WO2009093666A1 - Co2促進輸送膜及びその製造方法 - Google Patents

Co2促進輸送膜及びその製造方法 Download PDF

Info

Publication number
WO2009093666A1
WO2009093666A1 PCT/JP2009/051000 JP2009051000W WO2009093666A1 WO 2009093666 A1 WO2009093666 A1 WO 2009093666A1 JP 2009051000 W JP2009051000 W JP 2009051000W WO 2009093666 A1 WO2009093666 A1 WO 2009093666A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
facilitated transport
porous membrane
permeance
film
Prior art date
Application number
PCT/JP2009/051000
Other languages
English (en)
French (fr)
Inventor
Osamu Okada
Masaaki Teramoto
Reza Yegani
Hideto Matsuyama
Keiko Shimada
Kaori Kuzushita
Original Assignee
Renaissance Energy Research Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renaissance Energy Research Corporation filed Critical Renaissance Energy Research Corporation
Priority to JP2009550560A priority Critical patent/JP4621295B2/ja
Priority to US12/864,232 priority patent/US8197576B2/en
Priority to CA2707425A priority patent/CA2707425A1/en
Priority to KR1020107017346A priority patent/KR101226311B1/ko
Priority to CN2009801028463A priority patent/CN101925397A/zh
Priority to EP09704533.0A priority patent/EP2239048B1/en
Priority to AU2009207025A priority patent/AU2009207025B2/en
Publication of WO2009093666A1 publication Critical patent/WO2009093666A1/ja
Priority to HK11102810.1A priority patent/HK1148498A1/xx
Priority to US13/462,549 priority patent/US8377170B2/en
Priority to US13/742,913 priority patent/US8617297B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/50Membrane in gel form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0687Reactant purification by the use of membranes or filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a CO 2 facilitated transport membrane used for separation of carbon dioxide, and in particular, CO that can separate carbon dioxide contained in a reformed gas for a fuel cell or the like mainly composed of hydrogen with high selectivity to hydrogen.
  • 2 relates to facilitated transport membrane.
  • the reforming system for the hydrogen station currently under development reforms hydrocarbons into hydrogen and carbon monoxide (CO) by steam reforming, and further uses a CO shift reaction to make one.
  • Hydrogen is produced by reacting carbon oxide with water vapor.
  • the CO converter is provided with a CO 2 facilitated transport membrane that selectively allows carbon dioxide to permeate, and the right-side carbon dioxide generated by the CO conversion reaction of (Chemical Formula 1) is efficiently removed outside the CO converter.
  • the chemical equilibrium can be shifted to the hydrogen production side (right side), and a high conversion rate can be obtained at the same reaction temperature.
  • carbon monoxide and carbon dioxide can be removed beyond the limit due to equilibrium constraints. It becomes possible.
  • 20 and 21 schematically show this state.
  • FIGS. 21A and 21B show changes in the concentrations of carbon monoxide and carbon dioxide with respect to the catalyst layer length of the CO converter, with and without the CO 2 facilitated transport membrane, respectively. ing.
  • the CO converter (CO 2 permeable membrane reactor) equipped with the above CO 2 facilitated transport membrane makes it possible to remove carbon monoxide and carbon dioxide beyond the limits due to equilibrium constraints. It is possible to reduce the load of PSA (Pressure Swing Adsorption) and to reduce the reforming reaction and CO conversion with a low S / C (steam / carbon ratio), thereby reducing the cost and increasing the efficiency of the entire hydrogen station. Further, by providing the CO 2 facilitated transport film, the CO conversion reaction can be speeded up (higher SV), so that the reforming system can be downsized and the startup time can be shortened.
  • PSA Pressure Swing Adsorption
  • Patent Document 1 As a prior example of such a CO 2 permeable membrane reactor, there is one disclosed in the following Patent Document 1 (or Patent Document 2 having the same contents by the same inventor).
  • the reforming systems proposed in Patent Documents 1 and 2 are directed to purifying reformed gas and water gas shift reaction generated when reforming a fuel such as hydrocarbon or methanol into hydrogen for a fuel cell vehicle on the vehicle.
  • the present invention provides a CO 2 facilitated transport membrane process useful for (CO conversion reaction), and four typical processes are shown in the same document.
  • hydrocarbons including methane
  • carbon monoxide is selectively removed by selectively removing carbon dioxide using a membrane reactor equipped with a CO 2 facilitated transport membrane in a water gas shifter (CO converter). It increases the reaction rate and lowers the carbon monoxide concentration and improves the purity of the produced hydrogen.
  • carbon monoxide and carbon dioxide remaining in the generated hydrogen are reacted with hydrogen by a methanator and converted to methane to reduce the concentration, thereby preventing a decrease in efficiency due to poisoning of the fuel cell.
  • a hydrophilic polymer film such as PVA (polyvinyl alcohol) mainly containing a halogenated quaternary ammonium salt ((R) 4 N + X ⁇ ) as a carbon dioxide carrier is used as the CO 2 facilitated transport film. in use.
  • PVA polyvinyl alcohol
  • a PVA membrane having a film thickness of 49 ⁇ m and 50 wt% containing 50 wt% of tetramethylammonium fluoride salt as a carbon dioxide carrier and porous PTFE (tetrafluoride tetrafluoride) supporting the PVA membrane.
  • a method for producing a CO 2 facilitated transport film formed of a composite film made of an ethylene polymer) film is disclosed.
  • Example 7 a mixed gas (25% CO 2 , 75% H 2 ) was mixed at a total pressure.
  • the membrane performance of the CO 2 facilitated transport membrane when treated at 3 atm and 23 ° C. is disclosed.
  • Patent Document 3 discloses a CO 2 absorbent composed of a combination of cesium carbonate and an amino acid as a CO 2 facilitated transport film.
  • the method for producing the CO 2 facilitated transport membrane described in Patent Document 3 is as follows. First, a commercially available amino acid is added to an aqueous solution of cesium carbonate in a concentration, and stirred well to prepare a mixed aqueous solution. Thereafter, the gel-coated surface of the porous PTFE membrane (47 ⁇ ) coated with the gel is immersed in the prepared mixed solution for 30 minutes or more, and then the membrane is slowly pulled up. A silicone membrane is placed on the sintered metal (to prevent the solution from leaking to the permeate side), and the above-mentioned hydrogel membrane of 47 mm ⁇ is placed on it, and a cell containing silicone packing is placed thereon and sealed. A supply gas is allowed to flow at a rate of 50 cc / min with respect to the CO 2 facilitated transport membrane thus produced, and the lower side of the membrane is evacuated to lower the pressure to about 40 torr.
  • Example 4 of Patent Document 3 a CO 2 facilitated transport membrane composed of cesium carbonate and 2,3-diaminopropionate hydrochloride at a molar concentration of 4 (mol / kg) was used under a temperature condition of 25 ° C.
  • the CO 2 permeation rate is 1.1 (10 ⁇ 4 cm 3 (STP) / cm 2 ⁇ s ⁇ cmHg), and the CO 2 / N 2 separation factor is 300.
  • CO 2 permeance R CO2 as defined by the permeation rate per pressure difference, CO 2 permeance R CO2 in Example 4 of Patent Document 3 is calculated as 110GPU, CO in the embodiment 2 / Data regarding H 2 selectivity is not disclosed.
  • Patent Document 4 discloses a CO 2 separation membrane composed of a cellulose acetate membrane to which alkali bicarbonate is added.
  • the document 4 only describes CO 2 / O 2 selectivity, and does not disclose data on CO 2 / H 2 selectivity. Furthermore, the disclosed data was measured under conditions of low pressure (about 0.01 atmosphere), and data under a pressure condition of about several atmospheres is not disclosed.
  • the CO 2 facilitated transport membrane selectively separates carbon dioxide as a basic function, development for the purpose of absorbing or removing carbon dioxide causing global warming has also been performed.
  • the CO 2 facilitated transport membrane is required to have a certain performance or more with respect to the use temperature, CO 2 permeance, CO 2 / H 2 selectivity, etc. .
  • the use temperature is considered to be at least 100 ° C.
  • high SV for example, 2 ⁇ 10 ⁇ 5 mol / (m 2 .multidot.m) s ⁇ kPa
  • Patent Document 3 does not disclose CO 2 / H 2 selectivity and does not show that the CO 2 permeance exhibits a capacity of 60 GPU or more under a temperature condition of 100 ° C. or more.
  • Patent Document 4 CO 2 / H 2 selectivity is not disclosed, and data under a pressure condition of about several atmospheres is not disclosed.
  • the CO 2 / H 2 selectivity is considered to be about 90 to 100 or more.
  • Patent Documents 1 and 2 have a CO 2 / H 2 selectivity of 19 and cannot be said to have sufficient selectivity.
  • Patent Documents 3 and 4 do not disclose CO 2 / H 2 selectivity, Patent Documents 3 and 4 disclose a CO 2 facilitated transport membrane exhibiting high CO 2 / H 2 selectivity. It is not possible.
  • an object thereof is to stably provide the applicable CO 2 -facilitated transport membrane to CO 2 permeable membrane reactor.
  • the CO 2 facilitated transport film according to the present invention comprises a gel layer obtained by adding an additive comprising cesium carbonate, cesium bicarbonate, or cesium hydroxide to a polyvinyl alcohol-polyacrylic acid copolymer gel film. It is characterized by being supported on a hydrophilic porous membrane.
  • the porous membrane carrying the PVA / PAA gel layer is hydrophilic, a gel layer with few defects can be stably produced, and high selectivity to hydrogen can be maintained.
  • the porous membrane is hydrophobic, it is possible to prevent moisture in the PVA / PAA gel membrane from entering the pores in the porous membrane at 100 ° C. or lower and lowering the membrane performance.
  • the gel layer in the pores has a large resistance to gas permeation.
  • the permeability is lowered and the gas permeance is lowered.
  • the cast solution is cast on the hydrophobic porous membrane, the inside of the pores of the porous membrane is not filled with liquid, but the cast solution is applied only to the surface of the porous membrane and the pores are filled with gas.
  • the gas permeance in the upper gel layer is expected to be higher in both hydrogen and carbon dioxide compared to the hydrophilic porous membrane.
  • the gel layer on the surface of the film tends to cause minute defects, and the success rate of film formation decreases.
  • hydrogen has a molecular size much smaller than that of carbon dioxide, hydrogen has a significantly larger permeance than carbon dioxide at minute defects. Except for the defective part, the permeance of carbon dioxide permeated by the facilitated transport mechanism is much larger than the permeance of hydrogen permeated by the physical dissolution and diffusion mechanism.
  • the selectivity for hydrogen (CO 2 / H 2 ) when using a hydrophobic porous membrane will be lower than when using a hydrophilic porous membrane. Therefore, from the viewpoint of practical use, the stability and durability of the CO 2 facilitated transport membrane are very important, and it is advantageous to use a hydrophilic porous membrane having a high selectivity to hydrogen (CO 2 / H 2 ). Become.
  • the use of the hydrophilic porous membrane can be realized on the assumption that high CO 2 permeance can be achieved by adding Cs 2 CO 3 as a carbon dioxide carrier to the PVA / PAA gel layer.
  • the difference in gas permeance due to the difference between the hydrophobic porous membrane and the hydrophilic porous membrane is that even if Cs 2 CO 3 which is a carbon dioxide carrier is not added to the cast solution in advance and gelled after impregnation with an aqueous cesium carbonate solution.
  • the gel layer in the pores has the same resistance to large gas permeation, and is presumed to be expressed in the same manner.
  • the CO transformer can be downsized, the startup time can be shortened, and , High speed (high SV) is achieved.
  • the gel layer has a weight ratio of cesium carbonate of 65 weight to the total weight of the polyvinyl alcohol-polyacrylic acid copolymer gel film and cesium carbonate. Another feature is that it is configured in the range of not less than 85% and not more than 85% by weight.
  • CO 2 facilitated transport membrane According to the above characteristics of the CO 2 facilitated transport membrane according to the present invention, excellent CO 2 permeance and excellent CO 2 / H 2 selectivity can be realized under a temperature condition of 100 ° C. or higher, and CO 2 permeation can be achieved.
  • CO 2 facilitated transport membrane applicable to the type membrane reactor can be provided, and the CO transformer can be downsized, the start-up time can be shortened, and the speed can be increased (higher SV).
  • the CO 2 facilitated transport membrane according to the present invention is a gel layer in which an additive composed of rubidium carbonate, rubidium bicarbonate, or rubidium hydroxide is added to a polyvinyl alcohol-polyacrylic acid copolymer gel membrane. Is characterized in that it is supported on a hydrophilic porous membrane.
  • rubidium carbonate (a carbonate salt having a relatively high solubility in water) in a polyvinyl alcohol-polyacrylic acid (PVA / PAA) copolymer gel membrane.
  • Rb 2 CO 3 functions as a carbon dioxide carrier that transports carbon dioxide from the carbon dioxide high concentration side interface to the low concentration side interface of the PVA / PAA gel layer that is a permeating substance, and is 90 ° C. at a high temperature of 100 ° C. or higher.
  • the CO 2 facilitated transport film according to the present invention has another characteristic that the gel layer supported on the hydrophilic porous film is covered with a hydrophobic porous film.
  • the gel layer supported by the hydrophilic porous membrane is protected by the hydrophobic porous membrane, and the strength of the CO 2 facilitated transport membrane during use is increased.
  • the CO 2 facilitated transport membrane is applied to a CO 2 permeable membrane reactor, it is sufficient even if the pressure difference between both sides (inside and outside the reactor) of the CO 2 facilitated transport membrane is large (for example, 2 atmospheres or more). A sufficient film strength.
  • the gel layer is covered with a hydrophobic porous membrane, even if water vapor is condensed on the membrane surface of the hydrophobic porous membrane, the porous membrane is hydrophobic and water is repelled and penetrates into the gel layer. Is preventing. Therefore, the hydrophobic porous membrane can dilute the carbon dioxide carrier in the gel layer with water, and can prevent the thinned carbon dioxide carrier from flowing out of the gel layer.
  • the CO 2 facilitated transport film according to the present invention has another characteristic that the gel layer has a crosslinked structure derived from an aldehyde group.
  • the CO 2 facilitated transport film according to the present invention defects are less likely to occur in the gel layer due to the crosslinked structure formed in the gel layer, and as a result, the H 2 permeance is greatly reduced. On the other hand, the CO 2 permeance does not cause a decrease as much as the H 2 permeance. Thus, it is possible to realize a facilitated transport membrane which exhibits a higher CO 2 / H 2 selectivity.
  • the CO 2 facilitated transport film according to the present invention has another characteristic that the hydrophilic porous film has heat resistance of 100 ° C. or higher.
  • the hydrophilic porous membrane has heat resistance of 100 ° C. or higher, so that it can be used in a temperature region of 100 ° C. or higher.
  • the CO 2 facilitated transport membrane according to the present invention has a cylindrical shape in which both the gel layer and the hydrophilic porous membrane have the same axial center, and one membrane has The inner surface is brought into contact with the outer surface of the other film so as to surround the other film.
  • a ceramic film such as alumina can be used as the hydrophilic porous film.
  • the gel layer can be formed outside the hydrophilic porous film so as to surround the hydrophilic porous film.
  • a method for producing a CO 2 facilitated transport film comprises a cast solution comprising an aqueous solution containing a polyvinyl alcohol-polyacrylic acid copolymer and cesium carbonate, cesium bicarbonate, or cesium hydroxide. And a second step of producing the gel layer by gelling after casting the cast solution into a hydrophilic porous membrane.
  • a method for producing a CO 2 facilitated transport film comprises a cast solution comprising an aqueous solution containing a polyvinyl alcohol-polyacrylic acid copolymer and rubidium carbonate, rubidium bicarbonate, or rubidium hydroxide. And a second step of forming the gel layer by gelling after casting the cast solution into a hydrophilic porous membrane.
  • the method for producing a CO 2 facilitated transport membrane according to the present invention generates a layered porous membrane in which a hydrophilic porous membrane and a hydrophobic porous membrane are superimposed before the start of the second step.
  • the second step is a step of casting the cast solution onto the hydrophilic porous membrane side surface of the layered porous membrane.
  • the gel layer supported by the hydrophilic porous membrane is protected by the hydrophobic porous membrane, and the CO 2 promotion is enhanced in strength during use.
  • a transport membrane can be realized.
  • the first step further includes a step of adding a cross-linking agent containing an aldehyde group to a part of the structure. Another feature is to make a solution.
  • glutaraldehyde or formaldehyde can be employed as a crosslinking agent to be added.
  • glutaraldehyde When glutaraldehyde is added, a particularly high CO 2 / H 2 selectivity can be exhibited by adding about 0.008 to 0.015 g to 1 g of PVA / PAA copolymer.
  • Sectional view schematically showing the structure of an embodiment of a CO 2 -facilitated transport membrane according to the present invention Process diagram showing the manufacturing method of the CO 2 -facilitated transport membrane according to the present invention
  • Configuration diagram of an experimental apparatus for evaluating the membrane performance of the CO 2 facilitated transport membrane according to the present invention Figure shows the effect of improving CO 2 / H 2 selectivity by use of a hydrophilic porous membrane of the CO 2 -facilitated transport membrane according to the present invention
  • (1) Illustrates the effect of improving CO 2 / H 2 selectivity by use of a hydrophilic porous membrane of the CO 2 -facilitated transport membrane according to the present invention
  • the CO 2 facilitated transport membrane according to the present invention (hereinafter, appropriately referred to as “the present invention membrane”) is a CO 2 facilitated transport membrane containing a carbon dioxide carrier in a gel membrane containing moisture, and a use temperature of 100 ° C. or higher. It is a CO 2 facilitated transport membrane applicable to a CO 2 permeable membrane reactor having high carbon dioxide permeability and CO 2 / H 2 selectivity. Furthermore, the membrane of the present invention employs a hydrophilic porous membrane as a support membrane that supports a gel membrane containing a carbon dioxide carrier in order to stably realize high CO 2 / H 2 selectivity.
  • the membrane of the present invention uses polyvinyl alcohol-polyacrylic acid (PVA / PAA) copolymer as a membrane material, and cesium carbonate (Cs 2 CO 3 ) as a carbon dioxide carrier.
  • PVA / PAA polyvinyl alcohol-polyacrylic acid
  • Cs 2 CO 3 cesium carbonate
  • the membrane of the present invention comprises a hydrophilic porous membrane 2 carrying a PVA / PAA gel membrane 1 containing a carbon dioxide carrier in two hydrophobic porous membranes 3 and 4. It is composed of a three-layer structure that is sandwiched.
  • PVA / PAA gel membrane containing a carbon dioxide carrier in order to distinguish a PVA / PAA gel membrane not containing a carbon dioxide carrier, and a membrane of the present invention having a structure comprising two hydrophobic porous membranes, It is abbreviated as “impregnated gel film” as appropriate. Further, based on the total weight of PVA / PAA and Cs 2 CO 3 in this impregnated gel film, PVA / PAA is present in the range of about 20 to 80% by weight in the impregnated gel film, and Cs 2 CO 3 is It is present in the range of about 20-80% by weight.
  • the hydrophilic porous membrane preferably has, in addition to hydrophilicity, heat resistance of 100 ° C. or higher, mechanical strength, and adhesion to the impregnated gel membrane, and further has a porosity (porosity) of 55% or more,
  • the pore diameter is preferably in the range of 0.1 to 1 ⁇ m.
  • a hydrophilic tetrafluoroethylene polymer (PTFE) porous membrane is used as the hydrophilic porous membrane having these conditions.
  • the hydrophobic porous membrane preferably has heat resistance of 100 ° C. or higher, mechanical strength, and adhesion to the impregnated gel membrane in addition to hydrophobicity, and further has a porosity (porosity) of 55% or more,
  • the pore diameter is preferably in the range of 0.1 to 1 ⁇ m.
  • PTFE non-hydrophilic tetrafluoroethylene polymer
  • a cast solution composed of an aqueous solution containing a PVA / PAA copolymer and Cs 2 CO 3 is prepared (step 1).
  • 1 g of PVA / PAA copolymer for example, a temporary name SS gel manufactured by Sumitomo Seika
  • 2.33 g of Cs 2 CO 3 was added thereto at room temperature.
  • Cast for 5 days was obtained.
  • step 2 in order to remove bubbles in the cast solution obtained in step 1, centrifugation (rotation speed: 5000 rpm for 30 minutes) is performed (step 2).
  • the cast solution obtained in Step 2 is mixed with a hydrophilic PTFE porous membrane (for example, WPW-020-80, film thickness 80 ⁇ m, pore diameter 0.2 ⁇ m, porosity of about 75%, manufactured by Sumitomo Electric Industries) and hydrophobic PTFE.
  • a hydrophilic PTFE porous membrane for example, WPW-020-80, film thickness 80 ⁇ m, pore diameter 0.2 ⁇ m, porosity of about 75%, manufactured by Sumitomo Electric Industries
  • hydrophobic PTFE On the surface of the porous PTFE porous membrane side of the layered porous membrane in which two porous membranes (for example, made by Sumitomo Electric, Fluoropore FP010, film thickness 60 ⁇ m, pore diameter 0.1 ⁇ m, porosity 55%) are laminated, (Step 3).
  • the cast thickness in the sample of the Example mentioned later is 500 micrometers.
  • the cast solution penetrates into the pores in the hydrophilic PTFE porous membrane, but the penetration stops at the boundary surface of the hydrophobic PTFE porous membrane, and the cast solution does not penetrate to the opposite surface of the layered porous membrane, There is no casting solution on the side surface of the porous porous membrane of the layered porous membrane, and the handling becomes easy.
  • the hydrophilic PTFE porous membrane after casting is naturally dried overnight at room temperature, and then the cast solution is gelled to form a gel layer (step 4).
  • the cast solution is cast on the surface of the layered porous membrane on the hydrophilic PTFE porous membrane side, so in Step 4, the gel layer is formed on the surface (cast surface) of the hydrophilic PTFE porous membrane.
  • the pores are filled and formed, so that defects (micro-defects such as pinholes) are less likely to occur, and the success rate of gel layer deposition is increased.
  • it is desirable that the naturally dried PTFE porous membrane is further thermally crosslinked at a temperature of about 120 ° C. for about 2 hours. In the samples of Examples and Comparative Examples described later, thermal crosslinking is performed.
  • a membrane of the present invention having a three-layer structure comprising a hydrophobic PTFE porous membrane / gel layer (impregnated gel membrane supported on a hydrophilic PTFE porous membrane) / hydrophobic PTFE porous membrane is obtained (step 5).
  • FIG. 1 the state in which the impregnated gel film 1 is filled in the pores of the hydrophilic PTFE porous film 2 is schematically displayed in a straight line.
  • one hydrophobic PTFE porous membrane is used in Step 3 and Step 4, and is a hydrophilic PTFE porous membrane carrying the impregnated gel membrane.
  • the other hydrophobic PTFE porous membrane is used to protect the impregnated gel membrane from the other surface side.
  • the PTFE porous membrane is hydrophobic and prevents water from being repelled and penetrating into the impregnated gel membrane. Therefore, the other PTFE porous membrane can dilute the carbon dioxide carrier in the impregnated gel membrane with water and prevent the thinned carbon dioxide carrier from flowing out of the impregnated gel membrane.
  • the sample of the example was manufactured by the above-described manufacturing method.
  • the blending ratio of (PVA / PAA: Cs 2 CO 3 ) is (30% by weight: 70% by weight) in the order of description.
  • carrier concentration the ratio of the carrier weight to the total weight of the copolymer weight and the carrier weight. That is, in the case of the above example, the carrier concentration is 70% by weight (hereinafter referred to as “70 wt%”).
  • the sample of the comparative example was prepared by using one layer of a hydrophobic PTFE porous membrane in place of the layered porous membrane of the hydrophilic PTFE porous membrane and the hydrophobic PTFE porous membrane in the above-described production method. Therefore, in the sample of the comparative example, as schematically shown in FIG. 3, the PVA / PAA gel film 1 containing the carbon dioxide carrier is sandwiched between the two hydrophobic porous films 3 and 4. Composed of structure. The blending ratio of (PVA / PAA: Cs 2 CO 3 ) is the same as in the example.
  • each sample 10 has a fluororubber gasket as a sealing material between a raw material side chamber 12 and a permeation side chamber 13 of a stainless steel flow-type gas permeation cell 11 (membrane area: 2.88 cm 2 ). It is fixed using.
  • a source gas (mixed gas composed of CO 2 , H 2 , H 2 O) FG is supplied to the source side chamber 12 at a flow rate of 2.24 ⁇ 10 ⁇ 2 mol / min, and a sweep gas (Ar gas) SG is supplied at 8 Supplied to the permeation side chamber 13 at a flow rate of 18 ⁇ 10 ⁇ 4 mol / min.
  • the pressure in the raw material side chamber 12 is adjusted by a back pressure regulator 15 provided on the downstream side of the cooling trap 14 in the middle of the exhaust gas discharge path.
  • the pressure in the transmission side chamber 13 is atmospheric pressure.
  • the gas composition after the water vapor in the sweep gas SG ′ discharged from the permeation side chamber 13 is removed by the cooling trap 16 is quantified by the gas chromatograph 17 and the permeance of CO 2 and H 2 from this and the flow rate of Ar in the sweep gas SG. [Mol / (m 2 ⁇ s ⁇ kPa)] is calculated, and the CO 2 / H 2 selectivity is calculated from the ratio.
  • a back pressure regulator 19 is also provided between the cooling trap 16 and the gas chromatograph 17, thereby adjusting the pressure in the permeation side chamber 13.
  • the raw material gas FG is a mixed gas composed of CO 2 , H 2 and H 2 O, CO 2 : 5.0%, H 2 : 45%, H 2 O. : Adjusted to a mixing ratio (mol%) of 50%.
  • water is quantified in a mixed gas flow consisting of 10% CO 2 and 90% H 2 (mol%) (flow rate at 25 ° C .: 200 cm 3 / min, 8.18 ⁇ 10 ⁇ 3 mol / min).
  • the mixture was fed by the liquid feed pump 18 (flow rate: 0.256 cm 3 / min, 1.42 ⁇ 10 ⁇ 2 mol / min), heated to 100 ° C. or more to evaporate the water, and the mixed gas having the above mixing ratio was This was prepared and supplied to the raw material side chamber 12.
  • the sweep gas SG is supplied in order to reduce the partial pressure on the permeate side chamber side of the gas to be measured (CO 2 , H 2 ) that permeates the sample membrane, and to maintain the permeation driving force.
  • Ar gas is used. Specifically, Ar gas (flow rate at 25 ° C .: 20 cm 3 / min, 8.13 ⁇ 10 ⁇ 4 mol / min) was supplied to the permeation side chamber 13.
  • the flow type gas permeable cell 11 to which the sample film is fixed and the gas are heated.
  • the preheating coil is immersed in a thermostatic chamber set to a predetermined temperature.
  • FIG. 5 and FIG. 6 show the selectivity of CO 2 permeance R CO2 , H 2 permeance R H2 , and CO 2 / H 2 for each sample of (1) Example and (2) Comparative Example.
  • the results of measuring the pressure of the raw material gas FG (described as “raw material side pressure” on the graph; the same applies hereinafter) in a pressurized state in the range of 200 kPa to 400 kPa are shown.
  • FIG. 5 shows a measurement temperature of 160 ° C.
  • FIG. 6 shows a measurement temperature of 180 ° C.
  • the pressure value which the back pressure regulator 15 for adjusting the pressure of the raw material side chamber 12 showed as the value of the raw material side pressure on the graph was employ
  • the H 2 permeance is higher in the whole pressure range in the sample of the comparative example using the hydrophobic PTFE porous membrane than in the sample of the example using the hydrophilic PTFE porous membrane.
  • the sample of the example is significantly improved over the sample of the comparative example. This is because, in the case of a hydrophilic membrane, when the cast solution is cast on the membrane, the gel layer is filled not only on the surface of the PTFE porous membrane but also in the pores, so that defects (minute defects such as pinholes) occur. This is considered to be because the gas permeance, particularly the H 2 permeance, is suppressed from increasing through the minute defect.
  • the casting liquid does not penetrate into the pores of the membrane and is applied to the surface of the membrane, so that defects are likely to occur and the H 2 permeance is increased. Is considered to decrease.
  • the membrane of the present invention having a PVA / PAA gel membrane containing Cs 2 CO 3 as compared with the CO 2 facilitated transport membrane disclosed in Patent Documents 1 and 2
  • CO 2 permeance can be improved under high temperature conditions of 100 ° C. or higher.
  • the supporting layer by a hydrophilic porous membrane CO 2 permeance and CO 2 / H value of 2 selectivity can be remarkably improved.
  • FIG. 7 shows the CO 2 permeance R CO2 , H 2 permeance R H2 , and CO 2 / H 2 selectivity of each sample produced by changing the carrier concentration from 50 wt% to 85 wt%, and the source gas FG
  • FIG. 6 shows the results of measurement under the same conditions as in FIG. 5 and the pressure of the raw material gas FG measured in a pressurized state in the range of 200 kPa to 600 kPa.
  • the H 2 permeance R H2 tends to slightly decrease as the pressure of the raw material gas FG increases as a whole, except when the carrier concentration is 50 wt%.
  • the operating temperature is 100 ° C. or higher (160 ° C.)
  • the membrane of the present invention can be applied to a CO 2 permeable membrane reactor.
  • FIG. 8 is a graph showing the relationship between the carrier concentration and CO 2 permeance R CO2 , and the relationship between the carrier concentration and CO 2 / H 2 selectivity, with the raw material gas pressure being constant (501.3 kPa). is there. Note that the mixing ratio of the source gas FG and the measurement temperature were the same as in FIG.
  • both the CO 2 permeance and the CO 2 / H 2 selectivity show the highest values. That is, according to FIG. 8, it can be seen that both the CO 2 permeance and the CO 2 / H 2 selectivity depend on the carrier concentration.
  • the ability can be maximized by setting the carrier concentration to 70 wt%.
  • FIG. 9 shows CO 2 when the measurement temperature is changed within the range of 125 ° C. or more and 200 ° C. or less under the condition that the carrier concentration is 70 wt% and the mixing ratio of the raw material gas FG is the same as in FIG. 2 permeance R CO2 , H 2 permeance R H2 , and CO 2 / H 2 selectivity are shown as a result of measuring the pressure of the raw material gas FG in the raw material side chamber 12 in a pressure range of 200 kPa to 600 kPa.
  • the CO 2 permeance R CO2 when the measurement temperature is 160 ° C., the CO 2 permeance R CO2 is the largest. Moreover, CO for 2 / H 2 selectivity, CO 2 / H is larger 2 selectivity measured temperature is at 160 ° C. and 180 ° C., CO 2 / H 2 selectivity than the temperature it falls increased It can be seen that decreases. That is, according to FIG. 9, it can be seen that the CO 2 permeance and the CO 2 / H 2 selectivity also depend on the measurement temperature. In particular, when the membrane of the present invention is used as a CO 2 facilitated transport membrane, it can be seen that the ability can be maximized by installing the membrane of the present invention at a temperature of 160 ° C.
  • the CO 2 permeance R CO2 shows a value of about 1.0 ⁇ 10 ⁇ 4 mol / (m 2 ⁇ s ⁇ kPa), It can be seen that the CO 2 permeance is about 2 ⁇ 10 ⁇ 5 mol / (m 2 ⁇ s ⁇ kPa) or more. It can be seen that the CO 2 permeance value does not change so much even when the pressure of the raw material gas FG is changed under a constant temperature condition.
  • FIG. 9 shows that CO 2 / H 2 selectivity shows a value close to 100 under a pressure of 300 kPa under a high temperature condition of 200 ° C. That is, it can be seen that a CO 2 facilitated transport membrane applicable to the CO 2 permeable membrane reactor can be realized even under a high temperature condition of about 200 ° C.
  • FIG. 10 is a graph showing the relationship between the measurement temperature and CO 2 permeance R CO2 and the relationship between the measurement temperature and CO 2 / H 2 selectivity, with the raw material gas pressure being constant (501.3 kPa). is there. Note that the mixing ratio of the source gas FG and the measurement temperature were the same as in FIG.
  • FIG. 11 shows CO 2 permeance R CO2 , H 2 permeance R H2 , and CO 2 / H 2 selectivity of a sample prepared with a carrier concentration of 70 wt%, and the mixing ratio and measurement temperature of the source gas FG and FIG.
  • the membrane of the present invention shows a superior performance, the applicable CO 2 -facilitated transport membrane to CO 2 permeable membrane reactor It can be seen that it can be realized.
  • FIG. 12 is a graph showing the long-term performance of the membrane of the present invention.
  • the source gas is adjusted to a mixing ratio (mol%) of CO 2 : 5%, H 2 : 45%, H 2 O: 50%
  • the pressure of the source gas is 351.03 kPa
  • the carrier concentration is 70 wt% , CO 2 permeance R CO2 , and CO 2 / H 2 selectivity values over time.
  • the value of CO 2 permeance R CO2 did not show a great change over time, but was about 1.6 ⁇ 10 ⁇ 4 mol / (m 2 ⁇ s ⁇ kPa). .
  • the CO 2 / H 2 selectivity did not show a great change over time and showed a value of about 100.
  • the CO 2 facilitated transport membrane that can be applied to a CO 2 permeable membrane reactor that exhibits excellent performance over a long period of time without significantly deteriorating with time. Can be realized.
  • Table 1 below shows the CO 2 permeance and H 2 permeance when the membrane material is the same (PVA / PAA copolymer) and the carbon dioxide carrier is various carbonates other than Cs 2 CO 3.
  • CO 2 / H 2 selectivity values are compared with the membrane of the present invention.
  • Table 1 the above data was measured when Na, K, and Rb carbonates were used as carbon dioxide carriers in addition to the Cs carbonates used in the membranes of the present invention.
  • the raw material gas pressure was 401.33 kPa
  • the measurement temperature was 160 ° C.
  • the raw material gas was a CO 2 : 5.0%, H 2 : 45%, H 2 O: 50% mixing ratio (moles). %)
  • Each film was manufactured by the same method as the above-described method for manufacturing the film of the present invention.
  • the CO 2 permeance was very low and high H 2 permeance when using the Na 2 CO 3 membrane. This is probably because Na 2 CO 3 has a low solubility in water (see Table 1), so that crystals were formed when the cast film was crosslinked at 120 ° C., and a uniform film could not be obtained. . Further, in the case of the K 2 CO 3 membrane, a high CO 2 permeance was obtained, but since the membrane was prone to defects, the H 2 permeance was increased, and a high CO 2 / H 2 selectivity was not obtained. On the other hand, in the membrane containing Rb 2 CO 3 and Cs 2 CO 3 (see Table 1) having high solubility in water, good results were obtained for both CO 2 permeance and CO 2 / H 2 selectivity.
  • the content of the step of producing the cast solution (the above step 1) is different from that of the first embodiment.
  • the following three steps are performed as steps corresponding to step 1 of the first embodiment (cast solution preparation step), and these are referred to as Examples 1 to 3, respectively.
  • Example 1 First, after adding 20 g of water to 1 g of a PVA / PAA copolymer (for example, a temporary name SS gel manufactured by Sumitomo Seika), the gel is dissolved by stirring at room temperature. Next, after adding about 0.008 to 0.0343 g of glutaraldehyde to this, the mixture is stirred at a temperature of 95 ° C. for 15 hours. Then, to obtain a cast solution by stirring further at room temperature was added 2.33g of Cs 2 CO 3 thereto. That is, in Example 1, a cast solution is prepared by performing a gel dissolution step, a glutaraldehyde addition step, a stirring step at high temperature, a Cs 2 CO 3 addition step, and a stirring step at room temperature in this order.
  • a PVA / PAA copolymer for example, a temporary name SS gel manufactured by Sumitomo Seika
  • Example 2 First, after adding 20 g of water to 1 g of the PVA / PAA copolymer, the gel is dissolved by stirring at room temperature. Next, 2.33 g of Cs 2 CO 3 and about 0.008 to 0.0343 g of glutaraldehyde are added thereto, and then stirred and dissolved at room temperature. Then, a cast solution is obtained by stirring for 15 hours under a temperature condition of 95 ° C. That is, in Example 2, a cast solution is prepared by performing a gel dissolution step, a glutaraldehyde and Cs 2 CO 3 addition step, a stirring step at room temperature, and a stirring step at high temperature in this order.
  • Example 3 First, after adding 20 g of water to 1 g of the PVA / PAA copolymer, the gel is dissolved by stirring at room temperature. Next, 2.33 g of Cs 2 CO 3 and about 0.008 to 0.0343 g of glutaraldehyde are added thereto, and then dissolved by stirring at room temperature to obtain a cast solution. That is, in Example 3, a cast solution is prepared by performing a gel dissolution step, a glutaraldehyde and Cs 2 CO 3 addition step, and a stirring step at room temperature in this order.
  • a CO 2 facilitated transport membrane is obtained using the same method as in the step described in the first embodiment (steps 2 to 4). That is, after centrifuging to remove bubbles in the cast solution, a layered porous film in which a hydrophobic PTFE porous film (film thickness 60 ⁇ m) and a hydrophilic PTFE porous film (film thickness 80 ⁇ m) are superimposed on a glass plate.
  • a hydrophobic PTFE porous film film thickness 60 ⁇ m
  • a hydrophilic PTFE porous film film thickness 80 ⁇ m
  • the above cast solution is cast with a thickness of 500 ⁇ m using an applicator. Then, it is dried overnight at room temperature. Then, by holding approximately 2 hours further this at a high temperature of about 120 ° C., to obtain a CO 2 facilitated transport membrane.
  • the film composition is the same as in the first embodiment, and the carrier concentration is 70 wt%, and the experimental apparatus and experimental method for evaluating the film performance are the same as in the first embodiment.
  • FIG. 13 shows (a) CO 2 permeance R CO2 , (b) H 2 permeance R H2 , and (c) CO 2 / by the membrane of the present invention produced using the cast solution produced by the method of Example 1.
  • H 2 selectivity is shown as a result of measuring the raw material side pressure in a pressurized state in the range of 200 kPa to 600 kPa.
  • each data was measured by changing the amount of glutaraldehyde added when the cast solution was prepared. That is, the experiment was performed with three patterns of (1) 0.008 g, (2) 0.0153 g, and (3) 0 g (no addition) as the amount of glutaraldehyde added.
  • glutaraldehyde is abbreviated as “GA” (the same applies to the following graphs).
  • the temperature condition is 160 ° C.
  • the raw material gas FG is a mixing ratio (mol%) of CO 2 : 5.0%, H 2 : 45%, H 2 O: 50%, and the flow rate of the raw material gas FG.
  • the 360 cm 3 / min under 25 ° C. ⁇ 1 atm, 20 kPa decrease the pressure on the permeate side from the pressure of the feed side, and the flow rate of sweep gas SG and 40 cm 3 / min under 25 ° C. ⁇ 1 atm.
  • This experimental condition is common to each example.
  • FIG. 13A when glutaraldehyde is added, the CO 2 permeance R CO2 is slightly reduced as compared with the case where glutaraldehyde is not added.
  • FIG. 13 (b) when glutaraldehyde is added, H 2 permeance R H2 is greatly reduced. Therefore, as shown in FIG. 13 (c), by adding glutaraldehyde, It can be seen that the CO 2 / H 2 selectivity is greatly increased as compared with the case where it is not added. This is considered to be due to the fact that the addition of glutaraldehyde makes it difficult for film defects to occur due to the formation of a cross-linked structure, resulting in a significant decrease in H 2 permeance.
  • the H 2 permeance is lower and the CO 2 / H 2 selectivity is higher when 0.008 g of glutaraldehyde is added than when 0.0153 g is added.
  • FIG. 14 shows (a) CO 2 permeance R CO2 , (b) H 2 permeance R H2 , and (c) CO 2 / by the membrane of the present invention produced using the cast solution produced by the method of Example 2.
  • H 2 selectivity is shown as a result of measuring the raw material side pressure in a pressurized state in the range of 200 kPa to 600 kPa.
  • each data was measured by changing the addition amount of glutaraldehyde added at the time of casting solution preparation. That is, the experiment was conducted with three patterns of (1) 0.008 g, (2) 0.0165 g, and (3) 0 g (no addition) as the amount of glutaraldehyde added. Other experimental conditions are the same as in the case of Example 1.
  • FIG. 14 (a) As in FIG. 13 (a), when glutaraldehyde is added, the CO 2 permeance R CO2 is slightly lower than when not added. Then, according to FIG. 14 (b), the order similar to FIG. 13 (b), when added to glutaraldehyde H 2 permeance R H2 is substantially reduced, as shown in FIG. 14 (c), It can be seen that the CO 2 / H 2 selectivity is greatly increased by adding glutaraldehyde as compared to the case of not adding it. This is the same as in Example 1, that is, the addition of glutaraldehyde caused a significant decrease in H 2 permeance because it was less likely to cause film defects due to the formation of a crosslinked structure. it is conceivable that.
  • the H 2 permeance is lower and the CO 2 / H 2 selectivity is higher when 0.008 g of glutaraldehyde is added than when 0.0165 g is added.
  • the greater the amount of glutaraldehyde added the higher the selectivity, suggesting that there is an appropriate amount of additive that can achieve high selectivity depending on the experimental conditions.
  • the difference of the selectivity by the addition amount of glutaraldehyde to add is small.
  • FIG. 15 shows (a) CO 2 permeance R CO2 , (b) H 2 permeance R H2 , and (c) CO 2 / by the membrane of the present invention produced using the cast solution produced by the method of Example 3.
  • H 2 selectivity is shown as a result of measuring the raw material side pressure in a pressurized state in the range of 200 kPa to 600 kPa.
  • each data was measured by changing the addition amount of glutaraldehyde added at the time of casting solution preparation. That is, the experiment was performed with four patterns of (1) 0.008 g, (2) 0.0154 g, (3) 0.0343 g, and (4) 0 g (no addition) as the amount of glutaraldehyde added.
  • Other experimental conditions are the same as in the case of Example 1.
  • FIG. 15A As in FIG. 13A, when glutaraldehyde is added, the CO 2 permeance R CO2 is slightly reduced as compared with the case where glutaraldehyde is not added. Then, according to FIG. 15 (b), the order similar to FIG. 13 (b), when added to glutaraldehyde H 2 permeance RH 2 are significantly reduced, as shown in FIG. 15 (c), It can be seen that the CO 2 / H 2 selectivity is greatly increased by adding glutaraldehyde as compared to the case of not adding it.
  • the gel membrane is cross-linked with glutaraldehyde to suppress a decrease in CO 2 permeability to a certain extent as compared with the case where glutaraldehyde is not added.
  • glutaraldehyde it is possible to significantly reduce the permeability of H 2 , and thereby, a facilitated transport membrane exhibiting high CO 2 / H 2 selectivity can be realized.
  • good range when about 0.008 to 0.015 g of glutaraldehyde is added to 1 g of PVA / PAA copolymer (hereinafter, this range is referred to as “good range”), the selectivity of CO 2 / H 2 Is significantly improved.
  • FIG. 16 is a graph showing long-term performance when glutaraldehyde is added. Specifically, (a) CO 2 permeance R CO2 , (b) H 2 permeance when a long-term experiment was performed using the film prepared by the method of Example 1 (glutaraldehyde addition amount: 0.0339 g) R H2 and (c) CO 2 / H 2 selectivity over time are graphed respectively.
  • the raw material side gas pressure was 401.3 kPa, and other experimental conditions were the same as in FIGS.
  • the membrane of the present invention was set in a permeation cell at about 10 am, the temperature was raised to 160 ° C., a raw material gas and a sweep gas were supplied, and a permeation experiment was started. Under the same conditions until about 8 pm Continued. Then, the supply gas was stopped around 8 pm to lower the temperature to room temperature. The same experiment was conducted again at about 10:00 am the next morning using the same membrane without disassembling the permeation cell. The results of repeating such an experiment for two weeks are shown in FIGS. 16 (a) to 16 (c).
  • the experimental data in FIG. 16 shows that the amount of added glutaraldehyde is slightly larger than the above-mentioned good range, so the CO 2 permeance is smaller than the values in FIGS. 13 to 15, but the H 2 permeance is Even when time elapses, a significantly smaller value is shown than when no glutaraldehyde is added, and the CO 2 / H 2 selectivity also maintains a high value of 200 or more.
  • temperature fluctuations room temperature to 160 ° C
  • pressure fluctuations normal pressure to 6 atmospheres
  • glutaraldehyde is adopted as a material to be added in the present embodiment
  • the material addition step is performed to form a crosslinked structure in the film
  • any material capable of forming a crosslinked structure is used.
  • it is not limited to glutaraldehyde.
  • formaldehyde can also be used.
  • the material used as the carbon dioxide carrier is a material other than Cs 2 CO 3 (for example, Rb 2 CO 3 ), it is possible to further improve the membrane performance by introducing an additive in the same manner to obtain a crosslinked structure. It is.
  • a third embodiment of the present invention will be described.
  • this embodiment differs in the shape of this invention film
  • FIG. 17 is a schematic view showing the structure of the facilitated transport film of this embodiment.
  • FIG. 18 is a graph showing CO 2 permeance, H 2 permeance, and CO 2 / H 2 selectivity when a facilitated transport membrane having such a cylindrical shape is used.
  • FIG. 17 (a) is a cross-sectional view when cut parallel to the horizontal plane, and (b) is a cross-sectional view when cut in the vertical direction on the horizontal plane.
  • the facilitated transport film shown in FIG. 17 has a structure in which a gel film 41 containing a carrier is supported on the outer periphery of a cylindrical hydrophilic ceramic support film 42.
  • the gel film 41 generated from the same cast solution as that in the first embodiment is used.
  • Cs 2 CO 3 is used as a carrier and thermal crosslinking is performed.
  • alumina can be used as an example of ceramics.
  • a space 40 is provided between the gel film 41 and the outer frame, and a space 43 is also provided inside the ceramic support film 42.
  • the same raw material gas FG as in the above-described embodiment flows into the space 40.
  • an inert sweep gas SG flows into the space 43.
  • a part of the source gas FG that has flowed into the space 40 passes through the gel film 41 (and the support film 42) containing the carrier and flows into the space 43 as a permeable gas PG.
  • An inert sweep gas SG flows into the space 43 in order to exhaust the permeate gas PG out of the system, and the exhaust gas SG ′ in which the sweep gas SG and the permeate gas PG are mixed is shown in FIG.
  • the cooling trap 16 is supplied.
  • the calculation method of permeance and selectivity is the same as that of the first embodiment.
  • FIG. 18 shows a case where the cylindrical facilitated transport film shown in FIG. 17 is used as the facilitated transport film, the measurement method, the carrier concentration, and the raw material gas pressure are the same as those in FIG. 9, and the measurement temperature is 160 ° C. It is a graph based on the obtained data. As in the case of FIG. 9, both CO 2 permeance and CO 2 / H 2 selectivity are high, and the cylindrical facilitated transport membrane having the structure shown in FIG. It turns out that the same effect is shown.
  • the gel film 41 is exposed in the space 40 so that the gel film 41 is in direct contact with the source gas FG. That is, compared with the structure shown in FIG. 1, the gel film 41 is not covered with the hydrophobic film.
  • This hydrophobic membrane has the effect of stabilizing the gel membrane and making it difficult to degrade the aging performance.
  • the cylindrical facilitated transport film has the effect of improving the performance over time without being covered with the hydrophobic film. This will be described below.
  • FIG. 19 is a graph comparing long-term performances of a flat type and a cylindrical type facilitated transport membrane, where (a) shows CO 2 permeance R CO2 and (b) shows CO 2 / H 2 selectivity.
  • (1) is cylindrical data
  • (2) is flat plate data. The conditions for obtaining the graph result were the same as those in FIG.
  • FIG. 19 assumes a structure in which the gel film is not covered with a hydrophobic film as a flat-type facilitated transport film as a comparative example. This is because the cylindrical shape is in a state where one surface of the gel film is exposed to the raw material gas, so that the conditions are common to the flat plate type from the viewpoint of comparison.
  • the ceramic support film used in this embodiment also has heat resistance of 100 ° C. or higher, mechanical strength, and adhesion to the impregnated gel film, as in the case of the PTFE porous film described in the first embodiment. Is preferred.
  • the porosity (porosity) is preferably 40% or more, and the pore diameter is preferably in the range of 0.1 to 1 ⁇ m.
  • the ceramic support film is on the inside and the gel film is provided on the outside.
  • the support film is on the outside and the gel film is formed on the inside. Also good.
  • the cross section is an accurate “circle”, and may be an elliptical shape and has some unevenness. It doesn't matter.
  • the long-term performance is improved as compared with the flat plate type by making the promotion film cylindrical. It is considered that this is because the facilitated transport film is hardly deformed and stabilized by making the shape cylindrical.
  • the film is deformed with time and defects are generated, and it is considered that the selectivity is lowered by leakage of H 2 from the defects.
  • a ceramic film is used as the support film.
  • this film is not limited to ceramics as long as it can be processed into a cylindrical shape and is not easily deformed over time. .
  • the PTFE porous membrane is used as the support membrane.
  • the PTFE porous membrane can be used. It is not limited to membranes.
  • the membrane of the present invention casts a cast solution comprising an aqueous solution containing a PVA / PAA copolymer and a carbon dioxide carrier Cs 2 CO 3 into a hydrophilic PTFE porous membrane for supporting a gel membrane.
  • the membrane of the present invention may be manufactured by a manufacturing method other than the manufacturing method.
  • the PVA / PAA copolymer gel film may be prepared by later impregnating a Cs 2 CO 3 aqueous solution.
  • rubidium hydroxide or rubidium bicarbonate can be used instead of rubidium carbonate.
  • the membrane of the present invention has a three-layer structure composed of a hydrophobic PTFE porous membrane / gel layer (impregnated gel membrane supported on a hydrophilic PTFE porous membrane) / hydrophobic PTFE porous membrane.
  • the support structure for the membrane of the present invention is not necessarily limited to the three-layer structure.
  • a two-layer structure composed of a hydrophobic PTFE porous membrane / gel layer an impregnated gel membrane supported on a hydrophilic PTFE porous membrane
  • a hydrophobic PTFE porous membrane / gel layer an impregnated gel membrane supported on a hydrophilic PTFE porous membrane
  • the membrane of the present invention is applied to a CO 2 permeable membrane reactor, but the membrane of the present invention selectively separates carbon dioxide in addition to the CO 2 permeable membrane reactor. Can be used for the purpose. Therefore, the source gas supplied to the membrane of the present invention is not limited to the mixed gas exemplified in the above embodiment.
  • CO 2 facilitated transport membrane is applicable to separation of carbon dioxide, in particular, the carbon dioxide contained in the reformed gas such as a fuel cell mainly composed of hydrogen at a high selectivity rate to hydrogen It can be used for a separable CO 2 facilitated transport membrane, and is further useful for a CO 2 permeable membrane reactor.

Abstract

 CO2透過型メンブレンリアクターに適用可能な二酸化炭素透過性とCO2/H2選択性に優れたCO2促進輸送膜を安定して提供する。  CO2促進輸送膜は、ポリビニルアルコール-ポリアクリル酸共重合体ゲル膜に炭酸セシウムを添加したゲル層1を、親水性の多孔膜2に担持させて提供される。更に好ましくは、親水性の多孔膜2に担持されたゲル層1が疎水性の多孔膜3,4によって被覆されている。

Description

CO2促進輸送膜及びその製造方法
 本発明は、二酸化炭素の分離に用いられるCO促進輸送膜に関し、特に、水素を主成分とする燃料電池用等の改質ガスに含まれる二酸化炭素を水素に対する高い選択性で分離可能なCO促進輸送膜に関する。
 従来、その応用範囲の広さから、二酸化炭素を選択的に分離する方法が種々検討されている。例えば、燃料電池用等の改質ガスから二酸化炭素を選択的に分離することで、水素の純度を向上させることができる。また、地球温暖化の原因の一端となっている二酸化炭素を選択的に分離して海底に貯留させることで温暖化の進展を鈍化させることができるのではないかと期待されている。
 水素製造プロセスに目を向ければ、現在開発中の水素ステーション用改質システムでは、水蒸気改質により炭化水素を水素及び一酸化炭素(CO)に改質し、更に、CO変成反応を用いて一酸化炭素を水蒸気と反応させることにより水素を製造している。
 従来のCO変成器において、小型化や起動時間の短縮を阻害する原因として、以下の(化1)に示すCO変成反応の化学平衡上の制約から、多量のCO変成触媒が必要となっていることが挙げられる。一例として、50kWのPAFC(リン酸型燃料電池)用改質システムでは、改質触媒が20L必要であるのに対して、CO変成触媒は77Lと約4倍の触媒が必要となる。このことが、CO変成器の小型化や起動時間の短縮を阻害する大きな要因となっている。なお、記号「⇔」は、可逆反応であることを示している。
 (化1)
 CO + HO ⇔ CO + H
 そこで、CO変成器に二酸化炭素を選択的に透過させるCO促進輸送膜を備え、上記(化1)のCO変成反応で生成された右側の二酸化炭素を効率的にCO変成器外部に除去することで、化学平衡を水素生成側(右側)にシフトさせることができ、同一反応温度において高い転化率が得られる結果、一酸化炭素及び二酸化炭素を平衡の制約による限界を超えて除去することが可能となる。図20及び図21に、この様子を模式的に示す。図21(A)と(B)は、夫々、CO促進輸送膜を備えている場合と備えていない場合における、CO変成器の触媒層長に対する一酸化炭素及び二酸化炭素の各濃度変化を示している。
 上記のCO促進輸送膜を備えたCO変成器(CO透過型メンブレンリアクター)により、一酸化炭素及び二酸化炭素を平衡の制約による限界を超えて除去することが可能となるため、水素ステーションのPSA(Pressure Swing Adsorption)の負荷低減及び改質反応とCO変成の低S/C(スチーム/カーボン比)化が図れ、水素ステーション全体のコスト低減及び高効率化が図られる。また、CO促進輸送膜を備えることで、CO変成反応の高速化(高SV化)が図られるため、改質システムの小型化及び起動時間の短縮が図られる。
 かかるCO透過型メンブレンリアクターの先行例としては、下記の特許文献1(或いは、同じ発明者による同一内容の特許文献2)に開示されているものがある。
 該特許文献1、2において提案されている改質システムは、炭化水素、メタノール等の燃料を燃料電池自動車用の水素に車上で改質する際に発生する改質ガスの精製及び水性ガスシフト反応(CO変成反応)に有用なCO促進輸送膜プロセスを提供するもので、代表的な4種類のプロセスが、同文献に示されている。炭化水素(メタンを含む)を原料とする場合、水性ガスシフター(CO変成器)にCO促進輸送膜を備えたメンブレンリアクターを用いて二酸化炭素を選択的に除去することにより、一酸化炭素の反応率を高め一酸化炭素濃度を低下させるとともに生成水素の純度を向上させている。また、生成水素中に残留する%オーダーの一酸化炭素及び二酸化炭素はメタネーターで水素と反応させてメタンに変換して濃度を低下させ、燃料電池の被毒等による効率低下を防いでいる。
 該特許文献1、2では、CO促進輸送膜として、主としてハロゲン化四級アンモニウム塩((R))を二酸化炭素キャリアとして含むPVA(ポリビニルアルコール)等の親水性ポリマー膜が使用されている。また、該特許文献1、2の実施例6には、二酸化炭素キャリアとしてテトラメチルアンモニウムフルオリド塩50重量%を含む膜厚49μm50重量%のPVA膜とそれを支持する多孔質PTFE(四フッ化エチレン重合体)膜よりなる複合膜で形成されたCO促進輸送膜の作製方法が開示されており、同実施例7には、混合ガス(25%CO、75%H)を全圧3気圧、23℃で処理したときの当該CO促進輸送膜の膜性能が開示されている。当該膜性能として、COパーミアンスRCO2が7.2GPU(=2.4×10-6mol/(m・s・kPa))、CO/H選択性が19となっている。
 また、下記特許文献3には、CO促進輸送膜として、炭酸セシウムとアミノ酸とを組み合わせて構成されたCO吸収剤が開示されている。
 特許文献3に記載のCO促進輸送膜の製法は、以下のとおりである。まず、炭酸セシウムの水溶液に市販のアミノ酸を濃度分加えて、よく撹拌し混合水溶液を作製する。その後、ゲルを塗布した多孔PTFE膜(47Φ)のゲル塗布面を、作製した混合溶液に30分以上浸した後、ゆっくり膜を引き上げる。焼結金属の上にシリコーン膜を乗せ(溶液が透過側に漏れるのを防ぐため)その上に47mmΦの上記の含水ゲル膜を乗せ、その上からシリコーンパッキングの入ったセルをかぶせシーリングする。このようにして製造されたCO促進輸送膜に対して、供給ガスを50cc/分の速度で流し、膜の下側を真空引きし圧力を40torr程度まで下げる。
 特許文献3の実施例4では、炭酸セシウムと、2,3-ジアミノプロピオン酸塩酸塩をそれぞれ4(mol/kg)のモル濃度で構成したCO促進輸送膜により、25℃の温度条件下において、CO透過速度が1.1(10-4cm(STP)/cm・s・cmHg)、CO/N分離係数が300となっている。なお、COパーミアンスRCO2は、圧力差あたりの透過速度で定義されるので、特許文献3の実施例4におけるCOパーミアンスRCO2は、110GPUと算出されるが、本実施例におけるCO/H選択性に関するデータは開示されていない。
 なお、下記特許文献4には、アルカリ重炭酸塩を添加した酢酸セルロース膜で構成されたCO分離膜が開示されている。しかし、当該文献4では、CO/O選択性についてしか記載されておらず、CO/Hの選択性についてのデータが開示されていない。更に、開示されたデータは低圧力(0.01気圧程度)の条件下で測定されたものであり、数気圧程度の圧力条件下におけるデータは開示されていない。
特表2001-511430号公報 米国特許第6579331号明細書 特開2000-229219号公報 米国特許第3396510号明細書
 CO促進輸送膜は、基本機能として二酸化炭素を選択的に分離することから、地球温暖化の原因となっている二酸化炭素の吸収或いは除去等を目的とした開発も行われている。しかしながら、CO促進輸送膜は、CO透過型メンブレンリアクターへの応用を考えた場合、使用温度、COパーミアンス、CO/H選択性等に対して、一定以上の性能が要求される。つまり、CO変成反応に供するCO変成触媒の性能が温度とともに低下する傾向にあるため、使用温度は最低でも100℃が必要と考えられる。上記各特許文献1~3は、いずれも25℃程度の温度条件下で膜性能の測定が行われており、100℃以上の温度条件下においても十分な膜性能を示すCO促進輸送膜が上記各特許文献によって開示されたということはできない。
 また、COパーミアンス(二酸化炭素透過性の性能指標の一つ)は、CO変成反応の化学平衡を水素生成側(右側)にシフトさせ、一酸化炭素濃度と二酸化炭素濃度を平衡の制約による限界を超えて例えば0.1%程度以下に低減し、且つ、CO変成反応の高速化(高SV化)を図るためには、一定レベル以上(例えば、2×10-5mol/(m・s・kPa)=60GPU程度以上)が必要と考えられる。しかしながら、上記各特許文献1,2に記載のCO促進輸送膜のCOパーミアンスは、10GPUを大きく下回るような値であり、60GPU程度以上のCOパーミアンスを示すCO促進輸送膜が上記各特許文献によって開示されたということはできない。また、特許文献3は、CO/H選択性は開示されていない上、100℃以上の温度条件でCOパーミアンスが60GPU以上の能力を示すことは示されていない。特許文献4においても、CO/H選択性は開示されていない上、数気圧程度の圧力条件の下でのデータが開示されていない。
 更に、CO変成反応で生成された水素が二酸化炭素とともにCO促進輸送膜を通して外部に廃棄されたのでは、当該廃棄ガスから水素を分離回収するというプロセスが必要となる。水素は当然に二酸化炭素より分子サイズが小さいので、二酸化炭素を透過可能な膜は水素も透過できることになるが、膜中の二酸化炭素キャリアによって二酸化炭素のみを選択的に輸送可能な促進輸送膜が必要となり、その場合のCO/H選択性として90~100程度以上が必要と考えられる。
 しかしながら、上記各特許文献1及び2に記載のCO促進輸送膜は、CO/H選択性が19であり、十分な選択性を有しているとは言えない。また、上記特許文献3,4は、CO/H選択性が開示されていないため、特許文献3,4によって高いCO/H選択性を示すCO促進輸送膜が開示されたということはできない。
 本発明は、上述の問題点に鑑み、CO透過型メンブレンリアクターに適用可能なCO促進輸送膜を安定して提供することを目的とする。
 上記目的を達成するための本発明に係るCO促進輸送膜は、ポリビニルアルコール-ポリアクリル酸共重合体ゲル膜に炭酸セシウム若しくは重炭酸セシウム若しくは水酸化セシウムからなる添加剤を添加したゲル層を、親水性の多孔膜に担持させてなることを特徴とする。
 本発明に係るCO促進輸送膜の上記特徴によれば、ポリビニルアルコール-ポリアクリル酸(PVA/PAA)共重合体ゲル膜中に、炭酸セシウム(CsCO)が含まれることから、当該CsCOが透過物質である二酸化炭素をPVA/PAA強重合体ゲル層の二酸化炭素高濃度側界面から低濃度側界面へと輸送する二酸化炭素キャリアとして機能し、100℃以上の高温において50程度以上の対水素選択性(CO/H)、及び、2×10-5mol/(m・s・kPa)(=60GPU)程度以上のCOパーミアンスを達成可能となる。
 また、PVA/PAAゲル層を担持する多孔膜が親水性であるので、欠陥の少ないゲル層を安定して作製することができ、高い対水素選択性を維持できる。一般に、多孔膜が疎水性であると、100℃以下においてPVA/PAAゲル膜内の水分が多孔膜内の細孔に侵入して膜性能を低下させるのを防止でき、また、100℃以上においてPVA/PAAゲル膜内の水分が少なくなる状況でも同様の効果が期待できると考えられるため、疎水性の多孔膜の使用が推奨されるところ、本発明のCO促進輸送膜では、以下の理由から親水性多孔膜を使用することで、欠陥が少なく高い対水素選択性を維持できるCO促進輸送膜を安定して作製できるようになった。
 親水性の多孔膜上に、PVA/PAA共重合体とCsCOの水溶液からなるキャスト溶液をキャストすると多孔膜の細孔内が液で満たされ、更に、多孔膜の表面にキャスト溶液が塗布される。このキャスト溶液をゲル化すると、多孔膜の表面のみならず細孔内にもゲル層が充填されるので欠陥が生じ難くなり、ゲル層の製膜成功率が高くなる。
 細孔部分の割合(多孔度)、及び、細孔が膜表面に垂直に真っ直ぐではなく曲がりくねっていること(屈曲率)を考慮すると、細孔内のゲル層はガス透過の大きな抵抗となるので、多孔膜表面のゲル層と比較して透過性は低くなり、ガスパーミアンスは低下する。他方、疎水性の多孔膜上にキャスト溶液をキャストすると多孔膜の細孔内は液で満たされずに多孔膜の表面のみにキャスト溶液が塗布され細孔はガスで満たされるので、疎水性多孔膜上のゲル層におけるガスパーミアンスは、親水性多孔膜と比較して水素及び二酸化炭素の両方において高くなると予想される。
 しかし、細孔内のゲル層と比較して膜表面のゲル層では微小な欠陥が生じ易く、製膜成功率は低下する。水素は二酸化炭素より分子サイズが非常に小さいので、微小な欠陥個所では二酸化炭素より水素の方がパーミアンスが著しく大きくなる。なお、欠陥箇所以外では、促進輸送機構で透過する二酸化炭素のパーミアンスは、物理的な溶解、拡散機構で透過する水素のパーミアンスより格段に大きい。
 結果として、疎水性多孔膜を使用した場合の対水素選択性(CO/H)は、親水性多孔膜を使用した場合と比較して低下することになる。従って、実用化の観点からは、CO促進輸送膜の安定性、耐久性が非常に重要となり、対水素選択性(CO/H)の高い親水性多孔膜を使用する方が有利となる。また、親水性多孔膜の使用は、PVA/PAAゲル層に二酸化炭素キャリアとしてCsCOを添加することで高いCOパーミアンスを達成可能であることを前提に実現できるものである。
 なお、疎水性多孔膜と親水性多孔膜の違いによるガスパーミアンスの差は、キャスト溶液中に予め二酸化炭素キャリアであるCsCOを添加せずにゲル化後に炭酸セシウム水溶液を含浸させても、細孔内のゲル層がガス透過の大きな抵抗となる点は同じであり、同様に発現するものと推定される。
 以上より、上記特徴のCO促進輸送膜によれば、100℃以上の使用温度、2×10-5mol/(m・s・kPa)(=60GPU)程度以上のCOパーミアンス、及び、90~100程度以上のCO/H選択性が実現でき、CO透過型メンブレンリアクターへ応用可能なCO促進輸送膜が提供可能となり、CO変成器の小型化、起動時間の短縮、及び、高速化(高SV化)が図られる。
 なお、添加剤として、炭酸セシウムの代わりに水酸化セシウムを添加した場合においても、同様の効果を得ることができる。すなわち、水酸化セシウムが添加されたゲル層を含む促進輸送膜をCOの分離に利用することで、以下の(化2)に示されるような反応が起こり、これによって当該促進輸送膜内に添加されていた水酸化セシウムが炭酸セシウムに転化するためである。
 (化2)
 CO + CsOH → CsHCO
 CsHCO + CsOH → CsCO3 + H
 なお、上記(化2)をまとめると、下記(化3)のように表すことができる。すなわち、これにより、添加された水酸化セシウムが炭酸セシウムに転化することが示される。
 (化3)
 CO + 2CsOH → CsCO + H
 更に、上記(化2)より、添加剤として、炭酸セシウムの代わりに重炭酸セシウムを添加した場合においても同様の効果を得ることができることが分かる。
 また、本発明に係るCO促進輸送膜は、上記特徴に加えて、前記ゲル層が、ポリビニルアルコール-ポリアクリル酸共重合体ゲル膜と炭酸セシウムの合計重量に対する炭酸セシウムの重量比率が65重量%以上85重量%以下の範囲で構成されることを別の特徴とする。
 本発明に係るCO促進輸送膜の上記特徴によれば、100℃以上の温度条件下で、優れたCOパーミアンス、並びに優れたCO/H選択性の値を実現でき、CO透過型メンブレンリアクターへ応用可能なCO促進輸送膜が提供可能となり、CO変成器の小型化、起動時間の短縮、及び、高速化(高SV化)が図られる。
 また、本発明に係るCO促進輸送膜は、上記特徴に加えて、ポリビニルアルコール-ポリアクリル酸共重合体ゲル膜に炭酸ルビジウム若しくは重炭酸ルビジウム若しくは水酸化ルビジウムからなる添加剤を添加したゲル層を、親水性の多孔膜に担持させてなることを別の特徴とする。
 本発明に係るCO促進輸送膜の上記特徴によれば、ポリビニルアルコール-ポリアクリル酸(PVA/PAA)共重合体ゲル膜中に、水中への溶解度が比較的高い炭酸塩である炭酸ルビジウム(RbCO)が、透過物質であるPVA/PAAゲル層の二酸化炭素の高濃度側界面から低濃度側界面へと二酸化炭素を輸送する二酸化炭素キャリアとして機能し、100℃以上の高温において90~100程度以上の対水素選択性(CO/H)、及び、2×10-5mol/(m・s・kPa)(=60GPU)程度以上のCOパーミアンスを達成可能となる。
 なお、炭酸ルビジウムの代わりに水酸化ルビジウム若しくは重炭酸ルビジウムを添加した場合においても、同様の効果を得ることができる。これは、炭酸セシウムの代わりに水酸化セシウム若しくは重炭酸セシウムを添加した場合において、炭酸セシウムを添加したときと同様の効果が得られることと同様の理由による。
 また、本発明に係るCO促進輸送膜は、上記特徴に加え、前記親水性の多孔膜に担持された前記ゲル層が疎水性の多孔膜によって被覆されていることを別の特徴とする。
 本発明に係るCO促進輸送膜の上記特徴によれば、親水性の多孔膜で担持されたゲル層が疎水性の多孔膜によって保護され、使用時におけるCO促進輸送膜の強度が増す。この結果、CO促進輸送膜をCO透過型メンブレンリアクターへ応用した場合に、CO促進輸送膜の両側(反応器内外)での圧力差が大きく(例えば、2気圧以上)なっても十分な膜強度を確保できる。更に、ゲル層が疎水性の多孔膜によって被覆されるため、水蒸気が疎水性の多孔膜の膜表面に凝縮しても当該多孔膜が疎水性のために水がはじかれてゲル層内にしみ込むのを防止している。よって、疎水性の多孔膜によって、ゲル層中の二酸化炭素キャリアが水で薄められ、また、薄められた二酸化炭素キャリアがゲル層から流出することを防止できる。
 また、本発明に係るCO促進輸送膜は、上記特徴に加えて、前記ゲル層が、アルデヒド基由来の架橋構造を有することを別の特徴とする。
 本発明に係るCO促進輸送膜の上記特徴によれば、前記ゲル層に形成された架橋構造によってゲル層内に欠陥が生じにくくなり、この結果、Hパーミアンスが大きく低下する。一方で、COパーミアンスは、Hパーミアンスほどの低下を招来しない。これにより、更に高いCO/H選択性を示す促進輸送膜を実現することができる。
 また、本発明に係るCO促進輸送膜は、上記特徴に加え、前記親水性の多孔膜が100℃以上の耐熱性を備えていることを別の特徴とする。
 本発明に係るCO促進輸送膜の上記特徴によれば、常温から100℃以上に亘る広範な温度範囲での使用が可能となる。具体的には、親水性の多孔膜が100℃以上の耐熱性を備えることで100℃以上の温度領域での使用が可能となる。
 また、本発明に係るCO促進輸送膜は、上記特徴に加え、前記ゲル層,並びに前記親水性の多孔膜は、共に軸心を同一にした筒形状であって、一方の膜が、その内側面を他方の膜の外側面と接触させて、前記他方の膜を取り囲むように構成されていることを特徴とする。
 このとき、前記親水性の多孔膜としてアルミナ等のセラミックス製の膜を利用することができる。
 また、前記ゲル層を、前記親水性の多孔膜を取り囲むように、前記親水性の多孔膜の外側に形成することができる。
 また、上記目的を達成するための本発明に係るCO促進輸送膜の製造方法は、ポリビニルアルコール-ポリアクリル酸共重合体と炭酸セシウム若しくは重炭酸セシウム若しくは水酸化セシウムを含む水溶液からなるキャスト溶液を作製する第1工程と、前記キャスト溶液を親水性の多孔膜にキャストした後にゲル化して前記ゲル層を作製する第2工程と、を有することを特徴とする。
 また、上記目的を達成するための本発明に係るCO促進輸送膜の製造方法は、ポリビニルアルコール-ポリアクリル酸共重合体と炭酸ルビジウム若しくは重炭酸ルビジウム若しくは水酸化ルビジウムを含む水溶液からなるキャスト溶液を作製する第1工程と、前記キャスト溶液を親水性の多孔膜にキャストした後にゲル化して前記ゲル層を作製する第2工程と、を有することを別の特徴とする。
 本発明に係るCO促進輸送膜の製造方法の上記特徴によれば、膜材料(PVA/PAA)に対する二酸化炭素キャリアの配分を適正に調整したキャスト溶液が予め準備されるため、最終的なPVA/PAAゲル膜内の二酸化炭素キャリアの配合比率の適正化が簡易に実現でき、膜性能の高性能化が実現できる。
 また、本発明に係るCO促進輸送膜の製造方法は、上記特徴に加えて、前記第2工程開始前に、親水性の多孔膜と疎水性の多孔膜を重ね合わせた層状多孔膜を生成する第3工程を有し、前記第2工程が、前記層状多孔膜が有する親水性の多孔膜側の面上に、前記キャスト溶液をキャストする工程であることを別の特徴とする。
 本発明に係るCO促進輸送膜の製造方法の上記特徴によれば、親水性の多孔膜で担持されたゲル層が疎水性の多孔膜によって保護され、使用時における強度を強化したCO促進輸送膜を実現することができる。
 また、本発明に係るCO促進輸送膜の製造方法は、上記特徴に加えて、前記第1工程が、構造の一部にアルデヒド基を含む架橋剤を添加する工程を更に有して前記キャスト溶液を作製することを別の特徴とする。
 本発明に係るCO促進輸送膜の製造方法の上記特徴によれば、膜内に架橋構造を形成することができるため、膜内に欠陥が生じにくくなり、この結果、Hパーミアンスを大きく低下させることができ、これによって更に高いCO/H選択性を示す促進輸送膜を実現することができる。
 なお、このとき、添加する架橋剤としては、グルタルアルデヒドやホルムアルデヒドを採用することができる。グルタルアルデヒドを添加する場合においては、PVA/PAA共重合体1gに対して0.008~0.015g程度添加することで、特に高いCO/H選択性を示すことができる。
本発明に係るCO促進輸送膜の一実施形態における構造を模式的に示す断面図 本発明に係るCO促進輸送膜の作製方法を示す工程図 CO促進輸送膜の比較例サンプルの構造を模式的に示す断面図 本発明に係るCO促進輸送膜の膜性能を評価するための実験装置の構成図 本発明に係るCO促進輸送膜の親水性多孔膜の使用によるCO/H選択性の改善効果を示す図(1) 本発明に係るCO促進輸送膜の親水性多孔膜の使用によるCO/H選択性の改善効果を示す図(2) 本発明に係るCO促進輸送膜のCOパーミアンスRCO2とCO/H選択性の原料ガスの圧力とキャリア濃度に対する依存性を示す図 本発明に係るCO促進輸送膜のCOパーミアンスRCO2とCO/H選択性のキャリア濃度に対する依存性を示す図 本発明に係るCO促進輸送膜のCOパーミアンスRCO2とCO/H選択性の原料ガスの圧力と使用温度に対する依存性を示す図 本発明に係るCO促進輸送膜のCOパーミアンスRCO2とCO/H選択性の使用温度に対する依存性を示す図 本発明に係るCO促進輸送膜のCOパーミアンスRCO2とCO/H選択性の原料ガスの圧力と水蒸気モル%に対する依存性を示す図 本発明に係るCO促進輸送膜のCOパーミアンスRCO2とCO/H選択性の経時変化を示す図 本発明に係るCO促進輸送膜の第2実施形態の実施例1の方法で作製された本発明膜の膜性能を示すグラフ 本発明に係るCO促進輸送膜の第2実施形態の実施例2の方法で作製された本発明膜の膜性能を示すグラフ 本発明に係るCO促進輸送膜の第2実施形態の実施例3の方法で作製された本発明膜の膜性能を示すグラフ 本発明に係るCO促進輸送膜の第2実施形態の実施例1の方法で作製された本発明膜の膜性能の経時変化を示すグラフ 本発明に係る第3実施形態のCO促進輸送膜の構造を模式的に示す断面図 本発明に係る第3実施形態のCO促進輸送膜のCOパーミアンス、Hパーミアンス、並びにCO/H選択性の原料ガスの温度と圧力に対する依存性を示す図 円筒型と平板型の促進輸送膜における、COパーミアンスRCO2とCO/H選択性の経時変化の比較図 CO促進輸送膜を備えたCO変成器における各種ガスの流れを示す図 CO促進輸送膜を備えている場合と備えていない場合における、CO変成器の触媒層長に対する一酸化炭素及び二酸化炭素の各濃度変化の比較図
 本発明に係るCO促進輸送膜及びその製造方法の各実施形態につき、図面に基づいて説明する。
 [第1実施形態]
 本発明の第1実施形態につき、説明する。
 本発明に係るCO促進輸送膜(以下、適宜「本発明膜」という)は、水分を含むゲル膜内に二酸化炭素キャリアを含有したCO促進輸送膜であって、100℃以上の使用温度、高い二酸化炭素透過性とCO/H選択性を有するCO透過型メンブレンリアクターへ応用可能なCO促進輸送膜である。更に、本発明膜は、高いCO/H選択性を安定して実現するために、二酸化炭素キャリアを含有したゲル膜を担持する支持膜として、親水性の多孔膜を採用している。
 具体的には、本発明膜は、膜材料として、ポリビニルアルコール-ポリアクリル酸(PVA/PAA)共重合体を使用し、二酸化炭素キャリアとして、炭酸セシウム(CsCO)を使用する。また、本発明膜は、図1に模式的に示すように、二酸化炭素キャリアを含有するPVA/PAAゲル膜1を担持した親水性多孔膜2が、2枚の疎水性多孔膜3,4に挟持される3層構造で構成される。以下、二酸化炭素キャリアを含有するPVA/PAAゲル膜を、二酸化炭素キャリアを含有しないPVA/PAAゲル膜、及び、2枚の疎水性多孔膜を備えた構造の本発明膜と区別するために、適宜「含浸ゲル膜」と略称する。また、この含浸ゲル膜中のPVA/PAAとCsCOの全重量を基準として、含浸ゲル膜中において、PVA/PAAは約20~80重量%の範囲で存在し、CsCOは約20~80重量%の範囲で存在する。
 親水性多孔膜は、親水性に加えて、100℃以上の耐熱性、機械的強度、含浸ゲル膜との密着性を有するのが好ましく、更に、多孔度(空隙率)が55%以上で、細孔径は0.1~1μmの範囲にあるのが好ましい。本実施形態では、これらの条件を備えた親水性多孔膜として、親水性化した四フッ化エチレン重合体(PTFE)多孔膜を使用する。
 疎水性多孔膜は、疎水性に加えて、100℃以上の耐熱性、機械的強度、含浸ゲル膜との密着性を有するのが好ましく、更に、多孔度(空隙率)が55%以上で、細孔径は0.1~1μmの範囲にあるのが好ましい。本実施形態では、これらの条件を備えた疎水性多孔膜として、親水性化していない四フッ化エチレン重合体(PTFE)多孔膜を使用する。
 次に、本発明膜の作製方法(本発明方法)の一実施形態について、図2を参照して説明する。
 先ず、PVA/PAA共重合体とCsCOを含む水溶液からなるキャスト溶液を作製する(工程1)。より詳細には、PVA/PAA共重合体(例えば、住友精化製の仮称SSゲル)を1g、CsCOを2.33g、サンプル瓶に秤取し、これに水20mlを加えて室温で5日間攪拌して溶解させてキャスト溶液を得る。
 次に、工程1で得たキャスト溶液中の気泡を除去するために、遠心分離(回転数5000rpmで30分間)を行う(工程2)。
 次に、工程2で得たキャスト溶液を、親水性PTFE多孔膜(例えば、住友電工製、WPW-020-80、膜厚80μm、細孔径0.2μm、空隙率約75%)と疎水性PTFE多孔膜(例えば、住友電工製、フロロポアFP010、膜厚60μm、細孔径0.1μm、空隙率55%)を2枚重ね合わせた層状多孔膜の親水性PTFE多孔膜側の面上に、アプリケータでキャストする(工程3)。なお、後述する実施例のサンプルでのキャスト厚は500μmである。ここで、キャスト溶液は、親水性PTFE多孔膜中の細孔内に浸透するが、疎水性のPTFE多孔膜の境界面で浸透が停止し、層状多孔膜の反対面までキャスト溶液がしみ込まず、層状多孔膜の疎水性PTFE多孔膜側面にはキャスト溶液が存在せず取り扱いが容易となる。
 次に、キャスト後の親水性PTFE多孔膜を室温で一昼夜自然乾燥させた後、キャスト溶液をゲル化させゲル層を生成する(工程4)。本発明方法では、工程3において、キャスト溶液を層状多孔膜の親水性PTFE多孔膜側の表面にキャストするため、工程4において、ゲル層は、親水性PTFE多孔膜の表面(キャスト面)に形成されるのみならず細孔内にも充填して形成されるので、欠陥(ピンホール等の微小欠陥)が生じ難くなり、ゲル層の製膜成功率が高くなる。なお、工程4において、自然乾燥させたPTFE多孔膜を、更に、120℃程度の温度で、2時間程度熱架橋するのが望ましい。なお、後述する実施例及び比較例のサンプルでは、何れも熱架橋を行っている。
 次に、工程4で得た親水性PTFE多孔膜表面のゲル層側に、工程3で用いた層状多孔膜の疎水性PTFE多孔膜と同じ疎水性PTFE多孔膜を重ね、図1に模式的に示すように、疎水性PTFE多孔膜/ゲル層(親水性PTFE多孔膜に担持された含浸ゲル膜)/疎水性PTFE多孔膜よりなる3層構造の本発明膜を得る(工程5)。なお、図1において、含浸ゲル膜1が親水性PTFE多孔膜2の細孔内に充填している様子を模式的に直線状に表示している。
 以上、工程1~工程5を経て作製された本発明膜は、後述するようにCO透過型メンブレンリアクターへ応用可能な膜性能、すなわち、使用温度100℃以上、2×10-5mol/(m・s・kPa)(=60GPU)程度以上のCOパーミアンス、及び、90~100程度以上のCO/H選択性が実現できる。
 また、ゲル層を疎水性PTFE多孔膜で挟持した3層構造とすることにより、一方の疎水性PTFE多孔膜は、工程3及び工程4で用いられ、含浸ゲル膜を担持する親水性PTFE多孔膜の支持とキャスト溶液の浸透防止に供せられ、他方の疎水性PTFE多孔膜は、含浸ゲル膜を他方面側から保護するのに用いられる。
 更に、水蒸気が疎水性PTFE多孔膜の膜表面に凝縮しても当該PTFE多孔膜が疎水性のために水がはじかれて含浸ゲル膜にしみ込むのを防止している。よって、他方のPTFE多孔膜によって、含浸ゲル膜中の二酸化炭素キャリアが水で薄められ、また、薄められた二酸化炭素キャリアが含浸ゲル膜から流出することを防止できる。
 以下、具体的な実施例の膜性能について説明する。
 まず、含浸ゲル膜を担持する多孔膜として、親水性PTFE多孔膜を使用した実施例と、疎水性PTFE多孔膜を使用した比較例の各サンプルの膜組成について説明する。
 実施例のサンプルは、上述の作製方法により作製した。(PVA/PAA:CsCO)の配合比率は、記載の順に、(30重量%:70重量%)となっている。なお、以下では、共重合体重量とキャリア重量の合計重量に対するキャリア重量の比率を「キャリア濃度」と記載する。すなわち、上記の例の場合、キャリア濃度は70重量%(以下、「70wt%」と記載)である。
 比較例のサンプルは、上述の作製方法において、親水性PTFE多孔膜と疎水性PTFE多孔膜の層状多孔膜に替えて1層の疎水性PTFE多孔膜を使用して作製された。従って、比較例のサンプルは、図3に模式的に示すように、二酸化炭素キャリアを含有するPVA/PAAゲル膜1が、2枚の疎水性多孔膜3,4の間に挟持される3層構造で構成される。(PVA/PAA:CsCO)の配合比率は、実施例と同じである。
 次に、実施例、及び比較例の各サンプルの膜性能を評価するための実験装置の構成及び実験方法について、図4を参照して説明する。
 図4に示すように、各サンプル10は、ステンレス製の流通式ガス透過セル11(膜面積:2.88cm)の原料側室12と透過側室13の間に、フッ素ゴム製ガスケットをシール材として用いて固定されている。原料ガス(CO、H、HOからなる混合ガス)FGを、2.24×10-2mol/minの流量で原料側室12に供給し、スイープガス(Arガス)SGを、8.18×10-4mol/minの流量で透過側室13に供給する。原料側室12の圧力は、排気ガスの排出路の途中の冷却トラップ14の下流側に設けられた背圧調整器15で調整される。透過側室13の圧力は大気圧である。透過側室13から排出するスイープガスSG’中の水蒸気を冷却トラップ16で除去した後のガス組成をガスクロマトグラフ17で定量し、これとスイープガスSG中のArの流量よりCO及びHのパーミアンス[mol/(m・s・kPa)]を計算し、その比より、CO/H選択性を算出する。なお、冷却トラップ16とガスクロマトグラフ17の間にも背圧調整器19が設けられており、これによって透過側室13の圧力が調整される。
 原料ガスFGは、CO変成器内における原料ガスを模擬するために、CO、H、HOからなる混合ガスを、CO:5.0%、H:45%、HO:50%の混合比率(モル%)に調整した。具体的には、10%COと90%H(モル%)よりなる混合ガス流(25℃での流量:200cm/min、8.18×10-3mol/min)に水を定量送液ポンプ18で送入し(流量:0.256cm/min、1.42×10-2mol/min)、100℃以上に加熱して水分を蒸発させて、上記混合比率の混合ガスを調製し、これを原料側室12に供給した。
 スイープガスSGは、サンプル膜を透過する被測定ガス(CO、H)の透過側室側の分圧を低くして、透過推進力を維持するために供給され、被測定ガスと異なるガス種(Arガス)を用いる。具体的には、Arガス(25℃での流量:20cm/min、8.13×10-4mol/min)を透過側室13に供給した。
 なお、図示していないが、サンプル膜の使用温度、及び、原料ガスFGとスイープガスSGの温度を一定温度に維持するために、サンプル膜を固定した流通式ガス透過セル11と上記ガスを加熱する予熱コイルを、所定温度に設定した恒温槽内に浸している。
 次に、図5及び図6に、(1)実施例と(2)比較例の各サンプルのCOパーミアンスRCO2、HパーミアンスRH2、及びCO/H選択性を、原料側室12内の原料ガスFGの圧力(グラフ上では「原料側圧力」と記載。以下同様)を200kPa~400kPaの範囲の加圧状態で測定した結果を示す。なお、図5は測定温度を160℃、図6は測定温度を180℃として、それぞれ測定したものである。また、グラフ上における原料側圧力の値は、原料側室12の圧力を調整するための背圧調整器15が示す圧力値を採用した。
 図5及び図6より、Hパーミアンスは、疎水性PTFE多孔膜を使用した比較例のサンプルの方が、親水性PTFE多孔膜を使用した実施例のサンプルより、全圧力範囲で高くなっているが、COパーミアンス、並びにCO/H選択性では、実施例のサンプルの方が、比較例のサンプルより大幅に改善されていることが分かる。これは、親水性膜の場合は、キャスト溶液を膜上にキャストすると、PTFE多孔膜の表面のみならず細孔内にもゲル層が充填されるので欠陥(ピンホール等の微小欠陥)が生じ難くなり、当該微小欠陥を介してガスパーミアンス、特に、Hパーミアンスが上昇するのが抑制されるためと考えられる。これに対し、疎水性膜の場合には、キャスト液が膜の細孔内には侵入せず、その表面に塗布されるので、欠陥が生じやすく、Hパーミアンスが上昇し、これによって選択性が低下するものと考えられる。
 なお、図5及び図6によれば、測定温度を変更しても、同様の特性が示されていることが分かる。
 また、上記特許文献1,2に開示されたCO促進輸送膜では、100℃以上の使用温度、2×10-5mol/(m・s・kPa)程度以上のCOパーミアンス、及び、90~100程度以上のCO/H選択性の何れも満足していないのに対して、図5及び図6に示す実施例のサンプルは、全ての要件を全圧力範囲で概ね満足している。また、比較例のサンプルでも、100℃以上の使用温度条件下で、2×10-5mol/(m・s・kPa)程度以上のCOパーミアンスを示している。なお、比較例のサンプルでは、300kPa以上でCO/H選択性の低下が大きくなることが示唆されている。
 図5及び図6の結果を勘案すれば、特許文献1,2に開示されたCO促進輸送膜と比較して、CsCOを含有するPVA/PAAゲル膜を備える本発明膜の方が、100℃以上の高温条件下においてCOパーミアンスを向上させることができる。そして、特に支持膜を親水性多孔膜とすることで、COパーミアンス、及びCO/H選択性の値を顕著に向上させることができる。
 以下では、実施例と同様、親水性PTFE多孔膜によって含浸ゲル膜を担持する構成を有する本発明膜を用いてデータの取得を行った。
 次に、図7に、キャリア濃度を50wt%~85wt%まで変化させて作製された各サンプルのCOパーミアンスRCO2、HパーミアンスRH2、及びCO/H選択性を、原料ガスFGの混合比率及び測定温度を図5と同一の条件とし、原料ガスFGの圧力を200kPa~600kPaの範囲の加圧状態で測定した結果を示す。
 図7より、160℃の測定温度下において、キャリア濃度が70wt%のときにCOパーミアンスRCO2が最大となり、また、原料ガスFGの圧力が500kPaのときにCOパーミアンスRCO2が最大となることが分かる。そして、キャリア濃度が65wt%以上80wt%以下の場合、及びキャリア濃度が85wt%の場合であって原料ガスFGの圧力が300kPa以上の場合には、いずれも5.0×10-5mol/(m・s・kPa)以上の高いCOパーミアンスを示すことが分かる。
 また、HパーミアンスRH2は、キャリア濃度が50wt%の場合を除くと、全体的に原料ガスFGの圧力が増加するとともに微減する傾向を示すことが分かる。
 更に、図7より、キャリア濃度が70%以上80%以下の場合には、原料ガスFGの圧力が200~600kPaのいずれの場合においても90~100程度以上のCO/H選択性を示すことが分かる。
 すなわち、図7の結果より、本発明膜によれば、キャリア濃度を調整することにより、使用温度100℃以上(160℃)、2×10-5mol/(m・s・kPa)(=60GPU)程度以上のCOパーミアンス、及び、90~100程度以上のCO/H選択性が実現できる。このため、本発明膜を、CO透過型メンブレンリアクターに適用することができる。
 また、図8は、原料ガス圧力を一定(501.3kPa)として、キャリア濃度とCOパーミアンスRCO2の関係、並びに、キャリア濃度とCO/H選択性の関係をそれぞれグラフにしたものである。なお、原料ガスFGの混合比率及び測定温度は図7の場合と同一の条件とした。
 図8によれば、キャリア濃度が70wt%の場合に、COパーミアンス並びにCO/H選択性の双方が最も高い値を示すことが分かる。すなわち、図8によれば、COパーミアンス並びにCO/H選択性は、いずれもキャリア濃度に依存することが分かる。特に、本発明膜をCO促進輸送膜として利用する際には、キャリア濃度を70wt%と設定することで、その能力を最大限発揮させることができる。
 図9は、キャリア濃度を70wt%とし、原料ガスFGの混合比率を図7の場合と同様とした状態の下、測定温度を125℃以上200℃以下の範囲内で変化させたときの、COパーミアンスRCO2、HパーミアンスRH2、及びCO/H選択性を、原料側室12内の原料ガスFGの圧力を200kPa~600kPaの範囲の加圧状態で測定した結果を示す。
 図9によれば、測定温度が160℃のときが最もCOパーミアンスRCO2が大きくなっている。また、CO/H選択性については、測定温度が160℃並びに180℃におけるCO/H選択性が大きく、それより温度が上昇しても低下してもCO/H選択性が減少することが分かる。すなわち、図9によれば、COパーミアンス並びにCO/H選択性は、測定温度にも依存することが分かる。特に、本発明膜をCO促進輸送膜として利用する際には、160℃の温度条件下で本発明膜を設置することで、その能力を最大限発揮させることができることが分かる。これにより、本発明膜によれば、特許文献1、2に開示された従来のCO促進輸送膜と比較して、十分高い温度条件下(125℃~200℃)で高いCOパーミアンスと高いCO/H選択性を実現することができ、特に140℃~180℃で良好な値を実現することが示唆される。
 なお、本発明膜は、測定温度が200℃の場合であっても、COパーミアンスRCO2は1.0×10-4mol/(m・s・kPa)程度の値を示しており、2×10-5mol/(m・s・kPa)程度以上のCOパーミアンスを示すことが分かる。そして、一定温度条件下においては、原料ガスFGの圧力を変化してもCOパーミアンスの値はあまり変化していないことが分かる。
 更に、図9によれば、200℃の高温条件下において、CO/H選択性は圧力300kPaの下で100に近い値を示していることが分かる。すなわち、200℃程度の高温条件下でも、CO透過型メンブレンリアクターに適用可能なCO促進輸送膜を実現できることが分かる。
 また、図10は、原料ガス圧力を一定(501.3kPa)として、測定温度とCOパーミアンスRCO2の関係、並びに、測定温度とCO/H選択性の関係をそれぞれグラフにしたものである。なお、原料ガスFGの混合比率及び測定温度は図9の場合と同一の条件とした。
 図10によれば、測定温度が160℃の場合に、COパーミアンス並びにCO/H選択性の双方が最も高い値を示すことが分かる。すなわち、図10によれば、COパーミアンス並びにCO/H選択性は、いずれも測定温度の高さに依存することが分かる。特に、本発明膜をCO促進輸送膜として利用する際には、160℃の温度条件下で利用することでその能力を最大限発揮させることができる。
 図11は、キャリア濃度を70wt%として作製されたサンプルのCOパーミアンスRCO2、HパーミアンスRH2、及びCO/H選択性を、原料ガスFGの混合比率及び測定温度を図6と同一の条件とし、水蒸気モル%を20%、30%、50%、70%、90%と変化させた場合において、原料ガスFGの圧力を200kPa~600kPaの範囲の加圧状態で測定した結果を示す。なお、具体的には、CO、H、HOからなる混合ガスを、COのモル%を5%と固定し、H並びにHOのモル%の合計が95%となるように、Hのモル%並びにHOのモル%(水蒸気モル%)をそれぞれ変更して測定した。
 図11によれば、水蒸気モル%が高いほどCOパーミアンスの値が上昇し、逆に水蒸気モル%が低下するに連れCOパーミアンスの値も低下することが分かる。そして、水蒸気モル%を30%程度にまで低下させた場合においても、400kPaの原料ガスFGの圧力条件の下で約1×10-4mol/(m・s・kPa)程度のCOパーミアンスを示している。
 なお、Hパーミアンスの値は、水蒸気モル%が20%の場合においては大きく変化しているものの、他の値の場合にはあまり大きな差異が見られない。一方、CO/H選択性は、水蒸気モル%が低下するに連れほぼ全体的に低下することが分かる。そして、水蒸気モル%を30%としても、400kPaの原料ガスFGの圧力条件の下で約100程度のCOパーミアンスを示している。
 従って、図11のグラフにより、水蒸気モル%を30%以下に低く設定した条件下においても、本発明膜は優れた性能を示し、CO透過型メンブレンリアクターに適用可能なCO促進輸送膜を実現できることが分かる。
 また、図12は、本発明膜の長期性能を示すグラフ結果である。原料ガスをCO:5%、H:45%、HO:50%の混合比率(モル%)に調整し、原料ガスの圧力を351.03kPa、キャリア濃度を70wt%としたときの、COパーミアンスRCO2、並びにCO/H選択性の値の経時変化をグラフ化したものである。
 図12によれば、時間が経過してもCOパーミアンスRCO2の値は大きな変化を示さず、ほぼ1.6×10-4mol/(m・s・kPa)程度の値を示した。また、CO/H選択性についても、同様に時間が経過しても大きな変化を示さず、ほぼ100程度の値を示した。このように、本発明膜によれば、時間経過に連れて性能が大きく低下するということがなく、長時間にわたって、優れた性能を示すCO透過型メンブレンリアクターに適用可能なCO促進輸送膜を実現できることが分かる。
 また、下記表1は、膜材料を同一(PVA/PAA共重合体)とし、二酸化炭素キャリアとして用いる材料をCsCO以外の種々の炭酸塩としたときの、COパーミアンス、Hパーミアンス、及びCO/H選択性の値を、本発明膜と比較したものである。表1では、本発明膜で用いたCsの炭酸塩以外に、Na,K,Rbの炭酸塩を二酸化炭素キャリアとして利用した場合の上記データを測定した。なお、いずれの場合も、原料ガス圧力を401.33kPa、測定温度を160℃とし、原料ガスをCO:5.0%、H:45%、HO:50%の混合比率(モル%)に調整して各データの測定を行った。また、各膜は、上述した本発明膜の製法と同様の方法により製造した。
Figure JPOXMLDOC01-appb-T000001
 表1に示される結果によれば、NaCO膜による場合,COパーミアンスは非常に低く、そして高いHパーミアンスを示した。これは、NaCOの水中への溶解度が低いことから(表1参照)、キャスト膜を120℃で架橋するときに結晶が生成され、これによって均一な膜が得られなかったためと考えられる。また、KCO膜の場合、高いCOパーミアンスが得られたが、膜に欠陥が生じやすいためにHパーミアンスも大きくなり、高いCO/H選択性は得られなかった。一方、水中への溶解度が高いRbCOおよびCsCO(表1参照)を含む膜では、COパーミアンス並びにCO/H選択性ともに良好な結果が得られた。
 以上より、水中への溶解度の高い炭酸塩は、高温においてもCOのキャリアとして効率良く機能し,それを含有する膜は欠陥が生じにくく、高いCO透過性及び選択性を示すことが明らかになった。特に、CsCOをキャリアとする本発明膜によれば、高いCOパーミアンス及び高いCO/H選択性を示すCO促進輸送膜を実現することができる。
 [第2実施形態]
 本発明の第2実施形態につき説明する。なお、本実施形態は、第1実施形態と比較して本発明膜及び本発明方法の一部構成が異なるのみであるため、同一の構成要素についてはその旨を記載して説明を割愛する。
 本実施形態では、第1実施形態と比較して、キャスト溶液を作製する工程(上記工程1)の内容が異なる。本実施形態では、第1実施形態の工程1に相当する工程(キャスト溶液作製工程)として以下の3通りの工程を行うものとし、それぞれを実施例1~3と称する。
 (実施例1)
 まず、PVA/PAA共重合体(例えば、住友精化製の仮称SSゲル)を1gに水20gを加えた後、室温で攪拌してゲルを溶解させる。次に、これにグルタルアルデヒドを0.008~0.0343g程度加えた後、95℃の温度条件下で15時間攪拌する。そして、これにCsCOを2.33g加えて更に室温で攪拌することでキャスト溶液を得る。すなわち、実施例1では、ゲル溶解工程、グルタルアルデヒド添加工程、高温下での攪拌工程、CsCO添加工程、室温下での攪拌工程、の順に処理を行うことでキャスト溶液を作製する。
 (実施例2)
 まず、PVA/PAA共重合体を1gに水20gを加えた後、室温で攪拌してゲルを溶解させる。次に、これにCsCOを2.33gと、グルタルアルデヒドを0.008~0.0343g程度加えた後、室温で攪拌して溶解させる。その後、95℃の温度条件下で15時間攪拌することでキャスト溶液を得る。すなわち、実施例2では、ゲル溶解工程、グルタルアルデヒド及びCsCO添加工程、室温下での攪拌工程、高温下での攪拌工程、の順に処理を行うことでキャスト溶液を作製する。
 (実施例3)
 まず、PVA/PAA共重合体を1gに水20gを加えた後、室温で攪拌してゲルを溶解させる。次に、これにCsCOを2.33gと、グルタルアルデヒドを0.008~0.0343g程度加えた後、室温で攪拌して溶解させることで、キャスト溶液を得る。すなわち、実施例3では、ゲル溶解工程、グルタルアルデヒド及びCsCO添加工程、室温下での攪拌工程、の順に処理を行うことでキャスト溶液を作製する。
 なお、実施例1~3のいずれにおいても、キャスト溶液を作製後については、第1実施形態に記載の工程(工程2~4)と同様の方法を用いてCO促進輸送膜を得る。すなわち、キャスト溶液中の気泡を除去するために遠心分離を行った後、ガラス板上に疎水性PTFE多孔膜(膜厚60μm)と親水性PTFE多孔膜(膜厚80μm)を重ね合わせた層状多孔膜の親水性PTFE多孔膜側の面上に、前述のキャスト溶液をアプリケータを用いて厚さ500μmでキャストする。その後、室温で一昼夜乾燥させる。そして、更にこれを120℃程度の高温条件下で2時間程度保持することで、CO促進輸送膜を得る。
 以下、これらの各実施例1~3の方法で製造された本発明膜の膜性能について説明する。なお、膜組成は、第1実施形態の実施例と同様にキャリア濃度を70wt%とし、膜性能を評価するための実験装置及び実験方法も第1実施形態と同様とする。
 図13は、実施例1の方法で作製されたキャスト溶液を用いて作製された本発明膜による(a)COパーミアンスRCO2、(b)HパーミアンスRH2、及び(c)CO/H選択性を、原料側圧力を200kPa~600kPaの範囲の加圧状態で測定した結果を示す。なお、図13では、キャスト溶液作製の際に添加されるグルタルアルデヒドの添加量を異ならせて各データの測定を行った。すなわち、グルタルアルデヒドの添加量として、(1)0.008g、(2)0.0153g、(3)0g(不添加)の3パターンで実験を行った。なお、グラフ上では、グルタルアルデヒドを「GA」と略記している(以下のグラフも同様)。
 また、実験条件としては、温度条件を160℃、原料ガスFGをCO:5.0%、H:45%、HO:50%の混合比率(モル%)、原料ガスFGの流量を25℃・1atm下で360cm/min、透過側の圧力を原料側の圧力から20kPa減、スイープガスSGの流量を25℃・1atm下で40cm/minとした。なお、この実験条件は、各実施例とも共通である。
 図13(a)によれば、グルタルアルデヒドを添加した場合、添加しない場合よりもCOパーミアンスRCO2が微小に低下している。しかしながら、図13(b)に示すように、グルタルアルデヒドを添加した場合、HパーミアンスRH2が大幅に低下しているため、図13(c)に示すように、グルタルアルデヒドを添加することで添加しない場合と比べてCO/H選択性は大きく上昇することが分かる。これは、グルタルアルデヒドを添加したことにより、架橋構造が形成されることで膜の欠陥が生じにくくなったためにHパーミアンスが大きく低下したことによるものと考えられる。図13(b)及び(c)によれば、グルタルアルデヒドを0.008g添加した場合の方が、0.0153g添加した場合よりもHパーミアンスが低く、CO/H選択性が高いことが分かる。すなわち、グルタルアルデヒドの添加量は、多ければ多いほど選択性が高くなるという訳ではなく、実験条件に応じて高い選択性が実現可能な適正な添加量が存在することが示唆される。
 図14は、実施例2の方法で作製されたキャスト溶液を用いて作製された本発明膜による(a)COパーミアンスRCO2、(b)HパーミアンスRH2、及び(c)CO/H選択性を、原料側圧力を200kPa~600kPaの範囲の加圧状態で測定した結果を示す。なお、図14では、キャスト溶液作製の際に添加されるグルタルアルデヒドの添加量を異ならせて各データの測定を行った。すなわち、グルタルアルデヒドの添加量として、(1)0.008g、(2)0.0165g、(3)0g(不添加)の3パターンで実験を行った。その他の実験条件は実施例1の場合と同様である。
 図14(a)によれば、図13(a)と同様、グルタルアルデヒドを添加した場合、添加しない場合よりもCOパーミアンスRCO2が微小に低下している。そして、図14(b)によれば、図13(b)と同様、グルタルアルデヒドを添加した場合にHパーミアンスRH2が大幅に低下しているため、図14(c)に示すように、グルタルアルデヒドを添加することで添加しない場合と比べてCO/H選択性は大きく上昇することが分かる。これは、実施例1の場合と同様の理由、すなわち、グルタルアルデヒドを添加したことにより、架橋構造が形成されることで膜の欠陥が生じにくくなったためにHパーミアンスが大きく低下したことによるものと考えられる。図14(b)及び(c)によれば、グルタルアルデヒドを0.008g添加した場合の方が、0.0165g添加した場合よりもHパーミアンスが低く、CO/H選択性が高いことが分かる。すなわち、グルタルアルデヒドの添加量は、多ければ多いほど選択性が高くなるという訳ではなく、実験条件に応じて高い選択性が実現可能な適正な添加量が存在することが示唆される。なお、図14(c)より、原料側のガス圧力が高い領域においては、添加するグルタルアルデヒドの添加量による選択性の差分は小さくなっている。
 図15は、実施例3の方法で作製されたキャスト溶液を用いて作製された本発明膜による(a)COパーミアンスRCO2、(b)HパーミアンスRH2、及び(c)CO/H選択性を、原料側圧力を200kPa~600kPaの範囲の加圧状態で測定した結果を示す。なお、図14では、キャスト溶液作製の際に添加されるグルタルアルデヒドの添加量を異ならせて各データの測定を行った。すなわち、グルタルアルデヒドの添加量として、(1)0.008g、(2)0.0154g、(3)0.0343g、(4)0g(不添加)の4パターンで実験を行った。その他の実験条件は実施例1の場合と同様である。
 図15(a)によれば、図13(a)と同様、グルタルアルデヒドを添加した場合、添加しない場合よりもCOパーミアンスRCO2が微小に低下している。そして、図15(b)によれば、図13(b)と同様、グルタルアルデヒドを添加した場合にHパーミアンスRHが大幅に低下しているため、図15(c)に示すように、グルタルアルデヒドを添加することで添加しない場合と比べてCO/H選択性は大きく上昇することが分かる。これは、実施例1の場合と同様の理由、すなわち、グルタルアルデヒドを添加したことにより、架橋構造が形成されることで膜の欠陥が生じにくくなったためにHパーミアンスが大きく低下したことによるものと考えられる。図15(b)及び(c)によれば、グルタルアルデヒドを0.008g添加した場合の方が、0.0154g添加した場合、並びに0.0343g添加した場合よりもHパーミアンスが低く、CO/H選択性が高いことが分かる。すなわち、グルタルアルデヒドの添加量は、多ければ多いほど選択性が高くなるという訳ではなく、実験条件に応じて高い選択性が実現可能な適正な添加量が存在することが示唆される。
 なお、図15(c)においても、原料側のガス圧力が高い領域においては、添加するグルタルアルデヒドの添加量による選択性の差分は小さくなっている。
 以上、図13~図15の各グラフを参照すれば、ゲル膜をグルタルアルデヒドで架橋することにより、グルタルアルデヒド無添加の場合と比較して、COの透過性の低下を一定程度に抑制しながらHの透過性を著しく低下させることが可能となり、これによって高いCO/H選択性を示す促進輸送膜を実現することができる。特に、PVA/PAA共重合体を1gに対し、グルタルアルデヒドを0.008~0.015g程度添加した場合(以下、かかる範囲を「良好範囲」と称する)に、CO/Hの選択性が著しく向上する。
 なお、上記実施例1~3間では膜性能に顕著な差異は見られなかった。すなわち、いずれの方法で製膜した場合であっても、グルタルアルデヒドを添加することによるCO/Hの選択性の向上効果を実現することができる。特に、実施例2及び3においては、グルタルアルデヒドで架橋した場合でもCOパーミアンスの低下量が抑制された。一方、実施例1においては、原料側のガス圧力を増加させてもHパーミアンスの増加が一定程度に抑制された。
 また、図16は、グルタルアルデヒドを添加した場合の長期性能を示すグラフである。具体的には、実施例1の方法によって作製した膜(グルタルアルデヒド添加量:0.0339g)を用いて長期間実験を行ったときの(a)COパーミアンスRCO2、(b)HパーミアンスRH2、(c)CO/H選択性の経時変化をそれぞれグラフに表したものである。なお、原料側ガス圧力を401.3kPaとし、その他の実験条件は、図13~図15と同様とした。
 実験方法としては、午前10時頃に本発明膜を透過セルにセットして温度を160℃まで上げて原料ガスおよびスイープガスを供給して透過実験を開始し、午後8時頃まで同じ条件で継続した。そして、午後8時頃に供給ガスを停めて温度を室温まで低下させた。再び翌朝の午前10時頃に、透過セルを分解せずにそのまま同じ膜を使用して同様の実験を行った。このような実験を繰り返し2週間続けた結果が図16(a)~(c)に示されている。
 図16の実験データは、添加したグルタルアルデヒド量が前記良好範囲よりも若干多いので、COパーミアンスは,図13~図15の値と比較して小さい値となっているが、Hパーミアンスは、時間が経過してもグルタルアルデヒド無添加の場合より著しく小さい値が示されており、CO/H選択性も200以上の高い値を維持している。特に、本評価方法のように、スタートアップとシャットダウンを繰返して経時評価を行う場合には、温度の変動(室温~160℃)や圧力の変動(常圧~6気圧)を膜に繰返し与えるため、同一温度・同一圧力で実験を継続することで長期性能を評価する場合と比較して、膜に対する負荷が大きくなる。図16によれば、スタートアップ、シャットダウンを繰り返す本評価方法によっても、膜性能が約2週間にわたって安定していることから、グルタルアルデヒド添加によって、膜の安定性が著しく改善されたと言える。
 なお、本実施形態で添加する材料としてグルタルアルデヒドを採用したが、当該材料の添加工程は、膜に架橋構造を形成するために行われるものであるところ、架橋構造の形成が可能な材料であれば、グルタルアルデヒドに限定されるものではない。アルデヒド基で架橋を形成する場合には、例えば、ホルムアルデヒドも利用可能である。また、二酸化炭素キャリアとして用いる材料をCsCO以外の材料(例えばRbCO)とした場合でも、同様に添加剤を導入して架橋構造とすることで膜性能を更に高めることが可能である。
 [第3実施形態]
 本発明の第3実施形態につき、説明する。なお、本実施形態は、第1及び第2実施形態と比較して本発明膜の形状が異なる。
 上述の第1及び第2実施形態では、いずれも図1に示すような平板型構造の促進輸送膜を想定して説明を行った。これに対し、本実施形態では、図17に示すような円筒型形状の促進輸送膜を想定している。
 図17は、本実施形態の促進輸送膜の構造を示す概略図である。また、図18は、このような円筒型の形状を示す促進輸送膜を用いたときの、COパーミアンス,Hパーミアンス,並びにCO/H選択性を示すグラフである。
 図17において、(a)は水平面に平行に切断したときの断面図,(b)は水平面に鉛直方向に切断したときの断面図である。図17に示される促進輸送膜は、円筒形状の親水性のセラミックス製支持膜42の外周上に、キャリアを含むゲル膜41を担持させた構造である。なお本実施形態では、第1実施形態と同様のキャスト溶液から生成されたゲル膜41を用いた。すなわち、キャリアとしてCsCOを用い、熱架橋を施している。また、セラミックスとしては一例としてアルミナを利用することができる。
 また、図17に示すように、ゲル膜41と外枠の間には空間40が設けられており,セラミックス製支持膜42の内側にも空間43が設けられている。
 膜性能を評価するに際しては、上述の実施形態と同様の原料ガスFGを、空間40内に流入する。一方、空間43内には不活性のスイープガスSGを流入する。空間40内に流入された原料ガスFGのうち、その一部は、キャリアを含むゲル膜41(及び支持膜42)を透過して空間43内に透過ガスPGとして流入する。空間43内には、この透過ガスPGを系外に排出するために不活性のスイープガスSGが流入されており、このスイープガスSGと透過ガスPGが混合された排出ガスSG’が、図4の冷却トラップ16に供給される。パーミアンス及び選択性の算出方法は、第1実施形態と同様である。
 図18は、促進輸送膜として図17に示す円筒形状の促進輸送膜を用い、測定方法,キャリア濃度,原料ガス圧力を図9のときと同じにして、測定温度を160℃としたときの得られたデータに基づくグラフである。図9の場合と同様、COパーミアンス及びCO/H選択性ともに高い値を示しており、図17に示すような構造の円筒型の促進輸送膜でも図1に示すような平板型と同様の効果を示すことが分かる。
 また、図17に示す構造の場合、ゲル膜41が直接原料ガスFGに接触するように、空間40内においてゲル膜41が露出している構成である。すなわち、図1に示す構造と比較して、疎水性膜によってゲル膜41が覆われていない。この疎水性膜は、ゲル膜を安定化させ、経時性能を劣化させにくくする効果を有している。しかし、図19に示すように、円筒型形状の促進輸送膜であれば、疎水性膜で覆わなくても経時性能を向上させる効果を有している。以下にその点を説明する。
 図19は、平板型と円筒型の促進輸送膜の長期性能を比較したグラフであり、(a)がCOパーミアンスRCO2、(b)がCO/H選択性を示している。いずれのグラフにおいても、(1)が円筒型のデータであり、(2)が平板型のデータである。なお、当該グラフ結果を得るに際しての条件は図12の場合と同一とした。
 また、図19では、比較例としての平板型の促進輸送膜として、ゲル膜が疎水性膜で覆われていない構造のものを想定している。これは、円筒型形状ではゲル膜の一方の面が原料ガスに曝される状態にあるため、比較の観点から、平板型についてもその条件を共通にする目的である。
 図19(a)によれば、COパーミアンスに関しては、平板型,円筒型共に経時変化はあまり大きくない。これに対し、図19(b)によれば、CO/H選択性に関しては、円筒型の促進輸送膜の場合、時間が経過してもその性能はあまり変化がないのに対し、平板型の促進輸送膜の場合、時間経過とともに選択性が低下し、100時間経過時においては最大時の10%程度にまで落ち込んでいる。これにより、ゲル膜を疎水膜で覆わない場合においては、長期性能の観点から見れば円筒型形状の促進膜の方が平板型形状よりも優れていると見ることができる。なお、一方、平板型においても、ゲル膜を疎水膜で覆うことにより、図12や図16に示すように、良好な長期性能を示すことが分かる。
 なお、本実施形態で用いたセラミックス製支持膜においても、第1実施形態において上述したPTFE多孔膜の場合と同様、100℃以上の耐熱性、機械的強度、含浸ゲル膜との密着性を有するのが好ましい。また、多孔度(空隙率)は40%以上で、細孔径は0.1~1μmの範囲にあるのが好ましい。
 また、図17の構成では、セラミックス製支持膜を内側にし、その外側にゲル膜を備えた構造としたが、これとは逆に、支持膜を外側にしてゲル膜をその内側に形成しても良い。また、形状として「円筒形状」と記載したが、これは必ずしも断面が正確な「円」であることを要求するものではなく、楕円形状であっても構わないし、多少の凹凸を有していても構わない。
 本実施形態によれば、促進膜を円筒形状にすることで、平板型よりも長期性能が向上することが示される。これは、形状を円筒形状にすることで、促進輸送膜が変形しにくくなり、安定化することに由来すると考えられる。一方、平板型の場合は、経時とともに膜が変形して欠陥が生じ、この欠陥からHが漏れ出すことで選択性が低下するものと考えられる。すなわち、上記実施例では、支持膜としてセラミックス膜を利用したが、この膜は、円筒形状に対する加工が可能であり、且つ、経時と共に変形しにくい材料であれば、セラミックスに限定されるものではない。
 また、逆に、第1,第2実施形態では支持膜としてPTFE多孔膜を利用としたが、圧力を加えた状態でも割れたりすることなく安定的に平板状態を維持することができれば、PTFE多孔膜に限定されるものではない。
 以下に、別実施形態について説明する。
 〈1〉上記各実施形態では、本発明膜は、PVA/PAA共重合体と二酸化炭素キャリアのCsCOを含む水溶液からなるキャスト溶液を、ゲル膜担持用の親水性PTFE多孔膜にキャストした後にゲル化して作製したが、本発明膜は、当該作製方法以外の作製方法で作製しても構わない。例えば、PVA/PAA共重合体ゲル膜に、CsCO水溶液を後から含浸させて作製しても構わない。
 〈2〉上記第1実施形態において、添加剤として炭酸セシウムをゲル膜に添加してCO促進輸送膜を製造する場合について説明したが、炭酸セシウムの代わりに水酸化セシウムを用いても同様の効果を得ることができる。これは、水酸化セシウムが添加されたゲル膜をCO分離に利用することで、上記(化2)に示される反応が生じ、これによって水酸化セシウムが炭酸セシウムに転化するためである。更に、炭酸セシウムの代わりに重炭酸セシウムを用いた場合も、上記(化2)より同様の効果を得ることができることが分かる。
 同様に、添加剤として炭酸ルビジウムをゲル膜に添加してCO促進輸送膜を製造する場合についても、炭酸ルビジウムに代えて水酸化ルビジウム若しくは重炭酸ルビジウムを用いることができる。
 〈3〉上記実施形態では、本発明膜は、疎水性PTFE多孔膜/ゲル層(親水性PTFE多孔膜に担持された含浸ゲル膜)/疎水性PTFE多孔膜よりなる3層構造としたが、本発明膜の支持構造は、必ずしも当該3層構造に限定されない。例えば、疎水性PTFE多孔膜/ゲル層(親水性PTFE多孔膜に担持された含浸ゲル膜)よりなる2層構造でも構わない。
 〈4〉上記実施形態では、本発明膜がCO透過型メンブレンリアクターへ応用される場合を想定したが、本発明膜は、CO透過型メンブレンリアクター以外にも、二酸化炭素を選択的に分離する目的で使用可能である。従って、本発明膜に供給される原料ガスは、上記実施形態に例示した混合ガスに限定されるものではない。
 〈5〉上記実施形態において例示した、本発明膜の組成における各成分の混合比率、膜の各部の寸法等は、本発明の理解の容易のための例示であり、本発明はそれらの数値のCO促進輸送膜に限定されるものではない。
 本発明に係るCO促進輸送膜は、二酸化炭素の分離に利用可能であり、特に、水素を主成分とする燃料電池用等の改質ガスに含まれる二酸化炭素を水素に対する高い選択性率で分離可能なCO促進輸送膜に利用可能であり、更には、CO透過型メンブレンリアクターに有用である。
符号の説明
   1:  二酸化炭素キャリアを含有するPVA/PAAゲル膜(ゲル層)
   2:  親水性多孔膜
   3、4:  疎水性多孔膜
   10:  CO促進輸送膜(サンプル)
   11:  流通式ガス透過セル
   12:  原料側室
   13:  透過側室
   14、16:  冷却トラップ
   15:  背圧調整器
   17:  ガスクロマトグラフ
   18:  定量送液ポンプ
   19:  背圧調整器
   40:  空間
   41:  ゲル膜
   42:  セラミックス製支持膜
   43:  空間
   FG:  原料ガス
   SG、SG’: スイープガス

Claims (13)

  1.  ポリビニルアルコール-ポリアクリル酸共重合体ゲル膜に炭酸セシウム若しくは重炭酸セシウム若しくは水酸化セシウムからなる添加剤を添加したゲル層を、親水性の多孔膜に担持させてなることを特徴とするCO促進輸送膜。
  2.  前記ゲル層が、ポリビニルアルコール-ポリアクリル酸共重合体ゲル膜と炭酸セシウムの合計重量に対する炭酸セシウムの重量比率が65重量%以上85重量%以下の範囲で構成されることを特徴とする請求項1に記載のCO促進輸送膜。
  3.  ポリビニルアルコール-ポリアクリル酸共重合体ゲル膜に炭酸ルビジウム若しくは重炭酸ルビジウム若しくは水酸化ルビジウムからなる添加剤を添加したゲル層を、親水性の多孔膜に担持させてなることを特徴とするCO促進輸送膜。
  4.  前記親水性の多孔膜に担持された前記ゲル層が疎水性の多孔膜によって被覆されていることを特徴とする請求項1~3の何れか1項に記載のCO促進輸送膜。
  5.  前記ゲル層が、アルデヒド基由来の架橋構造を有することを特徴とする請求項1~4の何れか1項に記載のCO促進輸送膜。
  6.  前記親水性の多孔膜が100℃以上の耐熱性を備えていることを特徴とする請求項1~5のいずれか1項に記載のCO促進輸送膜。
  7.  前記ゲル層,並びに前記親水性の多孔膜は、共に軸心を同一にした筒形状であって、一方の膜が、その内側面を他方の膜の外側面と接触させて、前記他方の膜を取り囲むように構成されていることを特徴とする請求項1~3のいずれか1項に記載のCO促進輸送膜。
  8.  前記親水性の多孔膜が、セラミックス製の多孔膜であることを特徴とする請求項7に記載のCO促進輸送膜。
  9.  前記ゲル層が、前記親水性の多孔膜を取り囲むように、前記親水性の多孔膜の外側に形成されていることを特徴とする請求項7又は8に記載のCO促進輸送膜。
  10.  請求項1又は2に記載のCO促進輸送膜の製造方法であって、
     ポリビニルアルコール-ポリアクリル酸共重合体と炭酸セシウム若しくは重炭酸セシウム若しくは水酸化セシウムを含む水溶液からなるキャスト溶液を作製する第1工程と、
     前記キャスト溶液を親水性の多孔膜にキャストした後にゲル化して前記ゲル層を作製する第2工程と、
     を有することを特徴とするCO促進輸送膜の製造方法。
  11.  請求項3に記載のCO促進輸送膜の製造方法であって、
     ポリビニルアルコール-ポリアクリル酸共重合体と炭酸ルビジウム若しくは重炭酸ルビジウム若しくは水酸化ルビジウムを含む水溶液からなるキャスト溶液を作製する第1工程と、
     前記キャスト溶液を親水性の多孔膜にキャストした後にゲル化して前記ゲル層を作製する第2工程と、
     を有することを特徴とするCO促進輸送膜の製造方法。
  12.  前記第2工程開始前に、親水性の多孔膜と疎水性の多孔膜を重ね合わせた層状多孔膜を生成する第3工程を有し、
     前記第2工程が、前記層状多孔膜が有する親水性の多孔膜側の面上に、前記キャスト溶液をキャストする工程であることを特徴とする請求項10又は11に記載のCO促進輸送膜の製造方法。
  13.  前記第1工程が、
     構造の一部にアルデヒド基を含む架橋剤を添加する工程を更に有して前記キャスト溶液を作製することを特徴とする請求項10~12の何れか1項に記載のCO促進輸送膜の製造方法。
     
PCT/JP2009/051000 2008-01-24 2009-01-22 Co2促進輸送膜及びその製造方法 WO2009093666A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2009550560A JP4621295B2 (ja) 2008-01-24 2009-01-22 Co2促進輸送膜及びその製造方法
US12/864,232 US8197576B2 (en) 2008-01-24 2009-01-22 CO2-facilitated transport membrane and method for producing the same
CA2707425A CA2707425A1 (en) 2008-01-24 2009-01-22 Co2-facilitated transport membrane and method for producing the same
KR1020107017346A KR101226311B1 (ko) 2008-01-24 2009-01-22 Co2 촉진 수송막 및 그 제조 방법
CN2009801028463A CN101925397A (zh) 2008-01-24 2009-01-22 Co2促进输送膜及其制造方法
EP09704533.0A EP2239048B1 (en) 2008-01-24 2009-01-22 Co2-facilitated transport membrane and manufacturing method for same
AU2009207025A AU2009207025B2 (en) 2008-01-24 2009-01-22 CO2-facilitated transport membrane and manufacturing method for same
HK11102810.1A HK1148498A1 (en) 2008-01-24 2011-03-21 Co2-facilitated transport membrane and manufacturing method for same co2-
US13/462,549 US8377170B2 (en) 2008-01-24 2012-05-02 CO2-facilitated transport membrane and method for producing the same
US13/742,913 US8617297B2 (en) 2008-01-24 2013-01-16 CO2-facilitated transport membrane and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-013722 2008-01-24
JP2008013722 2008-01-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/864,232 A-371-Of-International US8197576B2 (en) 2008-01-24 2009-01-22 CO2-facilitated transport membrane and method for producing the same
US13/462,549 Continuation US8377170B2 (en) 2008-01-24 2012-05-02 CO2-facilitated transport membrane and method for producing the same

Publications (1)

Publication Number Publication Date
WO2009093666A1 true WO2009093666A1 (ja) 2009-07-30

Family

ID=40901171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051000 WO2009093666A1 (ja) 2008-01-24 2009-01-22 Co2促進輸送膜及びその製造方法

Country Status (10)

Country Link
US (3) US8197576B2 (ja)
EP (2) EP2647420B1 (ja)
JP (1) JP4621295B2 (ja)
KR (1) KR101226311B1 (ja)
CN (3) CN103432911A (ja)
AU (1) AU2009207025B2 (ja)
CA (2) CA2790195C (ja)
HK (1) HK1148498A1 (ja)
RU (1) RU2464074C2 (ja)
WO (1) WO2009093666A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099587A1 (ja) * 2010-02-10 2011-08-18 富士フイルム株式会社 ガス分離膜、その製造方法、並びにそれを用いたガス分離方法、モジュール及び分離装置
WO2012014900A1 (ja) * 2010-07-26 2012-02-02 株式会社ルネッサンス・エナジー・リサーチ スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法
JP2012210589A (ja) * 2011-03-31 2012-11-01 Jx Nippon Oil & Energy Corp ガス分離膜
JP2012236155A (ja) * 2011-05-12 2012-12-06 Hitachi Zosen Corp ゼオライト複合膜
WO2013018538A1 (ja) * 2011-07-29 2013-02-07 富士フイルム株式会社 二酸化炭素分離部材、その製造方法及び二酸化炭素分離モジュール
WO2013018659A1 (ja) 2011-08-01 2013-02-07 株式会社ルネッサンス・エナジー・リサーチ Co2促進輸送膜及びその製造方法
WO2013080994A1 (ja) * 2011-12-01 2013-06-06 株式会社ルネッサンス・エナジー・リサーチ 促進輸送膜の製造方法
WO2013094510A1 (ja) 2011-12-22 2013-06-27 株式会社ルネッサンス・エナジー・リサーチ Co変成装置及び変成方法
US8623928B2 (en) 2009-11-12 2014-01-07 National Research Council Of Canada Polymers of intrinsic microporosity containing tetrazole groups
WO2014010377A1 (ja) * 2012-07-11 2014-01-16 富士フイルム株式会社 二酸化炭素分離用複合体の製造方法、二酸化炭素分離用複合体、二酸化炭素分離モジュール、二酸化炭素分離装置、及び二酸化炭素分離方法
WO2014010512A1 (ja) * 2012-07-11 2014-01-16 富士フイルム株式会社 酸性ガス分離用複合体及びその製造方法並びに酸性ガス分離モジュール
WO2014050517A1 (ja) 2012-09-28 2014-04-03 富士フイルム株式会社 二酸化炭素分離用複合体、二酸化炭素分離用モジュール、及び二酸化炭素分離用複合体の製造方法
WO2014054619A1 (ja) 2012-10-02 2014-04-10 株式会社ルネッサンス・エナジー・リサーチ Co2促進輸送膜及びその製造方法並びにco2分離方法及び装置
WO2014065387A1 (ja) * 2012-10-22 2014-05-01 住友化学株式会社 共重合体及び炭酸ガス分離膜
JP5555332B2 (ja) * 2010-12-24 2014-07-23 株式会社ルネッサンス・エナジー・リサーチ ガス分離装置、メンブレンリアクター、水素製造装置
WO2014156162A1 (ja) * 2013-03-29 2014-10-02 富士フイルム株式会社 酸性ガス分離用複合体の製造方法
WO2014156192A1 (ja) 2013-03-29 2014-10-02 富士フイルム株式会社 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
WO2014156173A1 (ja) * 2013-03-29 2014-10-02 富士フイルム株式会社 酸性ガス分離用複合体の製造方法
WO2014157069A1 (ja) 2013-03-29 2014-10-02 株式会社ルネッサンス・エナジー・リサーチ Co2促進輸送膜、その製造方法及び当該製造方法に用いられる樹脂組成物、並びに、co2分離モジュール、co2分離方法及び装置
JP2014208325A (ja) * 2013-03-29 2014-11-06 富士フイルム株式会社 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
JP2015027654A (ja) * 2013-07-31 2015-02-12 住友化学株式会社 ガス分離装置及びガス分離方法
JP2015112502A (ja) * 2013-12-07 2015-06-22 住友化学株式会社 積層体及びガス分離膜並びに積層体の製造方法
WO2016024523A1 (ja) * 2014-08-11 2016-02-18 住友化学株式会社 Co2ガス分離膜用組成物、co2ガス分離膜及びその製造方法並びにco2ガス分離膜モジュール
JP2016117045A (ja) * 2014-12-23 2016-06-30 住友化学株式会社 二酸化炭素分離膜の製造方法、二酸化炭素分離膜用樹脂組成物、二酸化炭素分離膜モジュール及び二酸化炭素分離装置
JP2017154120A (ja) * 2016-03-04 2017-09-07 東京瓦斯株式会社 二酸化炭素分離システム及び燃料電池システム
KR20190028464A (ko) 2016-08-08 2019-03-18 아사히 가세이 가부시키가이샤 기체 분리용 막 모듈
WO2020071411A1 (ja) 2018-10-04 2020-04-09 住友化学株式会社 酸性ガス分離膜を製造するために有用な組成物
US10744454B2 (en) 2014-11-18 2020-08-18 Sumitomo Chemical Company, Limited Carbon dioxide gas separation membrane, method for manufacturing same, and carbon dioxide gas separation membrane module
US10987622B2 (en) 2016-04-04 2021-04-27 Sumitomo Chemical Company, Limited Acid gas separation membrane and acid gas separation method using same, acid gas separation module, and acid gas separation apparatus
JPWO2020071107A1 (ja) * 2018-10-04 2021-09-02 日本碍子株式会社 ガス分離方法およびガス分離装置

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2790195C (en) * 2008-01-24 2016-07-05 Renaissance Energy Research Corporation Method for using a co2-facilitated transport membrane to remove carbon dioxide from a gas
JP5484361B2 (ja) 2011-01-12 2014-05-07 富士フイルム株式会社 二酸化炭素分離用複合体の製造方法及び製造装置
JP2013049042A (ja) * 2011-01-12 2013-03-14 Fujifilm Corp 二酸化炭素分離膜形成用組成物、二酸化炭素分離膜及びその製造方法、並びに二酸化炭素分離装置
JP5738704B2 (ja) * 2011-07-26 2015-06-24 富士フイルム株式会社 二酸化炭素分離装置および二酸化炭素分離方法
JP2013027806A (ja) * 2011-07-27 2013-02-07 Fujifilm Corp 二酸化炭素分離膜、二酸化炭素分離膜用支持体、及びこれらの製造方法
JP5738710B2 (ja) * 2011-07-29 2015-06-24 富士フイルム株式会社 二酸化炭素分離膜の製造方法及び二酸化炭素分離モジュール
JP5589996B2 (ja) * 2011-09-12 2014-09-17 株式会社日立製作所 二酸化炭素捕捉材
JP2013111507A (ja) * 2011-11-25 2013-06-10 Fujifilm Corp ガス分離膜、その製造方法、それを用いたガス分離膜モジュール
JP6237234B2 (ja) 2012-05-30 2017-11-29 東レ株式会社 二酸化炭素分離膜
JP5490281B2 (ja) * 2012-06-20 2014-05-14 富士フイルム株式会社 酸性ガス分離モジュール、及び酸性ガス分離システム
GB201211309D0 (en) 2012-06-26 2012-08-08 Fujifilm Mfg Europe Bv Process for preparing membranes
JP5945478B2 (ja) * 2012-09-04 2016-07-05 日東電工株式会社 分離膜、複合分離膜及び分離膜の製造方法
KR102076603B1 (ko) * 2012-10-17 2020-02-13 사우디 아라비안 오일 컴퍼니 촉진 수송막 및 스팀 스위핑을 사용하여 내연 배기가스로부터 co2 제거 방법
JP5873823B2 (ja) 2013-02-22 2016-03-01 富士フイルム株式会社 酸性ガス分離用複合体、酸性ガス分離用モジュールおよび酸性ガス分離用モジュールの製造方法
JP6046537B2 (ja) * 2013-03-29 2016-12-14 富士フイルム株式会社 酸性ガス分離用複合体の製造方法および製造装置
JP6001013B2 (ja) 2013-08-13 2016-10-05 富士フイルム株式会社 酸性ガス分離用スパイラル型モジュール
JP2016026860A (ja) 2013-08-19 2016-02-18 富士フイルム株式会社 酸性ガス分離モジュール
GB201317525D0 (en) * 2013-10-03 2013-11-20 Fujifilm Mfg Europe Bv Membranes
WO2016126812A1 (en) 2015-02-04 2016-08-11 Bloom Energy Corporation Carbon dioxide separator, fuel cell system including same, and method of operating fuel cell system
JP6715575B2 (ja) * 2015-06-18 2020-07-01 住友化学株式会社 二酸化炭素分離方法及び二酸化炭素分離装置
FI3427811T3 (fi) 2016-03-09 2023-01-31 Polttojärjestelmä
RU2620437C1 (ru) * 2016-04-04 2017-05-25 Федеральное Государственное Бюджетное Учреждение Науки Институт Химии Коми Научного Центра Уральского Отделения Российской Академии Наук Макропористый керамический материал с углеродным нановолокнистым покрытием и способ его получения
JP6917155B2 (ja) 2017-02-14 2021-08-11 住友化学株式会社 促進輸送膜の包装方法
CN108854854B (zh) * 2017-05-16 2021-07-20 厦门大学 一种功能流体门控系统
US10569233B2 (en) * 2017-06-06 2020-02-25 Uop Llc High permeance and high selectivity facilitated transport membranes for olefin/paraffin separations
EP3680470A4 (en) * 2017-09-07 2021-06-02 Renaissance Energy Research Corporation POWER GENERATION SYSTEM
JP6573942B2 (ja) * 2017-09-15 2019-09-11 住友化学株式会社 ガス分離方法
JP6573650B2 (ja) 2017-09-15 2019-09-11 住友化学株式会社 ガス分離方法
WO2019236907A1 (en) * 2018-06-08 2019-12-12 Lawrence Livermore National Security, Llc Molten electrolyte dual-phase membranes for intermediate temperature fuel cells
KR102219117B1 (ko) * 2018-08-31 2021-02-23 스미또모 가가꾸 가부시끼가이샤 분리막 시트, 분리막 요소, 분리막 모듈 및 분리막 시트의 제조 방법
CN109603417A (zh) * 2018-12-29 2019-04-12 中国航天员科研训练中心 一种适用于微重力条件下的气体分离装置
CN112793264A (zh) * 2019-11-14 2021-05-14 Csir公司 食品包装膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3396510A (en) 1966-08-15 1968-08-13 Gen Electric Liquid membranes for use in the separation of gases
JPH07112122A (ja) * 1993-10-19 1995-05-02 Agency Of Ind Science & Technol 二酸化炭素分離ゲル膜及びその製造方法
JPH09267017A (ja) * 1996-03-29 1997-10-14 Agency Of Ind Science & Technol 促進輸送膜
JP2000229219A (ja) 1999-02-09 2000-08-22 Agency Of Ind Science & Technol 二酸化炭素の吸収剤
US6579331B1 (en) 1997-08-01 2003-06-17 Exxonmobil Research And Engineering Company CO2-Selective membrane process and system for reforming a fuel to hydrogen for a fuel cell
JP2008036463A (ja) * 2006-08-01 2008-02-21 Renaissance Energy Research:Kk Co2促進輸送膜及びその製造方法
JP2008036464A (ja) * 2006-08-01 2008-02-21 Renaissance Energy Research:Kk 二酸化炭素分離装置及び方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456708A (en) * 1982-06-25 1984-06-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for the preparation of thin-skinned asymmetric reverse osmosis membranes and products thereof
US4802988A (en) 1987-09-17 1989-02-07 Texaco Inc. Dehydration of glycols
SU1717198A1 (ru) * 1990-04-09 1992-03-07 Институт Химической Физики Ан Ссср Способ переноса электронов через искусственную мембрану
US5340480A (en) * 1992-04-29 1994-08-23 Kuraray Co., Ltd. Polysulfone-based hollow fiber membrane and process for manufacturing the same
JP3247953B2 (ja) * 1992-09-30 2002-01-21 独立行政法人産業技術総合研究所 含水ゲル状気体分離膜
US5445669A (en) * 1993-08-12 1995-08-29 Sumitomo Electric Industries, Ltd. Membrane for the separation of carbon dioxide
RU2119817C1 (ru) * 1995-10-23 1998-10-10 Акционерное общество открытого типа "Полимерсинтез" Пористая фторуглеродная мембрана, способ ее получения и патронный фильтр на ее основе
RU2111047C1 (ru) * 1996-11-22 1998-05-20 Махмутов Фаниль Ахатович Пористая мембрана с пониженной паропроницаемостью
EP1095695A3 (en) * 1999-09-24 2001-11-21 Praxair Technology, Inc. Novel polyimide amic acid salts and polyimide membranes formed therefrom
JP3999423B2 (ja) 1999-10-27 2007-10-31 独立行政法人科学技術振興機構 液体膜による炭酸ガス分離・除湿方法およびその装置
ITMI20010384A1 (it) * 2001-02-26 2002-08-26 Ausimont Spa Membrane idrofiliche porose
US6579343B2 (en) * 2001-03-30 2003-06-17 University Of Notre Dame Du Lac Purification of gas with liquid ionic compounds
JP4180991B2 (ja) 2003-07-25 2008-11-12 株式会社四国総合研究所 二酸化炭素の吸着方法
JP2006150323A (ja) * 2004-11-01 2006-06-15 Japan Gore Tex Inc 隔膜およびその製法、並びに該隔膜を備えた熱交換器
US7396382B2 (en) * 2005-09-28 2008-07-08 General Electric Company Functionalized inorganic membranes for gas separation
JP4939124B2 (ja) 2005-11-10 2012-05-23 住友電工ファインポリマー株式会社 フッ素樹脂多孔質膜
US7572318B2 (en) * 2006-04-18 2009-08-11 Gas Technology Institute High-temperature membrane for CO2 and/or H2S separation
JP2008272605A (ja) * 2007-04-25 2008-11-13 Sumitomo Metal Mining Co Ltd 水素透過膜およびその製造方法
CA2790195C (en) * 2008-01-24 2016-07-05 Renaissance Energy Research Corporation Method for using a co2-facilitated transport membrane to remove carbon dioxide from a gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3396510A (en) 1966-08-15 1968-08-13 Gen Electric Liquid membranes for use in the separation of gases
JPH07112122A (ja) * 1993-10-19 1995-05-02 Agency Of Ind Science & Technol 二酸化炭素分離ゲル膜及びその製造方法
JPH09267017A (ja) * 1996-03-29 1997-10-14 Agency Of Ind Science & Technol 促進輸送膜
US6579331B1 (en) 1997-08-01 2003-06-17 Exxonmobil Research And Engineering Company CO2-Selective membrane process and system for reforming a fuel to hydrogen for a fuel cell
JP2000229219A (ja) 1999-02-09 2000-08-22 Agency Of Ind Science & Technol 二酸化炭素の吸収剤
JP2008036463A (ja) * 2006-08-01 2008-02-21 Renaissance Energy Research:Kk Co2促進輸送膜及びその製造方法
JP2008036464A (ja) * 2006-08-01 2008-02-21 Renaissance Energy Research:Kk 二酸化炭素分離装置及び方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NORIFUMI MATSUMIYA ET AL.: "2,3- Diaminopropionic Acid o Carrier to suru Gel Tofumaku ni yoru C02 no Sokushin Yuso", MEMBRANE, vol. 30, no. 1, 2005, pages 46 - 51 *
See also references of EP2239048A4

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623928B2 (en) 2009-11-12 2014-01-07 National Research Council Of Canada Polymers of intrinsic microporosity containing tetrazole groups
JP2011183379A (ja) * 2010-02-10 2011-09-22 Fujifilm Corp ガス分離膜、その製造方法、並びにそれを用いたガス分離方法、モジュール及び分離装置
WO2011099587A1 (ja) * 2010-02-10 2011-08-18 富士フイルム株式会社 ガス分離膜、その製造方法、並びにそれを用いたガス分離方法、モジュール及び分離装置
US8747521B2 (en) 2010-02-10 2014-06-10 Fujifilm Corporation Gas separation membrane and method for producing the same, and gas separating method, module and separation apparatus using the same
US9827535B2 (en) 2010-07-26 2017-11-28 Renaissance Energy Research Corporation Steam permselective membrane, and method using same for separating steam from mixed gas
WO2012014900A1 (ja) * 2010-07-26 2012-02-02 株式会社ルネッサンス・エナジー・リサーチ スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法
KR101780848B1 (ko) 2010-07-26 2017-10-10 가부시키가이샤 르네상스 에너지 리서치 스팀 선택 투과막, 및 이를 이용하여 스팀을 혼합 가스로부터 분리하는 방법
EP2599539A4 (en) * 2010-07-26 2014-08-06 Renaissance Energy Res Corp STEAM PERMSELECTIVE MEMBRANE AND METHOD THEREFORE FOR SEPARATING STEAM FROM MIXED GAS
CN103108690A (zh) * 2010-07-26 2013-05-15 株式会社新生能源研究 水蒸汽选择透过膜及使用该透过膜从混合气体中分离水蒸汽的方法
EP2599539A1 (en) * 2010-07-26 2013-06-05 Renaissance Energy Research Corporation Steam permselective membrane, and method using same for separating steam from mixed gas
JP6009940B2 (ja) * 2010-07-26 2016-10-19 株式会社ルネッサンス・エナジー・リサーチ スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法
EP3002053A1 (en) * 2010-07-26 2016-04-06 Renaissance Energy Research Corporation Steam premeselective membrane, and method using same for separating steam from mixed gas
US20130199370A1 (en) * 2010-07-26 2013-08-08 Renaissance Energy Research Corporation Steam Permselective Membrane, and Method Using Same for Separating Steam from Mixed Gas
JP5555332B2 (ja) * 2010-12-24 2014-07-23 株式会社ルネッサンス・エナジー・リサーチ ガス分離装置、メンブレンリアクター、水素製造装置
JP2012210589A (ja) * 2011-03-31 2012-11-01 Jx Nippon Oil & Energy Corp ガス分離膜
JP2012236155A (ja) * 2011-05-12 2012-12-06 Hitachi Zosen Corp ゼオライト複合膜
WO2013018538A1 (ja) * 2011-07-29 2013-02-07 富士フイルム株式会社 二酸化炭素分離部材、その製造方法及び二酸化炭素分離モジュール
JP2013027841A (ja) * 2011-07-29 2013-02-07 Fujifilm Corp 二酸化炭素分離部材、その製造方法及び二酸化炭素分離モジュール
KR20140042922A (ko) 2011-08-01 2014-04-07 가부시키가이샤 르네상스 에너지 리서치 Co₂촉진 수송막 및 그 제조 방법
WO2013018659A1 (ja) 2011-08-01 2013-02-07 株式会社ルネッサンス・エナジー・リサーチ Co2促進輸送膜及びその製造方法
WO2013080994A1 (ja) * 2011-12-01 2013-06-06 株式会社ルネッサンス・エナジー・リサーチ 促進輸送膜の製造方法
JPWO2013080994A1 (ja) * 2011-12-01 2015-04-27 株式会社ルネッサンス・エナジー・リサーチ 促進輸送膜の製造方法
JP2016000402A (ja) * 2011-12-01 2016-01-07 株式会社ルネッサンス・エナジー・リサーチ 促進輸送膜の製造方法
WO2013094510A1 (ja) 2011-12-22 2013-06-27 株式会社ルネッサンス・エナジー・リサーチ Co変成装置及び変成方法
WO2014010512A1 (ja) * 2012-07-11 2014-01-16 富士フイルム株式会社 酸性ガス分離用複合体及びその製造方法並びに酸性ガス分離モジュール
WO2014010377A1 (ja) * 2012-07-11 2014-01-16 富士フイルム株式会社 二酸化炭素分離用複合体の製造方法、二酸化炭素分離用複合体、二酸化炭素分離モジュール、二酸化炭素分離装置、及び二酸化炭素分離方法
WO2014050517A1 (ja) 2012-09-28 2014-04-03 富士フイルム株式会社 二酸化炭素分離用複合体、二酸化炭素分離用モジュール、及び二酸化炭素分離用複合体の製造方法
US20150151243A1 (en) * 2012-10-02 2015-06-04 Renaissance Energy Research Corporation Facilitated co2 transport membrane and method for producing same, and method and apparatus for separating co2
US9381464B2 (en) 2012-10-02 2016-07-05 Renaissance Energy Research Corporation Facilitated CO2 transport membrane and method for producing same, and method and apparatus for separating CO2
US10858248B2 (en) 2012-10-02 2020-12-08 Renaissance Energy Research Corporation Method for separating CO2 using facilitated CO2 transport membrane
US9981847B2 (en) 2012-10-02 2018-05-29 Renaissance Energy Resarch Corporation Facilitated CO2 transport membrane and method for producing same, and method and apparatus for separating CO2
WO2014054619A1 (ja) 2012-10-02 2014-04-10 株式会社ルネッサンス・エナジー・リサーチ Co2促進輸送膜及びその製造方法並びにco2分離方法及び装置
JP5796136B2 (ja) * 2012-10-02 2015-10-21 株式会社ルネッサンス・エナジー・リサーチ Co2促進輸送膜及びその製造方法並びにco2分離方法及び装置
KR20170054577A (ko) 2012-10-02 2017-05-17 가부시키가이샤 르네상스 에너지 리서치 Co2 촉진 수송막 및 그 제조 방법 그리고 co2 분리 방법 및 장치
WO2014065387A1 (ja) * 2012-10-22 2014-05-01 住友化学株式会社 共重合体及び炭酸ガス分離膜
US9724652B2 (en) 2012-10-22 2017-08-08 Sumitomo Chemical Company, Limited Copolymer and carbon dioxide gas separation membrane
WO2014156192A1 (ja) 2013-03-29 2014-10-02 富士フイルム株式会社 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
US9833746B2 (en) 2013-03-29 2017-12-05 Renaissance Energy Research Corporation Facilitated CO2 transport membrane, method for producing same, resin composition for use in method for producing same, CO2 separation module and method and apparatus for separating CO2
JP2014208325A (ja) * 2013-03-29 2014-11-06 富士フイルム株式会社 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
US9987598B2 (en) 2013-03-29 2018-06-05 Fujifilm Corporation Method of producing composite for acid gas separation
WO2014156162A1 (ja) * 2013-03-29 2014-10-02 富士フイルム株式会社 酸性ガス分離用複合体の製造方法
EP2985072A4 (en) * 2013-03-29 2017-01-04 Renaissance Energy Research Corporation Facilitated co2 transport membrane, method for manufacturing same, resin composition to be used in method for manufacturing same, co2 separation method and co2 separation device
JPWO2014157069A1 (ja) * 2013-03-29 2017-02-16 株式会社ルネッサンス・エナジー・リサーチ Co2促進輸送膜、その製造方法及び当該製造方法に用いられる樹脂組成物、並びに、co2分離モジュール、co2分離方法及び装置
JP2014195761A (ja) * 2013-03-29 2014-10-16 富士フイルム株式会社 酸性ガス分離用複合体の製造方法
WO2014156173A1 (ja) * 2013-03-29 2014-10-02 富士フイルム株式会社 酸性ガス分離用複合体の製造方法
US9718030B2 (en) 2013-03-29 2017-08-01 Fujifilm Corporation Method for producing acid gas separation composite membrane, and acid gas separation membrane module
JP2014195762A (ja) * 2013-03-29 2014-10-16 富士フイルム株式会社 酸性ガス分離用複合体の製造方法
WO2014157069A1 (ja) 2013-03-29 2014-10-02 株式会社ルネッサンス・エナジー・リサーチ Co2促進輸送膜、その製造方法及び当該製造方法に用いられる樹脂組成物、並びに、co2分離モジュール、co2分離方法及び装置
JP2015027654A (ja) * 2013-07-31 2015-02-12 住友化学株式会社 ガス分離装置及びガス分離方法
JP2015112502A (ja) * 2013-12-07 2015-06-22 住友化学株式会社 積層体及びガス分離膜並びに積層体の製造方法
US20170232398A1 (en) 2014-08-11 2017-08-17 Sumitomo Chemical Company, Limited Composition for co2 gas separation membrane, co2 gas separation membrane and method for producing same, and co2 gas separation membrane module
JPWO2016024523A1 (ja) * 2014-08-11 2017-04-27 住友化学株式会社 Co2ガス分離膜用組成物、co2ガス分離膜及びその製造方法並びにco2ガス分離膜モジュール
WO2016024523A1 (ja) * 2014-08-11 2016-02-18 住友化学株式会社 Co2ガス分離膜用組成物、co2ガス分離膜及びその製造方法並びにco2ガス分離膜モジュール
US10507434B2 (en) 2014-08-11 2019-12-17 Sumitomo Chemical Company, Limited Composition for CO2 gas separation membrane, CO2 gas separation membrane and method for producing same, and CO2 gas separation membrane module
US10744454B2 (en) 2014-11-18 2020-08-18 Sumitomo Chemical Company, Limited Carbon dioxide gas separation membrane, method for manufacturing same, and carbon dioxide gas separation membrane module
JP2016117045A (ja) * 2014-12-23 2016-06-30 住友化学株式会社 二酸化炭素分離膜の製造方法、二酸化炭素分離膜用樹脂組成物、二酸化炭素分離膜モジュール及び二酸化炭素分離装置
JP2017154120A (ja) * 2016-03-04 2017-09-07 東京瓦斯株式会社 二酸化炭素分離システム及び燃料電池システム
US10987622B2 (en) 2016-04-04 2021-04-27 Sumitomo Chemical Company, Limited Acid gas separation membrane and acid gas separation method using same, acid gas separation module, and acid gas separation apparatus
US11628394B2 (en) 2016-08-08 2023-04-18 Asahi Kasei Kabushiki Kaisha Gas separation membrane module
KR20190028464A (ko) 2016-08-08 2019-03-18 아사히 가세이 가부시키가이샤 기체 분리용 막 모듈
WO2020071411A1 (ja) 2018-10-04 2020-04-09 住友化学株式会社 酸性ガス分離膜を製造するために有用な組成物
EP3862072A4 (en) * 2018-10-04 2022-07-06 Sumitomo Chemical Company Limited COMPOSITION FOR MAKING AN ACID GAS SEPARATION MEMBRANE
JP7257411B2 (ja) 2018-10-04 2023-04-13 日本碍子株式会社 ガス分離方法およびガス分離装置
JPWO2020071107A1 (ja) * 2018-10-04 2021-09-02 日本碍子株式会社 ガス分離方法およびガス分離装置
US11857915B2 (en) 2018-10-04 2024-01-02 Ngk Insulators, Ltd. Gas separation method and gas separator

Also Published As

Publication number Publication date
EP2239048B1 (en) 2014-12-24
CN103432911A (zh) 2013-12-11
AU2009207025B2 (en) 2012-05-17
KR20100103664A (ko) 2010-09-27
CN103432910A (zh) 2013-12-11
EP2239048A1 (en) 2010-10-13
CA2707425A1 (en) 2009-07-30
EP2239048A4 (en) 2011-06-15
US20120219718A1 (en) 2012-08-30
CA2790195C (en) 2016-07-05
US8197576B2 (en) 2012-06-12
US8617297B2 (en) 2013-12-31
EP2647420B1 (en) 2015-06-24
CN101925397A (zh) 2010-12-22
US8377170B2 (en) 2013-02-19
RU2010135354A (ru) 2012-02-27
RU2464074C2 (ru) 2012-10-20
KR101226311B1 (ko) 2013-01-24
EP2647420A3 (en) 2014-04-16
JPWO2009093666A1 (ja) 2011-05-26
JP4621295B2 (ja) 2011-01-26
US20110036237A1 (en) 2011-02-17
AU2009207025A1 (en) 2009-07-30
US20130160650A1 (en) 2013-06-27
HK1148498A1 (en) 2011-09-09
CA2790195A1 (en) 2009-07-30
EP2647420A2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP4621295B2 (ja) Co2促進輸送膜及びその製造方法
JP5474172B2 (ja) 二酸化炭素分離装置
JP4965927B2 (ja) Co2促進輸送膜及びその製造方法
JP4965928B2 (ja) 二酸化炭素分離装置及び方法
JP5553421B2 (ja) Co2促進輸送膜及びその製造方法
JP5555332B2 (ja) ガス分離装置、メンブレンリアクター、水素製造装置
US10858248B2 (en) Method for separating CO2 using facilitated CO2 transport membrane
Okada et al. CO2-facilitated transport membrane and method for producing the same
WO2021079609A1 (ja) Co2促進輸送膜及びその製造方法並びにco2分離方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102846.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704533

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009207025

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009550560

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2707425

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009207025

Country of ref document: AU

Date of ref document: 20090122

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107017346

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009704533

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010135354

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12864232

Country of ref document: US