WO2009104634A1 - 車両、及び、その充電システム - Google Patents
車両、及び、その充電システム Download PDFInfo
- Publication number
- WO2009104634A1 WO2009104634A1 PCT/JP2009/052760 JP2009052760W WO2009104634A1 WO 2009104634 A1 WO2009104634 A1 WO 2009104634A1 JP 2009052760 W JP2009052760 W JP 2009052760W WO 2009104634 A1 WO2009104634 A1 WO 2009104634A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- power
- vehicle
- fuel
- power supply
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/006—Supplying electric power to auxiliary equipment of vehicles to power outlets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/11—DC charging controlled by the charging station, e.g. mode 4
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
- B60L53/18—Cables specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/305—Communication interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/51—Photovoltaic means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/24—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
- B60W10/26—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
- H02J3/322—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/30—Preventing theft during charging
- B60L2270/32—Preventing theft during charging of electricity
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
- Y04S10/126—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/12—Remote or cooperative charging
Definitions
- the present invention relates to a vehicle and a charging system thereof.
- Patent Document 1 and Patent Document 2 can be cited as examples of conventional techniques related to a vehicle charging system.
- Patent Documents 3 to 5 can be cited as examples of conventional techniques related to a vehicle fuel consumption measurement system.
- Patent Documents 6 to 8 can be cited as examples of conventional techniques related to a vehicle environment countermeasure system.
- Patent Document 9 and Patent Document 10 can be cited as other examples of the prior art relating to the vehicle charging system.
- an object of the present invention is to provide a charging system for a vehicle that can withstand actual use, and to promote the spread of vehicles that use electricity.
- a charging system for a vehicle includes a power source for charging a vehicle having a battery, a power supply unit for guiding power from the power source to the vehicle, and the vehicle via the power supply unit. It is set as the structure (1st structure) which has the power line communication part for performing the power line communication regarding charge.
- the vehicle charging system having the first configuration includes a power supply opening / closing unit that determines whether or not power is supplied from the power source to the power supply unit, and enables communication with the vehicle by the power line communication unit. Accordingly, a configuration (second configuration) for controlling the power supply opening and closing unit may be used.
- the power supply opening / closing unit allows the power line communication unit to communicate with the vehicle regardless of whether power is supplied to the power supply unit (
- the third configuration may be used.
- the power supply opening / closing unit suspends the start of power supply until a predetermined time period arrives even if the power supply unit is in a vehicle chargeable state (first 4 configuration).
- the vehicle charging system having the first configuration has a determination unit (fifth configuration) that determines that the power supply unit is left in an abnormal state that is not in a vehicle charging state. Good.
- the power line communication unit may be configured to transmit power supply information to the vehicle via the power supply unit (sixth configuration).
- the power line communication unit may be configured to transmit information for power charge settlement to the vehicle (seventh configuration).
- the charging system for a vehicle having the first configuration further includes a fuel storage unit for supplying fuel to a vehicle having a fuel tank, and a fuel supply for guiding the fuel from the fuel storage unit to the vehicle. It is good to make it the structure (8th structure) which has a part.
- the power line communication unit transmits fueling information to the vehicle via the power supply unit to be used for fuel consumption calculation (ninth configuration). Good.
- the vehicle charging system having the eighth configuration includes a fuel supply preparation detection unit that detects whether or not the fuel supply unit is in a fuel supply preparation state, and whether or not the power supply unit is in a power supply preparation state. Control for differentiating the power supply status to the vehicle when the power supply preparation detection unit detects the power supply preparation state depending on whether the fuel supply preparation detection unit detects the fuel supply preparation state or not It is good to make it the structure (10th structure) which has a part.
- the vehicle charging system having the eighth configuration includes: an abnormality detection unit that detects an abnormality of the power supply unit; and the fuel supply unit when the abnormality detection unit detects an abnormality of the power supply unit. It is good to have a structure (11th structure) which has a control part which prohibits this fuel supply.
- the power supply unit and the fuel supply unit may be configured as an integral cable (a twelfth configuration).
- the vehicle according to the present invention is configured to perform power line communication related to charging with the outside through the power storage unit, a charging path connected to an external power supply unit and leading the power to the power storage unit, and the charging path. It is set as the structure (13th structure) which has a power line communication part.
- the power supply preparation detection unit that detects a power supply preparation state to the power storage unit by the charging path, the travel start operation unit, and the power supply preparation detection unit detect the power supply preparation state. And a travel control unit that invalidates the operation of the travel start operation unit (14th configuration).
- the vehicle having the thirteenth configuration further generates fuel by consuming fuel from the fuel tank, a detection unit for detecting the power storage state of the power storage unit, and fuel from the fuel tank.
- a first mode for switching and a second mode for switching from the second power source to the first power source can be selected based on a second detection level of the detection unit different from the first detection level.
- a control unit (fifteenth configuration).
- the second detection level is a level for maintaining the state where the power storage unit is sufficiently charged
- the first detection level is A configuration (sixteenth configuration) may be employed that is a level that enables traveling by the second power source when the traveling efficiency by the first power source is equal to or less than a predetermined value.
- the vehicle according to the present invention includes a fuel tank that receives fuel from the outside, a storage unit that stores fuel amount information, a power source that consumes fuel in the fuel tank to provide travel power, and travel distance information acquisition. And a control unit that automatically calculates fuel consumption based on the refueling information in the storage unit and the travel distance information in the travel distance acquisition unit (17th configuration).
- the control unit supplies the current refueling when the previous refueling and the current refueling to the fuel tank are both full up based on the refueling information in the storage unit.
- the fuel consumption is automatically calculated from the amount and travel distance information from the previous refueling to the current refueling, and when at least one of the previous refueling and the current refueling to the fuel tank is not a full refueling, the refueling amount and A configuration that does not automatically calculate the fuel consumption based on the travel distance information (18th configuration) is preferable.
- control unit stores in the storage unit when it is determined that the accumulated amount of fuel stored in the storage unit is sufficiently larger than the capacity of the fuel tank.
- the fuel consumption may be calculated from the cumulative amount of fuel supplied and the cumulative travel distance information acquired from the travel distance information acquisition unit (19th configuration).
- the vehicle having the seventeenth configuration includes the instantaneous fuel consumption meter that calculates the instantaneous fuel consumption during traveling from the detection of the fuel supply status from the fuel tank to the power unit, and the fuel consumption calculated by the control unit. It is preferable to have a configuration (twentieth configuration) including a correction unit that corrects the instantaneous fuel consumption meter.
- FIG. 2 is a block diagram showing details of wiring relations in the first embodiment of FIG. 1.
- the 1st Example of FIG. 1 it is a block diagram which shows the detail of the electric power feeding opening-and-closing part in the outlet unit of a garage, and a residence system.
- FIG. 2 is a block diagram showing details of a power supply switch and the like in a power supply opening / closing unit in the first embodiment of FIG. 1.
- step S46 and step S52 of FIG. It is a block diagram which shows the 2nd Example of the vehicle charging system which concerns on embodiment of this invention. It is a block diagram which shows the detail of the structure of the outlet unit in 2nd Example. It is a block diagram which shows arrangement
- step S220 of FIG. It is a flowchart which shows the detail of step S296 of FIG. It is a flowchart which shows the detail of step S338 of FIG. It is a flowchart which shows the detail of step S342 of FIG. It is a flowchart which shows the detail of step S344 of FIG.
- Connection part 10 Charging connection (transaction information acquisition unit, power supply preparation detection unit) 12 Charging cable (power line, external cable, power supply path) 16 Fuel tank (energy storage unit) 18 Engine (Power unit, 1st power source) 20 Secondary battery (power storage unit, energy storage unit) 22 Motor (power unit, second power source) 24 PLC demultiplexing / synthesizing unit (receiving unit, power line communication unit) 26 Vehicle control unit (control unit, conversion unit, transaction information acquisition unit, refueling preparation detection unit, power supply preparation detection unit, travel control unit, power storage state detection unit) 28 storage unit (transaction information acquisition unit) 30 Display unit (notification unit) 32 Operation part (running start operation part) 34 Communication unit (receiving unit, wireless communication unit, transaction information acquisition unit) 38 Power line 40 Power supply switching part (power supply part) 44, 208 Display unit 46 Hand illumination unit 52 Garage illumination unit (illumination unit) 54 Garage door mechanism (storage mechanism) 64 Communication section 68 Service line 78 Solar system (in-house power generation system)
- FIG. 1 is a block diagram showing a first example of the vehicle charging system according to the embodiment of the present invention.
- the garage 2 can accommodate a plug-in hybrid type vehicle 4 and includes an outlet unit 6.
- the connecting portion 8 of the outlet unit 6 and the connecting portion 10 for charging of the vehicle 4 can be connected by a charging cable 12.
- the charging cable 12 is normally stored in the vehicle 4 and is taken out during charging and connected as shown in FIG.
- the vehicle 4 is a plug-in hybrid type, and the traveling mechanism 14 consumes the gasoline in the fuel tank 16 and rotates, and the motor 22 that consumes power from the secondary battery 20 and rotates. It can be driven by either of these.
- the secondary battery 20 is charged by surplus power of the engine 18 and can be charged by electric power supplied from the outside of the vehicle 4 via the charging connection portion 10.
- the secondary battery 20 is also charged by the counter electromotive force of the motor 22 during deceleration.
- the charging cable 12 is a power line incorporated in a PLC (Power Line Communications) system as will be described in detail later. That is, the charging cable 12 is a power line and also serves as a communication path for a digital communication signal synthesized with the charging cable 12.
- the PLC demultiplexing / combining unit 24 supplies the power received by the charging connection unit 10 via the charging cable 12 to the secondary battery 20, demultiplexes the digital communication signal, and transmits the demultiplexed signal to the vehicle control unit 26.
- the PLC demultiplexing / synthesizing unit 24 synthesizes a command from the vehicle control unit 26, data stored in the storage unit 28, and the like into the power line and outputs the power line to the outside of the vehicle 4.
- the storage unit 28 stores, for example, data for authenticating the vehicle 4 from the outside.
- the vehicle control unit 26 further controls the display unit 30 and generates an infrared operation signal 36 from the wireless communication unit 34 in response to a manual operation at the operation unit 32.
- This infrared operation signal is a signal for opening and closing a garage door, for example.
- the vehicle control unit 26 monitors the charging status of the secondary battery 20.
- the outlet unit 6 is supplied with power from the power line 38 incorporated in the PLC system, and is connected to the connection unit 8 via the power supply opening / closing unit 40.
- the power supply opening / closing unit 40 has a meter and the like with a function of cutting off the power supply to the connection unit 8 when unnecessary and inconvenient, and demultiplexes a signal for cutting off the power supply and synthesizes the meter information into the power line 38.
- PLC demultiplexing / synthesizing unit 42 Details thereof will be described later. *
- the outlet unit 6 further includes a hand display unit 44 and a hand illumination unit 46.
- the hand display unit 44 displays the charging status and the like at the hand of the outlet unit 6 based on the digital communication signal demultiplexed by the PLC demultiplexing unit 48.
- the hand illumination unit 46 illuminates the connection unit 8 and the hand display unit 44 when the hand of the outlet unit 6 is dark based on the digital communication signal demultiplexed by the PLC demultiplexing unit 50.
- the garage 2 further includes a garage illumination unit 52 and a garage door mechanism 54 connected to the power line 38, which are also controlled by a garage control unit 56 connected to the power line 38.
- the garage control unit 56 has a PLC demultiplexing / combining unit 58, and synthesizes control signals to the garage lighting unit 52, the garage door mechanism 54, and the like on the power line 38 and outputs the power signal 38. These control signals are demultiplexed by the PLC demultiplexing unit 60 or the PLC demultiplexing unit 62 to control the garage illumination unit 52 or the garage door mechanism 54.
- the garage door is controlled by the PLC demultiplexing synthesis unit 58 controlled by the vehicle control unit 56.
- the opening control signal is combined with the power line 38 and is demultiplexed by the PLC demultiplexing unit 62, whereby the garage door mechanism 54 is driven to open the garage door.
- the infrared signal 36 may be automatically generated when the vehicle 4 approaches the garage 2.
- the garage is operated by the PLC demultiplexing unit 58 controlled by the vehicle control unit 56.
- the illumination lighting control signal is combined with the power line 38 and is demultiplexed by the PLC demultiplexing unit 60, whereby the garage illumination unit 52 for illuminating the entire garage is lit.
- the wireless communication unit 34 and the communication unit 64 are configured to have an infrared communication function, but both can be configured as a wireless LAN communication unit.
- wireless communication can be performed bidirectionally and at high speed by radio waves in place of the infrared operation signal 36, and various information exchanges can be performed between the vehicle control unit 26 and a control computer in a residential system 66 described later. it can.
- the communication unit 34 is configured as a wireless LAN communication unit
- direct communication between the communication unit 34 and the residential system 66 is possible if the control computer in the residential system 66 can support wireless LAN communication.
- Various information exchanges can also be performed.
- the authentication data of the vehicle 4 stored in the storage unit 28 can be directly transmitted to the dwelling system 66 not only via the charging cable 12 but also via the wireless LAN.
- the operation signal from the operation unit 32 or the like is synthesized with the power line by the PLC demultiplexing / combining unit 24, thereby the garage from the charging cable 12 via the power line 38.
- the illumination unit 52 or the garage door mechanism 54 can be controlled.
- various digital signals on the power line 38 are first demultiplexed by the PLC demultiplexing synthesis unit 58 and processed by the vehicle control unit 56.
- a dedicated control signal based on the result may be combined with the power line 38 by the PLC demultiplexing combining unit 58 to control the garage lighting unit 52, the garage door mechanism 54, and the like.
- the digital signal to be demultiplexed by the PLC demultiplexing / synthesizing unit 58 may be information not only from the vehicle 4 but also from the dwelling system 66 to which the garage 2 is attached.
- electric power is drawn into the distribution board 72 via the power selling / buying meter 70 from the lead-in line 68, and is supplied to the power line 38 in the residence via the PLC demultiplexing / combining unit 74.
- An optical cable 76 is connected to the PLC demultiplexing / combining unit 74.
- a digital communication signal transmitted from the optical cable 76 is combined with the power line 38, and a digital communication signal flowing through the power line 38 in the residence is demultiplexed. It is transmitted from the optical cable 76 to the outside.
- the solar system 78 has a solar cell 80, and the generated power is supplied to the distribution board 72 via the inverter 82.
- the power supplied from the solar system 78 is less than the power consumed in the house, the power sale / buy meter 70 is in a power purchase state, and conversely, the power supplied from the solar system 78 is consumed in the house.
- the power sale / power purchase meter 70 is in a power sale state.
- the residence system 66 has a control computer, which will be described later, and has a PLC demultiplexing / synthesizing unit 84 necessary for this control as well as controlling the interior of the residence.
- the power trading information from the power selling / buying meter 70 is transmitted to the dwelling system 66 through the LAN cable 86 and processed by the control computer.
- FIG. 2 is a block diagram illustrating details of the wiring relationship in the first embodiment of the vehicle charging system in FIG. Since the configuration itself is exactly the same as in FIG. 1, the corresponding parts are denoted by the same reference numerals, and the description thereof is omitted unless necessary.
- FIG. 2 a part of the configuration shown in FIG. 1 is omitted.
- the detailed configuration such as the power supply opening / closing unit 40 is not illustrated, and the vehicle 4 is not illustrated at all.
- the first embodiment should be understood with reference to FIGS.
- the power line in the first embodiment is a single-phase three-wire power line.
- the lead-in line 68 illustrated in FIG. 1 includes a first outer line 102, a second outer line 104, and a neutral line 106 as illustrated in FIG.
- the neutral wire 106 is grounded by a utility pole or the like before being drawn into the home.
- the power line 38 wired in the home from the distribution board 72 in FIG. 1 is also composed of the first outer line 108, the second outer line 110 and the neutral line 112 as shown in FIG.
- the first outer wire 102 and the second outer wire 104 are each supplied with an AC voltage of 100 volts in reverse phase with respect to the neutral wire 106.
- an AC voltage of 100 volts is obtained from the outlet taken between the first outer line 108 and the neutral line 112 or between the second outer line 110 and the neutral line 112, and the first outer line 108 and the first An AC current of 200 volts is obtained from an outlet taken from the two outer wires 110.
- the PLC demultiplexing unit 74 combines communication signals received from the optical cable 76 between the first outer line 108 and the neutral line 112 and between the second outer line 110 and the neutral line 112, and Any one of the communication signal demultiplexed from between the neutral lines 112 and the communication signal demultiplexed from between the second outer line 110 and the neutral line 112 can be transmitted from the optical cable 76. Further, between the first outer line 108 and the second outer line 110, there is a relay coupler that cuts an AC band of about 50 Hz or 60 Hz and allows high-frequency communication signals to pass. The communication signal between the external line 108 and the neutral line 112 and the communication signal between the second external line 110 and the neutral line 112 are relayed. Details of the relay of the PLC communication signal between the first outside line 108 and the second outside line 110 are described in Japanese Patent Application No. 2007-298696 by the same applicant.
- a PLC-compatible device using an outlet taken between the first external line 108 and the neutral wire 112 a PLC-compatible device using an outlet taken between the second external line 110 and the neutral wire 112
- Any PLC-compatible device using an outlet taken from the first external line 108 and the second external line 110 can perform PLC communication with each other and can communicate with the outside through the optical cable 76.
- the PLC demultiplexing / synthesizing unit 84 of the residential system 66 is connected to an outlet taken from the second external line 110 and the neutral line 112 and supplies an alternating current of 100 volts to the power source of the control computer 114.
- the PLC demultiplexing / synthesizing unit 84 synthesizes the communication signal output from the control computer 114 between the second external line 110 and the neutral line 112 and demultiplexes between the second external line 110 and the neutral line 112.
- the transmitted communication signal is input to the control computer 114.
- the PLC demultiplexing / synthesizing unit 84 is taken from the first outer line 108 and the neutral line 112 instead of connecting to the outlet taken from the second outer line 110 and the neutral line 112 as shown in FIG. It works exactly the same when connected to an electrical outlet.
- the power supply opening / closing unit 40 is connected to the first outer line 108 and the second outer line 110, and supplies an AC current of 200 volts to the connection unit 8. As a result, the vehicle 4 can be rapidly charged.
- the hand display unit 44 is connected to an outlet taken between the first external line 108 and the neutral line 112, and the hand illumination unit 46 is connected to an outlet taken between the second external line 110 and the neutral line 112. It is connected to the.
- the garage lighting unit 52 and the garage door mechanism 54 in the garage 2 are connected to an outlet taken from between the first outer line 108 and the neutral line 112, and the garage control unit 26 is connected to the second outer line 110 and the neutral line. 112 is connected to an outlet taken from between 112.
- a relay coupler 116 that cuts the AC power band and allows high-frequency communication signals to pass therethrough is provided in the garage 2.
- the communication signal between 108 and the neutral line 112 and the communication signal between the second outer line 110 and the neutral line 112 are relayed.
- Such relaying is also performed in the PLC demultiplexing / combining unit 74 in the vicinity of the distribution board 72 as described above, but in order to cope with the attenuation of the communication signal in the portion where the power line length from the relaying unit is long.
- the communication signal between the first outside line 108 and the second outside line 110 is relayed, and the PLC communication using the first outside line 108 and the neutral line 112 and the second outside line 110 and the neutral line 112 are used.
- Relay PLC communication Note that PLC communication with the vehicle 4 via the connection unit 8 is performed using both the first outer line 108 and the second outer line 110, and the communication signal is demultiplexed between these two lines and the ground. Synthesis is performed.
- FIG. 3 is a block diagram showing the first embodiment of the vehicle charging system in FIG. 1 in the same manner as in FIG. 2, but in order to explain the details of the control by the control computer 114, in particular, the outlet unit 6 of the garage 2 is shown. 2 shows details of the power supply opening / closing unit 40 and the dwelling system 66 in FIG.
- FIG. 3 is the same as FIG. 1 in the same manner as in FIG. 2, so the corresponding parts are denoted by the same reference numerals and will not be described unless necessary.
- FIG. 3 the configuration illustrated in FIG. 1 or 2 is partially omitted, but these are merely omitted for the sake of simplicity, and the embodiments are the same. The configuration should be understood with reference to FIGS.
- a charge meter 202 and a power supply switch 204 are provided between the PLC demultiplexing / combining unit 42 and the connection unit 8.
- the charge meter 202 monitors the power consumed to charge the vehicle 4 by detecting the current flowing from the power line 38 to the connecting portion 8.
- the power monitoring result is sent to the control unit 206, and this is combined with the power line 38 by the PLC demultiplexing / combining unit 42, and is transmitted to the control computer 114.
- the charge meter 202 detects not only the normal charge monitor but also the output impedance of the connection portion 8 by current detection. When an abnormal output impedance is detected when an unscheduled device other than the vehicle 4 is connected to the connection unit 8, this is reported to the control computer 114 via the control unit 206 and the PLC demultiplexing / combining unit 42.
- the power supply switch 204 is for cutting off the power supply when receiving an instruction from the control unit 206 that power should not be supplied to the connection unit 8.
- An instruction from the control unit 206 is determined by the control computer 114. For example, when the output impedance is abnormal as described above or when the vehicle 4 cannot be authenticated as described later, the power supply is cut off. As a result, danger is prevented so that the voltage of 200 volts coming to the connection part is not inadvertently output to the outside, and theft and the like are also prevented.
- the control computer 114 is connected to the display unit 208 and the speaker 210, and notifies various information related to the dwelling system 66 to the dwelling by display or announcement. Further, the display unit 208 and the speaker 210 are controlled by the control computer 114, and may receive remote information in the garage 2 such as charging status and impedance abnormality or vehicle authentication failure in the residence by a report from the control unit 206. To be able to know.
- FIG. 4 is a block diagram showing the first embodiment of the vehicle charging system in FIG. 1 in the same manner as FIGS. 2 and 3.
- the power supply in the power supply opening / closing unit 40 is particularly shown.
- the details of the switch 204 and the like are illustrated.
- FIG. 4 the illustration of the configuration other than the outlet unit 6 is omitted for the sake of simplicity. However, since the embodiments are the same, the configuration should be understood with reference to FIGS.
- the power supply switch 204 in the first embodiment of the present invention has an IGBT (Insulated Gate Bipolar Transistor) 302, and the charge meter 202 and the connection unit 8 based on a control signal from the control unit 206. Switching between the two is conducted or not.
- a high-pass filter 304 is connected in parallel to the IGBT 302, and allows high-frequency digital signals in PLC communication to pass regardless of whether the IGBT 302 is conductive or non-conductive. Since the high-pass filter 304 cuts the AC band of about 50 Hz or 60 Hz, the IGBT 302 exclusively determines whether to supply power.
- the neutral wire 112 is grounded 306 in the outlet unit 6 as shown in FIG.
- the grounding of the neutral wire is performed by a utility pole or the like before the neutral wire 106 (see FIG. 2) is drawn into the home, but is also performed by the outlet unit 6 for safety.
- the PLC demultiplexing / synthesizing unit 42 is connected to the ground 306, and the demultiplexing / combining of the communication signal is performed between both the first outer line 108 and the second outer line 110 by using both the first outer line 108 and the second outer line 110. It is supposed to be.
- connection portion 8 further mechanically detects the shape of the connection plug of the charging cable 12 scheduled to be connected to the connection portion 8 and transmits this to the control portion 206. Therefore, when the connection part mechanical sensor 308 cannot detect that the shape of the connection plug is predetermined even if the connection part 8 is electrically connected to the connection part 8. This is notified from the control unit 206 to the control computer 114 via the PLC demultiplexing / synthesizing unit 42. And the control computer 114 which received this sends the signal which makes IGBT302 non-conducting to the control part 206, and while preventing the danger that the voltage of 200 volts which has come to the connection part 8 is not output to a non-rated apparatus, It also prevents theft of electricity.
- FIG. 5 is a flowchart showing the basic operation of the control computer 114. This flow starts when the charging cable 12 is connected to the connection unit 8 or when a charging start time that becomes a late night charge comes when the charging cable 12 is connected.
- step S4 it is checked whether or not an ID has been received, and if reception is detected, the process proceeds to step S6 to check whether or not the ID matches that already registered. If a match of ID is detected in step S6, the process proceeds to step S8, and a password request is made. If a password match is detected in step S10, the process proceeds to step S12.
- the request and transmission of the ID and password in the above steps are performed by wire through the PLC system, but may be performed wirelessly through the communication units 34 and 64.
- step S12 it is checked whether or not the flow has started due to an interruption due to the arrival of the charging start time while the charging cable 12 is connected.
- step S12 If it is not detected in step S12 that it is a time-arrival interrupt, it means that the flow has started due to the connection of the charging cable 12, so that the process proceeds to step S14, and the electric lamp contract according to time zone including the application of a late-night discount fee, etc. Check if has been done.
- step S14 When it is detected in step S14 that a lighting contract by time zone is being performed, the process proceeds to step S16, and it is checked whether or not an emergency charging operation for immediately starting charging is performed regardless of whether it is a midnight time zone. To do.
- step S16 If an emergency charging operation is not detected in step S16, the process proceeds to step S18 to check whether it is a discount time zone such as a late night charge, and if applicable, the process proceeds to step S20 to execute a power supply process. And a flow is complete
- step S12 when it is detected in step S12 that the flow has started due to a time-arrival interrupt, or in step S14 that it is not detected that a lighting contract by time zone is being performed, or in step S16, an emergency charging operation is performed. If detected, the power supply process of step S20 is immediately started.
- step S18 If it is not detected in step S18 that it is a discount time zone, the process proceeds to step S22, and time monitoring for detecting the arrival of the discount time zone is started. Further, in step S24, a process for enabling an interrupt for starting the flow of FIG. 5 by time arrival detection is performed, and the flow is terminated. As a result, the control computer 114 enters a standby state for the arrival of time.
- step S4 If no ID receipt is detected in step S4, or if no ID match is detected in step S6, or if no password match is detected in step S10, the process proceeds to step S26 to record an abnormality. And immediately end the flow. This notification is made on the display unit 208 or the speaker 210 of FIG.
- FIG. 6 is a flowchart showing details of the power supply process in step S20 of FIG.
- the flow starts, it is checked again in step S32 whether or not the flow has started due to an interruption due to the arrival of the charging start time in a state where the charging cable 12 is connected.
- step S34 If the start is due to a time arrival interrupt, the time monitor is canceled in step S34 and the time arrival interrupt is disabled in step S36, and the process proceeds to step S38. On the other hand, if it is not a time arrival interrupt, the process directly proceeds to step S38.
- step S38 it is checked whether or not the connection plug mechanical sensor 308 in FIG. 4 detects the connection of the dedicated plug of the charging cable 12. If the plug is the dedicated plug, the process proceeds to step S40 and the power supply switch 204 is turned on. As a result, a power supply voltage of 200 volts is applied to the connection portion 8.
- step S42 based on the signal from the charge meter 202, it is checked whether the connection after the charging cable 12 is OK and current flows. If the connection is OK, the process proceeds to step S44, and it is also checked whether the output impedance is OK as planned based on the signal from the charge meter 202.
- step S44 When it is detected in step S44 that the output impedance is OK, the process proceeds to step S46, and the eco display process is started. Details thereof will be described later.
- step S48 it is checked whether charging is completed based on information from the charge meter 202 or the secondary battery 20 of the vehicle 4. If the completion of charging cannot be detected, the process returns to step S42. Thereafter, unless there is an abnormality in connection or impedance, steps S42 to S48 are repeated until the charging is completed.
- step S48 When the completion of charging is detected in step S48, the process proceeds to step S50, the power supply switch 204 is turned off, and the process proceeds to the eco display process in step S52. When the eco display process is completed, the flow ends.
- step S50 is immediately performed. And the power supply switch 204 is turned off.
- step S40 since the time from turning on the power supply switch 204 in step S40 to turning off the power supply switch 204 in step S50 due to such an abnormality is extremely short, power is not substantially taken out from the connection portion 8. There is no danger.
- step S38 If it is not detected in step S38 that the plug is a dedicated plug, the process proceeds to step S56, where an abnormality is recorded and reported, and the flow is immediately terminated.
- FIG. 7 is a flowchart showing details of the eco display process in steps S46 and S52 of FIG.
- step S62 it is checked in step S62 whether or not charging is in progress. If charging is in progress, the process proceeds to step S64 to take action to display the current charging rate, and in step S66 the charging completion scheduled time is displayed. Then, the process proceeds to step S68.
- step S70 where an instruction for displaying the outlet unit 6 is displayed, and the process proceeds to step S70.
- the above corresponds to the operation at the time of step S46 in FIG.
- step S72 if it is not detected in step S62 that the battery is being charged, the process proceeds to step S72, and a check is made as to whether or not charging is complete. If the charging is completed, the process proceeds to step S74 to perform a process for displaying the completion of the charging, and a process for performing a voice notification for announcing the charging completion in step S76. Further, in step S78, a measure for blinking the hand illumination 46 of the outlet unit 6 is performed, and the process proceeds to step S68. This is to make the charge completion display in the hand display 44 conspicuous and to make it possible to notify the charge completion only by the hand illumination 46.
- step S72 If the completion of charging is not detected in step S72, the process proceeds directly to step S70 because neither charging nor charging is completed.
- step S72 through step S78 to step S68 or directly from step S72 to step S70 corresponds to the operation at the time of step S52 in FIG.
- step S70 the monthly charge amount to the vehicle 4 is displayed. And it progresses to step S80 and it is checked whether the eco power generation system which may generate electric power sales, such as the solar system 78 and wind power generation, is introduced in the residence.
- the eco power generation system which may generate electric power sales, such as the solar system 78 and wind power generation, is introduced in the residence.
- step S82 the process proceeds to step S82, and the monthly accumulated eco power generation amount is displayed. Further, in step S84, the balance between the monthly accumulated eco-electric power generation amount and the monthly charged amount to the vehicle 4 is displayed. Thereby, it is possible to know the rate of charging of the vehicle 4 due to natural energy. Further, in step S86, the balance in step S84 is converted into carbon dioxide (hereinafter referred to as “CO 2 ”) emission and displayed, and the process proceeds to step S88.
- CO 2 carbon dioxide
- step S80 when the adoption of the eco power generation system cannot be detected in step S80, the above eco display is omitted, and the process directly proceeds to step S88.
- step 88 it is checked again whether or not charging is in progress. If it is not detected that charging is in progress, the process proceeds to step S90 to check whether or not a display end operation has been performed. If there is no operation, the process proceeds to step S92, and it is checked whether or not a predetermined time has elapsed since the display was started. Then, if the predetermined time has not elapsed, the process returns to step S62.
- steps S62 to S62 to step S92 are repeated. This is because the display after completion of charging is continued for a predetermined time.
- the eco-display processing flow ends when a predetermined time has elapsed in step S92.
- the eco display processing flow is also ended when it is detected in step S90 that the display end operation has been performed. The above corresponds to the operation in step S52 of FIG.
- step S88 when it is detected in step S88 that charging is in progress, the eco-display flow in FIG. 7 is also terminated. This corresponds to the operation in step S46 in FIG. The eco display process of step S46 is entered again.
- the eco-display flowchart of FIG. 7 functions as part of the power supply process as the detailed flow of steps S46 and S52 of FIG. 6 as described above, and the control computer 114 is independent of power supply. It is also activated by an interruption due to the display start operation signal being transmitted to. In this case, the operation jumps directly from step S62 to step S70 via step S72.
- the vehicle charging system including the garage 2 that can accommodate the plug-in hybrid type vehicle 4 is disclosed.
- the present invention is not limited to this, and can be applied to a vehicle charging system including a pure electric vehicle that does not use a gasoline engine and a garage that can accommodate the pure electric vehicle.
- FIG. 8 is a block diagram showing a second example of the vehicle charging system according to the embodiment of the present invention.
- the first embodiment is configured to be suitable for implementation in a general garage, but the second embodiment is suitable for implementation in a business-use monthly parking lot or a parking lot for a city or store visitor. It is configured as follows. 8 has many of the same configurations as those in FIG. 3, the same components are given the same numbers, and the corresponding components are given the numbers in the 500s in FIG. It is shown in common with. Description of these configurations is omitted unless necessary.
- the parking lot 602 is a business-use monthly parking lot or a parking lot for visitors to cities and stores, and can park the vehicle 4.
- the outlet unit 506 charges the vehicle 4 in the same manner as the outlet unit 6 in FIG. 3, but is controlled by the power supply control computer 604.
- the power supply control computer 604 has a function according to the control unit 206 in FIG. 3, and details thereof will be described later.
- the parking lot 602 is controlled by the settlement computer 606.
- the settlement computer 606 corresponds to the control computer 114 of FIG. 3, but in the second embodiment of FIG. 8, the settlement computer 606 is mainly in charge of settlement of charging power in cooperation with the bank system 608 connected via the Internet. Specifically, the power purchased through the power purchase meter 570 is supplied from the outlet unit 506 to the vehicle 4, and finally, the charge of the power purchased by the vehicle 4 is withdrawn from the owner account of the vehicle 4 in the bank system 608. Settlement.
- the power supply control computer 604 controls power supply from the outlet unit 506 to the vehicle 4 in cooperation with the settlement computer 606 as described later.
- the communication signal through the optical cable 576 is demultiplexed and synthesized by the PLC demultiplexing / combining unit 576 into the power line 538 in the parking lot 602, and the communication in the parking lot 602 is performed by the PLC.
- the parking lot 602 is configured so that a plurality of vehicles can be parked, and a plurality of similar outlet units are provided as will be described later.
- FIG. 9 is a block diagram showing details of the structure of the outlet unit 506 in the second embodiment of FIG. Components that are the same as those in FIG. 8 are given the same reference numerals, and descriptions thereof are omitted unless necessary.
- a part of the configuration shown in FIG. 8 is omitted. However, these are merely omitted for the sake of simplicity, and since both have the same configuration, the second embodiment should be understood with reference to FIGS.
- the outlet unit 506 is provided on the right wheel stop 702 provided in the parking space.
- the connection part 508 is arrange
- the cap 706 for protecting and protecting the connecting portion 508 when not in use can be attached to the connecting portion 508.
- the connection part / cap mechanical sensor 708 detects whether or not the shape of the connection plug connected to the connection part 508 is the same as the connection part mechanical sensor 308 of FIG. The result is input to the power supply control computer 604.
- the connecting portion 508 provided on the right wheel stop 702 is suitable when the charging connecting portion 10 is on the right side of the vehicle 4, but the vehicle 4 having the charging connecting portion 10 on the left side is parked. Therefore, an auxiliary connection portion 710 having a similar configuration is also provided in the concave portion 714 on the left side surface of the left wheel stop 712.
- the auxiliary connection portion 710 is provided with a connection / cap mechanical sensor 718 as well as a cap 716 that is detachable in the same manner as the connection portion on the right side.
- an auxiliary power supply switch 720 similar to the right-side power supply switch 504 is provided, and the detection result by the connection part / cap mechanical sensor 718 is provided.
- the power supply control computer 604 controls on / off based on the above.
- the auxiliary connector 710 and the auxiliary power supply switch 720 are grouped in an outlet unit (not shown) of the left wheel stopper 712 to facilitate installation on the left wheel stopper 712.
- the power supply control computer 604 and the charge meter 502 PLC demultiplexing / combining unit 542 are not provided, and the power line input unit to the auxiliary power supply switch 720 and the communication line connection unit between the power supply control computer 604. It has a simple configuration.
- the power supply from the right connection portion 508 and the left auxiliary connection portion 710 is separately controlled, and the power supply switch is provided independently for each connection portion, so that the voltage is applied to the connection portion to which the connection plug is not connected. It is possible to prevent an unforeseen situation in which is applied.
- the power supply control computer 604 starts power supply from one of the right connection part 508 and the left auxiliary connection part 710 provided in the pair of the right wheel stop 702 and the left wheel stop 712, the power supply control is performed. As long as it continues, even if it detects that the connection plug of the vehicle 4 is connected to the other connection part thereafter, the power supply switch 504 or the auxiliary power supply switch 720 is controlled so that power is not supplied from the other connection part. To do.
- FIG. 10 is a block diagram showing the arrangement of a plurality of outlet units provided in the parking lot 602 in the second embodiment of FIGS. 8 and 9. Components common to those in FIG. 8 or FIG. 9 are denoted by the same reference numerals, and description thereof is omitted unless necessary.
- FIG. 10 a part of the configuration illustrated in FIG. 8 or FIG. 9 is omitted. However, these are merely omitted for the sake of simplicity, and since both are the same configuration, the second embodiment should be understood with reference to FIGS.
- the right wheel stop 702 provided with the outlet unit 506 is disposed in the first parking space 802.
- arranged to the 1st parking space 802 is abbreviate
- a second wheel stopper 806 is disposed in the second parking space 804, and a second outlet unit 808 similar to the outlet unit 506 is provided.
- a second outlet unit 808 similar to the outlet unit 506 is provided.
- the third wheel stop 812 of the third parking space 810 is provided with a third outlet unit 814 that does not support communication by PLC.
- the power supply opening / closing unit 816 of the third outlet unit 814 includes a charge meter 818, a power supply switch 820, and a connection unit 822 similar to those in FIG. 8 or FIG. 9, but the communication method of the power supply control computer 824 is different.
- the wireless LAN communication unit 826 manages and communicates with the wireless LAN router 828 connected to the settlement computer 606.
- the installation of the wireless LAN communication unit 826 in the third outlet unit 814 can cope with an increase in the parking space only by the wiring of the power line.
- communication between the power supply control computer 824 and the settlement computer 606 may be performed by a wired LAN.
- FIG. 11 is a flowchart showing a basic operation of the power supply control computer 604 provided in the outlet unit 506 of FIGS. 8 to 10 in the second embodiment or the third outlet unit 814 in FIG. This flow starts when the connecting portion / cap mechanical sensor 708 or 718 detects that the cap 706 of the connecting portion 508 or the cap 712 of the auxiliary connecting portion 710 in FIG. 9 has been removed.
- step S102 When the flow starts, it is checked in step S102 whether or not the plug has been attached within a predetermined time from the removal of the cap, and step S102 is repeated until the predetermined time elapses.
- step S102 When it is detected in step S102 that the plug has been attached within the predetermined time, the process proceeds to step S104, and it is checked whether or not the connection / cap mechanical sensor 708 or 718 detects the connection of the dedicated plug of the charging cable 12. If it is a dedicated plug, the process proceeds to step S106 and communication with the settlement computer 606 is started.
- step S108 the vehicle 4 is requested to send an ID for vehicle authentication based on an instruction from the settlement computer 606.
- step S110 it is checked whether or not an ID has been received, and if reception is detected, the process proceeds to step S112 to check whether or not the ID matches that already registered.
- step S112 the check in step S112 is performed as follows. First, the received ID is sent to the bank system 608 via the settlement computer 606, and when it matches the ID registered in the account in the bank system 608, it is sent to the power supply control computer 604 or 824 via the settlement computer 606. Be notified.
- step S112 If it is confirmed in step S112 that the ID matches that already registered by this notification, the process proceeds to step S114, and a password is requested. If a password match is detected in step S116, the process proceeds to step S118. In step S118, it is checked whether there is a deposit that can be withdrawn in the account of the customer authenticated with the ID and password, and whether settlement is possible. If settlement is OK, the process proceeds to step S120.
- Both the check in step S116 and step S118 are performed by communication with the bank system 608 via the relay of the settlement computer 606 in the same manner as in step S112.
- the settlement computer 606 may not only relay information but also determine the check result by itself and transmit only the instruction of the result to the power supply control computer 604 or 824.
- step S120 the power supply switch 504, 720, or 820 is turned on, and a power supply voltage of 200 volts is applied to the corresponding connection portion.
- step S122 based on the signal from the charge meter 502 or 818, it is checked whether the connection after the charging cable 12 is OK and current flows. If the connection is OK, the process proceeds to step S124, and it is also checked whether the output impedance is OK as planned based on the signal from the charge meter 502 or 818.
- step S44 When it is detected in step S44 that the output impedance is OK, the process proceeds to step S128, and it is checked whether charging is completed based on information from the charge meters 502 and 818 or the secondary battery 20 of the vehicle 4. If the completion of charging cannot be detected, the process returns to step S122. Hereinafter, unless there is a connection or impedance abnormality, steps S122 to S128 are repeated until the charging is completed.
- step S128 When the completion of charging is detected in step S128, the process proceeds to step S130, the power supply switch 504, 720, or 820 is turned off and the process proceeds to the settlement process in step S132.
- the payment process in step S132 is a normal payment process in which the charging power charge is withdrawn from the bank account.
- step S122 if it is not possible to detect that the connection is OK in step S122, or if it is not possible to detect that the output impedance is OK in step S124, an abnormality is recorded and reported in step S134, and step S130 is immediately performed. And the power supply switch 504 or 720 or 820 is turned off.
- the time from turning on the power supply switch 504 or 720 or 820 in step S120 to turning off the power supply switch 504 or 720 or 820 in step S130 due to such an abnormality is extremely short. Power is not substantially taken out from the connection portion 508, 710, 822 or the like, and there is no danger.
- step S102 when it is not detected in step S102 that the connection plug is attached within a predetermined time from the removal of the cap, or when it is not possible to detect that the plug is a dedicated plug in step S104, the process proceeds to step S136, where an abnormality is recorded and notified. Then, the flow is finished immediately.
- step S110 when ID receipt cannot be detected at step S110, or when ID match cannot be detected at step S112, or password match cannot be detected at step S116, or payment is OK at step S118. Even if it cannot be detected, the process proceeds to step S136, where an abnormality is recorded and reported, and the flow is immediately terminated. This notification is made to the settlement computer 606, and is also reported to the bank system 608 via the settlement computer 606 as necessary.
- the implementation of the present invention is not limited to the above embodiments, and the advantages of the present invention can be achieved by various other embodiments.
- the IGBT 302 is used for the power supply switch 204 in FIG. 4, a silicon carbide (SiC) power semiconductor element may be used instead.
- FIG. 12 is a block diagram showing a third example according to the embodiment of the present invention.
- the third embodiment also constitutes a vehicle charging system in the same manner as the first and second embodiments described above, and has a feature relating to fuel consumption management of a hybrid type vehicle.
- the part can also be applied to a normal gasoline engine type vehicle without charging.
- FIG. 12 is a block diagram illustrating a service stand 902 and a hybrid type vehicle 904 capable of supplying and refueling in order to explain such characteristics.
- the configuration of the vehicle 904 in FIG. 12 is the same as that of the vehicle 4 in FIG. 1, but the configuration omitted in FIG. 1 is added.
- these additional configurations will be mainly described, but the configurations already mentioned in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted unless necessary.
- the vehicle 904 has a total power inlet 906 for refueling and / or charging at the service stand 902 (hereinafter collectively referred to as “power injection”), and charging connection
- the unit 10 is combined with the total power inlet 906 together with the fuel filler 908.
- the total power inlet 906 is disposed and configured to be electrically and spatially separated from each other in order to avoid ignition by sparks in the vicinity of the charging connection portion 10. Furthermore, for the same purpose, power supply is not started unless it is confirmed that the charging cable 12 is securely connected to the charging connection unit 10, and the charging cable 12 is removed from the charging connection unit 10 during power supply. It is not possible.
- a total power cable 910 for connecting to the total power inlet 906 is provided, and the charging cable 12 is bundled together with the fuel supply pipe 912 into the total power cable 910.
- the total power cable 910 is shown in a wide block shape. However, this is conceptual, and the actual total power cable 910 includes a charging cable 12 and a fuel supply pipe 912. It is summarized as a flexible cable.
- the general power cable 910 is provided with a damage sensor 913 on the outer periphery in order to prevent ignition from the charging cable 12 to the oil supply pipe 912 due to damage.
- the breakage sensor 913 for this purpose is a weak current signal line that is formed in a mesh shape along the cable from the surface to the shallow part so as to cover the outer periphery of the general power cable 910, for example.
- FIG. 1 and FIG. 8 illustrate such a state.
- the vehicle 904 in FIG. 12 includes an oil amount meter 914 that detects the amount of oil in the fuel tank 16 and an instantaneous fuel consumption meter 916 that calculates the instantaneous fuel consumption by monitoring the state of gasoline injection to the engine 18 and the speed from the traveling mechanism 14.
- a trip meter 917 based on the traveling mechanism 14 and a power supply unit 918 for supplying power to the entire vehicle 904 from the secondary battery 20 are shown, but these are also provided in the vehicle 4 of FIG. .
- Information of the oil amount meter 914, the instantaneous fuel consumption meter 916, and the trip meter 917 is transmitted to the vehicle control unit 26.
- the gasoline stored in the fuel storage 918 in the service stand 902 is supplied from the fuel supply pipe 912 to the fuel supply port 908 of the vehicle 904 via the fuel supply meter 920 under the control of the service stand control unit 922.
- the data of the amount of oil measured by the fuel meter 920 is sent to the service stand control unit 922 and used for billing processing described later.
- the power from the power supply 924 is supplied from the connection unit 928 to the charging connection unit 10 of the vehicle 904 through the power supply meter 926 and the charging cable 12 under the control of the service stand control unit 922.
- Data on the amount of power supply measured by the power supply meter 926 is sent to the service stand control unit 922 and used for billing processing described later.
- a PLC demultiplexing / synthesizing unit 928 similar to that already described is provided between the power supply meter 926 and the connection unit 928, and between the service stand control unit 922 and the vehicle control unit 26 via the charging cable 12. PLC communication is possible.
- the service stand control unit 922 When the service stand control unit 922 receives the fuel supply data and / or the power supply data from the fuel supply meter 920 and / or the power supply meter 926, the service stand control unit 922 sends the data to the charging unit 930.
- the charging unit 930 performs processing such as summing up and calculating the amount of oil supply, gasoline unit price, billed gasoline cost, power supply amount, electricity cost unit price, and billed electricity cost according to the received data.
- the balance is also processed.
- the transaction information is acquired from the service stand 902 by the vehicle control unit 26 via the communication unit 34 or the charging connection unit 10 and stored in the storage unit 28. Note that the information regarding the CO 2 emission trading can be received via the charging cable 12 or the communication unit 34 from the control computer 114 of the residence system 66 of FIG.
- the service stand control unit 922 outputs the data of the processing result by the charging unit 930 from the input / output unit 932, sends it to the bank system 934 via the Internet, and entrusts electronic payment for gasoline and electricity. Further, the service stand control unit 922 outputs processing result data from the charging unit 930 from the input / output unit 932 and sends the data to the fuel consumption management external server 936 via the Internet. Information on the trip meter 917 of the vehicle 904 is further relayed to the fuel efficiency management external server 936 from the vehicle control unit 26 via the service stand control unit 922 via the Internet. With this information, the fuel consumption management external server 936 can calculate the fuel consumption.
- the calculated fuel consumption can be calculated for each fuel supply if the amount of fuel meets the fuel consumption calculation conditions by the full tank method.
- the cumulative average fuel consumption can be calculated.
- the processing result of the fuel efficiency management external server 936 can also be fed back to the vehicle control unit 26 via the service stand control unit 922. Further, the fuel efficiency management external server 936 also performs statistical processing that aggregates data from a large number of vehicles, and the vehicle control unit 26 can also receive feedback of such statistical data.
- the service stand control unit 922 combines the data of the processing result by the charging unit 930 into the power line by the PLC demultiplexing unit 928.
- actual data such as the amount of oil supply, gasoline unit price, billing gasoline cost, power supply amount, electricity unit price, billing electricity cost, etc. is transmitted from the service stand control unit 922 to the vehicle control unit 26. If the refueling amount communicated in this way matches the fuel consumption calculation condition by the full tank method, the vehicle control unit 26 divides the travel amount data based on the information of the trip meter 917 by this data to reduce the fuel consumption. Calculate automatically.
- Data transfer from the service stand 902 to the vehicle 904 can be performed by wireless LAN communication from the communication unit 938 to the communication unit 34 in addition to the PLC communication via the charging cable 12 as described above.
- wireless LAN communication is particularly useful when the service stand 902 does not have a charging function and PLC communication using the charging cable 12 cannot be performed.
- FIG. 13 is a flowchart showing the basic operation of the vehicle control unit 26 in the third embodiment of FIG. This flow rises when the vehicle control unit 26 receives power from the secondary battery 20 and thereafter maintains the operating state until power from the secondary battery 20 is cut off. As will be described later, the ignition is turned on. As long as there is no connection to the total power inlet 906 from the outside, these are awaited and there is no substantial operation. *
- step S202 When the flow starts, it is checked in step S202 whether the ignition is turned on. When the ignition is turned on, the process proceeds to step S204, and an initial function check process for the vehicle 904 is performed. Next, in step S206, it is checked whether or not a travel start operation of the vehicle 904 has been performed. When the travel start operation is detected, the process proceeds to step S208, and it is checked whether or not a cable is connected to the total power inlet 906. If not connected, the process proceeds to step S210, and the latest fuel consumption memory before the current travel is read from the storage unit 28 and displayed in step S212.
- step S208 and step 218 described later not only when the total power cable 910 (that is, both the charging cable 12 and the oil supply pipe 912) is connected to the total power inlet 906, the charging cable 12 and Even when only one of the oil supply pipes 912 is connected, it is determined that the cable is being connected to the total power inlet 906.
- the total power cable 910 that is, both the charging cable 12 and the oil supply pipe 912
- the charging cable 12 and Even when only one of the oil supply pipes 912 is connected it is determined that the cable is being connected to the total power inlet 906.
- step S214 As described above, even if the travel start operation is performed in step S206, if it is not confirmed in step S208 that the cable is not connected to the total power inlet 906, the process proceeds to the travel process in step S214 to execute the travel. There is no. This has the meaning of preventing accidents such as forgetting to disconnect the cable the next morning while starting charging at midnight when the power rate is low in a home garage.
- step S216 a warning that the cable is to be removed is given on the display unit 30, and the process returns to step S206. As long as the cable is not removed in accordance with the warning in this way, step S206, step S208, and step S216 are repeated, and the traveling process of step S214 is not reached.
- Step S218 is for checking whether or not a cable is connected to the total power inlet 906. If it is not detected in step S202 that the ignition is turned on, the process directly proceeds to step S218. Moreover, also when the driving
- step S220 When the cable connection to the total power inlet 906 is detected in step S218, the process proceeds to step S220 and shifts to the refueling / power supply process. Details thereof will be described later.
- step S222 When the refueling / power feeding process ends, the process proceeds to step S222, and it is checked whether the ignition is turned off. If it is not off, the flow returns to step S206 and waits for the next travel start operation or the total power inlet connection. On the other hand, when it is detected in step S222 that the ignition is turned off, the flow returns to step S202, and waits for the next ignition on or total power inlet connection.
- FIG. 14 is a flowchart showing details of the traveling process in step S214 of FIG.
- an instruction to start displaying data from the instantaneous fuel consumption meter 916 is issued in step S232, and an accumulation of data from the instantaneous fuel consumption meter 916 is instructed in step S234.
- the process proceeds to step S236 to instruct traveling by the motor 22. Since the vehicle 904 is a hybrid vehicle, the travel by the motor 22 is instructed when the engine 18 starts traveling with low efficiency.
- step S2308 it is checked whether the driving mode is set to the electric mode.
- the electric mode is an electric vehicle mode in which the power of the secondary battery 20 is consumed and only the motor 22 is used as power. If the setting of the electric mode is not detected in step S238, the hybrid mode is set, so the process proceeds to step S240, and it is checked whether or not the traveling mode is set to the optimum efficiency hybrid mode. When this mode setting is detected, the process proceeds to step S242, and the optimum efficiency hybrid travel process is performed. This process is a process of determining whether the traveling at that time is performed by the motor 22 or the engine 18 with the highest priority on fuel consumption.
- the secondary battery 20 is charged by the motor back electromotive force at the time of braking or the like. Depending on the traveling state, the charging state of the secondary battery 20 may be restored by traveling even in the optimum efficiency hybrid traveling.
- step S242 Each time the travel selection at that time is performed in step S242, the flow proceeds to step S244 to check whether the travel has stopped. If not stopped, the process proceeds to step S246, and it is checked whether or not the charging of the secondary battery 20 has reached the minimum level. If the minimum limit is not broken, the flow returns to step S242, and the optimal efficiency hybrid travel is continued by repeating steps S242 to S246 unless the travel stop or the minimum charge is detected.
- step S244 the travel processing in FIG.
- step S246 when it is detected in step S246 that the secondary battery 20 has been consumed and the charging minimum has been broken, the process proceeds to step S248, and the process proceeds to the normal hybrid travel process.
- the normal hybrid travel process In this process, whether to drive the engine or to drive the motor is determined based on fuel efficiency, and the charge amount of the secondary battery 20 is monitored. Charging is performed by continuing the engine running until the next battery 20 is restored to the minimum charge.
- step S2250 Each time the travel selection by this process is performed, the flow proceeds to step S2250 to check whether the travel has stopped. If it is not stopped, the process returns to step S248, and the normal hybrid travel is continued by repeating steps S248 and S250 unless a travel stop is detected.
- the normal hybrid traveling process is a hybrid traveling process that does not assume charging from the outside. When the travel stop is detected in step S250, the travel processing in FIG.
- step S252 When the setting of the optimum efficiency mode is not detected in step S240, the process proceeds to the circulating hybrid traveling process in step S252.
- This process is the same as the normal hybrid driving process in that it performs hybrid driving that does not require charging from the outside, but the power charged from the outside in a plug-in hybrid vehicle is almost full for switching to the electric mode.
- hybrid driving is performed while preserving the state of charge.
- the engine running or the motor running is determined by the same fuel efficiency as in the normal hybrid running process, but the forced switching to the engine running is performed at a stage long before the secondary battery 20 becomes the minimum charge. This is performed by the steps described later.
- step S254 Each time the travel selection at that time is performed in step S252, the flow proceeds to step S254 to check whether the travel has stopped. If not stopped, the process proceeds to step S256, where the secondary battery 20 is monitored to check whether or not the charge has reached the full charge maintenance limit. If the full charge maintenance limit is not reached, the flow returns to step S252. Thereafter, unless a travel stop or full charge maintenance limit is detected, steps S252 to S256 are repeated to continue the circulating hybrid travel. When the travel stop is detected in step S254, the travel processing in FIG.
- step S258 the flow proceeds to the engine running process in step S258 to forcibly select the engine running.
- the first charge level of the secondary battery that is forcedly switched to engine travel in the normal hybrid travel processing of step S248 and the forced switch to engine travel are determined in step S256.
- step S262 If it is not a stop, it will progress to step S262 and it will be checked whether charge of the secondary battery 20 returned to full charge. If it has not returned to full charge, the flow returns to step S258, and the following steps S258 to S262 are repeated until the travel stop or full charge return is detected, and the engine running process is continued to charge the secondary battery 20. .
- step S254 the travel processing in FIG.
- step S262 When the full charge return is detected in step S262, the flow returns to step S238. This is to enable switching from the fully charged state to the electric mode or the optimum efficiency mode. That is, in any of these modes, it is assumed that the secondary battery is in a fully charged state, but switching to these modes is possible by returning from step S258 to step S238 via step S262. Unless switching to these modes is performed in step S238, the flow proceeds from step S238 to step S252 via step S240. Therefore, hereinafter, unless a travel stop is detected in step S260, step S238, step S240 and Steps S252 to S262 are repeated to continue the hybrid running while preserving the secondary battery in a substantially fully charged state. When the travel stop is detected in step S260, the travel processing in FIG.
- Step S238 When the electric mode is detected, the process proceeds to step S264 to forcibly select motor running. Then, the process proceeds to step S266, and it is checked whether or not traveling has stopped. If not stopped, the process proceeds to step S268 to check that the charging of the secondary battery 20 has reached the minimum charging. If the charging minimum is not broken, the flow returns to step S264, and the motor driving process is continued by repeating steps S264 to S268 unless a driving stop or charging minimum is detected. The secondary battery 20 is charged. When the travel stop is detected in step S254, the travel processing in FIG. On the other hand, when it is detected in step S246 that the secondary battery 20 has been consumed and the minimum charge has been broken, the process proceeds to step S248, and the process proceeds to the normal hybrid travel process.
- FIG. 15 is a flowchart showing details of the refueling / power feeding process in step S220 of FIG.
- step S272 it is checked in step S272 whether or not there is a connection to the fuel filler port 908. If the connection is detected, it means that either the total power cable 910 provided with the charging cable 12 and the oil supply pipe 912 or only the oil supply pipe 912 is connected, so the process proceeds to step S274, and the start of the oil supply is instructed. The process proceeds to S276. On the other hand, when the connection to the fuel filler port 908 is not detected, it means that only the charging cable 12 is connected, and the process directly proceeds to step S276.
- step S276 it is checked whether or not there is a connection to the charging connection unit 10. If the connection is detected, it means that either the total power cable 910 provided with the charging cable 12 and the oil supply pipe 912 or only the charging cable 12 is connected, and the process proceeds to step S278.
- step S278 it is checked whether or not an emergency charging operation has been performed. If this operation is not detected, the process proceeds to step S280, and it is checked whether or not a lighting contract is made for each time zone. In the case of the vehicle 904 in which it is detected that there is a contract, it is considered that charging is intended to be performed at night from the home power line, so the process proceeds to step S282, and it is checked whether there is a connection to the fuel filler port 908. To do. If there is no connection to the fuel filler port 908, it is considered that the charging cable 12 from the household electric power line is connected, so the process proceeds to step S284. *
- step S284 it is checked whether or not the current time falls within the discount time zone. If not, the process proceeds to 286 to check whether or not the time monitor for detecting that the discount time zone has been entered. If the time is not being monitored, the time monitoring is started in step S288 and the process proceeds to step S290. If it is detected in step S286 that the time is already being monitored, the process proceeds directly to step S290. In this way, if there is a connection to the charging connection unit 10 outside the discounted time zone under an hourly lighting contract without an emergency charging operation, it is intended to charge at midnight after entering the garage at home. Then, the time monitoring is performed assuming that the charging cable 12 is connected, and the execution of charging is suspended until the time comes.
- step S278 if there is an emergency charging operation in step S278, it means that it is required to start charging immediately at the service stand 904 or at home regardless of whether or not there is a lighting contract by time of day, so the process proceeds to step S292.
- the start of charging is instructed, and the process proceeds to step S290.
- step S292 where an instruction to immediately start charging at the service stand 904 or at home is given, and the process proceeds to step S290.
- step S284 when it is detected in step S284 that the current time corresponds to the discount time zone, the process proceeds to step S292, the start of charging is instructed, and the process proceeds to step S290.
- step S290 it is checked whether or not charging is in progress. If charging is in progress, step S290 is repeated to wait for completion of charging. Then, when step S290 is reached without executing charging as in step S286, or when step S290 is reached via step S292 and charging is completed, the process proceeds to step S294. If connection to the charging connection unit 10 is not detected in step S276, the process directly proceeds to step S294. Further, when the connection to the fuel filler port 908 is detected in step S282 after the detection of the lighting contract by time zone in step S280, it is considered that charging at the service stand 902 is not intended, and the process immediately proceeds to step S294. To do.
- step S294 it is checked whether refueling is in progress. If refueling is in progress, step S294 is repeated to wait for completion of refueling. Then, when step S294 is reached without an instruction to start refueling at S274, or when refueling is completed after reaching the step S294 via an instruction to start refueling at step S274, the process proceeds to step S296. In step S296, fuel consumption calculation processing is performed, details of which will be described later.
- step S298 it is checked whether a cable is connected to the charging connection unit 10, and if it is connected, it is checked in step S300 whether the time is being monitored. If the time is being monitored, the process returns to step S278.
- step S284 it is detected in step S284 that the current time corresponds to the discount time zone, or the removal of the cable is detected in step S298. Steps S290 and S294 to S300 are repeated. If it is not detected in step S300 that the time is being monitored, or if removal of the cable is detected in step S298, the flow of the refueling / power feeding process in FIG.
- FIG. 16 is a flowchart showing details of the refueling / power feeding process in step S296 of FIG.
- step S312 it is checked in step S312 whether or not there is a charge. Then, if there is a charge, the process proceeds to step S314, where charge data such as the charge amount, power charge unit price, and billing charge is acquired from the service stand control unit 922 by PLC communication or wireless LAN communication, and the process proceeds to step S316. If it is not detected in step S312 that the battery has been charged, the process directly proceeds to step S316.
- step S316 it is checked whether refueling has been performed. If refueling has been performed, the process proceeds to step 318, and fuel consumption accumulation data from the previous refueling to the current refueling is read by the instantaneous fuel consumption meter 916. Further, in S320, service stand data relating to the current refueling such as the amount of refueling, the presence / absence of refueling until full tank, the unit price of gasoline, and the billing fee are acquired by PLC communication or wireless LAN communication. Next, in step S322, accumulated service stand data relating to refueling acquired up to the previous time is read from the storage unit 28, and the process proceeds to step S324.
- step S324 based on the data obtained in step S320 and step S322, it is checked whether both the previous and current refueling have been performed to full. If applicable, the fuel consumption calculation by the full tank method is possible, so the process proceeds to step S326, and the current fuel amount data obtained in step S320 is adopted, and the process proceeds to step S328.
- step S328 travel data from the previous refueling to the current refueling is acquired from the trip meter 917. Further, in step S330, the fuel consumption at the current refueling is calculated from the current refueling amount and the current travel distance, and the process proceeds to step S332.
- step S324 when it is not detected in step S324 that both the current and previous refueling are full, the process proceeds to step S334, and the accumulated fuel consumption data from the previous refueling to the current refueling is obtained from the fuel consumption data of the instantaneous fuel consumption meter 916 obtained from step S318. And proceeds to step S332.
- step 332 it is checked whether or not the cumulative number of refueling up to this time is equal to or greater than a predetermined value (for example, 10 times). Is calculated and the process proceeds to step S338. This is because when the cumulative amount of fuel supply is sufficiently larger than the capacity of the fuel tank 16, there is no significant error even if the amount of fuel supply is considered as the oil consumption amount. On the other hand, if the cumulative number of refueling has not reached the predetermined number in step S332, the process proceeds to step S340, the average fuel consumption up to this time is calculated from the data of the instantaneous fuel consumption meter 916, and the process proceeds to step S338.
- a predetermined value for example, 10 times
- step S316 If it is not detected in step S316 that there has been refueling, the process immediately proceeds to step S338.
- step S3308 a process for calculating an accumulated travel cost required to travel a predetermined distance (for example, 10 km) is performed. Details thereof will be described later.
- step S342 processing for converting the consumed energy into CO 2 is performed. Details thereof will also be described later.
- step S344 a process for correcting the instantaneous fuel consumption meter 916 based on the refueling performance and the traveling performance is performed, and the flow ends. The instantaneous fuel consumption meter correction process in step S344 will also be described later.
- step S332 it is determined whether the cumulative amount of fuel is sufficiently larger than the capacity of the fuel tank 16 based on the number of times of fueling. Instead, it is directly determined whether the cumulative amount of fuel has reached a predetermined value or more. You may make it determine to. Moreover, it may replace with the judgment by accumulation
- FIG. 17 is a flowchart showing details of the accumulated travel cost calculation process in step S338 of FIG.
- step S352 it is checked in step S352 whether or not there is a payment power charge related to the current charging, and if there is, the current payment power charge data is added in step S354 and the process proceeds to step S356. On the other hand, if there is no current power payment fee in step S352, the process directly proceeds to step S356.
- step S356 it is checked whether or not there is private power generation data for the current charging. If there is, the charging equipment depreciation cost corresponding to the charging amount is added in step S358, and the process proceeds to step S360. On the other hand, if there is no private power generation data this time in step S356, the process proceeds directly to step S360.
- step S360 it is checked whether or not the electric power related to the current CO 2 emission trading is charged, and if applicable, the process proceeds to step S362.
- step S362 if the CO 2 emission right is sold, the sale price is subtracted. If the CO 2 emission right is purchased, the purchase price is added, and the process proceeds to step S364.
- step S364 it is checked whether or not there is a refueling fee related to the current refueling. If there is a refueling fee for this refueling, the current refueling fee data is added in step S366 and the process proceeds to step S368. On the other hand, if there is no current power charge in step S364, the process directly proceeds to step S368.
- step S368 the accumulated traveling data up to this time is read from the trip meter 917, and the current traveling data is added thereto.
- step S370 it is checked whether or not the latest cumulative travel data as a result is greater than or equal to a predetermined distance. If it is equal to or longer than the predetermined distance, it is checked in step S372 whether there is accumulated power charge data up to this time. If so, the process proceeds to step S374, where the accumulated power charge data is read from the storage unit 28, and the process proceeds to step S376. On the other hand, if there is no accumulated power charge data in step S372, the process directly proceeds to step S376.
- step S376 it is checked whether or not there is accumulated refueling charge data up to this time, and if there is, the process proceeds to step S378, where the accumulated refueling charge data is read from the storage unit 28, and the process proceeds to step S380. On the other hand, if there is no accumulated fuel charge data in step S376, the process proceeds directly to step S380.
- step S380 the accumulated power charge data up to this time read out in step S374 and the accumulated refueling charge data up to this time read out in step S378 are added together to calculate a total accumulated charge. Then, the process proceeds to step S382, in which the total accumulated cumulative charge up to this time obtained in step S380 is divided by the cumulative travel data obtained up to this time obtained in step S368 and multiplied by 10 km, and the accumulated average running cost amount per 10 km Is calculated and the flow ends. If it is not detected in step S370 that the latest cumulative travel data is greater than or equal to the predetermined distance, the flow is immediately terminated.
- step S370 it is checked whether or not the cumulative travel distance has reached a predetermined value or more.
- the cumulative amount of fuel supplied is the capacity of the fuel tank 16 as in step S332 of FIG. It is a judgment that it is sufficiently larger than that. Therefore, unless the vehicle 904 travels only with electric power, step S370 is a step for determining whether or not the number of refueling has reached a predetermined number, or a step for determining whether or not the cumulative amount of refueling has reached a predetermined amount or more. It is good. In any case, it is possible to determine whether the calculation of the travel cost is appropriate.
- FIG. 18 is a flowchart showing details of the CO 2 conversion processing in step S342 of FIG.
- step S392 it is checked in step S392 whether there is charging data in the storage unit 28, and if there is, the past accumulated power amount is read from the storage unit 28 in step S394, and the process proceeds to step S396. On the other hand, if there is no charge data in step S392, the process directly proceeds to step S396.
- step S396 it is checked whether or not there is current charging data. If there is, the current charging amount is added in step S398, and the process proceeds to step S400. On the other hand, if there is no current charging data in step S396, the process directly proceeds to step S400.
- step S400 it is checked whether or not the electric power related to the current CO 2 emission trading is charged, and if applicable, the process proceeds to step S402.
- step S402 if the CO 2 emission right is sold, the power amount corresponding to the sale is added, and if the CO 2 emission right is purchased, the power amount corresponding to the purchase is subtracted and the process proceeds to step S404.
- step S404 based on a predetermined conversion formula for converting electric power consumption into CO 2 emission, charging electric energy within a predetermined period based on the processing from step S392 to step S402 is converted into CO 2 emission.
- step S406 it is checked whether there is accumulated refueling data in the storage unit 28. If there is, the past accumulated refueling amount is read from the storage unit 28 in step S408, and the process proceeds to step S410. On the other hand, if there is no accumulated refueling data in step S406, the process directly proceeds to step S410.
- step S410 it is checked whether or not there is current refueling data. If there is, the current refueling amount is added in step S412 and the process proceeds to step S412. On the other hand, if there is no refueling data this time in step S410, the process proceeds directly to step S414.
- step 414 based on a predetermined conversion formula for converting oil consumption into CO 2 emission, the cumulative amount of oil supply from this time based on the processing in steps S406 to S412 is converted into CO 2 emission.
- step S416 the accumulated travel data up to this time is read from the trip meter 917 and the current travel data is added to this. Then, in step S418, it is checked whether or not the latest cumulative travel data of the above result is a predetermined distance or more. If the latest cumulative travel data is greater than or equal to the predetermined distance, in step S420, the CO 2 amount converted from the charge amount in step S404 and the CO 2 amount converted from the refueling amount in step S414 are added together, and the cumulative total CO 2 amount thus far is obtained. Is calculated.
- step S422 the cumulative total CO 2 amount obtained up to this time obtained in step S420 is divided by the cumulative running data obtained up to this time obtained in step S416 and multiplied by 10 km, and the estimated average CO per 10 km is calculated. 2 Calculate the discharged amount and end the flow. If it is not detected in step S416 that the latest cumulative travel data is greater than or equal to the predetermined distance, the flow is immediately terminated. Unless the cumulative mileage is sufficiently larger than the distance that can be traveled with a single energy injection, there is a large error in considering the amount of energy consumed, such as the amount of fuel and the amount of charge, as the amount of energy consumed. This is because it is inappropriate to calculate the average CO 2 emission amount from the CO 2 conversion value.
- step S416 is performed to determine whether or not the number of refueling has reached a predetermined number, or to determine whether or not the cumulative refueling amount itself has reached a predetermined amount or more. It is good. In any case, it is possible to determine whether the calculation of the travel cost is appropriate.
- FIG. 19 is a flowchart showing details of the instantaneous fuel consumption meter correction process in step S344 of FIG.
- step S432 it is checked in step S432 whether there is refueling data. If there is refueling data, the process proceeds to step S434, where the accumulated traveling data up to this time is read from the trip meter 917, and the current traveling data is added thereto.
- step S436 it is checked whether or not the latest cumulative travel data as a result is equal to or greater than a predetermined distance. If the latest accumulated travel data is greater than or equal to the predetermined distance, the accumulated refueling data up to this time is read from the storage unit 28 and the current travel data is added to this to update to the latest data in step S438.
- step S440 the fuel supply amount cumulative average designated fuel consumption is calculated from the latest cumulative fuel supply amount data and the latest cumulative fuel supply amount data.
- step S442 the average fuel consumption is calculated based on the data from the instantaneous fuel consumption meter 916 for the corresponding period. Then, in step S444, the instantaneous fuel consumption meter average fuel consumption is compared with the fuel amount cumulative average estimated fuel consumption, and in step S446, it is checked whether or not there is a difference between both. If the difference is greater than or equal to the predetermined value, the process proceeds to step S448, where instantaneous fuel consumption meter correction processing is performed, and the flow ends.
- the instantaneous fuel consumption meter correction process in step S448 is to correct the instantaneous fuel consumption data by the instantaneous fuel consumption meter 916 so that the instantaneous fuel consumption meter average fuel consumption becomes the same based on the fuel amount accumulated average estimated fuel consumption. In other words, if the instantaneous fuel consumption meter average fuel consumption is too high, the output of the instantaneous fuel consumption meter 916 is corrected so that the data of the instantaneous fuel consumption meter 916 will appear lower thereafter. If the instantaneous fuel consumption meter average fuel consumption is too low, the instantaneous fuel consumption meter 916 thereafter The output of the instantaneous fuel consumption meter 916 is corrected so that the data comes out higher.
- step 446 if it is not detected in step 446 that the deviation is greater than or equal to the predetermined value, the flow is immediately terminated without performing the instantaneous fuel consumption meter correction process. Further, when it is not detected in step S432 that there is refueling data, or when it is not detected in step S436 that the latest cumulative travel data is greater than or equal to a predetermined value, the instantaneous fuel consumption meter correction process is performed. Is not appropriate, the flow is immediately terminated.
- step S436 it is checked whether or not the cumulative travel distance has reached a predetermined value or more as in step S370 in FIG. 17, but the gist is that, as in step S332 in FIG. This is a determination that the capacity is sufficiently larger than 16 capacities. Therefore, step S436 may be a step of determining whether or not the number of times of refueling has reached a predetermined number, or a step of determining whether or not the cumulative amount of refueling itself has reached a predetermined amount or more. In any case, it is possible to determine whether it is appropriate to enter the instantaneous fuel consumption meter correction process.
- the control process for refueling and feeding is performed on the vehicle 904 side, but the present invention is not limited to this.
- the service stand control unit 922 may be configured to perform the process.
- the detection of the connection of the fuel filler 908 and the charging connection unit 10 and the emergency charging operation are also performed on the service stand 902 side.
- step S280 whether or not the vehicle is a time-dependent electric vehicle contract vehicle is determined by receiving the contract information from the vehicle 904.
- the first technical feature disclosed in this specification relates to a charging system for a vehicle.
- Patent Document 1 Electric vehicles and plug-in hybrid vehicles have entered the practical application study stage, and various charging systems for these vehicles have been studied by Patent Document 1 and Patent Document 2 as described above.
- a first technical feature is disclosed in order to provide a charging system for a vehicle that can withstand actual use and to promote the spread of vehicles using electricity.
- a power feeding unit that outputs power to a vehicle having a battery, and a power feeding that determines whether power is supplied to the power feeding unit.
- a vehicle charging system includes an opening / closing unit and a control unit that controls the power feeding opening / closing unit so that power feeding to the power feeding unit is prohibited unless it is detected that the vehicle is correctly connected to the power feeding unit.
- the feature disclosed in the present specification is to adjust this relationship by prohibiting power feeding to the power feeding unit unless it is detected that the vehicle is correctly connected to the power feeding unit.
- the power supply switching unit is supplied with power from a single-phase three-wire power line having a first outer line, a second outer line, and a neutral line.
- the structure which supplies the electric power of a high voltage to the said electric power feeding part from between the 1st outside line and the 2nd outside line is disclosed.
- control unit is configured to provide a low voltage such as a normal voltage of 100 volts from between one of the first outer line and the second outer line and the neutral line. It is disclosed that it can be configured to receive the supply of power.
- control unit controls the power supply opening / closing unit to detect power supply unless it detects that the connection through the power supply unit is normal.
- the structure which prohibits the electric power feeding to a part is disclosed. As a result, it is possible to prevent a voltage from being accidentally applied to the power feeding unit.
- control unit controls the power supply opening / closing unit to detect power supply unless the output impedance from the power supply unit is detected to be normal.
- the structure which prohibits the electric power feeding to a part is disclosed. As a result, it is possible to prevent the power supply unit from supplying power to an inappropriate device that is not planned.
- control unit controls the power supply opening / closing unit unless it detects that a connection part having a predetermined shape is connected to the power supply unit.
- a configuration for prohibiting power supply to the power supply unit is disclosed. Also with this feature, it is possible to prevent power supply from being performed on an inappropriate device that is not planned.
- control unit controls the power supply opening / closing unit unless it detects that an uncharged vehicle is connected to the power supply unit. And the structure which prohibits the electric power feeding to the said electric power feeding part is disclosed. This feature can also prevent an inadvertent application of voltage to the power feeding unit.
- control unit controls the power supply opening / closing unit to identify the vehicle connected to the power supply unit to the power supply unit.
- a configuration for prohibiting power feeding is disclosed. As a result, it is possible to prevent a voltage from being inadvertently applied to the power supply unit and to prevent theft even if the garage is outdoors.
- control unit controls the power supply opening / closing unit to supply power to the power supply unit unless a vehicle connected to the power supply unit can be authenticated.
- the structure which prohibits is disclosed. This prevents power theft even when the garage is outdoors.
- control unit detects whether or not the vehicle is correctly connected to the power feeding unit by connecting the vehicle to the power feeding unit.
- a configuration that starts automatically is disclosed. This facilitates power feeding and, in combination with the characteristics already described, can contribute to the spread of vehicles that use electricity.
- control unit determines whether or not the vehicle is correctly connected to the power feeding unit due to the arrival of the charging start time to the power feeding unit.
- a configuration for automatically starting detection is disclosed. This feature also facilitates power supply, and in combination with the features already described, can contribute to the spread of vehicles that use electricity.
- a configuration for detecting whether or not a vehicle is correctly connected to the power feeding unit by power line communication via the power feeding unit is disclosed. ing. This facilitates communication for power supply and procedures related to power supply, and can contribute to the popularization of vehicles using electricity in combination with the characteristics already described.
- the open / close unit transmits a communication signal superimposed for power line communication via the power supply unit regardless of whether power is supplied.
- a configuration is disclosed that permits transmission of information. As a result, it is possible to perform power supply control without hindering power line communication.
- control unit detects whether or not the vehicle is correctly connected to the power feeding unit by wireless communication with the vehicle. Is disclosed. Even with such a feature, it is possible to easily perform power supply and communication for a procedure related to power supply.
- a power feeding unit that outputs power to a vehicle having a battery, and a detection that detects a power feeding start condition from the power feeding unit to the vehicle.
- the power supply opening / closing unit for determining whether or not to supply power to the power supply unit, and when there is no traditional contract by time zone, the power supply is started by detecting the power supply start condition by the detection unit and the traditional contract by time zone.
- a vehicle charging system includes a control unit for a power supply opening and closing unit that suspends the start of power supply until the arrival of a corresponding time zone even if the detection unit detects a power supply start condition.
- the second technical feature disclosed in this specification also relates to a charging system for a vehicle.
- a second technical feature is disclosed in order to provide a vehicle charging system that can withstand actual use and to promote the spread of vehicles that use electricity.
- communication is performed between a power supply unit that supplies power for charging a vehicle having a battery and the vehicle.
- the charging system for vehicles which has a communication part to perform is indicated.
- the power line from the power supply unit is connected to the power supply unit to output power for charging the vehicle.
- a configuration in which a demultiplexing and synthesizing unit that demultiplexes and synthesizes a communication signal of the communication unit with the power line is disclosed. As a result, communication with the vehicle becomes possible simply by connecting the charging cable to the vehicle.
- a configuration in which a wireless transmission / reception unit for transmitting / receiving a communication signal of the communication unit to / from a vehicle is disclosed. . This enables communication with the vehicle regardless of whether or not the charging cable is connected.
- the communication unit transmits vehicle information to the charging system.
- information on the charging status of the secondary battery on the vehicle side can be transmitted to the charging system side, and it is proved that the vehicle is eligible to be charged by transmitting the vehicle ID and password.
- the communication unit transmits an instruction from the vehicle to the charging system.
- the communication unit transmits an instruction from the vehicle to the charging system.
- a single-phase three-wire power line having a first outer line, a second outer line, and a neutral line, a first outer line, and a second outer line
- a power supply unit for outputting a high-voltage power from the middle to charge a vehicle having a battery, and a vehicle that receives a low-voltage power supply from one of the first external line, the second external line, and the neutral line
- a charging system for a vehicle having an illumination unit for illuminating the vehicle.
- the first external line, the second external line, and the neutral line are supplied with low-voltage electric power to be driven.
- a configuration in which a vehicle storage mechanism is provided is disclosed. As a result, it is possible to obtain a charging system that is capable of high-speed charging and that can use a vehicle storage mechanism that can be driven at a normal voltage.
- a power supply unit that receives low-voltage power from between the first outer line and the second outer line and the neutral line is provided.
- the structure by which the hand illumination part for illuminating the vicinity is provided is disclosed. Accordingly, high-speed charging is possible, and hand illumination for charging can be performed even at night.
- charging is performed by receiving low-voltage power from between the first outer line, the second outer line, and the neutral line.
- the structure provided with the display part which displays information is disclosed. As a result, high-speed charging is possible, and information related to charging can be displayed on a display unit that can be driven with a normal voltage.
- a power line, a power feeding unit that outputs power from the power line for charging a vehicle having a battery, and no CO 2 emission A vehicle charging system having a private power generation system that supplies power to the power line and a notification unit that notifies the relationship between the amount of power consumed via the power feeding unit and the amount of power generated by the private power generation system is disclosed. ing.
- the power line has a lead-in line for supplying normal power from the outside, and the power feeding unit uses the power from the lead-in line and the private power generation system.
- the structure which can output the electric power for charge of a vehicle by any of the electric power from is disclosed.
- the vehicle can be used while understanding its own contribution to the natural environment.
- the notifying unit has a relationship between the amount of power consumed via the power feeding unit and the amount of power generated by the private power generation system.
- a configuration for reporting in terms of CO2 emissions is disclosed. This makes it possible to realize the contribution to the natural environment more directly.
- the third technical feature disclosed in this specification also relates to a charging system for a vehicle.
- a third technical feature is disclosed in order to provide a vehicle charging unit that is easy to handle and to promote the spread of vehicles that use electricity.
- connection unit that supplies power for charging a vehicle having a battery, and power to be supplied to the connection unit are described.
- a vehicle charging unit having an input power input unit, a measurement unit that measures electric power supplied to a vehicle from a connection unit, and a communication unit for payment of power charges based on the measurement result of the measurement unit. ing.
- the communication unit includes a demultiplexing and synthesizing unit that demultiplexes and synthesizes communication information on the power line in the charging unit.
- the power charge can be settled by power supply and power line communication simply by connecting the charging unit to the power line.
- the feature of the present invention in which the demultiplexing unit is provided in the charging unit in this way is also useful for various power line communications with the outside of the charging unit, regardless of the communication for settlement of power charges.
- the communication unit includes a wireless transmission / reception unit for transmitting power information. If the charging unit installation unit is in an environment where wireless communication is possible, power charges can be settled by power supply and power line communication only by connecting the charging unit to the power line.
- a configuration in which a charging unit is provided at a wheel stop of a vehicle is disclosed.
- the charging system can be easily constructed using the wheel stoppers permanently installed in the parking space.
- This feature of the present invention is also useful when implemented in a simple charging unit that does not have a power measuring unit or a communication unit.
- the charging cable can be easily connected to the wheel stopper portion corresponding to both the vehicle having the charging connection portion on the right side of the vehicle and the vehicle having the charging connection portion on the left side.
- a configuration is provided in which control is performed such that power is not supplied simultaneously from the connection portion on the right wheel side and the left wheel side. Is disclosed. As a result, it is possible to prevent an unscheduled use state where a current exceeding the rating flows. For such control, it is desirable to provide power supply opening / closing sections on the right wheel side and the left wheel side of the wheel stopper.
- the power supply opening / closing section as described above is not useful only for controlling the connection section on the right wheel side and the left wheel side of the wheel stopper as described above.
- the feature of providing a power supply opening / closing part between the connection part and the power input part makes it possible to individually control whether a voltage is applied to the connection part for each charging unit, and to prevent theft and electric shock. This is a useful measure.
- a protection unit is provided to protect the connection unit when it is not used. This protects the charging unit even if it is installed under harsh conditions such as an outdoor parking space, and protects it from wind and rain, and prevents dust.
- a configuration provided with a detection unit that detects that the protection unit has been operated is disclosed.
- the state of the protection unit can be monitored and the detection results can be used in various ways.
- the protection unit since the protection unit is usually operated with the intention of using the connection unit, communication by the communication unit can be started by detecting this.
- the protection unit is left in a state where it cannot function by determining that the connection unit has not been used within a predetermined time after the operation of the protection unit.
- the advantage of the third technical feature is not limited to the specific implementation as described above, and the technical idea is to provide a control unit that determines that the connection unit is left in an abnormal state. And Therefore, specific implementation can be appropriately performed in accordance with this technical idea.
- a fourth technical feature disclosed in this specification relates to a fuel consumption measurement system for a vehicle.
- the most common method for measuring the fuel consumption of a vehicle is the so-called full tank method, which calculates the fuel consumption by starting to run with the gasoline tank full and dividing the distance traveled by the amount of oil to fill the next full tank. well known.
- full tank method calculates the fuel consumption by starting to run with the gasoline tank full and dividing the distance traveled by the amount of oil to fill the next full tank.
- mounting of a device for calculating an instantaneous fuel consumption on the basis of an amount of fuel injected into an engine and a vehicle speed is also common.
- a variety of fuel consumption measurement systems have been proposed as interest increases from the viewpoint of economic efficiency and environmental considerations.
- a fourth technical feature is disclosed in order to provide a vehicle fuel consumption measurement system capable of grasping an appropriate fuel consumption without imposing a burden on the driver.
- a fuel tank that receives fuel from a service stand, and a receiving unit that receives information on the amount of fuel supplied to the fuel tank from the service stand
- a fuel storage unit that stores fuel amount information received by the receiving unit
- a power unit that consumes fuel in the fuel tank to provide travel power
- a travel distance information acquisition unit that acquires fuel in the fuel tank to provide travel power
- a travel distance information acquisition unit that acquires fuel in the fuel tank to provide travel power
- a travel distance information acquisition unit a fuel amount information
- fuel efficiency from the travel distance information A fuel consumption measurement system for a vehicle having a control unit for calculating the value is disclosed.
- the power storage unit receives power from the power line of the service stand, and the receiving unit includes a power line communication unit through the power line.
- the receiving unit can receive information from the service stand by connecting a power line for charging the power storage unit.
- the reception unit receives charge amount information from the service stand to the power storage unit, and the storage unit receives the charge received by the reception unit.
- a configuration for storing quantity information is disclosed.
- a configuration in which the receiving unit includes a wireless communication unit is disclosed. Such a feature is useful not only for a plug-in hybrid vehicle but also for an ordinary gasoline vehicle that is refueled exclusively from a service stand.
- the receiving unit further receives fuel unit price information from the service stand, and the storage unit further receives fuel unit price information received by the receiving unit.
- a configuration for storing is disclosed. As a result, not only the fuel consumption but also the amount actually paid for refueling or the like can be automatically grasped, and the traveling cost associated with the fluctuation of the fuel unit price can be automatically grasped.
- a fuel tank that receives fuel from a service stand a storage unit that stores fuel amount information, and fuel in the fuel tank are consumed.
- the previous refueling to the fuel tank and the current refueling are full to the full tank based on the refueling information of the power unit that provides the driving power, the travel distance information acquisition unit, and the storage unit, the current refueling amount and the previous refueling
- the fuel consumption is automatically calculated from the travel distance information from the current time to the current refueling time, and if at least one of the previous refueling and current refueling to the fuel tank is not a full refueling, the refueling amount and the travel distance information
- a fuel consumption measurement system for a vehicle having a control unit that does not automatically calculate fuel consumption based thereon is disclosed. Accordingly, it is possible to automatically calculate appropriate fuel consumption based on the stored information of the fuel supply information and to avoid meaningless fuel consumption calculation.
- the fourth technical feature there is a receiving unit that receives oil supply amount information from a service stand, and the storage unit automatically stores the received oil supply amount information.
- a configuration is disclosed.
- there is an instantaneous fuel consumption meter that calculates an instantaneous fuel consumption during traveling from detection of a fuel supply state from a fuel tank to the power unit.
- a fuel tank that receives fuel from a service stand, a storage unit that stores fuel amount information, and fuel in the fuel tank are consumed. Cumulative refueling stored in the storage unit when it is determined that the accumulated fuel amount stored in the power unit that provides travel power, the travel distance information acquisition unit, and the storage unit is sufficiently larger than the capacity of the fuel tank.
- a fuel consumption measurement system for a vehicle having a control unit that calculates fuel consumption from cumulative travel distance information acquired from a quantity and travel distance information acquisition unit is disclosed. This makes it possible to estimate the average fuel consumption with high reliability based on the actual refueling performance.
- the controller is in a situation where the cumulative amount of fuel is sufficiently larger than the capacity of the fuel tank when the cumulative amount of fuel is larger than a predetermined amount.
- a configuration for determining is disclosed.
- the controller is in a situation where the accumulated amount of fuel is sufficiently larger than the capacity of the fuel tank when the accumulated number of refueling is greater than a predetermined number.
- a configuration for determining is disclosed.
- the control unit determines that the cumulative amount of fuel supply is sufficiently larger than the capacity of the fuel tank when the cumulative travel distance is greater than a predetermined value. The structure which determines with being is disclosed.
- an instantaneous fuel consumption meter that calculates an instantaneous fuel consumption during traveling from detection of a fuel supply state from a fuel tank to the power unit.
- the control unit adopts fuel consumption based on an instantaneous fuel consumption meter when it is not determined that the cumulative amount of fuel supply is sufficiently larger than the capacity of the fuel tank. This makes it possible to estimate the average fuel consumption based on information that is more appropriate depending on the situation, regardless of the actual refueling performance.
- the information of the instantaneous fuel consumption meter is valid as the short-term fuel consumption information, but if there is an error here, the confidence line for long-term average fuel consumption estimation based on this will be low.
- the short-term estimation of fuel efficiency based on the refueling performance under circumstances where the full tank method cannot be applied is low in validity, but if the long-term average is taken, the refueling performance can be regarded as the actual consumption performance. Because it is possible, the reliability becomes high.
- the above feature complements both of these features and makes it possible to estimate the average fuel consumption based on information that is automatically more highly appropriate according to the situation.
- a fuel tank that receives fuel from a service stand, a storage unit that stores fuel amount information, and fuel in the fuel tank are consumed.
- a power unit that provides driving power, a travel distance information acquisition unit, an instantaneous fuel consumption meter that calculates instantaneous fuel consumption during detection from detection of a fuel supply status from a fuel tank to the power unit, and an accumulation stored in a storage unit When it is determined that the fuel supply amount is sufficiently larger than the capacity of the fuel tank, based on the fuel consumption calculated from the cumulative fuel supply amount stored in the storage unit and the cumulative travel distance information acquired from the travel distance information acquisition unit.
- a vehicle fuel consumption measurement system having a control unit for correcting an instantaneous fuel consumption meter is disclosed.
- the error of the instantaneous fuel consumption meter can be corrected based on the more reliable refueling record and the traveling record. Specifically, the estimated average fuel consumption calculated from the actual fueling performance and the traveling performance is compared with the estimated average fuel efficiency obtained from the instantaneous fuel consumption meter, and when the difference between the two is larger than a predetermined value, the latter estimated average fuel efficiency is compared with the estimated average fuel efficiency of the former. Correct the instantaneous fuel consumption meter so that
- a fuel tank that receives fuel from a service stand a storage unit that stores fuel amount information, and fuel in the fuel tank are consumed.
- a fuel consumption measurement system for a vehicle that employs fuel consumption based on an instantaneous fuel consumption meter and has a control unit that calculates fuel consumption from fuel supply amount information and travel distance information when traveling by a power unit is stopped.
- a fifth technical feature disclosed in the present specification relates to an environmental countermeasure system for a vehicle.
- a fifth technical feature is disclosed in order to provide a vehicle environmental countermeasure system capable of providing appropriate environmental countermeasure information to the driver.
- a fuel tank that receives fuel
- a power storage unit that receives power supply from a power line, fuel supply information and power to the fuel tank
- a storage unit that stores charging information for the storage unit, a power unit that consumes the fuel in the fuel tank and the power storage unit to provide travel power, a travel distance information acquisition unit, information in the storage unit, and travel distance
- An environment countermeasure system for a vehicle having a control unit that calculates a travel cost from information is disclosed. As a result, it is possible to comprehensively grasp the energy consumption efficiency of the hybrid vehicle traveling with different energy sources from the viewpoint of traveling cost.
- the environment countermeasure system includes a receiving unit that receives fuel supply information to the fuel tank and charging information to the power storage unit from the service stand.
- a configuration is disclosed.
- the fuel supply information includes the fuel supply amount information and the fuel supply unit price information
- the charge information includes the charge amount information and the charge unit price information. Is disclosed. As a result, the information for calculating the travel cost can be acquired in an easy-to-use form.
- the control unit calculates a travel cost when the cumulative travel distance acquired by the travel distance information acquisition unit is greater than a predetermined value.
- travel cost is the relationship between travel distance and energy consumed for travel. According to the above feature, in order to consider the supplied energy as consumed energy, the traveling cost is calculated when the cumulative traveling distance is larger than a predetermined value, and an inappropriate value is prevented from being calculated. Yes.
- a fuel tank that receives fuel, a power storage unit that receives power supply from a power line, fuel supply amount information and power storage to the fuel tank
- a storage unit that stores charge amount information for the unit, a power unit that consumes the fuel in the fuel tank and the power storage unit to provide driving power, a distance information acquisition unit, and a fuel supply amount information and charge of the storage unit
- a vehicle environment having a conversion unit that converts the amount information into carbon dioxide emission information, and a control unit that calculates carbon dioxide emission per unit mileage from the carbon dioxide emission information and mileage information of the conversion unit A countermeasure system is disclosed.
- a configuration is provided in which a receiving unit that receives information on the amount of fuel supplied to the fuel tank and information on the amount of charge to the power storage unit from the service stand is provided. It is disclosed. Thus, information for calculating the carbon dioxide emission amount can be automatically acquired.
- the control unit is configured such that when the cumulative travel distance acquired by the travel distance information acquisition unit is greater than a predetermined value, the dioxide per unit travel distance is A configuration for calculating carbon emissions is disclosed. As a result, in order to consider the supplied energy as the consumed energy that causes carbon dioxide emissions, the carbon dioxide emission amount is calculated when the cumulative mileage is greater than a predetermined value, and an invalid value is calculated. Is preventing.
- an energy storage unit a storage unit that stores energy storage fee information for the energy storage unit, and energy consumption of the energy storage unit are consumed.
- the vehicle travels from the power unit that provides travel power, the travel distance information acquisition unit, the transaction information acquisition unit that acquires carbon dioxide emission credit transaction information, the information in the storage unit, the information in the transaction information acquisition unit, and the travel distance information
- An environmental countermeasure system for a vehicle includes a control unit that calculates a cost.
- the energy storage part in the above specifically includes a fuel tank and / or a power storage part.
- the control unit specifically subtracts the sale price from the energy storage fee of the storage unit when the transaction information acquisition unit has carbon dioxide emission sale information, and purchases the carbon dioxide emission right to the transaction information acquisition unit. When there is information, the purchase price is added to the energy storage fee in the storage unit. That is, if the carbon dioxide emission right is sold, the responsibility for the environmental load caused by driving increases, but the driving cost can be reduced. On the other hand, purchasing carbon dioxide emission rights will reduce the responsibility for the environmental burden, but will increase driving costs.
- a configuration having a receiving unit that receives energy storage fee information from a service stand that stores energy in the energy storage unit is disclosed. .
- information for calculating the travel cost can be automatically acquired.
- the control unit calculates a travel cost when the cumulative travel distance acquired by the travel distance information acquisition unit is greater than a predetermined value.
- a configuration is disclosed. That is, in order to consider the supplied energy as consumed energy, the traveling cost is calculated when the cumulative traveling distance is larger than a predetermined value, thereby preventing an invalid value from being calculated.
- an energy storage unit a storage unit that stores an energy storage amount in the energy storage unit, and energy of the energy storage unit are consumed.
- the burden on the environment is achieved through carbon dioxide emission trading. Can contribute to mitigation.
- the energy storage part in the above specifically includes a fuel tank and / or a power storage part.
- the control unit specifically adds the sale equivalent amount to the energy storage amount of the storage unit when the transaction information acquisition unit has the carbon dioxide emission sale information, and sends the carbon dioxide emission right to the transaction information acquisition unit. When there is purchase information, the purchase equivalent amount is subtracted from the energy storage amount in the storage unit.
- a configuration is disclosed in which a receiving unit that receives energy storage amount information from a service stand that stores energy in the energy storage unit is provided. .
- information for calculating the carbon dioxide emission amount can be automatically acquired.
- the control unit is configured such that when the cumulative travel distance acquired by the travel distance information acquisition unit is greater than a predetermined distance, A configuration for calculating carbon dioxide emissions is disclosed.
- the carbon dioxide emission amount is calculated when the cumulative travel distance is greater than a predetermined value, and an invalid value is calculated. Is preventing.
- a sixth technical feature disclosed in this specification relates to a vehicle that can be driven by charging power and a charging system thereof.
- the sixth technical feature is disclosed in order to make various proposals for improving the practical aspects of the vehicle that can be driven by the charging power and the charging system.
- a fuel tank that receives fuel a power storage unit that receives power supply from a power line, and a fuel supply ready state to the fuel tank are described.
- the power supply preparation detection unit detects the power supply preparation detection unit that detects the power supply preparation state to the power storage unit, and the power supply preparation detection unit detects whether the fuel supply preparation detection unit detects the fuel supply preparation state.
- a vehicle capable of traveling with charging power characterized by having a control unit that changes the power supply status to the power storage unit when the supply preparation state is detected.
- An example of making the power supply status different is that when the refueling preparation detection unit detects the refueling preparation state, even if the power supply preparation detection unit detects the power supply preparation state, it does not supply power to the power storage unit. Is to control.
- Such a feature is that, for example, when the vehicle is in a predetermined power supply contract conclusion state such as a late-night power charge contract assuming charging at home, the power supply preparation detection unit detects the power supply preparation state at a service stand or the like.
- a predetermined power supply contract conclusion state such as a late-night power charge contract assuming charging at home
- the power supply preparation detection unit detects the power supply preparation state at a service stand or the like.
- it is useful when power supply to the power storage unit is not performed and expensive power supply is not received. Examples of making the power supply status different are not limited to the above.
- the power supply preparation detection unit detects the power supply preparation state, to the power storage unit It is also optional that the power supply can be permitted.
- a fuel tank that receives fuel, a power storage unit that receives power supply from a power line, and a power supply preparation state to the power storage unit are described.
- the power supply preparation detection unit to detect and the power supply status to the power storage unit when the power supply preparation detection unit detects the power supply preparation state differ depending on whether or not the vehicle is in a predetermined power supply contract conclusion state
- a vehicle capable of traveling with charging power characterized by having a control unit.
- An example of making the power supply status different is that when the vehicle is in a predetermined power supply contract conclusion state, even if the power supply preparation detection unit detects the power supply preparation state, control is performed so that power supply to the power storage unit is not performed. It is.
- Such a feature is that, for example, when the vehicle is in a predetermined power supply contract conclusion state and is not in the power supply available time zone based on the contract, the power to the power storage unit is detected even if the power supply preparation detection unit detects the power supply preparation state. This is useful when the supply is not performed and the expensive power supply is not received. Examples of making the power supply status different are not limited to the above.
- a power storage unit that receives power supply from a power line, and a power supply preparation detection unit that detects a power supply preparation state to the power storage unit And a travel control unit that disables the operation of the travel start operation unit when the power supply preparation detection unit detects the power supply preparation state.
- a vehicle is disclosed.
- An example of detection of the power supply preparation state is detection of a state in which an external cable that supplies power to the power storage unit remains connected to the vehicle, and it is prevented that the vehicle travels in such a state.
- the example of the detection of the power supply preparation state is not limited to the above.
- a notification unit for notifying that the travel control unit invalidates the operation of the travel start operation unit, it is possible to prompt the user to cancel the power supply preparation state and enable traveling.
- Such a configuration provides power supply to the power storage unit even when the power supply preparation detection unit detects the power supply preparation state when the vehicle is in a predetermined power supply contract conclusion state and is not in a power supply available time zone based on the contract. This is useful in the case where a control unit that controls not to perform is provided. In such a configuration, for example, if the vehicle is placed in a parking lot at home and is in a power supply preparation state so that charging is automatically started at midnight, the next morning, the vehicle will run without releasing the power supply preparation state. This is because a serious accident can be prevented.
- the above features are useful regardless of whether the vehicle is a plug-in hybrid vehicle or an electric vehicle.
- a power storage unit that receives power supply from a power line, and a power supply preparation detection unit that detects a power supply preparation state to the power storage unit
- a time zone detection unit that continuously detects whether the vehicle is in a power supply available time zone based on a predetermined power supply contract when the power supply preparation detection unit detects a power supply preparation state, and a time zone
- the power supply preparation detection unit has a control unit that does not supply power even if the power supply preparation detection unit detects the power supply preparation state unless it detects that the detection unit is in the power supply time zone.
- a vehicle is disclosed. In this way, the detection of the power supply preparation state when there is a predetermined power supply contract and the detection of the power supply available time zone are linked.
- a fuel tank that receives fuel, a power storage unit that receives power supply from a power line, and a power storage state of the power storage unit are detected.
- a detection unit, a first power source that generates power by consuming fuel in a fuel tank, a second power source that generates power by consuming electric power from a power storage unit, and a first detection level of the detection unit Switching from the second power source to the first power source based on the second detection level of the detection unit different from the first detection level and the first mode for switching from the second power source to the first power source.
- a vehicle capable of traveling with charging power characterized by having a control unit that can select a second mode to be performed.
- the second detection level is, for example, a level for maintaining the state where the power storage unit is sufficiently charged
- the first detection level is, for example, when the traveling efficiency by the first power source is not more than a predetermined value. It is a level that enables traveling by the second power source.
- the control unit can be configured to be able to select the third mode in which continuous running is performed only by the second power source. In this case, if the control unit is configured to enable the change from the second mode to the third mode, it is possible to enter the traveling state using only the second power source from the state where the power storage unit is sufficiently charged.
- the control unit can be configured to be able to change from the second mode to the first mode. In this case, the first mode can be entered from a state where the power storage unit is sufficiently charged. . Further, it is desirable that the control unit be configured to be able to switch between the first power source and the second power source based on the traveling efficiency.
- the fuel supply path, the power supply path, the abnormality detection unit for detecting an abnormality in the power supply path, and the abnormality detection unit include power.
- a charging system for a vehicle capable of traveling with charging power comprising a control unit that prohibits fuel supply from the fuel supply path when an abnormality is detected in the supply path. According to such a feature, when power and fuel are simultaneously supplied at a service stand or the like, it is possible to prevent ignition due to a spark or the like due to an abnormality in the power supply path.
- the present invention provides a practical plug-in hybrid vehicle or electric vehicle, a charging system therefor, a fuel consumption measurement system, and an environmental countermeasure system.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Automation & Control Theory (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
実用的なプラグインハイブリッド車または電気自動車およびこれらのための充電システム、燃費計測システム、及び、環境対策システムを提供する。 充電システムは、電池を有する車両を充電するための電力源と、前記電力源からの電力を車両に導くための電力供給部と、前記電力供給部を介して車両と充電に関する電力線通信を行うための電力線通信部とを有する。車輌は、外部から給油を受ける燃料タンクと、給油量情報を記憶する記憶部と、前記燃料タンクの燃料を消費して走行動力を提供する動力源と、走行距離情報取得部と、前記記憶部の給油情報および前記走行距離取得部の走行距離情報に基づき自動的に燃費を算出する制御部とを有する。
Description
本発明は、車両、及び、その充電システムに関する。
近年、電気自動車やプラグインハイブリッド車が実用化検討段階に入っている。
なお、車両の充電システムに関する従来技術の一例としては、特許文献1や特許文献2を挙げることができる。
また、車両の燃費計測システムに関する従来技術の一例としては、特許文献3~特許文献5を挙げることができる。
また、車両の環境対策システムに関する従来技術の一例としては、特許文献6~特許文献8を挙げることができる。
また、車両の充電システムに関する従来技術の他の一例としては、特許文献9や特許文献10を挙げることができる。
しかしながら、電気自動車やプラグインハイブリッド車が普及するための実用的な充電システムを提供する上では、なお多くの問題点が残されている。
本発明は、上記の問題点に鑑み、実際の使用に耐える車両用の充電システムを提供し、電気を利用する車両の普及を促進することを目的とする。
本発明に係る車両用の充電システムは、電池を有する車両を充電するための電力源と、前記電力源からの電力を車両に導くための電力供給部と、前記電力供給部を介して車両と充電に関する電力線通信を行うための電力線通信部とを有する構成(第1の構成)とされている。
また、上記第1の構成から成る車両用の充電システムは、前記電力源から前記電力供給部への電力供給の有無を決定する給電開閉部を有し、前記電力線通信部による車両との通信に応じて前記給電開閉部を制御する構成(第2の構成)にするとよい。
また、上記第2の構成から成る車両用の充電システムにおいて、前記給電開閉部は、前記電力供給部への電力供給の有無に関わらず、前記電力線通信部による車両との通信を許容する構成(第3の構成)にするとよい。
また、上記第2の構成から成る車両用の充電システムにおいて、前記給電開閉部は、前記電力供給部が車両充電可能状態にあっても、所定時間帯の到来まで給電開始を保留する構成(第4の構成)にするとよい。
また、上記第1の構成から成る車両用の充電システムは、前記電力供給部が車両充電状態にない異常状態で放置されていることを判定する判定部を有する構成(第5の構成)にするとよい。
また、上記第1の構成から成る車両用の充電システムにおいて、前記電力線通信部は、前記電力供給部を介して給電情報を車両に送信する構成(第6の構成)にするとよい。
また、上記第1の構成から成る車両用の充電システムにおいて、前記電力線通信部は、電力料金決済のための情報を前記車両に送信する構成(第7の構成)にするとよい。
また、上記第1の構成から成る車両用の充電システムは、さらに、燃料タンクを有する車両に燃料を供給するための燃料貯蔵部と、前記燃料貯蔵部からの燃料を車両に導くための燃料供給部とを有する構成(第8の構成)にするとよい。
また、上記第8の構成から成る車両用の充電システムにおいて、前記電力線通信部は、前記電力供給部を介して給油情報を車両に送信して燃費計算に供する構成(第9の構成)にするとよい。
また、上記第8の構成から成る車両用の充電システムは、前記燃料供給部が給油準備状態にあるか否かを検出する給油準備検出部と、前記電力供給部が給電準備状態にあるか否かを検出する給電準備検出部と、前記給油準備検出部が給油準備状態を検出しているか否かによって前記給電準備検出部が給電準備状態を検出したときの車両への給電状況を異ならしめる制御部とを有する構成(第10の構成)にするとよい。
また、上記第8の構成から成る車両用の充電システムは、前記電力供給部の異常を検知する異常検知部と、前記異常検知部が前記電力供給部の異常を検知したとき前記燃料供給部からの燃料供給を禁止する制御部とを有する構成(第11の構成)にするとよい。
また、上記第11の構成から成る車両用の充電システムにて、前記電力供給部と前記燃料供給部は一体的なケーブルとして構成されている構成(第12の構成)にするとよい。
また、本発明に係る車両は、電力蓄積部と、外部の電力供給部に接続され前記電力蓄積部に電力を導く充電路と、前記充電路を介して外部と充電に関する電力線通信を行うための電力線通信部とを有する構成(第13の構成)とされている。
なお、上記第13の構成から成る車両は、前記充電路による電力蓄積部への給電準備状態を検出する給電準備検出部と、走行開始操作部と、前記給電準備検出部が給電準備状態を検出しているとき前記走行開始操作部の操作を無効とする走行制御部と、を有する構成(第14の構成)にするとよい。
また、上記第13の構成から成る車両は、さらに外部から給油を受ける燃料タンクと、前記電力蓄積部の電力蓄積状態を検知する検知部と、前記燃料タンクの燃料を消費して動力を発生する第1動力源と、前記電力蓄積部の電力を消費して動力を発生する第2動力源と、前記検知部の第1の検知レベルに基づいて前記第2動力源から前記第1動力源に切換えを行う第1モードと前記第1の検知レベルとは異なる前記検知部の第2の検知レベルに基づいて前記第2動力源から前記第1動力源に切換えを行う第2モードとが選択可能な制御部とを有する構成(第15の構成)にするとよい。
また、上記第15の構成から成る車両にて、前記第2の検知レベルは、前記電力蓄積部が充分充電されている状態を維持するためのレベルであり、前記第1の検知レベルは、前記第1動力源による走行効率が所定以下のときに前記第2動力源による走行を可能とするレベルである構成(第16の構成)にするとよい。
また、本発明に係る車両は、外部から給油を受ける燃料タンクと、給油量情報を記憶する記憶部と、前記燃料タンクの燃料を消費して走行動力を提供する動力源と、走行距離情報取得部と、前記記憶部の給油情報および前記走行距離取得部の走行距離情報に基づき自動的に燃費を算出する制御部とを有する構成(第17の構成)とされている。
なお、上記第17の構成から成る車両において、前記制御部は、前記記憶部の給油情報に基づき、前記燃料タンクへの前回給油および今回給油がともに満タンまでの給油であったとき今回の給油量および前回給油時から今回給油時までの走行距離情報より自動的に燃費を算出するとともに前記燃料タンクへの前回給油および今回給油の少なくとも一方が満タンまでの給油でなかったときは給油量および走行距離情報に基づく燃費を自動的に算出しない構成(第18の構成)にするとよい。
また、上記第17の構成から成る車両において、前記制御部は、前記記憶部に記憶される累積給油量が前記燃料タンクの容量より充分大きい状況であると判定される場合に前記記憶部に記憶される累積給油量および前記走行距離情報取得部から取得される累積走行距離情報より燃費を算出する構成(第19の構成)にするとよい。
また、上記第17の構成から成る車両は、前記燃料タンクから前記動力部への燃料供給状況の検知から走行中の瞬間燃費を算出する瞬間燃費計と、前記制御部により算出された燃費により前記瞬間燃費計を補正する補正部と、を有して成る構成(第20の構成)にするとよい。
本発明によると、実際の使用に耐える車両用の充電システムを提供し、電気を利用する車両の普及を促進することが可能となる。
8 接続部(給電部)
10 充電用接続部(取引情報取得部、電力供給準備検出部)
12 充電ケーブル(電力線、外部ケーブル、電力供給路)
16 燃料タンク(エネルギー蓄積部)
18 エンジン(動力部、第1動力源)
20 二次電池(電力蓄積部、エネルギー蓄積部)
22 モータ(動力部、第2動力源)
24 PLC分波合成部(受信部、電力線通信部)
26 車両制御部(制御部、換算部、取引情報取得部、給油準備検出部、電力供給準備検出部、走行制御部、電力蓄積状態検知部)
28 記憶部(取引情報取得部)
30 表示部(報知部)
32 操作部(走行開始操作部)
34 通信部(受信部、無線通信部、取引情報取得部)
38 電力線
40 給電開閉部(電力供給部)
44、208 表示部
46 手元照明部
52 車庫照明部(照明部)
54 車庫扉メカ(収納機構)
64 通信部
68 引込み線
78 ソーラーシステム(自家発電システム)
84 分波合成部
108 第一外線
110 第二外線
112 中性線
114 制御コンピュータ(制御部、通知部、検出部)
502 充電メータ(計測部)
506、808、814 コンセントユニット(充電ユニット)
508、822 接続部
538 電力線(電力入力部)
540、816 給電開閉部
542 分波合成部(通信部)
702、712、806、812 車輪止め
604、824 給電制御コンピュータ(制御部)
706、716 キャップ(保護部)
708、718 接続部/キャップメカセンサ(検出部)
902 サービススタンド
908 給油口(給油準備検出部)
912 給油パイプ(燃料供給路)
913 破損センサ(異常検知部)
922 サービススタンド制御部(異常検知部、充電システムの制御部)
916 瞬間燃費計
917 トリップメータ(走行距離情報取得部)
10 充電用接続部(取引情報取得部、電力供給準備検出部)
12 充電ケーブル(電力線、外部ケーブル、電力供給路)
16 燃料タンク(エネルギー蓄積部)
18 エンジン(動力部、第1動力源)
20 二次電池(電力蓄積部、エネルギー蓄積部)
22 モータ(動力部、第2動力源)
24 PLC分波合成部(受信部、電力線通信部)
26 車両制御部(制御部、換算部、取引情報取得部、給油準備検出部、電力供給準備検出部、走行制御部、電力蓄積状態検知部)
28 記憶部(取引情報取得部)
30 表示部(報知部)
32 操作部(走行開始操作部)
34 通信部(受信部、無線通信部、取引情報取得部)
38 電力線
40 給電開閉部(電力供給部)
44、208 表示部
46 手元照明部
52 車庫照明部(照明部)
54 車庫扉メカ(収納機構)
64 通信部
68 引込み線
78 ソーラーシステム(自家発電システム)
84 分波合成部
108 第一外線
110 第二外線
112 中性線
114 制御コンピュータ(制御部、通知部、検出部)
502 充電メータ(計測部)
506、808、814 コンセントユニット(充電ユニット)
508、822 接続部
538 電力線(電力入力部)
540、816 給電開閉部
542 分波合成部(通信部)
702、712、806、812 車輪止め
604、824 給電制御コンピュータ(制御部)
706、716 キャップ(保護部)
708、718 接続部/キャップメカセンサ(検出部)
902 サービススタンド
908 給油口(給油準備検出部)
912 給油パイプ(燃料供給路)
913 破損センサ(異常検知部)
922 サービススタンド制御部(異常検知部、充電システムの制御部)
916 瞬間燃費計
917 トリップメータ(走行距離情報取得部)
図1は、本発明の実施の形態に係る車両充電システムの第1実施例を示すブロック図である。車庫2はプラグインハイブリッドタイプの車両4を収容可能であるとともに、コンセントユニット6を備えている。コンセントユニット6の接続部8と車両4の充電用接続部10の間は、充電ケーブル12で接続可能となっている。充電ケーブル12は、通常車両4に収納されており、充電時に取り出されて図1のように接続される。
上記のように、車両4はプラグインハイブリッドタイプであって、その走行メカ14は、燃料タンク16のガソリンを消費して回転するエンジン18および二次電池20の電力を消費して回転するモータ22のいずれによっても駆動可能である。二次電池20は、エンジン18の余剰パワーによって充電されるとともに、充電用接続部10を介して車両4の外部から供給される電力によっても充電可能となっている。二次電池20はまた、減速時のモータ22の逆起電力によっても充電される。
充電ケーブル12は、後に詳述するようにPLC(Power Line Communications:電力線搬送通信)システムに組み込まれた電力線となっている。つまり、充電ケーブル12は電力線であるとともに、これに合成されたデジタル通信信号の通信路にもなっている。PLC分波合成部24は充電ケーブル12を介して充電用接続部10が受けた電力を二次電池20に供給するとともに、デジタル通信信号を分波し、車両制御部26に伝達する。一方で、PLC分波合成部24は 車両制御部26からの命令や、記憶部28に記憶されているデータなどを電力線に合成し、充電用接続部10から車両4の外部に出力する。記憶部28には例えば車両4を外部から認証するためのデータなどが記憶される。
車両制御部26はさらに表示部30を制御するとともに、操作部32での手動操作に応じて無線の通信部34から赤外線操作信号36を発生する。この赤外線操作信号は、例えば車庫扉を開閉するための信号である。また、車両制御部26は、二次電池20の充電状況をモニタしている。
コンセントユニット6は、PLCシステムに組み込まれた電力線38からの給電をうけており、給電開閉部40を経由して接続部8に接続されている。給電開閉部40は、不要時および不都合時に接続部8への給電を断つ機能とともにメータ等を有するものであり、給電を断つための信号を分波するとともにメータの情報を電力線38に合成するためのPLC分波合成部42を有する。その詳細は後述する。
コンセントユニット6はさらに手元表示部44および手元照明部46を有する。手元表示部44はPLC分波部48によって分波されたデジタル通信信号に基づいてコンセントユニット6の手元において充電状況などの表示を行うものである。手元照明部46はPLC分波部50によって分波されたデジタル通信信号に基づいてコンセントユニット6の手元が暗いとき接続部8や手元表示部44を照明するものである。
車庫2はさらに、電力線38に接続された車庫照明部52および車庫扉メカ54を有しており、これらは、やはり電力線38に接続されている車庫制御部56によって制御される。車庫制御部56はPLC分波合成部58を有し、車庫照明部52や車庫扉メカ54などへの制御信号を電力線38に合成して出力する。これらの制御信号はPLC分波部60またはPLC分波部62で分波され、車庫照明部52または車庫扉メカ54を制御する。
例えば、操作部32の車庫扉開放操作に基づいて発生させられた赤外線操作信号36が無線の通信部64で受信されると、車両制御部56に制御されるPLC分波合成部58によって車庫扉開放制御信号が電力線38に合成され、これがPLC分波部62で分波されることによって車庫扉メカ54が駆動されて車庫扉が開く。なお、赤外線信号36は車両4が車庫2に接近することにより自動的に発生させられるよう構成しても良い。
同様に、操作部32の車庫照明点灯操作または接近自動検知により発生させられた赤外線操作信号36が通信部64で受信されると、車両制御部56に制御されるPLC分波合成部58によって車庫照明点灯制御信号が電力線38に合成され、これがPLC分波部60で分波されることによって車庫全体を照明するための車庫照明部52が点灯する。
なお、上記の第1実施例においては、無線の通信部34および通信部64が赤外線通信機能を有するものとして構成されているが、両者をともに無線LAN通信部として構成することも可能である。この場合、無線通信は赤外線操作信号36に代わる電波によって双方向かつ高速で行うことができ、車両制御部26と後述する住居システム66内の制御コンピュータとの間で種々の情報交換を行うことができる。
また、通信部34を無線LAN通信部として構成する場合、住居システム66内の制御コンピュータが無線LAN通信に対応できるようにしておけば、通信部34と住居システム66との間の直接無線通信により、種々の情報交換を行うこともできる。この場合、記憶部28に記憶される車両4の認証データを、充電ケーブル12経由の他に無線LAN経由でも直接住居システム66に伝達することができる。
なお、充電ケーブル12により車庫2と車両4が接続されているときは、操作部32などの操作信号をPLC分波合成部24で電力線に合成することにより、充電ケーブル12から電力線38経由で車庫照明部52または車庫扉メカ54を制御することができる。
また、上記のような車両制御部26からの直接制御に換えて、電力線38の種々のデジタル信号をまずPLC分波合成部58で分波し、これを車両制御部56で処理した後、その結果に基づく専用の制御信号をPLC分波合成部58で電力線38に合成することにより車庫照明部52や車庫扉メカ54などを制御するようにしてもよい。この場合、PLC分波合成部58で分波されるデジタル信号は、車両4からのものだけでなく、車庫2が付属する住居システム66からの情報であってもよい。
なお、電力は、引込み線68から売電/買電メータ70を介して分電盤72に引き込まれ、PLC分波合成部74を介して住居内の電力線38に供給される。PLC分波合成部74には光ケーブル76が接続されており、この光ケーブル76から伝えられたデジタル通信信号が電力線38に合成されるとともに、住居内の電力線38を流れるデジタル通信信号が分波されて光ケーブル76から外部に送信される。
ソーラーシステム78は、太陽電池80を有し、発生した電力がインバータ82を介して分電盤72に供給される。ソーラーシステム78から供給される電力が住居内で消費される電力より少ないとき、売電/買電メータ70は買電状態となり、逆にソーラーシステム78から供給される電力が住居内で消費される電力より過剰であるときは、売電/買電メータ70は売電状態となる。
住居システム66は、後述する制御コンピュータを有し、住居内を制御しているとともにこの制御に必要なPLC分波合成部84を有している。売電/買電メータ70からの電力売買情報はLANケーブル86によって住居システム66に伝えられ、制御コンピュータで処理される。
図2は、図1における車両充電システムの第1実施例において、特に配線関係の詳細を図示したブロック図である。構成自体は図1と全く同一のものなので、対応する部分には同一の番号を付し、必要のない限り説明は省略する。なお、図2では、図1で図示されている構成を一部省略している。例えば、図2では、給電開閉部40などの詳細構成が図示されていないとともに、車両4は全く図示されていない。しかし、これらは、あくまで簡単のために図示を省略しているだけであり、両者は同一の構成なので、第1実施例は図1と図2を総合して理解すべきものとする。
図2から明らかなように、第1実施例における電力線は、単相三線電力線となっている。具体的には、図1に図示した引き込み線68は、図2のように第一外線102、第二外線104および中性線106から構成される。中性線106は、家庭内に引きこまれる前に電柱等で接地されている。
これに対応して、図1において分電盤72から家庭内に配線される電力線38も、図2のように第一外線108、第二外線110および中性線112から構成される。第一外線102と第二外線104には、中性線106に対し逆相でそれぞれ100ボルトの交流電圧が供給される。この結果、第一外線108と中性線112の間または第二外線110と中性線112の間から取られたコンセントからはそれぞれ100ボルトの交流電圧が得られるとともに、第一外線108と第二外線110から取られたコンセントからは200ボルトの交流電流が得られる。
PLC分波合成部74は光ケーブル76から受信される通信信号を第一外線108と中性線112の間および第二外線110と中性線112の間にそれぞれ合成するととともに、第一外線108と中性線112の間から分波された通信信号および第二外線110と中性線112の間から分波された通信信号のいずれであってもこれを光ケーブル76から送信できるよう構成される。さらに、第一外線108と第二外線110との間には、電力の50Hzまたは60Hz程度の交流帯域はカットするとともに高周波の通信信号は通過させる中継カプラーを有しており、住居内において第一外線108と中性線112の間の通信信号と第二外線110と中性線112の間の通信信号を中継している。このような第一外線108と第二外線110の間のPLC通信信号の中継の詳細は、同一出願人による特願2007-298696に記載されている。
この結果、第一外線108と中性線112の間から取られたコンセントを利用するPLC対応機器、第二外線110と中性線112の間から取られたコンセントを利用するPLC対応機器、および第一外線108と第二外線110から取られたコンセントを利用するPLC対応機器のいずれも相互のPLC通信が可能であるとともに光ケーブル76を通じた外部との通信が可能となる。
住居システム66のPLC分波合成部84は、第二外線110と中性線112から取られたコンセントに接続され、100ボルトの交流電流を制御コンピュータ114の電源に供給する。また、PLC分波合成部84は、制御コンピュータ114から出力される通信信号を第二外線110と中性線112の間に合成するととともに、第二外線110と中性線112の間から分波された通信信号を制御コンピュータ114に入力する。
なお、PLC分波合成部84は、図2のように第二外線110と中性線112から取られたコンセントに接続するのに代えて、第一外線108と中性線112から取られたコンセントに接続しても全く同様に機能する。
車庫2には、第一外線108、第二外線110および中性線112の三線が配線され、これがコンセントユニット6にもそのまま配線される。コンセントユニット6の内部において、給電開閉部40は第一外線108と第二外線110に接続され、接続部8に200ボルトの交流電流を供給する。これによって、車両4への急速充電を可能とする。
また、手元表示部44は第一外線108と中性線112の間から取られたコンセントに接続されるとともに、手元照明部46は第二外線110と中性線112の間から取られたコンセントに接続されている。
さらに、車庫2における車庫照明部52および車庫扉メカ54は第一外線108と中性線112の間から取られたコンセントに接続されるとともに、車庫制御部26は第二外線110と中性線112の間から取られたコンセントに接続されている。
コンセントユニット6の第一外線108と第二外線110の間には、さらに電力の交流帯域はカットするとともに高周波の通信信号は通過させる中継カプラー116が設けられており、車庫2内において第一外線108と中性線112の間の通信信号と第二外線110と中性線112の間の通信信号を中継している。
このような中継は、前述のように分電盤72近傍のPLC分波合成部74でも行われているが、中継部からの電力線長が長くなっている部分における通信信号の減衰に対応するため、車庫2においても第一外線108と第二外線110の間の通信信号を中継し、第一外線108と中性線112を利用するPLC通信と第二外線110と中性線112を利用するPLC通信を中継する。なお、接続部8を介した車両4とのPLC通信は、第一外線108と第二外線110の両方を利用して行われており、これら両線と接地との間で通信信号の分波合成が行われる。
図3は、図2と同様にして、図1における車両充電システムの第1実施例を示すブロック図であるが、制御コンピュータ114による制御の詳細を説明するために、特に車庫2のコンセントユニット6における給電開閉部40、および住居システム66の詳細を図示したものである。
図2と同様にして図3の構成自体は図1と全く同一なので、対応する部分には同一の番号を付し、必要のない限り説明は省略する。なお、図3でも、図1または図2で図示されている構成を一部省略しているが、これらは、あくまで簡単のために図示を省略しているだけであり、実施例は同一なので、その構成は図1から図3を総合して理解すべきものとする。
給電開閉部40においては、PLC分波合成部42と接続部8の間に充電メータ202および給電スイッチ204が設けられている。この充電メータ202は電力線38から接続部8に流れる電流を検出することによって車両4を充電するために消費された電力をモニタするものである。電力のモニタ結果は制御部206に送られ、これがPLC分波合成部42で電力線38に合成されることにより、制御コンピュータ114に伝えられる。
また、充電メータ202は通常の充電モニタだけでなく、電流検出によって接続部8の出力インピーダンスの検出も行っている。そして、接続部8に車両4以外の予定外の機器が接続された場合における出力インピーダンスの異常を検出すると、これを制御部206およびPLC分波合成部42を介して制御コンピュータ114に通報する。
給電スイッチ204は、接続部8に電力を供給すべきでないとの指示を制御部206から受けたとき、給電を遮断するためのものである。制御部206からの指示は制御コンピュータ114が決定しており、例えば上記のように出力インピーダンスが異常の場合や、後述するように車両4の認証が不可であった場合に給電を遮断する。これによって、接続部に来ている200ボルトの電圧が不用意に外部に出力されないよう危険防止を行うとともに、盗電などの防止も行う。
制御コンピュータ114は、表示部208およびスピーカ210に接続されており、住居システム66に関する種々の情報を表示またはアナウンスによって住居内に通知する。また、これら表示部208およびスピーカ210は、制御コンピュータ114の制御により、制御部206からの通報により、充電状況、ならびにインピーダンス異常や車両認証不可などの車庫2内の遠隔情報を住居内にいても知ることができるようにする。
図4は、図2、図3と同様にして、図1における車両充電システムの第1実施例を示すブロック図であるが、給電制御の詳細を説明するために、特に給電開閉部40における給電スイッチ204等の詳細を図示したものである。
図2、図3と同様にして図4の構成自体は図1と全く同一なので、対応する部分には同一の番号を付し、必要のない限り説明は省略する。なお、図4ではコンセントユニット6以外の構成について簡単のため図示を省略しているが、実施例は同一なので、その構成は図1から図4を総合して理解すべきものとする。
図4から明らかなように、本発明の第1実施例における給電スイッチ204は、IGBT(Insulated Gate Bipolar Transistor)302を有し、制御部206からの制御信号に基づいて充電メータ202と接続部8の間を導通させるか非導通とするかのスイッチングを行う。IGBT302には並列にハイパスフィルタ304が接続されており、IGBT302の導通・非導通に係らず、PLC通信における高周波のデジタル信号を通過させる。ハイパスフィルタ304は、電力の50Hzまたは60Hz程度の交流帯域はカットしているので電力を供給するか否かは専らIGBT302が決定する。
中性線112はコンセントユニット6において図4に示すように接地306がとられている。中性線の接地は、中性線106(図2を参照)が家庭内に引きこまれる前に電柱等で行われているが、安全のため、コンセントユニット6でも行われる。また、PLC分波合成部42は接地306に接続されており、第一外線108と第二外線110の両方を利用して、これら両線と接地との間で通信信号の分波合成が行われるようにしている。
図4から明らかなように、接続部8にはさらに接続部8への接続が予定されている充電ケーブル12の接続プラグの形状をメカ的に検出し、これを制御部206に伝達するための接続部メカセンサ308が設けられており、従って、接続部8への電気的接続が行われたとしても、接続プラグの形状が所定のものであることが接続部メカセンサ308で検出できなかったときは、その旨が制御部206からPLC分波合成部42を介して制御コンピュータ114に通報する。そしてこれを受けた制御コンピュータ114は、IGBT302を非導通にする信号を制御部206に送り、接続部8に来ている200ボルトの電圧が定格外の機器に出力されないよう危険防止を行うとともに、盗電などの防止も行う。
図5は、制御コンピュータ114の基本動作を示すフローチャートである。このフローは、接続部8への充電ケーブル12の接続、または、充電ケーブル12が接続されている状態において深夜料金となる充電開始時間が到来したときスタートする。
フローがスタートすると、ステップS2で車両認証のためのIDの送付を車両4に要求する。そしてステップS4でIDの受領があったかどうかチェックし、受領を検出すればステップS6に進んでIDが登録済みのものと一致するかどうかチェックする。ステップS6でIDの一致が検出されるとステップS8に進み、パスワードの要求が行われる。そしてステップS10でパスワードの一致が検出されるとステップS12に進む。
以上のステップにおけるIDおよびパスワードの要求および送信はPLCシステムを通じて有線で行われるが、通信部34および64を通じて無線で行ってもよい。
ステップS12では、充電ケーブル12が接続されている状態において充電開始時間が到来することによる割り込みによってフローがスタートしたのかどうかチェックする。
ステップS12で時間到来割り込みであることが検出されなかったときは、充電ケーブル12の接続によってフローがスタートしたことを意味するからステップS14に進み、深夜割引料金の適用などを含む時間帯別電灯契約がなされているかどうかをチェックする。
ステップS14で時間帯別電灯契約が行われていることが検出されるとステップS16に進み、深夜時間帯か否かにかかわらず直ちに充電を開始するための緊急充電操作が行われているかどうかチェックする。
そして、ステップS16で緊急充電操作が検出されなければステップS18に進んで深夜料金等の割引時間帯かどうかチェックし、該当すればステップS20に進んで給電処理を実行する。そして給電処理の完了によりフローを終了する。給電処理の詳細については後述する。
一方、ステップS12で時間到来割込みによりフローがスタートしたことが検出されたとき、またはステップS14で時間帯別電灯契約が行われていることが検出されなかったとき、またはステップS16で緊急充電操作が検出されたときは、それぞれ、直ちにステップS20の給電処理に入る。
また、ステップS18で割引時間帯であることが検出されなかったときはステップS22に進み、割引時間帯の到来を検出するための時間モニタを開始する。さらに、ステップS24で、時間到来検出によって図5のフローをスタートするための割込みを可能とする処置を行ってフローを終了する。これによって制御コンピュータ114は、時間到来への待機状態となる。
なお、ステップS4でID受領が検出できなかったとき、又はステップS6でID一致が検出できなかったとき、またはステップS10でパスワードの一致が検出できなかったときは、ステップS26に進んで異常の記録と通報を行い、直ちにフローを終了する。この通報は、図3の表示部208またはスピーカ210にて行われる。
図6は、図5のステップS20における給電処理の詳細を示すフローチャートである。フローがスタートすると、ステップS32で充電ケーブル12が接続されている状態において充電開始時間が到来することによる割り込みによってフローがスタートしたのかどうか改めてチェックする。
そして時間到来割込みによるスタートであった場合はステップS34で時間モニタをキャンセルするとともにステップS36で時間到来割込みを不可としてステップS38に進む。一方時間到来割込みでなかったときは、直接ステップS38に移行する。
ステップS38では、図4の接続部メカセンサ308によって充電ケーブル12の専用プラグの接続が検出されたかどうかチェックし、専用プラグであればステップS40に進んで給電スイッチ204をオンする。これによって接続部8に200ボルトの電源電圧が印加される。
次いでステップS42で、充電メータ202からの信号に基づいて充電ケーブル12以降の結線がOKで電流が流れるかどうかのチェックが行われる。そして結線がOKであれば、ステップS44に進み、やはり充電メータ202からの信号に基づいて出力インピーダンスが予定通りでOKかどうかのチェックが行われる。
ステップS44で出力インピーダンスがOKである旨の検出ができるとステップS46に進み、エコ表示処理に入る。その詳細は後述する。
エコ表示処理が終了するとステップS48に進み、充電メータ202または車両4の二次電池20からの情報により、充電が完了したかどうかチェックする。そして充電完了が検出できなければステップS42に戻り、以下、結線やインピーダンスの異常がない限り、充電完了までステップS42からステップS48を繰り返す。
ステップS48で充電完了が検出されるとステップS50に進み、給電スイッチ204をオフとともにステップS52のエコ表示処理に進む。そしてエコ表示処理が完了するとフローを終了する。
一方、結線がOKであることがステップS42で検出できないとき、またはステップS44で出力インピーダンスがOKであることが検出できないときはステップS54で異常の記録と通報のための処置をして直ちにステップS50に移行し、給電スイッチ204をオフする。なお、ステップS40で給電スイッチ204をオンしてからこのような異常によりステップS50で給電スイッチ204をオフするまでの時間は極短いので、実質的に接続部8から電力が取り出されることはなく、危険もない。
また、ステップS38において専用プラグであることが検出できないときはステップS56に進んで異常の記録と通報のための処置を行い、直ちにフローを終了する。
図7は、図6のステップS46およびステップS52におけるエコ表示処理の詳細を示すフローチャートである。フローがスタートすると、ステップS62で充電中かどうかのチェックが行われ、充電中であればステップS64に進んで現時点での充電割合を表示するため処置を行うとともにステップS66で充電完了予定時間を表示するための処置を行ってステップS68に移行する。
さらにステップS70に進んでコンセントユニット6の手元表示を行わせるための指示を行ってステップS70に移行する。以上は、図5のステップS46の時点での動作に該当する。
一方、ステップS62で充電中であることが検出されない場合は、ステップS72に進み、充電完了状態かどうかのチェックを行う。そして、充電完了であれば、ステップS74に進んで充電完了を表示するため処置を行うとともにステップS76で充電完了をアナウンスする音声通報を行うための処置を行う。さらに、ステップS78でコンセントユニット6の手元照明46を点滅させるための処置を行ってステップS68に移行する。これは、手元表示44における充電完了表示を目立たせるためであるとともに、手元照明46だけでも充電完了を通知できるようにするためである。
また、ステップS72において充電完了が検出されない場合は、充電中でも充電完了でもないので直接ステップS70に移行する。
以上のステップS72からステップS78を経由してステップS68に至る動作、又はステップS72から直接ステップS70に至る動作は、図5のステップS52の時点での動作に該当する。
ステップS70では、車両4への月間の累積充電量を表示する。そしてステップS80に進んで、ソーラーシステム78や風力発電など、売電が生じる可能性もあるエコ発電システムが住居内に導入されているかどうかがチェックされる。
エコ発電システムが導入されていればステップS82に進み、月間の累積エコ発電量を表示する。さらにステップS84で、月間の累積エコ発電量と月間の車両4への累積充電量とのバランスを表示する。これによって、車両4の充電が自然エネルギーによる割合等を知ることができる。さらにステップS86によってステップS84のバランスを二酸化炭素(以下「CO2」)排出量に換算して表示しステップS88に至る。これらが、車両4とその充電システムの採用による地球環境保護への貢献度合いを表示するエコ表示の内容である。
なお、ステップS80でエコ発電システムの採用が検出できないときは、以上のようなエコ表示を省略し、直接ステップS88に至る。
ステップ88では、充電中であるかどうかが再度チェックされ、充電中であることが検出されなければステップS90に進んで表示終了操作をしたかどうかがチェックされる。操作がなければ、ステップS92に進み、表示を開始してから所定時間が経過したかどうかがチェックされる。そして、所定時間の経過がない場合はステップS62に戻り、以下、充電中でなく、かつ所定時間が経過しない限り、ステップS62からステップS62からステップS92を繰り返す。これは充電完了後の表示を所定時間継続するためである。
なお、ステップS92で所定時間が経過するとエコ表示処理フローは終了される。また、ステップS90で表示終了操作が行われたことが検出された場合もエコ表示処理フローは終了となる。以上は、図6のステップS52の場合の動作に該当する。
一方、ステップS88で充電中であることが検出された場合も図7のエコ表示フローは終了されるが、これは、図6のステップS46の動作に該当しており、ステップS42を経由して再びステップS46のエコ表示処理に入ることになる。
なお、図7のエコ表示のためのフローチャートは、以上のようにして、図6のステップS46およびステップS52の詳細フローとして給電処理の一部として機能する他、給電とは無関係に、制御コンピュータ114に表示開始操作信号が伝えられることによる割込みによっても動作する。この場合は、ステップS62からステップS72を経由し、直接ステップS70に飛ぶ動作となる。
以上、本発明の第1実施例では、プラグインハイブリッドタイプの車両4を収容可能な車庫2を含む車両充電システムが開示されている。しかしながら、本発明はこれに限られるものではなく、ガソリンエンジンを用いない純粋の電気自動車およびこれを収容可能な車庫を含む車両充電システムにも採用可能である。
また、第1実施例におけるような住居に付属する車庫だけでなく、業務用の駐車場においても本発明の種々の特徴は適用可能である。
図8は、本発明の実施の形態に係る車両充電システムの第2実施例を示すブロック図である。第1実施例は一般家庭用の車庫における実施に好適な用構成されていたが、第2実施例は、業務用の月極駐車場または都市や店舗の訪問者用駐車場などにおける実施に好適なよう構成されている。なお、図8は図3と同様の構成が多いので、同一の構成には同一番号を付すとともに、対応する構成については、図8において500番台の番号を付すとともに下二桁の数字を図3と共通にして図示している。これらの構成については、必要のない限り、説明は省略する。
駐車場602は、上記のように業務用の月極駐車場または都市や店舗の訪問者用駐車場であり、車両4を駐車させることができる。コンセントユニット506は図3のコンセントユニット6と同様にして車両4に充電を行うものであるが、給電制御コンピュータ604によって制御されている。給電制御コンピュータ604は、図3の制御部206に準じた機能を持つが、その詳細は後述する。
駐車場602は、決済コンピュータ606によって制御されている。この決済コンピュータ606は図3の制御コンピュータ114に対応するものであるが、図8の第2実施例では主に、インターネットで結ばれる銀行システム608と連携して充電電力の決済を担当する。具体的には、買電メータ570を通じて購入する電力をコンセントユニット506から車両4に供給するとともに、最終的に車両4が買う電力の料金が銀行システム608における車両4の所有者口座から引き落とされるよう決済する。給電制御コンピュータ604は、後述のように、このような決済コンピュータ606と連携してコンセントユニット506から車両4への給電を制御する。
なお、図8の第2実施例においても、光ケーブル576を通じた通信信号はPLC分波合成部576によって駐車場602内の電力線538に分波合成され、駐車場602内の通信はPLCによって行われる。また、図8では、コンセントユニットが一つしか図示されていないが、駐車場602は複数の車両が駐車可能なよう構成されており、後述するように同様のコンセントユニットが複数設けられている。
図9は、図8の第2実施例におけるコンセントユニット506の構造の詳細を示すブロック図である。図8と共通する構成には同一の番号を付し、必要のない限り、説明は省略する。なお、図9では、図8で図示されている構成を一部省略している。しかし、これらは、あくまで簡単のために図示を省略しているだけであり、両者は同一の構成なので、第2実施例は図8と図9を総合して理解すべきものとする。
図9から明らかなように、第2実施例ではコンセントユニット506が駐車スペースに設けられる右側車輪止め702に設けられている。そして接続部508は、右側車輪止め702の右側面の凹部704に風雨を避けるため下向きに配置されていて、車両4がバックで駐車したときにその右側後輪近傍に位置するようになる。
接続部508には、不使用時に接続部508を防塵するし保護するためのキャップ706が装着可能となっている。接続部/キャップメカセンサ708は図4の接続部メカセンサ308と同様にして接続部508に接続される接続プラグの形状が所定のものであるか否かを検出するとともに、キャップ706の着脱も検出し、その結果を給電制御コンピュータ604に入力する。
上記のように右側車輪止め702に設けられた接続部508は、車両4の右側に充電用接続部10がある場合に適するが、充電用接続部10が左側にある車両4が駐車される場合のために、同様の構成の補助接続部710が左側車輪止め712の左側面の凹部714にも設けられている。補助接続部710には、右側の接続部と同様にキャップ716が着脱可能であるとともに接続/キャップメカセンサ718が設けられている。
補助接続部710に車両4の接続プラグが接続される場合の給電制御のために、右側の給電スイッチ504と同様の補助給電スイッチ720が設けられており、接続部/キャップメカセンサ718による検出結果に基づき、給電制御コンピュータ604によってそのオンオフが制御されるようになっている。補助接続部710と補助給電スイッチ720は左側車輪止め712への設置を容易にするため、左側車輪止め712のコンセントユニット(図示せず)内にまとめられている。但し、コンセントユニット506とは異なり、給電制御コンピュータ604、充電メータ502PLC分波合成部542は有しておらず、補助給電スイッチ720への電力線入力部と、給電制御コンピュータ604との通信ライン接続部を有する簡単な構成となっている。
このように、右側の接続部508および左側の補助接続部710からの給電を別々に制御し、接続部毎に独立に給電スイッチを設けたことにより、接続プラグが接続されていない接続部に電圧が印加されるような不測の事態を防止することができる。
なお、給電制御コンピュータ604は、一対をなす右側車輪止め702と左側車輪止め712に各々設けられた右側の接続部508および左側の補助接続部710の一方から給電を開始したときは、この給電が継続する限り、その後他方の接続部に車両4の接続プラグが接続されたことを検出しても、この他方の接続部から給電が行われることがないよう給電スイッチ504または補助給電スイッチ720を制御する。
これは左右に接続部を設けた結果、二つの接続部から同時に充電が行われて、定格以上の電流が一つのコンセントユニットに流れるのを防止するためである。なお、図9から明らかなように右側の接続部508および左側の補助接続部710のいずれを利用して充電を行った場合でも、充電メータ502は共通なので決済に影響はない。
図10は、図8および図9の第2実施例における駐車場602に複数設けられているコンセントユニットの配置を示すブロック図である。図8または図9と共通する構成には同一の番号を付し、必要のない限り、説明は省略する。なお、図10では、図8または図9で図示されている構成を一部省略している。しかし、これらは、あくまで簡単のために図示を省略しているだけであり、両者は同一の構成なので、第2実施例は図8から図10を総合して理解すべきものとする。
図10から明らかなように、コンセントユニット506が設けられた右側車輪止め702は、第1駐車スペース802に配置されている。なお、図10では、既に述べた図示の簡単のため、第1駐車スペース802に配される左側車輪止め712の図示を省略している。これは他の駐車スペースでも同様である。
同様にして、第2駐車スペース804には、第2車輪止め806が配置されており、コンセントユニット506と同様の第2コンセントユニット808が設けられている。他の駐車スペースにも同様のコンセントユニットつき車輪止めが設けられているが、簡単のため、図示は省略する。これらのコンセントユニットの通信はPLCによるため、駐車スペース増設の際には各車輪止めに充電用電力線を配線するだけでよい。
一方、第3駐車スペース810の第3車輪止め812には、PLCによる通信に対応していない第3コンセントユニット814が設けられている。第3コンセントユニット814の給電開閉部816は、図8または図9と同様の充電メータ818、給電スイッチ820および接続部822を有するが、給電制御コンピュータ824の通信方式が異なる。
第3コンセントユニット814では、PLCに代わって、無線LAN通信部826が司り、決済コンピュータ606に接続された無線LANルータ828と通信している。このように、駐車場602が無線LANの環境下にあれば、第3コンセントユニット814に無線LAN通信部826を搭載すれば、電力線の配線だけで駐車スペースの増設に対応できる。なお、LANケーブルの配線も可能であれば、有線のLANにより給電制御コンピュータ824と決済コンピュータ606の間の通信を行ってもよい。
図11は、第2実施例における図8から図10のコンセントユニット506が備える給電制御コンピュータ604または図10における第3コンセントユニット814が備える給電制御コンピュータ824の基本動作を示すフローチャートである。このフローは、図9における接続部508のキャップ706または補助接続部710のキャップ712が取り外されたことを接続部/キャップメカセンサ708または718が検出することによってきスタートする。
フローがスタートすると、ステップS102でキャップの取り外しから所定時間内にプラグの装着が行われたかどうかチェックし、所定時間経過まではステップS102を繰り返す。
ステップS102で所定時間内にプラグの装着が行われたことが検出されるとステップS104に進み、接続部/キャップメカセンサ708または718によって充電ケーブル12の専用プラグの接続が検出されたかどうかチェックし、専用プラグであればステップS106に進んで決済コンピュータ606との通信を開始する。
次いでステップS108に進み、決済コンピュータ606からの指示に基づき、車両認証のためのID送付を車両4に要求する。そしてステップS110でIDの受領があったかどうかチェックし、受領を検出すればステップS112に進んでIDが登録済みのものと一致するかどうかチェックする。
ステップS112におけるチェックは具体的には次のようにして行われる。まず、受領したIDは決済コンピュータ606の中継で銀行システム608に送られ、銀行システム608において口座に登録されたIDとの一致が確認されるとこれが決済コンピュータ606経由で給電制御コンピュータ604または824に通知される。
この通知によりステップS112でIDが登録済みのものと一致することが確認されるとステップS114に進み、パスワードの要求が行われる。そしてステップS116でパスワードの一致が検出されるとステップS118に進む。ステップS118では、IDおよびパスワードで認証された顧客の口座に引き落とし可能な預金があって決済可能かどうかのチェックが行われ、決済がOKであればステップS120に進む。
ステップS116およびステップS118のチェックはともに、ステップS112と同様にして決済コンピュータ606の中継による銀行システム608との交信により行われる。なお、決済コンピュータ606は単に情報の中継を行うだけでなく、自らチェック結果の判断を行い結果の指示だけを給電制御コンピュータ604または824に伝達するだけでもよい。
ステップS120では給電スイッチ504または720または820がオンされ、これによって対応する接続部に200ボルトの電源電圧が印加される。
次いでステップS122で、充電メータ502または818からの信号に基づいて充電ケーブル12以降の結線がOKで電流が流れるかどうかのチェックが行われる。そして結線がOKであれば、ステップS124に進み、やはり充電メータ502または818からの信号に基づいて出力インピーダンスが予定通りでOKかどうかのチェックが行われる。
ステップS44で出力インピーダンスがOKである旨の検出ができるとステップS128に進み、充電メータ502や818または車両4の二次電池20からの情報により、充電が完了したかどうかチェックする。そして充電完了が検出できなければステップS122に戻り、以下、結線やインピーダンスの異常がない限り、充電完了までステップS122からステップS128を繰り返す。
ステップS128で充電完了が検出されるとステップS130に進み、給電スイッチ504または720または820をオフとともにステップS132の決済処理に進む。そして決済処理が完了するとフローを終了する。なおステップS132における決済処理は充電電力料金を銀行口座からの引き落とす通常の決済処理である。
一方、結線がOKであることがステップS122で検出できないとき、またはステップS124で出力インピーダンスがOKであることが検出できないときはステップS134で異常の記録と通報のための処置をして直ちにステップS130に移行し、給電スイッチ504または720または820をオフする。
なお、図6でも説明したようにステップS120で給電スイッチ504または720または820をオンしてからこのような異常によりステップS130で給電スイッチ504または720または820をオフするまでの時間は極短いので、実質的に接続部508、710または822等から電力が取り出されることはなく、危険もない。
また、ステップS102でキャップの取り外しから所定時間内に接続プラグの装着が検出できなかったとき、または、ステップS104において専用プラグであることが検出できないときはステップS136に進んで異常の記録と通報のための処置を行い、直ちにフローを終了する。
同様に、ステップS110でID受領が検出できなかったとき、又はステップS112でID一致が検出できなかったとき、又はステップS116でパスワードの一致が検出できなかったとき、又はステップS118で決済がOKであることが検出できなかったときも、ステップS136に進んで異常の記録と通報を行い、直ちにフローを終了する。この通報は、決済コンピュータ606に対して行われ、必要に応じ、決済コンピュータ606経由で銀行システム608に対しても通報される。
なお、本発明の実施は以上の実施例に限られるものではなく、本発明の利点は他の種々の実施例によって達成できる。例えば、図4における給電スイッチ204にはIGBT302を用いているがこれに代えて、シリコンカーバイド(SiC)のパワー半導体素子を用いてもよい。
図12は、本発明の実施の形態に係る第3実施例を示すブロック図である。第3実施例も上記の第1実施例および第2実施例と同様にして車両の充電システムを構成するものであるが、特にハイブリッドタイプの車両の燃費管理に関する特徴を有し、その特徴の一部は充電を伴わない通常のガソリンエンジンタイプの車両にも適用可能である。図12はこのような特徴を説明するため給電および給油が可能なサービススタンド902およびハイブリッドタイプの車両904をブロック図にて図示している。図12の車両904の構成は、図1の車両4と同一であるが、図1では省略していた構成を付加している。以下これらの付加構成を中心に説明するが、図1で既に言及した構成については、同一番号を付すとともに、必要のない限り、説明は省略する。
図1では触れていなかったが、車両904は、サービススタンド902における給油または充電またはその両者(以下これらを総じて「パワー注入」と称する)のための総合パワー注入口906を有し、充電用接続部10は給油口908とともにこの総合パワー注入口906にまとめられている。なお、総合パワー注入口906は充電用接続部10近辺でのスパークによる引火を避けるため、両者を電気的および空間的に隔てる配置および構成とする。さらに、同様の目的のため、充電ケーブル12が確実に充電用接続部10に接続されたことが確認されない限り、給電は開始されず、また給電中は充電ケーブル12を充電用接続部10から取り外すことはできない。
サービススタンド902側には、総合パワー注入口906に接続するための総合パワーケーブル910が設けられており、充電ケーブル12は給油パイプ912とともにこの総合パワーケーブル910にまとめられている。なお、図12では総合パワーケーブル910が巾の広いブロック状に図示されているが、これは概念上のことで、実際の総合パワーケーブル910は、充電ケーブル12および給油パイプ912を一本の可撓性のあるケーブルとしてまとめたものである。なお、総合パワーケーブル910は、破損による充電ケーブル12から給油パイプ912への引火を防止するため、外周に破損センサ913が設けられており、総合パワーケーブル910が破損したときは、その破損が内部に達する前に破損センサ913で検知され、これがサービススタンド制御部922に伝えられて充電ケーブル12への給電を断つよう構成される。この目的のための破損センサ913は、例えば総合パワーケーブル910の外周を覆うようその表面から浅い部分にケーブルに沿って網目状に這わされた微弱電流の信号線であり、この信号線の断線をサービススタンド制御部922で検知することで総合パワーケーブル910の破損が外部から始まったものと判断する。
総合パワー注入口906には、家庭または駐車場のコンセントユニット6からの充電ケーブルを単独で接続することも可能である。この場合、充電ケーブル12が単独で充電用接続部10に接続され、給油口908は開かれない。図1や図8はこのような状態を図示したものである。図12の車両904には、燃料タンク16の油量を検出する油量計914、エンジン18へのガソリン噴射の状況および走行メカ14からの速度をモニタして瞬間燃費を算出する瞬間燃費計916、走行メカ14に基づくトリップメータ917および二次電池20から車両904全体への電源供給を行う電源部918が図示されているが、これらは図1の車両4にも備えられているものである。これら油量計914、瞬間燃費計916およびトリップメータ917の情報は車両制御部26に伝達される。
サービススタンド902における燃料貯蔵庫918に蓄えられたガソリンは、サービススタンド制御部922の制御により給油計920を介して給油パイプ912から車両904の給油口908に供給される。給油計920で計測される給油量のデータはサービススタンド制御部922に送られて後述の課金処理に供される。一方、給電源924からの電力は、サービススタンド制御部922の制御により給電計926を介して接続部928から充電ケーブル12経由で車両904の充電用接続部10に供給される。給電計926で計測される給電量のデータはサービススタンド制御部922に送られて後述の課金処理に供される。なお、給電計926と接続部928の間には既に説明したのと同様のPLC分波合成部928が設けられており、充電ケーブル12を介したサービススタンド制御部922と車両制御部26の間のPLC通信を可能としている。
サービススタンド制御部922は、給油計920または給電計926またはその両者から、給油データまたは給電データまたはその両者を受信すると、これを課金部930に送る。課金部930では、受信したデータに応じ、給油量、ガソリン単価、請求ガソリン代、給電量、電気代単価、請求電気代を集計して計算する等の処理を行う。このとき車両904とサービススタンド902の間でCO2排出権取引があればその収支も合算処理する。この取引情報は、車両制御部26が通信部34または充電用接続部10経由でサービススタンド902から取得し、記憶部28に記憶する。なお、CO2排出権取引に関する情報は、家庭における充電時において、図2の住居システム66の制御コンピュータ114から充電ケーブル12または通信部34を介して受信することもできる。
サービススタンド制御部922は、課金部930による処理結果のデータを入出力部932から出力し、インターネット経由で銀行システム934に送ってガソリン代や電気代の電子決済を任せる。またサービススタンド制御部922は、課金部930による処理結果のデータを入出力部932から出力し、インターネット経由で燃費管理外部サーバ936に送る。燃費管理外部サーバ936には、さらに車両904のトリップメータ917の情報が車両制御部26からサービススタンド制御部922を中継してインターネット経由で伝えられる。これらの情報により燃費管理外部サーバ936は燃費の計算が可能となる。計算される燃費としては、給油量が満タン法による燃費算出条件に合致していれば給油の都度の燃費計算が可能となるし、累積給油回数が所定以上であれば満タン給油でなくても累積平均燃費の計算が可能となる。燃費管理外部サーバ936の処理結果は、サービススタンド制御部922を経由して車両制御部26にフィードバックすることもできる。また、燃費管理外部サーバ936は多数の車両からのデータを集約した統計処理も行っており車両制御部26はこのような統計データのフィードバックも受けることができる。
一方、サービススタンド制御部922は、課金部930による処理結果のデータをPLC分波合成部928により電力線に合成する。これによって、給油量、ガソリン単価、請求ガソリン代、給電量、電気代単価、請求電気代等の実績データがサービススタンド制御部922から車両制御部26に伝えられる。車両制御部26は、このようにして伝えられた給油量が満タン法による燃費算出条件に合致していれば、このデータでトリップメータ917の情報に基づく走行量のデータを割り算して燃費を自動算出する。サービススタンド902から車両904へのデータ転送は、上記のような充電ケーブル12を介したPLC通信による他、データは通信部938から通信部34への無線LAN通信によって行うこともできる。このような無線LAN通信はサービススタンド902に充電機能がなく充電ケーブル12によるPLC通信が行えないときに特に有用である。
図13は、図12の第3実施例における車両制御部26の基本動作を示すフローチャートである。このフローは、車両制御部26が二次電池20からの給電を受けて立ち上がり、以後、二次電池20からの給電が断たれるまで動作状態を維持するが、後述のように、イグニションのONまたは外部からの総合パワー注入口906への接続がない限り、これらを待つ状態となり、実質的な動作の実行はない。
フローがスタートすると、ステップS202で、イグニションがオンとなったかどうかチェックされる。そしてイグニションのオンが検出されるとステップS204に進み、車両904の初期機能チェック処理が行われる。次いでステップS206で車両904の走行開始操作が行われたかどうかチェックが行われる。走行開始操作が検出されるとステップS208に進み、総合パワー注入口906にケーブルが接続中であるかどうかチェックする。そして接続中でなければステップS210に進み、今回の走行前の最新の燃費記憶を記憶部28から読み出し、ステップS212でこれを表示する。なお、上記のステップS208や後出のステップ218では、総合パワー注入口906に総合パワーケーブル910(すなわち充電ケーブル12と給油パイプ912の両方)が接続されている場合だけでなく、充電ケーブル12と給油パイプ912の一方のみが接続されている場合にも、総合パワー注入口906にケーブルが接続中であると判定される。以下、単に「ケーブル」と呼ぶときには、上記のように理解すべきである。
以上の後、ステップS214の走行処理に移行する。上記のように、ステップS206で走行開始操作が行われても、ステップS208で総合パワー注入口906にケーブルが接続中でないことが確認されないとステップS214の走行処理に移行して走行を実行することはない。これは、例えば家庭の車庫において電力料金の安い深夜に充電を行わせておいたまま翌朝ケーブルをはずすのを忘れて走行を開始してしまうような事故を防止する意味がある。なお、ステップS208で総合パワー注入口906が接続中であることが検出されるとステップS216に移行し、ケーブルを除去する旨の警告を表示部30で行ってステップS206に戻る。このようにして警告に従ってケーブルが除去されない限りステップS206、ステップS208およびステップS216が繰り返され、ステップS214の走行処理に至ることがない。
ステップS214の走行処理の詳細は後述するが、この処理は走行停止で終了し、ステップS218に移行する。ステップS218は、総合パワー注入口906にケーブルが接続されたかどうかをチェックするためのものである。なお、ステップS202においてイグニションがオンとなったことが検出されない場合は、直接ステップS218に移行する。また、ステップS206で走行開始操作が検出されない場合も、直接ステップS218に移行する。このように、イグニションのオンオフ状態に係らずステップS218における総合パワー注入口接続チェックが行われる。
ステップS218で総合パワー注入口906へのケーブル接続が検出されるとステップS220に進み給油/給電処理に移行する。その詳細は後述する。給油/給電処理が終了するとステップS222に進み、イグニションがオフになったかどうかチェックする。そしてオフでなければフローはステップS206に戻り、次の走行開始操作または総合パワー注入口接続を待つ。一方ステップS222でイグニションのオフが検出されるとフローはステップS202に戻り、次のイグニションオンまたは総合パワー注入口接続を待つ。
図14は、図13のステップS214における走行処理の詳細を示すフローチャートである。フローがスタートするとステップS232で瞬間燃費計916からのデータの表示を開始する指示を行うとともにステップS234で瞬間燃費計916からのデータの蓄積を指示する。そしてステップS236に進み、モータ22による走行を指示する。車両904はハイブリッド車なので、このようにエンジン18の効率の悪い走行開始時点ではモータ22による走行を指示する。
次いでステップS238で、走行モードが電動モードに設定されているかどうかチェックする。電動モードとは二次電池20の電力を消費してモータ22のみを動力として走行する電気自動車モードである。ステップS238で電動モードの設定が検出されない場合はハイブリッドモードであるのでステップS240に進み、走行モードが最適効率ハイブリッドモードに設定されているかどうかチェックする。そしてこのモード設定が検出されるとステップS242に進み、最適効率ハイブリッド走行処理が行われる。この処理は、その時点での走行をモータ22によって行うかエンジン18によって行うかを燃費最優先で決定する処理である。つまり、二次電池20の電力が潤沢であることを前提とし、エンジン走行の燃費効率が悪いとどんどんモータ走行を選択するので二次電池20が消耗していくことになる。なお、ハイブリッド走行では制動時等のモータ逆起電力により二次電池20を充電するので、走行状態によっては、最適効率ハイブリッド走行においても二次電池20の充電状況が走行により復活することもある。
ステップS242においてその時点の走行選択が行われる度にフローはステップS244に進み走行が停止したかどうかチェックする。そして停止でなければステップS246に進み、二次電池20の充電が最低限度に達しているかどうかチェックする。最低限度を割っていなければフローはステップS242に戻り、以下走行停止または充電最低限が検出されない限りステップS242からステップS246を繰り返して最適効率ハイブリッド走行を継続する。ステップS244で走行停止が検出されるとその時点で図14の走行処理は終了する。
一方、ステップS246において二次電池20が消耗して充電最低限を割ったことが検出されるとステップS248に移行し、通常ハイブリッド走行処理に移行する。この処理では、エンジン走行とするかモータ走行とするかを燃費効率によって決定するとともに、二次電池20の充電量をモニタしてこれが充電最低限を割ると強制的にエンジン走行を選択し、二次電池20が充電最低限に復活するまでエンジン走行を継続して充電を行うものである。この処理による走行選択が行われる度にフローはステップS2250に進み、走行が停止したかどうかチェックする。そして停止でなければステップS248に戻り、以下走行停止が検出されない限りステップS248とステップS250を繰り返して通常ハイブリッド走行を継続する。このように通常ハイブリッド走行処理は外部からの充電を前提としないハイブリッド走行処理である。ステップS250で走行停止が検出されるとその時点で図14の走行処理は終了する。
ステップS240で最適効率モードの設定が検出されないときはステップS252の循環ハイブリッド走行処理に移行する。この処理は、外部からの充電を前提としないハイブリッド走行を行う点では通常ハイブリッド走行処理と共通するが、プラグインハイブリッド車において外部から充電した電力を電動モードへの切換え時等のためにほぼフル充電状態に温存しつつハイブリッド走行を行う点が異なる。つまり、エンジン走行とするかモータ走行とするかを通常ハイブリッド走行処理におけると同様の燃費効率によって決定するが、エンジン走行への強制切換えは二次電池20が充電最低限になるはるか以前の段階で後述するステップによって行う。
ステップS252においてその時点の走行選択が行われる度にフローはステップS254に進み走行が停止したかどうかチェックする。そして停止でなければステップS256に進み、二次電池20をモニタしてその充電がフル充電維持限界に達しているかどうかチェックする。フル充電維持限界でなければフローはステップS252に戻り、以下、走行停止またはフル充電維持限界が検出されない限りステップS252からステップS256を繰り返して循環ハイブリッド走行を継続する。ステップS254で走行停止が検出されるとその時点で図14の走行処理は終了する。
ステップS256でフル充電維持限界を割ったことが検出されるとフローはステップS258のエンジン走行処理に進み、強制的にエンジン走行を選択する。このように図14のフローによる走行処理では、ステップS248の通常ハイブリッド走行処理においてエンジン走行への強制切換えが行われる二次電池の第1充電レベルと、ステップS256においてエンジン走行への強制切換えを判定する二次電池の第2充電レベルの二つが備えられておりモードによって使い分けられる。既に述べたように、第2の充電レベルは第1充電レベルよりはるかに高い。ステップS258のエンジン走行処理が完了するとステップS260に進み、走行が停止したかどうかチェックする。停止でなければステップS262に進み、二次電池20の充電がフル充電に復帰したかどうかチェックする。フル充電に復帰していなければフローはステップS258に戻り、以下走行停止またはフル充電復帰が検出されない限りステップS258からステップS262を繰り返してエンジン走行処理を継続し、二次電池20への充電を行う。ステップS254で走行停止が検出されるとその時点で図14の走行処理は終了する。
ステップS262でフル充電復帰が検出されるとフローはステップS238に戻る。これは、フル充電状態から電動モードまたは最適効率モードへの切換えを可能とするためである。つまり、これらいずれのモードも二次電池がフル充電状態であることを前提としているが、ステップS258からステップS262を経由してステップS238に戻ることにより、これらのモードへの切換えを可能としている。ステップS238でこれらのモードへの切換えが行われない限り、フローはステップS238からステップS240を経由してステップS252に進むので、以下、ステップS260で走行停止が検出されない限り、ステップS238、ステップS240およびステップS252からステップS262が繰り返されて二次電池をほぼフル充電状態に温存しながらハイブリッド走行を継続する。ステップS260で走行停止が検出されるとその時点で図14の走行処理は終了する。
ステップS238電動モードが検出された時はステップS264に進み、強制的にモータ走行を選択する。そしてステップS266に進み、走行が停止したかどうかチェックする。停止でなければステップS268に進み、二次電池20の充電が充電最低限に達したチェックする。充電最低限を割っていなければフローはステップS264に戻り、以下走行停止または充電最低限が検出されない限りステップS264からステップS268を繰り返してモータ走行処理を継続する。二次電池20への充電を行う。ステップS254で走行停止が検出されるとその時点で図14の走行処理は終了する。一方、ステップS246において二次電池20が消耗して充電最低限を割ったことが検出されるとステップS248に移行し、通常ハイブリッド走行処理に移行する。
図15は、図13のステップS220における給油/給電処理の詳細を示すフローチャートである。フローがスタートすると、ステップS272で給油口908への接続があるかどうかをチェックする。接続が検出されれば、充電ケーブル12および給油パイプ912を備えた総合パワーケーブル910または給油パイプ912のみのいずれかが接続されたことを意味するのでステップS274に進み、給油開始を指示してステップS276に進む。一方給油口908への接続が検出されない場合は、充電ケーブル12のみが接続されたことを意味するので直接ステップS276に移行する。
ステップS276では充電用接続部10への接続があるかどうかをチェックする。接続が検出されれば、充電ケーブル12および給油パイプ912を備えた総合パワーケーブル910または充電ケーブル12のみのいずれかが接続されたことを意味するのでステップS278に進む。ステップS278では緊急充電操作が行われたかどうかがチェックされ、この操作が検出されなければステップS280に進んで時間帯別電灯契約を行っているかどうかチェックする。契約があることが検出された車両904の場合、充電は家庭の電灯線から深夜に行うことが意図されていると考えられるので、ステップS282に進み、給油口908への接続があるかどうかチェックする。そして給油口908への接続がなければ家庭の電灯線からの充電ケーブル12が接続されていると考えられるのでステップS284に進む。
ステップS284では、現在時刻が割引時間帯に該当するかどうかチェックされ、該当しなければ286に進んで割引時間帯に入ったことを検出するための時間モニタ中であるかどうかチェックする。そして時間モニタ中でなければステップS288でこの時間モニタを開始してステップS290に進む。なお、ステップS286で既に時間モニタ中であることが検出された時は直接ステップS290に進む。このように、緊急充電操作なしに時間帯別電灯契約の下で割引時間帯外に充電用接続部10への接続があった場合は、家庭において車庫入れをした後、深夜における充電を意図して充電ケーブル12を接続したものとして時間モニタ行い、充電の実行は時間到来まで保留する。
一方、ステップS278で緊急充電操作があった場合は、時間帯別電灯契約の有無にかかわらずサービススタンド904または家庭において即座に充電を開始することが求められたことを意味するのでステップS292に進み充電開始を指示してステップS290に進む。また、ステップS280で時間帯別電灯契約が検出されなかった場合も、ステップS292に進み、サービススタンド904または家庭において即座に充電を開始する指示を行ってステップS290に進む。さらにステップS284で現在時刻が割引時間帯に該当することが検出された場合も、ステップS292に進み、充電開始を指示してステップS290に進む。
ステップS290では、充電中かどうかをチェックし、充電中であればステップS290を繰り返して充電完了を待つ。そして、ステップS286経由のように充電実行なしにステップS290に至った場合、またはステップS292を経由してステップS290に至り充電が完了した場合はステップS294に進む。また、ステップS276で充電用接続部10への接続が検出されなかった時は直接ステップS294に移行する。さらに、ステップS280における時間帯別電灯契約の検出を経てステップS282で給油口908への接続が検出されたときは、サービススタンド902での充電は意図していないと考えられるので直ちにステップS294に移行する。
ステップS294では、給油中かどうかをチェックし、給油中であればステップS294を繰り返して給油完了を待つ。そして、S274における給油開始指示なしにステップS294に至った場合、またはステップS274における給油開始指示を経由してステップS294に至り給油が完了した場合はステップS296に進む。ステップS296では燃費計算処理が行われるがその詳細は後述する。
次いでステップS298では、充電用接続部10にケーブルが接続中かどうかチェックし、接続中であればステップS300で時間モニタ中であるかどうかチェックする。そして時間モニタ中であればステップS278に戻る。以下、ステップS278で緊急充電操作が検出されるか、又はステップS284で現在時刻が割引時間帯に該当することが検出されるか、又はステップS298でケーブルの除去が検出されるまで、ステップS278からステップS290およびステップS294からステップS300を繰り返す。なお、ステップS300で時間モニタ中であることが検出されない場合、またはステップS298でケーブルの除去が検出されたときは図15の給油/給電処理のフローを終了する。
図16は、図15のステップS296における給油/給電処理の詳細を示すフローチャートである。フローがスタートすると、ステップS312で充電があったかどうかチェックする。そして、充電があればステップS314に進んでPLC通信または無線LAN通信により充電量、電力料金単価および請求料金などの充電データをサービススタンド制御部922から取得し、ステップS316に進む。なお、ステップS312で充電があったことが検出されなければ直接ステップS316に移行する。
ステップS316では、給油があったかどうかチェックし、給油があればステップ318に進んで瞬間燃費計916による前回給油から今回給油までの燃費累積データを読み出す。さらにS320ではPLC通信または無線LAN通信により給油量、満タンまでの給油の有無、ガソリン単価、および請求料金などの今回の給油に関するサービススタンドデータを取得する。次いでステップS322では前回までに取得している給油に関する累積のサービススタンドデータを記憶部28から読み出し、ステップS324に移行する。
ステップS324では、ステップS320およびステップS322により得られたデータに基づき、前回給油および今回給油がともに満タンまで行われたかどうかチェックする。該当すれば満タン法による燃費計算が可能なのでステップS326に進み、ステップS320で得た今回給油量のデータを採用してステップS328に移行する。ステップS328ではトリップメータ917から前回給油から今回給油までの走行データを取得する。さらにステップS330では、今回給油量と今回走行距離から今回給油時の燃費を計算し、ステップS332に進む。一方ステップS324において今回および前回の給油がともに満タンであることが検出できなかった時はステップS334に進みステップS318から得た瞬間燃費計916の燃費データより前回給油から今回給油までの累積燃費データを採用してステップS332に進む。
ステップ332では、今回までの累積給油回数が所定(例えば10回)以上であるかどうかチェックし、該当すればステップS336に進んで今回までの累積走行距離および今回までの累積給油量から平均推定燃費を算出してステップS338に移行する。これは、累積給油量が燃料タンク16の容量よりも充分大きくなると給油量を油消費量と看做しても甚だしい誤差はないからである。一方ステップS332で累積給油回数が所定回数に達していない場合はステップS340に進み、瞬間燃費計916のデータから今回までの平均燃費を算出してステップS338に移行する。これは、給油回数が少ない場合は給油量実績から平均燃費を推定するよりも瞬間燃費計916のデータに基づいて平均燃費を推定する方が妥当性が大きいからである。なお、ステップS316で給油があったことが検出できなかったときは直ちにステップS338に移行する。
ステップS338では、所定距離(例えば10キロ)走行するのに要する累積走行コストを算出する処理を行う。その詳細は後述する。次いでステップS342では消費エネルギーをCO2に換算する処理を行う。その詳細も後述する。さらにステップS344では給油実績と走行実績に基づいて瞬間燃費計916を補正する処理を行ってフローを終了する。ステップS344の瞬間燃費計補正処理についても後述する。
なお、上記ステップS332では累積給油量が燃料タンク16の容量よりも充分大きいことの判定を給油回数で行っているが、これに代えて、累積給油量が所定以上に達したかどうかを直接的に判定するようにしてもよい。また、給油量の累積による判断に代え、ステップS332において累積走行距離が所定以上に達したかどうかをチェックするようにしてもよい。これらいずれによっても、給油量累積平均推定燃費を採用するか瞬間燃費計平均燃費を採用するかの決定が可能である。
図17は、図16のステップS338における累積走行コスト算出処理の詳細を示すフローチャートである。フローがスタートすると、ステップS352で今回の充電に関する支払電力料金があったかどうかチェックし、あればステップS354で今回支払い電力料金データを加算してステップS356に移行する。一方、ステップS352で今回支払電力料金がなければ直接ステップS356に移行する。ステップS356では、今回の充電に自家発電データがあったかどうかチェックし、あればステップS358で充電量相当分の充電設備償却費を加算してステップS360に移行する。一方、ステップS356で今回自家発電データがなければ直接ステップS360に移行する。
ステップS360では、今回CO2排出権取引に関する電力を充電したかどうかチェックし、該当すればステップS362に進む。ステップS362ではCO2排出権を売却したのなら売却代金を減算し、CO2排出権を購入したのなら購入代金を加算してステップS364に移行する。一方、ステップS360で今回の充電にCO2排出権取引が関係しなければ直接ステップS364に移行する。ステップS364では、今回の給油に関する支払給油料金があったかどうかチェックし、あればステップS366で今回支払給油料金データを加算してステップS368に移行する。一方、ステップS364で今回支払電力料金がなければ直接ステップS368に移行する。
ステップS368では、今回までの累積走行データをトリップメータ917から読み出すとともにこれに今回の走行データを加算する。次いでステップS370では上記の結果の最新累積走行データが所定距離以上かどうかチェックする。そして所定距離以上であればステップS372で今回までの累積電力料金データがあるかどうかチェックし、あればステップS374に進んで累積電力料金データを記憶部28から読み出してステップS376に移行する。一方、ステップS372で累積電力料金データがなければ直接ステップS376に移行する。ステップS376では、今回までの累積給油料金データがあるかどうかチェックし、あればステップS378に進んで累積給油料金データを記憶部28から読み出し、ステップS380に移行する。一方、ステップS376で累積給油料金データがなければ直接ステップS380に移行する。
ステップS380では、ステップS374で読み出した今回までの累積電力料金データとステップS378で読み出した今回までの累積給油料金データを合算し、総合累積料金を算出する。そして、ステップS382に進み、ステップS380で得られた今回までの合算総累積料金をステップS368で得られた今回までの累積走行データで除算するとともに10kmを乗算し、10kmあたりの累積平均走行コスト金額を算出してフローを終了する。なお、ステップS370で最新累積走行データが所定距離以上であることが検出できない場合は、直ちにフローを終了する。累積走行距離が一回のエネルギー注入で走行可能な距離よりも充分大きくない限りは、給油量や充電量などの注入エネルギー量を消費エネルギー量と看做すには誤差が大きく、これら注入エネルギーに関する支払料金から走行コストを算出するのは不適当だからである。
なお、上記ステップS370では累積走行距離が所定以上に達したかどうかをチェックしているが、その趣旨は、給油を伴う限り、図16のステップS332と同様に累積給油量が燃料タンク16の容量よりも充分大きいことの判定である。従って、車両904が電力のみで走行するのでない限り、ステップS370を、給油回数が所定回数に達したかどうかを判定するステップ、または累積給油量自体が所定量以上に達したかどうか判定するステップとしてもよい。これらいずれによっても、走行コストの算出が妥当かどうかの判断が可能である。
図18は、図16のステップS342におけるCO2換算処理の詳細を示すフローチャートである。フローがスタートすると、ステップS392で記憶部28に充電データがあるかどうかチェックし、あればステップS394で過去の累積電力量を記憶部28から読み出してステップS396に移行する。一方、ステップS392で充電データがなければ直接ステップS396に移行する。ステップS396では今回の充電データがあったかどうかチェックし、あればステップS398で今回充電量を加算してステップS400に移行する。一方、ステップS396で今回充電データがなければ直接ステップS400に移行する。
ステップS400では、今回CO2排出権取引に関する電力を充電したかどうかチェックし、該当すればステップS402に進む。ステップS402ではCO2排出権を売却したのなら売却相当分の電力量を加算し、CO2排出権を購入したのなら購入相当分の電力量を減算してステップS404に移行する。一方、ステップS400で今回の充電にCO2排出権取引が関係しなければ直接ステップS404に移行する。ステップ404では電力消費量をCO2排出量に換算する所定の換算式に基づき、ステップS392からステップS402の処理に基づく所定期間内の充電電力量をCO2排出量に換算する。
次いで、ステップS406で記憶部28に累積給油データがあるかどうかチェックし、あればステップS408で過去の累積給油量を記憶部28から読み出してステップS410に移行する。一方、ステップS406で累積給油データがなければ直接ステップS410に移行する。ステップS410では今回の給油データがあったかどうかチェックし、あればステップS412で今回給油量を加算してステップS412に移行する。一方、ステップS410で今回給油データがなければ直接ステップS414に移行する。ステップ414では石油消費量をCO2排出量に換算する所定の換算式に基づき、ステップS406からステップS412の処理に基づく今回までの累積給油量をCO2排出量に換算する。
次いでステップS416で、今回までの累積走行データをトリップメータ917から読み出すとともにこれに今回の走行データを加算する。そして、ステップS418で、上記の結果の最新累積走行データが所定距離以上かどうかチェックする。最新累積走行データが所定距離以上であればステップS420で、ステップS404で充電量から換算したCO2量とステップS414で給油量から換算したCO2量とを合算し、今回までの累積総CO2量を算出する。
次いでステップS422に進み、ステップS420で得られた今回までの累積総CO2量合算値をステップS416で得られた今回までの累積走行データで除算するとともに10kmを乗算し、10kmあたりの推定平均CO2排出量を算出してフローを終了する。なお、ステップS416で最新累積走行データが所定距離以上であることが検出できない場合は、直ちにフローを終了する。累積走行距離が一回のエネルギー注入で走行可能な距離よりも充分大きくない限りは、給油量や充電量などの注入エネルギー量を消費エネルギー量と看做すには誤差が大きく、これら注入エネルギーのCO2換算値から平均CO2排出量を算出するのは不適当だからである。
なお、上記ステップS416でも図17のステップS370のように累積走行距離が所定以上に達したかどうかをチェックしているが、その趣旨は、給油を伴う限り、図16のステップS332と同様に累積給油量が燃料タンク16の容量よりも充分大きいことの判定である。従って、車両904が電力のみで走行するのでない限り、ステップS416を、給油回数が所定回数に達したかどうかを判定するステップ、または累積給油量自体が所定量以上に達したかどうか判定するステップとしてもよい。これらいずれによっても、走行コストの算出が妥当かどうかの判断が可能である。
図19は、図16のステップS344における瞬間燃費計補正処理の詳細を示すフローチャートである。フローがスタートすると、ステップS432で給油データがあるかどうかチェックする。そして給油データがあればステップS434に進み、今回までの累積走行データをトリップメータ917から読み出すとともにこれに今回の走行データを加算する。そしてステップS436で、上記の結果の最新累積走行データが所定距離以上かどうかチェックする。最新累積走行データが所定距離以上であればステップS438で今回までの累積給油データを記憶部28から読み出すとともにこれに今回の走行データを加算して最新データに更新する。そして、ステップS440で最新累積給油量データと最新累積給油量データから給油量累積平均指定燃費を算出する。
次にステップS442で該当する期間について瞬間燃費計916よりのデータに基づき平均燃費を算出する。そしてステップS444において瞬間燃費計平均燃費と給油量累積平均推定燃費を比較し、ステップS446で両者の乖離が所定以上あるかどうかチェックする。その差が所定以上あればステップS448に進み、瞬間燃費計補正処理を行ってフローを終了する。ステップS448の瞬間燃費計補正処理は、給油量累積平均推定燃費をベースに瞬間燃費計平均燃費がこれと同じになるよう瞬間燃費計916による瞬間燃費データに補正を加えるものである。つまり、瞬間燃費計平均燃費が高すぎれば、以後瞬間燃費計916のデータが低めに出るよう瞬間燃費計916の出力を補正し、瞬間燃費計平均燃費が低すぎれば、以後瞬間燃費計916のデータが高めに出るよう瞬間燃費計916をの出力を補正するものである。
一方、ステップ446において乖離が所定以上であることが検出されないときは、瞬間燃費計補正処理は行わずに直ちにフローを終了する。また、ステップS432で給油データがあることが検出されなかった時、または、ステップS436で最新累積走行データが所定以上であることが検出されなかった時は、いずれも瞬間燃費計補正処理を行うことが適当でないので、直ちにフローを終了する。
なお、上記ステップS436でも図17のステップS370のように累積走行距離が所定以上に達したかどうかをチェックしているが、その趣旨は、図16のステップS332と同様に累積給油量が燃料タンク16の容量よりも充分大きいことの判定である。従って、ステップS436を、給油回数が所定回数に達したかどうかを判定するステップ、または累積給油量自体が所定量以上に達したかどうか判定するステップとしてもよい。これらいずれによっても、瞬間燃費計補正処理に入るのが妥当かどうかの判断が可能である。
上記の第3実施例では、給油と給電の制御処理を車両904側で行うよう構成したが、本発明の実施はこれにかぎられるものではない。例えば、図15の給油/給電処理と同様の処理を車両制御部26で行わせるのに代えて、サービススタンド制御部922に行わせるよう構成することも可能である。この場合、給油口908や充電用接続部10の接続の検出、並びに緊急充電操作もサービススタンド902側で行うことになる。また、ステップS280における時間帯別電灯契約車かどうかの判断は契約情報を車両904から受信して判断することになる。
以下では、以上開示された種々の技術的特徴についてまとめて述べる。
まず、本明細書中に開示された第1の技術的特徴は、車両用の充電システムに関する。
電気自動車やプラグインハイブリッド車が実用化検討段階に入り、これらの車両への充電システムが先にも述べた通り特許文献1や特許文献2等によって種々検討されている。
しかしながら、電気自動車やプラグインハイブリッド車が普及するための実用的な充電システムを提供する上では、なお多くの問題点が残されている。
そこで、本明細書中には、実際の使用に耐える車両用の充電システムを提供し、電気を利用する車両の普及を促進すべく、第1の技術的特徴が開示されている。
具体的に述べると、本明細書中には、上記第1の技術的特徴の一例として、電池を有する車両への電力を出力する給電部と、給電部への電力供給の有無を決定する給電開閉部と、給電部に正しく車両が接続されたことを検出しない限り給電部への給電が禁止されるよう給電開閉部を制御する制御部とを有する車両用の充電システムが開示されている。
電気を利用する車両の普及のためには、速やかな充電や容易な充電が必要となるが、一方でこのような充電を行うための工夫とそれに伴う不測の事態の招来は裏腹の関係にある。本明細書に開示されている特徴は、給電部に正しく車両が接続されたことを検出しない限り給電部への給電が禁止されるようにすることによりこの関係を調整するものである。
また、本明細書中には、上記第1の技術的特徴の具体例として、給電開閉部は、第一外線、第二外線および中性線を有する単相3線電力線より電力の供給を受け、第一外線と第二外線の間から高電圧の電力を前記給電部に供給する構成が開示されている。
これによって、家庭に普及している単相3線電力線を利用して200ボルト等の高圧で車両を高速充電することが可能となるとともに、感電死の危険のある200ボルト電源を適切に管理することができる。
また、本明細書中には、上記第1の技術的特徴のさらなる具体例として、制御部は、第一外線と第二外線のいずれかと中性線の間から通常の100ボルト等の低電圧の電力の供給を受けるよう構成することができる旨について開示されている。
また、本明細書中には、上記第1の技術的特徴の他の具体例として、制御部は、給電部を介した結線が正常であることを検出しない限り給電開閉部を制御して給電部への給電を禁止する構成が開示されている。これによって、給電部に不用意に電圧が印加されることを防止することができる。
また、本明細書中には、上記第1の技術的特徴の他の具体例として、制御部は、給電部からの出力インピーダンスが正常であることを検出しない限り給電開閉部を制御して給電部への給電を禁止する構成が開示されている。これによって、予定しない不適切な機器に給電部から給電が行われることを防止できる。
また、本明細書中には、上記第1の技術的特徴の他の具体例として、制御部は、給電部に所定形状の接続部が接続されていることを検出しない限り給電開閉部を制御して給電部への給電を禁止する構成が開示されている。この特徴によっても、予定しない不適切な機器に給電部から給電が行われることを防止できる。
また、本明細書中には、上記第1の技術的特徴の他の具体例として、制御部は、給電部に未充電の車両が接続されていることを検出しない限り前記給電開閉部を制御して前記給電部への給電を禁止する構成が開示されている。この特徴によっても、給電部に不用意に電圧が印加されることを防止することができる。
また、本明細書中には、上記第1の技術的特徴の他の具体例として、制御部は、給電部に接続される車両が特定できない限り給電開閉部を制御して前記給電部への給電を禁止する構成が開示されている。これによって、給電部に不用意に電圧が印加されることを防止することができるとともに車庫が屋外にあっても盗電を防止することもできる。
また、本明細書中には、上記第1の技術的特徴の他の具体例として、制御部は、給電部に接続される車両が認証できない限り給電開閉部を制御して給電部への給電を禁止する構成が開示されている。これによって車庫が屋外にあっても盗電を防止することができる。
また、本明細書中には、上記第1の技術的特徴の他の具体例として、制御部は、給電部への車両の接続により、給電部に正しく車両が接続されたか否かの検出を自動的に開始する構成が開示されている。これによって、給電が容易となり、既に述べた特徴とも相まって、電気を利用する車両の普及に貢献することができる。
また、本明細書中には、上記第1の技術的特徴の他の具体例として、制御部は、給電部への充電開始時間の到来により、給電部に正しく車両が接続されたか否かの検出を自動的に開始する構成が開示されている。この特徴によっても、給電が容易となり、既に述べた特徴とも相まって、電気を利用する車両の普及に貢献することができる。
また、本明細書中には、上記第1の技術的特徴の他の具体例として、給電部を介した電力線通信により給電部に正しく車両が接続されたか否かの検出を行う構成が開示されている。これによって、給電および給電に関する手続きのための通信が容易となり、既に述べた特徴とも相まって、電気を利用する車両の普及に貢献することができる。
また、本明細書中には、上記第1の技術的特徴のさらなる具体例として、開閉部は、電力供給の有無にかかわらず、電力線通信のために重畳される通信信号が前記給電部を介して伝達されることを許容する構成が開示されている。これによって電力線通信に支障なく給電制御を行うことができる。
また、本明細書中には、上記第1の技術的特徴の他の具体例として、制御部は、車両との無線通信により前記給電部に正しく車両が接続されたか否かの検出を行う構成が開示されている。このような特徴によっても、給電および給電に関する手続きのための通信を容易に行うことが可能となる。
また、本明細書中には、上記第1の技術的特徴の他の一例として、電池を有する車両への電力を出力する給電部と、給電部からの車両への給電開始条件を検出する検出部と、給電部への電力供給の有無を決定する給電開閉部と、時間帯別伝統契約がない場合には前記検出部による給電開始条件の検出によって給電を開始するとともに時間帯別伝統契約がある場合には検出部が給電開始条件を検出しても該当時間帯の到来まで給電開始を保留する給電開閉部のための制御部とを有する車両用の充電システムが開示されている。
これによって、手続きや操作に煩わされることなく、電気を利用する車両の経済的な利点を生かすことができる。
次に、本明細書中に開示された第2の技術的特徴も、車両用の充電システムに関する。
先にも述べた通り、電気自動車やプラグインハイブリッド車が実用化検討段階に入り、これらの車両への充電システムが先にも述べた通り特許文献1や特許文献2等によって種々検討されている。
しかしながら、電気自動車やプラグインハイブリッド車が普及するための実用的な充電システムを提供する上では、なお多くの問題点が残されている。
そこで、本明細書中には、実際の使用に耐える車両用の充電システムを提供し、電気を利用する車両の普及を促進すべく、第2の技術的特徴が開示されている。
具体的に述べると、本明細書中には、上記第2の技術的特徴の一例として、電池を有する車両を充電するための電力を供給する電力供給部と、この車両との間で通信を行う通信部とを有する車両用の充電システムが開示されている。
このようにして充電システムと車両との間を充電および通信という二重の関係で結ぶことにより、充電システムと車両が一体化し、種々の不都合が回避されるとともに実用上の利点の多い充電システムを実現することができる。
また、本明細書中には、上記第2の技術的特徴の具体例として、電力供給部からの電力線を給電部に接続して車両充電のための電力を出力されるとともに、この給電部を介した車両との電力線通信を行うために通信部の通信信号を電力線との間で分波合成する分波合成部が設けられる構成が開示されている。これによって、充電ケーブルを車両に接続するだけで車両との間の通信が可能となる。
また、本明細書中には、上記第2の技術的特徴の他の具体例として、通信部の通信信号を車両との間で授受するための無線送受信部を設けられる構成が開示されている。これによって、充電ケーブルの接続の有無に係らず、車両との間の通信が可能となる。
また、本明細書中には、上記第2の技術的特徴の他の具体例として、通信部は車両情報を充電システムに送信する構成が開示されている。これによって、例えば車両側の二次電池の充電状況の情報を充電システム側に伝達することができる他、車両のIDやパスワードを送信することで、充電を受ける資格のある車両であることを証明することもできる。
また、本明細書中には、上記第2の技術的特徴の他の具体例として、通信部は充電システムからの指示を前記車両に送信する構成が開示されている。これによって、IDやパスワードの送信要求などを行うことができ、車両を充電システムの外部機器のように扱うことが可能となる。
また、本明細書中には、上記第2の技術的特徴の他の具体例として、通信部は車両からの指示を充電システムに送信する構成が開示されている。これによって、充電に関する指示を車両から充電システムに送信することができる他、充電システムが設けられる車庫における照明などの設備を操作する信号を送信することも可能となる。
また、本明細書中には、上記第2の技術的特徴の他の一例として、第一外線、第二外線および中性線を有する単相3線電力線と、第一外線と第二外線の間から高電圧の電力を出力して電池を有する車両を充電するための給電部と、第一外線と記第二外線のいずれかと中性線の間から低電圧の電力の供給を受けて車両を照明するための照明部とを有することを特徴とする車両用の充電システムが開示されている。
これによって、高速充電が可能であるとともに通常の照明機器が利用可能な充電システムを得ることができる。
また、本明細書中には、上記第2の技術的特徴の具体例として、第一外線と第二外線のいずれかと前記中性線の間から低電圧の電力の供給を受けて駆動される車両の収納機構が設けられる構成が開示されている。これによって、高速充電が可能であるとともに通常電圧で駆動できる車両収納機構が利用可能な充電システムを得ることができる。
また、本明細書中には、上記第2の技術的特徴の他の具体例として、第一外線と第二外線のいずれかと中性線の間から低電圧の電力の供給を受けて給電部近傍を照明するための手元照明部が設けられる構成が開示されている。これによって、高速充電が可能であるとともに、夜間でも充電のための手元照明を行うことが可能となる。
また、本明細書中には、上記第2の技術的特徴の他の具体例として、第一外線と第二外線のいずれかと中性線の間から低電圧の電力の供給を受けて充電に関する情報を表示する表示部が設けられる構成が開示されている。これによって高速充電が可能であるとともに、通常電圧で駆動できる表示部によって充電に関する情報を表示することが可能となる。
また、本明細書中には、上記第2の技術的特徴の他の一例として、電力線と、電池を有する車両の充電のために前記電力線からの電力を出力する給電部と、CO2排出なしに電力線に電力を供給する自家発電システムと、給電部を介して消費される電力量と自家発電システムによって発電される電力量の関係を通知する通知部とを有する車両用の充電システムが開示されている。
これによって、電池を有する車両と自家発電システムの組合せによる自然環境への自身の貢献を理解しながら車両を利用することができる。
また、本明細書中には、上記第2の技術的特徴の具体例として、電力線に外部から通常の電力を供給する引き込み線を有し、給電部はこの引き込み線からの電力および自家発電システムからの電力のいずれによっても車両の充電のための電力を出力可能である構成が開示されている。
上記特徴によれば、このように引き込み線から買った電力により車両が受電される可能性がある場合であっても、自然環境への自身の貢献を理解しながら車両を利用することができる。
また、本明細書中には、上記第2の技術的特徴の他の具体例として、通知部は、給電部を介して消費される電力量と自家発電システムによって発電される電力量の関係をCO2排出量に換算して通知する構成が開示されている。これによってより直截的に自然環境への貢献を実感することができる。
次に、本明細書中に開示された第3の技術的特徴も、車両用の充電システムに関する。
先にも述べた通り、電気自動車やプラグインハイブリッド車が実用化検討段階に入り、これらの車両への充電システムが先にも述べた通り特許文献1や特許文献2等によって種々検討されている。
しかしながら、電気自動車やプラグインハイブリッド車が普及するための実用的な充電システムを提供する上では、なお多くの問題点が残されている。
そこで、本明細書中には、取り扱いが容易な車両用の充電ユニットを提供し、電気を利用する車両の普及を促進すべく、第3の技術的特徴が開示されている。
具体的に述べると、本明細書中には、上記第3の技術的特徴の一例として、電池を有する車両を充電するための電力を供給する接続部と、この接続部に供給すべき電力を入力する電力入力部と、接続部から車両に供給される電力を計測する計測部と、この計測部の計測結果に基づく電力料金決済のための通信部とを有する車両用の充電ユニットが開示されている。
このように給電機能およびこれに伴う電力料金決済のための通信機能をユニット化することにより、充電ユニットを設置するだけで容易に充電システムを構築することが可能となる。
また、本明細書中には、上記第3の技術的特徴の詳細な一例として、通信部は、充電ユニット内の電力線に通信情報を分波合成する分波合成部を有する構成が開示されている。これによって、充電ユニットを電力線に接続するだけで電力供給および電力線通信による電力料金決済が可能となる。なお、このように充電ユニットに分波合成部を設ける本発明の特徴は、電力料金決済のための通信に係らず、充電ユニット外との種々の電力線通信にも有用である。
また、本明細書中には、上記第3の技術的特徴の他の詳細な一例として、通信部は、電力情報を送信するための無線送受信部を有する構成が開示されている。充電ユニット設置部が無線通信可能な環境にあれば、このような特徴によっても、充電ユニットを電力線に接続するだけで電力供給および電力線通信による電力料金決済が可能となる。
また、本明細書中には、上記第3の技術的特徴の他の詳細な一例として、充電ユニットが車両の車輪止めに設けられる構成が開示されている。これにより駐車スペースに常設される車輪止めを利用して容易に充電システムを構築することができる。この本発明の特徴は、電力計測部や通信部を有さない簡易型の充電ユニットに実施する際にも有用である。
また、本明細書中には、上記第3の技術的特徴のさらに詳細な一例として、車輪止めの右車輪側と左車輪側に少なくとも接続部がそれぞれ設けられる構成が開示されている。これによって、充電用接続部が車両の右側にある車両とこれが左側にある車両のいずれにも対応して車輪止め部分に容易に充電ケーブルを接続することができる。
また、本明細書中には、上記第3の技術的特徴のさらに詳細な一例として、右車輪側と左車輪側の接続部から同時に電力が供給されることがないような制御が行われる構成が開示されている。これによって、定格以上の電流が流れるような予定外の使用状態を防止できる。なお、このような制御のためには、車輪止めの右車輪側と左車輪側にそれぞれ給電開閉部を設けることが望ましい。
以上のような給電開閉部は、上記のような車輪止めの右車輪側と左車輪側における接続部の制御にのみ有用なものではない。つまり、接続部と前記電力入力部の間に給電開閉部を設けるという特徴は、充電ユニット毎に接続部に電圧を印加するかどうかの制御を個別に行うことを可能にし、盗電や感電防止の有用な対策となる。
また、本明細書中には、上記第3の技術的特徴の他の一例として、接続部を使用しないときにこれを保護するための保護部が設けられる構成が開示されている。これによって充電ユニットが屋外の駐車スペースなど過酷な条件下に設置されてもこれを保護し、風雨からの保護や防塵など可能となる。
また、本明細書中には、上記第3の技術的特徴の詳細な一例として、保護部を操作したことを検出する検出部が設けられる構成が開示されている。これによって、保護部の状態をモニタできるとともに、検出結果の種々の活用が可能となる。
例えば、通常、保護部は接続部の使用を意図して操作されるので、これを検出することによって通信部による通信を起動するができる。
また、保護部の操作後所定時間内に接続部が使用されなかったことを判断することによって保護部が機能できない状態で放置されていることを知ることができる。
なお、上記第3の技術的特徴の利点については、以上のような具体的な実施に限るものではなく、接続部が異常状態で放置されていることを判断する制御部を設けることを技術思想とする。従って、この技術思想に従って、適宜具体的な実施を行うことができる。
次に、本明細書中に開示された第4の技術的特徴は、車両用の燃費計測システムに関する。
車両の燃費を計測する最も一般的な方法としてはガソリンタンクを満タンにして走行を始め、走行距離を次に満タンにするための給油量で割ることによって燃費を算出するいわゆる満タン法がよく知られている。一方、エンジンへの燃料噴射量と車速により瞬間燃費を算出する装置の車両への搭載も一般化している。その他、経済性および環境への配慮の観点から関心が高まる中、燃費計測システムとしては種々のものが提案されている。
なお、これらに関しては、従来より種々の技術が提案されている(例えば、先に挙げた特許文献3~特許文献5を参照)
しかしながら、妥当な計測が可能な燃費計測システムを提供する上では、なお多くの問題点が残されている。
そこで、本明細書中には、運転者に負担を与えずに妥当な燃費の把握が可能な車両用の燃費計測システムを提供すべく、第4の技術的特徴が開示されている。
具体的に述べると、本明細書中には、上記第4の技術的特徴の一例として、サービススタンドから給油を受ける燃料タンクと、燃料タンクへの給油量情報をサービススタンドから受信する受信部と、受信部が受信する給油量情報を記憶する記憶部と、燃料タンクの燃料を消費して走行動力を提供する動力部と、走行距離情報取得部と、給油量情報および前記走行距離情報より燃費を算出する制御部とを有する車両用の燃費計測システムが開示されている。上記のようにして燃料タンクへの給油量情報をサービススタンドから受信することにより、受信した給油量情報と車両内で取得される走行距離情報から給油実績および走行実績に基づいた燃費を自動的に算出することが可能となる。
また、本明細書中には、上記第4の技術的特徴の具体例として、サービススタンドの電力線から電力供給を受ける電力蓄積部を有し、受信部はこの電力線を通じた電力線通信部を含む構成が開示されている。この場合、受信部は、電力蓄積部を充電するための電力線の接続によりサービススタンドからの情報を受信することができる。この特徴はプラグインハイブリッド車において有用である。また、本明細書中には、上記第4の技術的特徴のさらなる具体例として、受信部はサービススタンドから電力蓄積部への充電量情報を受信するとともに記憶部は前記受信部が受信する充電量情報を記憶する構成が開示されている。また、本明細書中には、上記第4の技術的特徴の具体例として、受信部は無線通信部を含む構成が開示されている。このような特徴は、プラグインハイブリッド車だけでなく、サービススタンドから専ら給油を受ける通常のガソリン車にとっても有用である。
また、本明細書中には、上記第4の技術的特徴の他の具体例として、受信部はさらにサービススタンドから燃料単価情報を受信するとともに記憶部はさらに受信部が受信する燃料単価情報を記憶する構成が開示されている。これによって、燃費だけでなく、給油等に実際に支払った金額が自動的に把握できるだけでなく、燃料単価の変動に伴う走行コストの自動的把握も可能となる。
また、本明細書中には、上記第4の技術的特徴の他の一例として、サービススタンドから給油を受ける燃料タンクと、給油量情報を記憶する記憶部と、燃料タンクの燃料を消費して走行動力を提供する動力部と、走行距離情報取得部と、記憶部の給油情報に基づき燃料タンクへの前回給油および今回給油がともに満タンまでの給油であったとき今回の給油量および前回給油時から今回給油時までの走行距離情報より自動的に燃費を算出するとともに前記燃料タンクへの前回給油および今回給油の少なくとも一方が満タンまでの給油でなかったときは給油量および走行距離情報に基づく燃費を自動的に算出しない制御部とを有する車両用の燃費計測システムが開示されている。これによって、給油情報の記憶情報に基づき自動的に適正な燃費算出が可能となるとともに意味のない燃費計算を避けることができる。
また、本明細書中には、上記第4の技術的特徴の具体例として、給油量情報をサービススタンドから受信する受信部を有し、記憶部は受信した給油量情報を自動的に記憶する構成が開示されている。また、このような受信部により給油が満タンまでの給油であったかどうかの情報をサービススタンドから自動的に受信することも可能である。また、本明細書中には、上記第4の技術的特徴の他の具体例として、燃料タンクから前記動力部への燃料供給状況の検知から走行中の瞬間燃費を算出する瞬間燃費計を有し、制御部は前記燃料タンクへの前回給油および今回給油の少なくとも一方が満タンまでの給油でなかったときは瞬間燃費計に基づく燃費を採用する構成が開示されている。これによって、給油が満タンまで行われるか否かに係らず、状況に応じより妥当性が高い情報に基づいて燃費情報を提供することができる。
また、本明細書中には、上記第4の技術的特徴の他の一例として、サービススタンドから給油を受ける燃料タンクと、給油量情報を記憶する記憶部と、燃料タンクの燃料を消費して走行動力を提供する動力部と、走行距離情報取得部と、記憶部に記憶される累積給油量が燃料タンクの容量より充分大きい状況であると判定される場合に記憶部に記憶される累積給油量および走行距離情報取得部から取得される累積走行距離情報より燃費を算出する制御部とを有する車両用の燃費計測システムが開示されている。これによって給油実績に基づいて信頼性の高い平均燃費推測が可能となる。また、本明細書中には、上記第4の技術的特徴の具体例として、制御部は、累積給油量が所定より大きい時、累積給油量が前記燃料タンクの容量より充分大きい状況であると判定する構成が開示されている。また、本明細書中には、上記第4の技術的特徴の具体例として、制御部は、累積給油回数が所定より大きい時、累積給油量が前記燃料タンクの容量より充分大きい状況であると判定する構成が開示されている。また、本明細書中には、上記第4の技術的特徴のさらに他の具体例として、制御部は、累積走行距離が所定より大きい時、累積給油量が前記燃料タンクの容量より充分大きい状況であると判定する構成が開示されている。
また、本明細書中には、上記第4の技術的特徴の他の具体例として、燃料タンクから前記動力部への燃料供給状況の検知から走行中の瞬間燃費を算出する瞬間燃費計を有し、制御部は、累積給油量が前記燃料タンクの容量より充分大きい状況であると判定されない場合、瞬間燃費計に基づく燃費を採用する構成が開示されている。これによって、給油実績に係らず、状況に応じより妥当性が高い情報に基づいて平均燃費推測が可能となる。瞬間燃費計の情報は短期間の燃費情報としては妥当性があるが、ここに誤差があるとこれを元にした長期間の平均燃費推測の信頼線は低くなる。一方で、満タン法が適用できない状況下での給油実績に基づく短期間での燃費推測は妥当性が低いが、長期間の平均をとる場合は給油実績をほぼ消費実績と看做すことができるので信頼性が高くなる。上記特徴は、これら両者の特徴を相補って、状況に応じ自動的により妥当性が高い情報に基づいて平均燃費を推測することを可能とするものである。
また、本明細書中には、上記第4の技術的特徴の他の一例として、サービススタンドから給油を受ける燃料タンクと、給油量情報を記憶する記憶部と、燃料タンクの燃料を消費して走行動力を提供する動力部と、走行距離情報取得部と、燃料タンクから前記動力部への燃料供給状況の検知から走行中の瞬間燃費を算出する瞬間燃費計と、記憶部に記憶される累積給油量が前記燃料タンクの容量より充分大きい状況であると判定されるとき記憶部に記憶される累積給油量および走行距離情報取得部から取得される累積走行距離情報より算出される燃費に基づいて瞬間間燃費計を補正する制御部とを有することを特徴とする車両用の燃費計測システムが開示されている。これによって、より信頼性の高い給油実績と走行実績により瞬間燃費計の誤差を補正することができる。具体的には、給油実績および走行実績により算出した推測平均燃費と瞬間燃費計より得られる推測平均燃費を比較し、両者の乖離が所定より大きいとき後者の推測平均燃費が前者の推測平均燃費となるよう瞬間燃費計を補正する。
また、本明細書中には、上記第4の技術的特徴の他の一例として、サービススタンドから給油を受ける燃料タンクと、給油量情報を記憶する記憶部と、燃料タンクの燃料を消費して走行動力を提供する動力部と、走行距離情報取得部と、燃料タンクから前記動力部への燃料供給状況の検知から走行中の瞬間燃費を算出する瞬間燃費計と、動力部による走行中は前記瞬間燃費計に基づく燃費を採用するとともに動力部による走行が停止されている状態において給油量情報および走行距離情報より燃費を算出する制御部とを有する車両用の燃費計測システムが開示されている。
次に、本明細書中に開示された第5の技術的特徴は、車両用の環境対策システムに関する。
車両の運行に関しては環境対策から二酸化炭素の排出を低減するための種々の提案がなされている。そして、経済性の観点からも低燃費車への関心が高まっている。また環境への負荷軽減のために電気自動車やハイブリッド車への注目も高まっている。
なお、これらに関しては、従来より種々の技術が提案されている(例えば、先に挙げた特許文献6~特許文献8を参照)
しかしながら、車両の環境対策システムを提供する上では、なお多くの問題点が残されている。
そこで、本明細書中には、運転者に適切な環境対策情報を提供することが可能な車両用の環境対策システムを提供すべく、第5の技術的特徴が開示されている。
具体的に述べると、本明細書中には、上記第5の技術的特徴の一例として、給油を受ける燃料タンクと、電力線から電力供給を受ける電力蓄積部と、燃料タンクへの給油情報および電力蓄積部への充電情報を記憶する記憶部と、燃料タンクの燃料および電力蓄積部の電力を消費して走行動力を提供する動力部と、走行距離情報取得部と、記憶部の情報および走行距離情報より走行コストを算出する制御部とを有する車両用の環境対策システムが開示されている。これによって異なるエネルギー源によって走行するハイブリッド車のエネルギー消費効率を走行コストの観点から総合的に把握することができる。
また、本明細書中には、上記第5の技術的特徴の具体例として、燃料タンクへの給油情報および電力蓄積部への充電情報をサービススタンドから受信する受信部が環境対策システムに設けられる構成が開示されている。これによって走行コスト算出のための情報を自動的に取得することができる。また、本明細書中には、上記第5の技術的特徴の他の具体例として、給油情報は給油量情報および給油単価情報を含むとともに、充電情報は充電量情報および充電単価情報を含む構成が開示されている。これによって走行コスト算出のための情報を利用しやすい形で取得することができる。
また、本明細書中には、さらに上記第5の技術的特徴の他の具体例として、制御部は、走行距離情報取得部により取得された累積走行距離が所定より大きい時、走行コストを算出する構成が開示されている。厳密に言えば、走行コストとは走行距離と走行のために消費したエネルギーの関係である。上記特徴によれば、供給を受けたエネルギーを消費したエネルギーと看做すために、累積走行距離が所定より大きい時に走行コストを算出するようにし、妥当でない値が算出されるのを防止している。
また、本明細書中には、上記第5の技術的特徴の他の一例として、給油を受ける燃料タンクと、電力線から電力供給を受ける電力蓄積部と、燃料タンクへの給油量情報および電力蓄積部への充電量情報を記憶する記憶部と、燃料タンクの燃料および電力蓄積部の電力を消費して走行動力を提供する動力部と、距離情報取得部と、記憶部の給油量情報および充電量情報をそれぞれ二酸化炭素排出量情報に換算する換算部と、換算部の二酸化炭素排出量情報および走行距離情報より単位走行距離あたりの二酸化炭素排出量を算出する制御部とを有する車両用の環境対策システムが開示されている。これによって異なるエネルギー源によって走行するハイブリッド車の環境への負荷を、二酸化炭素排出量の観点から総合的に把握することができる。
また、本明細書中には、上記第5の技術的特徴の具体例として、燃料タンクへの給油量情報および電力蓄積部への充電量情報をサービススタンドから受信する受信部が設けられる構成が開示されている。これによって二酸化炭素排出量算出のための情報を自動的に取得することができる。また、本明細書中には、上記第5の技術的特徴の他の一例として、制御部は、走行距離情報取得部により取得された累積走行距離が所定より大きい時、単位走行距離あたりの二酸化炭素排出量を算出する構成が開示されている。これによって、供給を受けたエネルギーを二酸化炭素排出の原因となる消費エネルギーと看做すために、累積走行距離が所定より大きい時に二酸化炭素排出量を算出するようにし、妥当でない値が算出されるのを防止している。
また、本明細書中には、上記第5の技術的特徴の他の一例として、エネルギー蓄積部と、エネルギー蓄積部へのエネルギー蓄積料金情報を記憶する記憶部と、エネルギー蓄積部のエネルギーを消費して走行動力を提供する動力部と、走行距離情報取得部と、二酸化炭素排出権取引情報を取得する取引情報取得部と、記憶部の情報、取引情報取得部の情報および走行距離情報より走行コストを算出する制御部とを有することを特徴とする車両用の環境対策システムが開示されている。これによって、二酸化炭素排出権取引を考慮した走行コストの把握が可能となり、環境への付加軽減にかかるコストも含めた走行コストの把握が可能となる。なお、上記におけるエネルギー蓄積部は、具体的には、燃料タンクまたは電力蓄積部またはその両者を含む。上記において、制御部は、具体的には、取引情報取得部に二酸化炭素排出権売却情報があるときは記憶部のエネルギー蓄積料金から売却代金を減算するとともに取引情報取得部に二酸化炭素排出権購入情報があるときは記憶部のエネルギー蓄積料金に購入代金を加算する。つまり、二酸化炭素排出権を売却すれば、走行による環境への負荷についての責任は増すが、走行コストを下げることができる。逆に二酸化炭素排出権を購入すれば、環境への負荷についての責任は軽減されるが、走行コストは上がることになる。
また、本明細書中には、上記第5の技術的特徴の他の一例として、エネルギー蓄積部にエネルギーを蓄積するサービススタンドからエネルギー蓄積料金情報を受信する受信部を有する構成が開示されている。これによって走行コスト算出のための情報を自動的に取得することができる。また、本明細書中には、上記第5の技術的特徴の他の具体例として、制御部は、走行距離情報取得部により取得された累積走行距離が所定より大きい時、走行コストを算出する構成が開示されている。つまり、供給を受けたエネルギーを消費したエネルギーと看做すために累積走行距離が所定より大きい時に走行コストを算出するようにし、妥当でない値が算出されるのを防止している。
また、本明細書中には、上記第5の技術的特徴の他の一例として、エネルギー蓄積部と、エネルギー蓄積部へのエネルギー蓄積量を記憶する記憶部と、エネルギー蓄積部のエネルギーを消費して走行動力を提供する動力部と、走行距離情報取得部と、二酸化炭素排出権取引情報を取得する取引情報取得部と、記憶部のエネルギー蓄積量情報を二酸化炭素排出量情報に換算する換算部と、換算部の二酸化炭素排出量情報、取引情報取得部の情報および走行距離情報より単位走行距離あたりの二酸化炭素排出量を算出する制御部を算出する制御部とを有する車両用の環境対策システムが開示されている。これによって、二酸化炭素排出権取引も含めた形での走行による二酸化炭素排出量の把握が可能となり、走行距離あたりの現実の二酸化炭素排出量に係らず、二酸化炭素排出権取引によって環境への負荷軽減に貢献できる。なお、上記におけるエネルギー蓄積部は、具体的には、燃料タンクまたは電力蓄積部またはその両者を含む。上記において、制御部は、具体的には、取引情報取得部に二酸化炭素排出権売却情報があるときは記憶部のエネルギー蓄積量に売却相当量を加算するとともに取引情報取得部に二酸化炭素排出権購入情報があるときは記憶部のエネルギー蓄積量から購入相当量を減算する。このように二酸化炭素排出権取引によって見かけ上増減するエネルギー蓄積量を二酸化炭素排出量に換算することによって排出権取引も加味した環境への負荷を把握することができる。
また、本明細書中には、上記第5の技術的特徴の具体例として、エネルギー蓄積部にエネルギーを蓄積するサービススタンドからエネルギー蓄積量情報を受信する受信部が設けられる構成が開示されている。これによって二酸化炭素排出量算出のための情報を自動的に取得することができる。また、本明細書中には、上記第5の技術的特徴の他の具体例として、制御部は、走行距離情報取得部により取得された累積走行距離が所定より大きい時、単位走行距離あたりの二酸化炭素排出量を算出する構成が開示されている。これによって、供給を受けたエネルギーを二酸化炭素排出の原因となる消費エネルギーと看做すために、累積走行距離が所定より大きい時に二酸化炭素排出量を算出するようにし、妥当でない値が算出されるのを防止している。
次に、本明細書中に開示された第6の技術的特徴は、充電電力により走行可能な車両およびその充電システムに関する。
近年、環境対策として二酸化炭素の排出を低減する観点および経済性の観点から電気自動車やハイブリッド車両が注目されている。さらに、エネルギー源としてガソリンだけでなく充電電力を併用するプラグインハイブリッド車両についても関心が高まっている。
なお、これらに関しては、従来より種々の技術が提案されている(例えば、先に挙げた特許文献9や特許文献10を参照)
しかしながら、充電環境の整備等の問題もあって充電電力により走行可能な車両の普及のためには、なお多くの問題点が残されている。
そこで、本明細書中には、充電電力により走行可能な車両およびその充電システムの実用面の改善について種々の提案を行うべく、第6の技術的特徴が開示されている。
具体的に述べると、本明細書中には、上記第6の技術的特徴の一例として、給油を受ける燃料タンクと、電力線から電力供給を受ける電力蓄積部と、燃料タンクへの給油準備状態を検出する給油準備検出部と、電力蓄積部への電力供給準備状態を検出する電力供給準備検出部と、給油準備検出部が給油準備状態を検出しているか否かによって電力供給準備検出部が電力供給準備状態を検出したときの電力蓄積部への電力供給状況を異ならしめる制御部とを有することを特徴とする充電電力により走行可能な車両が開示されている。電力供給状況を異ならしめる一例は、給油準備検出部が給油準備状態を検出しているとき、電力供給準備検出部が電力供給準備状態を検出しても電力蓄積部への電力供給を行わないよう制御することである。このような特徴は、例えば車両が家庭での充電を前提とする深夜電力料金契約など所定の電力供給契約締結状態にあるときはサービススタンド等で電力供給準備検出部が電力供給準備状態を検出しても電力蓄積部への電力供給を行わないようにして高価な電力供給を受けないようにする場合等に有用である。電力供給状況を異ならしめる例は、上記に限られるものではない。なお、緊急の場合、サービススタンド等において操作部の操作に応じ給油準備検出部が給油準備状態を検出しているときでも電力供給準備検出部が電力供給準備状態を検出したときに電力蓄積部への電力供給を許可することもできるよう構成することも任意である。
また、本明細書中には、上記第6の技術的特徴の他の一例として、給油を受ける燃料タンクと、電力線から電力供給を受ける電力蓄積部と、電力蓄積部への電力供給準備状態を検出する電力供給準備検出部と、車両が所定の電力供給契約締結状態にあるか否かによって電力供給準備検出部が電力供給準備状態を検出したときの電力蓄積部への電力供給状況を異ならしめる制御部とを有することを特徴とする充電電力により走行可能な車両が開示されている。電力供給状況を異ならしめる一例は、車両が所定の電力供給契約締結状態にあるとき電力供給準備検出部が電力供給準備状態を検出しても電力蓄積部への電力供給を行わないよう制御することである。このような特徴は、例えば車両が所定の電力供給契約締結状態にありかつ契約に基づく電力供給可能時間帯でないとき電力供給準備検出部が電力供給準備状態を検出しても電力蓄積部への電力供給を行わないようにして高価な電力供給を受けないようにする場合等に有用である。電力供給状況を異ならしめる例は、上記に限られるものではない。
また、本明細書中には、上記第6の技術的特徴の他の一例として、電力線から電力供給を受ける電力蓄積部と、電力蓄積部への電力供給準備状態を検出する電力供給準備検出部と、走行開始操作部と、電力供給準備検出部が電力供給準備状態を検出しているとき走行開始操作部の操作を無効とする走行制御部とを有することを特徴とする充電電力により走行可能な車両が開示されている。電力供給準備状態の検出の一例は、電力蓄積部に電力を供給する外部ケーブルが車両に接続されたままである状態の検出であり、このような状態のままでの走行してしまうことが防止される。電力供給準備状態の検出の例は、上記に限られるものではない。また、走行制御部が走行開始操作部の操作を無効としていることを報知する報知部を設ければ電力供給準備状態を解除して走行可能とするのを促すことができる。このような構成は、車両が所定の電力供給契約締結状態にありかつ契約に基づく電力供給可能時間帯でないとき電力供給準備検出部が電力供給準備状態を検出しても電力蓄積部への電力供給を行わないよう制御する制御部が設けられた場合に有用である。このような構成において、例えば車両を自宅の駐車場に入れて深夜に自動的に充電開始されるよう電力供給準備状態としておいた場合、翌朝、電力供給準備状態を解除しないまま走行してしまうような事故が防止できるからである。なお、上記の特徴は、プラグインハイブリッド車両であるか電気自動車であるかの如何に係わらず有用である。
また、本明細書中には、上記第6の技術的特徴の他の一例として、電力線から電力供給を受ける電力蓄積部と、電力蓄積部への電力供給準備状態を検出する電力供給準備検出部と、電力供給準備検出部が電力供給準備状態を検出しているとき車両が所定の電力供給契約に基づいて電力供給可能時間帯であるかどうかの検知を継続する時間帯検知部と、時間帯検知部が電力供給時間帯であることを検知しない限り電力供給準備検出部が電力供給準備状態を検出していても電力供給を行わない制御部とを有することを特徴とする充電電力により走行可能な車両が開示されている。このようにして所定の電力供給契約があるときの電力供給準備状態の検知と電力供給可能時間帯の検知が連動させられる。
また、本明細書中には、上記第6の技術的特徴の他の一例として、給油を受ける燃料タンクと、電力線から電力供給を受ける電力蓄積部と、電力蓄積部の電力蓄積状態を検知する検知部と、燃料タンクの燃料を消費して動力を発生する第1動力源と、電力蓄積部の電力を消費して動力を発生する第2動力源と、検知部の第1の検知レベルに基づいて第2動力源から第1動力源に切換えを行う第1モードと第1の検知レベルとは異なる検知部の第2の検知レベルに基づいて第2動力源から第1動力源に切換えを行う第2モードとが選択可能な制御部とを有することを特徴とする充電電力により走行可能な車両が開示されている。例えば、第2の検知レベルは、例えば電力蓄積部が充分充電されている状態を維持するためのレベルであり、第1の検知レベルは、例えば第1動力源による走行効率が所定以下のときに第2動力源による走行を可能とするレベルである。また、制御部が、さらに第2動力源のみによる連続走行を行う第3モードの選択が可能なよう構成することも可能である。この場合、制御部が第2モードから第3モードへの変更を可能とするよう構成すれば電力蓄積部が充分充電されている状態から第2動力源のみによる走行状態に入ることができる。また、制御部が第2モードから第1モードへの変更を可能とするよう構成することも可能であり、この場合も電力蓄積部が充分充電されている状態から第1モードに入ることができる。なお、さらに制御部が走行効率に基づいて第1動力源と第2動力源を切換えることができるよう構成するのが望ましい。
また、本明細書中には、上記第6の技術的特徴の他の一例として、燃料供給路と、電力供給路と、電力供給路の異常を検知する異常検知部と、異常検知部が電力供給路の異常を検知したとき燃料供給路からの燃料供給を禁止する制御部とを有することを特徴とする充電電力により走行可能な車両のための充電システムが開示されている。このような特徴によれば、サービススタンド等において電力と燃料を同時に供給する際において電力供給路の異常によるスパーク等による引火の防止が図られる。
上記のように、上記第6の技術的特徴によれば、充電電力により走行可能な車両およびその充電システムにおける実用面の種々の改善が可能となる。
本発明は、実用的なプラグインハイブリッド車または電気自動車およびこれらのための充電システム、燃費計測システム、及び、環境対策システムを提供するものである。
Claims (20)
- 電池を有する車両を充電するための電力源と、前記電力源からの電力を車両に導くための電力供給部と、前記電力供給部を介して車両と充電に関する電力線通信を行うための電力線通信部とを有することを特徴とする車両用の充電システム。
- 前記電力源から前記電力供給部への電力供給の有無を決定する給電開閉部を有し、前記電力線通信部による車両との通信に応じて前記給電開閉部を制御することを特徴とする請求項1記載の車両用の充電システム。
- 前記給電開閉部は、前記電力供給部への電力供給の有無に関わらず、前記電力線通信部による車両との通信を許容することを特徴とする請求項2記載の車両用の充電システム。
- 前記給電開閉部は、前記電力供給部が車両充電可能状態にあっても、所定時間帯の到来まで給電開始を保留することを特徴とする請求項2記載の車両用の充電システム。
- 前記電力供給部が車両充電状態にない異常状態で放置されていることを判定する判定部を有することを特徴とする請求項1記載の車両用の充電システム。
- 前記電力線通信部は、前記電力供給部を介して給電情報を車両に送信することを特徴とする請求項1記載の車両用の充電システム。
- 前記電力線通信部は、電力料金決済のための情報を前記車両に送信することを特徴とする請求項1記載の車両用の充電システム。
- さらに、燃料タンクを有する車両に燃料を供給するための燃料貯蔵部と、前記燃料貯蔵部からの燃料を車両に導くための燃料供給部とを有することを特徴とする請求項1記載の車両用の充電システム。
- 前記電力線通信部は、前記電力供給部を介して給油情報を車両に送信して燃費計算に供することを特徴とする請求項8記載の車両用の充電システム。
- 前記燃料供給部が給油準備状態にあるか否かを検出する給油準備検出部と、前記電力供給部が給電準備状態にあるか否かを検出する給電準備検出部と、前記給油準備検出部が給油準備状態を検出しているか否かによって前記給電準備検出部が給電準備状態を検出したときの車両への給電状況を異ならしめる制御部とを有することを特徴とする請求項8記載の車両用の充電システム。
- 前記電力供給部の異常を検知する異常検知部と、前記異常検知部が前記電力供給部の異常を検知したとき前記燃料供給部からの燃料供給を禁止する制御部とを有することを特徴とする請求項8記載の車両用の充電システム。
- 前記電力供給部と前記燃料供給部は一体的なケーブルとして構成されていることを特徴とする請求項11記載の車両用の充電システム。
- 電力蓄積部と、外部の電力供給部に接続され前記電力蓄積部に電力を導く充電路と、前記充電路を介して外部と充電に関する電力線通信を行うための電力線通信部とを有することを特徴とする車両。
- 前記充電路による電力蓄積部への給電準備状態を検出する給電準備検出部と、走行開始操作部と、前記給電準備検出部が給電準備状態を検出しているとき前記走行開始操作部の操作を無効とする走行制御部とを有することを特徴とする請求項13記載の車両。
- さらに、外部から給油を受ける燃料タンクと、前記電力蓄積部の電力蓄積状態を検知する検知部と、前記燃料タンクの燃料を消費して動力を発生する第1動力源と、前記電力蓄積部の電力を消費して動力を発生する第2動力源と、前記検知部の第1の検知レベルに基づいて前記第2動力源から前記第1動力源に切換えを行う第1モードと前記第1の検知レベルとは異なる前記検知部の第2の検知レベルに基づいて前記第2動力源から前記第1動力源に切換えを行う第2モードとが選択可能な制御部とを有することを特徴とする請求項13記載の車両。
- 前記第2の検知レベルは、前記電力蓄積部が充分充電されている状態を維持するためのレベルであり、前記第1の検知レベルは、前記第1動力源による走行効率が所定以下のときに前記第2動力源による走行を可能とするレベルであることを特徴とする請求項15記載の車両。
- 外部から給油を受ける燃料タンクと、給油量情報を記憶する記憶部と、前記燃料タンクの燃料を消費して走行動力を提供する動力源と、走行距離情報取得部と、前記記憶部の給油情報および前記走行距離取得部の走行距離情報に基づき自動的に燃費を算出する制御部とを有することを特徴とする車両。
- 前記制御部は、前記記憶部の給油情報に基づき、前記燃料タンクへの前回給油および今回給油がともに満タンまでの給油であったとき今回の給油量および前回給油時から今回給油時までの走行距離情報より自動的に燃費を算出するとともに前記燃料タンクへの前回給油および今回給油の少なくとも一方が満タンまでの給油でなかったときは給油量および走行距離情報に基づく燃費を自動的に算出しないことを特徴とする請求項17記載の車両。
- 前記制御部は、前記記憶部に記憶される累積給油量が前記燃料タンクの容量より充分大きい状況であると判定される場合に前記記憶部に記憶される累積給油量および前記走行距離情報取得部から取得される累積走行距離情報より燃費を算出することを特徴とする請求項17記載の車両。
- 前記燃料タンクから前記動力部への燃料供給状況の検知から走行中の瞬間燃費を算出する瞬間燃費計と、前記制御部により算出された燃費により前記瞬間燃費計を補正する補正部とを有することを特徴とする請求項17記載の車両。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09713602A EP2246957A4 (en) | 2008-02-18 | 2009-02-18 | VEHICLE AND ITS LOADING SYSTEM |
CN2009801054364A CN101953050A (zh) | 2008-02-18 | 2009-02-18 | 车辆及其充电系统 |
US12/867,163 US8548659B2 (en) | 2008-02-18 | 2009-02-18 | Vehicle and system for charging the same |
US13/956,458 US8725338B2 (en) | 2008-02-18 | 2013-08-01 | Vehicle and system for charging the same |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-036579 | 2008-02-18 | ||
JP2008036579A JP2009195092A (ja) | 2008-02-18 | 2008-02-18 | 車両用の充電システム |
JP2008037818A JP2009201198A (ja) | 2008-02-19 | 2008-02-19 | 車両用の充電システム |
JP2008-037818 | 2008-02-19 | ||
JP2008-055292 | 2008-03-05 | ||
JP2008055292A JP2009213301A (ja) | 2008-03-05 | 2008-03-05 | 車両用の充電ユニット |
JP2008324987A JP2010145309A (ja) | 2008-12-22 | 2008-12-22 | 車両用の燃費計測システム |
JP2008-324987 | 2008-12-22 | ||
JP2008-327791 | 2008-12-24 | ||
JP2008327791A JP2010149586A (ja) | 2008-12-24 | 2008-12-24 | 車両用の環境対策システム |
JP2009-006499 | 2009-01-15 | ||
JP2009006499A JP2010163028A (ja) | 2009-01-15 | 2009-01-15 | 充電電力により走行可能な車両およびその充電システム |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/867,163 A-371-Of-International US8548659B2 (en) | 2008-02-18 | 2009-02-18 | Vehicle and system for charging the same |
US13/956,458 Division US8725338B2 (en) | 2008-02-18 | 2013-08-01 | Vehicle and system for charging the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009104634A1 true WO2009104634A1 (ja) | 2009-08-27 |
Family
ID=40985512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/052760 WO2009104634A1 (ja) | 2008-02-18 | 2009-02-18 | 車両、及び、その充電システム |
Country Status (4)
Country | Link |
---|---|
US (2) | US8548659B2 (ja) |
EP (1) | EP2246957A4 (ja) |
CN (1) | CN101953050A (ja) |
WO (1) | WO2009104634A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010163028A (ja) * | 2009-01-15 | 2010-07-29 | Rohm Co Ltd | 充電電力により走行可能な車両およびその充電システム |
JP2011078205A (ja) * | 2009-09-30 | 2011-04-14 | Nippon Signal Co Ltd:The | 車両用充電システム |
WO2011086754A1 (ja) * | 2010-01-15 | 2011-07-21 | 本田技研工業株式会社 | 電気自動車 |
ITVI20100070A1 (it) * | 2010-03-16 | 2011-09-17 | Beghelli Spa | Impianto per il rifornimento di energia di veicoli a trazione elettrica |
EP2530810A1 (en) * | 2010-01-29 | 2012-12-05 | Panasonic Corporation | Vehicle charging device and vehicle charging system using same |
US8401722B2 (en) | 2010-12-22 | 2013-03-19 | Ford Global Technologies, Llc | System and method for charging a vehicle battery |
US8548659B2 (en) | 2008-02-18 | 2013-10-01 | Rohm Co., Ltd. | Vehicle and system for charging the same |
DE102011014166B4 (de) * | 2010-03-19 | 2014-01-23 | GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) | Verfahren zum Starten eines Hybridfahrzeugs |
EP2634034A4 (en) * | 2010-10-26 | 2015-07-29 | Toyota Motor Co Ltd | POWER SUPPLY DEVICE, VEHICLE EQUIPPED WITH SAID DEVICE, AND METHOD FOR POWER SUPPLYING |
CN106374618A (zh) * | 2015-10-07 | 2017-02-01 | 刘泽法 | 324v自发电型电动车 |
CN106515495A (zh) * | 2016-12-03 | 2017-03-22 | 韩少茹 | 一种电动汽车充电桩以及充电系统 |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8055437B2 (en) * | 2009-03-17 | 2011-11-08 | Ford Global Technologies, Llc | CO2 information display and method |
US20110145141A1 (en) * | 2009-10-02 | 2011-06-16 | James Blain | Method and apparatus for recharging electric vehicles |
US9197100B2 (en) * | 2009-12-28 | 2015-11-24 | Toyota Jidosha Kabushiki Kaisha | Vehicle and communication device for vehicle |
WO2011092729A1 (ja) * | 2010-01-26 | 2011-08-04 | 三菱電機株式会社 | ナビゲーション装置、車両情報表示装置および車両情報表示システム |
US20110302078A1 (en) | 2010-06-02 | 2011-12-08 | Bryan Marc Failing | Managing an energy transfer between a vehicle and an energy transfer system |
US20120016546A1 (en) * | 2010-07-14 | 2012-01-19 | Nilssen Ole K | System and Method for Supplying Back-Up Electric Power to a House from a Hybrid Vehicle |
WO2012018134A1 (ja) | 2010-08-06 | 2012-02-09 | Ishida Hitoshi | 車両評価装置、並びに車両評価システム |
US20150197154A1 (en) * | 2010-12-24 | 2015-07-16 | Martin Kelly Jones | Selection of battery remediation type and/or battery remediation station based upon available time period at location |
US20150191095A1 (en) * | 2010-12-24 | 2015-07-09 | Martin Kelly Jones | Authentication Methods for Battery Remediation in Connection with Electric Powered Mobile Thing (EPMT) |
US20150193990A1 (en) * | 2010-12-24 | 2015-07-09 | Martin Kelly Jones | Monitoring Electric Power Capacity (EPC) and Requesting Battery Remediation for Electric Power Mobile Thing (EPMT) |
JP5447450B2 (ja) * | 2011-01-25 | 2014-03-19 | 株式会社デンソー | 通信装置 |
DE102011007912A1 (de) * | 2011-04-21 | 2012-10-25 | Siemens Aktiengesellschaft | Verfahren zum Aufbau einer IP-basierten Kommunikationsverbindung zwischen einem Elektrofahrzeug und einer Ladesteuereinheit |
KR101184384B1 (ko) * | 2011-06-21 | 2012-09-20 | 서종혁 | 온실가스 배출량의 탄소배출권 변환 시스템 및 그 방법 |
US20130041850A1 (en) * | 2011-08-09 | 2013-02-14 | Ryan Marc LaFrance | Electrically powered vehicles and methods for use in charging an electrically powered vehicle |
KR101194302B1 (ko) * | 2011-09-05 | 2012-10-24 | 한국교통연구원 | 전력 에너지 저장 시스템, 전력 에너지 저장 방법, 전기차 충전용 전력 제공 시스템, 및 전기차 충전용 전력의 과금 방법 및 시스템 |
DE102011082896A1 (de) * | 2011-09-16 | 2013-03-21 | Bayerische Motoren Werke Aktiengesellschaft | Ladevorrichtung für ein Fahrzeug |
DE102011082897A1 (de) * | 2011-09-16 | 2013-03-21 | Bayerische Motoren Werke Aktiengesellschaft | Ladevorrichtung für ein Fahrzeug |
KR101323889B1 (ko) * | 2011-09-30 | 2013-10-30 | 엘에스산전 주식회사 | 단위 과금 방식의 전기 자동차 충전기 및 이를 포함한 전기 자동차 충전 시스템 |
JP5967516B2 (ja) * | 2011-11-22 | 2016-08-10 | パナソニックIpマネジメント株式会社 | 電力管理装置、電力管理プログラム、及び、電力分配システム |
KR101294533B1 (ko) * | 2011-12-23 | 2013-08-07 | 현대자동차주식회사 | 전기차 충전시 데이터 송수신 시스템 및 방법 |
JP6094047B2 (ja) | 2012-02-13 | 2017-03-15 | ソニー株式会社 | 給電装置、受電装置、課金方法、およびプログラム |
JP6019614B2 (ja) * | 2012-02-28 | 2016-11-02 | オムロン株式会社 | 蓄電制御装置、蓄電制御装置の制御方法、プログラム、および蓄電システム |
CN104169985A (zh) * | 2012-03-13 | 2014-11-26 | 日立汽车系统株式会社 | 车辆用通信装置以及车辆用通信系统 |
JP5924050B2 (ja) | 2012-03-16 | 2016-05-25 | ソニー株式会社 | 給電装置、受電装置、給電方法、受電方法、およびプログラム |
JP5999576B2 (ja) * | 2012-04-11 | 2016-09-28 | 株式会社Ihi | 家屋用電力供給システム、家屋及び電気自動車 |
EP2843613B1 (en) * | 2012-04-27 | 2017-05-10 | NEC Corporation | Charger, charging method |
DE102012013405A1 (de) * | 2012-07-05 | 2014-01-09 | Audi Ag | Diagnoseeinrichtung zur Überprüfung einer Steuersignalleitung |
US9302594B2 (en) * | 2012-07-31 | 2016-04-05 | Qualcomm Incorporated | Selective communication based on distance from a plurality of electric vehicle wireless charging stations in a facility |
DE102012214358A1 (de) * | 2012-08-13 | 2014-02-13 | Robert Bosch Gmbh | Tiefentladungsschutzverfahren und Kraftfahrzeug |
KR101666697B1 (ko) * | 2012-12-20 | 2016-10-14 | 엘에스산전 주식회사 | 전기 충전 장치 및 그 제어 방법 |
WO2014148054A1 (ja) | 2013-03-22 | 2014-09-25 | パナソニック株式会社 | 蓄電システム、監視装置、電力制御システム |
DE102013212821A1 (de) * | 2013-07-01 | 2015-01-08 | Bender Gmbh & Co. Kg | Verfahren und Vorrichtung zur innenwiderstandsabhängigen Einstellung eines Laststroms |
KR101459968B1 (ko) * | 2013-11-19 | 2014-11-10 | 현대자동차주식회사 | 전기자동차 충전 요구량 검증 방법 및 이에 사용되는 시스템 |
EP3151360B1 (en) * | 2014-05-26 | 2019-07-24 | Hitachi, Ltd. | Battery system |
US20160131688A1 (en) * | 2014-11-11 | 2016-05-12 | Solarcity Corporation | Determining an orientation of a metering device in an energy generation system |
KR101694030B1 (ko) * | 2015-07-09 | 2017-01-09 | 현대자동차주식회사 | 플러그인 하이브리드 차량의 주유 및 충전 관리 시스템 |
WO2017054079A1 (en) * | 2015-09-29 | 2017-04-06 | Verail Technologies, Inc. | Locomotives |
PL3214726T3 (pl) * | 2016-01-05 | 2019-04-30 | Guangdong Oppo Mobile Telecommunications Corp Ltd | Sposób szybkiego ładowania, terminal mobilny i zasilacz sieciowy |
US20180015836A1 (en) * | 2016-07-17 | 2018-01-18 | Bezan Phiroz Madon | System for Automatically Connecting a Parked Vehicle to a Power Source, Using Intersecting Lines of Contacts |
US10367362B2 (en) * | 2016-10-21 | 2019-07-30 | RLW Virtual Solutions, LLC | Disposable package assembly for batteries with added charging function |
CN107627867B (zh) * | 2017-01-09 | 2020-12-08 | 上海蔚来汽车有限公司 | 待充电对象充电授权方法、充电设备自动授权方法和系统 |
JP6627802B2 (ja) * | 2017-02-23 | 2020-01-08 | トヨタ自動車株式会社 | 車両及び電力伝送システム |
EP3381735A1 (de) * | 2017-03-28 | 2018-10-03 | Audi Ag | Verfahren zur koordination von ladevorgängen von elektrofahrzeugen, sowie elektrisch betriebenes kraftfahrzeug und versorgungsfahrzeug |
CN110297456B (zh) * | 2018-03-23 | 2020-10-16 | 中国石油化工股份有限公司 | 一种油电一体化供给过程的调控系统及方法 |
EP3832586A4 (en) * | 2018-07-31 | 2021-09-22 | Honda Motor Co., Ltd. | SERVER DEVICE, SHARED BATTERY USE SERVICE SYSTEM, PROCESS, COMPUTER PROGRAM AND RECORDING MEDIA |
US11072963B2 (en) | 2018-11-01 | 2021-07-27 | Ford Global Technologies, Llc | Interior area temperature modulating method and temperature modulating assembly |
US11739500B2 (en) * | 2020-07-29 | 2023-08-29 | Caterpilalr SARL | Machine configuration and control system enabling interchangeable power sources |
CN112248871B (zh) * | 2020-10-12 | 2022-05-31 | 广州汽车集团股份有限公司 | 一种车辆充电权限管控方法 |
KR102363348B1 (ko) * | 2021-12-07 | 2022-02-15 | 주식회사 두루스코이브이 | 스토퍼형 충전장치 및 그 장치의 구동방법 |
CN117579406A (zh) * | 2024-01-15 | 2024-02-20 | 中铁一局集团电务工程有限公司 | 无轨电车、通信方法及系统 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH074095A (ja) | 1992-07-03 | 1995-01-10 | Park 24 Kk | 充電装置付き立体駐車装置 |
US5650710A (en) * | 1995-02-06 | 1997-07-22 | Honda Giken Kogyo Kabushiki Kaisha | Apparatus for controlling a charging start time and charging period for a storage battery in an electric vehicle to complete charging at a scheduled boarding time |
JPH10262304A (ja) | 1997-03-18 | 1998-09-29 | Honda Motor Co Ltd | 充電忘れウォーニング手段を有する充電装置 |
JP2001078304A (ja) | 1999-09-03 | 2001-03-23 | Nissan Motor Co Ltd | 環境貢献度呈示装置 |
JP2001108503A (ja) | 1999-10-05 | 2001-04-20 | Nissan Motor Co Ltd | 車両の燃費計測装置 |
JP2002227710A (ja) | 2001-01-31 | 2002-08-14 | Nissan Motor Co Ltd | 車両の燃費計測方法 |
JP2004045180A (ja) | 2002-07-11 | 2004-02-12 | Honda Motor Co Ltd | 車両用燃費計 |
WO2006006715A1 (ja) * | 2004-07-13 | 2006-01-19 | Toyota Jidosha Kabushiki Kaisha | 燃料補給施設、燃料補給装置、及び燃料補給方法 |
WO2007070248A2 (en) * | 2005-12-12 | 2007-06-21 | Exxonmobil Research And Engineering Company | Service station for serving requirements of multiple vehicle technologies |
JP2007185083A (ja) | 2005-12-06 | 2007-07-19 | Toyota Motor Corp | 充電装置および電動車両 |
JP2007207140A (ja) | 2006-02-06 | 2007-08-16 | Matsushita Electric Ind Co Ltd | 二酸化炭素排出量算出装置 |
JP2007298696A (ja) | 2006-04-28 | 2007-11-15 | Kyocera Mita Corp | 画像形成装置 |
WO2008015886A1 (fr) * | 2006-08-04 | 2008-02-07 | Toyota Jidosha Kabushiki Kaisha | Système de puissance et procédé de gestion d'un état de charge de ce système de puissance |
JP2008189121A (ja) | 2007-02-05 | 2008-08-21 | Toyota Motor Corp | ハイブリッド車両 |
JP2008537528A (ja) | 2005-03-31 | 2008-09-18 | エナジーシーエス | フルハイブリッド車を後付けしてプラグイン・ハイブリッドにするための方法及びシステム |
JP2008278740A (ja) * | 2007-04-04 | 2008-11-13 | Furukawa Electric Co Ltd:The | 電池状態検知システム |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US565710A (en) * | 1896-08-11 | Pen and pencil case | ||
JPH06231361A (ja) | 1993-01-28 | 1994-08-19 | Nippon Purotekutaa Hanbai:Kk | 電気自動販売機 |
JPH06343202A (ja) * | 1993-06-01 | 1994-12-13 | Nissan Motor Co Ltd | 電気自動車の充電装置 |
JP3059937B2 (ja) | 1996-05-27 | 2000-07-04 | 三洋電機株式会社 | 電動自転車の充電システム |
WO1997045913A1 (fr) * | 1996-05-27 | 1997-12-04 | Sanyo Electric Co., Ltd. | Systeme de charge pour vehicule a moteur |
JPH104638A (ja) | 1996-06-13 | 1998-01-06 | Sumitomo Wiring Syst Ltd | 電気自動車用充電装置 |
JP3239106B2 (ja) | 1999-02-03 | 2001-12-17 | ミサワホーム株式会社 | 建 物 |
JP3965980B2 (ja) | 2001-11-22 | 2007-08-29 | 株式会社デンソー | データ通信システム及び車両用データ管理装置 |
JP4048766B2 (ja) | 2001-12-11 | 2008-02-20 | トヨタ車体株式会社 | ハイブリッド車両 |
JP2004189144A (ja) | 2002-12-12 | 2004-07-08 | Tekutomu:Kk | 車両情報表示装置 |
WO2005068245A1 (ja) * | 2004-01-16 | 2005-07-28 | Yamaha Hatsudoki Kabushiki Kaisha | ハイブリッド車両 |
JP4281621B2 (ja) | 2004-05-28 | 2009-06-17 | マツダ株式会社 | 自動車の運転姿勢調整装置 |
JP4591077B2 (ja) | 2004-12-24 | 2010-12-01 | 株式会社デンソー | 機器操作装置 |
BRPI0610456A2 (pt) | 2005-04-05 | 2010-06-22 | Energycs | sistema e método para monitoramento e gerenciamento de célula eletroquìmica baseada em multiplexador e comutador |
JP2006331405A (ja) | 2005-04-21 | 2006-12-07 | Ntt Facilities Inc | 二次電池供給システムおよび二次電池供給方法 |
JP2007068340A (ja) | 2005-08-31 | 2007-03-15 | Toyota Motor Corp | 車両の電源装置 |
JP2008043404A (ja) | 2006-08-11 | 2008-02-28 | Sanyo Electric Co Ltd | 電動車両用駆動装置及びこれを具えた電動車椅子 |
JP2007228695A (ja) | 2006-02-22 | 2007-09-06 | Toyota Motor Corp | 充電装置 |
JP4270236B2 (ja) | 2006-07-31 | 2009-05-27 | トヨタ自動車株式会社 | 電力システムおよび交流電力供給方法 |
JP2008284952A (ja) | 2007-05-16 | 2008-11-27 | Daihatsu Motor Co Ltd | ハイブリッド自動車の駆動装置 |
JP5219469B2 (ja) | 2007-11-16 | 2013-06-26 | ローム株式会社 | 電気機器および電力線通信システム |
US8548659B2 (en) | 2008-02-18 | 2013-10-01 | Rohm Co., Ltd. | Vehicle and system for charging the same |
EP2094037A1 (en) | 2008-02-21 | 2009-08-26 | Nokia Siemens Networks Oy | Base station for a mobile network and method of operate a base station |
-
2009
- 2009-02-18 US US12/867,163 patent/US8548659B2/en active Active
- 2009-02-18 CN CN2009801054364A patent/CN101953050A/zh active Pending
- 2009-02-18 EP EP09713602A patent/EP2246957A4/en not_active Withdrawn
- 2009-02-18 WO PCT/JP2009/052760 patent/WO2009104634A1/ja active Application Filing
-
2013
- 2013-08-01 US US13/956,458 patent/US8725338B2/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH074095A (ja) | 1992-07-03 | 1995-01-10 | Park 24 Kk | 充電装置付き立体駐車装置 |
US5650710A (en) * | 1995-02-06 | 1997-07-22 | Honda Giken Kogyo Kabushiki Kaisha | Apparatus for controlling a charging start time and charging period for a storage battery in an electric vehicle to complete charging at a scheduled boarding time |
JPH10262304A (ja) | 1997-03-18 | 1998-09-29 | Honda Motor Co Ltd | 充電忘れウォーニング手段を有する充電装置 |
JP2001078304A (ja) | 1999-09-03 | 2001-03-23 | Nissan Motor Co Ltd | 環境貢献度呈示装置 |
JP2001108503A (ja) | 1999-10-05 | 2001-04-20 | Nissan Motor Co Ltd | 車両の燃費計測装置 |
JP2002227710A (ja) | 2001-01-31 | 2002-08-14 | Nissan Motor Co Ltd | 車両の燃費計測方法 |
JP2004045180A (ja) | 2002-07-11 | 2004-02-12 | Honda Motor Co Ltd | 車両用燃費計 |
WO2006006715A1 (ja) * | 2004-07-13 | 2006-01-19 | Toyota Jidosha Kabushiki Kaisha | 燃料補給施設、燃料補給装置、及び燃料補給方法 |
JP2008537528A (ja) | 2005-03-31 | 2008-09-18 | エナジーシーエス | フルハイブリッド車を後付けしてプラグイン・ハイブリッドにするための方法及びシステム |
JP2007185083A (ja) | 2005-12-06 | 2007-07-19 | Toyota Motor Corp | 充電装置および電動車両 |
WO2007070248A2 (en) * | 2005-12-12 | 2007-06-21 | Exxonmobil Research And Engineering Company | Service station for serving requirements of multiple vehicle technologies |
JP2007207140A (ja) | 2006-02-06 | 2007-08-16 | Matsushita Electric Ind Co Ltd | 二酸化炭素排出量算出装置 |
JP2007298696A (ja) | 2006-04-28 | 2007-11-15 | Kyocera Mita Corp | 画像形成装置 |
WO2008015886A1 (fr) * | 2006-08-04 | 2008-02-07 | Toyota Jidosha Kabushiki Kaisha | Système de puissance et procédé de gestion d'un état de charge de ce système de puissance |
JP2008189121A (ja) | 2007-02-05 | 2008-08-21 | Toyota Motor Corp | ハイブリッド車両 |
JP2008278740A (ja) * | 2007-04-04 | 2008-11-13 | Furukawa Electric Co Ltd:The | 電池状態検知システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2246957A4 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8725338B2 (en) | 2008-02-18 | 2014-05-13 | Rohm Co., Ltd. | Vehicle and system for charging the same |
US8548659B2 (en) | 2008-02-18 | 2013-10-01 | Rohm Co., Ltd. | Vehicle and system for charging the same |
JP2010163028A (ja) * | 2009-01-15 | 2010-07-29 | Rohm Co Ltd | 充電電力により走行可能な車両およびその充電システム |
JP2011078205A (ja) * | 2009-09-30 | 2011-04-14 | Nippon Signal Co Ltd:The | 車両用充電システム |
WO2011086754A1 (ja) * | 2010-01-15 | 2011-07-21 | 本田技研工業株式会社 | 電気自動車 |
JP5504284B2 (ja) * | 2010-01-15 | 2014-05-28 | 本田技研工業株式会社 | 電気自動車 |
US9083205B2 (en) | 2010-01-29 | 2015-07-14 | Panasonic Intellectual Property Management Co., Ltd. | Vehicle charging device and vehicle charging system using same |
EP2530810A1 (en) * | 2010-01-29 | 2012-12-05 | Panasonic Corporation | Vehicle charging device and vehicle charging system using same |
EP2530810A4 (en) * | 2010-01-29 | 2015-01-14 | Panasonic Corp | VEHICLE LOADING DEVICE AND VEHICLE LOADING SYSTEM THEREWITH |
EP2367255A1 (en) * | 2010-03-16 | 2011-09-21 | Beghelli S.p.A. | Energy supply plant for electric traction vehicles |
ITVI20100070A1 (it) * | 2010-03-16 | 2011-09-17 | Beghelli Spa | Impianto per il rifornimento di energia di veicoli a trazione elettrica |
DE102011014166B4 (de) * | 2010-03-19 | 2014-01-23 | GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) | Verfahren zum Starten eines Hybridfahrzeugs |
US8924057B2 (en) | 2010-03-19 | 2014-12-30 | GM Global Technology Operations LLC | Method for starting a hybrid vehicle |
EP2634034A4 (en) * | 2010-10-26 | 2015-07-29 | Toyota Motor Co Ltd | POWER SUPPLY DEVICE, VEHICLE EQUIPPED WITH SAID DEVICE, AND METHOD FOR POWER SUPPLYING |
US8401722B2 (en) | 2010-12-22 | 2013-03-19 | Ford Global Technologies, Llc | System and method for charging a vehicle battery |
CN106374618A (zh) * | 2015-10-07 | 2017-02-01 | 刘泽法 | 324v自发电型电动车 |
CN106515495A (zh) * | 2016-12-03 | 2017-03-22 | 韩少茹 | 一种电动汽车充电桩以及充电系统 |
Also Published As
Publication number | Publication date |
---|---|
US8548659B2 (en) | 2013-10-01 |
CN101953050A (zh) | 2011-01-19 |
US20110000726A1 (en) | 2011-01-06 |
EP2246957A1 (en) | 2010-11-03 |
US8725338B2 (en) | 2014-05-13 |
EP2246957A4 (en) | 2011-05-04 |
US20130314040A1 (en) | 2013-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009104634A1 (ja) | 車両、及び、その充電システム | |
AU2021201000B2 (en) | Renewable energy system with integrated home power supply system | |
US7917251B2 (en) | Metering system and method of operation | |
JP2009213301A (ja) | 車両用の充電ユニット | |
JPWO2009075313A1 (ja) | 電力量算出装置、使用電力に対する料金を算出する料金算出装置および料金算出方法、車両の情報出力装置および情報出力方法 | |
JP4807329B2 (ja) | ハイブリッド車両およびハイブリッド車両運用システム | |
KR102230175B1 (ko) | 멀티 전력을 공급받는 전기 자동차 | |
JP5440158B2 (ja) | バッテリの充電方法および充電システム | |
US7928693B2 (en) | Plugin hybrid electric vehicle with V2G optimization system | |
JP6019222B2 (ja) | 大容量直流−直流コンバータを活用した直流配電網用電気自動車の多機能充電装置 | |
EP2784905B1 (en) | Vehicle, vehicle control method, and power-receiving facility | |
WO2011096441A1 (ja) | エネルギー表示システム | |
CN102844957A (zh) | 用于电网集成式车辆的电动车辆车站设备 | |
EP2439099A2 (en) | Vehicle charging system with charging efficiency control and providing adaptive charging service | |
JP5380413B2 (ja) | 電力量演算装置,電力量演算サーバ,電力量演算システムおよび電力量演算方法 | |
KR101219284B1 (ko) | 대용량 직류-직류 컨버터를 활용한 직류 배전망용 전기자동차 다기능 충전장치 | |
JP5404756B2 (ja) | 電力管理システム | |
KR101619535B1 (ko) | 스마트 그리드용 전기자동차 양방향 전력 공급 장치 및 이를 이용한 양방향 전력 공급 방법 | |
JP2012170258A (ja) | 電力供給システム | |
JP2010149586A (ja) | 車両用の環境対策システム | |
JP2009195092A (ja) | 車両用の充電システム | |
JP2020150717A (ja) | 電動車両、電動車両の充放電システム | |
JP2010163028A (ja) | 充電電力により走行可能な車両およびその充電システム | |
JP2015191701A (ja) | 燃料電池車の燃料供給システム | |
JP2010145309A (ja) | 車両用の燃費計測システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980105436.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09713602 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12867163 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009713602 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |