WO2009104622A1 - 耐熱性カタラーゼ - Google Patents

耐熱性カタラーゼ Download PDF

Info

Publication number
WO2009104622A1
WO2009104622A1 PCT/JP2009/052729 JP2009052729W WO2009104622A1 WO 2009104622 A1 WO2009104622 A1 WO 2009104622A1 JP 2009052729 W JP2009052729 W JP 2009052729W WO 2009104622 A1 WO2009104622 A1 WO 2009104622A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
dna
seq
amino acid
catalase
Prior art date
Application number
PCT/JP2009/052729
Other languages
English (en)
French (fr)
Inventor
岡倉 薫
風介 間塚
崇恵 福島
弘一郎 村島
Original Assignee
明治製菓株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明治製菓株式会社 filed Critical 明治製菓株式会社
Priority to JP2009554336A priority Critical patent/JP5608372B2/ja
Priority to CN200980105507.0A priority patent/CN101970658B/zh
Priority to ES09711878.0T priority patent/ES2547118T3/es
Priority to US12/918,017 priority patent/US8975053B2/en
Priority to DK09711878.0T priority patent/DK2256192T3/en
Priority to EP09711878.0A priority patent/EP2256192B1/en
Publication of WO2009104622A1 publication Critical patent/WO2009104622A1/ja
Priority to HK11103108.0A priority patent/HK1149048A1/xx
Priority to US14/606,208 priority patent/US9512409B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01006Catalase (1.11.1.6)

Definitions

  • thermostable catalase and more specifically, a thermostable catalase derived from Penicillium pinophilum or Humicola grisea, a protein having thermostable catalase activity, a DNA encoding the protein, and a method for producing the thermostable catalase It is about.
  • Catalase is an enzyme that catalyzes a reaction that decomposes hydrogen peroxide into water and oxygen. Hydrogen peroxide is widely used as a disinfectant and disinfectant. Hydrogen peroxide water is widely used as a sterilizing agent for foods and the like because it can be easily removed with water after sterilization and is naturally decomposed to some extent over time. However, since active oxygen generated from the remaining hydrogen peroxide has the possibility of causing cellular aging and cancer, it is required to completely decompose and remove after use of hydrogen peroxide. Catalase is very effective for the decomposition of hydrogen peroxide because it can be decomposed without adding new chemical substances.
  • catalase is used to decompose and remove hydrogen peroxide remaining after the bleaching treatment of cotton and residual hydrogen peroxide in foods. So far, catalase has been known from microorganisms (Patent Documents 1 to 5) and catalase derived from animals such as pig and cow liver.
  • catalase produced by Aspergillus niger which is a filamentous fungus and catalase derived from pig liver have been frequently used for industrial applications.
  • Aspergillus niger which is a filamentous fungus and catalase derived from pig liver have been frequently used for industrial applications.
  • these catalases have low heat resistance, and only about 10% of activity remains when treated at 70 ° C. for 30 minutes (Patent Document 6).
  • Patent Document 6 On the other hand, in particular, in applications such as fiber processing and food processing, it is necessary to decompose hydrogen peroxide at a high temperature. Therefore, catalase having higher heat resistance than conventional products is desired.
  • thermostable catalase Aspergillus tereus (Patent Document 6), Acremonium arabamensis (Patent Document 6), Thermoascus orantiacus (Patent Document 6), Citadium thermophilum (Patent Document 7), Humicola Catalase produced by Insolence (Patent Document 7) and Thermomyces (Patent Document 8) has been reported.
  • Filamentous fungi are known to have a very high protein secretion ability, and are suitable as a host for producing recombinant proteins such as enzymes. Therefore, if a thermostable catalase gene can be introduced into a filamentous fungus and expressed in a large amount as a recombinant protein, it is expected that a thermostable catalase can be produced with significantly higher productivity than a wild strain. So far, the genus Aspergillus (patent document 9), Penicillium (patent document 10), Humicola (patent document 11), Trichoderma (patent document 12), Acremonium (patent document 13) are used for the production of recombinant proteins. It has been reported that a recombinant protein was successfully produced in a filamentous fungus classified as).
  • Non-patent Document 16 when expressing glucoamylase as a recombinant protein using Aspergillus awamori as a host, when an Aspergillus niger-derived glucoamylase gene is introduced, the expression of glucoamylase is as high as 4.6 g / L. On the other hand, when a gene derived from Humicola grisea was introduced, the productivity was as low as 0.66 g / L (Non-patent Document 1).
  • alpha-amylase when expressing alpha-amylase as a recombinant protein, when an Aspergillus oryzae-derived alpha-amylase gene is introduced using Aspergillus oryzae as a host, the expression of alpha-amylase is as high as 12 g / L. In contrast, when the Aspergillus oryzae-derived alpha-amylase gene was introduced using Trichoderma viride as a host, the expression of the alpha-amylase showed only 1 g / L of productivity (non- Patent Document 1). These results indicate that it is preferable to introduce a gene derived from a filamentous fungus of the same species or closely related to the host when a significant amount of recombinant protein is to be expressed.
  • thermostable catalase gene should be closely related to the host filamentous fungus, even when aiming to express thermostable catalase in large quantities as a recombinant protein. Is considered desirable.
  • the isolation of thermostable catalase gene has been reported so far only in the catalase gene derived from Thermoscus auranticacus (Patent Document 17) and the catalase gene derived from Citaridium thermophilum (Patent Document 18). is there.
  • JP 55-135588 A Japanese Unexamined Patent Publication No. 60-083579 JP 63-003788 A Japanese Patent Publication No.49-004956 Japanese Patent Laid-Open No. 2-076579 JP-A-5-153975 JP-T 6-506347 Japanese Patent Laid-Open No. 10-257883 International Publication No. WO97 / 034004 Pamphlet International Publication No. WO2000 / 068401 Pamphlet International Publication No. WO98 / 003667 Pamphlet International Publication No. WO98 / 011239 Pamphlet JP 2001/017180 A International Publication No. WO98 / 003640 Pamphlet International Publication No.
  • thermostable catalase Aspergillus, Penicillium, Humicola developed as a recombinant protein production host.
  • Aspergillus, Penicillium, Humicola developed as a recombinant protein production host.
  • thermostable catalase from filamentous fungi of the genus, Trichoderma genus and Acremonium genus, isolated genes encoding these thermostable catalase, and expressed a large amount of thermostable catalase.
  • the present inventors have developed a large number of filamentous fungi that have been developed as recombinant protein production hosts and are classified into the genus Aspergillus, Penicillium, Humicola, Trichoderma, and Acremonium. After culturing, the thermal stability of the catalase in the obtained culture broth was repeatedly evaluated, and attempts were made to obtain thermostable catalase from these filamentous fungi. As a result, it was found that Penicillium pinophilum and Humicola grisea produce thermostable catalase.
  • thermostable catalase obtained from a culture solution of Penicillium pinophilum, and showed a single band at a position of about 80 kDa on SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and A thermostable catalase having an N-terminal amino acid sequence of DDSNASSETTEAFLSEFYLNDNDAYLTTDVGG (SEQ ID NO: 5) was obtained. Further, when heat-resistant catalase was purified from the culture solution of Humicola grisea, it showed a single band at about 80 kDa on SDS-PAGE, and its N-terminal amino acid sequence was QDTTSGQSPLAEYEVDDSTG (SEQ ID NO: 10). Sex catalase was obtained.
  • thermostable catalases from the genomic DNAs of Penicillium pinophyllum and Humicola grisea, thereby completing the present invention.
  • thermostable catalase produced by a microorganism belonging to the genus Penicillium, 2) The thermostable catalase according to 1), wherein the microorganism belonging to the genus Penicillium is Penicillium pinophilum, 3) The thermostable catalase according to 1) or 2), which has a molecular weight of about 80 kDa, 4) Thermostable catalase produced by Humicola Grizea, 5) The thermostable catalase according to 4), which has a molecular weight of about 80 kDa, 6) A protein selected from the following (i), (ii), and (iii): (I) a protein comprising the sequence of amino acids 1 to 692 of SEQ ID NO: 2; (Ii) a sequence of amino acids 1 to 692 of SEQ ID NO: 2 comprising an amino acid sequence in which one or more amino acids have been deleted, substituted or added, and has heat-resistant catalase activity protein; (Iii)
  • thermostable catalase activity a protein having thermostable catalase activity consisting of the amino acid sequence of Nos. 1 to 692 of SEQ ID No. 2; 8) One or more amino acids are deleted from the sequence of amino acids -1 to -42 of the amino acid sequence shown in SEQ ID NO: 2 or the sequence of amino acids -1 to -42 of SEQ ID NO: 2.
  • amino acid sequence set forth in SEQ ID NO: 4 (Ii) a sequence of amino acids 1 to 684 of the amino acid sequence shown in SEQ ID NO: 4, comprising an amino acid sequence in which one or more amino acids are deleted, substituted, or added, and has heat-resistant catalase activity protein; (Iii) A protein comprising an amino acid sequence having 70% or more identity with the sequence of amino acids 1 to 684 of the amino acid sequence set forth in SEQ ID NO: 4 and having thermostable catalase activity.
  • a protein having a thermostable catalase activity comprising the sequence of amino acids 1 to 684 of the amino acid sequence set forth in SEQ ID NO: 4; 11) One or more amino acids are deleted in the sequence of amino acids -1 to -32 of SEQ ID NO: 4 or the sequence of amino acids -1 to -32 of SEQ ID NO: 4 , Having a substituted or added amino acid sequence on the N-terminal side, the protein according to 9) or 10), 12) DNA selected from the following (i), (ii), and (iii): (I) DNA encoding the protein according to any one of 6) to 8); (Ii) a DNA comprising a sequence of positions 1 to 2403 of the base sequence set forth in SEQ ID NO: 1; (Iii) DNA encoding a protein having a thermostable catalase activity, which hybridizes with a DNA comprising the sequence of 1 to 2403 of the base sequence set forth in SEQ ID NO: 1 under stringent conditions; 13) DNA comprising the sequence of
  • DNA described in) 16) DNA obtained by removing a base sequence encoding a signal sequence from the DNA according to any one of 12) to 15), 17) The DNA according to 16), wherein the base sequence encoding the signal sequence is the sequence of Nos. 1-126 of the base sequence set forth in SEQ ID NO: 1.
  • An expression vector comprising the DNA according to any one of 12) to 17), 25) a host microorganism transformed with the DNA according to any one of 12) to 17) or the expression vector according to 24), 26) The host microorganism according to 25), wherein the host microorganism is a filamentous fungus, 27) The host microorganism according to 26), wherein the filamentous fungus is a filamentous fungus selected from Aspergillus, Penicillium, Humicola, Trichoderma, or Acremonium.
  • thermostable catalase comprising culturing the host microorganism according to any one of 25) to 27) and collecting the thermostable catalase from the culture, 29) An expression vector comprising the DNA according to any one of 18) to 23), 30) A host microorganism transformed with the DNA according to any one of 18) to 23) or the expression vector according to 29), 31) The host microorganism according to 30), wherein the host microorganism is a filamentous fungus, 32) The host microorganism according to 31), wherein the filamentous fungus is a filamentous fungus selected from Aspergillus, Penicillium, Humicola, Trichoderma, or Acremonium. 33) A method for producing a thermostable catalase, comprising culturing the host microorganism according to any one of 30) to 32) and collecting the thermostable catalase from the culture, About.
  • thermostable catalase DNA necessary for efficiently producing thermostable catalase as a recombinant protein can be obtained, and recombinant microorganisms that efficiently express thermostable catalase can be obtained. Furthermore, by culturing the obtained recombinant microorganism, a thermostable catalase can be produced efficiently and inexpensively. By treating a solution containing hydrogen peroxide with the thermostable catalase of the present invention, hydrogen peroxide can be efficiently and inexpensively decomposed even at high temperatures.
  • heat-stable catalase means a catalase having a residual activity of 50% or more after storage at 70 ° C. for 30 minutes by measuring the heat resistance by the method disclosed in Example 4 of Patent Document 6. Means.
  • thermostable catalase produced by Penicillium pinophyllum and Humicola grisea in the culture solution can be obtained by, for example, the method disclosed in Patent Document 6.
  • the measurement of catalase activity is evaluated by adding catalase to a solution containing hydrogen peroxide and quantifying the hydrogen peroxide decreased after a certain time, and can be measured by the method disclosed in Patent Document 6, for example.
  • the thermostable catalase can be evaluated by subjecting the culture supernatant diluted to an appropriate concentration to a heat treatment at 70 ° C. for 30 minutes according to the method described in Patent Document 6 and measuring the catalase activity before and after the heat treatment.
  • a catalase in which 50% or more of the activity remains in this heat treatment is defined as a thermostable catalase according to the above definition.
  • thermostable catalase The purification of the thermostable catalase can be carried out from the culture supernatant containing the thermostable catalase obtained by the above method according to a conventional method for protein purification.
  • various commonly known methods can be applied as the protein purification method to be used. For example, it can be carried out by combining hydrophobic chromatography and anion exchange chromatography.
  • the molecular weight of the purified thermostable catalase can be determined by SDS-PAGE.
  • the heat-resistant catalase produced by Penicillium pinophyllum and Humicola grisea was purified and the molecular weight was determined.
  • heat-resistant catalase having a molecular weight of about 80 kDa was obtained from Penicillium pinophilum and Humicola grisea respectively. It was.
  • amino acid sequence in which one or more amino acids are deleted, substituted, or added in an amino acid sequence refers to a known method such as site-directed mutagenesis or a naturally occurring amino acid sequence. It means that the modification has been made by substitution of a plurality of amino acids to the extent possible.
  • the number of amino acid modifications is preferably 1-50, more preferably 1-30, even more preferably 1-10, even more preferably 1-5, and most preferably 1-2.
  • modified amino acid sequence of the protein of the present invention is preferably an amino acid sequence in which the amino acid has one or more (preferably 1 to several, 1, 2, 3, or 4) conservative substitutions.
  • conservative substitution means the replacement of one or more amino acid residues with another chemically similar amino acid residue. For example, when a certain hydrophobic residue is substituted by another hydrophobic residue, a certain polar residue is substituted by another polar residue having the same charge, and the like. Functionally similar amino acids that can make such substitutions are known in the art for each amino acid.
  • non-polar (hydrophobic) amino acids such as alanine, valine, isoleucine, leucine, proline, tryptophan, phenylalanine, and methionine.
  • polar (neutral) amino acids include glycine, serine, threonine, tyrosine, glutamine, asparagine, and cysteine.
  • positively charged (basic) amino acids include arginine, histidine, and lysine.
  • negatively charged (acidic) amino acids include aspartic acid and glutamic acid.
  • stringent conditions means that the membrane is washed after hybridization in a low salt concentration solution at high temperature.
  • 0.5 ⁇ SSC concentration (1 ⁇ SSC: 15 mmol / L trisodium citrate, 150 mmol / L sodium chloride
  • washing conditions at 60 ° C. for 15 minutes preferably 0.5 ⁇ SSC concentration
  • washing conditions at 60 ° C. for 15 minutes in 0.1% SDS solution means.
  • Hybridization can be performed according to a known method. Moreover, when using a commercially available library, it can carry out according to the method as described in an attached instruction manual.
  • identity with respect to a base sequence or an amino acid sequence is used to mean the degree of coincidence of bases or amino acid residues constituting each sequence between compared sequences.
  • Any numerical value of “identity” shown in the present specification may be a numerical value calculated using a homology search program known to those skilled in the art. For example, a default (initial setting) parameter in FASTA or the like is used. By using it, it can be easily calculated.
  • the amino acid sequence having 70% or more identity with the amino acid sequence 1 to 692 of the amino acid sequence shown in SEQ ID NO: 2 is preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, More preferably 95% or more, particularly preferably 98% or more, and most preferably 99% or more amino acid sequences.
  • the amino acid sequence having 70% or more identity with the 1st to 684th sequence of the amino acid sequence shown in SEQ ID NO: 4 is preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, More preferably 95% or more, particularly preferably 98% or more, and most preferably 99% or more amino acid sequences.
  • sequences 1 to 692 of the amino acid sequence shown in SEQ ID NO: 2 are given, the base sequence encoding it is easily determined, and sequences 1 to 692 of the amino acid sequence shown in SEQ ID NO: 2 are determined.
  • Various base sequences encoding can be selected.
  • the base sequence encoding it is easily determined, and the 1st to 684th sequence of the amino acid sequence shown in SEQ ID NO: 4 is determined.
  • Various base sequences encoding can be selected.
  • a DNA encoding a protein comprising the amino acid sequence 1 to 692 of the amino acid sequence shown in SEQ ID NO: 2 is the base sequence represented by the sequence 1-204 of the base sequence shown in SEQ ID NO: 1.
  • it also means a base sequence encoding the same amino acid and having a degenerate codon as a base sequence.
  • RNA sequences corresponding to these are also included.
  • the DNA encoding the protein comprising the amino acid sequence 1 to 684 of the amino acid sequence shown in SEQ ID NO: 4 is the base sequence represented by the 1-2749 sequence of the base sequence shown in SEQ ID NO: 3. In addition to a part or all of the above, it also means a base sequence encoding the same amino acid and having a degenerate codon as a base sequence. In the present invention, RNA sequences corresponding to these are also included.
  • Preferred examples of DNA encoding a protein comprising the amino acid sequence 1 to 692 of the amino acid sequence shown in SEQ ID NO: 2 include the bases represented by the sequences 1 to 2403 of the base sequence shown in SEQ ID NO: 1.
  • a DNA comprising the sequence can be mentioned.
  • Preferred examples of DNA encoding a protein comprising the amino acid sequence 1 to 684 of the amino acid sequence shown in SEQ ID NO: 4 include the base represented by the sequence 1-2749 of the base sequence shown in SEQ ID NO: 3. A DNA comprising the sequence can be mentioned.
  • thermostable catalase gene fragment can be used as a probe for screening positive phage clones from a genomic phage library.
  • the thermostable catalase gene fragment used as a probe can be amplified by PCR using each genomic DNA as a template.
  • a primer set for PCR can be designed based on a conserved sequence of a known filamentous fungus-derived catalase gene.
  • the base sequence of the thermostable catalase gene can be determined by analyzing the base sequence of the vector obtained. Further, the intron sequence in the base sequence can be estimated based on the comparison between the amino acid sequence deduced from the base sequence and the amino acid sequence of a known catalase and the conserved sequence of the intron. Further, the sequence from the translation initiation codon of the gene to immediately before the sequence encoding the N-terminal amino acid sequence of the purified thermostable catalase can be estimated as the sequence encoding the signal sequence.
  • thermostable catalase gene PCN isolated from the genomic DNA of Penicillium pinophyllum by the above method consists of the 2403 bp base described in SEQ ID NO: 1 in the sequence listing. It was presumed to be composed of four introns represented by the nucleotide sequences of Nos. 322 to 372, 599 to 651, 1068 to 1113, and 1279 to 1326.
  • the amino acid sequence of thermostable catalase deduced from the gene sequence was as shown in SEQ ID NO: 2.
  • the amino acid sequence from 1 to 31 of the amino acid sequence completely coincided with the N-terminal amino acid sequence of thermostable catalase purified from Penicillium pinophyllum
  • the amino acid sequence from -1 to -42 of SEQ ID NO: 2 was used as the signal sequence
  • the nucleotide sequence from 1 to 126 of SEQ ID NO: 1 in which the amino acid sequence is encoded was estimated as the nucleotide sequence in which the signal sequence is encoded.
  • a primer for amplifying a desired gene was prepared, PCR was performed using the genomic DNA of Penicillium pinophilum as a template, and amplified.
  • An expression vector can be prepared by ligating the DNA fragment with an appropriate vector, and a desired gene can be isolated.
  • the DNA derived from Penicillium pinophilum of the present invention is contained in the plasmid pPCN, it can be used as a template DNA for PCR.
  • a desired DNA fragment can be prepared from these plasmids with an appropriate restriction enzyme.
  • thermostable catalase gene HCN isolated from the genomic DNA of Humicola glycea by the above method is composed of 2749 bp of the base shown in SEQ ID NO: 3 in the sequence listing. It was presumed to be composed of 6 introns represented by the nucleotide sequences of Nos. 283 to 463, 667 to 747, 771 to 846, 1008 to 1160, 1218 to 1270, and 1842 to 1895.
  • the amino acid sequence of thermostable catalase deduced from the gene sequence was as shown in SEQ ID NO: 4.
  • the amino acid sequence from 1 to 20 of the amino acid sequence completely coincided with the N-terminal amino acid sequence of heat-resistant catalase purified from Humicola glycea, the amino acid sequence from -1 to -32 of SEQ ID NO: 4 was used as the signal sequence.
  • the nucleotide sequence of Nos. 1 to 96 of SEQ ID NO: 3 where the amino acid sequence is encoded was estimated as the nucleotide sequence encoded with the signal sequence.
  • a primer for amplifying a desired gene was prepared, PCR was performed using the genomic DNA of Humicola glycea as a template, and amplified.
  • An expression vector can be prepared by ligating the DNA fragment with an appropriate vector, and a desired gene can be isolated.
  • the Humicola glycea-derived DNA of the present invention is contained in the plasmid pHCN, it can be used as a template DNA for PCR.
  • a desired DNA fragment can be prepared from these plasmids with an appropriate restriction enzyme.
  • thermostable catalase gene isolated as described above can be produced by introducing these genes into a host and expressing them.
  • the DNA introduced into the host may be a full-length thermostable catalase gene, DNA obtained by removing a part or all of the intron sequence from the DNA, or DNA obtained by removing the base sequence encoding the signal sequence.
  • an expression vector comprising the above-described DNA according to the present invention in a state capable of replicating in a host microorganism and expressing a protein encoded by the DNA. Furthermore, according to the present invention, a microorganism transformed with this expression vector is provided.
  • This host-vector system is not particularly limited, and for example, a system using Escherichia coli, actinomycetes, yeast, mold, etc., and a fusion protein expression system with other proteins using them can be used.
  • Suitable host microorganisms for the present invention include filamentous fungi, preferably Trichoderma, Aspergillus, Penicillium (more preferably Penicillium / Pinophilum), Humicola (more preferably Humicola glycea), Acremonium filamentous fungi, and the like.
  • the expression vector the expression vectors described in Patent Documents 9 to 13 and the like can be used.
  • the vector construction procedure and method according to the present invention may be those commonly used in the field of genetic engineering.
  • the expression vector of the present invention actually introduces it into a host microorganism to express the desired protein.
  • a marker or the like may be included.
  • the transformant thus obtained can be cultured in an appropriate medium, and the above-described protein of the present invention can be isolated from the culture. What is necessary is just to set suitably the culture
  • recovery and purification of the target protein from the culture medium can be performed according to a conventional method.
  • Example 1 Measurement of Catalase Activity (Heat Resistance) in Penicillium Pinophyllum Culture Solution
  • Penicillium pinophilum grown on potato dextrose agar was obtained from sucrose 50 g / L, malt extract 20 g / L, and yeast extract 5 g / L.
  • the cells were removed from the resulting culture by centrifugation to obtain a culture supernatant.
  • the catalase activity (heat resistance) was measured by the method disclosed in Example 4 of Patent Document 6, and as a result, the activity remaining rate after storage at 70 ° C. for 30 minutes was 50. %Met. From the above results, it was determined that Penicillium pinophyllum is producing thermostable catalase.
  • Example 2 Isolation and purification of thermostable catalase in culture medium of Penicillium pinophyllum Dissolve ammonium sulfate to a final concentration of 1 mol / L in the culture supernatant of Penicillium pinophilum obtained by the method described in Example 1 Then, this solution was passed through a hydrophobic column Phenyl Sepharose HP 26/10 (GE Healthcare Biosciences) equilibrated with 1 mol / L ammonium sulfate in 50 mmol / L phosphate buffer (pH 7.0) in advance. It was made to adsorb
  • the protein adsorbed on the hydrophobic column is eluted by a linear gradient elution method from 1 mol / L ammonium sulfate to 50 mmol / L phosphate buffer (pH 7.0) in 50 mmol / L phosphate buffer (pH 7.0). And fractionated.
  • the catalase activity of the fractionated eluate was measured by the method described in Example 1, and the fraction showing the activity was collected.
  • Ammonia sulfate was added to the collected active fraction to a final concentration of 1 mol / L, and re-chromatography was performed using a hydrophobic column in the same manner as described above.
  • the obtained active fraction was concentrated and desalted by ultrafiltration, and then a phosphate buffer (pH 8.0) was added to a final concentration of 50 mmol / L. Subsequently, this solution was passed through an anion exchange column MonoQ (manufactured by GE Healthcare Bioscience) that had been equilibrated in advance with a 50 mmol / L phosphate buffer (pH 8.0) to adsorb the protein. The adsorbed protein was eluted and fractionated by a linear gradient elution method from 50 mmol / L phosphate buffer (pH 8.0) to 1 mol / L NaCl in 50 mmol / L phosphate buffer (pH 8.0).
  • thermostable catalase activity heat resistance
  • SDS-PAGE polyvinylidene fluoride
  • thermostable catalase gene PCN from Penicillium pinophilum 3-1)
  • genomic DNA was isolated and purified.
  • the isolated genomic DNA was partially digested with the restriction enzyme Sau 3AI. This was added to the Bam HI arm of the phage vector EMBL3 cloning kit (Stratagene) and ligation kit Ver. 2 (manufactured by Takara Bio Inc.). This was precipitated in ethanol and then dissolved in TE buffer.
  • PCR was performed using P catalase F and P catalase R as primers and genomic DNA as a template. PCR was performed using LA Taq polymerase (manufactured by Takara Bio Inc.). PCR was performed with a program that performed 40 cycles of 94 ° C. for 30 seconds, annealing for 30 seconds, and 72 ° C. for 1 minute, but the annealing temperature was gradually reduced from 63 ° C. to 53 ° C. in the first 20 cycles, In the subsequent 20 cycles, the temperature was fixed at 53 ° C.
  • the amplified 250 bp DNA fragment was inserted into the pCR2.1-TOPO plasmid vector using the TOPO TA cloning kit (manufactured by Invitrogen) according to the attached protocol to obtain plasmid TOPO-P catalase.
  • the sequence of the inserted DNA fragment cloned into the plasmid TOPO-P catalase was determined using BigDye (R) Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) and ABI PRISM Genetic Analyzer (Applied Biosystems) It was performed according to the attached protocol. As a result of homology search of the base sequence obtained as a result, it showed 71% identity with the catalase derived from Aspergillus clavatus, so this DNA fragment was judged to be a part of the catalase gene.
  • This DNA fragment was amplified by PCR in the same manner as described above using plasmid TOPO-P catalase as a template, and the obtained PCR product was labeled using an ECL direct system (manufactured by Amersham Pharmacia Biotech) as a probe.
  • Example 3-3 Screening by plaque hybridization
  • the phage plaque prepared in Example 3-1 was transferred to a high bond N + nylon transfer membrane (manufactured by Amersham), and after alkali denaturation, 5 times concentration SSC (SSC: 15 mmol / L
  • SSC concentration SSC
  • the DNA was fixed by washing with acid trisodium (150 mmol / L sodium chloride) and drying.
  • Hybridization was performed by pre-hybridization (42 ° C.) for 1 hour, followed by addition of a horseradish peroxidase (HRP) labeled probe and hybridization for 4 hours (42 ° C.).
  • the probe was washed twice with 6 mol / L urea and 0.5% concentration SSC with 0.4% SDS and twice with 2 times concentration SSC.
  • the nylon membrane that had been washed with the probe was immersed in a detection solution for 1 minute and then exposed to Hyperfilm ECL manufactured by the same company to obtain one positive clone.
  • DNA preparation from positive clones was prepared by the method of Maniatis et al. (J. Sambrook, EF Fritsch and T. Maniatis, “Molecular Cloning”, Cold Spring. According to Harbor Laboratory Press. 1989), LE392 was used as the host E. coli. First, LE392 was cultured overnight in LB-MM medium (1% peptone, 0.5% yeast extract, 0.5% sodium chloride, 10 mmol / L magnesium sulfate, 0.2% maltose).
  • This Pst I fragment was cloned into pUC118 to obtain plasmid pUC-PCN.
  • the nucleotide sequence of the obtained plasmid was analyzed by the method described in Example 3-2. Further, in order to subclone the catalase gene PCN derived from Penicillium pinophilum, PCR was performed using pUC-PCN as a template and the following primer sets (PCNF and PCNR) to amplify the PCN gene.
  • PCNF ATGCGAGGATTATATACTCCCTC (SEQ ID NO: 8)
  • PCNR CTACTCATCCACAGCGAATCG (SEQ ID NO: 9)
  • the amplified DNA was inserted into the pCR2.1-TOPO plasmid vector using TOPO TA cloning kit (manufactured by Invitrogen) to obtain plasmid pPCN.
  • Escherichia coli TOP10 strain / pPCN was obtained by transforming Escherichia coli TOP10 strain (Invitrogen) with the obtained plasmid pPCN.
  • thermostable catalase gene PCN isolated from the genomic DNA of Penicillium pinophyllum by the above method consisted of 2403 bp of the base shown in SEQ ID NO: 1. Based on the comparison between the amino acid sequence deduced from this base sequence and the amino acid sequence of a known catalase and the conserved sequence of the intron, this gene is represented by SEQ ID NO: 1, 322 to 372, 599 to 651, 1068 to 1113, It was presumed to contain four introns shown at 1279-1326. The amino acid sequence of the thermostable catalase deduced from this base sequence was as shown in SEQ ID NO: 2.
  • the amino acid sequence of SEQ ID NO: 2 is completely identical to the N-terminal amino acid sequence of the thermostable catalase purified from Penicillium pinophilum shown in Example 2, and therefore the amino acid sequence of SEQ ID NO: 2 -1 to -42 were presumed to be signal sequences, and the nucleotide sequences 1-126 of SEQ ID NO: 1 in which this amino acid sequence was encoded were estimated to be the nucleotide sequences encoded in the signal sequence.
  • Example 4 Measurement of Catalase Activity (Heat Resistance) in Humicola Glycea Culture Solution
  • a culture supernatant of Humicola glycea was prepared in the same manner as in Example 1.
  • the catalase activity (heat resistance) was measured by the method of Example 1.
  • the residual activity rate after storage at 70 ° C. for 30 minutes was 57%. From the above results, it was determined that Humicola glycea produced thermostable catalase.
  • Example 5 Isolation and purification of thermostable catalase in Humicola glycea culture solution Ammonium sulfate was dissolved in the culture supernatant of Humicola glycea obtained by the method described in Example 4 to a final concentration of 1 mol / L. After that, this solution was previously equilibrated with 1 mol / L ammonium sulfate in a 50 mmol / L phosphate buffer (pH 7.0). It was adsorbed by passing it through Sepharose HP 26/10 (GE Healthcare Bioscience).
  • the protein adsorbed on the hydrophobic column is eluted by a linear gradient elution method from 1 mol / L ammonium sulfate to 50 mmol / L phosphate buffer (pH 7.0) in 50 mmol / L phosphate buffer (pH 7.0). And fractionated.
  • the catalase activity (heat resistance) of the fractionated eluate was measured by the method described in Example 1, and the fraction showing the activity was collected. Ammonia sulfate was added to the collected active fraction to a final concentration of 1 mol / L, and re-chromatography was performed using a hydrophobic column in the same manner as described above.
  • the obtained active fraction was concentrated and desalted by ultrafiltration, and then an acetate buffer (pH 4.0) was added so that the final concentration was 50 mmol / L. Subsequently, this solution was passed through a cation exchange column MonoS (manufactured by GE Healthcare Bioscience) previously equilibrated with 50 mmol / L acetate buffer (pH 4.0). Since catalase activity was detected in the non-adsorbed fraction, the non-adsorbed fraction was collected as the active fraction. When the collected active fraction was analyzed by SDS-PAGE, it showed a single band of about 80 kDa. Therefore, it was judged that the protein derived from this band was a thermostable catalase.
  • thermostable catalase was separated by SDS-PAGE, blotted on a PVDF membrane, and the amino acid sequence at the N-terminal was analyzed. The following sequence was obtained.
  • QDTTSGQSPLAEYEVDDSTG SEQ ID NO: 10.
  • Example 6 Cloning of thermostable catalase gene HCN from Humicola glycea 6-1) Preparation of genomic DNA library A genomic DNA library of Humicola glycea was prepared by the method described in Example 3-1.
  • H Catalase F GTNCGNTTYTCNACTGT (SEQ ID NO: 11)
  • H Catalase R AARAANACNGGG N TTRTTGTT (SEQ ID NO: 12) [In SEQ ID NO: 12, the underlined symbol “N” (No. 12) means deoxyinosine]
  • PCR was performed using H catalase F and H catalase R as primers and genomic DNA as a template. PCR was performed using Ex Taq polymerase (manufactured by Takara Bio Inc.). PCR was performed with a program that carried out 30 cycles of 98 ° C.
  • the amplified 300 bp DNA fragment was inserted into the pCR2.1-TOPO plasmid vector using the TOPO TA cloning kit (Invitrogen) according to the attached protocol to obtain plasmid TOPO-H catalase.
  • the Xho I fragment has a sequence from 616 to 3 ′ end of the base sequence of SEQ ID NO: 3, and the Bam HI fragment has the base sequence of SEQ ID NO: 3 from the 5 ′ end.
  • the sequence of No. 1675 was confirmed and contained a thermostable catalase gene fragment. By joining these base sequences, the base sequence of the full-length thermostable catalase gene was determined.
  • PCR was performed with the following primer sets (HCNF and HCNR) using Humicola glycea genomic DNA as a template to amplify the HCN gene.
  • HCNF ATGAACAGAGTCCAGAATCTC (SEQ ID NO: 13)
  • HCNR TCAAAAAACAAAGGGCACCAG (SEQ ID NO: 14)
  • the amplified DNA was inserted into the pCR2.1-TOPO plasmid vector using TOPO TA cloning kit (Invitrogen) to obtain plasmid pHCN.
  • Escherichia coli TOP10 strain / pHCN was obtained by transforming Escherichia coli TOP10 strain (Invitrogen) with the obtained plasmid pHCN.
  • thermostable catalase gene HCN isolated from the genomic DNA of Humicola glycea by the above method consisted of 2749 bp of the base shown in SEQ ID NO: 3. Based on the comparison between the amino acid sequence deduced from this base sequence and the amino acid sequence of a known catalase and the conserved sequence of the intron, this gene has the base sequence of SEQ ID NO: 3 283 to 463, 667 to 747, 771 to It was estimated that six introns shown in Nos. 846, 1008 to 1160, 1218 to 1270, and 1842 to 1895 were included.
  • the amino acid sequence of the thermostable catalase deduced from this base sequence was as shown in SEQ ID NO: 4.
  • the amino acid sequence of 1 to 20 of the amino acid sequence of SEQ ID NO: 4 completely matched the N-terminal amino acid sequence of the heat-resistant catalase purified from Humicola glycea shown in Example 5, the amino acid sequence of SEQ ID NO: 4
  • the amino acid sequence of Nos. -1 to -32 was presumed to be a signal sequence
  • the sequence of Nos. 1 to 96 of the base sequence of SEQ ID No. 3 encoding this amino acid sequence was presumed to be the base sequence encoding the signal sequence .
  • Example 7 Preparation of Recombinant PCN Expression Vector Recombinant PCN expression using Aspergillus niger var. Macrosporus as a host was expressed in proctase B expressed in a large amount in Aspergillus niger variety macrosporus . This was carried out using an expression vector in which the PCN gene was inserted between the gene promoter and terminator. This expression vector was prepared by the following procedure.
  • PCR was performed using LA PCR TM KIT Ver2.1 (manufactured by Takara Bio Inc.). The reaction conditions were 94 ° C for 1 minute, 30 cycles of (94 ° C, 30 seconds), (52 ° C, 30 seconds), (72 ° C, 90 seconds), and finally 72 ° C, 7 minutes. The reaction was terminated. As a result, about 1.2 kb of DNA was amplified. The amplified 1.2 kb DNA fragment was inserted into the pCR2.1-TOPO plasmid vector using the TOPO TA cloning kit (Invitrogen) according to the protocol attached to the kit to obtain plasmid TOPO-ProB.
  • TOPO TA cloning kit Invitrogen
  • the sequence of the inserted DNA fragment cloned into the plasmid TOPO-ProB is attached using BigDye (R) Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) and ABI PRISM Genetic Analyzer (Applied Biosystems) This was done according to the protocol that was being used. Since the base sequence obtained as a result matched the sequence of the proctase B gene described in JP-A-5-68570, this DNA fragment was judged to be the translation region of the proctase B gene. This DNA fragment was labeled using an ECL direct system (Amersham Pharmacia Biotech) to prepare a probe.
  • Example 7-3 Screening of clones containing promoter region and terminator region of proctase gene by plaque hybridization
  • the phage plaque prepared in Example 7-1 was transferred to a high bond N + nylon transfer membrane (Amersham) and subjected to alkali denaturation. Then, the DNA was fixed by washing with 5-fold concentration SSC (SSC: 15 mmol / L trisodium citrate, 150 mmol / L sodium chloride) and drying. Hybridization was carried out for 20 hours (42 ° C.) by adding the probe prepared by the method described in 7-2 to the Example after pre-hybridization (42 ° C.) for 1 hour.
  • SSC 5-fold concentration SSC
  • the probe was washed twice with 6 mol / L urea and 0.5% concentration SSC with 0.4% SDS and twice with 2 times concentration SSC.
  • the nylon membrane that had been washed with the probe was immersed in a detection solution for 1 minute, and then exposed to Hyperfilm ECL manufactured by the same company to obtain 8 positive clones.
  • LE392 was used as the host E. coli.
  • LE392 was cultured overnight in LB-MM medium (1% peptone, 0.5% yeast extract, 0.5% sodium chloride, 10 mmol / L magnesium sulfate, 0.2% maltose). This was infected with a phage solution derived from a single plaque and cultured overnight in LB-MM medium. To this, sodium chloride was added to 1 mol / L, and chloroform was added to 0.8% to promote lysis of E. coli.
  • phage particles were recovered from the polyethylene glycol (PEG) precipitate (10% PEG6000).
  • PEG polyethylene glycol
  • the phage particles were digested with proteinase K in the presence of SDS, and the phage DNA was recovered by phenol treatment and ethanol precipitation.
  • the DNA prepared as described above was subjected to Southern blot analysis using the ECL direct system.
  • the Xho I to Eco RI fragment of about 5.5 kb showed a common hybridization pattern with chromosomal DNA. It was determined that the fragment contained the gene, and subcloning was performed.
  • An Eco RI fragment from Xho I excised from the phage DNA was inserted into the Sal I and Eco RI sites of pUC119, and the plasmid pPROB / 119E. X was obtained.
  • the nucleotide sequence of the obtained plasmid was analyzed, and the nucleotide sequence of the promoter and terminator region of the proctase B gene was determined.
  • Plasmid pPROB / 119E Prepared by the method described in Example 7-3.
  • the vector in which the translation region of the proctase B gene was deleted from X and the 3 ′ end of the promoter of this gene and the 5 ′ end of the terminator region were linked by an Xba I recognition sequence was used as an expression vector pPTB-EX.
  • pPTB-EX is a pPROB / 119E.
  • X Using X as a template, it was prepared by inverse PCR using a primer (proctaseBNxba) as the 3 ′ end of the promoter of the proctase B gene and a 5 ′ end of the terminator as a primer (productBCxba).
  • productBNBN GGTCTAGAAATGTCAAGCAAGAGAGT (SEQ ID NO: 17)
  • productBCxba GGTCTAGAATCAACCACTGAAGTGGA (SEQ ID NO: 18)
  • An Xba I recognition sequence was added to the 5 ′ end of both primers.
  • Primestar MAX DNA POLYMERASE (manufactured by Takara Bio Inc.) was used for 30 cycles of (98 ° C., 10 seconds), (55 ° C., 5 seconds), (72 ° C., 60 seconds). As a result, about 7 kb of DNA was amplified.
  • the PCR reaction solution was purified using QIAQUICK PCR PURIFICATION KIT (Qiagen), eluted in 50 ⁇ L of TE buffer, the obtained DNA fragment was restricted with Xba I, and ligation kit Ver. 2 (manufactured by Takara Bio Inc.) and religated to obtain an expression vector pPTB-EX.
  • the nucleotide sequence of the obtained plasmid was analyzed, and it was confirmed that there was no mutation by inverse PCR.
  • PCN-XbaIPtN GGTCTAGAGGTCAAAATGCGAGGATTATACTCCCT (SEQ ID NO: 19)
  • PCN-XbaIPtC GGTCTAGACTACTACTCATCACAGCGAATCG (SEQ ID NO: 20)
  • Primestar MAX DNA POLYMERASE (Takara Bio Inc.), (98 ° C., 10 seconds), (55 ° C., 5 seconds), (72 ° C., 60 seconds) reaction was performed in 30 cycles. As a result, a DNA of about 2.3 kb was amplified.
  • PCR reaction solution was eluted in TE buffer 50 ⁇ L Purification of DNA using the QIAQUICK PCR PURIFICATION KIT (manufactured by Qiagen), and the resulting DNA fragment was restricted with Xba I, also after digestion with Xba I Dephosphorylated pPTB-EX and ligation kit Ver. 2 (manufactured by Takara Bio Inc.) to obtain a plasmid pPTPCN (SEQ ID NO: 21, FIG. 3). The DNA sequence of PCN inserted into this plasmid was analyzed, and it was confirmed that no mutation was introduced by PCR.
  • Example 8 Transformation of Aspergillus niger variety macrosporous with PCN expression vector pPTPCN and expression of recombinant PCN
  • Transformation of Aspergillus niger variety macrosporus with the PCN expression vector pPTPCN was performed by transforming the niaD-deficient strain of this strain with the niaD gene as a selection marker gene.
  • Nia-N ATGGCGACTGTCACTGAGGTG (SEQ ID NO: 22)
  • Nia-C TTAGAAGAAATGAAGGTCCGA (SEQ ID NO: 23)
  • LA PCR TM KIT Ver2.1 manufactured by Takara Bio Inc.
  • Aspergillus niger variety macrospore genomic DNA as a template, after 94 ° C for 1 minute, (94 ° C, 30 seconds), (55 C., 30 seconds) and (72.degree. C., 3 minutes) were repeated 30 times, and finally, treatment was performed at 72.degree. C. for 7 minutes.
  • the amplified 3 kb DNA fragment was labeled using an ECL direct system (Amersham Pharmacia Biotech) to prepare a probe.
  • a clone containing was isolated.
  • a genomic DNA library was screened by the same method as in Example 7 to obtain one positive clone.
  • the obtained phage clone was subjected to Southern blot analysis in the same manner as in Example 7. As a result, the approximately 6.5 kb Xba I digested fragment showed a common hybridization pattern with the chromosomal DNA.
  • this Xba I fragment was cloned into the Xba I recognition sequence site of pUC118 to obtain plasmid pPTnia118.
  • the nucleotide sequence of the obtained plasmid was analyzed, and the 6416 bp nucleotide sequence (SEQ ID NO: 24) including the promoter and terminator region of the niaD gene was determined.
  • a protoplastizing enzyme solution (10 mg / mL ⁇ -glucuronidase, 3 mg / mL chitinase, 3 mg / mL zymolase, 0.5 mol / mL) was obtained.
  • L sucrose The mycelium was protoplasted by shaking at 30 ° C. for 60 minutes.
  • the suspension was filtered with absorbent cotton, and centrifuged at 2500 rpm for 10 minutes to collect protoplasts and washed with SUTC buffer (17.1% sucrose, 10 mmol / L Tris-HCl pH 7.5, 10 mmol / L CaCl 2 ). did.
  • the protoplasts prepared as described above were resuspended in 100 ⁇ L of SUTC buffer, 7.5 ⁇ L (1 ⁇ g / ⁇ L) of pPTPCN and 2.5 ⁇ L (1 ⁇ g / ⁇ L) of pPTnia118 were added, and the mixture was allowed to stand on ice for 5 minutes. .
  • 400 ⁇ L of a PEG solution (60% PEG 4000, 10 mmol / L Tris-HCl pH 7.5, 10 mmol / L CaCl 2 ) was added and allowed to stand on ice for 20 minutes, and then 10 mL of SUTC buffer was added and 2500 rpm for 10 minutes. Centrifuged.
  • the centrifuged protoplast was suspended in 1 mL of SUTC buffer, centrifuged at 4000 rpm for 5 minutes, and finally suspended in 100 ⁇ L of SUTC buffer.
  • Protoplasts treated as described above were added to the Sapek regeneration medium (0.085% NaNO 3 , 0.1% K 2 HPO 4 , 0.05% MgSO 4 .7H 2 O, 0.05% KCl, 0.001% FeSO 4. ⁇ 2H 2 O, 17.1% sucrose, 1.5% Purified Agar, pH 5.5-6.0) Overlaid with soft agar and cultured at 30 ° C. for 5-7 days to transform colonies formed The body.
  • Catalase activity was measured by the method described in Example 1 for 16 culture supernatants and culture supernatants obtained by culturing the Nia2 strain in the same manner. As a result, as shown in Table 1, no. 16 was 77 times more active than the parent strain, confirming that recombinant PCN was expressed.
  • the amount of enzyme that decomposes 1 ⁇ mol of hydrogen peroxide per minute was defined as 1 unit for the catalase activity. Furthermore, when the catalase activity of the culture supernatant of Penicillium pinophilum obtained by the method described in Example 1 was measured, the activity was 385 U / mL. From this result, it was shown that the productivity of PCN was remarkably improved by expressing PCN as a host using Aspergillus niger variety macrosporous.
  • Example 8-5 Analysis of N-terminal amino acid sequence Transformant No. obtained in Example 8-4 Sixteen culture supernatants were subjected to SDS-PAGE and transferred to a PVDF membrane (Immobilon-PSQ) manufactured by Millipore. This PVDF membrane was stained with Coomassie brilliant blue, and a portion on which a protein of about 80 kDa was blotted was cut out and subjected to a Model 492 amino acid sequencer to decode the amino acid sequence of 11 amino-terminal amino acids. The sequence was as shown below.
  • DDSNASSSETEA (1 to 11 in SEQ ID NO: 5) Since this amino acid sequence was identical to the N-terminal amino acid sequence of PCN derived from Penicillium pinophilum, it was confirmed that the protein of about 80 kDa was a recombinant PCN.
  • nucleotide sequences of SEQ ID NOS: 6-9, 11-20, and 22-23 in the sequence listing are artificially synthesized primer sequences, and primers P catalase F (SEQ ID NO: 6) and P catalase R (SEQ ID NO: 6), respectively.
  • the base sequence of SEQ ID NO: 21 is the plasmid pPTPCN.

Abstract

 耐熱性カタラーゼを組換えタンパク質として大量に発現させ、効率よく安価に耐熱性カタラーゼを生産することを課題とした。  耐熱性カタラーゼを組換えタンパク質として効率良く生産するために必要なDNAを得ることにより、耐熱性カタラーゼを効率良く発現する組換え微生物を得ることができ、更に得られた組換え微生物を培養することにより、効率よく安価に耐熱性カタラーゼを生産することができる。本発明の耐熱性カタラーゼで過酸化水素を含んだ溶液を処理することにより、高温においても過酸化水素を効率的かつ安価に分解することができる。

Description

耐熱性カタラーゼ
 本発明は、耐熱性カタラーゼに関するものであり、詳細には、ペニシリウム・ピノフィラム又はフミコーラ・グリゼア由来の耐熱性カタラーゼ、耐熱性カタラーゼ活性を有するタンパク質、該タンパク質をコードするDNA及び耐熱性カタラーゼの製造方法に関するものである。
 カタラーゼは、過酸化水素を水と酸素に分解する反応を触媒する酵素である。過酸化水素水は消毒剤・殺菌剤として広く利用されている。過酸化水素水は、殺菌終了後、水で簡単に除去が可能であり、かつ時間経過とともにある程度自然分解されるため、食品などの殺菌剤として広く利用されている。しかし、残存する過酸化水素から発生する活性酸素が、細胞の老化やガンを引き起こす可能性を有するため、過酸化水素使用後は完全に分解・除去することが求められている。過酸化水素の分解には、新たな化学物質を添加することなく分解できるため、カタラーゼが非常に有効である。実際、カタラーゼは、綿の漂白処理後に残存する過酸化水素や、食品中の残存過酸化水素の分解・除去に用いられている。これまでに、カタラーゼとして、微生物由来のもの(特許文献1~5)及び豚・牛の肝臓などの動物由来のカタラーゼなどが知られている。
 上記カタラーゼの中で、糸状菌であるアスペルギルス・ニガーが産生するカタラーゼや豚の肝臓由来のカタラーゼが工業用途に良く用いられてきた。しかし、これらのカタラーゼは耐熱性が低く、70℃で30分間処理すると10%程度の活性が残存するのみであることが知られている(特許文献6)。一方、特に繊維加工や食品加工等の用途においては、高温での過酸化水素の分解が必要とされるため、従来品よりも耐熱性が高いカタラーゼが所望されている。これまでに耐熱性カタラーゼとして、アスペルギルス・テレウス(特許文献6)、アクレモニウム・アラバメンシス(特許文献6)、サーモアスカス・オーランチアカス(特許文献6)、シタリジウム・サーモフィラム(特許文献7)、フミコーラ・インソレンス(特許文献7)、及びサーモマイセス属(特許文献8)が産生するカタラーゼが報告されている。
 糸状菌は、タンパク質の分泌能が極めて高いことが知られており、酵素などの組換えタンパク質を生産するための宿主として適している。従って、耐熱性カタラーゼ遺伝子を糸状菌に導入し、組換えタンパク質として大量に発現させることができれば、野生株と比較して、耐熱性カタラーゼを著しく高い生産性により製造できることが期待される。これまでに、組換えタンパク質の生産用にアスペルギルス属(特許文献9)、ペニシリウム属(特許文献10)、フミコーラ属(特許文献11)、トリコデルマ属(特許文献12)、アクレモニウム属(特許文献13)に分類される糸状菌において組換えタンパク質の産生に成功したことが報告されている。
 これらの糸状菌を宿主として組換えタンパク質を発現させる場合、必ずしも宿主に導入した全ての外来遺伝子が発現される訳ではない。一般に、導入遺伝子のコドン使用の観点から、導入する外来遺伝子の由来は宿主にできる限り近縁であることが望ましいとされている。例えば、フミコーラ・インソレンスを宿主としてエンドグルカナーゼを組換えタンパク質として発現させる際に、フミコーラ・インソレンス由来であるNCE4、NCE5遺伝子を導入した場合には顕著な量でのエンドグルカナーゼの発現が認められた(特許文献14、15)。これに対し、NCE4、NCE5とアミノ酸配列で高い同一性を有するリゾプス・オリゼー由来のRCEI遺伝子を導入した場合には、エンドグルカナーゼの発現がほとんど認められなかった(特許文献16)。また、アスペルギルス・アワモリを宿主としてグルコアミラーゼを組換えタンパク質として発現させる際に、アスペルギルス・ニガー由来のグルコアミラーゼ遺伝子を導入した場合には、グルコアミラーゼの発現は4.6g/Lと高い生産性を示したのに対し、フミコーラ・グリゼア由来の遺伝子を導入した場合には0.66g/Lと低い生産性を示すに留まった(非特許文献1)。更には、アルファー-アミラーゼを組換えタンパク質として発現させる際に、アスペルギルス・オリゼを宿主としてアスペルギルス・オリゼ由来のアルファー-アミラーゼ遺伝子を導入した場合には、アルファー-アミラーゼの発現は12g/Lと高い生産性を示したのに対し、トリコデルマ・ビリデを宿主としてアスペルギルス・オリゼ由来のアルファー-アミラーゼ遺伝子を導入した場合には、アルファー-アミラーゼの発現は1g/Lの生産性を示すに過ぎなかった(非特許文献1)。これらの結果は、著量の組換えタンパク質の発現を目指す場合においては、宿主と同種もしくは近縁の糸状菌に由来する遺伝子を導入するほうが望ましいことを示している。
 糸状菌を宿主とし、耐熱性カタラーゼを組換えタンパク質として大量に発現させることを目指す場合にも、上記の通り、導入される耐熱性カタラーゼ遺伝子の由来は宿主とする糸状菌と近縁であることが望ましいと考えられる。しかし、これまでに耐熱性カタラーゼ遺伝子の単離が報告されたのは、サーモアスカス・オーランチアカス由来のカタラーゼ遺伝子(特許文献17)及びシタリジウム・サーモフィラム由来のカタラーゼ遺伝子(特許文献18)のみである。タンパク質の生産宿主として開発されているアスペルギルス属、ペニシリウム属、フミコーラ属、トリコデルマ属、アクレモニウム属等の糸状菌から耐熱性カタラーゼ遺伝子が単離された例はこれまで報告されておらず、耐熱性カタラーゼを組換えタンパク質として生産性高く発現させることは、たいへん困難であった。
特開昭55-135588号公報 特開昭60-083579号公報 特開昭63-003788号公報 特公昭49-004956号公報 特開平2-076579号公報 特開平5-153975号公報 特表平6-506347号公報 特開平10-257883号公報 国際公開第WO97/034004号パンフレット 国際公開第WO2000/068401号パンフレット 国際公開第WO98/003667号パンフレット 国際公開第WO98/011239号パンフレット 特開2001/017180号公報 国際公開第WO98/003640号パンフレット 国際公開第WO2001/090375号パンフレット 国際公開第WO2000/024879号パンフレット 特開2004-261137号公報 米国特許第5646025号明細書 塚越規弘著、組換えタンパク質生産法(学会出版センター)、pp.94~95
 このような背景のもと、耐熱性カタラーゼを組換えタンパク質として大量に発現させることが求められており、本発明者らは、組換えタンパク質の生産宿主として開発されたアスペルギルス属、ペニシリウム属、フミコーラ属、トリコデルマ属、アクレモニウム属の糸状菌から耐熱性カタラーゼを探索し、それら耐熱性カタラーゼをコードする遺伝子を単離し、耐熱性カタラーゼを大量に発現させることを課題とした。
 本発明者らは、上記課題を解決するため、組換えタンパク質の生産宿主として開発された糸状菌であるアスペルギルス属、ペニシリウム属、フミコーラ属、トリコデルマ属、アクレモニウム属に分類される糸状菌を多数培養し、得られた培養液中のカタラーゼについてその熱安定性の評価を重ね、これらの糸状菌より耐熱性カタラーゼを得ることを試みた。その結果、ペニシリウム・ピノフィラム及びフミコーラ・グリゼアが耐熱性カタラーゼを産生することを見出した。
 次に本発明者らは、ペニシリウム・ピノフィラムの培養液より耐熱性カタラーゼを精製したところ、SDS-ポリアクリルアミドゲル電気泳動(SDS-PAGE)上で約80kDaの位置に単一のバンドを示し、かつそのN末端アミノ酸配列がDDSNASSETEAFLSEFYLNDNDAYLTTDVGG(配列番号5)である耐熱性カタラーゼを得た。また、フミコーラ・グリゼアの培養液より耐熱性カタラーゼを精製したところ、SDS-PAGE上で約80kDaの位置に単一のバンドを示し、かつそのN末端アミノ酸配列がQDTTSGQSPLAAYEVDDSTG(配列番号10)である耐熱性カタラーゼを得た。
 更に、本発明者らは、ペニシリウム・ピノフィラム及びフミコーラ・グリゼアのゲノムDNAから、これらの耐熱性カタラーゼをコードする遺伝子のクローニング、塩基配列の決定に成功し、本発明を完成するに至った。
 即ち、本発明は、
1)ペニシリウム属に属する微生物が産生する耐熱性カタラーゼ、
2)ペニシリウム属に属する微生物が、ペニシリウム・ピノフィラムである、1)に記載の耐熱性カタラーゼ、
3)分子量が約80kDaである、1)又は2)に記載の耐熱性カタラーゼ、
4)フミコーラ・グリゼアが産生する耐熱性カタラーゼ、
5)分子量が約80kDaである、4)に記載の耐熱性カタラーゼ、
6)以下の(i)、(ii)、及び(iii)から選択されるタンパク質:
(i)配列番号2に記載のアミノ酸配列の1~692番の配列を含んでなるタンパク質;
(ii)配列番号2に記載のアミノ酸配列の1~692番の配列において、1もしくは複数個のアミノ酸が欠失、置換、もしくは付加されたアミノ酸配列を含んでなり、かつ耐熱性カタラーゼ活性を有するタンパク質;
(iii)配列番号2に記載のアミノ酸配列の1~692番の配列と70%以上の同一性を有するアミノ酸配列を含んでなり、かつ耐熱性カタラーゼ活性を有するタンパク質、
7)配列番号2に記載のアミノ酸配列の1~692番の配列からなる耐熱性カタラーゼ活性を有するタンパク質、
8)配列番号2に記載のアミノ酸配列の-1~-42番の配列、又は、配列番号2に記載のアミノ酸配列の-1~-42番の配列において1もしくは複数個のアミノ酸が欠失、置換、もしくは付加されたアミノ酸配列をN末端側に有する、6)又は7)に記載のタンパク質、
9)以下の(i)、(ii)、及び(iii)から選択されるタンパク質:
(i)配列番号4に記載のアミノ酸配列の1~684番の配列を含んでなるタンパク質;
(ii)配列番号4に記載のアミノ酸配列の1~684番の配列において、1もしくは複数個のアミノ酸が欠失、置換、もしくは付加されたアミノ酸配列を含んでなり、かつ耐熱性カタラーゼ活性を有するタンパク質;
(iii)配列番号4に記載のアミノ酸配列の1~684番の配列と70%以上の同一性を有するアミノ酸配列を含んでなり、かつ耐熱性カタラーゼ活性を有するタンパク質。
10)配列番号4に記載のアミノ酸配列の1~684番の配列からなる耐熱性カタラーゼ活性を有するタンパク質、
11)配列番号4に記載のアミノ酸配列の-1~-32番の配列、又は、配列番号4に記載のアミノ酸配列の-1~-32番の配列において、1もしくは複数個のアミノ酸が欠失、置換、もしくは付加されたアミノ酸配列をN末端側に有する、9)又は10)に記載のタンパク質、
12)以下の(i)、(ii)、及び(iii)から選択されるDNA:
(i)6)~8)のいずれか一に記載のタンパク質をコードするDNA;
(ii)配列番号1に記載の塩基配列の1~2403番の配列を含んでなるDNA;
(iii)配列番号1に記載の塩基配列の1~2403番の配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ耐熱性カタラーゼ活性を有するタンパク質をコードするDNA、
13)配列番号1に記載の塩基配列の1~2403番の配列からなるDNA、
14)12)又は13)に記載のDNAから、イントロン配列を除去したDNA、
15)イントロン配列が、配列番号1に記載の塩基配列の322~372番、599~651番、1068~1113番、又は、1279~1326番の配列から選択される1以上の配列である、14)に記載のDNA、
16)12)~15)のいずれか一に記載のDNAから、シグナル配列をコードする塩基配列を除去したDNA、
17)シグナル配列をコードする塩基配列が、配列番号1に記載の塩基配列の1~126番の配列である、16)に記載のDNA、
18)以下の(i)、(ii)、及び(iii)から選択されるDNA:
(i)9)~11)のいずれか一に記載のタンパク質をコードするDNA;
(ii)配列番号3に記載の塩基配列の1~2749番の配列を含んでなるDNA;
(iii)配列番号3に記載の塩基配列の1~2749番の配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ耐熱性カタラーゼ活性を有するタンパク質をコードするDNA、
19)配列番号3に記載の塩基配列の1~2749番の配列からなるDNA、
20)18)又は19)に記載のDNAから、イントロン配列を除去したDNA、
21)イントロン配列が、配列番号3に記載の283~463番、667~747番、771~846番、1008~1160番、1218~1270番、又は1842~1895番の配列から選択される1以上の配列である、20)に記載のDNA、
22)18)~21)に記載されるDNAから、シグナル配列をコードする塩基配列を除去したDNA、
23)シグナル配列をコードする塩基配列が、配列番号3に記載の1~96番の配列である、22)に記載のDNA、
24)12)~17)のいずれか一に記載のDNAを含んでなる発現ベクター、
25)12)~17)のいずれか一に記載のDNA又は24)に記載の発現ベクターで形質転換された宿主微生物、
26)宿主微生物が、糸状菌である、25)に記載の宿主微生物、
27)糸状菌が、アスペルギルス属、ペニシリウム属、フミコーラ属、トリコデルマ属、又はアクレモニウム属に属する糸状菌から選択される糸状菌である、26)に記載の宿主微生物、
28)25)~27)のいずれか一に記載の宿主微生物を培養し、培養物から耐熱性カタラーゼを採取することを特徴とする、耐熱性カタラーゼの製造方法、
29)18)~23)のいずれか一に記載のDNAを含んでなる発現ベクター、
30)18)~23)のいずれか一に記載のDNA又は29)に記載の発現ベクターで形質転換された宿主微生物、
31)宿主微生物が、糸状菌である、30)に記載の宿主微生物、
32)糸状菌が、アスペルギルス属、ペニシリウム属、フミコーラ属、トリコデルマ属、又はアクレモニウム属に属する糸状菌から選択される糸状菌である、31)に記載の宿主微生物、
33)30)~32)のいずれか一に記載の宿主微生物を培養し、培養物から耐熱性カタラーゼを採取することを特徴とする、耐熱性カタラーゼの製造方法、
に関する。
 本発明により、耐熱性カタラーゼを組換えタンパク質として効率良く生産するために必要なDNAを得ることができ、また、耐熱性カタラーゼを効率良く発現する組換え微生物を得ることができる。更に、得られた組換え微生物を培養することにより、効率よく安価に耐熱性カタラーゼを生産することができる。本発明の耐熱性カタラーゼで過酸化水素を含んだ溶液を処理することにより、高温においても過酸化水素を効率的かつ安価に分解することができる。
プラスミドpPCNの制限酵素地図である。 プラスミドpHCNの制限酵素地図である。 プラスミドpPTPCNの制限酵素地図である。
 本明細書において、「耐熱性カタラーゼ」とは、特許文献6の実施例4に開示された方法で耐熱性を測定し、70℃で30分間保存後の活性残存率が50%以上であるカタラーゼを意味する。
 ペニシリウム・ピノフィラム及びフミコーラ・グリゼアが培養液中に産生する耐熱性カタラーゼは、例えば特許文献6に示されている方法により得ることができる。カタラーゼ活性の測定は、過酸化水素を含んだ溶液にカタラーゼを添加し、一定時間後に減少した過酸化水素を定量することにより評価され、例えば特許文献6に開示されている方法により測定できる。また、耐熱性カタラーゼは、特許文献6に記載の方法に従って、適当な濃度に希釈した培養上清を70℃で30分間熱処理し、熱処理前後のカタラーゼ活性を測定することで評価できる。本明細書において、上記の定義に従い、本熱処理において50%以上の活性が残存するカタラーゼを耐熱性カタラーゼとする。
 上記の方法により得られたペニシリウム・ピノフィラム及びフミコーラ・グリゼアの培養液上清につき、その上清中のカタラーゼの熱安定性を測定した。その結果、70℃で30分間の熱処理によりペニシリウム・ピノフィラムの産生するカタラーゼは50%、フミコーラ・グリゼアの産生するカタラーゼは57%のカタラーゼ活性が残存しており、ペニシリウム・ピノフィラム及びフミコーラ・グリゼアは耐熱性カタラーゼを産生していた。
 耐熱性カタラーゼの精製は、上記の方法で得られた耐熱性カタラーゼを含んだ培養上清から、タンパク質精製の定法に従って実施できる。この際、用いられるタンパク質精製法は、一般的に知られている様々な方法が適用できるが、例えば、疎水クロマトグラフィ、陰イオン交換クロマトグラフィを組み合わせることにより実施できる。また、精製された耐熱性カタラーゼの分子量はSDS-PAGEにより決定することができる。
 上記の方法により、ペニシリウム・ピノフィラム及びフミコーラ・グリゼアの産生する耐熱性カタラーゼを精製し、分子量を決定したところ、ペニシリウム・ピノフィラム及びフミコーラ・グリゼアから、それぞれ約80kDaの分子量を持つ耐熱性カタラーゼが得られた。
 本明細書において、「アミノ酸配列において、1もしくは複数個のアミノ酸が欠失、置換、もしくは付加されたアミノ酸配列」とは、部位特異的突然変異誘発法等の周知の方法により、又は天然に生じ得る程度の複数個の数のアミノ酸の置換等により改変がなされたことを意味する。アミノ酸の改変の個数は、好ましくは1~50個、より好ましくは1~30個、更に好ましくは1~10個、更により好ましくは1~5個、最も好ましくは1~2個である。
 本発明のタンパク質の改変アミノ酸配列の例は、好ましくは、そのアミノ酸が、1又は複数個(好ましくは、1ないし数個あるいは1、2、3、又は4個)の保存的置換を有するアミノ酸配列であることができる。
 本明細書において、「保存的置換」とは、1もしくは複数個のアミノ酸残基を、別の化学的に類似したアミノ酸残基で置き換えることを意味する。例えば、ある疎水性残基を別の疎水性残基によって置換する場合、ある極性残基を同じ電荷を有する別の極性残基によって置換する場合などが挙げられる。このような置換を行うことができる機能的に類似のアミノ酸は、アミノ酸毎に当該技術分野において公知である。具体例を挙げると、非極性(疎水性)アミノ酸としては、アラニン、バリン、イソロイシン、ロイシン、プロリン、トリプトファン、フェニルアラニン、メチオニンなどが挙げられる。極性(中性)アミノ酸としては、グリシン、セリン、スレオニン、チロシン、グルタミン、アスパラギン、システインなどが挙げられる。陽電荷をもつ(塩基性)アミノ酸としては、アルギニン、ヒスチジン、リジンなどが挙げられる。また、負電荷をもつ(酸性)アミノ酸としては、アスパラギン酸、グルタミン酸などが挙げられる。
 本明細書において「ストリンジェントな条件」とは、ハイブリダイゼーション後のメンブレンの洗浄操作を、高温下低塩濃度溶液中で行うことを意味し、例えば、0.5×SSC濃度(1×SSC:15mmol/Lクエン酸3ナトリウム、150mmol/L塩化ナトリウム)、60℃、15分間の洗浄条件、好ましくは0.5×SSC濃度、0.1%SDS溶液中で60℃、15分間の洗浄条件を意味する。
 ハイブリダイゼーションは、公知の方法に従って行うことができる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行うことができる。
 本明細書において、塩基配列又はアミノ酸配列についての「同一性」とは、比較される配列間において、各々の配列を構成する塩基又はアミノ酸残基の一致の程度の意味で用いられる。本明細書において示した「同一性」の数値はいずれも、当業者に公知の相同性検索プログラムを用いて算出される数値であればよく、例えば、FASTA等においてデフォルト(初期設定)のパラメータを用いることにより、容易に算出することができる。
 配列番号2に記載のアミノ酸配列の1~692番の配列と70%以上の同一性を有するアミノ酸配列は、好ましくは、80%以上、より好ましくは85%以上、更に好ましくは90%以上、更により好ましくは95%以上、特に好ましくは98%以上、そして最も好ましくは99%以上の同一性を有するアミノ酸配列であることができる。
 配列番号4に記載のアミノ酸配列の1~684番の配列と70%以上の同一性を有するアミノ酸配列は、好ましくは、80%以上、より好ましくは85%以上、更に好ましくは90%以上、更により好ましくは95%以上、特に好ましくは98%以上、そして最も好ましくは99%以上の同一性を有するアミノ酸配列であることができる。
 本発明において、配列番号2に記載のアミノ酸配列の1~692番の配列が与えられれば、それをコードする塩基配列は容易に定まり、配列番号2に記載のアミノ酸配列の1~692番の配列をコードする種々の塩基配列を選択することができる。
 本発明において、配列番号4に記載のアミノ酸配列の1~684番の配列が与えられれば、それをコードする塩基配列は容易に定まり、配列番号4に記載のアミノ酸配列の1~684番の配列をコードする種々の塩基配列を選択することができる。
 従って、配列番号2に記載のアミノ酸配列の1~692番の配列を含んでなるタンパク質をコードするDNAとは、配列番号1に記載の塩基配列の1~2403番の配列で表される塩基配列の一部又は全部に加え、同一のアミノ酸をコードする塩基配列であって縮重関係にあるコドンを塩基配列として有する配列をも意味するものとする。本発明においては更に、これらに対応するRNA配列も含まれる。
 また、配列番号4に記載のアミノ酸配列の1~684番の配列を含んでなるタンパク質をコードするDNAとは、配列番号3に記載の塩基配列の1~2749番の配列で表される塩基配列の一部又は全部に加え、同一のアミノ酸をコードする塩基配列であって縮重関係にあるコドンを塩基配列として有する配列をも意味するものとする。本発明においては更に、これらに対応するRNA配列も含まれる。
 配列番号2に記載のアミノ酸配列の1~692番の配列を含んでなるタンパク質をコードするDNAの好ましい例としては、配列番号1に記載の塩基配列の1~2403番の配列で表される塩基配列を含んでなるDNAが挙げられる。
 配列番号4に記載のアミノ酸配列の1~684番の配列を含んでなるタンパク質をコードするDNAの好ましい例としては、配列番号3に記載の塩基配列の1~2749番の配列で表される塩基配列を含んでなるDNAが挙げられる。
 ペニシリウム・ピノフィラム及びフミコーラ・グリゼアが産生する耐熱性カタラーゼをコードする遺伝子の単離は、ペニシリウム・ピノフィラム及びフミコーラ・グリゼアよりゲノムファージライブラリーを作製し、耐熱性カタラーゼ遺伝子を含んだ陽性ファージクローンを得ることにより実施することができる。ゲノムファージライブラリーより陽性ファージクローンをスクリーニングするためのプローブとして、耐熱性カタラーゼ遺伝子断片を用いることができる。プローブとする耐熱性カタラーゼ遺伝子断片はそれぞれのゲノムDNAを鋳型としたPCRによる増幅できる。PCRのためのプライマーセットは、既知の糸状菌由来カタラーゼ遺伝子の保存配列を基に設計できる。この様にして得られた陽性クローンから耐熱性カタラーゼ遺伝子を大腸菌ベクターにサブクローニングしたのち、得られるベクターの塩基配列を解析することにより、耐熱性カタラーゼ遺伝子の塩基配列を決定できる。また、該塩基配列より推定されるアミノ酸配列と既知のカタラーゼのアミノ酸配列との比較、及びイントロンの保存配列を基に、該塩基配列中のイントロン配列が推定できる。また該遺伝子の翻訳開始コドンから、精製された耐熱性カタラーゼのN末アミノ酸配列をコードする配列の直前までが、シグナル配列をコードする配列として推定できる。
 上記の方法により、ペニシリウム・ピノフィラムのゲノムDNAより単離された全長の耐熱性カタラーゼ遺伝子PCNは、配列表の配列番号1に記載された2403bpの塩基からなっており、また本遺伝子は配列番号1に記載の322~372番、599~651番、1068~1113番、及び1279~1326番の塩基配列で示される4つのイントロンからなっていると推定された。該遺伝子配列より推定される耐熱性カタラーゼのアミノ酸配列は配列番号2に示される通りであった。また、該アミノ酸配列の1~31番の配列は、ペニシリウム・ピノフィラムより精製した耐熱性カタラーゼのN末アミノ酸配列と完全に一致したため、配列番号2の-1~-42番のアミノ酸配列をシグナル配列であると推定し、該アミノ酸配列がコードされる配列番号1の1~126番の塩基配列をシグナル配列がコードされる塩基配列と推定した。
 本明細書において示したペニシリウム・ピノフィラム由来のカタラーゼ遺伝子PCNの塩基配列に基づいて、所望の遺伝子を増幅させるためのプライマーを作製し、ペニシリウム・ピノフィラムのゲノムDNAを鋳型としてPCRを実施し、増幅したDNA断片を適当なベクターと連結することにより発現ベクターを作製することができ、所望の遺伝子を単離することができる。更に、本発明のペニシリウム・ピノフィラム由来のDNAは、プラスミドpPCNに含まれていることから、これらをPCRの鋳型DNAとして利用することが可能である。また、これらプラスミドから適当な制限酵素にて所望のDNA断片を調製することができる。
 本発明によれば、平成20年(2008年)2月7日付で独立行政法人産業技術総合研究所特許生物寄託センター(〒305-8566日本国茨城県つくば市東1丁目1番地1中央第6)に国内寄託(国内受託番号FERM P-21504)され、平成20年(2008年)12月11日から国際寄託(国際受託番号FERM BP-11074)に移管されている、pPCNで形質転換された大腸菌(Escherichia coli)株が提供される。
 上記の方法によりフミコーラ・グリセアのゲノムDNAより単離された全長の耐熱性カタラーゼ遺伝子HCNは配列表の配列番号3に示された2749bpの塩基からなっており、また本遺伝子は、配列番号3の283~463番、667~747番、771~846番、1008~1160番、1218~1270番、1842~1895番の塩基配列で示される6つのイントロンからなっていると推定された。該遺伝子配列より推定される耐熱性カタラーゼのアミノ酸配列は配列番号4に示される通りであった。また、該アミノ酸配列の1~20番の配列は、フミコーラ・グリセアより精製した耐熱性カタラーゼのN末アミノ酸配列と完全に一致したため、配列番号4の-1~-32番のアミノ酸配列をシグナル配列であると推定し、該アミノ酸配列がコードされる配列番号3の1~96番の塩基配列をシグナル配列がコードされる塩基配列と推定した。
 本明細書において示したフミコーラ・グリセア由来のカタラーゼ遺伝子HCNの塩基配列に基づいて、所望の遺伝子を増幅させるためのプライマーを作製し、フミコーラ・グリセアのゲノムDNAを鋳型としてPCRを実施し、増幅したDNA断片を適当なベクターと連結することにより発現ベクターを作製することができ、所望の遺伝子を単離することができる。更に、本発明のフミコーラ・グリセア由来のDNAは、プラスミドpHCNに含まれていることから、これらをPCRの鋳型DNAとして利用することが可能である。また、これらプラスミドから適当な制限酵素にて所望のDNA断片を調製することができる。
 また、本発明によれば、平成20(2008)年2月7日付で独立行政法人産業技術総合研究所特許生物寄託センター(〒305-8566日本国茨城県つくば市東1丁目1番地1中央第6)に国内寄託(国内受託番号FERM P-21503)され、平成20年(2008年)12月11日から国際寄託(国際受託番号FERM BP-11073)に移管されている、pHCNで形質転換された大腸菌(Escherichia coli)が提供される。
 上記のようにして単離した耐熱性カタラーゼ遺伝子は、これらを宿主に導入して発現させることにより耐熱性カタラーゼを製造できる。宿主に導入されるDNAは、全長の耐熱性カタラーゼ遺伝子、該DNAからイントロン配列の一部又は全部を除去したDNA、又はシグナル配列をコードする塩基配列を除去したDNAのいずれでも構わない。
 本発明によれば、前記の本発明によるDNAを、宿主微生物内で複製可能で、かつそのDNAがコードするタンパク質を発現可能な状態で含んでなる発現ベクターが提供される。更に本発明によれば、この発現ベクターによって形質転換された微生物が提供される。
 この宿主-ベクター系は特に限定されず、例えば大腸菌、放線菌、酵母、カビなどを用いた系、及びそれらを用いた他のタンパク質との融合タンパク質発現系などを用いることができる。本発明に好適な宿主微生物としては、糸状菌、好ましくはトリコデルマ属、アスペルギルス属、ペニシリウム属(更に好ましくはペニシリウム・ピノフィラム)、フミコーラ属(更に好ましくはフミコーラ・グリセア)、アクレモニウム属糸状菌などが挙げられ、発現ベクターとしては、特許文献9~13に記載の発現ベクターなどを使用することができる。
 本発明によるベクター構築の手順及び方法は、遺伝子工学の分野で慣用されているものを用いることができる。
 本発明の発現ベクターは、これを実際に宿主微生物に導入して所望のタンパク質を発現させるために、前記の本発明によるDNAの他に、その発現を制御するDNAや微生物を選択するための遺伝子マーカー等を含んでいてもよい。
 こうして得られた形質転換体を適当な培地で培養し、その培養物から上記した本発明のタンパク質を単離して得ることができる。形質転換体の培養及びその条件は、使用する微生物に応じて適宜に設定すればよい。また、培養液からの目的とするタンパク質の回収、精製も常法に従って行なうことができる。
 以下、本発明の理解を深めるために実施例に沿って説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1:ペニシリウム・ピノフィラム培養液中のカタラーゼ活性(耐熱性)の測定
 ポテトデキストロース寒天培地で生育させたペニシリウム・ピノフィラムを、シュークロース50g/L、麦芽エキス20g/L、酵母エキス5g/Lより成る培地30mLを入れた200mLの三角フラスコに植菌し、26℃で5日間振とう培養した後、得られた培養液から遠心分離により菌体を除き、培養上清液を得た。得られた培養上清液中のカタラーゼについて、そのカタラーゼ活性(耐熱性)を特許文献6の実施例4に開示された方法で測定した結果、70℃で30分間保存後の活性残存率は50%であった。以上の結果から、ペニシリウム・ピノフィラムは耐熱性のカタラーゼを産生していると判断した。
実施例2:ペニシリウム・ピノフィラム培養液中の耐熱性カタラーゼの単離精製
 実施例1に記載の方法で得られたペニシリウム・ピノフィラムの培養上清液に最終濃度1mol/Lになるように硫酸アンモニウムを溶解させた後、本溶液をあらかじめ50mmol/Lリン酸緩衝液(pH7.0)中1mol/L硫酸アンモニウムで平衡化させた疎水カラムPhenyl Sepharose HP 26/10(GEヘルスケア バイオサイエンス社製)に通液させることにより吸着させた。次に、本疎水カラムに吸着されたタンパク質を50mmol/Lリン酸緩衝液(pH7.0)中1mol/L硫酸アンモニウムから50mmol/Lリン酸緩衝液(pH7.0)への直線勾配溶出法により溶出させ、分画した。分画した溶出液のカタラーゼ活性を実施例1に記載の方法により測定し、活性を示した画分を回収した。回収した活性画分に最終濃度1mol/Lになるように硫酸アンモニアを添加し、上記と同様の方法で疎水カラムにより再クロマトグラフィを実施した。得られた活性画分を限外ろ過することにより濃縮脱塩した後、最終濃度50mmol/Lとなるようにリン酸緩衝液(pH8.0)を添加した。続いて本溶液を、あらかじめ50mmol/Lリン酸緩衝液(pH8.0)で平衡化した陰イオン交換カラムMonoQ(GEヘルスケア バイオサイエンス社製)に通液し、タンパク質を吸着させた。吸着させたタンパク質を50mmol/Lリン酸緩衝液(pH8.0)から50mmol/Lリン酸緩衝液(pH8.0)中1mol/L NaClへの直線勾配溶出法により溶出させ分画した。分画した溶出液のカタラーゼ活性(耐熱性)を実施例1に記載の方法により測定し、活性を示した画分を回収した。回収した活性画分をSDS-PAGEにて分析したところ、約80kDaの単一なバンドを示したので、本バンドに由来するタンパク質が耐熱性カタラーゼであると判断した。本耐熱性カタラーゼをSDS-PAGEにより分離した後、ポリフッ化ビニリデン(PVDF)膜にブロットし、N末端のアミノ酸配列を解析したところ、次の配列が得られた。
 DDSNASSETEAFLSEFYLNDNDAYLTTDVGG(配列番号5)
実施例3:ペニシリウム・ピノフィラムからの耐熱性カタラーゼ遺伝子PCNのクローニング
3-1)ゲノムDNAライブラリーの作製
 ペニシリウム・ピノフィラムの菌体より、堀内らの方法[H.Horiuchi et. al., J. Bacteriol., 170, 272-278, (1988)]に従ってゲノムDNAを単離・精製した。単離したゲノムDNAを制限酵素Sau3AIにより部分消化した。これをファージベクター・EMBL3クローニングキット(ストラタジーン社製)のBamHIアームに、ライゲーションキットVer.2(タカラバイオ社製)を用いて連結させた。これをエタノール沈澱後、TE緩衝液に溶解した。連結混合物の全量をMaxPlaxλ packerging kit(エピセンターテクノロジー社製)を用い、ファージ粒子を形成させ、大腸菌XL1-blue MRA (P2)株に感染させた。この方法により1.1×10個のファージから成るゲノムDNAライブラリーが得られた。
3-2)プローブの作製
 既知のカタラーゼの保存領域の配列を基に以下のプライマーを作製した。
 PカタラーゼF:GAGGCCGGCAACTACCCNGARTGGRA(配列番号6)
 PカタラーゼR:CCTGCTCGGTCTCGGCRAARWARTT(配列番号7)
 PカタラーゼF及びPカタラーゼRをプライマーとして使用し、ゲノムDNAを鋳型としてPCRを行った。PCRは、LA Taqポリメラーゼ(タカラバイオ社製)を用いて実施した。PCRは、94℃で30秒、アニールを30秒、72℃で1分間を40サイクル実施するプログラムで実施したが、アニール温度は最初の20サイクルで63℃から53℃へ段階的に低下させ、その後の20サイクルにおいては53℃に固定した。増幅された250bpのDNA断片を、TOPO TAクローニングキット(インビトロジェン社製)により、添付のプロトコールに従ってpCR2.1-TOPOプラスミドベクターに挿入し、プラスミドTOPO-Pカタラーゼを得た。
 プラスミドTOPO-Pカタラーゼにクローニングされた挿入DNA断片のシークエンスは、BigDye(R) Terminator v3.1 Cycle Sequencing Kit(アプライドバイオシステムズ社製)とABI PRISMジェネティックアナライザー(アプライドバイオシステムズ社製)を用いて、添付のプロトコールに従って行った。その結果得られた塩基配列をホモロジー検索した結果、アスペルギルス・クラバタス由来のカタラーゼと71%の同一性を示したため、本DNA断片をカタラーゼ遺伝子の一部であると判断した。本DNA断片をプラスミドTOPO-Pカタラーゼを鋳型として上記と同様の方法でPCRに増幅し、得られたPCR産物はECLダイレクトシステム(アマシャムファルマシアバイオテク社製)を用いて標識しプローブとした。
3-3)プラークハイブリダイゼーションによるスクリーニング
 実施例3-1において作製したファージプラークを、ハイボンドN+ナイロントランスファーメンブラン(アマシャム社製)に転写し、アルカリ変性後、5倍濃度SSC(SSC:15mmol/Lクエン酸3ナトリウム、150mmol/L塩化ナトリウム)で洗浄し、乾燥させてDNAを固定した。ハイブリダイゼーションは、1時間のプレハイブリダイゼーション(42℃)の後、ホースラディッシュペルオキシダーゼ(HRP)標識プローブを添加し、4時間(42℃)ハイブリダイゼーションを行った。プローブの洗浄は6mol/L尿素、0.4%SDS添加0.5倍濃度SSCで2回、2倍濃度SSCで2回行った。
 プローブの洗浄を行ったナイロン膜は、検出溶液に1分間浸したあと、同社製ハイパーフィルムECLに感光させ、1個の陽性クローンを得た。陽性クローンからのDNA調製は、Maniatisらの方法(J.Sambrook,E.F.Fritsch and T.Maniatis,"Molecular Cloning",Cold Spring
Harbor Laboratory Press.1989)に従い、宿主大腸菌としてLE392を用いて行った。まず、LE392をLB-MM培地(1%ペプトン、0.5%イーストエキス、0.5%塩化ナトリウム、10mmol/L硫酸マグネシウム、0.2%マルトース)で一晩培養した。これにシングルプラーク由来のファージ溶液を感染させ、LB-MM培地で一晩培養した。これに、塩化ナトリウムを1mol/Lに、そしてクロロホルムを0.8%になるよう加え、大腸菌の溶菌を促進させた。遠心分離により、菌体残渣をのぞき、ポリエチレングリコール(PEG)沈澱(10%PEG6000)からファージ粒子を回収した。ファージ粒子はSDS存在下、プロティナーゼKで消化し、これをフェノール処理、エタノール沈澱化によりファージDNAを回収した。
 以上のように調製したDNAはECLダイレクトシステムを用い、サザンブロット解析を行った。実施例3-2のPCR増幅断片をプローブにハイブリダイゼーションを行った結果、約7kbのPstI断片が染色体DNAと共通のハイブリダイゼーションパターンを示した。
 このPstI断片をpUC118にクローン化し、プラスミドpUC-PCNを得た。得られたプラスミドの塩基配列を実施例3-2に記載の方法により解析した。更にペニシリウム・ピノフィラム由来のカタラーゼ遺伝子PCNをサブクローニングするために、pUC-PCNを鋳型にして、以下のプライマーセット(PCNF及びPCNR)によりPCRを実施し、PCN遺伝子を増幅した。
 PCNF:ATGCGAGGATTATACTCCCTC(配列番号8)
 PCNR:CTACTCATCCACAGCGAATCG(配列番号9)
増幅されたDNAをTOPO TAクローニングキット(インビトロジェン社製)により、pCR2.1-TOPOプラスミドベクターに挿入し、プラスミドpPCNを得た。得られたプラスミドpPCNにより大腸菌(Escherichia coli)TOP10株(インビトロジェン社)を形質転換することによりEscherichia coli TOP10株/pPCNを得た。
3-4)耐熱性カタラーゼのアミノ酸配列の推定
 上記の方法によりペニシリウム・ピノフィラムのゲノムDNAより単離された全長の耐熱性カタラーゼ遺伝子PCNは配列番号1に示された2403bpの塩基からなっていた。本塩基配列より推定されるアミノ酸配列と既知のカタラーゼのアミノ酸配列との比較及びイントロンの保存配列を基に、本遺伝子は配列番号1の322~372番、599~651番、1068~1113番、1279~1326番に示される4つのイントロンが含まれていると推定された。本塩基配列より推定される耐熱性カタラーゼのアミノ酸配列は配列番号2に示される通りであった。また、配列番号2のアミノ酸配列の1番~31番の配列は、実施例2に示したペニシリウム・ピノフィラムより精製した耐熱性カタラーゼのN末アミノ酸配列と完全に一致したため、配列番号2のアミノ酸配列の-1~-42番の配列をシグナル配列であると推定し、本アミノ酸配列がコードされる配列番号1の1~126番の塩基配列をシグナル配列がコードされる塩基配列と推定した。
実施例4:フミコーラ・グリセア培養液中のカタラーゼ活性(耐熱性)の測定
 フミコーラ・グリセアの培養上清液を、実施例1と同様の方法で調製した。得られた培養上清液中のカタラーゼについて、そのカタラーゼ活性(耐熱性)を実施例1の方法で測定した結果、70℃で30分間保存後の活性残存率は、57%であった。以上の結果から、フミコーラ・グリセアは耐熱性カタラーゼを産生していると判断した。
実施例5:フミコーラ・グリセア培養液中の耐熱性カタラーゼの単離精製
 実施例4に記載の方法で得られたフミコーラ・グリセアの培養上清液に最終濃度1mol/Lになるように硫酸アンモニウムを溶解させた後、本溶液をあらかじめ50mmol/Lリン酸緩衝液(pH7.0)中1mol/L硫酸アンモニウムで平衡化させた疎水カラムPhenyl
Sepharose HP 26/10(GEヘルスケア バイオサイエンス社製)に通液させることにより吸着させた。次に、本疎水カラムに吸着されたタンパク質を50mmol/Lリン酸緩衝液(pH7.0)中1mol/L硫酸アンモニウムから50mmol/Lリン酸緩衝液(pH7.0)への直線勾配溶出法により溶出させ分画した。分画した溶出液のカタラーゼ活性(耐熱性)を実施例1に記載の方法により測定し、活性を示した画分を回収した。回収した活性画分に最終濃度1mol/Lになるように硫酸アンモニアを添加し、上記と同様の方法で疎水カラムにより再クロマトグラフィを実施した。得られた活性画分を限外ろ過することにより濃縮脱塩した後、最終濃度50mmol/Lとなるように酢酸緩衝液(pH4.0)を添加した。続いて本溶液を、あらかじめ50mmol/L酢酸緩衝液(pH4.0)で平衡化した陽イオン交換カラムMonoS(GEヘルスケア バイオサイエンス社製)に通液した。非吸着画分にカタラーゼ活性が検出されたため、非吸着画分を活性画分として回収した。回収した活性画分をSDS-PAGEにて分析したところ、約80kDaの単一なバンドを示したので、本バンドに由来するタンパク質が耐熱性カタラーゼであると判断した。本耐熱性カタラーゼをSDS-PAGEにより分離した後、PVDF膜にブロットし、N末端のアミノ酸配列を解析したところ、次の配列が得られた。
 QDTTSGQSPLAAYEVDDSTG(配列番号10)
実施例6:フミコーラ・グリセアからの耐熱性カタラーゼ遺伝子HCNのクローニング
6-1)ゲノムDNAライブラリーの作製
 実施例3-1に記載の方法で、フミコーラ・グリセアのゲノムDNAライブラリーを調製した。
6-2)プローブの作製
 糸状菌及び酵母由来カタラーゼの保存領域の配列を基に以下のプライマーを作製した。
 HカタラーゼF:GTNCGNTTYTCNACTGT(配列番号11)
 HカタラーゼR:AARAANACNGGTTRTTGTT(配列番号12)
[配列番号12中、下線で示す記号「N」(12番)はデオキシイノシンを意味する]
HカタラーゼF及びHカタラーゼRをプライマーとして使用し、ゲノムDNAを鋳型としてPCRを行った。PCRは、Ex Taqポリメラーゼ(タカラバイオ社製)を用いて実施した。PCRは、98℃で10秒、アニールを55℃で30秒、伸長反応を72℃で15秒間の30サイクル実施するプログラムで実施した。増幅された300bpのDNA断片を、TOPO TAクローニングキット(インビトロジェン社製)により、添付のプロトコールに従ってpCR2.1-TOPOプラスミドベクターに挿入し、プラスミドTOPO-Hカタラーゼを得た。
 プラスミドTOPO-Hカタラーゼにクローニングされた挿入DNA断片の塩基配列を解析し、得られた塩基配列をホモロジー検索した結果、スクレロティニア・スクレロティオラム由来のカタラーゼと97%と高い同一性を示したため、本DNA断片をカタラーゼ遺伝子の一部であると判断した。本DNA断片をプラスミドTOPO-Hカタラーゼを鋳型として上記と同様の方法でPCRに増幅し、得られたPCR産物はECLダイレクトシステム(アマシャムファルマシアバイオテク社製)を用いて標識しプローブとした。
6-3)プラークハイブリダイゼーションによるスクリーニング
 実施例3-3に記載の方法で、ゲノムDNAライブラリーをスクリーニングした結果、1個の陽性クローンを得た。得られた陽性クローンについてサザンブロット解析を行った結果、約7kbのXhoI断片と約4kbのBamHI断片が染色体DNAと共通のハイブリダイゼーションパターンを示した。これらXhoI断片とBamHI断片をpUC118にクローン化し、それぞれプラスミドpUC-HCN-XhoIとpUC-HCN-BamH1を得た。これらのプラスミドの塩基配列を解析した結果、XhoI断片には配列番号3の塩基配列の616番から3’末端までの配列が、BamHI断片には5’末端から配列番号3の塩基配列の1675番の配列が確認され、耐熱性カタラーゼ遺伝子断片が含まれていた。これらの塩基配列を結合させることにより全長の耐熱性カタラーゼ遺伝子の塩基配列を確定させた。フミコーラ・グリセア由来のカタラーゼ遺伝子HCNをサブクローニングするために、フミコーラ・グリセアのゲノムDNAを鋳型にして、以下のプライマーセット(HCNF及びHCNR)によりPCRを実施し、HCN遺伝子を増幅した。
 HCNF:ATGAACAGAGTCACGAATCTC(配列番号13)
 HCNR:TCAAAAAACAAAGGCACCAAG(配列番号14)
増幅されたDNAをTOPO TAクローニングキット(インビトロジェン社製)により、pCR2.1-TOPOプラスミドベクターに挿入し、プラスミドpHCNを得た。得られたプラスミドpHCNにより大腸菌(Escherichia coli)TOP10株(インビトロジェン社)を形質転換することによりEscherichia coli TOP10株/pHCNを得た。
6-4)耐熱性カタラーゼのアミノ酸配列の推定
 上記の方法によりフミコーラ・グリセアのゲノムDNAより単離された全長の耐熱性カタラーゼ遺伝子HCNは配列番号3に示された2749bpの塩基からなっていた。本塩基配列より推定されるアミノ酸配列と既知のカタラーゼのアミノ酸配列との比較及びイントロンの保存配列を基に、本遺伝子は配列番号3の塩基配列の283~463番、667~747番、771~846番、1008~1160番、1218~1270番、1842~1895番に示される6つのイントロンが含まれていると推定された。本塩基配列より推定される耐熱性カタラーゼのアミノ酸配列は配列番号4に示される通りであった。また、配列番号4のアミノ酸配列の1~20番の配列は、実施例5に示したフミコーラ・グリセアより精製した耐熱性カタラーゼのN末アミノ酸配列と完全に一致したため、配列番号4のアミノ酸配列の-1~-32番のアミノ酸配列をシグナル配列であると推定し、本アミノ酸配列がコードされる配列番号3の塩基配列の1~96番の配列をシグナル配列がコードされる塩基配列と推定した。
実施例7:組換えPCN発現ベクターの調製
 アスペルギルス・ニガー バラエティ マクロスポーラス(Aspergillus niger var. macrosporus)を宿主とした組換えPCNの発現は、アスペルギルス・ニガー バラエティ マクロスポーラスにおいて著量発現されているプロクターゼB遺伝子のプロモーターとターミネーターとの間に、PCN遺伝子を挿入した発現ベクターを用いて実施した。本発現ベクターは、以下の手順により調製した。
7-1)ゲノムDNAライブラリーの作製
 アスペルギルス・ニガー バラエティ マクロスポーラスの菌体より、堀内らの方法[H.Horiuchi et. al., J. Bacteriol., 170, 272-278, (1988)]に従ってゲノムDNAを単離・精製した。単離したゲノムDNAをSau3AIにより部分消化した。これをファージベクターλEMBL3クローニングキット(ストラタジーン社製)のBamHIアームに、ライゲーションキットVer.2(タカラバイオ社製)を用いて連結させた。これをエタノール沈澱後、TE緩衝液に溶解した。連結混合物の全量をMaxPlaxλ packerging kit(エピセンターテクノロジー社製)を用い、ファージ粒子を形成させ、大腸菌XL1-blue MRA(P2)株に感染させた。この方法により1.25×10個のファージから成るゲノムDNAライブラリーが得られた。
7-2)プローブの作製
 アスペルギルス・ニガー バラエティ マクロスポーラスのゲノムDNAライブラリーについて、プロクターゼB遺伝子の翻訳領域をプローブとしたサザンブロッティングを実施することにより、プロクターゼB遺伝子のプロモーター及びターミネーター領域を含んだクローンを単離した。プロクターゼB遺伝子の翻訳領域はアスペルギルス・ニガー バラエティ マクロスポーラスのゲノムDNAを鋳型にし、特開平5-68570号公報に記載されたプロクターゼB遺伝子の翻訳領域の5’末端及び3’末端配列を基に設計したプライマー(proctaseB-NとproctaseB-C)を用いて、PCRにより増幅した。
 proctaseB-N:ATGGTCGTCTTCAGCAAAACC(配列番号15)
 proctaseB-C:CTAAGCCTGAGCGGCGAATCC(配列番号16)
 PCRは、LA PCRTM KIT Ver2.1(タカラバイオ社製)を用いて行った。反応条件は、94℃で1分間保温の後、(94℃、30秒間)・(52℃、30秒間)・(72℃、90秒間)のサイクルを30サイクル行い、最後に72℃、7分間処理し、反応を終了した。その結果、約1.2kbのDNAが増幅された。増幅された1.2kbのDNA断片を、TOPO TAクローニングキット(インビトロジェン社製)により、キットに添付されていたプロトコールに従ってpCR2.1-TOPOプラスミドベクターに挿入し、プラスミドTOPO-ProBを得た。プラスミドTOPO-ProBにクローニングされた挿入DNA断片のシークエンスは、BigDye(R) Terminator v3.1 Cycle Sequencing Kit(アプライドバイオシステムズ社製)とABI PRISMジェネティックアナライザー(アプライドバイオシステムズ社製)を用いて、添付されていたプロトコールに従って行った。その結果得られた塩基配列は特開平5-68570号公報記載のプロクターゼB遺伝子の配列と一致したため、本DNA断片をプロクターゼB遺伝子の翻訳領域であると判断した。本DNA断片をECLダイレクトシステム(アマシャムファルマシアバイオテク社製)を用いて標識し、プローブとした。
7-3)プラークハイブリダイゼーションによるプロクターゼ遺伝子のプロモーター領域及びターミネーター領域を含んだクローンのスクリーニング
 実施例7-1において作製したファージプラークを、ハイボンドN+ナイロントランスファーメンブラン(アマシャム社製)に転写し、アルカリ変性後、5倍濃度SSC(SSC:15mmol/Lクエン酸3ナトリウム、150mmol/L塩化ナトリウム)で洗浄し、乾燥させてDNAを固定した。ハイブリダイゼーションは、1時間のプレハイブリダイゼーション(42℃)の後、実施例に7-2に記載の方法で調製したプローブを添加し、20時間(42℃)ハイブリダイゼーションを行った。プローブの洗浄は6mol/L尿素、0.4%SDS添加0.5倍濃度SSCで2回、2倍濃度SSCで2回行った。プローブの洗浄を行ったナイロン膜は、検出溶液に1分間浸したあと、同社製ハイパーフィルムECLに感光させ、8個の陽性クローンを得た。
 陽性クローンからのDNA調製は、Maniatisらの方法(J.Sambrook,E.F.Fritsch and T.Maniatis,"Molecular Cloning",Cold Spring
Harbor Laboratory Press.1989)に従い、宿主大腸菌としてLE392を用いて行った。まず、LE392を、LB-MM培地(1%ペプトン、0.5%イーストエキス、0.5%塩化ナトリウム、10mmol/L硫酸マグネシウム、0.2%マルトース)で一晩培養した。これにシングルプラーク由来のファージ溶液を感染させ、LB-MM培地で一晩培養した。これに、塩化ナトリウムを1mol/Lに、そしてクロロホルムを0.8%になるように加え、大腸菌の溶菌を促進させた。遠心分離により、菌体残渣をのぞき、ポリエチレングリコール(PEG)沈澱(10%PEG6000)からファージ粒子を回収した。ファージ粒子はSDS存在下、プロティナーゼKで消化し、これをフェノール処理、エタノール沈澱化によりファージDNAを回収した。
 以上のように調製したDNAはECLダイレクトシステムを用い、サザンブロット解析を行った。実施例7-2に記載の方法で調製したプローブにハイブリダイゼーションを行った結果、約5.5kbのXhoIからEcoRI断片が染色体DNAと共通のハイブリダイゼーションパターンを示したため、本断片がプロクターゼB遺伝子を含んだ断片であると判断し、サブクローニングを実施することとした。ファージDNAより切り出したXhoIからEcoRI断片をpUC119のSalI、EcoRI部位に挿入し、プラスミドpPROB/119E.Xを得た。得られたプラスミドの塩基配列を解析し、プロクターゼB遺伝子のプロモーター、ターミネーター領域の塩基配列を決定した。
7-4)遺伝子発現用組換えベクターpPTB-EXの構築
 実施例7-3に記載した方法で調製したプラスミドpPROB/119E.Xから、プロクターゼB遺伝子の翻訳領域を削除し、本遺伝子のプロモーターの3’末端とターミネーター領域の5’側末端とが、XbaI認識配列で結合したベクターを発現ベクターpPTB-EXとした。pPTB-EXは、pPROB/119E.Xを鋳型として、プロクターゼB遺伝子のプロモーターの3’側末端としたプライマー(proctaseBNxba)、ターミネーターの5’側末端をプライマー(proctaseBCxba)としたインバースPCRにより調製した。
 proctaseBNxba:GGTCTAGAATGTCAAGCAAGAGAGT(配列番号17)
 proctaseBCxba:GGTCTAGAATCAACCACTGAAGTGGA(配列番号18)
尚、両プライマー5’側末端にはXbaI認識配列を付加した。PCRは、Primestar MAX DNA POLYMERASE(タカラバイオ社製)を用いて、(98℃、10秒間)・(55℃、5秒間)・(72℃、60秒間)の反応を30サイクル行った。その結果、約7kbのDNAが増幅された。PCR反応液はQIAQUICK PCR PURIFICATION KIT(キアゲン社製)を用いてDNAの精製を行い、50μLのTEバッファーに溶出し、得られたDNA断片をXbaIで制限処理した後、ライゲーションキットVer.2(タカラバイオ社製)を用いて再連結し、発現ベクターpPTB-EXとした。得られたプラスミドの塩基配列を解析し、インバースPCRによる変異が入っていないことを確認した。
7-5)組換えPCN発現用ベクターpPTPCNの構築
 実施例3に記載の方法で単離したPCN遺伝子を、発現ベクターpPTB-EXのXbaIサイトに挿入し、組換えPCN発現用ベクターpPTPCNを構築した。PCN遺伝子翻訳領域の5’側末端及び3’側末端にXbaI認識配列を付加するために、pPCNを鋳型として、PCN遺伝子の翻訳領域の5’側末端及び3’側末端にXbaI認識配列を付加したプライマーPCN-XbaIPtNとPCN-XbaIPtCを用いてPCRを行った。
 PCN-XbaIPtN:GGTCTAGAGGTCAAAATGCGAGGATTATACTCCCT(配列番号19)
 PCN-XbaIPtC:GGTCTAGACTACTCATCCACAGCGAATCGG(配列番号20)
 PCRは、Primestar MAX DNA POLYMERASE(タカラバイオ社製)、(98℃、10秒間)・(55℃、5秒間)・(72℃、60秒間)の反応を30サイクルで行った。その結果、約2.3kbのDNAが増幅された。PCR反応液はQIAQUICK PCR PURIFICATION KIT(キアゲン社製)を用いてDNAの精製を行い50μLのTEバッファーに溶出し、得られたDNA断片をXbaIで制限処理した後、同じくXbaIで消化した後に脱リン酸化処理したpPTB-EXとライゲーションキットVer.2(タカラバイオ社製)を用いて連結し、プラスミドpPTPCNを得た(配列番号21、図3)。本プラスミドに挿入されたPCNのDNA配列を解析し、PCRにより変異が導入されていないことを確認した。
実施例8:PCN発現ベクターpPTPCNによるアスペルギルス・ニガー バラエティ マクロスポーラスの形質転換、及び組換えPCNの発現
 PCN発現ベクターpPTPCNによるアスペルギルス・ニガー バラエティ マクロスポーラスの形質転換は、本株のniaD欠損株を、niaD遺伝子を選択マーカー遺伝子として形質転換することにより実施した。
8-1)niaD欠損株Nia2株の単離
 アスペルギルス・ニガー バラエティ マクロスポーラスの胞子をサペック培地-N(0.1%KHPO、0.05%MgSO・7HO、0.05%KCl、0.001%FeSO・2HO、3%シュークロース、1.5%Purified Agar、pH5.5~6.0)に0.188%グルタミン酸ナトリウム及び3%KClOを添加した培地に塗布した。30℃にて5~7日間培養した後に得られたコロニーを、サペック培地のN源をNO、NHもしくはグルタミン酸とする培地にそれぞれレプリカし30℃、5~7日間培養した。レプリカしたコロニーのうち、NH及びグルタミン酸をN源とする培地では生育するが、NOをN源とする培地では生育しない株をniaD欠損株Nia2株として単離した。
8-2)選択マーカー遺伝子niaD遺伝子の単離
 アンクルら[Uncle,S.E., Cambell,E.I., Punt,P.J., Hawker,K.L., Contreras,R.,
Hawkins,A.R., Van Den Hondel,C.A. and Kinghorn,J.R., "The Aspergillus niger niaD gene
encoding nitrate reductase:upstream nucreltide and amino acid sequence
comparisons", Gene 111(2), 149-155(1992)]により報告されたアスペルギルス・ニガーのniaD遺伝子の翻訳領域の5’末端及び3’末端を基に設計したプライマーNia-N及びNia-Cを用いたPCRにより、アスペルギルス・ニガー バラエティ マクロスポーラスのniaD遺伝子の翻訳領域を増幅した。
 Nia-N:ATGGCGACTGTCACTGAGGTG(配列番号22)
 Nia-C:TTAGAAGAAATGAAGGTCCGA(配列番号23)
PCRはアスペルギルス・ニガー バラエティ マクロスポーラスのゲノムDNAを鋳型にして、LA PCRTM KIT Ver2.1(タカラバイオ社製)を用いて、94℃1分の後、(94℃、30秒間)・(55℃、30秒間)・(72℃、3分間)のサイクルを30サイクル行い最後に72℃、7分間処理することにより、実施した。その結果、約3kbのDNAが増幅された。増幅された3kbのDNA断片を、ECLダイレクトシステム(アマシャムファルマシアバイオテク社製)を用いて標識し、プローブとした。
 続いて、前記の方法で調製したniaD遺伝子の翻訳領域をプローブとして、実施例7-1に記載の方法で調製したアスペルギルス・ニガー バラエティ マクロスポーラスのゲノムDNAライブラリーよりniaD遺伝子のプロモーター領域、ターミネーター領域を含んだクローンを単離した。実施7と同様の方法により、ゲノムDNAライブラリーをスクリーニングし、1個の陽性クローンを得た。得られたファージクローンを実施例7と同様の方法でサザンブロット解析を行った。その結果、約6.5kbのXbaI消化断片が染色体DNAと共通のハイブリダイゼーションパターンを示したので、このXbaI断片をpUC118のXbaI認識配列部位にクローニングし、プラスミドpPTnia118を得た。得られたプラスミドの塩基配列を解析し、niaD遺伝子のプロモーター及びターミネーター領域を含む6416bpの塩基配列(配列番号24)を決定した。
8-3)PCN遺伝子のアスペルギルス・ニガー バラエティ マクロスポーラスNia2株への導入
 アスペルギルス・ニガー バラエティ マクロスポーラスNia2株をS培地(3.0%グルコース、0.1%ポリペプトン、1%イーストエキス、0.14%硫酸アンモニウム、0.2%リン酸カリウム、0.03%硫酸マグネシウム、pH6.8)で30℃、24時間培養し、遠心分離(3500rpm、10分)によって菌体を回収した。得られた菌体を0.5mol/Lシュークロースで洗浄し、0.45μmのフィルターで濾過したプロトプラスト化酵素溶液(10mg/mL βグルクロニダーゼ、3mg/mLキチナーゼ、3mg/mLザイモラーゼ、0.5mol/Lシュークロース)に懸濁した。30℃、60分間振とうし、菌糸をプロトプラスト化させた。脱脂綿によりこの懸濁液を濾過した後、2500rpm、10分間遠心してプロトプラストを回収し、SUTCバッファー(17.1%シュークロース、10mmol/L Tris-HCl pH7.5、10mmol/L CaCl)で洗浄した。以上のようにして調製したプロトプラストを100μLのSUTCバッファーで再懸濁した後、pPTPCN7.5μL(1μg/μL)とpPTnia118 2.5μL(1μg/μL)とを添加し、氷上で5分間静置した。次に400μLのPEG溶液(60%PEG4000、10mmol/L Tris-HCl pH7.5、10mmol/L CaCl)を添加し、氷上に20分静置した後、SUTCバッファーを10mL添加し2500rpm、10分間遠心した。遠心分離したプロトプラストを1mLのSUTCバッファーに懸濁した後、4000rpm、5分間遠心して、最終的に100μLのSUTCバッファーに懸濁した。
 以上の処理をしたプロトプラストをサペック再生培地(0.085%NaNO、0.1%KHPO、0.05%MgSO・7HO、0.05%KCl、0.001%FeSO・2HO、17.1%シュークロース、1.5%Purified Agar、pH5.5~6.0)上に軟寒天とともに重層し、30℃、5~7日間培養し形成したコロニーを形質転換体とした。
8-4)アスペルギルス・ニガー バラエティ マクロスポーラス Nia2株形質転換体におけるPCNの発現と酵素活性の測定
 得られた形質転換体をP培地(1.0%でんぷん、6.0%脱脂大豆粕、1.0%コーンスティープリカー、0.3%硫酸アンモニウム、1%炭酸カルシウム)にて28℃、6日間培養した。培養後の上清をSDS-PAGEにより解析したところ、組換えPCNに由来する分子量約80kDaのバンドが観測された株(No.16株)を得た。No.16株の培養上清と、Nia2株を同様に培養し得られた培養上清について、実施例1に記載の方法でカタラーゼ活性を測定した。その結果、表1に記載のとおりNo.16は親株の77倍以上の活性を示し、組換えPCNが発現したことが確認された。
Figure JPOXMLDOC01-appb-T000001
 なお、カタラーゼ活性は1分間に1μmolの過酸化水素を分解する酵素量を1単位とした。更に、実施例1に記載の方法で得られたペニシリウム・ピノフィラムの培養上清のカタラーゼ活性を測定したところ、その活性は385U/mLであった。この結果から、PCNをアスペルギルス・ニガー バラエティ マクロスポーラスを宿主として、発現させることにより、その生産性が顕著に向上することが示された。
8-5)N末端アミノ酸配列の解析
 実施例8-4で得られた形質転換体No.16株の培養上清をSDS-PAGEに供し、ミリポア社製PVDF膜(Immobilon-PSQ)に転写した。このPVDF膜をクマシーブリリアントブルーで染色し、約80kDaのタンパク質がブロットされた部分を切り取り、Model492アミノ酸シーケンサーに供し、アミノ末端側11残基のアミノ酸配列を解読した。その配列は以下に示されるとおりであった。
 DDSNASSETEA(配列番号5の1~11番)
 このアミノ酸配列はペニシリウム・ピノフィラム由来PCNのN末端アミノ酸配列と同一であったことから、約80kDaのタンパク質が組換えPCNであることが確認された。
8-6)組換えPCNの熱安定性の検討
 実施例1に記載のとおり、ペニシリウム・ピノフィラムの産生する天然のPCNの熱安定性は、50%であった。実施例1に記載の方法で、実施例8-4に記載の方法で得た組換えPCNの熱安定性を評価した結果、その安定性は71.3%であった。以上の結果から、組換えPCNの熱安定性は、天然のPCNのそれと比較して顕著に向上することが明らかとなった。
 
 以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。
 配列表の配列番号6-9、11-20、22-23の各塩基配列は、人工的に合成したプライマー配列であり、それぞれ、プライマーP catalase F(配列番号6)、P catalase R(配列番号7)、PCNF(配列番号8)、PCNR(配列番号9)、H catalase F(配列番号11)、H catalase R(配列番号12)、HCNF(配列番号13)、HCNR(配列番号14)、proctaseB-N(配列番号15)、proctaseB-C(配列番号16)、proctaseBNxba(配列番号17)、proctaseBCxba(配列番号18)、PCN-XbaIPtN(配列番号19)、PCN-XbaIPtC(配列番号20)、Nia-N(配列番号22)、Nia-C(配列番号23)である。
 配列番号21の塩基配列は、プラスミドpPTPCNである。
 配列番号6の記号「N」(18番)、配列番号11の記号「N」(3、6、12番)、配列番号12の記号「N」(6、9番)は、それぞれ、任意の塩基を表し、配列番号12の記号「N」(12番)は、デオキシイノシンを表す。

Claims (33)

  1. ペニシリウム属に属する微生物が産生する耐熱性カタラーゼ。
  2. ペニシリウム属に属する微生物が、ペニシリウム・ピノフィラムである、請求項1に記載の耐熱性カタラーゼ。
  3. 分子量が約80kDaである、請求項1又は2に記載の耐熱性カタラーゼ。
  4. フミコーラ・グリゼアが産生する耐熱性カタラーゼ。
  5. 分子量が約80kDaである、請求項4に記載の耐熱性カタラーゼ。
  6. 以下の(i)、(ii)、及び(iii)から選択されるタンパク質:
    (i)配列番号2に記載のアミノ酸配列の1~692番の配列を含んでなるタンパク質;
    (ii)配列番号2に記載のアミノ酸配列の1~692番の配列において、1もしくは複数個のアミノ酸が欠失、置換、もしくは付加されたアミノ酸配列を含んでなり、かつ耐熱性カタラーゼ活性を有するタンパク質;
    (iii)配列番号2に記載のアミノ酸配列の1~692番の配列と70%以上の同一性を有するアミノ酸配列を含んでなり、かつ耐熱性カタラーゼ活性を有するタンパク質。
  7. 配列番号2に記載のアミノ酸配列の1~692番の配列からなる耐熱性カタラーゼ活性を有するタンパク質。
  8. 配列番号2に記載のアミノ酸配列の-1~-42番の配列、又は、配列番号2に記載のアミノ酸配列の-1~-42番の配列において1もしくは複数個のアミノ酸が欠失、置換、もしくは付加されたアミノ酸配列をN末端側に有する、請求項6又は7に記載のタンパク質。
  9. 以下の(i)、(ii)、及び(iii)から選択されるタンパク質:
    (i)配列番号4に記載のアミノ酸配列の1~684番の配列を含んでなるタンパク質;
    (ii)配列番号4に記載のアミノ酸配列の1~684番の配列において、1もしくは複数個のアミノ酸が欠失、置換、もしくは付加されたアミノ酸配列を含んでなり、かつ耐熱性カタラーゼ活性を有するタンパク質;
    (iii)配列番号4に記載のアミノ酸配列の1~684番の配列と70%以上の同一性を有するアミノ酸配列を含んでなり、かつ耐熱性カタラーゼ活性を有するタンパク質。
  10. 配列番号4に記載のアミノ酸配列の1~684番の配列からなる耐熱性カタラーゼ活性を有するタンパク質。
  11. 配列番号4に記載のアミノ酸配列の-1~-32番の配列、又は、配列番号4に記載のアミノ酸配列の-1~-32番の配列において、1もしくは複数個のアミノ酸が欠失、置換、もしくは付加されたアミノ酸配列をN末端側に有する、請求項9又は10に記載のタンパク質。
  12. 以下の(i)、(ii)、及び(iii)から選択されるDNA:
    (i)請求項6~8のいずれか一項に記載のタンパク質をコードするDNA;
    (ii)配列番号1に記載の塩基配列の1~2403番の配列を含んでなるDNA;
    (iii)配列番号1に記載の塩基配列の1~2403番の配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ耐熱性カタラーゼ活性を有するタンパク質をコードするDNA。
  13. 配列番号1に記載の塩基配列の1~2403番の配列からなるDNA。
  14. 請求項12又は13に記載のDNAから、イントロン配列を除去したDNA。
  15. イントロン配列が、配列番号1に記載の塩基配列の322~372番、599~651番、1068~1113番、又は、1279~1326番の配列から選択される1以上の配列である、請求項14に記載のDNA。
  16. 請求項12~15のいずれか一項に記載のDNAから、シグナル配列をコードする塩基配列を除去したDNA。
  17. シグナル配列をコードする塩基配列が、配列番号1に記載の塩基配列の1~126番の配列である、請求項16に記載のDNA。
  18. 以下の(i)、(ii)、及び(iii)から選択されるDNA:
    (i)請求項9~11のいずれか一項に記載のタンパク質をコードするDNA;
    (ii)配列番号3に記載の塩基配列の1~2749番の配列を含んでなるDNA;
    (iii)配列番号3に記載の塩基配列の1~2749番の配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ耐熱性カタラーゼ活性を有するタンパク質をコードするDNA。
  19. 配列番号3に記載の塩基配列の1~2749番の配列からなるDNA。
  20. 請求項18又は19に記載のDNAから、イントロン配列を除去したDNA。
  21. イントロン配列が、配列番号3に記載の283~463番、667~747番、771~846番、1008~1160番、1218~1270番、又は1842~1895番の配列から選択される1以上の配列である、請求項20に記載のDNA。
  22. 請求項18~21に記載されるDNAから、シグナル配列をコードする塩基配列を除去したDNA。
  23. シグナル配列をコードする塩基配列が、配列番号3に記載の1~96番の配列である、請求項22に記載のDNA。
  24. 請求項12~17のいずれか一項に記載のDNAを含んでなる発現ベクター。
  25. 請求項12~17のいずれか一項に記載のDNA又は請求項24に記載の発現ベクターで形質転換された宿主微生物。
  26. 宿主微生物が、糸状菌である、請求項25に記載の宿主微生物。
  27. 糸状菌が、アスペルギルス属、ペニシリウム属、フミコーラ属、トリコデルマ属、又はアクレモニウム属に属する糸状菌から選択される糸状菌である、請求項26に記載の宿主微生物。
  28. 請求項25~27のいずれか一項に記載の宿主微生物を培養し、培養物から耐熱性カタラーゼを採取することを特徴とする、耐熱性カタラーゼの製造方法。
  29. 請求項18~23のいずれか一項に記載のDNAを含んでなる発現ベクター。
  30. 請求項18~23のいずれか一項に記載のDNA又は請求項29に記載の発現ベクターで形質転換された宿主微生物。
  31. 宿主微生物が、糸状菌である、請求項30に記載の宿主微生物。
  32. 糸状菌が、アスペルギルス属、ペニシリウム属、フミコーラ属、トリコデルマ属、又はアクレモニウム属に属する糸状菌から選択される糸状菌である、請求項31に記載の宿主微生物。
  33. 請求項30~32のいずれか一項に記載の宿主微生物を培養し、培養物から耐熱性カタラーゼを採取することを特徴とする、耐熱性カタラーゼの製造方法。
PCT/JP2009/052729 2008-02-18 2009-02-18 耐熱性カタラーゼ WO2009104622A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2009554336A JP5608372B2 (ja) 2008-02-18 2009-02-18 耐熱性カタラーゼ
CN200980105507.0A CN101970658B (zh) 2008-02-18 2009-02-18 耐热性过氧化氢酶
ES09711878.0T ES2547118T3 (es) 2008-02-18 2009-02-18 Catalasa termoestable
US12/918,017 US8975053B2 (en) 2008-02-18 2009-02-18 Thermostable catalase
DK09711878.0T DK2256192T3 (en) 2008-02-18 2009-02-18 thermostable catalase
EP09711878.0A EP2256192B1 (en) 2008-02-18 2009-02-18 Thermostable catalase
HK11103108.0A HK1149048A1 (en) 2008-02-18 2011-03-28 Thermotolerant catalase
US14/606,208 US9512409B2 (en) 2008-02-18 2015-01-27 Thermostable catalase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-036171 2008-02-18
JP2008036171 2008-02-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/918,017 A-371-Of-International US8975053B2 (en) 2008-02-18 2009-02-18 Thermostable catalase
US14/606,208 Division US9512409B2 (en) 2008-02-18 2015-01-27 Thermostable catalase

Publications (1)

Publication Number Publication Date
WO2009104622A1 true WO2009104622A1 (ja) 2009-08-27

Family

ID=40985500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052729 WO2009104622A1 (ja) 2008-02-18 2009-02-18 耐熱性カタラーゼ

Country Status (8)

Country Link
US (2) US8975053B2 (ja)
EP (1) EP2256192B1 (ja)
JP (1) JP5608372B2 (ja)
CN (1) CN101970658B (ja)
DK (1) DK2256192T3 (ja)
ES (1) ES2547118T3 (ja)
HK (1) HK1149048A1 (ja)
WO (1) WO2009104622A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012072777A1 (en) * 2010-12-01 2012-06-07 B.R.A.I.N. Biotechnology Research And Information Network Ag Novel catalases
WO2012130120A1 (en) 2011-03-25 2012-10-04 Novozymes A/S Method for degrading or converting cellulosic material
CN104212820A (zh) * 2014-09-15 2014-12-17 青岛蔚蓝生物集团有限公司 一种具有过氧化氢酶活性的酶及其编码基因
WO2015035029A1 (en) 2013-09-04 2015-03-12 Novozymes A/S Processes for increasing enzymatic hydrolysis of cellulosic material
WO2015066492A1 (en) 2013-11-01 2015-05-07 Novozymes A/S Methods of saccharifying and fermenting a cellulosic material
WO2016029107A1 (en) 2014-08-21 2016-02-25 Novozymes A/S Process for saccharifying cellulosic material under oxygen addition
WO2016045569A1 (en) 2014-09-23 2016-03-31 Novozymes A/S Processes for producing ethanol and fermenting organisms
WO2017040907A1 (en) 2015-09-04 2017-03-09 Novozymes A/S Methods of inhibiting aa9 lytic polysaccharide monooxygenase catalyzed inactivation of enzyme compositions
EP3848469A1 (en) 2013-02-21 2021-07-14 Novozymes A/S Methods of saccharifying and fermenting a cellulosic material
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104126007B (zh) * 2011-12-19 2018-07-10 诺维信股份有限公司 具有过氧化氢酶活性的多肽和编码该多肽的多核苷酸
US9637725B2 (en) 2011-12-19 2017-05-02 Novozymes Inc. Polypeptides having catalase activity and polynucleotides encoding same
EP2794870A4 (en) * 2011-12-19 2015-06-17 Novozymes Inc POLYPEPTIDES WITH XYLANASE ACTIVITY AND POLYNUCLEOTIDES THAT CODE
CN102559714A (zh) * 2012-01-31 2012-07-11 福州大学 一种编码过氧化氢酶的基因及其制备方法和应用
ES2702293T3 (es) 2012-06-13 2019-02-28 Eucodis Bioscience Gmbh Catalasa en medios de cultivo
CN107384886B (zh) * 2017-08-28 2020-10-13 王艺璇 一种过氧化氢酶及其应用
CN110540974B (zh) * 2019-09-29 2020-07-03 上海市农业科学院 草菇过氧化氢酶vcat及其编码基因和应用

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494956B1 (ja) 1970-10-28 1974-02-04
JPS55135588A (en) 1979-04-03 1980-10-22 Mitsubishi Petrochem Co Ltd Preparation of heat-resistant catalase
JPS6083579A (ja) 1983-10-11 1985-05-11 Seiwa Kasei Kk 高力価カタラ−ゼを産生する酵母およびその製造法
JPS633788A (ja) 1986-06-25 1988-01-08 Mitsubishi Gas Chem Co Inc 耐塩性カタラ−ゼおよび過酸化水素の分解法
JPH0276579A (ja) 1988-09-08 1990-03-15 Novo Ind As 耐塩性カタラーゼ
WO1992017571A1 (en) * 1991-03-27 1992-10-15 Novo Nordisk A/S Catalase, its production and use
JPH0568570A (ja) 1991-09-12 1993-03-23 Meiji Seika Kaisha Ltd プロクターゼb遺伝子
JPH05153975A (ja) 1991-12-07 1993-06-22 Mitsubishi Gas Chem Co Inc 耐熱性カタラーゼ
WO1996034962A1 (en) * 1995-05-05 1996-11-07 Novo Nordisk Biotech, Inc. Scytalidium catalase gene
WO1997034004A1 (fr) 1996-03-11 1997-09-18 Meiji Seika Kaisha, Ltd. β-FRUCTOFURANNOSIDASE ET SON GENE, PROCEDE D'ISOLEMENT DU GENE DE β-FRUCTOFURANNOSIDASE, SYSTEME POUR LA PRODUCTION DE β-FRUCTOFURANNOSIDASE, ET VARIANT DE β-FRUCTOFURANNOSIDASE
WO1998003640A1 (fr) 1996-07-24 1998-01-29 Meiji Seika Kaisha, Ltd. Endoglucanase et preparations a base de cellulase contenant cette enzyme
WO1998003667A1 (fr) 1996-07-24 1998-01-29 Meiji Seika Kaisha, Ltd. SYSTEMES DE PRODUCTION DE GRANDES QUANTITES DE PROTEINES OU DE PEPTIDES A L'AIDE DE MICRO-ORGANISMES DU GENRE $i(HUMICOLA)
WO1998011239A1 (fr) 1996-09-13 1998-03-19 Meiji Seika Kaisha, Ltd. Sequence de regulation des genes de la cellulase cbh1 provenant de trichoderma viride et systeme de production en serie de proteines ou de peptides utilisant une telle sequence
JPH10257883A (ja) 1997-03-18 1998-09-29 Shin Nippon Kagaku Kogyo Kk カタラーゼ及びその製造方法
WO2000024879A1 (fr) 1998-10-23 2000-05-04 Meiji Seika Kaisha, Ltd. Preparations a base d'endoglucanases et de cellulase
WO2000068401A1 (en) 1999-05-06 2000-11-16 Aventis Animal Nutrition S.A. Recombinant penicillium funiculosum for homologous and heterologous protein production
JP2001017180A (ja) 1999-07-06 2001-01-23 Meiji Seika Kaisha Ltd 新規なプロモーター、及びそれを用いたタンパク質の発現方法
WO2001090375A1 (en) 2000-05-22 2001-11-29 Meiji Seika Kaisha, Ltd. Endoglucanase nce5 and cellulase preparations containing the same
JP2004261137A (ja) 2003-03-04 2004-09-24 Mitsubishi Gas Chem Co Inc カタラーゼ遺伝子
JP2007143405A (ja) * 2005-11-24 2007-06-14 Mitsubishi Gas Chem Co Inc カタラーゼb遺伝子およびカタラーゼbタンパク質

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494956A (ja) 1972-04-25 1974-01-17
FR2627517B1 (fr) 1988-02-24 1990-10-12 Sandoz Sa Procede de blanchiment des matieres textiles avec destruction enzymatique de l'exces de peroxyde
JP3954149B2 (ja) 1996-03-19 2007-08-08 ホクレン農業協同組合連合会 カタラーゼ遺伝子を導入した耐冷性イネ及びこの耐冷性イネに由来するカタラーゼの製造方法
US20050170350A1 (en) 2002-02-16 2005-08-04 Stringer Mary A. Expression cloning methods in filamentous fungi
CN101528931A (zh) 2006-10-24 2009-09-09 诺维信公司 改进的用于产生多肽的α因子信号肽

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494956B1 (ja) 1970-10-28 1974-02-04
JPS55135588A (en) 1979-04-03 1980-10-22 Mitsubishi Petrochem Co Ltd Preparation of heat-resistant catalase
JPS6083579A (ja) 1983-10-11 1985-05-11 Seiwa Kasei Kk 高力価カタラ−ゼを産生する酵母およびその製造法
JPS633788A (ja) 1986-06-25 1988-01-08 Mitsubishi Gas Chem Co Inc 耐塩性カタラ−ゼおよび過酸化水素の分解法
JPH0276579A (ja) 1988-09-08 1990-03-15 Novo Ind As 耐塩性カタラーゼ
WO1992017571A1 (en) * 1991-03-27 1992-10-15 Novo Nordisk A/S Catalase, its production and use
JPH06506347A (ja) 1991-03-27 1994-07-21 ノボ ノルディスク アクティーゼルスカブ カタラーゼ、その製法および使用
JPH0568570A (ja) 1991-09-12 1993-03-23 Meiji Seika Kaisha Ltd プロクターゼb遺伝子
JPH05153975A (ja) 1991-12-07 1993-06-22 Mitsubishi Gas Chem Co Inc 耐熱性カタラーゼ
US5646025A (en) 1995-05-05 1997-07-08 Novo Nordisk A/S Scytalidium catalase gene
WO1996034962A1 (en) * 1995-05-05 1996-11-07 Novo Nordisk Biotech, Inc. Scytalidium catalase gene
WO1997034004A1 (fr) 1996-03-11 1997-09-18 Meiji Seika Kaisha, Ltd. β-FRUCTOFURANNOSIDASE ET SON GENE, PROCEDE D'ISOLEMENT DU GENE DE β-FRUCTOFURANNOSIDASE, SYSTEME POUR LA PRODUCTION DE β-FRUCTOFURANNOSIDASE, ET VARIANT DE β-FRUCTOFURANNOSIDASE
WO1998003640A1 (fr) 1996-07-24 1998-01-29 Meiji Seika Kaisha, Ltd. Endoglucanase et preparations a base de cellulase contenant cette enzyme
WO1998003667A1 (fr) 1996-07-24 1998-01-29 Meiji Seika Kaisha, Ltd. SYSTEMES DE PRODUCTION DE GRANDES QUANTITES DE PROTEINES OU DE PEPTIDES A L'AIDE DE MICRO-ORGANISMES DU GENRE $i(HUMICOLA)
WO1998011239A1 (fr) 1996-09-13 1998-03-19 Meiji Seika Kaisha, Ltd. Sequence de regulation des genes de la cellulase cbh1 provenant de trichoderma viride et systeme de production en serie de proteines ou de peptides utilisant une telle sequence
JPH10257883A (ja) 1997-03-18 1998-09-29 Shin Nippon Kagaku Kogyo Kk カタラーゼ及びその製造方法
WO2000024879A1 (fr) 1998-10-23 2000-05-04 Meiji Seika Kaisha, Ltd. Preparations a base d'endoglucanases et de cellulase
WO2000068401A1 (en) 1999-05-06 2000-11-16 Aventis Animal Nutrition S.A. Recombinant penicillium funiculosum for homologous and heterologous protein production
JP2001017180A (ja) 1999-07-06 2001-01-23 Meiji Seika Kaisha Ltd 新規なプロモーター、及びそれを用いたタンパク質の発現方法
WO2001090375A1 (en) 2000-05-22 2001-11-29 Meiji Seika Kaisha, Ltd. Endoglucanase nce5 and cellulase preparations containing the same
JP2004261137A (ja) 2003-03-04 2004-09-24 Mitsubishi Gas Chem Co Inc カタラーゼ遺伝子
JP2007143405A (ja) * 2005-11-24 2007-06-14 Mitsubishi Gas Chem Co Inc カタラーゼb遺伝子およびカタラーゼbタンパク質

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
H. HORIUCHI ET AL., J. BACTERIOL., vol. 170, 1988, pages 272 - 278
J. SAMBROOK; E. F. FRITSCH; T. MANIATIS: "Molecular Cloning", 1989, COLD SPRING HARBOR LABORATORY PRESS
KURAKOV, A. V. ET AL.: "Search for micromycetes producing extracellular catalase by micromycetes and study of conditions of catalase synthesis.", PRINKL. BIOKHIM. MIKROBIOL., vol. 37, no. 1, February 2001 (2001-02-01), pages 67 - 72, XP008132317 *
NORIHIRO TSUKAGOSHI: "Kumikae Tanpakushitsu Seisan-hou", JAPAN SCIENTIFIC SOCIETIES PRESS, pages: 94 - 95
See also references of EP2256192A4 *
UNCLE,S.E.; CAMBELL,E.I.; PUNT,P.J.; HAWKER,K.L.; CONTRERAS,R.; HAWKINS,A.R.; VAN DEN HONDEL,C.A.; KINGHORN,J.R.: "The Aspergillus niger niaD gene encoding nitrate reductase:upstream nucleotide and amino acid sequence comparisons", GENE, vol. 111, no. 2, 1992, pages 149 - 155

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012072777A1 (en) * 2010-12-01 2012-06-07 B.R.A.I.N. Biotechnology Research And Information Network Ag Novel catalases
EP3333258A2 (en) 2011-03-25 2018-06-13 Novozymes A/S Method for degrading or converting cellulosic material
WO2012130120A1 (en) 2011-03-25 2012-10-04 Novozymes A/S Method for degrading or converting cellulosic material
EP3333258A3 (en) * 2011-03-25 2018-07-25 Novozymes A/S Method for degrading or converting cellulosic material
EP3848469A1 (en) 2013-02-21 2021-07-14 Novozymes A/S Methods of saccharifying and fermenting a cellulosic material
WO2015035029A1 (en) 2013-09-04 2015-03-12 Novozymes A/S Processes for increasing enzymatic hydrolysis of cellulosic material
WO2015066492A1 (en) 2013-11-01 2015-05-07 Novozymes A/S Methods of saccharifying and fermenting a cellulosic material
WO2016029107A1 (en) 2014-08-21 2016-02-25 Novozymes A/S Process for saccharifying cellulosic material under oxygen addition
CN104212820B (zh) * 2014-09-15 2016-09-21 青岛蔚蓝生物集团有限公司 一种具有过氧化氢酶活性的酶及其编码基因
CN104212820A (zh) * 2014-09-15 2014-12-17 青岛蔚蓝生物集团有限公司 一种具有过氧化氢酶活性的酶及其编码基因
WO2016045569A1 (en) 2014-09-23 2016-03-31 Novozymes A/S Processes for producing ethanol and fermenting organisms
WO2017040907A1 (en) 2015-09-04 2017-03-09 Novozymes A/S Methods of inhibiting aa9 lytic polysaccharide monooxygenase catalyzed inactivation of enzyme compositions
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Also Published As

Publication number Publication date
US9512409B2 (en) 2016-12-06
JPWO2009104622A1 (ja) 2011-06-23
ES2547118T3 (es) 2015-10-01
US20150132820A1 (en) 2015-05-14
DK2256192T3 (en) 2015-09-28
CN101970658B (zh) 2014-02-26
US8975053B2 (en) 2015-03-10
US20100330646A1 (en) 2010-12-30
HK1149048A1 (en) 2011-09-23
EP2256192A4 (en) 2012-06-06
CN101970658A (zh) 2011-02-09
EP2256192B1 (en) 2015-07-15
EP2256192A1 (en) 2010-12-01
JP5608372B2 (ja) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5608372B2 (ja) 耐熱性カタラーゼ
US5753484A (en) Trichoderma longibrachiatum EGIII cellulase
JP4571604B2 (ja) トリペプチジルアミノペプチダーゼ
Yao et al. Characterization of a fibrinolytic enzyme secreted by Bacillus velezensis BS2 isolated from sea squirt jeotgal
JP6757422B2 (ja) 変異型ニトリルヒドラターゼ、該変異型ニトリルヒドラターゼをコードする核酸、該核酸を含む発現ベクター及び形質転換体、該変異型ニトリルヒドラターゼの製造方法、並びにアミド化合物の製造方法
WO2001040450A1 (fr) Nouvelle carbonyl reductase, son gene et son procede d'utilisation
JP2001517094A (ja) アスペルギルスオリザからのプロリル−ジペプチジル−ペプチダーゼのクローニング
Naganagouda et al. Purification and Characterization of Endo-$\beta $-1, 4 Mannanase from Aspergillus niger gr for Application in Food Processing Industry
JP4663631B2 (ja) 放線菌由来のampデアミナーゼ及びその利用
JP4259169B2 (ja) 新規α−1,2−マンノシダーゼおよびその遺伝子、ならびに該酵素を用いたα−マンノシル糖化合物の製造方法
Yoshino-Yasuda et al. Sequence analysis and heterologous expression of rhamnogalacturonan lyase A gene (AsrglA) from Shoyu Koji Mold, Aspergillus sojae KBN1340
Yano et al. Cloning and expression of a Bacillus circulans KA-304 gene encoding chitinase I, which participates in protoplast formation of Schizophyllum commune
JP4683531B2 (ja) 新規なα−L−アラビノフラノシダーゼとその利用方法
JP2009118783A (ja) 糸状菌タンパク質分泌生産の改善
JP5260941B2 (ja) 新規なコラーゲン分解酵素とその利用
WO2000050582A1 (fr) Nouvelle enzyme a activite de decoloration et procede de decoloration de colorant au moyen de ladite enzyme
CN114350643B (zh) 一种产氨肽酶的重组菌株及其在高效蛋白水解中的应用
CN111690622B (zh) 一种真菌来源的漆酶g2589及其基因和应用
EP1029922B1 (en) DNA fragments of basidiomycetes having promoter activity and their use
KR101696974B1 (ko) 열 안정성이 우수한 저온성 단백질 분해효소
JP2006055131A (ja) 新規なd−アミノアシラーゼおよびその遺伝子
JP2006211938A (ja) アラビノガラクタン分解酵素及びその製造方法並びに当該酵素によるガラクトビオースの製造方法
JP2004337173A (ja) フミコーラ属微生物におけるタンパク質またはペプチドの大量生産系
WO2004038017A1 (ja) イソマルトース生成酵素の遺伝子が欠損した、真菌類に属する微生物
JP2012187102A (ja) 新規なプロテアーゼ遺伝子、組換え体dna及びプロテアーゼの製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105507.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711878

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009554336

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2842/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12918017

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009711878

Country of ref document: EP