obtained.
  • the reason why the bandwidth is limited by 11-N is as follows.
  • the subcarrier to be separated is k
  • subcarriers (k ⁇ 1) and subcarriers both adjacent to subcarrier k and whose baseband spectrum overlaps with subcarrier k) k + 1) can be removed.
  • subcarrier (k-4), subcarrier (k + 4), and the like are also output from the adder without being removed by the addition operation. Therefore, using a band limiting filter, for example, the band is limited so that a signal in the same pass band as the signal bandwidth of the subcarrier k passes. By doing so, only the desired subcarrier k is separated from the adder.
  • FIG. 11 is a block diagram showing a configuration of an optical OFDM receiver according to the seventh embodiment of the present invention.
  • the received signal (signal light) is an N subcarrier optical OFDM signal, which is different from the third embodiment.
  • N systems of optical OFDM receivers are provided, and signal light is branched into N and incident on each optical OFDM receiver.
  • FIG. 12 is a diagram for explaining a local light emission frequency setting method in the seventh embodiment.
  • a case where a k-th subcarrier (k is an integer from 1 to N) is obtained is shown.
  • the frequency of local light 1-k is set near the center frequency of the kth subcarrier of the optical OFDM signal composed of N subcarriers.
  • the center frequency of the kth subcarrier converted to the baseband becomes near zero.
  • the amount of frequency shift required for the frequency shift circuit 4-k becomes small, and the frequency band of the baseband analog electric circuit required for demodulation can be reduced.
  • FIG. 13 is a block diagram showing a configuration of an optical OFDM receiver according to the eighth embodiment of the present invention.
  • the received signal (signal light) is an N subcarrier optical OFDM signal, and the analog / digital conversion circuit 3 is the same as in the other embodiments.
  • a frequency shift circuit 4 shifts the frequency of the electrical signal converted into digital so that the center frequency of the lowest or highest subcarrier becomes zero.
  • the electric signal output from the frequency shift circuit 4 is branched, and (k / N) T [s] (where k is an integer from 0 to N ⁇ 1, and T is 1 by the delay devices 61-2 to 61-N.
  • the symbol phase of the time determined by (symbol time) is delayed, and N signals (hereinafter referred to as signal Ek) are output.
  • signal Ek N signals
  • the electrical signal output from the frequency shift circuit 4 is not delayed, so the signal E0 is the same as the output of the frequency shift circuit 4.
  • the signal E1 is a signal output from the delay unit 61-2
  • the signal E2 is a signal output from the delay unit 61-3.
  • the signal EN is a signal output from the delay unit 61-N.
  • Subcarriers are separated by adding N signals Ek with an adder.
  • the subcarriers can be separated by multiplying by a phase-related coefficient (ie, a part excluding “ ⁇ Ek”, hereinafter referred to as coefficient wlk).
  • coefficient wlk a phase-related coefficient
  • the subcarriers can be separated even when the frequency is not shifted so that the center frequency of the lowest or highest subcarrier becomes zero.
  • the coefficient is different from that of the equation (1).
  • the N subcarrier separation circuit composed of these delay units, multipliers, and output destination adders is an Nth order transversal filter itself having (1 / N) T delay taps.
  • the N subcarrier separation circuit is It can be omitted.
  • an equalizer included in the digital signal processing circuits 8-1 to 8-N an Nth-order transversal filter type adaptation having (1 / N) T delay taps (N taps), etc. Use a generator.
  • This transversal filter type adaptive equalizer has a k-th input signal Ek (k is an integer from 0 to N-1) input to an l-th output terminal (l is an integer from 0 to N-1).
  • Ek k is an integer from 0 to N-1
  • l is an integer from 0 to N-1
  • the coefficient of the transversal filter is determined so that N subcarriers can be separated by optimizing adaptive equalization using CMA and other algorithms.
  • the demodulators 9-1,. . . , 9-N demodulates the transmission code of N subcarriers.
  • subcarrier separation can be performed only by an Nth order transversal filter having a (1 / N) T delay tap. In this case, the coefficient is different from that of the equation (1).
  • the ninth embodiment of the present invention is a case where the signal light is polarization multiplexed signal light. Even when the signal light is a polarization multiplexed signal, all the configurations of the above embodiments can be applied to the configuration of the optical OFDM receiver. However, the optical orthogonal reception circuit 2 needs to have a polarization diversity configuration. As a configuration after the digital signal processing circuit 8, it is necessary to provide two systems of digital signal processing circuits for X polarization and Y polarization and a demodulator. The adaptive equalization circuit can realize polarization separation with the same algorithm. If the optical frequencies of the X polarization and the Y polarization are not exactly the same, it is necessary that the frequency shift circuit 4 and subsequent circuits have two circuit configurations for X polarization and Y polarization.
  • FIG. 14 is a block diagram showing a specific example of the configuration of the optical OFDM receiver according to the ninth embodiment.
  • the signal light incident on the 90-degree hybrid coupler 21 is a polarization multiplexed 2-subcarrier OFDM signal light, which is different from FIG.
  • the outputs of the adaptive equalizers 24 and 26 are different from those in FIG. 2 in that they output two sets of an X polarization signal and a Y polarization signal.
  • the CMA equalizer (adaptive equalizer 24) and the LMS equalizer (adaptive equalizer 26) also function to separate polarization, and the subcarrier A (X, SC-A) of X polarization, X polarization Four outputs are obtained: wave subcarrier B (X, SC-B), Y polarized subcarrier A (Y, SC-A), and Y polarized subcarrier B (Y, SC-B).
  • FIG. 15 is a block diagram showing a configuration of an optical OFDM receiver in the tenth embodiment of the present invention.
  • the present embodiment is characterized in that a chromatic dispersion compensation circuit 27 is provided after the analog / digital conversion circuit 3.
  • the optical signal after propagating through the optical fiber interferes with adjacent symbols under the influence of frequency-dependent delay due to the chromatic dispersion of the optical fiber. For this reason, there is a problem of causing a decrease in the code error rate after reception.
  • a method of performing dispersion compensation using an optical dispersion compensation device before OE conversion is used.
  • the amount of dispersion that can be compensated is greatly limited due to limitations on the loss, size, passband, and the like of the optical dispersion compensation device.
  • dispersion compensation is performed by digital signal processing for the digital signal after OE conversion and analog / digital conversion, so that chromatic dispersion is compensated without being limited by loss, bandwidth, and the like. The dispersion compensation amount can be greatly improved.
  • each chromatic dispersion compensation circuit 27 needs to add a delay opposite to the chromatic dispersion of the transmission line.
  • c is the speed of light and ⁇ is the wavelength of the signal.
  • the coefficient of the transversal filter can be obtained from the impulse response of equation (2) by performing inverse Fourier transform.
  • a 3000 km 1.3 ⁇ m zero-dispersion single mode fiber (dispersion 62000 ps / nm) is used. If the order (m) of the transversal filter is about 4096, it is possible to sufficiently suppress the penalty due to chromatic dispersion.
  • the transversal filter shown in FIG. 16 includes delay units 71-2 to 71-m that sequentially delay the input signal, a multiplier 72-1 that multiplies the input signal by a coefficient w1, and delay units 71-2 to 71-2.
  • Each of the signals delayed by 71-m includes multipliers 72-2 to 72-m that multiply the coefficients w2 to wm, and an adder 73 that adds the outputs of the multipliers 72-1 to 72-m. .
  • FIG. 17 is a block diagram showing the configuration of the chromatic dispersion compensation circuit 27A of the optical OFDM receiver in the eleventh embodiment of the present invention.
  • the present embodiment is characterized by performing equalization in the frequency domain by performing discrete Fourier transform on the received time-domain signal.
  • each subcarrier of the input signal has a different propagation delay time depending on the wavelength.
  • the reason why the input signal in FIG. 18 is illustrated by a parallelogram is to express that the propagation delay time of each subcarrier is different. Therefore, a difference occurs in propagation delay time of each subcarrier wavelength due to the influence of chromatic dispersion with respect to the input signal length L shown in the upper part of FIG. 18, so that the optical signals shown in the middle part of FIG. Protrusions occur.
  • the length of the optical signal affected by the chromatic dispersion is N (> L) by adding the lengths of the protrusions M1 and M2 to the input signal length L.
  • the input signal is subjected to serial / parallel conversion by the serial / parallel converter 30 as N blocks of N data, and discrete Fourier transform is performed by the discrete Fourier transformer 31.
  • the signal is converted into a frequency domain signal, the phase rotation given by the equation (2) is given to each frequency component by the equalization unit 32, and then the discrete inverse Fourier transform unit 33 performs the discrete inverse Fourier transform to obtain the time. Convert to domain signal.
  • signals near both ends of each block include interference from adjacent blocks, so this portion needs to be discarded.
  • the parallel / serial converter 34 performs parallel / serial conversion on the output signal from the discrete inverse Fourier transformer 33.
  • the number of data N in one block is set to a power of 2, and fast Fourier transform and fast inverse Fourier transform algorithm are applied to increase the calculation efficiency. Needless to say, this can be achieved.
  • the amount of calculation in this case is on the order of Nlog 2 N.
  • the present embodiment is effective in reducing the amount of calculation in an area where the number of taps is large.
  • the chromatic dispersion compensation circuit 27A in the preceding stage of the digital signal processing circuit 8 as in the present embodiment, the number of taps of the equalizer used in the digital signal processing circuit 8 can be kept low, and the calculation load is reduced. It is possible to improve the tolerance to reduction and channel time variation.
  • FIG. 19 is a block diagram showing the configuration of the chromatic dispersion compensation circuit 27B of the optical OFDM receiver in the twelfth embodiment of the present invention.
  • phase rotation is applied by the equalization unit 42 and the discrete inverse Fourier transform process is performed by the discrete inverse Fourier transform unit 43, and the output signals from the discrete inverse Fourier transform unit 43 and the adder circuit 44 are processed by the parallel / serial conversion unit 46.
  • Parallel / serial conversion As a result, the interference component of the previous symbol is stored in M1 of the first half of the N data to be output, and the value obtained by subtracting the interference component of the previous symbol is stored in the subsequent M2 portions. Is done.
  • the interference component of the next symbol is stored in the last M2 portions of the N pieces of data, and the value obtained by subtracting the interference component for the next symbol is stored in the immediately preceding M1 portion. Stored. Therefore, as shown in FIG. 20, the latter half M1 + M2 data of the N pieces of data held in the data holding unit 45 are added to the data of the next block by the adder circuit 44, thereby eliminating interference between symbols. Dispersion compensation function is realized.
  • the amount of calculation can be expected to be reduced by using FFT and IFFT, compared to the case of using a transversal filter.
  • the amount of calculation at the time of FFT calculation can be reduced by omitting the calculation of this part.
  • a thirteenth embodiment of the present invention will be described with reference to FIG.
  • the present embodiment is characterized in that the chromatic dispersion amount of the transmission fiber is measured from the analog / digital converted signal by the dispersion measurement circuit 50, and the dispersion amount of the chromatic dispersion compensation circuit 27C is set based on the result. To do.
  • a configuration is employed in which the chromatic dispersion amount is obtained by measuring the delay time difference.
  • a method may be used in which a dispersion measurement phase is provided separately from the normal data transmission phase, and a test signal for dispersion measurement is transmitted on the transmission side.
  • the amplitude or phase of each subcarrier is modulated with a low-frequency clock signal (frequency f) synchronized between the subcarriers, and transmitted as a test signal.
  • a delay time difference is obtained by detecting a phase difference ⁇ between any two sets of subcarriers (wavelength interval ⁇ ), and chromatic dispersion is measured.
  • a low-frequency clock signal is superimposed on the data signal, and this frequency component is extracted by a digital filter on the receiving side to obtain the phase difference.
  • a measurement method may be used.
  • performing chromatic dispersion measurement using only an OFDM receiver eliminates the need for chromatic dispersion measurement work at the time of system introduction, and can be expected to improve the convenience of maintenance and operation.
  • a fourteenth embodiment of the present invention will be described with reference to FIGS.
  • the present embodiment is characterized in that a differential decoding unit 60 that performs differential decoding on the output signal of the demodulator for each subcarrier is provided.
  • FIG. 23 shows the measurement of the dependence of the Q value on the transmission distance when linearly relaying a 1574.5 nm wavelength, 50 GHz interval, 10 wavelength 111 Gbit / s, polarization multiplexed 2-subcarrier QPSK-OFDM signal using a dispersion-shifted fiber. Results are shown.
  • the horizontal axis represents distance (km), and the vertical axis represents Q value (dB).
  • the dotted line graph shows a case where WDM transmission is performed with an input power of the optical fiber of ⁇ 5 dBm and no WDM differential decoding.
  • the solid line graph shows the case where WDM transmission is performed with the input power of the optical fiber being ⁇ 5 dBm and the case where WDM differential decoding is present.
  • differential decoding is performed by taking the difference from the previous symbol for each subcarrier.
  • the Q value is a code error rate BER
  • BER (1/2) erfc (Q / ⁇ (2)) (4)
  • erfc represents a complementary error function.
  • each subcarrier is decoded by taking a difference from the previous symbol.
  • the phase shift received by each subcarrier due to a nonlinear effect from another wavelength receives substantially the same amount of phase shift because the frequency interval between the subcarriers is narrow. Therefore, as shown in FIG. 25, using a method of decoding by subtracting subcarriers within the same symbol is effective because the phase shift due to the nonlinear optical effect can be canceled.
  • components provided between the frequency shift circuit and the demodulator are various arithmetic circuits (arithmetic circuit, first arithmetic circuit, or first arithmetic circuit) of the present invention. Corresponds to a second arithmetic circuit).
  • the circuit arranged up to the previous stage of the circuit that performs the equalization process and the carrier phase recovery process corresponds to the subcarrier separation circuit of the present invention.
  • the coefficient in the shaded portion in FIG. May be incorporated in the subcarrier separation circuit of the present invention in which the coefficient of the portion where the signal appears is increased to extract the subcarrier component A from the output signal of the equalizer.
  • the present invention is not limited to the above-described embodiments, and additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention. It is.
  • the optical orthogonal reception circuit is described as an example of the optical reception circuit.
  • subcarrier separation can be performed using an optical reception circuit other than the optical orthogonal reception circuit. Since an I-phase component and a Q-phase component can be extracted at the same time by using an optical quadrature receiver circuit, the circuit scale is reduced, so it is desirable to use an optical quadrature receiver circuit.
  • the above-described embodiments may be appropriately combined. The present invention is not limited by the above description, but only by the appended claims.
  • the present invention can be used to realize a high-performance optical OFDM transmission system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Optical Communication System (AREA)

Abstract

 高性能な光OFDM受信器を実現する。2つのサブキャリアAおよびBからなる光OFDM信号を受信してサブキャリア成分を分離するサブキャリア分離回路であって、受信信号光と局部発振光とを入射してベースバンド電気信号に変換し、このベースバンド電気信号をディジタル信号に変換し、この変換されたディジタル信号を前記サブキャリアAの中心周波数がゼロになるように周波数シフトし、この周波数シフトされた信号と前記周波数シフトされた信号を1/2シンボル時間遅延した信号とを加算して前記サブキャリアAの成分を分離する。

Description

光OFDM受信器および光伝送システムおよびサブキャリア分離回路およびサブキャリア分離方法
 本発明は、光通信に関する。特に、本発明は、光OFDM(orthogonal frequency division multiplexing)伝送システムの光OFDM受信器および光伝送システムおよびサブキャリア分離回路およびサブキャリア分離方法に関する。
 本願は、2008年2月22日に日本へ出願された特願2008-041306号、および、2008年9月19日に日本へ出願された特願2008-241489号に基づき優先権を主張し、それらの内容をここに援用する。
 インターネット等のトラフィックの増大により光伝送システムの大容量化が望まれているが、現在、光ファイバの伝送可能な帯域はほぼ限界近くまで使用されており、同じ伝送帯域でさらに多くの情報を伝達できる周波数利用効率の良い伝送方式が望まれている。OFDM(Orthogonal Frequency Division Multiplexing;直交周波数分割多重)は光周波数の直交性を利用し、隣接チャネルの信号が重なった状態でも干渉が無く信号を伝達できるため、周波数利用効率を増大でき、次世代の光通信方式として期待されている。
 光OFDM信号を受信する方法として、コヒーレント受信をし、無線技術で用いられる手法を利用したサブキャリア分離が行われている(例えば、非特許文献1参照)。また、光OFDM信号を受信する別の方法として、光領域でマッハツェンダ遅延干渉計を用いてサブキャリアを分離し、直接受信(二乗検波)する方法が行われている(例えば、特許文献1、非特許文献2参照)。
S. L. Jansen, I. Morita, and H. Tanaka,"16x52.5-Gb/s, 50-GHz spaced, POLMUX-CO-OFDM transmission over 4,160 km of SSMF enabled by MIMO processing", ECOC2007, PD1.3, Berlin, Germany 日本特許3789784号 A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, "30 x 100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes", ECOC2007, PD1.7, Berlin, Germany
 非特許文献1では、無線と同様な方式で光OFDM信号を受信している。このため、ガードインターバルやトレーニング信号といった情報データ以外の信号も伝送しなければならず、10パーセントから20パーセント伝送レートが高くなるといった課題がある。そのために、電気回路への要求速度が増大する他、信号帯域が拡大し、情報データのみを伝送する場合に比較して周波数利用効率が低下する。
 また、特許文献1、非特許文献2の方式では、光の直接受信を利用しているため、コヒーレント受信に比べて受信感度が劣る。また、電気領域での位相情報を利用した信号処理による等化、すなわち偏波分散補償、波長分散補償、帯域補償等ができないため、偏波分散、波長分散、帯域制限による劣化を引き起こしやすいという課題がある。
 本発明は、このような背景の下に行われたものであって、以下に示すような利点が得られる光OFDM受信器および光伝送システムおよびサブキャリア分離回路およびサブキャリア分離方法を提供することを目的とする。
・単純な回路で光OFDM信号を分離できる。
・受信感度が優れている。
・偏波分散、波長分散、帯域制限等によるシンボル間干渉を補償できる。
・偏波多重の光OFDM信号に対しては、等化器により偏波分離を行うことができる。
・ディジタル信号処理により、損失、帯域等の制限を受けることがなく波長分散を補償することができる。
・ガードインターバルやトレーニング信号といった電気回路への要求速度を増大させる信号を伝送する必要が無い。したがって、電気回路への要求速度が増大することも無く、信号帯域が拡大して周波数利用効率が低下することもない。
 本発明の第1の態様によるサブキャリア分離回路は、2つのサブキャリアAおよびBからなる光OFDM信号を受信してサブキャリア成分を分離するサブキャリア分離回路であって、受信信号光と第一の局部発振光とを入射してベースバンド電気信号に変換する第一の光受信回路と、このベースバンド電気信号をディジタル信号に変換する第一のアナログ・ディジタル変換回路と、この変換されたディジタル信号を前記サブキャリアAの中心周波数がゼロになるように周波数シフトする第一の周波数シフト回路と、この周波数シフトされた信号と前記周波数シフトされた信号を1/2シンボル時間遅延した信号とを加算して前記サブキャリアAの成分を分離する第一の演算回路とを備えている。
 本発明のサブキャリア分離回路において、前記第一の演算回路は、前記周波数シフトされた前記信号を1/2シンボル時間遅延する遅延器と、前記周波数シフトされた前記信号と前記周波数シフトされた信号を1/2シンボル時間遅延した前記信号とを加算して前記サブキャリアAの前記成分を分離する加算器とを備えていても良い。
 本発明のサブキャリア分離回路において、前記第一の演算回路は、前記加算に加えて、さらに、前記周波数シフトされた信号から前記周波数シフトされた信号を1/2シンボル時間遅延した信号を減算して前記サブキャリアBの成分を分離するようにしても良い。
 本発明のサブキャリア分離回路において、前記第一のアナログ・ディジタル変換回路により変換された前記ディジタル信号を前記サブキャリアBの中心周波数がゼロになるように周波数シフトする第二の周波数シフト回路と、この周波数シフトされた信号と前記周波数シフトされた信号を1/2シンボル時間遅延した信号とを加算して前記サブキャリアBの成分を分離する第二の演算回路とをさらに備えるようにしても良い。
 本発明のサブキャリア分離回路において、前記受信信号光と第二の局部発振光とを入射してベースバンド電気信号に変換する第二の光受信回路と、この第二の光受信回路から出力された前記ベースバンド電気信号をディジタル信号に変換する第二のアナログ・ディジタル変換回路と、前記第二のアナログ・ディジタル変換回路により変換された前記ディジタル信号を前記サブキャリアBの中心周波数がゼロになるように周波数シフトする第二の周波数シフト回路と、前記第二の周波数シフト回路により周波数シフトされた信号と前記第二の周波数シフト回路により周波数シフトされた前記信号を1/2シンボル時間遅延した信号とを加算して前記サブキャリアBの成分を分離する第二の演算回路とをさらに備えるようにしても良い。
 本発明の光OFDM受信器は、本発明のサブキャリア分離回路と、第一の復調器とを備え、前記第一の演算回路は、分離された前記サブキャリアAの前記成分に等化処理およびキャリア位相リカバリ処理を行い、前記第一の復調器は、前記第一の演算回路が前記等化処理および前記キャリア位相リカバリ処理を行った信号を復調する。
 本発明の光OFDM受信器は、本発明のサブキャリア分離回路と、第一の復調器とを備え、前記第一の演算回路は、分離された前記サブキャリアBの成分に等化処理およびキャリア位相リカバリ処理を行い、前記第一の復調器は、前記第一の演算回路が前記等化処理および前記キャリア位相リカバリ処理を行った信号を復調する。
 本発明の光OFDM受信器は、本発明のサブキャリア分離回路と、第二の復調器とを備え、前記第二の演算回路は、分離された前記サブキャリアBの成分に等化処理およびキャリア位相リカバリ処理を行い、前記第二の復調器は、前記第二の演算回路が前記等化処理および前記キャリア位相リカバリ処理を行った信号を復調する。
 本発明の光OFDM受信器において、前記第一の局部発振光を前記サブキャリアAまたはBの光周波数または前記等化処理および前記キャリア位相リカバリ処理を行う各演算回路が前記サブキャリアAまたはBの前記光周波数に補正可能な周波数範囲にある光周波数に設定するようにしても良い。
 本発明の光OFDM受信器は、本発明のサブキャリア分離回路と、第二の復調器とを備え、前記第二の演算回路は、分離された前記サブキャリアBの成分に等化処理およびキャリア位相リカバリ処理を行い、前記第二の復調器は、前記第二の演算回路が前記等化処理および前記キャリア位相リカバリ処理を行った信号を復調する。
 本発明の光OFDM受信器において、前記第一の演算回路は、分離された前記サブキャリアAの成分に等化処理およびキャリア位相リカバリ処理を行い、前記第一の光受信回路については、前記第一の局部発振光を前記サブキャリアAの中心の光周波数または前記等化処理および前記キャリア位相リカバリ処理を行う前記第一の演算回路が前記サブキャリアAの中心の光周波数に補正可能な周波数範囲にある光周波数に設定し、前記第二の光受信回路については、前記第二の局部発振光を前記サブキャリアBの中心の光周波数または前記等化処理および前記キャリア位相リカバリ処理を行う前記第二の演算回路が前記サブキャリアBの中心の光周波数に補正可能な周波数範囲にある光周波数に設定するようにしても良い。
 本発明の光OFDM受信器において、前記第一の局部発振光を前記サブキャリアAと前記サブキャリアBとの間の中心の光周波数または前記等化処理および前記キャリア位相リカバリ処理を行う各演算回路が前記サブキャリアAと前記サブキャリアBとの間の中心の光周波数に補正可能な周波数範囲にある光周波数に設定するようにしても良い。
 本発明の光OFDM受信器において、前記第一の演算回路は、トランスバーサルフィルタから構成される等化器と、このトランスバーサルフィルタの係数を、前記第一の演算回路への入力信号と前記入力信号を1/2シンボル時間遅延した信号とを加算するような設定とする第一のモードに設定する設定部とを備えたディジタル信号処理回路であっても良い。
 本発明の光OFDM受信器において、前記設定部は、前記第一のモード、または、前記第一の演算回路への前記入力信号から前記入力信号を1/2シンボル時間遅延した前記信号を減算するような設定とする第二のモードのいずれか一方のモードを選択し、前記第一の復調器は、前記第一のモードの設定時に前記サブキャリアAの信号を取得し、前記第二のモードの設定時に前記サブキャリアBの信号を取得するようにしても良い。
 本発明のサブキャリア分離回路は、N(Nは2以上の整数)個のサブキャリアからなる光OFDM信号を受信してサブキャリア成分を分離するサブキャリア分離回路であって、各々が、受信信号光と少なくとも1系統の局部発振光とを入射してベースバンド電気信号に変換する少なくとも1系統の光受信回路と、各々が、このベースバンド電気信号をディジタル信号に変換する少なくとも1系統のアナログ・ディジタル変換回路と、この変換されたディジタル信号を所望のサブキャリアの中心周波数がゼロになるように周波数シフトするN系統の周波数シフト回路と、これらN系統の周波数シフト回路によりそれぞれ周波数シフトされた信号を所望のサブキャリアの信号帯域幅と同じ通過帯域の信号が通過するようにそれぞれ帯域制限するN系統の帯域制限フィルタと、これらN系統の帯域制限フィルタによりそれぞれ帯域制限された信号と前記帯域制限された前記信号を1/2シンボル時間遅延した信号とをそれぞれ加算して前記N個のサブキャリアの成分を分離するN系統の加算器とを備えている。
 本発明のサブキャリア分離回路において、前記少なくとも1系統の局部発振光は、N系統の局部発振光であり、前記少なくとも1系統の光受信回路は、前記受信信号光と前記N系統の局部発振光とをそれぞれ入射してベースバンド電気信号にそれぞれ変換するN系統の光受信回路であり、前記少なくとも1系統のアナログ・ディジタル変換回路は、前記N系統の光受信回路からそれぞれ出力された前記ベースバンド電気信号をそれぞれディジタル信号に変換するN系統のアナログ・ディジタル変換回路であり、前記N系統の周波数シフト回路は、前記N系統のアナログ・ディジタル変換回路によりそれぞれ変換された前記ディジタル信号を前記所望のサブキャリアの前記中心周波数がゼロになるようにそれぞれ周波数シフトするようにしても良い。
 本発明の光OFDM受信器は、本発明のサブキャリア分離回路と、前記N個のサブキャリアの成分にそれぞれ等化処理およびキャリア位相リカバリ処理を行うN系統のディジタル信号処理回路と、これらN系統のディジタル信号処理回路によりそれぞれ前記等化処理および前記キャリア位相リカバリ処理が行われた信号を復調するN系統の復調器とを備えている。
 本発明光OFDM受信器において、前記N系統の局部発振光は、前記N系統の光受信回路のそれぞれについての所望のサブキャリアの中心周波数または前記等化処理および前記キャリア位相リカバリ処理を行う前記N系統のディジタル信号処理回路のそれぞれが前記所望のサブキャリアの中心光周波数に補正可能な周波数範囲にある光周波数に設定するようにしても良い。
 本発明のサブキャリア分離回路は、N個のサブキャリアからなる光OFDM信号を受信してサブキャリア成分を分離するサブキャリア分離回路において、受信信号光と局部発振光とを入射してベースバンド電気信号に変換する光受信回路と、このベースバンド電気信号をディジタル信号に変換するアナログ・ディジタル変換回路と、この変換されたディジタル信号に対し、最も低いまたは最も高いサブキャリアの中心周波数がゼロになるように周波数シフトする周波数シフト回路と、この周波数シフト回路から出力される電気信号のシンボル位相を(k/N)T(kは0からN-1までの整数、Tは1シンボル時間)で定まる時間だけ遅延させたN個の信号Ekと、N系統の位相関係の係数の各系統に含まれるN個の係数とをそれぞれ乗算することにより、l番目(lは0からN-1までの整数)の系統に含まれるN個の乗算信号のうちのk番目の乗算信号が
Figure JPOXMLDOC01-appb-M000003
(jは虚数単位)で定まるN系統の乗算信号を求め、各系統に含まれるN個の乗算信号を加算してN系統の加算信号を求めて、前記N個のサブキャリアの成分を分離する演算回路とを備えている。
 本発明サブキャリア分離回路において、前記演算回路は、前記周波数シフト回路から出力される前記電気信号をN分岐する分岐部と、前記分岐部の後に接続され、これら分岐した信号のシンボル位相をそれぞれ(k/N)Tで定まる前記時間だけ遅延させて前記N個の信号Ekを出力する遅延部と、前記遅延部により遅延された前記N個の信号Ekを加算するN個の加算部と、前記遅延部と前記加算部との間に設けられ、l番目の加算部へ入力される信号のうちk番目に入力される前記信号Ekに対して、前記位相関係の係数のうちl番目の系統に含まれるk番目の係数を乗算する乗算部とを備えていても良い。
 本発明の光OFDM受信器は、本発明のサブキャリア分離回路と、N個の復調器とを備え、前記演算回路は、分離された前記N個のサブキャリアの成分に対してそれぞれ等化処理およびキャリア位相リカバリ処理を行い、前記N個の復調器は、前記演算回路の出力信号からN個のサブキャリアの信号をそれぞれ復調する。
 本発明の光OFDM受信器において、前記演算回路は、前記周波数シフト回路から出力される前記電気信号に対して前記等化処理および前記キャリア位相リカバリ処理を行うディジタル信号処理回路であり、このディジタル信号処理回路は、Nタップの(1/N)Tの遅延タップを持つN次のトランスバーサルフィルタ型適応等化器を含み、このトランスバーサルフィルタ型適応等化器は、l番目の出力端子へ入力されるk番目の入力信号Ekに対してタップ係数を乗算して、
Figure JPOXMLDOC01-appb-M000004
で定まる乗算信号を出力する乗算部を有し、このタップ係数を乗算するようにしても良い。
 本発明の光OFDM受信器において、前記光受信回路は光直交受信回路であっても良い。
 本発明の光OFDM受信器において、前記信号光は偏波多重信号であって、前記光受信回路の各々は偏波ダイバーシティ型光受信回路であり、前記アナログ・ディジタル変換回路の各々は、X偏波信号用とY偏波信号用との2組のアナログ・ディジタル変換回路で構成され、前記復調器の各々は、X偏波信号とY偏波信号とに対して復調を行うようにしても良い。
 本発明の光OFDM受信器において、前記アナログ・ディジタル変換回路の各々により変換されたディジタル信号に対して、ディジタル信号処理により伝送路の波長分散を補償する波長分散補償回路を備えるようにしても良い。
 本発明の光OFDM受信器において、前記波長分散補償回路は、トランスバーサルフィルタにより構成されるようにしても良い。
 本発明光OFDM受信器において、前記波長分散補償回路は、離散フーリエ変換を行って時間領域の信号を周波数領域の信号に変換する離散フーリエ変換部と、フーリエ変換された各周波数成分の信号に対して波長分散による位相回転と逆の位相回転を与える等化部と、この等化部から出力される周波数領域の信号に対し離散逆フーリエ変換を行って時間領域の信号に変換して出力する離散逆フーリエ変換部とを備えるようにしても良い。
 本発明の光OFDM受信器において、サブキャリア間の伝播遅延時間差から伝送ファイバの波長分散量を測定し、前記波長分散補償回路の分散補償量を設定する分散測定部を備えるようにしても良い。
 本発明の光OFDM受信器において、各々のサブキャリアに対する前記復調器の各々の出力信号に対して差動復号化を行う差動復号化器を備えるようにしても良い。
 また、本発明を、本発明の光OFDM受信器を備えた光伝送システムとしての観点から観ることもできる。
 本発明サブキャリア分離方法は、2つのサブキャリアAおよびBからなる光OFDM信号を受信してサブキャリア成分を分離するサブキャリア分離方法において、受信信号光と局部発振光とを入射してベースバンド電気信号に変換し、このベースバンド電気信号をディジタル信号に変換し、この変換されたディジタル信号を前記サブキャリアAの中心周波数がゼロになるように周波数シフトし、この周波数シフトされた信号と前記周波数シフトされた信号を1/2シンボル時間遅延した信号とを加算して前記サブキャリアAの成分を分離する。
 本発明によれば、遅延器,加算器,減算器といった単純な回路を用いて光OFDM信号を分離することができる。また、本発明によれば、コヒーレント受信を用いているため、光の直接受信に比べて受信感度が優れている。また、本発明によれば、ディジタル信号処理による等化を行うため、偏波分散、波長分散、帯域制限等によるシンボル間干渉を補償できる。また、本発明によれば、偏波多重の光OFDM信号に対しては、等化器により偏波分離を行うことができる。また、本発明はガードインターバルやトレーニング信号といった情報データ以外の信号を伝送する必要が無いため、電気回路への要求速度が増大することも無く、信号帯域が拡大して周波数利用効率が低下することもない。また、本発明によれば、ディジタル信号処理により、損失、帯域等の制限を受けることがなく波長分散を補償することができるので分散補償量を大幅に向上できる。
第一の実施形態による光OFDM受信器の構成を示すブロック図である。 第一の実施形態による光OFDM受信器の構成の具体例を示す図である。 第一の実施形態において局発光の周波数の設定方法を説明する図である。 第一の実施形態において2サブキャリアのOFDM信号の分離を説明する図であって、周波数シフト回路から出力される信号を示す図である。 第一の実施形態において2サブキャリアのOFDM信号の分離を説明する図であって、周波数シフト回路の出力信号を1/2シンボルだけ遅延させた信号を示す図である。 第一の実施形態において2サブキャリアのOFDM信号の分離を説明する図であって、図4Aおよび図4Bに示した2つの信号の和を示す図である。 第一の実施形態において2サブキャリアのOFDM信号の分離を説明する図であって、図4Aおよび図4Bに示した2つの信号の差を示す図である。 第二の実施形態による光OFDM受信器の構成を示すブロック図である。 第三の実施形態による光OFDM受信器の構成を示すブロック図である。 第三の実施形態において局発光の周波数の設定方法を説明する図であって、局発光の周波数を信号光のサブキャリアAの中心周波数近傍に設定した場合の図である。 第三の実施形態において局発光の周波数の設定方法を説明する図であって、局発光の周波数を信号光のサブキャリアBの中心周波数近傍に設定した場合の図である。 第四の実施形態において局発光の周波数の設定方法を説明する図である。 第五の実施形態による光OFDM受信器の構成を示すブロック図である。 第六の実施形態による光OFDM受信器の構成を示すブロック図である。 第七の実施形態による光OFDM受信器の構成を示すブロック図である。 第七の実施形態において局発光の周波数の設定方法を説明する図である。 第八の実施形態による光OFDM受信器の構成を示すブロック図である。 第九の実施形態による光OFDM受信器の構成の具体例を示すブロック図である。 第十の実施形態による光OFDM受信器の構成を示すブロック図である。 図15に示す波長分散補償回路のトランスバーサルフィルタを示す図である。 第十一の実施形態による波長分散補償回路の構成を示すブロック図である。 図17に示す波長分散補償回路の動作を説明するための図である。 第十二の実施形態による光OFDM受信器の波長分散補償回路の構成を示すブロック図である。 図19に示す波長分散補償回路の動作を説明するための図である。 第十三の実施形態による光OFDM受信器の構成を示すブロック図である。 第十四の実施形態による光OFDM受信器の構成を示すブロック図である。 図22に示す光OFDM受信器における波長1574.5nm、50GHz間隔、10波長の111Gbit/s、偏波多重2サブキャリアQPSK-OFDM信号を、分散シフトファイバで線形中継伝送した場合のQ値の伝送距離依存性の測定結果を示す図である。 各サブキャリアに対して、前のシンボルとの差分をとって復号化する方式を説明する図である。 同一シンボル内で、サブキャリア同士で差分をとって復号化する方式を説明する図である。
符号の説明
1、1A、1B、1-1、1-2、…、1-N 局発光
2、2A、2B、2-1、2-2、…、2-N 光直交受信回路
3、3A、3B、3-1、3-2、…、3-N アナログ・ディジタル変換回路
4、4A、4B、4-1、4-2、…、4-N 周波数シフト回路
5、5A、5B、5-1、5-2、…、5-N 遅延器
6、6A、6B、6-1、6-2、…、6-N 加算器
7 減算器
8、8A、8B、8-1、8-2、…、8-N ディジタル信号処理回路
9、9A、9B、9-1、9-2、…、9-N 復調器
10 ディジタル信号処理回路(トランスバーサルフィルタの係数がOFDMサブキャリア分離演算と一致するように設定した等化器)
11-1、11-2、…、11-N 帯域制限フィルタ
21 90度光ハイブリッドカプラ
22 バランスド受信器
23 リサンプル回路
24 CMAアルゴリズムを用いた適応等化器
25 キャリア位相リカバリ回路
26 LMSアルゴリズムを用いた適応等化器
27、27A、27B、27C 波長分散補償回路
30、40 直/並列変換部
31、41 離散フーリエ変換部
32、42 等化部
33、43 離散逆フーリエ変換部
34、46 並/直列変換部
35、45 データ保持部
44 加算回路
50 分散測定回路
60 差動復号化部
 以下、図面を用いて本発明の実施形態を説明する。
(第一の実施形態)
 図1を参照して本発明の第一の実施形態の光OFDM受信器の構成を説明する。図1は、本発明の第一の実施形態による光OFDM受信器の構成を示すブロック図である。信号光は2サブキャリアの光OFDM信号であり、各サブキャリアは各々たとえばQPSK(4相位相シフト変調)で変調されているものとする。なお、以下では局部発振光を局発光と略す。局発光1は連続光である。各サブキャリアの変調フォーマットは、QPSKの他に、BPSK(2相位相シフト変調)、強度変調、直交振幅変調、多値位相変調等の任意の変調方式が可能である。
 情報を送る符号の1単位を1シンボルといい、各サブキャリアの信号は、例えば、11.1GSymbols/s(=11.1GBaud/s)等で変調されているものとする。QPSKの場合は、1Symbolで4値(2の2乗)の値を取ることが出来るので、情報の伝達速度としては22.2Gbit/sとなる。
 OFDM信号において、複数のサブキャリアからなる合成信号は、OFDMブロックまたはOFDMフレームと呼ばれ、また、送信側では、全サブキャリアのシンボルの開始時刻と終了時刻は一致しているのが望ましく、これをスキューが無いという。また、本発明の光OFDM受信器を用いる光伝送システム、光伝送方法では、ガードインターバルやトレーニングシンボルが無く、OFDMブロックの長さと各サブキャリアのシンボルの長さは一致し、1OFDMブロックは1シンボルと等しい。そこで、本発明では1OFDMブロックと1シンボルを区別せずに説明する。
 信号光と局発光1を90度光ハイブリッドカプラと光検出器とから構成される光直交受信回路2に入射する。光直交受信回路2では、90度光ハイブリッドカプラの出力で信号光のI相成分とQ相成分に分離され、I相成分とQ相成分が各々、光検出器で電気信号に変換される。光検出器としては、バランスドレシーバとバランスドレシーバでない通常の光検出器が考えられるが、バランスドレシーバの方が受信感度とDCオフセットの除去の点からは望ましい。
 信号光と局発光1とは偏波方向が一致していないと信号光のI相成分とQ相成分が発生しないので、通常は、90度光ハイブリッドカプラは偏波ダイバーシティ構成にする。すなわち、信号光成分を偏波ビームスプリッタでX偏波とY偏波に分離し、また、局発光を1:1に2分岐し、2つの90度光ハイブリッドカプラに入射する。
 すなわち、X偏波用の90度光ハイブリッドカプラに信号光のX偏波成分と局発光の半分をX偏波に一致させた成分とを入射すると、90度光ハイブリッドカプラの出力で信号光のX偏波成分のI相成分とQ相成分に分離され、X偏波成分のI相成分とQ相成分が各々、光検出器で電気信号に変換される。また、Y偏波用の90度光ハイブリッドカプラに信号光のY偏波成分と局発光の半分をY偏波に一致させた成分とを入射すると、90度光ハイブリッドカプラの出力で信号光のY偏波成分のI相成分とQ相成分に分離され、Y偏波成分のI相成分とQ相成分が各々、光検出器で電気信号に変換される。
 あるいは、偏波ダイバーシティ構成にせずに、局発光の偏波方向を信号光の偏波に一致させるように制御してもよい。そのためには、90度光ハイブリッドカプラの出力から発生する信号光のI相成分とQ相成分が最大になるように偏波コントローラ等を用いて局発光の偏波方向を制御する。あるいは、信号光の偏波方向を検出する偏波検出器を光直交受信回路内に設置し、局発光の偏波方向が信号光の偏波に一致するように偏波コントローラ等を用いて局発光の偏波方向を制御してもよい。
 アナログ・ディジタル変換回路3により、信号光のI相成分とQ相成分からなるアナログの電気信号は時間において離散化され(標本化またはサンプリング)、また、数値的に量子化されたディジタル信号に変換される。信号光のI相成分とQ相成分の2つの成分があるから、2つのアナログ・ディジタル変換回路を用いる。また、偏波ダイバーシティ構成を用いるときは、X偏波成分のI相成分とQ相成分およびY偏波成分のI相成分とQ相成分の4つの成分があるため、4つのアナログ・ディジタル変換回路を用いる。アナログ・ディジタル変換回路としては、4ビットから16ビット程度の精度を用いる。我々の実験による検証においては8ビット精度のアナログ・ディジタル変換回路を用いた。
 サンプリング速度は後述するディジタル信号処理回路8を構成する等化器の動作に関係する。シンボル速度と等しい速度でサンプリングし、シンボルレートで動作する等化器を用いて等化した場合(シンボルレート等化器)、標本時刻が例えばシンボルの中心に最適化された場合は、信号の全情報を得て信号を等化することができるが、標本時刻をシンボルの中心に最適化できない場合には、等化性能が劣化する。標本時刻をシンボルの中心に最適化できない場合には、分数間隔で標本化し、分数間隔等化器を用いて等化することで、標本化のタイミング位相を考慮せずに済む。したがって、シンボル速度の2倍以上でオーバーサンプリングし、分数間隔等化器を用いて等化することが望ましい。
 また、後述するように、2サブキャリアのOFDM信号を分離するためには、1/2シンボルの遅延を行うので、2の倍数でオーバーサンプリングする。さらにこのとき、サブキャリアの分離を行うと、サブキャリア信号として有効な成分は1シンボル時間の半分にのみ含まれるため、この部分を用いて分数間隔で標本化し、分数間隔等化器を用いて等化するためには、シンボル速度の4倍以上でオーバーサンプリングし、分数間隔等化器を用いて等化することが望ましい。
 我々の実験による検証においては、シンボル速度の4倍でサンプリングした。すなわち1シンボルを4点でサンプリングしたので4Sample/Symbolである。我々の実験による検証においては、シンボル速度が11.1GSymbol/sであるので、サンプリング速度は44.4GSample/sである。このサンプリングを得るために、実際に44.4GSample/sでサンプリングしてもよいし、また、数値的補間等を用いて、他のサンプリング速度でサンプリングした信号をリサンプリングしてもよい。我々の実験による検証においても、50GSample/sでサンプリングした信号を44.4GSample/sへリサンプリングした。
 ディジタル信号はI、Q信号を一括して扱う場合は、複素数として一括して扱うことが出来る。I、Q信号を別々に扱う場合は、それぞれを別々の実数として扱い、I信号用、Q信号用にそれぞれの回路が必要である。本発明の説明では、アナログ回路ではI、Q信号を実数として別々に扱い、ディジタル信号に変換後は、一括して複素数として扱って説明する。
 次に、周波数シフト回路(自動周波数制御回路)4を用いて、2つのサブキャリア信号A,Bからなる光OFDM信号がディジタルに変換された電気信号において、一方のサブキャリア、例えば、サブキャリアAの中心周波数がゼロになるように周波数シフトする。周波数シフト回路4の働きは、後述するディジタル信号処理回路8においてサブキャリア周波数の周波数ずれ、位相ずれを検出し、そのずれがゼロになるように、周波数シフト回路4において信号の周波数をシフトさせることにある。周波数シフト回路4への入力信号はディジタル信号であるので、信号の周波数をfだけシフトするためにはディジタル信号にexp(j2πft)を掛けることにより実現する(jは虚数単位、tは時間)。
 次に、加算器6によって、遅延器5を用いて周波数シフト回路4の出力信号を1/2シンボル(1/2OFDMブロックに等しい)だけ遅延させた信号と、遅延させない信号との和の演算を行う。和の演算により、2つのサブキャリアのうち、サブキャリアA成分を取り出し、また、他方のサブキャリアB成分を除去する。また、減算器7によって、周波数シフト回路4の出力信号を1/2シンボル(1/2OFDMブロックに等しい)だけ遅延させた信号と、遅延させない信号との差の演算を行う(すなわち、周波数シフトされた信号から、この周波数シフトされた信号を1/2シンボル時間遅延させた信号を減算する)ことにより、サブキャリアA成分を除去し、また、サブキャリアB成分を取り出す。これらの動作をOFDMサブキャリア分離演算と呼ぶことにする。この動作については後で図4A~図4Dを用いて説明する。
 ディジタル信号処理回路8の一つの構成例として、適応等化器とキャリア位相リカバリ回路とからなり、取り出されたサブキャリア成分の信号を等化し、送信器の変調信号を推定する構成が挙げられる。
 等化器(第1の等化器)としてトランスバーサルフィルタから構成される線形等化器を用いることができる。また、ディシジョンフィードバックを備えた非線形等化器を用いることが出来る。
 等化器のトランスバーサルフィルタの係数を決定するアルゴリズムはCMA(Constant Modulus Algorithm:定包絡線アルゴリズム)を用いる。CMAは、サブキャリアの位相情報を使用せず、また、振幅が一定であるという情報のみで等化器の係数を決定できるため、トレーニング信号を用いないブラインド等化をすることができる。
 さらに、CMAで等化してキャリア位相リカバリをして復調した信号をトレーニング信号の代わりとしてLMS(Least Mean Square:最小平均自乗)、RLS(Recursive Least Square:逐次最小二乗)アルゴリズムを用いた第2の等化器でさらに等化し、等化性能を高めることが出来る。
 また、CMAを用いた第1の等化器の等化出力をもとに復調した信号をトレーニング信号の代わりとしてLMSやRLSアルゴリズムで第2の等化器で等化し、第2の等化器のタップ係数が安定した後は、CMAを用いた第1の等化器の等化出力をもとに復調した信号の代わりに第2の等化器の出力をもとに復調した信号をトレーニング信号の代わりとして第2の等化器へ戻して等化するようにしても良い。これにより、CMAによる第1の等化器を動作させずに等化することができる。また、等化性能の低いCMAによる第1の等化器を用いないため、等化性能を高めることができる。
 等化器でさまざまな符号間干渉、たとえば、偏波分散、波長分散、帯域制限等を補償する。これにより、偏波分散耐力、波長分散耐力、帯域制限耐力を高めることができる。これは、非特許文献1等で使用するサイクリックプレフィックス等で構成されたガードインターバルを用いることなく、偏波分散耐力、波長分散耐力を向上できることを意味する。
 等化器による等化の後にキャリア位相リカバリを行う。QPSKの場合は4乗法を用いて、キャリア位相を補正し、各サブキャリア信号の絶対位相を確定する。一般にN値の位相変調の場合は、等化器への入力信号をN乗することにより、キャリア位相を補正し、各サブキャリア信号の絶対位相を確定する。また、位相のずれの情報を利用して周波数シフト回路4を制御する。位相の変化速度は周波数であるので周波数ずれを検出することができる。最後に、復調器9で信号を復調し、符号判定をする。
 これらの具体例を含めた構成を図2に示す。符号21は90度光ハイブリッドカプラ、符号22はバランスド受信器、符号23はシンボル速度の整数倍と異なるサンプル速度でサンプリングされた信号を、数値的補間を用いてシンボル速度の整数倍でリサンプリングを行うリサンプル回路、符号24はCMAアルゴリズムを用いた適応等化器、符号25はキャリア位相リカバリ回路、符号26はLMSアルゴリズムを用いた適応等化器である。キャリア位相リカバリ回路25で周波数や位相の誤差を検出し、周波数シフト回路4を制御する。また、CMA側の復調器9の出力を参照信号としてLMSアルゴリズムを用いて適応等化器26で適応等化する。
 図3に第一の実施形態において局発光の周波数の設定方法を説明する図を示す。局発光1の周波数は、信号光のOFDM信号のうちの受信したいサブキャリア、例えばサブキャリアA(図中ではSC-Aと略している)の中心周波数と一致しているか、その近傍に設定しておく。ここで、「近傍」とは、等化器およびキャリア位相リカバリ回路が局発光1の周波数を例えばサブキャリアAの中心周波数に補正可能な周波数範囲にある光周波数を言う。なお、この周波数範囲は、例えば、使用するレーザや扱う信号のシンボルレートに応じて決まる。
 一つの設定方法は次の通りである。信号光はその周波数が、ITU-Tグリッドと呼ばれる周波数により決まっているので、光フィルタや波長計や光スペクトラムアナライザ等を用いて計測することにより信号光の波長が求められる。そして、局発光の周波数を光フィルタや波長計や光スペクトラムアナライザ等を用いることにより信号光のOFDM信号のうちの受信したいサブキャリアの中心周波数に一致、あるいは近傍に位置するように制御する。
 このように局発光を設定することにより、光直交受信回路の出力に現れるベースバンドに変換された電気のスペクトルでは、サブキャリアAの中心周波数がゼロ近傍に位置することになる。従って、周波数シフト回路4をわずかに動かすだけでサブキャリアAの中心周波数をゼロに制御できる。さらには、このように設定することによりサブキャリアAの復調に必要なベースバンドの電気回路の周波数帯域を小さくすることができる。
 図4A~図4Dは、第一の実施形態において2サブキャリアのOFDM信号の分離を説明する図である。2つのサブキャリアA、Bのうち、サブキャリアAの成分の中心周波数がゼロになるように周波数シフトしているものとする。このとき、サブキャリア成分Bの中心周波数はサブキャリア間隔だけシフトしている。1/2シンボル(1/2OFDMブロックに等しい)だけ周波数シフト回路4の出力を遅延させた信号(図4B参照)と、遅延させない信号(図4A参照)とを1:1で加算すると(図4C参照)、同一シンボルが重なった部分は、サブキャリア成分Bがキャンセルされて、サブキャリア成分Aのみが現れる。
 一方、図4Cにおいて斜線で示した部分は、サブキャリア成分A,Bが混ざっている。したがって、ディジタル信号処理回路8に含まれるトランスバーサルフィルタ型等化器の係数を、斜線の部分の係数を小さくし、サブキャリア成分Aのみが現れる部分の係数を大きくするように係数を定めることにより、等化器の出力信号にサブキャリア成分Aを取り出すことが出来る。
 また、周波数シフト回路4の出力を1/2シンボル(1/2 OFDMブロックに等しい)だけ遅延させた信号と、遅延させない信号とを1:1で減算すると(図4D参照)、同一シンボルが重なった部分は、サブキャリア成分Aがキャンセルされて、サブキャリア成分Bのみが現れる。図4Dにおいて斜線で示した部分は、サブキャリア成分A,Bが混ざっている。ディジタル信号処理回路8に含まれるトランスバーサルフィルタ型等化器の係数を、斜線の部分の係数を小さくし、サブキャリア成分Bのみが現れる部分の係数を大きくするように係数を定めることにより、等化器の出力信号にサブキャリア成分Bを取り出すことが出来る。
 従来の無線と同様の手法を用いた光OFDMではガードインターバルをサイクリックプレフィックスで構成したOFDMフレーム(OFDMブロックともいう)を形成しているが、本発明ではガードインターバルが不要である。従来のOFDMはガードインターバルのあるOFDMフレームに対してFFTを行うことにより各サブキャリアを分離するが、本発明ではサブキャリア分離にFFTを用いない。
 また、本発明ではガードインターバルを用いることなく、また、トレーニング信号を用いないブラインド等化を使用しているため、光領域でマッハツェンダ遅延干渉計を用いてサブキャリアを分離し直接受信(二乗検波)する方法と符号の構成方法、送信器構成が同じであり、直接受信方式とおなじ送信器を用いることができるという特徴がある。
 光OFDM信号の発生器(送信器、発生方法)としては、非特許文献1に示されている送信器のように複数のサブキャリアを発生させ、そのサブキャリアごとに各々QPSK等で変調する方法によることができる。
 あるいは、バイナリデータ信号を複数の並列信号に変換(直並列変換)した後、並列信号の各々(各々が各サブキャリアに対応する)に対してQPSK等で変調を行った後、一括IFFT(逆フーリエ変換)することにより変調信号を生成し、それをD/A変換し、アナログ変調信号により光変調器を駆動することにより、光OFDM信号を生成出来る。すなわち、非特許文献2に示されている送信器と同様な方法で、ガードインターバルとトレーニングシンボルとを用いない構成でも光OFDM信号を発生させることができる。
(本発明の第二の実施形態)
 図5を参照して本発明の第二の実施形態の光OFDM受信器の構成を説明する。図5は、本発明の第二実施形態による光OFDM受信器の構成を示すブロック図である。アナログ・ディジタル変換回路3までの部分は本発明の第一の実施形態と同じである。
 アナログ・ディジタル変換回路3から出力されるディジタル信号が2分岐され、周波数シフト回路4以降の構成がサブキャリアA用とサブキャリアB用に2系統設けられている。周波数シフト回路4Aは、ディジタルに変換された電気信号の2つのサブキャリアA、BからなるOFDM信号の一方のサブキャリアAの中心周波数がゼロになるように周波数シフトする。ディジタル信号処理回路8Aにおいてサブキャリア周波数の周波数ずれ、位相ずれを検出し、そのずれがゼロになるように周波数シフト回路4Aが制御される。
 次に、加算器6Aによって、遅延器5Aを用いて周波数シフト回路4Aの出力を1/2シンボル(1/2 OFDMブロックに等しい)だけ遅延させた信号と、遅延させない信号と1:1で加算演算を行う。2つのサブキャリアのうち、サブキャリア成分Aが取り出され、また、サブキャリア成分Bが除去される。ディジタル信号処理回路8Aにより等化とキャリア位相リカバリがなされた後、復調器9Aにより復調される。
 周波数シフト回路4Bは、ディジタルに変換された電気信号の2つのサブキャリアA、BからなるOFDM信号の一方のサブキャリアBの中心周波数がゼロになるように周波数シフトする。ディジタル信号処理回路8Bにおいてサブキャリア周波数の周波数ずれ、位相ずれを検出し、そのずれがゼロになるように周波数シフト回路4Bが制御される。後はサブキャリアAと同様にして復調される。
(本発明の第三の実施形態)
 図6を参照して本発明の第三の実施形態の光OFDM受信器の構成を説明する。図6は、本発明の第三実施形態による光OFDM受信器の構成を示すブロック図である。光OFDM受信器が2系統(系統Aおよび系統B)設けられており、信号光が2分岐されて各光OFDM受信器に入射される。2つのサブキャリアA、Bからなる光OFDM信号の一方のサブキャリアAの中心周波数に一致させるか、近傍に局発光1Aの光周波数を設定する。
 信号光と局発光1Aを90度光ハイブリッドカプラと光検出器とから構成される光直交受信回路2Aに入射する。90度光ハイブリッドカプラの出力で信号光のI相成分とQ相成分に分離され、光検出器により電気信号に変換され、アナログ・ディジタル変換回路3Aにより信号光のI相成分とQ相成分からなるアナログの電気信号は離散化、量子化されディジタル信号に変換される。
 周波数シフト回路4Aは、OFDM信号の一方のサブキャリアAの中心周波数がゼロになるように周波数シフトする。ディジタル信号処理回路8Aにおいてサブキャリア周波数の周波数ずれ、位相ずれを検出し、そのずれがゼロになるように周波数シフト回路4Aが制御される。
 次に、加算器6Aによって、遅延器5Aを用いて周波数シフト回路4Aの出力を1/2シンボル(1/2OFDMブロックに等しい)だけ遅延させた信号と、遅延させない信号と1:1で加算演算を行う。2つのサブキャリアのうち、サブキャリア成分Aが取り出され、また、サブキャリア成分Bが除去される。さらに、ディジタル信号処理回路8Aにより等化とキャリア位相リカバリがなされた後、復調器9Aによりサブキャリア成分Aが復調される。
 サブキャリアBを取り出すには、2つのサブキャリアA、Bからなる光OFDM信号の一方のサブキャリアBの中心周波数に一致させるか、近傍に局発光1Bの光周波数を設定する。光直交受信回路2B以降は系統Aと同様の動作によりサブキャリア成分Bが復調される。
 図7Aおよび図7Bに第三の実施形態において局発光の周波数の設定方法を説明する図を示す。図7Aに示すように、ベースバンドに変換されたときのサブキャリアAの中心周波数がゼロ近傍になるように、局発光1Aの周波数を信号光のサブキャリアAの中心周波数近傍に設定する。このように設定すると周波数シフト回路4Aの周波数シフト量がわずかになる。さらには、このように設定することによりサブキャリアAの復調に必要なベースバンドのアナログ電気回路の周波数帯域を小さくすることができる。また、同様に局発光1Bの周波数を信号光のサブキャリアBの中心周波数近傍に設定することにより、サブキャリアBに対しても同様の効果を得ることができる(図7Bを参照)。
(本発明の第四の実施形態)
 本発明の第四の実施形態の構成は、第一あるいは第二の実施形態と同様な構成である。しかしながら、局発光1の周波数の設定方法が異なる。図8に第四の実施形態において局発光の周波数の設定方法を説明する図を示す。局発光1の周波数をサブキャリアA、B間の中心の光周波数近傍に設定する。なお、「近傍」とは、上述したのと同様に、等化器およびキャリア位相リカバリ回路が局発光1の周波数をサブキャリアA、B間の中心の光周波数に補正可能な周波数範囲にある光周波数を言う。このように設定すると、ベースバンドに変換されたOFDM信号は、サブキャリアA、B間の中心の光周波数がゼロ近傍になり、サブキャリアA、Bの中心周波数がそれぞれサブキャリア間隔の周波数の半分だけシフトするようになる。このように設定することによりサブキャリアA、Bの復調に必要なベースバンドのアナログ電気回路の周波数帯域を最小にすることができる。
 このアナログ信号をディジタル化し、周波数シフト回路4によりサブキャリア間隔の周波数の半分だけ周波数シフトすることにより、サブキャリアAあるいはBの中心周波数をゼロ近傍に設定することができ、第一あるいは第二の実施形態と同様な構成で復調することができる。
(本発明の第五の実施形態)
 図9を参照して本発明の第五の実施形態の光OFDM受信器の構成を説明する。図9は、本発明の第五の実施形態による光OFDM受信器の構成を示すブロック図である。符号10はディジタル信号処理回路であるが、第五の実施形態のディジタル信号処理回路は、トランスバーサルフィルタの係数がOFDMサブキャリア分離演算と一致するように設定した等化器である。
 このように等化器としてトランスバーサルフィルタから構成される等化器を用いる場合は、トランスバーサルフィルタの係数がOFDMサブキャリア分離演算と一致するように設定すれば、OFDMサブキャリア分離演算のための遅延器、加算器(あるいは減算器)を用いる必要が無い。符号間干渉が無い場合には、例えば、トランスバーサルフィルタの1/2シンボルだけ遅延させたタップと、遅延させない信号タップとの係数を1:1にすることにより、2つのサブキャリアのうち、サブキャリア成分Aが取り出される。また、例えば、トランスバーサルフィルタの1/2シンボルだけ遅延させたタップと、遅延させない信号タップとの係数を1:-1にすることにより、サブキャリア成分Bが取り出される。
そのためには、例えば、トランスバーサルフィルタへの入力信号とこの入力信号を1/2シンボル時間遅延した信号とを加算するようにトランスバーサルフィルタの係数を設定する第一のモード、および、トランスバーサルフィルタへの入力信号からこの入力信号を1/2シンボル時間遅延した信号を減算するようにトランスバーサルフィルタの係数を設定する第二のモードのいずれか一方のモードを選択する手段を備えるようにする。符号間干渉が有る場合には、単純ではないが、適応等化アルゴリズムにより係数が最適化され、サブキャリア成分Aあるいはサブキャリア成分Bが得られる。
(本発明の第六の実施形態)
 図10を参照して本発明の第六の実施形態の光OFDM受信器を説明する。図10は、本発明の第六の実施形態による光OFDM受信器の構成を示すブロック図である。受信信号(信号光)はNサブキャリア光OFDM信号であるところが第二の実施形態と異なる。ディジタルに変換された電気信号に対して、所望のサブキャリアの中心周波数がゼロになるように周波数シフト回路4-1、4-2、...、4-Nにより周波数シフトし、帯域制限フィルタ11-1、11-2、...、11-Nにより所望のサブキャリアの信号帯域幅と同じ通過帯域の信号が通過するように帯域制限した後、サブキャリア分離回路以降の動作を行う。それにより所望のサブキャリアの信号を得ることができる。
 なお、帯域制限フィルタ11-1、11-2、...、11-Nにより帯域制限している理由は次の通りである。分離すべきサブキャリアをkとした場合、加算器による加算演算を行うことで、サブキャリアkの両隣にあり且つベースバンドのスペクトルがサブキャリアkと重なるサブキャリア(k-1)やサブキャリア(k+1)を除去できる。しかし、これらサブキャリア(k-1)や(k+1)にそれぞれ隣接するサブキャリア(k-2)や(k+2)が存在する場合、これらサブキャリア(k-2)やサブキャリア(k+2)は、加算演算で除去されることなく加算器から出力される。同様に、サブキャリア(k-4)やサブキャリア(k+4)なども、加算演算で除去されることなく加算器から出力される。そこで、帯域制限フィルタを用いて、例えば、サブキャリアkの信号帯域幅と同じ通過帯域の信号が通過するように帯域制限しておく。そうすることで、所望のサブキャリアkのみが加算器から分離される。
(本発明の第七の実施形態)
 図11を参照して本発明の第七の実施形態の光OFDM受信器の構成を説明する。図11は、本発明の第七の実施形態による光OFDM受信器の構成を示すブロック図である。受信信号(信号光)はNサブキャリア光OFDM信号であるところが第三の実施形態とは異なる。光OFDM受信器がN系統設けられており、信号光がN分岐されて各光OFDM受信器に入射される。
 N個のサブキャリアからなる光OFDM信号の各々のサブキャリアの中心周波数に一致させるか、近傍に各局発光1-1、1-2、...、1-Nの光周波数を設定する。各サブキャリアの中心周波数がゼロになるように周波数シフト回路4-1、4-2、...、4-Nによって周波数シフトし、帯域制限フィルタ11-1、11-2、...、11-Nにより所望のサブキャリアの信号帯域幅と同じ通過帯域の信号が通過するように帯域制限した後、サブキャリア分離回路以降の動作を行う。それにより所望のサブキャリアの信号を得ることができる。
 図12は第七の実施形態において局発光の周波数の設定方法を説明する図である。k番目(kは1からNまでの整数)のサブキャリアを得る場合を示す。局発光1-kの周波数をN個のサブキャリアからなる光OFDM信号のk番目のサブキャリアの中心周波数近傍に設定する。このように設定すると、ベースバンドに変換されたk番目のサブキャリアの中心周波数がゼロ近傍になる。これによって、周波数シフト回路4-kに必要な周波数シフト量がわずかになり、また、復調に必要なベースバンドのアナログ電気回路の周波数帯域を小さくすることができる。
(本発明の第八の実施形態)
 図13を参照して本発明の第八の実施形態の光OFDM受信器の構成を説明する。図13は、本発明の第八の実施形態による光OFDM受信器の構成を示すブロック図である。受信信号(信号光)はNサブキャリアの光OFDM信号であり、アナログ・ディジタル変換回路3までは他の実施形態と同様である。ディジタルに変換された電気信号に対して、最も低いないしは最も高いサブキャリアの中心周波数がゼロになるように周波数シフト回路4により周波数シフトする。
 周波数シフト回路4の出力の電気信号を分岐し、遅延器61-2~61-Nにより(k/N)T[s](ここで、kは0からN-1までの整数、Tは1シンボル時間)で定まる時間のシンボル位相を遅延させ、N個の信号(以下、信号Ekとする)を出力する。ただし、kが0の場合は周波数シフト回路4から出力される電気信号を遅延させないため、信号E0は周波数シフト回路4の出力と同じである。また、信号E1は遅延器61-2から出力される信号であり、信号E2は遅延器61-3から出力される信号である。以下同様にして、信号ENは遅延器61-Nから出力される信号である。N個の信号Ekを加算器で加算することによりサブキャリアを分離する。加算器はN個(0番目の加算器63-1~(N-1)番目の加算器63-N)あり、Nサブキャリアを分離できる。l番目(ここで、lは0からN-1までの整数、jは虚数単位)の加算器へ入力される信号において、k番目の入力信号に対して、以下の式
Figure JPOXMLDOC01-appb-M000005
で定まる位相関係の係数(すなわち、「・Ek」を除いた部分。以下、係数wlkとする)を掛けることによりサブキャリアが分離できる。具体的には、乗算器62-11,62-21,...,62-N1を用いて、周波数シフト回路4の出力と係数w11,w21,...,wN1をそれぞれ乗算する。また、乗算器62-12,62-22,...,62-N2を用いて、遅延器61-2の出力と係数w12,w22,...,wN2をそれぞれ乗算する。また、乗算器62-13,62-23,...,62-N3を用いて、遅延器61-3の出力と係数w13,w23,...,wN3をそれぞれ乗算する。以下同様にして、乗算器62-1N,62-2N,...,62-NNを用いて、遅延器61-Nの出力と係数w1N,w2N,...,wNNをそれぞれ乗算する。
 また、最も低いないしは最も高いサブキャリアの中心周波数がゼロになるように周波数シフトしない場合もサブキャリアが分離できる。この場合は、式(1)とは係数が異なる。
 さらには、これら遅延器と乗算器とそれら乗算器の出力先の加算器から構成されるNサブキャリア分離回路は、(1/N)Tの遅延タップを持つN次のトランスバーサルフィルタそのものであり、符号間干渉が無い場合、ディジタル信号処理回路8-1~8-Nに含まれる等化器のトランスバーサルフィルタの係数を式(1)のように設定することにより、Nサブキャリア分離回路を省くことができる。具体的な例としては、ディジタル信号処理回路8-1~8-Nに含まれる等化器として、(1/N)Tの遅延タップ(Nタップ)を持つN次のトランスバーサルフィルタ型適応等化器を用いる。このトランスバーサルフィルタ型適応等化器は、l番目(lは0からN-1までの整数)の出力端子へ入力されるk番目(kは0からN-1までの整数)の入力信号Ekに対して、式(1)で定まるタップ係数(すなわち、「・Ek」を除いた部分)を乗算する乗算手段を有し、これらタップ係数を乗算するディジタル信号処理を行う。
 CMAやその他のアルゴリズムを用いて適応等化の最適化を行うことによりトランスバーサルフィルタの係数がNサブキャリアを分離できるように決定される。等化とキャリア位相リカバリの後、復調器9-1、...、9-NによりNサブキャリアの送信符号が復調される。また、同様に、最も低いないしは最も高いサブキャリアの中心周波数がゼロになるように周波数シフトしない場合も(1/N)Tの遅延タップを持つN次のトランスバーサルフィルタのみでサブキャリア分離できる。この場合は、式(1)とは係数が異なる。
(本発明の第九の実施形態)
 本発明の第九の実施形態は信号光が偏波多重信号光の場合である。信号光が偏波多重信号の場合であっても、光OFDM受信器の構成は上記実施形態のすべての構成が適用できる。ただし、光直交受信回路2は偏波ダイバーシティ構成である必要が有る。ディジタル信号処理回路8以降の構成としては、X偏波用およびY偏波用の2系統のディジタル信号処理回路と復調器を備える必要がある。適応等化回路は同一のアルゴリズムで偏波分離を実現できる。また、X偏波とY偏波の光周波数が全く同じではない場合は、周波数シフト回路4以降がX偏波用とY偏波用の2系統の回路構成を取る必要が有る。
 図14に第九の実施形態による光OFDM受信器の構成の具体例を示すブロック図を示す。90度ハイブリッドカプラ21に入射される信号光は偏波多重2サブキャリアのOFDM信号光であるところが図2とは異なる。また適応等化器24,26の出力は、X偏波信号とY偏波信号の2組を出力するところが図2とは異なる。CMA等化器(適応等化器24)、LMS等化器(適応等化器26)は偏波分離の働きもしており、X偏波のサブキャリアA(X,SC-A)、X偏波のサブキャリアB(X,SC-B)、Y偏波のサブキャリアA(Y,SC-A)、Y偏波のサブキャリアB(Y,SC-B)の4つの出力が得られる。
(本発明の第十の実施形態)
 本発明の第十の実施形態を図15および図16を参照して説明する。図15は、本発明の第十の実施形態における光OFDM受信器の構成を示すブロック図である。本実施形態は、アナログ・ディジタル変換回路3の後段に波長分散補償回路27を設けたことを特徴とする。光ファイバを伝播後の光信号は、光ファイバの波長分散により、周波数に依存した遅延の影響を受けて、隣接シンボルと干渉する。このために受信後の符号誤り率の低下を引き起こすという課題がある。
 従来の直接検波型の受信器では、OE変換する前に光学的分散補償デバイスを用いて分散補償をする方法が用いられている。この方法では、光学的分散補償デバイスの損失、サイズ、通過帯域等の制限により、補償できる分散量が大きく制限されている。これに対し、本実施形態では、OE変換、アナログ・ディジタル変換後のディジタル信号に対して、ディジタル信号処理により分散補償を行うため、損失、帯域等の制限を受けることなく波長分散を補償することができ、分散補償量を大幅に向上できるという特徴がある。
 本実施形態では、図15に示すように波長分散補償回路27を同相/直交成分、X/Y偏波用に4系統設けている。各々の波長分散補償回路27では、伝送路の波長分散と逆の遅延を付加する必要があり、本実施形態では、図16に示すようにトランスバーサルフィルタを用いている。伝送路の波長分散をDとすると、波長分散補償回路27の応答関数は、周波数領域で、
 H(f)=exp(-j(πλ2Df2/c))       (2)
と表される。ここで、cは光速、λは信号の波長である。
 トランスバーサルフィルタの係数は、逆フーリエ変換を行うことにより、(2)式のインパルスレスポンスから求めることができる。111Gbit/sの2サブキャリア偏波多重のOFDM信号において、サンプリングレートを55.5GS/sとした場合、3000kmの1.3μm零分散シングルモードファイバ(分散量62000ps/nm)を用いた場合には、トランスバーサルフィルタの次数(m)としては4096程度とすれば、波長分散によるペナルティを十分に抑圧することが可能である。
 なお、局発光1の周波数は、OFDM信号の中心付近(2サブキャリアの場合にはサブキャリアA、Bの間の中心の周波数近傍)に設定することがより有効である。これは、後段のアナログ・ディジタル変換回路3の帯域に対する要求を緩和できるとともに、局発光1と各サブキャリアの周波数差に起因する分散補償量の誤差を最小化することができるからである。
 事前の測定などによって波長分散の値がわかっていれば、トランスバーサルフィルタの係数に固定値を与えればよいため、CMAなどの適応アルゴリズムを適用する必要がない。このため、適応フィルタを用いる場合に比べて演算量の低減が期待できる。
 なお、図16に示したトランスバーサルフィルタは、入力信号を順次遅延させる遅延器71-2~71-mと、入力信号に係数w1を乗算する乗算器72-1と、遅延器71-2~71-mで遅延された信号にそれぞれ係数w2~wmを乗算する乗算器72-2~72-mと、乗算器72-1~72-mの出力を加算する加算器73とで構成される。
(本発明の第十一の実施形態)
 本発明の第十一の実施形態を図17、図18を参照して説明する。図17は、本発明の第十一の実施形態における光OFDM受信器の波長分散補償回路27Aの構成を示すブロック図である。本実施形態は、受信した時間領域の信号を、離散フーリエ変換を行って周波数領域で等化を行うことを特徴とする。
 図18を参照して本実施形態の波長分散補償の動作を説明する。図18の縦軸は周波数で横軸は時間である。波長分散の影響で入力信号の各サブキャリアは波長により伝播遅延時間が異なる。図18の入力信号が平行四辺形によって図示されている理由は、各サブキャリアの伝播遅延時間が異なることを表現するためである。よって、図18の上段に示す入力信号長Lに対し、波長分散の影響により各サブキャリア波長の伝播遅延時間に差が生じるため、図18の中段に示す光信号にはM1、M2のような突出部が生じる。その結果、波長分散の影響を受けた光信号の長さは、入力信号長Lに突出部M1、M2の長さが加算されてN(>L)となる。
 したがって、この入力信号をL個のデータからなるブロックを単位として離散フーリエ変換を行っても、両端付近の信号には隣接ブロックの信号からの干渉が入ってきてしまうため、正常な分散補償を行うことができない。これを回避するためには、L個のデータに対して、直前のM1個、直後のM2個を加えた合計N(=L+M1+M2)個のデータを1ブロックとして、離散フーリエ変換、逆フーリエ変換の処理を行うようにすればよい。ここで、M1、M2は波長分散によって生じる遅延量よりも大きい時間幅としておく必要がある。
 本実施形態の波長分散補償回路27Aでは、入力された信号に対して、N個のデータを1ブロックとして直/並列変換部30により直/並列変換し、離散フーリエ変換部31により離散フーリエ変換を施して周波数領域の信号に変換し、等化部32により各周波数成分に対して(2)式で与えられる位相回転を与えた後、離散逆フーリエ変換部33により離散逆フーリエ変換を施して時間領域の信号に変換する。このとき、各ブロックの両端付近の信号(前半部:M1点、後半部:M2点)は、隣接ブロックからの干渉が含まれるため、この部分は切り捨てる必要がある。なお、並/直列変換部34は、離散逆フーリエ変換部33からの出力信号を並/直列変換する。
 このため、図17に示すように、直/並列変換部30の出力の後半M1+M2個分のデータをデータ保持部35に保持しておき、次のブロックにおいて時間軸上の前半部分に読み込むようにする。そして、離散フーリエ変換後、(2)式で与えられる位相回転を施し、離散逆フーリエ変換して時間領域に戻す。このとき、時間軸上で各ブロックの両端M1個、M2個分のデータを除去し、中央のL(=N-M1-M2)個のデータを連結することにより、正常に波長分散補償された信号を得ることができる。
 本実施形態における離散フーリエ変換部31、離散逆フーリエ変換部33については、1ブロックのデータ数Nを2のべき乗とし、高速フーリエ変換、高速逆フーリエ変換アルゴリズムを適用することにより、計算の効率化を図ることができるのはいうまでもない。この場合の演算量はNlog2Nのオーダとなる。これに対し、トランスバーサルフィルタで構成した場合は演算量がN2で増加することになる。このため、本実施形態は、タップ数の大きい領域において、演算量低減の面で効果がある。
 また、本実施形態のように、波長分散補償回路27Aをディジタル信号処理回路8の前段に置くことで、ディジタル信号処理回路8で用いる等化器のタップ数を低く抑えることができ、演算負荷の低減およびチャネルの時間変動に対する耐力を向上させることができる。
(本発明の第十二の実施形態)
 本発明の第十二の実施形態を図19、図20を参照して説明する。図19は、本発明の第十二の実施形態における光OFDM受信器の波長分散補償回路27Bの構成を示すブロック図である。本実施形態では、入力信号のL個のデータを1ブロックとして直/並列変換部40により直/並列変換し、離散フーリエ変換部41によりL個のデータの前後にそれぞれM1個、M2個の値がゼロのデータを付加して、N(=L+M1+M2)個のブロックとする。そしてこのブロックに対して離散フーリエ変換を施す。さらに、等化部42による位相回転付与、および離散逆フーリエ変換部43による離散逆フーリエ変換の処理を行い、離散逆フーリエ変換部43および加算回路44からの出力信号を並/直列変換部46で並/直列変換する。この結果、出力されるN個のデータの前半のM1個には、前のシンボルの干渉成分が格納され、それに続くM2個の部分には、前のシンボルへの干渉成分を差し引いた値が格納される。
 同様に、N個のデータのうち、最後のM2個の部分には次のシンボルの干渉成分が格納され、その直前のM1個の部分には、次のシンボルへの干渉成分を差し引いた値が格納される。したがって、図20に示すように、データ保持部45に保持したN個のデータの後半M1+M2個のデータを、加算回路44により次のブロックのデータに加算することにより、シンボル間の干渉を除去することができ、分散補償の機能が実現される。
 本実施形態の場合でも、トランスバーサルフィルタを用いる場合に比べて、FFT、IFFTを用いることにより演算量の低減が期待できる。また、ゼロを挿入するので、この部分の演算を省略することによってFFT計算時の演算量を低減できるという効果が期待できる。
(本発明の第十三の実施形態)
 図21を参照して本発明の第十三の実施形態を説明する。本実施形態では、アナログ・ディジタル変換された信号から、伝送ファイバの波長分散量を分散測定回路50により測定して、その結果に基づいて波長分散補償回路27Cの分散量を設定することを特徴とする。
 OFDM信号では、異なる周波数(すなわち異なる波長)のサブキャリアを用いているが、波長分散の影響により、伝播遅延が波長毎に異なってくる。このため、本実施形態では、この遅延時間差を測定することにより、波長分散量を求める構成をとっている。これを実現するためには、例えば、通常のデータ送信フェーズと区別して分散測定フェーズを設け、送信側において分散測定用の試験信号を送信する方式を用いてもよい。この場合、各サブキャリア間で同期の取れた低周波のクロック信号(周波数f)で各サブキャリアの振幅あるいは位相を変調して、試験信号として送信する。受信側では任意の2組のサブキャリア間(波長間隔Δλ)の位相差Δθを検出することにより遅延時間差を求め、波長分散を測定する。このとき、波長分散Dは、
 D=(Δθ/2πfΔλ)              (3)
により求めることができる。
 また、データ送信フェーズと分散測定フェーズとを分けて試験信号を送信するのに代えて、データ信号に低周波のクロック信号を重畳し、受信側でディジタルフィルタによりこの周波数成分を抜き出して位相差を測定する方式を用いてもよい。
 本実施形態のように、OFDM受信器のみで波長分散測定を行うことによりシステム導入時の波長分散測定作業が不要になり、保守運用の利便性の改善を期待できる。
(本発明の第十四の実施形態)
 本発明の第十四の実施形態を図22から図25を参照して説明する。本実施形態では、各サブキャリア用の復調器の出力信号に対して差動復号化を行う差動復号化部60を設けたことを特徴とする。
 光ファイバ中の伝播が長距離に及ぶと、光ファイバ中での非線形光学効果により、受信信号光の位相には光信号の強度に比例した変調成分が重畳される。このため、局発光との位相差が不安定になり、位相ロックが外れ易くなるため、急速に誤り率が低下するという課題がある。ここで、位相ロックが外れるとき、基準位相がシフトして、バースト誤りが発生する現象が起こり易くなる。したがって、DQPSK符号などを用いて予め差動符号化したOFDM信号を送信信号として用い、受信側において復調器の出力に対して差動復号化を適用すると、基準位相がシフトしてしまった場合でも、直前のシンボルの位相との差分は変化しないため、バースト誤りの発生を抑圧することができる。
 図23に、波長1574.5nm、50GHz間隔、10波長の111Gbit/s、偏波多重2サブキャリアQPSK-OFDM信号を、分散シフトファイバで線形中継伝送した場合のQ値の伝送距離依存性の測定結果を示す。図23は、横軸に距離(km)をとり、縦軸にQ値(dB)をとる。なお、点線のグラフは光ファイバの入力パワーが-5dBmでWDM伝送を行った場合で、かつ、WDM差動デコーディング無しの場合である。また、実線のグラフは光ファイバの入力パワーが-5dBmでWDM伝送を行った場合で、かつ、WDM差動デコーディング有りの場合である。
 この例では、差動復号化は各サブキャリアに対して前のシンボルとの差分を取ることにより行った。ここで、Q値は符号誤り率BERと、
 BER=(1/2)erfc(Q/√(2))          (4)
の関係がある。なお、erfcは補誤差関数を表す。
 差動復号化をしない場合には、伝送距離が増加するにつれて、非線形光学効果の影響により急速にQ値が劣化(すなわち誤り率が劣化)しているのに対し、差動復号化を行った場合には、Q値の劣化が低減されており、2000kmを超える領域では差動符号化を行った場合の方が高いQ値が得られている。
 なお、上記の例では、図24に示すように、各サブキャリアに対して、前のシンボルとの差分をとって復号化する方式とした。別の波長からの非線形効果により各サブキャリアが受ける位相シフトは、サブキャリア間の周波数間隔が狭いため、ほぼ同様の位相シフト量を受けることになる。したがって、図25のように、同一シンボル内で、サブキャリア同士で差分をとって復号化する方式を用いた場合には、非線形光学効果による位相シフトをキャンセルすることができるため有効である。
 以上説明したように、差動復号化を用いることにより、非線形光学効果の影響によるバースト誤りの発生を抑圧し、伝送距離の延伸を実現することが可能となる。
 なお、上述した実施形態において、周波数シフト回路と復調器との間に設けられた構成要素(第六の実施形態(図10)および第七の実施形態(図11)を除く)、または、帯域制限フィルタと復調器との間に設けられた構成要素(第六の実施形態および第七の実施形態の場合)が、本発明の各種演算回路(演算回路、第一の演算回路、または、第二の演算回路)に相当する。
 また、上述した実施形態において、等化処理およびキャリア位相リカバリ処理を行う回路の前段までに配置された回路が、本発明のサブキャリア分離回路に相当する。なお、図4Cに関連して説明した構成(すなわち、ディジタル信号処理回路8に含まれるトランスバーサルフィルタ型等化器の係数を、図4Cの斜線の部分の係数を小さくし、サブキャリア成分Aのみが現れる部分の係数を大きくして、等化器の出力信号にサブキャリア成分Aを取り出すようにした構成)を本発明のサブキャリア分離回路に組み込んでもよい。
 以上、本発明の実施形態を説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で構成の付加,省略,置換,およびその他の変更が可能である。
 例えば、上述した実施形態では、光受信回路として光直交受信回路を例に挙げて説明したが、光直交受信回路以外の光受信回路を用いてもサブキャリアの分離を行うことができる。光直交受信回路を用いることによりI相成分とQ相成分を同時に取り出せるため回路規模が小さくなることから、光直交受信回路を用いることが望ましい。
 また、例えば、上述した実施形態を適宜組み合わせるようにしても良い。本発明は前述した説明によって限定されることはなく、添付の請求の範囲によってのみ限定される。
 本発明は、高性能な光OFDM伝送システムの実現に利用することができる。

Claims (31)

  1.  2つのサブキャリアAおよびBからなる光OFDM信号を受信してサブキャリア成分を分離するサブキャリア分離回路において、
     受信信号光と第一の局部発振光とを入射してベースバンド電気信号に変換する第一の光受信回路と、
     このベースバンド電気信号をディジタル信号に変換する第一のアナログ・ディジタル変換回路と、
     この変換されたディジタル信号を前記サブキャリアAの中心周波数がゼロになるように周波数シフトする第一の周波数シフト回路と、
     この周波数シフトされた信号と前記周波数シフトされた信号を1/2シンボル時間遅延した信号とを加算して前記サブキャリアAの成分を分離する第一の演算回路と
     を備えたサブキャリア分離回路。
  2.  前記第一の演算回路は、
     前記周波数シフトされた前記信号を1/2シンボル時間遅延する遅延器と、
     前記周波数シフトされた前記信号と前記周波数シフトされた信号を1/2シンボル時間遅延した前記信号とを加算して前記サブキャリアAの前記成分を分離する加算器と
     を備えた請求項1記載のサブキャリア分離回路。
  3.  前記第一の演算回路は、前記加算に加えて、さらに、前記周波数シフトされた信号から前記周波数シフトされた信号を1/2シンボル時間遅延した信号を減算して前記サブキャリアBの成分を分離する請求項1記載のサブキャリア分離回路。
  4.  前記第一のアナログ・ディジタル変換回路により変換された前記ディジタル信号を前記サブキャリアBの中心周波数がゼロになるように周波数シフトする第二の周波数シフト回路と、
     この周波数シフトされた信号と前記周波数シフトされた信号を1/2シンボル時間遅延した信号とを加算して前記サブキャリアBの成分を分離する第二の演算回路と
     をさらに備えた請求項1記載のサブキャリア分離回路。
  5.  前記受信信号光と第二の局部発振光とを入射してベースバンド電気信号に変換する第二の光受信回路と、
     この第二の光受信回路から出力された前記ベースバンド電気信号をディジタル信号に変換する第二のアナログ・ディジタル変換回路と、
     前記第二のアナログ・ディジタル変換回路により変換された前記ディジタル信号を前記サブキャリアBの中心周波数がゼロになるように周波数シフトする第二の周波数シフト回路と、
     前記第二の周波数シフト回路により周波数シフトされた信号と前記第二の周波数シフト回路により周波数シフトされた前記信号を1/2シンボル時間遅延した信号とを加算して前記サブキャリアBの成分を分離する第二の演算回路と
     をさらに備えた請求項1記載のサブキャリア分離回路。
  6.  請求項2記載のサブキャリア分離回路と、
     第一の復調器とを備え、
     前記第一の演算回路は、分離された前記サブキャリアAの前記成分に等化処理およびキャリア位相リカバリ処理を行い、
     前記第一の復調器は、前記第一の演算回路が前記等化処理および前記キャリア位相リカバリ処理を行った信号を復調する光OFDM受信器。
  7.  請求項3記載のサブキャリア分離回路と、
     第一の復調器とを備え、
     前記第一の演算回路は、分離された前記サブキャリアBの成分に等化処理およびキャリア位相リカバリ処理を行い、
     前記第一の復調器は、前記第一の演算回路が前記等化処理および前記キャリア位相リカバリ処理を行った信号を復調する光OFDM受信器。
  8.  請求項4記載のサブキャリア分離回路と、
     第二の復調器とを備え、
     前記第二の演算回路は、分離された前記サブキャリアBの成分に等化処理およびキャリア位相リカバリ処理を行い、
     前記第二の復調器は、前記第二の演算回路が前記等化処理および前記キャリア位相リカバリ処理を行った信号を復調する光OFDM受信器。
  9.  前記第一の局部発振光を前記サブキャリアAまたはBの光周波数または前記等化処理および前記キャリア位相リカバリ処理を行う各演算回路が前記サブキャリアAまたはBの前記光周波数に補正可能な周波数範囲にある光周波数に設定する請求項6から8のいずれか1項記載の光OFDM受信器。
  10.  請求項5記載のサブキャリア分離回路と、
     第二の復調器とを備え、
     前記第二の演算回路は、分離された前記サブキャリアBの成分に等化処理およびキャリア位相リカバリ処理を行い、
     前記第二の復調器は、前記第二の演算回路が前記等化処理および前記キャリア位相リカバリ処理を行った信号を復調する光OFDM受信器。
  11.  前記第一の演算回路は、分離された前記サブキャリアAの成分に等化処理およびキャリア位相リカバリ処理を行い、
     前記第一の光受信回路については、前記第一の局部発振光を前記サブキャリアAの中心の光周波数または前記等化処理および前記キャリア位相リカバリ処理を行う前記第一の演算回路が前記サブキャリアAの中心の光周波数に補正可能な周波数範囲にある光周波数に設定し、前記第二の光受信回路については、前記第二の局部発振光を前記サブキャリアBの中心の光周波数または前記等化処理および前記キャリア位相リカバリ処理を行う前記第二の演算回路が前記サブキャリアBの中心の光周波数に補正可能な周波数範囲にある光周波数に設定する請求項10記載の光OFDM受信器。
  12.  前記第一の局部発振光を前記サブキャリアAと前記サブキャリアBとの間の中心の光周波数または前記等化処理および前記キャリア位相リカバリ処理を行う各演算回路が前記サブキャリアAと前記サブキャリアBとの間の中心の光周波数に補正可能な周波数範囲にある光周波数に設定する請求項6から8のいずれか1項記載の光OFDM受信器。
  13.  前記第一の演算回路は、
     トランスバーサルフィルタから構成される等化器と、
     このトランスバーサルフィルタの係数を、前記第一の演算回路への入力信号と前記入力信号を1/2シンボル時間遅延した信号とを加算するような設定とする第一のモードに設定する設定部と
     を備えたディジタル信号処理回路である請求項6記載の光OFDM受信器。
  14.  前記設定部は、前記第一のモード、または、前記第一の演算回路への前記入力信号から前記入力信号を1/2シンボル時間遅延した前記信号を減算するような設定とする第二のモードのいずれか一方のモードを選択し、
     前記第一の復調器は、前記第一のモードの設定時に前記サブキャリアAの信号を取得し、前記第二のモードの設定時に前記サブキャリアBの信号を取得する請求項13記載の光OFDM受信器。
  15.  N(Nは2以上の整数)個のサブキャリアからなる光OFDM信号を受信してサブキャリア成分を分離するサブキャリア分離回路において、
     各々が、受信信号光と少なくとも1系統の局部発振光とを入射してベースバンド電気信号に変換する少なくとも1系統の光受信回路と、
     各々が、このベースバンド電気信号をディジタル信号に変換する少なくとも1系統のアナログ・ディジタル変換回路と、
     この変換されたディジタル信号を所望のサブキャリアの中心周波数がゼロになるように周波数シフトするN系統の周波数シフト回路と、
     これらN系統の周波数シフト回路によりそれぞれ周波数シフトされた信号を所望のサブキャリアの信号帯域幅と同じ通過帯域の信号が通過するようにそれぞれ帯域制限するN系統の帯域制限フィルタと、
     これらN系統の帯域制限フィルタによりそれぞれ帯域制限された信号と前記帯域制限された前記信号を1/2シンボル時間遅延した信号とをそれぞれ加算して前記N個のサブキャリアの成分を分離するN系統の加算器と
     を備えたサブキャリア分離回路。
  16.  前記少なくとも1系統の局部発振光は、N系統の局部発振光であり、
     前記少なくとも1系統の光受信回路は、前記受信信号光と前記N系統の局部発振光とをそれぞれ入射してベースバンド電気信号にそれぞれ変換するN系統の光受信回路であり、
     前記少なくとも1系統のアナログ・ディジタル変換回路は、前記N系統の光受信回路からそれぞれ出力された前記ベースバンド電気信号をそれぞれディジタル信号に変換するN系統のアナログ・ディジタル変換回路であり、
     前記N系統の周波数シフト回路は、前記N系統のアナログ・ディジタル変換回路によりそれぞれ変換された前記ディジタル信号を前記所望のサブキャリアの前記中心周波数がゼロになるようにそれぞれ周波数シフトする請求項15記載のサブキャリア分離回路。
  17.  請求項16記載のサブキャリア分離回路と、
     前記N個のサブキャリアの成分にそれぞれ等化処理およびキャリア位相リカバリ処理を行うN系統のディジタル信号処理回路と、
     これらN系統のディジタル信号処理回路によりそれぞれ前記等化処理および前記キャリア位相リカバリ処理が行われた信号を復調するN系統の復調器と
     を備えた光OFDM受信器。
  18.  前記N系統の局部発振光は、前記N系統の光受信回路のそれぞれについての所望のサブキャリアの中心周波数または前記等化処理および前記キャリア位相リカバリ処理を行う前記N系統のディジタル信号処理回路のそれぞれが前記所望のサブキャリアの中心光周波数に補正可能な周波数範囲にある光周波数に設定する請求項17記載の光OFDM受信器。
  19.  N個のサブキャリアからなる光OFDM信号を受信してサブキャリア成分を分離するサブキャリア分離回路において、
     受信信号光と局部発振光とを入射してベースバンド電気信号に変換する光受信回路と、
     このベースバンド電気信号をディジタル信号に変換するアナログ・ディジタル変換回路と、
     この変換されたディジタル信号に対し、最も低いまたは最も高いサブキャリアの中心周波数がゼロになるように周波数シフトする周波数シフト回路と、
     この周波数シフト回路から出力される電気信号のシンボル位相を(k/N)T(kは0からN-1までの整数、Tは1シンボル時間)で定まる時間だけ遅延させたN個の信号Ekと、N系統の位相関係の係数の各系統に含まれるN個の係数とをそれぞれ乗算することにより、l番目(lは0からN-1までの整数)の系統に含まれるN個の乗算信号のうちのk番目の乗算信号が
    Figure JPOXMLDOC01-appb-M000001
     (jは虚数単位)で定まるN系統の乗算信号を求め、各系統に含まれるN個の乗算信号を加算してN系統の加算信号を求めて、前記N個のサブキャリアの成分を分離する演算回路と
     を備えたサブキャリア分離回路。
  20.  前記演算回路は、
     前記周波数シフト回路から出力される前記電気信号をN分岐する分岐部と、
     前記分岐部の後に接続され、これら分岐した信号のシンボル位相をそれぞれ(k/N)Tで定まる前記時間だけ遅延させて前記N個の信号Ekを出力する遅延部と、
     前記遅延部により遅延された前記N個の信号Ekを加算するN個の加算部と、
     前記遅延部と前記加算部との間に設けられ、l番目の加算部へ入力される信号のうちk番目に入力される前記信号Ekに対して、前記位相関係の係数のうちl番目の系統に含まれるk番目の係数を乗算する乗算部と
     を備えた請求項19記載のサブキャリア分離回路。
  21.  請求項19記載のサブキャリア分離回路と、
     N個の復調器とを備え、
     前記演算回路は、分離された前記N個のサブキャリアの成分に対してそれぞれ等化処理およびキャリア位相リカバリ処理を行い、
     前記N個の復調器は、前記演算回路の出力信号からN個のサブキャリアの信号をそれぞれ復調する光OFDM受信器。
  22.  前記演算回路は、前記周波数シフト回路から出力される前記電気信号に対して前記等化処理および前記キャリア位相リカバリ処理を行うディジタル信号処理回路であり、
     このディジタル信号処理回路は、
     Nタップの(1/N)Tの遅延タップを持つN次のトランスバーサルフィルタ型適応等化器を含み、
     このトランスバーサルフィルタ型適応等化器は、l番目の出力端子へ入力されるk番目の入力信号Ekに対してタップ係数を乗算して、
    Figure JPOXMLDOC01-appb-M000002
    で定まる乗算信号を出力する乗算部を有し、
     このタップ係数を乗算するディジタル信号処理を行う請求項21記載の光OFDM受信器。
  23.  前記光受信回路は光直交受信回路である請求項6~14,17,18,21,22のいずれか1項に記載の光OFDM受信器。
  24.  前記信号光は偏波多重信号であって、
     前記光受信回路の各々は偏波ダイバーシティ型光受信回路であり、
     前記アナログ・ディジタル変換回路の各々は、X偏波信号用とY偏波信号用との2組のアナログ・ディジタル変換回路で構成され、
     前記復調器の各々は、X偏波信号とY偏波信号とに対して復調を行う
     請求項6~14,17,18,21~23のいずれか1項記載の光OFDM受信器。
  25.  前記アナログ・ディジタル変換回路の各々により変換されたディジタル信号に対して、ディジタル信号処理により伝送路の波長分散を補償する波長分散補償回路を備える請求項6~14,17,18,21~24のいずれか1項記載の光OFDM受信器。
  26.  前記波長分散補償回路は、トランスバーサルフィルタにより構成される請求項25記載の光OFDM受信器。
  27.  前記波長分散補償回路は、
     離散フーリエ変換を行って時間領域の信号を周波数領域の信号に変換する離散フーリエ変換部と、
     フーリエ変換された各周波数成分の信号に対して波長分散による位相回転と逆の位相回転を与える等化部と、
     この等化部から出力される周波数領域の信号に対し離散逆フーリエ変換を行って時間領域の信号に変換して出力する離散逆フーリエ変換部と
     を備える
     請求項25記載の光OFDM受信器。
  28.  サブキャリア間の伝播遅延時間差から伝送ファイバの波長分散量を測定し、前記波長分散補償回路の分散補償量を設定する分散測定部を備える請求項25から27のいずれか1項記載の光OFDM受信器。
  29.  各々のサブキャリアに対する前記復調器の各々の出力信号に対して差動復号化を行う差動復号化器を備える請求項6~14,17,18,21~28のいずれか1項記載の光OFDM受信器。
  30.  請求項6~14,17,18,21~29のいずれか1項記載の光OFDM受信器を備えた光伝送システム。
  31.  2つのサブキャリアAおよびBからなる光OFDM信号を受信してサブキャリア成分を分離するサブキャリア分離方法において、
     受信信号光と局部発振光とを入射してベースバンド電気信号に変換し、
     このベースバンド電気信号をディジタル信号に変換し、
     この変換されたディジタル信号を前記サブキャリアAの中心周波数がゼロになるように周波数シフトし、
     この周波数シフトされた信号と前記周波数シフトされた信号を1/2シンボル時間遅延した信号とを加算して前記サブキャリアAの成分を分離するサブキャリア分離方法。
PCT/JP2009/053076 2008-02-22 2009-02-20 光ofdm受信器および光伝送システムおよびサブキャリア分離回路およびサブキャリア分離方法 WO2009104758A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09713045A EP2247012B1 (en) 2008-02-22 2009-02-20 Optical OFDM receiver, subcarrier separation circuit, subcarrier separation method and system
US12/865,827 US8355637B2 (en) 2008-02-22 2009-02-20 Optical OFDM receiver, optical transmission system, subcarrier separation circuit, and subcarrier separation method
JP2009554406A JP4872003B2 (ja) 2008-02-22 2009-02-20 光ofdm受信器および光伝送システムおよびサブキャリア分離回路およびサブキャリア分離方法
CN200980104811.3A CN101946438B (zh) 2008-02-22 2009-02-20 光ofdm接收器、光传输系统、副载波分离电路、以及副载波分离方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-041306 2008-02-22
JP2008041306 2008-02-22
JP2008-241489 2008-09-19
JP2008241489 2008-09-19

Publications (1)

Publication Number Publication Date
WO2009104758A1 true WO2009104758A1 (ja) 2009-08-27

Family

ID=40985635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053076 WO2009104758A1 (ja) 2008-02-22 2009-02-20 光ofdm受信器および光伝送システムおよびサブキャリア分離回路およびサブキャリア分離方法

Country Status (5)

Country Link
US (1) US8355637B2 (ja)
EP (1) EP2247012B1 (ja)
JP (1) JP4872003B2 (ja)
CN (1) CN101946438B (ja)
WO (1) WO2009104758A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253972A (ja) * 2008-04-01 2009-10-29 Fujitsu Ltd フィルタ係数変更装置および方法
JP2010057139A (ja) * 2008-08-29 2010-03-11 Nippon Telegr & Teleph Corp <Ntt> 干渉低減方法および干渉低減装置
JP2010057138A (ja) * 2008-08-29 2010-03-11 Nippon Telegr & Teleph Corp <Ntt> 干渉低減送信方法及び干渉低減送信装置
JP2010161721A (ja) * 2009-01-09 2010-07-22 Fujitsu Ltd 遅延処理装置,信号増幅装置,光電変換装置,アナログ/デジタル変換装置,受信装置および受信方法
WO2011096488A1 (ja) * 2010-02-04 2011-08-11 日本電信電話株式会社 送信方法、受信方法、送信装置、及び受信装置
JP2011171984A (ja) * 2010-02-18 2011-09-01 Nec Corp 光受信機、光通信システム及び等化方法
JP2011205401A (ja) * 2010-03-25 2011-10-13 Nippon Telegr & Teleph Corp <Ntt> 光受信器
JP2011211706A (ja) * 2010-03-30 2011-10-20 Fujitsu Ltd Psk信号の適応ブラインド等化方法、イコライザ、および受信器
JP2011223563A (ja) * 2010-04-02 2011-11-04 Fujitsu Ltd コヒーレント受信装置およびコヒーレント受信方法
WO2012060052A1 (ja) * 2010-11-01 2012-05-10 日本電気株式会社 コヒーレント光受信装置、システムおよび方法
WO2012073308A1 (ja) * 2010-11-29 2012-06-07 株式会社日立製作所 光通信システム、光送信器及びトランスポンダ
WO2012086831A1 (ja) * 2010-12-21 2012-06-28 日本電気株式会社 コヒーレント光受信器、コヒーレント光受信器におけるレーン間スキュー検出装置および検出方法
EP2481174A1 (en) * 2009-09-23 2012-08-01 Alcatel Lucent Digital coherent detection of multi-carrier optical signal
JP2012147064A (ja) * 2011-01-07 2012-08-02 Fujitsu Ltd 光受信器および光通信システム
WO2012118215A1 (ja) * 2011-03-02 2012-09-07 日本電気株式会社 光受信器、偏波分離装置、および光受信方法
JP2012238941A (ja) * 2011-05-10 2012-12-06 Nippon Telegr & Teleph Corp <Ntt> デジタルコヒーレント受信装置
JP2013017170A (ja) * 2011-07-05 2013-01-24 Fujitsu Ltd フレキシブルマルチバンドマルチトラフィック光ofdmネットワーク
JP2014506037A (ja) * 2010-12-10 2014-03-06 アルカテル−ルーセント パイロット支援型データ伝送のためのコヒーレント光受信機
CN102598558B (zh) * 2009-11-17 2014-10-29 三菱电机株式会社 无线通信装置
JP2016122993A (ja) * 2014-12-25 2016-07-07 日本電信電話株式会社 光信号受信装置及び光信号受信方法
CN111107029A (zh) * 2018-10-25 2020-05-05 深圳市中兴微电子技术有限公司 正交频分复用解调器、解调方法及接收机

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8467687B2 (en) * 2008-12-22 2013-06-18 Hitachi, Ltd. Optical transmitter and optical OFDM communication system
CN102422571B (zh) * 2009-05-18 2016-06-15 日本电信电话株式会社 信号生成电路、光信号发送装置、信号接收电路、光信号同步确立方法以及光信号同步系统
KR101226956B1 (ko) * 2009-10-23 2013-01-28 한국전자통신연구원 편광 다중 광 ofdm 송신기 및 수신기
US8498542B2 (en) * 2010-01-21 2013-07-30 Ciena Corporation Multi-channel optical transceiver with offset quadrature amplitude modulation
US9166700B2 (en) * 2010-03-21 2015-10-20 Alcatel Lucent Tunable receiver
CN102907018B (zh) 2010-05-21 2015-08-26 日本电气株式会社 相干光接收机、用于检测相干光接收机中的通道间时滞的装置和方法
US8611762B2 (en) * 2010-11-10 2013-12-17 Nec Laboratories America, Inc. System and method for frequency-domain chromatic dispersion and polarization mode dispersion compensation with time-domain channel estimation
US8705986B2 (en) * 2010-11-23 2014-04-22 Infinera Corporation PMD-insensitive method of chromatic dispersion estimation for a coherent receiver
CN102064905B (zh) * 2010-12-24 2016-04-06 北京邮电大学 光纤通信系统的多子通道复用方法及信号处理方法
WO2012097401A2 (en) * 2011-01-17 2012-07-26 Monash University Self-tuning receiver for coherent optical ofdm
US8693897B2 (en) 2011-01-22 2014-04-08 Viasat, Inc. Digital demodulator architecture
US8705664B2 (en) * 2011-01-22 2014-04-22 Viasat, Inc. Soft-input generation for soft-decision FEC decoding
EP2672636B1 (en) * 2011-02-01 2019-07-03 Nec Corporation Coherent optical receiver, and inter-channel skew detection device and detection method in coherent optical receiver
JP5736837B2 (ja) * 2011-02-23 2015-06-17 富士通株式会社 光受信装置
US8565621B2 (en) * 2011-03-01 2013-10-22 Opnext Subsystems, Inc. Quadrature time skew detection for coherent optical signals
US20120230676A1 (en) * 2011-03-07 2012-09-13 Fan Mo Turn-up and long term operation of adaptive equalizer in optical transmission systems
CN102308546B (zh) * 2011-07-26 2013-12-04 华为技术有限公司 一种多载波光信号的接收方法和装置
US9112614B2 (en) 2012-03-02 2015-08-18 Alcatel Lucent Correction of a local-oscillator phase error in a coherent optical receiver
US9083390B2 (en) * 2012-04-16 2015-07-14 Broadcom Corporation Method and apparatus for mixed-mode spectrum communication
CN102724151B (zh) * 2012-06-15 2014-12-31 武汉邮电科学研究院 通信系统、通信方法以及多通道自适应均衡器和ofdm信号解复用的方法
CN103582106B (zh) * 2012-07-23 2017-02-08 京信通信系统(中国)有限公司 基于双载波跳频技术的信号处理方法、装置及塔顶放大器
CN104541462B (zh) 2012-08-09 2017-10-10 中兴通讯(美国)公司 用于相干双二进制成形的pm‑qpsk信号处理的方法和装置
EP2873177B1 (en) 2012-08-28 2017-04-05 Huawei Technologies Co., Ltd. Optical receiver
CN102833031B (zh) * 2012-09-13 2015-04-08 电子科技大学 一种基于ofdma的可重构光分插复用器
CN103684600B (zh) * 2012-09-14 2016-08-31 富士通株式会社 均衡器系数的更新装置和方法、以及接收机和光通信系统
CN103684601B (zh) * 2012-09-14 2016-04-20 富士通株式会社 系数确定装置、均衡器、接收机和发射机
US9077455B2 (en) * 2012-12-28 2015-07-07 Alcatel Lucent Optical receiver having a MIMO equalizer
US10050721B2 (en) * 2013-02-01 2018-08-14 Jozef W. Eerkens Neutrino communication system
US20140241722A1 (en) * 2013-02-25 2014-08-28 Alcatel-Lucent Usa Inc. PDM-(M) Ask Optical Systems And Methods For Metro Network Applications
WO2015025468A1 (ja) * 2013-08-21 2015-02-26 日本電気株式会社 周波数偏差補償方式、周波数偏差補償方法及び記憶媒体
WO2015052874A1 (ja) * 2013-10-09 2015-04-16 日本電信電話株式会社 光伝送システム
JP6503624B2 (ja) * 2014-02-26 2019-04-24 日本電気株式会社 光送信機及び光受信機
US9628180B2 (en) * 2014-03-31 2017-04-18 Infinera Corporation Configurable frequency domain equalizer for dispersion compensation of multiple sub-carriers
US9564976B2 (en) * 2014-08-19 2017-02-07 Zte Corporation Blind equalization of dual subcarrier OFDM signals
JP6661263B2 (ja) * 2014-09-03 2020-03-11 富士通株式会社 光伝送装置、非線形歪み補償方法及び非線形歪み予等化方法
US9602219B2 (en) * 2015-01-06 2017-03-21 Infinera Corporation Efficient processing of high data rate signals with a configurable frequency domain equalizer
JP6543939B2 (ja) * 2015-01-23 2019-07-17 富士通株式会社 光受信器、光送信器、マルチキャリア光伝送システム、及び、分散補償制御方法
EP3086478B1 (en) * 2015-04-23 2018-09-19 Nxp B.V. Wireless receiver and method
US10893520B2 (en) * 2015-08-26 2021-01-12 Qualcomm Incorporated Downlink and synchronization techniques for narrowband wireless communications
US10003409B2 (en) 2016-01-27 2018-06-19 Zte Corporation Imaging cancellation in high-speed intensity modulation and direct detection system with dual single sideband modulation
US10014954B2 (en) * 2016-02-26 2018-07-03 Zte Corporation Imaging cancellation in high-speed intensity modulation and direct detection system with dual single sideband modulation
CN106289053B (zh) * 2016-09-12 2018-08-31 哈尔滨工程大学 一种相位载波激光干涉信号正交合成式闭环解调方法
CN106323346B (zh) * 2016-09-12 2019-01-29 哈尔滨工程大学 一种相位载波式激光干涉信号双频点闭环解调方法
CN106247930B (zh) * 2016-09-13 2018-12-07 哈尔滨工程大学 相位载波式激光干涉仪闭环解调算法的残差补偿方法
JP7091617B2 (ja) * 2017-08-02 2022-06-28 富士通株式会社 光受信器、光伝送システム、及び受信処理方法
US10735097B2 (en) * 2017-11-21 2020-08-04 Cable Television Laboratories, Inc Systems and methods for full duplex coherent optics
US10917175B2 (en) 2017-11-21 2021-02-09 Cable Television Laboratories, Inc. Systems and methods for full duplex coherent optics
JP2019208119A (ja) * 2018-05-29 2019-12-05 日本電信電話株式会社 光受信装置
JP7095561B2 (ja) 2018-11-15 2022-07-05 日本製鉄株式会社 焼結鉱の製造方法
US11632184B2 (en) * 2019-03-26 2023-04-18 Nec Corporation Wavelength-division multiplexing optical transmission system, wavelength-division multiplexing optical transmission method, and non-transitory computer readable medium
US11476947B2 (en) * 2019-05-24 2022-10-18 Google Llc Low power coherent receiver for short-reach optical communication
EP4120593A4 (en) * 2020-03-11 2024-01-03 Nippon Telegraph And Telephone Corporation OPTICAL RECEPTION DEVICE AND OPTICAL RECEPTION METHOD

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141197A (ja) * 1997-07-16 1999-02-12 Sony Corp 通信方法、送信装置、受信装置及びセルラー無線通信システム
JP2000092009A (ja) * 1998-07-13 2000-03-31 Sony Corp 通信方法、送信機及び受信機
JP2000332722A (ja) * 1999-05-20 2000-11-30 Sony Corp 通信装置、受信機、並びに、通信方法
JP2001308818A (ja) * 2000-02-18 2001-11-02 Sony Corp 信号成分分離装置、フィルタ装置、受信装置、通信装置、および、通信方法
JP2003051810A (ja) * 2001-08-06 2003-02-21 Nippon Telegr & Teleph Corp <Ntt> 光直交周波数分割多重伝送方式及び伝送方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1330242C (en) * 1987-11-30 1994-06-14 Gte Laboratories Incorporated Subcarrier-multiplexed optical transmission systems using optical channel selection
US5546190A (en) * 1992-09-09 1996-08-13 Hill; Paul M. Carrier and clock recovery for lightwave systems
US5717722A (en) * 1994-11-08 1998-02-10 Anritsu Corporation Precision symbol demodulation system for multi-carrier modulation signal
WO2000003508A1 (fr) * 1998-07-13 2000-01-20 Sony Corporation Procede de communication, emetteur, et recepteur
US6816555B2 (en) * 2000-02-18 2004-11-09 Sony Corporation Signal component demultiplexing apparatus, filter apparatus, receiving apparatus, communication apparatus, and communication method
US6888393B2 (en) * 2002-09-04 2005-05-03 Hitachi Kokusai Electric, Inc. Amplitude limiting apparatus and multi-carrier signal generating apparatus
FR2851383A1 (fr) * 2003-02-17 2004-08-20 Wavecom Procede de transmission de donnees radio, signal, systeme et dispositifs correspondant
US8270336B2 (en) * 2005-11-25 2012-09-18 Go Net Systems Ltd. Filtering process for enhancing OFDMA uplink reception sensitivity
JP4531740B2 (ja) * 2006-12-15 2010-08-25 富士通株式会社 コヒーレント光受信機
JP4918400B2 (ja) * 2007-04-27 2012-04-18 富士通株式会社 光信号受信装置
US8031586B2 (en) * 2007-08-15 2011-10-04 Nokia Corporation Method and apparatus for transmitter timing adjustment
JP5034770B2 (ja) * 2007-08-16 2012-09-26 富士通株式会社 コヒーレント光受信器および光通信システム
US8135279B2 (en) * 2008-09-29 2012-03-13 Infinera Corporation OFDM direct detection using a balanced receiver
US8260156B2 (en) * 2008-10-28 2012-09-04 Nec Laboratories America, Inc. Adaptive crossing frequency domain equalization (FDE) in digital PolMux coherent systems
CN102246437A (zh) * 2008-12-16 2011-11-16 阿尔卡特朗讯美国公司 具有信号星座的通信系统和方法
JP5278001B2 (ja) * 2009-01-29 2013-09-04 富士通株式会社 光通信システムおよび光受信器
US8233797B2 (en) * 2009-02-24 2012-07-31 Nec Laboratories America, Inc. Single wavelength source-free OFDMA-PON communication systems and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141197A (ja) * 1997-07-16 1999-02-12 Sony Corp 通信方法、送信装置、受信装置及びセルラー無線通信システム
JP2000092009A (ja) * 1998-07-13 2000-03-31 Sony Corp 通信方法、送信機及び受信機
JP2000332722A (ja) * 1999-05-20 2000-11-30 Sony Corp 通信装置、受信機、並びに、通信方法
JP2001308818A (ja) * 2000-02-18 2001-11-02 Sony Corp 信号成分分離装置、フィルタ装置、受信装置、通信装置、および、通信方法
JP2003051810A (ja) * 2001-08-06 2003-02-21 Nippon Telegr & Teleph Corp <Ntt> 光直交周波数分割多重伝送方式及び伝送方法
JP3789784B2 (ja) 2001-08-06 2006-06-28 日本電信電話株式会社 光直交周波数分割多重伝送方式及び伝送方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Optical Communication, 2008. ECOC 2008. 34th European Conference on", 21 September 2008, article SANO, A. ET AL.: "13.4-Tb/s (134 x 111-Gb/s/ch) no-guard-interval coherent OFDM transmission over 3,600 km of SMF with 19-ps average PMD", pages: 1 - 2 *
"Optical Internet, 2008. COIN 2008. 7th International Conference on", 14 October 2008, article SANO, A. ET AL.: "Ultra-high speed optical OFDM transmission technologies", pages: 1 - 2 *
A. SANO; H. MASUDA; E. YOSHIDA; T. KOBAYASHI; E. YAMADA; Y. MIYAMOTO; F. INUZUKA; Y. HIBINO; Y. TAKATORI; K. HAGIMOTO: "30x100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes", ECOC2007, PD1.7
EIICHI YAMADA ET AL.: "Guard Interval o Mochiinai Henba Taju Coherent OFDM ni yoru 50 GHzROADM Node o Fukumu 4.1Tb/s(50x88.8Gb/s) 800km SMF Denso", DENSHI JOHO TSUSHIN GAKKAI 2008 NEN TSUSHIN SOCIETY TAIKAI KOEN RONBUNSHU 2, 2 September 2008 (2008-09-02), pages 216 *
KUDO, R. ET AL.: "Single carrier transmission with two-stage overlap frequency domain equalisation for long-haul optical systems", ELECTRONICS LETTERS, vol. 45, 29 January 2009 (2009-01-29), pages 180 - 182 *
See also references of EP2247012A4 *
YAMADA, E. ET AL.: "1 Tbit/s (111 Gbit/s/ch X 10 ch) no-guard-interval CO-OFDM transmission over 2100 km DSF", ELECTRONICS LETTERS, vol. 44, 20 November 2008 (2008-11-20), pages 1417 - 1418 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253972A (ja) * 2008-04-01 2009-10-29 Fujitsu Ltd フィルタ係数変更装置および方法
JP2010057139A (ja) * 2008-08-29 2010-03-11 Nippon Telegr & Teleph Corp <Ntt> 干渉低減方法および干渉低減装置
JP2010057138A (ja) * 2008-08-29 2010-03-11 Nippon Telegr & Teleph Corp <Ntt> 干渉低減送信方法及び干渉低減送信装置
JP2010161721A (ja) * 2009-01-09 2010-07-22 Fujitsu Ltd 遅延処理装置,信号増幅装置,光電変換装置,アナログ/デジタル変換装置,受信装置および受信方法
EP2481174A1 (en) * 2009-09-23 2012-08-01 Alcatel Lucent Digital coherent detection of multi-carrier optical signal
CN102598558B (zh) * 2009-11-17 2014-10-29 三菱电机株式会社 无线通信装置
WO2011096488A1 (ja) * 2010-02-04 2011-08-11 日本電信電話株式会社 送信方法、受信方法、送信装置、及び受信装置
CN102823164B (zh) * 2010-02-04 2015-07-01 日本电信电话株式会社 发送方法、接收方法、发送装置以及接收装置
US8934782B2 (en) 2010-02-04 2015-01-13 Nippon Telegraph And Telephone Corporation Transmission method, reception method, transmitter apparatus, and receiver device
CN102823164A (zh) * 2010-02-04 2012-12-12 日本电信电话株式会社 发送方法、接收方法、发送装置以及接收装置
JP2011171984A (ja) * 2010-02-18 2011-09-01 Nec Corp 光受信機、光通信システム及び等化方法
JP2011205401A (ja) * 2010-03-25 2011-10-13 Nippon Telegr & Teleph Corp <Ntt> 光受信器
JP2011211706A (ja) * 2010-03-30 2011-10-20 Fujitsu Ltd Psk信号の適応ブラインド等化方法、イコライザ、および受信器
JP2011223563A (ja) * 2010-04-02 2011-11-04 Fujitsu Ltd コヒーレント受信装置およびコヒーレント受信方法
JP5838971B2 (ja) * 2010-11-01 2016-01-06 日本電気株式会社 コヒーレント光受信装置、システムおよび方法
WO2012060052A1 (ja) * 2010-11-01 2012-05-10 日本電気株式会社 コヒーレント光受信装置、システムおよび方法
CN103210602A (zh) * 2010-11-01 2013-07-17 日本电气株式会社 相干光接收设备、系统和方法
WO2012073308A1 (ja) * 2010-11-29 2012-06-07 株式会社日立製作所 光通信システム、光送信器及びトランスポンダ
US9048953B2 (en) 2010-11-29 2015-06-02 Hitachi, Ltd. Optical communication system, optical transmitter, and transponder
JP2014506037A (ja) * 2010-12-10 2014-03-06 アルカテル−ルーセント パイロット支援型データ伝送のためのコヒーレント光受信機
WO2012086831A1 (ja) * 2010-12-21 2012-06-28 日本電気株式会社 コヒーレント光受信器、コヒーレント光受信器におけるレーン間スキュー検出装置および検出方法
US9686019B2 (en) 2010-12-21 2017-06-20 Nec Corporation Coherent optical receiver, device and method for detecting inter-lane skew in coherent optical receiver
US10530491B2 (en) 2010-12-21 2020-01-07 Nec Corporation Coherent optical receiver, device and method for detecting inter-lane skew in coherent optical receiver
JP2012147064A (ja) * 2011-01-07 2012-08-02 Fujitsu Ltd 光受信器および光通信システム
WO2012118215A1 (ja) * 2011-03-02 2012-09-07 日本電気株式会社 光受信器、偏波分離装置、および光受信方法
US9014574B2 (en) 2011-03-02 2015-04-21 Nec Corporation Optical receiver, polarization demultiplexer, and optical receiving method
JP2012238941A (ja) * 2011-05-10 2012-12-06 Nippon Telegr & Teleph Corp <Ntt> デジタルコヒーレント受信装置
JP2013017170A (ja) * 2011-07-05 2013-01-24 Fujitsu Ltd フレキシブルマルチバンドマルチトラフィック光ofdmネットワーク
JP2016122993A (ja) * 2014-12-25 2016-07-07 日本電信電話株式会社 光信号受信装置及び光信号受信方法
CN111107029A (zh) * 2018-10-25 2020-05-05 深圳市中兴微电子技术有限公司 正交频分复用解调器、解调方法及接收机
US11329855B2 (en) 2018-10-25 2022-05-10 Sanechips Technology Co., Ltd. Orthogonal frequency division multiplexing demodulator, demodulation method, and receiver

Also Published As

Publication number Publication date
CN101946438A (zh) 2011-01-12
JPWO2009104758A1 (ja) 2011-06-23
EP2247012B1 (en) 2012-08-29
US8355637B2 (en) 2013-01-15
EP2247012A1 (en) 2010-11-03
US20110002689A1 (en) 2011-01-06
JP4872003B2 (ja) 2012-02-08
CN101946438B (zh) 2014-04-09
EP2247012A4 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP4872003B2 (ja) 光ofdm受信器および光伝送システムおよびサブキャリア分離回路およびサブキャリア分離方法
Sano et al. No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission
EP3176964B1 (en) Coherent communication system, communication method, and transmission method
Ip et al. Coherent detection in optical fiber systems
EP2436127B1 (en) Optical intradyne coherent receiver
US8787769B2 (en) Chromatic dispersion value calculating apparatus, optical signal receiving apparatus, optical signal transmitting apparatus, and chromatic dispersion value calculation method
CN109347562B (zh) 一种co-ofdm系统相位噪声优化补偿方法
US8472813B2 (en) Computationally-efficient MIMO equalization algorithm for high-speed, real-time, adaptive polarization multiplexed (POLMUX) OFDM transmission with direct detection
US8831081B2 (en) Digital filter device, digital filtering method and control program for the digital filter device
Pan et al. Inter-channel crosstalk cancellation for Nyquist-WDM superchannel applications
US8306440B2 (en) Polarization diversity receiver systems and methods with polarization mode dispersion mitigation
Renaudier et al. 8 Tb/s long haul transmission over low dispersion fibers using 100 Gb/s PDM‐QPSK channels paired with coherent detection
EP2071754B1 (en) Polarization multiplexed optical OFDM
WO2013185845A1 (en) Method for adapting an equalizer to equalize a composite characteristic of an optical communication channel
Xiao et al. ICI mitigation for dual-carrier superchannel transmission based on m-PSK and m-QAM formats
US8615171B2 (en) Computationally-efficient equalization in polmux OFDM transmission with direct detection via joint transmitter and receiver processing
Zhang et al. Ultrafast operation of digital coherent receivers using their time-division demultiplexing function
WO2014060031A1 (en) Method and apparatus for estimating channel coefficients of a mimo communications channel
Roudas Coherent optical communication systems
Yamamoto et al. Characteristics investigation of high-speed multi-carrier transmission using MIMO-based crosstalk compensation in homodyne detection scheme
Liu et al. Self-coherent optical transport systems
WO2015052894A1 (ja) 搬送波周波数偏差推定装置および搬送波周波数偏差推定方法
Ishihara et al. Frequency-domain equalization for coherent optical single-carrier transmission systems
EP3133751A1 (en) Method for nonlinearity compensation in optical transmission systems
EP4099584B1 (en) Mitigation of equalization-enhanced phase noise in a coherent optical receiver

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104811.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713045

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009554406

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12865827

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009713045

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE