WO2013018659A1 - Co2促進輸送膜及びその製造方法 - Google Patents

Co2促進輸送膜及びその製造方法 Download PDF

Info

Publication number
WO2013018659A1
WO2013018659A1 PCT/JP2012/069023 JP2012069023W WO2013018659A1 WO 2013018659 A1 WO2013018659 A1 WO 2013018659A1 JP 2012069023 W JP2012069023 W JP 2012069023W WO 2013018659 A1 WO2013018659 A1 WO 2013018659A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
facilitated transport
film
glycine
carbon dioxide
Prior art date
Application number
PCT/JP2012/069023
Other languages
English (en)
French (fr)
Inventor
岡田 治
英治 神尾
正明 寺本
伸彰 花井
秀人 松山
Original Assignee
株式会社ルネッサンス・エナジー・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ルネッサンス・エナジー・リサーチ filed Critical 株式会社ルネッサンス・エナジー・リサーチ
Priority to US14/235,663 priority Critical patent/US20140352540A1/en
Priority to CN201280035380.1A priority patent/CN104168988A/zh
Priority to KR1020147005349A priority patent/KR101591207B1/ko
Priority to EP12820658.8A priority patent/EP2742993A4/en
Publication of WO2013018659A1 publication Critical patent/WO2013018659A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/38Liquid-membrane separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/142Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a CO 2 facilitated transport membrane used for separation of carbon dioxide and a method for producing the same, and in particular, carbon dioxide contained in a reformed gas for a fuel cell mainly containing hydrogen with high selectivity to hydrogen.
  • separable CO 2 -facilitated transport membrane, and a carbon dioxide can be separated with high selectivity for nitrogen of CO 2 -facilitated transport membrane contained in the exhaust gas.
  • the reforming system for the hydrogen station currently under development reforms hydrocarbons into hydrogen and carbon monoxide (CO) by steam reforming, and further uses a CO shift reaction to make one.
  • Hydrogen is produced by reacting carbon oxide with water vapor.
  • the CO converter is provided with a CO 2 facilitated transport membrane that selectively allows carbon dioxide to permeate, and the right-side carbon dioxide generated by the CO conversion reaction of (Chemical Formula 1) is efficiently removed outside the CO converter.
  • the chemical equilibrium can be shifted to the hydrogen production side (right side), and a high conversion rate can be obtained at the same reaction temperature.
  • carbon monoxide and carbon dioxide can be removed beyond the limit due to equilibrium constraints. It becomes possible.
  • FIG. 15 and FIG. 16 schematically show this state.
  • FIGS. 16 (A) and (B) show carbon monoxide and carbon dioxide with respect to the non-dimensionalized catalyst layer length Z when the CO converter is provided with a CO 2 facilitated transport membrane and when it is not provided, respectively. Each concentration change is shown.
  • the above CO 2 -facilitated transport membrane CO transformer equipped with the (CO 2 permeable membrane reactor), for carbon monoxide and carbon dioxide can be removed beyond the limit of restriction of equilibrium, the hydrogen station It is possible to reduce the load of PSA (Pressure Swing Adsorption) and to reduce the reforming reaction and CO conversion with a low S / C (steam / carbon ratio), thereby reducing the cost and increasing the efficiency of the entire hydrogen station. Further, by providing the CO 2 facilitated transport film, the CO conversion reaction can be speeded up (higher SV), so that the reforming system can be downsized and the startup time can be shortened.
  • PSA Pressure Swing Adsorption
  • the wet chemical absorption method has been put into practical use as the technology and is most commonly used, and is widely used mainly as a decarbonation process in large-scale chemical plants such as hydrogen production plants and ammonia production plants.
  • the existing chemical absorption method is composed of a CO 2 absorption step in an alkaline aqueous solution such as hot potassium carbonate and a CO 2 regeneration step by thermal decomposition of the generated alkali carbonate.
  • the alkaline carbonate aqueous solution exiting the absorption tower is supplied to the regeneration tower, and the alkaline carbonate aqueous solution supplied to the regeneration tower is heated using steam as a heat source, and CO 2 and entrained water are released by thermal decomposition.
  • the hot alkaline aqueous solution from which CO 2 has been released is supplied again to the absorption tower by a circulation pump.
  • the decarbonation process by the chemical absorption method not only has a complicated process, but also a large amount of energy is consumed by steam and circulation pump power supplied as a heat source for the regeneration tower.
  • Patent Document 1 As a prior example of such a CO 2 permeable membrane reactor, there is one disclosed in the following Patent Document 1 (or Patent Document 2 having the same contents by the same inventor).
  • Patent Documents 1 and 2 are directed to purifying a reformed gas generated when reforming a fuel such as hydrocarbon or methanol into hydrogen for a fuel cell vehicle on the vehicle and a water gas shift reaction ( Four kinds of typical processes are shown in the same document, which provides a CO 2 facilitated transport membrane process useful for CO conversion reaction.
  • hydrocarbons including methane
  • CO converter water gas shifter
  • a hydrophilic polymer film such as polyvinyl alcohol (PVA) mainly containing a halogenated quaternary ammonium salt ((R) 4 N + X ⁇ ) as a carbon dioxide carrier is used as the CO 2 facilitated transport film.
  • PVA polyvinyl alcohol
  • Example 6 of Patent Documents 1 and 2 a PVA membrane having a film thickness of 49 ⁇ m and 50 wt% containing 50 wt% of tetramethylammonium fluoride salt as a carbon dioxide carrier and porous PTFE (tetrafluoride tetrafluoride) supporting the PVA membrane.
  • a method for producing a CO 2 facilitated transport film formed of a composite film made of an ethylene polymer) film is disclosed.
  • Example 7 a mixed gas (25% CO 2 , 75% H 2 ) was mixed at a total pressure.
  • the membrane performance of the CO 2 facilitated transport membrane when treated at 3 atm and 23 ° C. is disclosed.
  • the CO 2 / H 2 selectivity is expressed as a ratio of CO 2 permeance R CO2 to H 2 permeance R H2 .
  • Patent Document 3 discloses a CO 2 absorbent composed of a combination of cesium carbonate and an amino acid as a CO 2 facilitated transport film.
  • Preparation of CO 2 -facilitated transport membrane described in Patent Document 3 is as follows. First, a commercially available amino acid is added to an aqueous solution of cesium carbonate so as to have a predetermined concentration, and stirred well to prepare a mixed aqueous solution. Thereafter, the gel-coated surface of the porous PTFE membrane (47 ⁇ ) coated with the gel is immersed in the prepared mixed solution for 30 minutes or more, and then the membrane is slowly pulled up. A silicone membrane is placed on the sintered metal (to prevent the solution from leaking to the permeate side), and the above-mentioned hydrogel membrane of 47 mm ⁇ is placed on it, and a cell containing silicone packing is placed thereon and sealed. A supply gas is allowed to flow at a rate of 50 cc / min with respect to the CO 2 facilitated transport membrane thus produced, and the lower side of the membrane is evacuated to lower the pressure to about 40 torr.
  • Example 4 of Patent Document 3 the CO 2 permeation rate at 25 ° C. of a CO 2 facilitated transport membrane composed of cesium carbonate and 2,3-diaminopropionate hydrochloride at a molar concentration of 4 (mol / kg) was 1.1 (10 ⁇ 4 cm 3 (STP) / cm 2 ⁇ s ⁇ cmHg), and the CO 2 / N 2 separation factor is 300.
  • CO 2 permeance R CO2 as defined by the permeation rate per pressure difference, CO 2 permeance R CO2 in Example 4 of Patent Document 3 is calculated as 110GPU, CO in the embodiment 2 / Data regarding H 2 selectivity is not disclosed.
  • Patent Document 4 discloses that a non-porous membrane formed by adding a crosslinking agent to an aqueous solution of polyvinyl alcohol and an amino acid salt and heating and drying exhibits CO 2 selective permeability.
  • the Example of Patent Document 4 only shows CO 2 permeability at room temperature (23 ° C.), and does not suggest film characteristics at a high temperature of 100 ° C. or higher.
  • Patent Document 5 discloses a CO 2 facilitated transport film in which 2,3-diaminopropionate (DAPA) is added to a polyvinyl alcohol-polyacrylate (PVA / PAA) copolymer gel film.
  • DAPA 2,3-diaminopropionate
  • PVA / PAA polyvinyl alcohol-polyacrylate
  • the CO 2 facilitated transport membrane prepared by adding cesium carbonate or rubidium carbonate in PVA / PAA copolymer salt gel membrane is disclosed by the present inventors, respectively, 60GPU about higher than CO 2 permeability,
  • the ratio of CO 2 permeance R CO2 to H 2 permeance R H2 has a high CO 2 / H 2 selectivity of about 100 or higher at a high temperature of 100 ° C. or higher.
  • the CO 2 facilitated transport membrane selectively separates carbon dioxide as a basic function
  • development for the purpose of absorbing or removing carbon dioxide causing global warming has also been performed.
  • the CO 2 facilitated transport membrane is required to have a certain performance or more with respect to the operating temperature, CO 2 permeance, CO 2 / H 2 selectivity, etc. . That is, since the performance of the CO shift catalyst for use in the CO shift reaction tends to decrease as the temperature decreases, it is considered that the use temperature needs to be at least 100 ° C.
  • the present invention has been made in view of the above problems, its object is to provide stably applicable CO 2 -facilitated transport membrane to CO 2 permeable membrane reactor.
  • the inventors of the present application have conducted extensive studies to obtain a gel film to which glycine (NH 2 —CH 2 —COOH) has been added, the DAPA-added CO 2 facilitated transport film described in Patent Document 5 described above, and the Patent Document 6 described above. was found to exhibit excellent CO 2 transport properties than CO 2 facilitated transport membrane prepared by adding cesium carbonate or rubidium carbonate described.
  • the present invention is based on the above findings.
  • CO 2 facilitated transport membrane for achieving the above object is a CO 2 facilitated transport membrane having a CO 2 / H 2 selectivity at a temperature of more than 100 ° C., glycine, and the glycine
  • the first feature is that a gel layer comprising a hydrogel membrane containing a deprotonating agent that prevents protonation of the amino group is supported on a porous membrane having a heat resistance of 100 ° C. or higher. To do.
  • the glycine supplements carbon dioxide at the high concentration side interface of carbon dioxide in the gel layer, and the low concentration side interface.
  • Functions as a carbon dioxide carrier to be transported to the substrate, and has a selectivity for hydrogen (CO 2 / H 2 ) of about 90 to 100 or higher at a high temperature of 100 ° C. or higher, and 2 ⁇ 10 ⁇ 5 mol / (m 2 ⁇ s ⁇ kPa) ( 60GPU) becomes achievable degree or more CO 2 permeance.
  • a gel layer is formed using a hydrogel film containing a deprotonating agent.
  • the deprotonating agent preferably comprises an alkali metal hydroxide or carbonate.
  • the alkali metal element contained in the deprotonating agent is more preferably potassium, cesium, or rubidium.
  • the hydrogel is a three-dimensional network structure formed by crosslinking of a hydrophilic polymer, and has a property of swelling when absorbing water.
  • a polyvinyl alcohol-polyacrylate copolymer gel film is preferably used.
  • those skilled in the art sometimes refer to the polyvinyl alcohol-polyacrylate copolymer as a polyvinyl alcohol-polyacrylic acid copolymer.
  • the CO 2 facilitated transport membrane according to the first feature further has a CO 2 permeance ratio expressed by a ratio of CO 2 permeance to H 2 permeance in at least a specific temperature range of 110 ° C. to 140 ° C. 2 / H 2 selectivity is, to that it has more than 300 and the second feature.
  • CO 2 facilitated transport membrane of the second feature by forming a gel layer using a hydrogel membrane containing a deprotonating agent containing an alkali metal element, a high CO 2 permeance of about 1000 GPU or more, and A high CO 2 / H 2 selectivity with a selectivity of about 300 or higher can be realized at a high temperature of 100 ° C. or higher.
  • the porous membrane is preferably a hydrophilic porous membrane. Since the porous membrane supporting the gel layer is hydrophilic, a gel layer with few defects can be stably produced, and high selectivity for hydrogen can be maintained.
  • the porous membrane when the porous membrane is hydrophobic, it is possible to prevent moisture in the gel membrane from entering the pores in the porous membrane at 100 ° C. or lower and lowering the membrane performance. Since it is considered that the same effect can be expected even in a situation where the water content is low, the use of a hydrophobic porous membrane is recommended.
  • the CO 2 facilitated transport membrane of this embodiment it is possible to stably produce a CO 2 facilitated transport membrane that can maintain a high selectivity for hydrogen with few defects by using a hydrophilic porous membrane for the following reasons. Became.
  • Casting a cast solution consisting of an aqueous solution of polymer and glycine constituting a gel membrane on a hydrophilic porous membrane fills the pores of the porous membrane with the solution, and then the cast solution is applied to the surface of the porous membrane. .
  • the cast film is dried, not only the surface of the porous film but also the pores are filled with the gel layer, so that defects are hardly generated, and the success rate of forming the gel layer is increased.
  • the gel layer in the pores has a large resistance to gas permeation.
  • the permeability is lowered and the gas permeance is lowered.
  • the pores of the porous membrane are not easily filled with liquid, and the cast solution is mainly applied only to the surface of the porous membrane and the pores are filled with gas.
  • the gas permeance in the gel layer on the hydrophobic porous membrane is higher in both hydrogen and carbon dioxide compared to the hydrophilic porous membrane.
  • the gel layer on the film surface is more likely to have defects than the gel layer in the pores, and the success rate of the gel layer formation is reduced.
  • hydrogen has a smaller molecular size than carbon dioxide
  • hydrogen may have higher gas permeance than carbon dioxide at small defects or where the gas permeance is locally high, but glycine is added to the gel layer.
  • the permeation rate of carbon dioxide permeated by the facilitated transport mechanism is much larger than the hydrogen permeance permeated by the physical dissolution and diffusion mechanism.
  • the hydrogen permeance is significantly increased by defects, while it is almost unaffected by defects.
  • hydrophilic porous membrane As a result, by using the hydrophilic porous membrane, it is possible to obtain a hydrogen selectivity (CO 2 / H 2 ) superior to that when the hydrophobic porous membrane is used. Therefore, from the viewpoint of practical use, the stability and durability of the CO 2 facilitated transport membrane are very important, and it is advantageous to use a hydrophilic porous membrane having a high selectivity to hydrogen (CO 2 / H 2 ). Become.
  • the difference in gas permeance due to the difference between the hydrophobic porous membrane and the hydrophilic porous membrane is not limited to the gel in the pores even if the cast solution is impregnated after gelation without adding glycine as a carbon dioxide carrier in advance.
  • the point that the layer has a large resistance to gas permeation is the same, and it is presumed that the layer develops similarly.
  • CO 2 -facilitated transport membrane of the first or second one of the features is further said hydrophilic the gel layer porous membrane carried on the is covered supported by hydrophobic second porous membrane Is the third feature.
  • the gel layer supported by the hydrophilic porous membrane is protected by the hydrophobic porous membrane, and the strength of the CO 2 facilitated transport membrane during use is increased.
  • the CO 2 facilitated transport membrane is applied to a CO 2 permeable membrane reactor, it is sufficient even if the pressure difference between both sides (inside and outside the reactor) of the CO 2 facilitated transport membrane is large (for example, 2 atmospheres or more). A sufficient film strength.
  • the gel layer is covered with a hydrophobic porous membrane, even if water vapor is condensed on the membrane surface of the hydrophobic porous membrane, the porous membrane is hydrophobic and water is repelled and penetrates into the gel layer. Is preventing. Therefore, the hydrophobic porous membrane can dilute the carbon dioxide carrier in the gel layer with water, and can prevent the thinned carbon dioxide carrier from flowing out of the gel layer.
  • the method for producing a CO 2 facilitated transport membrane according to the present invention for achieving the above object is a method for producing the CO 2 facilitated transport membrane according to the first feature, A step of producing a cast solution comprising a polyvinyl alcohol-polyacrylate copolymer, a deprotonating agent containing an alkali metal element, and an aqueous solution containing glycine, and the cast solution is cast into a porous film and then dried. And a step of producing a gel layer.
  • Sectional view schematically showing the structure of an embodiment of a CO 2 -facilitated transport membrane according to the present invention Process diagram showing a first embodiment of a method for manufacturing a CO 2 facilitated transport membrane according to the present invention
  • Configuration diagram of an experimental apparatus for evaluating the membrane performance of the CO 2 facilitated transport membrane according to the present invention Shows the promoting effect of CO 2 permeance by glycine addition of CO 2 facilitated transport membrane according to the present invention Shows the change in H 2 permeance by glycine addition of CO 2 facilitated transport membrane according to the present invention Shows the improvement CO 2 / H 2 selectivity ratio of a glycine with the addition of CO 2 facilitated transport membrane according to the present invention Table showing polymer dependency of CO 2 permeance, H 2 permeance, and CO 2 / H 2 selectivity in the glycine-added CO 2 facilitated transport membrane according to the present invention.
  • the CO 2 permeance of the glycine-added CO 2 facilitated transport membrane according to the present invention is compared with the membrane performance of the DAPA-added membrane CO 2 / H 2 selectivity ratio of glycine added CO 2 -facilitated transport membrane according to the present invention was compared with film performance DAPA added film Figure
  • the CO 2 permeance of glycine added CO 2 -facilitated transport membrane according to the present invention was compared with films of membrane performance containing only cesium carbonate
  • FIG CO 2 / H 2 selectivity ratio of glycine added CO 2 -facilitated transport membrane according to the present invention was compared with membrane performance of film containing only single line cesium
  • the membrane of the present invention is a CO 2 facilitated transport membrane containing a carbon dioxide carrier in a gel membrane containing water, and has a use temperature of 100 ° C. or higher, high carbon dioxide permeability and CO 2 / H 2 selectivity. This is a CO 2 facilitated transport membrane applicable to a two- permeable membrane reactor. Furthermore, the membrane of the present invention employs a hydrophilic porous membrane as a support membrane that supports a gel membrane containing a carbon dioxide carrier in order to stably realize high CO 2 / H 2 selectivity.
  • the membrane of the present invention uses a polyvinyl alcohol-polyacrylic acid (PVA / PAA) salt copolymer as a membrane material and glycine, which is the simplest amino acid, as a carbon dioxide carrier.
  • PVA / PAA polyvinyl alcohol-polyacrylic acid
  • the membrane of the present invention comprises a hydrophilic porous membrane 2 carrying a PVA / PAA gel membrane 1 containing glycine as a carbon dioxide carrier, and two hydrophobic porous membranes 3. , 4 is configured with a three-layer structure.
  • the gel film 1 containing glycine is appropriately abbreviated as “carrier-containing gel film” in order to distinguish it from a gel film containing no carbon dioxide carrier.
  • Glycine (NH 2 —CH 2 —COOH), which is a carbon dioxide carrier, dissociates as [NH 3 + —CH 2 —COO ⁇ ] when dissolved in water.
  • the carbon dioxide does not react with NH 3 +, it reacts with the free NH 2 of.
  • glycine when used as a carbon dioxide carrier, it is necessary to convert NH 3 + to NH 2 by adding an equal amount or more of alkali to a cast solution described below in which glycine is dissolved.
  • any alkali may be used as long as it has a strong basicity capable of depriving protons from protonated NH 3 + and converting them into NH 2 , and an alkali metal hydroxide or carbonate can be suitably used.
  • an alkali metal hydroxide or carbonate can be suitably used.
  • differences in alkali metal elements cause differences in carbon dioxide permeability and CO 2 / H 2 selectivity of the membrane of the present invention.
  • CsOH cesium hydroxide
  • Cs 2 CO 3 cesium carbonate
  • carbonate ions and hydrogen carbonate ions are present in the carrier-containing gel film, but the contribution of the ions to the facilitated transport of carbon dioxide It is considered small.
  • lithium hydroxide and lithium carbonate, sodium hydroxide and sodium carbonate, potassium hydroxide and potassium carbonate, rubidium hydroxide and rubidium carbonate have an equivalent relationship.
  • the hydrophilic porous membrane 2 preferably has heat resistance of 100 ° C. or higher, mechanical strength, and adhesion to the carrier-containing gel film, and further has a porosity (porosity) of 55% or higher.
  • the pore diameter is preferably in the range of 0.1 to 1 ⁇ m.
  • a hydrophilic tetrafluoroethylene polymer (PTFE) porous membrane is used as the hydrophilic porous membrane having these conditions.
  • the hydrophobic porous membranes 3 and 4 preferably have heat resistance of 100 ° C. or higher, mechanical strength, and adhesion to the carrier-containing gel membrane, and further have a porosity (porosity) of 55. % Or more, and the pore diameter is preferably in the range of 0.1 to 1 ⁇ m.
  • a non-hydrophilic tetrafluoroethylene polymer (PTFE) porous membrane is used as the hydrophobic porous membrane having these conditions.
  • a cast solution made of an aqueous solution containing a PVA / PAA salt copolymer and glycine is prepared (step 1). More specifically, 2 g of PVA / PAA salt copolymer (for example, SS gel manufactured by Sumitomo Seika) was added to 80 g of water and stirred for 3 days or more at room temperature. 366 g and a deprotonating agent containing glycine and equimolar amounts of various alkali metal elements are added and stirred until dissolved to obtain a cast solution.
  • PVA / PAA salt copolymer for example, SS gel manufactured by Sumitomo Seika
  • step 2 in order to remove bubbles in the cast solution obtained in step 1, centrifugation (rotation speed: 5000 rpm for 30 minutes) is performed (step 2).
  • the cast solution obtained in step 2 is mixed with a hydrophilic PTFE porous membrane (for example, manufactured by Advantech, H010A142C, film thickness 35 ⁇ m, pore diameter 0.1 ⁇ m, porosity 70%) and hydrophobic PTFE porous membrane (for example, Sumitomo Cast with an applicator on the surface of the porous PTFE porous membrane side of a layered porous membrane made by superimposing two sheets made of Denko Fine Polymer, Fluoropore FP010, film thickness 60 ⁇ m, pore diameter 0.1 ⁇ m, porosity 55%) (Ste 3).
  • the cast thickness in the sample of the Example mentioned later is 500 micrometers.
  • the cast solution penetrates into the pores in the hydrophilic PTFE porous membrane, but the penetration stops at the boundary surface of the hydrophobic PTFE porous membrane, and the cast solution does not penetrate to the opposite surface of the layered porous membrane, There is no casting solution on the side surface of the porous porous membrane of the layered porous membrane, and the handling becomes easy.
  • the hydrophilic PTFE porous membrane after casting is naturally dried at room temperature for about half a day, and the cast solution is gelled to form a gel layer (step 4).
  • the cast solution is cast on the surface of the layered porous membrane on the hydrophilic PTFE porous membrane side, so in Step 4, the gel layer is formed on the surface (cast surface) of the hydrophilic PTFE porous membrane.
  • the pores are filled and formed, so that defects (micro-defects such as pinholes) are less likely to occur, and the success rate of gel layer deposition is increased.
  • it is desirable that the naturally dried PTFE porous membrane is further thermally crosslinked at a temperature of about 120 ° C. for about 2 hours. In the samples of Examples and Comparative Examples described later, thermal crosslinking is performed.
  • a membrane of the present invention having a three-layer structure comprising a hydrophobic PTFE porous membrane / gel layer (carrier-containing gel membrane supported on a hydrophilic PTFE porous membrane) / hydrophobic PTFE porous membrane is obtained (step 5).
  • FIG. 1 the state in which the carrier-containing gel film 1 is filled in the pores of the hydrophilic PTFE porous film 2 is schematically shown in a straight line.
  • one hydrophobic PTFE porous membrane is used in Step 3 and Step 4 and has a hydrophilic PTFE porous structure carrying the carrier-containing gel membrane.
  • the other hydrophobic PTFE porous membrane is used for supporting the membrane and preventing the penetration of the cast solution, and is used to protect the carrier-containing gel membrane from the other side.
  • the PTFE porous membrane is hydrophobic and prevents water from being repelled and soaking into the carrier-containing gel membrane. Therefore, the other PTFE porous membrane can dilute the carbon dioxide carrier in the carrier-containing gel film with water and prevent the thinned carbon dioxide carrier from flowing out of the carrier-containing gel film.
  • the CO 2 facilitated transport membrane (the membrane of the present invention) is formed between the raw material gas side chamber 12 and the permeate side chamber 13 of the stainless steel flow type gas permeation cell 11 (membrane area: 2.88 cm 2 ).
  • Two fluororubber gaskets are used as sealing materials.
  • a source gas (mixed gas composed of CO 2 , H 2 , H 2 O) FG is supplied to the source side chamber 12 at a flow rate of 2.24 ⁇ 10 ⁇ 2 mol / min, and a sweep gas (Ar gas) SG is supplied at 8 3.
  • Supply to the permeation side chamber 13 at a flow rate of 18 ⁇ 10 ⁇ 4 mol / min.
  • the pressure in the source gas side chamber 12 is adjusted by a back pressure regulator 15 provided on the downstream side of the cooling trap 14 in the exhaust gas discharge path.
  • the pressure in the transmission side chamber 13 is atmospheric pressure.
  • the gas composition after the water vapor in the sweep gas SG ′ discharged from the permeation side chamber 13 is removed by the cooling trap 16 is quantified by the gas chromatograph 17 and the permeance of CO 2 and H 2 from this and the flow rate of Ar in the sweep gas SG. [Mol / (m 2 ⁇ s ⁇ kPa)] is calculated, and the CO 2 / H 2 selectivity is calculated from the ratio.
  • a back pressure regulator 19 is also provided between the cooling trap 16 and the gas chromatograph 17, thereby adjusting the pressure in the permeation side chamber 13.
  • the raw material gas FG is a mixed gas composed of CO 2 , H 2 , and H 2 O, CO 2 : 3.65%, H 2 : 32.85%, H 2 O: Adjusted to a mixing ratio (mol%) of 63.5%.
  • water is added to a mixed gas flow (25 ° C., flow rate at 1 atm: 200 cm 3 / min, 8.18 ⁇ 10 ⁇ 3 mol / min) composed of 10% CO 2 and 90% H 2 (mol%).
  • Is fed with a fixed liquid feeding pump 18 flow rate: 0.256 cm 3 / min, 1.42 ⁇ 10 ⁇ 2 mol / min), heated to 100 ° C. or more to evaporate water, and mixed at the above mixing ratio.
  • a gas was prepared and supplied to the source gas side chamber 12.
  • the sweep gas SG is supplied to maintain the permeation driving force by lowering the partial pressure of the permeation side chamber of the gas to be measured (CO 2 , H 2 ) that permeates the membrane of the present invention, and is different from the gas to be measured.
  • Ar gas is used. Specifically, Ar gas (flow rate at 25 ° C .: 20 cm 3 / min, 8.18 ⁇ 10 ⁇ 4 mol / min) was supplied to the permeation side chamber 13.
  • the experimental apparatus has a preheater for heating the gas, A flow-through gas permeable cell with a fixed membrane is installed in a thermostatic chamber.
  • a hydrophilic PTFE porous membrane is used as the porous membrane supporting the carrier-containing gel membrane, and the CO of each sample prepared by adding an alkali metal hydroxide in step 1 is used.
  • the results of measuring 2 permeance R CO2 , H 2 permeance R H2 , and CO 2 / H 2 selectivity within a temperature range of 110 ° C. to 140 ° C. are shown.
  • the pressurized state of the source gas FG in the source gas side chamber 12 is 200 kPa.
  • each sample prepared multiple things which changed the alkali metal element which comprises a hydroxide with the above-mentioned preparation method.
  • the blending ratio of PVA / PAA, glycine, and alkali hydroxide in each measured sample is as follows.
  • Example 1 First, in Step 1 for producing a cast solution, 0.366 g of glycine and 0.204 g of LiOH.H 2 O were added to 10 g of the PVA / PAA salt copolymer aqueous solution to obtain a cast solution.
  • the film of the present invention containing LiOH produced in this way is referred to as the film of the present invention of Example 1.
  • Example 2 Similarly, in Step 1 for producing a cast solution, 0.366 g of glycine and 0.195 g of NaOH were added to 10 g of the aqueous PVA / PAA salt copolymer solution to obtain a cast solution.
  • the present invention film containing NaOH produced in this manner is referred to as the present invention film of Example 2.
  • Example 3 Similarly, in Step 1 for producing a cast solution, 0.366 g of glycine and 0.273 g of KOH were added to 10 g of the aqueous PVA / PAA salt copolymer solution to obtain a cast solution.
  • the film of the present invention containing KOH produced in this way is referred to as the film of the present invention of Example 3.
  • Example 4 Similarly, in Step 1 for producing a cast solution, 0.366 g of glycine and 0.499 g of RbOH were added to 10 g of the PVA / PAA salt copolymer aqueous solution to obtain a cast solution.
  • the inventive film containing RbOH prepared in this manner is referred to as the inventive film of Example 4.
  • Example 5 Similarly, in Step 1 for preparing a cast solution, 0.366 g of glycine and 0.731 g of CsOH were added to 10 g of the PVA / PAA salt copolymer aqueous solution to obtain a cast solution.
  • the inventive film containing CsOH prepared in this way is referred to as the inventive film of Example 5.
  • the H 2 permeance of the membranes of the present invention (Examples 3 to 5) containing KOH, RbOH, and CsOH tends to decrease slightly as the temperature rises. Therefore, the CO 2 / H 2 selectivity is about 300 or more over the entire temperature range of 110 ° C. to 140 ° C. in the membrane of the present invention containing KOH, RbOH, CsOH as shown in FIG. Very high CO 2 / H 2 selectivity is achieved.
  • the H 2 permeance of the membranes of the present invention greatly increases as the temperature rises.
  • the CO 2 / H 2 selectivity shown in FIG. 6 greatly decreases with increasing temperature in the membrane containing LiOH and NaOH. Nevertheless, a high CO 2 / H 2 selectivity of about 100 or more can be realized in the temperature range near 110 ° C.
  • Example 6 The method for producing the PAA salt polymer film is as follows. First, 2 g of a PAA salt polymer (for example, Sunfresh ST-500MPSA manufactured by Sundia Polymer Co., Ltd.) was added to 80 g of water and stirred for 3 days or more at room temperature, and 0.366 g of glycine was further added to 10 g of the resulting solution. Equimolar (0.731 g) CsOH with glycine was added and stirred until dissolved to obtain a cast solution. Subsequent steps are the same as steps 2 to 5 of the above-described method for producing a film of the present invention. Hereinafter, the film produced by this method is referred to as the present invention film of Example 6.
  • a PAA salt polymer for example, Sunfresh ST-500MPSA manufactured by Sundia Polymer Co., Ltd.
  • a film using polyvinyl alcohol (PVA) as a film material was produced, and the performance was compared with the film of the present invention.
  • PVA polyvinyl alcohol
  • two types of PVA membranes having different ratios of water and PVA in the cast solution were produced, and performance comparison with the membrane of the present invention was performed.
  • a method for producing a PVA film as a comparative example is as follows.
  • the weight ratio of the polymer, glycine and CsOH contained in the cast solution is 18:27:55. Yes, the same as the PVA / PAA salt copolymer membrane of Example 5. Therefore, it is possible to see the influence of the difference in polymer on the CO 2 separation performance due to the same weight ratio of the membrane constituent materials.
  • the PVA / PAA salt copolymer film (Example 5) and the PAA salt polymer film (Example 6) are hydrogel films.
  • FIG. 7 shows the gas permeation performance at 110 ° C. of the present invention membranes of Examples 5 and 6 and the membranes of Comparative Examples 1 and 2 prepared using various polymers. Other measurement conditions such as the flow rate of the source gas FG and the sweep gas SG are the same as those in FIGS.
  • FIG. 7 shows that the membranes using hydrogel (Examples 5 and 6) are superior to the PVA membranes (Comparative Examples 1 and 2) in terms of both CO 2 permeance and H 2 barrier properties.
  • a method for producing a DAPA film as a comparative example is as follows. First, 2 g of PVA / PAA salt copolymer (for example, SS gel manufactured by Sumitomo Seika) was added to 80 g of water and stirred at room temperature for 3 days or more. To the obtained solution 10 g, 0.655 g of DAPA and DAPA 2 times the number of moles of CsOH was added and stirred until dissolved to obtain a cast solution. Subsequent steps are the same as steps 2 to 5 of the above-described method for producing a film of the present invention. The amount of DAPA added is the same as the number of moles of glycine added in the membrane of the present invention of Example 5. Glycine has one amino group, whereas DAPA has two amino groups. For this reason, CsOH is added twice as many moles as DAPA.
  • the film produced by this method is referred to as the film of Comparative Example 3.
  • glycine is less expensive than DAPA, by using glycine as a carbon dioxide carrier, a CO 2 facilitated transport membrane having excellent CO 2 transport characteristics can be realized at low cost, and high performance CO 2 permeation can be achieved.
  • Type membrane reactor can be realized.
  • Example 7 The method for producing the membrane of the present invention containing glycine and cesium carbonate is as follows. First, 2 g of PVA / PAA salt copolymer (for example, SS gel manufactured by Sumitomo Seika) was added to 80 g of water and stirred at room temperature for 3 days or more. To 10 g of the resulting solution, 0.366 g of glycine and glycine were added. A cast solution was obtained by adding Cs 2 CO 3 having a mole number of 1/2 (0.794 g) and stirring until dissolved. Subsequent steps are the same as steps 2 to 5 of the above-described method for producing a film of the present invention.
  • PVA / PAA salt copolymer for example, SS gel manufactured by Sumitomo Seika
  • a method for producing a film containing only cesium carbonate is as follows. First, 2 g of PVA / PAA salt copolymer (for example, SS gel manufactured by Sumitomo Seika) was added to 80 g of water and stirred at room temperature for 3 days or more. Cs 2 CO 3 was added to 1 g of the resulting solution in 1 g. A cast solution was obtained by adding 16 g and stirring until dissolved. Subsequent steps are the same as steps 2 to 5 of the above-described method for producing a film of the present invention.
  • PVA / PAA salt copolymer for example, SS gel manufactured by Sumitomo Seika
  • Example 10 and 11 show the membrane of the present invention of Example 5 containing glycine and cesium hydroxide, the membrane of the present invention of Example 7 containing glycine and cesium carbonate, and the membrane of Comparative Example 4 containing only cesium carbonate. Shows the results of measuring CO 2 permeance R CO2 , H 2 permeance, and CO 2 / H 2 selectivity within a temperature range of 110 ° C. to 140 ° C.
  • the pressurized state of the raw material gas FG in the raw material side chamber 12 is 200 kPa.
  • the inventive membrane of Example 5 containing glycine and cesium hydroxide and the inventive membrane of Example 7 containing glycine and cesium carbonate have substantially the same performance. I understand.
  • the membrane of the present invention containing glycine and cesium hydroxide and the membrane of the present invention containing glycine and cesium carbonate are both 1000 GPU (3.33 ⁇ 10 6) over the entire temperature range of 110 ° C. to 140 ° C. It can be seen that a large CO 2 permeance exceeding ⁇ 4 mol / (m 2 ⁇ s ⁇ kPa)) is realized, and a very high CO 2 / H 2 selectivity of about 300 or more is realized.
  • FIGS. 12 to 14 show a membrane prepared by the same method as the membrane of the present invention of Example 5 containing cesium hydroxide (hereinafter referred to as “Example 8” as appropriate).
  • Example 8 cesium hydroxide
  • the results of measuring the CO 2 permeance R CO2 , the N 2 permeance R N2 , and the CO 2 / N 2 selectivity in the temperature range of 110 ° C. to 140 ° C. are shown.
  • the pressurized state of the raw material gas FG in the raw material side chamber 12 is 200 kPa.
  • the membrane of the present invention of Example 8 has high hydrogen selectivity and high performance in nitrogen selectivity. Since the molecular diameter of the nitrogen molecule is larger than that of the hydrogen molecule, it is naturally expected that the membrane having excellent selectivity to hydrogen is also excellent in selectivity to nitrogen, but this was confirmed by the results of this experiment.
  • the membrane of the present invention is obtained by casting a cast solution composed of an aqueous solution containing a PVA / PAA salt copolymer and glycine as a carbon dioxide carrier into a hydrophilic PTFE porous membrane for supporting a gel membrane.
  • the membrane of the present invention may be manufactured by a manufacturing method other than the manufacturing method.
  • a PVA / PAA salt copolymer gel film may be produced by impregnating glycine later.
  • the membrane of the present invention has a three-layer structure composed of a hydrophobic PTFE porous membrane / gel layer (carrier-containing gel membrane supported on a hydrophilic PTFE porous membrane) / hydrophobic PTFE porous membrane.
  • the support structure for the membrane of the present invention is not necessarily limited to the three-layer structure.
  • a two-layer structure composed of a hydrophobic PTFE porous film / gel layer (a carrier-containing gel film supported on a hydrophilic PTFE porous film) may be used.
  • a gel layer consists of a carrier containing gel film carry
  • the gel layer may be carry
  • the membrane of the present invention preferably contains an additive for promoting carbon dioxide permeability in the gel membrane in addition to glycine as a carbon dioxide carrier.
  • the additive is present in the carrier-containing gel film in a range of about 20 to 80% by weight and glycine is about 20% based on the total weight of the polymer, glycine and additive in the gel film.
  • the additive is present in the range of ⁇ 80% by weight and the additive is present in the range of about 0-30% by weight.
  • the additive is a low vapor pressure liquid such as an ionic fluid or oligomer, and is required to have hydrophilicity, thermal stability, affinity for carbon dioxide, and compatibility with glycine as a carbon dioxide carrier.
  • an ionic fluid having such characteristics a chemical substance selected from compounds consisting of combinations of the following cations and anions can be used.
  • Imidazolium having the following substituents at positions 1 and 3, substituted with an alkyl group, hydroxyalkyl group, ether group, allyl group, aminoalkyl group as a substituent group, or substituted with a quaternary ammonium cation A group having an alkyl group, a hydroxyalkyl group, an ether group, an allyl group or an aminoalkyl group as a group.
  • Anion Chloride ion, bromide ion, boron tetrafluoride ion, nitrate ion, bis (trifluoromethanesulfonyl) imide ion, hexafluorophosphate ion, or trifluoromethanesulfonate ion.
  • the ionic fluid examples include 1-allyl-3-ethylimidazolium bromide, 1-ethyl-3-methylimidazolium bromide, 1- (2-hydroxyethyl) -3-methylimidazolium bromide, 1 -(2-methoxyethyl) -3-methylimidazolium bromide, 1-octyl-3-methylimidazolium chloride, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate, 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, 1-ethyl-3-methylimidazolium bistrifluoromethanesulfonic acid, 1-ethyl-3-methylimidazolium dicyanamide, and trihexyl tetrachloride Decylphosphonium or the like can be used.
  • chemical substances selected from glycerin, polyglycerin, polyethylene glycol, polypropylene glycol, polyethylene oxide, polyethyleneimine, polyallylamine, polyvinylamine, and polyacrylic acid can be used. .
  • hydrophilic additive it becomes possible to retain moisture in the membrane as much as possible, and carbon dioxide permeability is promoted.
  • the additive can be used without inhibiting the facilitated transport of carbon dioxide by glycine, which is a carbon dioxide carrier. At the same time, it can be uniformly distributed in the membrane, and carbon dioxide permeability is promoted.
  • the present invention film is assumed to be applied to the CO 2 permeable membrane reactor, the membrane of the present invention, in addition to CO 2 permeable membrane reactor, selectively separating carbon dioxide Can be used for the purpose. Therefore, the source gas supplied to the membrane of the present invention is not limited to the mixed gas exemplified in the above embodiment.
  • CO 2 facilitated transport membrane according to the present invention is applicable to separation of carbon dioxide, in particular, the separation of carbon dioxide contained in the reformed gas such as a fuel cell mainly composed of hydrogen at a high selectivity to hydrogen It can be used for possible CO 2 facilitated transport membranes, and is further useful for CO 2 permeable membrane reactors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】 CO透過型メンブレンリアクターに適用可能な二酸化炭素透過性とCO/H選択性に優れたCO促進輸送膜を安定して提供する。 【解決手段】 CO促進輸送膜は、ハイドロゲル膜で構成されたゲル層1を、親水性の多孔膜2に担持させて提供される。更に好ましくは、親水性の多孔膜2に担持されたゲル層1が疎水性の多孔膜3,4によって被覆支持されている。当該ゲル膜は、グリシンとともにアルカリ金属元素を含む脱プロトン化剤を含んでいる。当該脱プロトン化剤は、好ましくは、アルカリ金属元素の水酸化物または炭酸塩であり、更により好ましくは、当該アルカリ金属元素が、カリウム若しくはセシウム若しくはルビジウムの何れかである。

Description

CO2促進輸送膜及びその製造方法
 本発明は、二酸化炭素の分離に用いられるCO促進輸送膜及びその製造方法に関し、特に、水素を主成分とする燃料電池用等の改質ガスに含まれる二酸化炭素を水素に対する高い選択性で分離可能なCO促進輸送膜、及び、排ガスに含まれる二酸化炭素を窒素に対する高い選択性で分離可能なCO促進輸送膜に関する。
 従来、その応用範囲の広さから、二酸化炭素を選択的に分離する方法が種々検討されている。例えば、燃料電池用等の改質ガスから二酸化炭素を選択的に分離することで、水素の純度を向上させることができる。また、地球温暖化の原因の一端となっている二酸化炭素を選択的に分離して地中に貯留させることで温暖化の進展を鈍化させることができるのではないかと期待されている。
 水素製造プロセスに目を向ければ、現在開発中の水素ステーション用改質システムでは、水蒸気改質により炭化水素を水素及び一酸化炭素(CO)に改質し、更に、CO変成反応を用いて一酸化炭素を水蒸気と反応させることにより水素を製造している。
 従来のCO変成器において、小型化や起動時間の短縮を阻害する原因として、以下の(化1)に示すCO変成反応の化学平衡上の制約から、多量のCO変成触媒が必要となっていることが挙げられる。一例として、50kWのPAFC(リン酸型燃料電池)用改質システムでは、改質触媒が20L必要であるのに対して、CO変成触媒は77Lと約4倍の触媒が必要となる。このことが、CO変成器の小型化や起動時間の短縮を阻害する大きな要因となっている。なお、記号「⇔」は、可逆反応であることを示している。
 (化1)
 CO + HO ⇔ CO + H
 そこで、CO変成器に二酸化炭素を選択的に透過させるCO促進輸送膜を備え、上記(化1)のCO変成反応で生成された右側の二酸化炭素を効率的にCO変成器外部に除去することで、化学平衡を水素生成側(右側)にシフトさせることができ、同一反応温度において高い転化率が得られる結果、一酸化炭素及び二酸化炭素を平衡の制約による限界を超えて除去することが可能となる。図15及び図16に、この様子を模式的に示す。図16(A)と(B)は、夫々、CO変成器がCO促進輸送膜を備えている場合と備えていない場合における、無次元化した触媒層長Zに対する一酸化炭素及び二酸化炭素の各濃度変化を示している。
 上記のCO促進輸送膜を備えたCO変成器(CO透過型メンブレンリアクター)により、一酸化炭素及び二酸化炭素を平衡の制約による限界を超えて除去することが可能となるため、水素ステーションのPSA(Pressure Swing Adsorption)の負荷低減及び改質反応とCO変成の低S/C(スチーム/カーボン比)化が図れ、水素ステーション全体のコスト低減及び高効率化が図られる。また、CO促進輸送膜を備えることで、CO変成反応の高速化(高SV化)が図られるため、改質システムの小型化及び起動時間の短縮が図られる。
 一方で、排ガス中のCO分離・回収技術に目を向けると、現在、セメント分野、製鉄分野、火力発電分野、石油・天然ガスの上流分野等、大量CO発生源におけるCOの分離回収技術として実用化され、最も一般的に用いられているのは湿式化学吸収法であり、主として水素製造プラントやアンモニア製造プラント等の大規模化学プラントの脱炭酸プロセスとして幅広く用いられている。既存の化学吸収法は、熱炭酸カリ等のアルカリ水溶液中へのCOの吸収工程と生成したアルカリ炭酸塩の熱分解によるCO再生工程とから構成されている。吸収塔を出たアルカリ炭酸塩水溶液は再生塔に供給され、再生塔に供給されたアルカリ炭酸塩水溶液はスチームを熱源として加熱され、熱分解によりCOと同伴水を放出する。COを放出した熱アルカリ水溶液は循環ポンプで再び吸収塔に供給される。
 このように、化学吸収法による脱炭酸工程は、プロセスが複雑であるだけでなく、再生塔の熱源として供給されるスチームと循環ポンプ動力で多くのエネルギーが消費されている。
 このCO分離回収における省エネルギー技術として以前からメンブレンの利用が検討されてきたが、従来開発されてきたCO/N分離用メンブレンは、高温で使用できないため、常温での使用が前提とされ、スチームをスイープガスとして利用できないため真空ポンプを利用せざるを得ず、そのための動力として多量の電力を消費するため省エネルギー効果も限定的で実用につながっていない。
 かかるCO透過型メンブレンリアクターの先行例としては、下記の特許文献1(或いは、同じ発明者による同一内容の特許文献2)に開示されているものがある。
 特許文献1、2において提案されている改質システムは、炭化水素、メタノール等の燃料を燃料電池自動車用の水素に車上で改質する際に発生する改質ガスの精製及び水性ガスシフト反応(CO変成反応)に有用なCO促進輸送膜プロセスを提供するもので、代表的な4種類のプロセスが、同文献に示されている。炭化水素(メタンを含む)を原料とする場合、水性ガスシフター(CO変成器)にCO促進輸送膜を備えたメンブレンリアクターを用いて二酸化炭素を選択的に除去することにより、一酸化炭素の反応率を高め一酸化炭素濃度を低下させるとともに生成水素の純度を向上させている。また、生成水素中に残留する%オーダーの一酸化炭素及び二酸化炭素はメタネーターで水素と反応させてメタンに変換して濃度を低下させ、燃料電池の被毒等による効率低下を防いでいる。
 特許文献1、2では、CO促進輸送膜として、主としてハロゲン化四級アンモニウム塩((R))を二酸化炭素キャリアとして含むポリビニルアルコール(PVA)等の親水性ポリマー膜が使用されている。また、該特許文献1、2の実施例6には、二酸化炭素キャリアとしてテトラメチルアンモニウムフルオリド塩50重量%を含む膜厚49μm50重量%のPVA膜とそれを支持する多孔質PTFE(四フッ化エチレン重合体)膜よりなる複合膜で形成されたCO促進輸送膜の作製方法が開示されており、同実施例7には、混合ガス(25%CO、75%H)を全圧3気圧、23℃で処理したときの当該CO促進輸送膜の膜性能が開示されている。当該膜性能として、COパーミアンスRCO2が7.2GPU(=2.4×10-6mol/(m・s・kPa))、CO/H選択率が19となっている。ここで、CO/H選択率は、COパーミアンスRCO2のHパーミアンスRH2に対する比で表される。
 また、下記特許文献3には、CO促進輸送膜として、炭酸セシウムとアミノ酸とを組み合わせて構成されたCO吸収剤が開示されている。
 特許文献3に記載のCO促進輸送膜の製法は、以下のとおりである。まず、炭酸セシウムの水溶液に市販のアミノ酸を所定の濃度になるように加えて、よく撹拌し混合水溶液を作製する。その後、ゲルを塗布した多孔PTFE膜(47Φ)のゲル塗布面を、作製した混合溶液に30分以上浸した後、ゆっくり膜を引き上げる。焼結金属の上にシリコーン膜を乗せ(溶液が透過側に漏れるのを防ぐため)その上に47mmΦの上記の含水ゲル膜を乗せ、その上からシリコーンパッキングの入ったセルをかぶせシーリングする。このようにして製造されたCO促進輸送膜に対して、供給ガスを50cc/分の速度で流し、膜の下側を真空引きし圧力を40torr程度まで下げる。
 特許文献3の実施例4では、炭酸セシウムと、2,3-ジアミノプロピオン酸塩酸塩をそれぞれ4(mol/kg)のモル濃度で構成したCO促進輸送膜の25℃におけるCO透過速度は1.1(10-4cm(STP)/cm・s・cmHg)、CO/N分離係数は300となっている。なお、COパーミアンスRCO2は、圧力差あたりの透過速度で定義されるので、特許文献3の実施例4におけるCOパーミアンスRCO2は、110GPUと算出されるが、本実施例におけるCO/H選択性に関するデータは開示されていない。
 また、特許文献4では、ポリビニルアルコールとアミノ酸塩の水溶液に架橋剤を加え、加熱乾燥させて形成した非多孔質膜が、CO選択透過性を示すことが開示されている。しかしながら、特許文献4の実施例には、室温(23℃)におけるCO透過性が示されているのみで、100℃以上の高温における膜特性は示唆されていない。
 一方、特許文献5には、ポリビニルアルコール-ポリアクリル酸塩(PVA/PAA)共重合体ゲル膜に2,3‐ジアミノプロピオン酸塩(DAPA)を添加したCO促進輸送膜が、特許文献6には、PVA/PAA共重合体塩ゲル膜に炭酸セシウム若しくは炭酸ルビジウムを添加したCO促進輸送膜が、本願発明者らにより開示されており、夫々、60GPU程度以上の高いCO透過性、及び、COパーミアンスRCO2のHパーミアンスRH2に対する比が100程度以上の高いCO/H選択率を100℃以上の高温において備えることが、明らかにされている。
特表2001-511430号公報 米国特許第6579331号明細書 特開2000-229219号公報 特許第3697265号明細書 特開2008-36463号公報 国際公開第2009/093666号公報
 CO促進輸送膜は、基本機能として二酸化炭素を選択的に分離することから、地球温暖化の原因となっている二酸化炭素の吸収或いは除去等を目的とした開発も行われている。しかしながら、CO促進輸送膜は、CO透過型メンブレンリアクターへの応用を考えた場合、使用温度、COパーミアンス、CO/H選択率等に対して、一定以上の性能が要求される。つまり、CO変成反応に供するCO変成触媒の性能が温度の低下とともに低下する傾向にあるため、使用温度は最低でも100℃が必要と考えられる。上記各特許文献1~4は、いずれも25℃程度の温度条件下で膜性能の測定が行われており、100℃以上の温度条件下においても十分な膜性能を示すCO促進輸送膜が上記各特許文献によって開示されたということはできない。
 また、COパーミアンス(二酸化炭素透過性の性能指標の一つ)は、CO変成反応の化学平衡を水素生成側(右側)にシフトさせ、一酸化炭素濃度と二酸化炭素濃度を平衡の制約による限界を超えて例えば0.1%程度以下に低減し、且つ、CO変成反応の高速化(高SV化)を図るためには、一定レベル以上(例えば、2×10-5mol/(m・s・kPa)=60GPU程度以上)が必要と考えられる。更に、CO変成反応で生成された水素が二酸化炭素とともにCO促進輸送膜を通して外部に廃棄されたのでは、当該廃棄ガスから水素を分離回収するというプロセスが必要となる。水素は当然に二酸化炭素より分子サイズが小さいので、二酸化炭素を透過可能な膜は水素も透過できることになるが、膜中の二酸化炭素キャリアによって二酸化炭素のみを選択的に膜の供給側から透過側に向けて輸送可能な促進輸送膜が必要となり、その場合のCO/H選択率として90~100程度以上が必要と考えられる。
 一方、CO促進輸送膜による膜分離プロセスにおいても、薄い膜を介してCOの吸収と放出を行わせるため、COの吸収時に発生するエネルギーがCO放出のためのエネルギーに利用され本質的な省エネルギープロセスとなり、脱炭酸工程でのエネルギー消費を大幅に削減することが可能となる。しかしながら、上述の通り、従来開発されてきたCO分離膜は、高温で使用できず、常温での使用が前提とされ、省エネルギー効果も限定的であるという問題があった。またCO/Nの選択率(COパーミアンスRCO2のNパーミアンスRN2に対する比)も数十程度の低い性能しか得られていなかった。
 本発明は、上述の問題点に鑑みてなされたものであり、その目的は、CO透過型メンブレンリアクターに適用可能なCO促進輸送膜を安定して提供することにある。
 本願発明者らは、鋭意研究により、グリシン(NH-CH-COOH)を添加したゲル膜が、上述した特許文献5に記載のDAPA添加CO促進輸送膜、及び、上述した特許文献6に記載の炭酸セシウム若しくは炭酸ルビジウムを添加したCO促進輸送膜よりも優れたCO輸送特性を示すことを見出した。本発明は、上記知見に基づくものである。
 上記目的を達成するための本発明に係るCO促進輸送膜は、100℃以上の温度条件下でCO/H選択性を有するCO促進輸送膜であって、グリシン、及び、前記グリシンのアミノ基のプロトン化を防止する脱プロトン化剤をハイドロゲル膜に含んで構成されたゲル層を、100℃以上の耐熱性を有した多孔膜に担持させてなることを第1の特徴とする。
 上記第1の特徴のCO促進輸送膜にでは、ゲル膜中に、グリシンが含まれることから、当該グリシンがゲル層の二酸化炭素の高濃度側界面で二酸化炭素を補足して低濃度側界面へと輸送する二酸化炭素キャリアとして機能し、100℃以上の高温において90~100程度以上の対水素選択率(CO/H)、及び、2×10-5mol/(m・s・kPa)(=60GPU)程度以上のCOパーミアンスを達成可能となる。
 ここで、グリシンのアミノ基(NH)がプロトン化され、NH の形で存在すると当該グリシンが二酸化炭素キャリアとして作用しないため、本発明では、グリシンと共にアミノ基のプロトン化を防止するための脱プロトン化剤を含むハイドロゲル膜を用いて、ゲル層を形成する。当該脱プロトン化剤としては、アルカリ金属元素の水酸化物または炭酸塩を含んでなることが好ましい。特に、脱プロトン化剤に含まれるアルカリ金属元素が、カリウム若しくはセシウム若しくはルビジウムの何れかであることがより好ましい。
 また、膜内に水分が無い場合でも二酸化炭素は促進輸送されるが、その透過速度は一般に非常に小さいため、高い透過速度を得るには膜内の水分が不可欠となる。従って、ゲル膜を保水性の高いハイドロゲル膜で構成することにより、ゲル膜内の水分が少なくなる高温下においても、可能な限り膜内に水分を保持することが可能となり、100℃以上の高温において高いCOパーミアンスを実現できる。
 尚、ハイドロゲルは、親水性ポリマーが架橋することで形成された三次元網目構造物であり、水を吸収することで膨潤する性質を有している。
 また、ハイドロゲル膜としては、ポリビニルアルコール-ポリアクリル酸塩共重合体ゲル膜を採用することが好ましい。ここで、当業者において、ポリビニルアルコール-ポリアクリル酸塩共重合体は、ポリビニルアルコール-ポリアクリル酸共重合体と呼ばれることもある。
 上記第1の特徴のCO促進輸送膜は、更に、110℃から140℃までの温度範囲のうち少なくとも特定の温度範囲内において、Hのパーミアンスに対するCOのパーミアンスの比で表されるCO/H選択率が、300以上を有することを第2の特徴とする。
 上記第2の特徴のCO促進輸送膜では、アルカリ金属元素を含む脱プロトン化剤を含んだハイドロゲル膜を用いてゲル層を形成することで、1000GPU程度以上の高いCOパーミアンス、及び、選択率が300程度以上の高いCO/H選択性を、100℃以上の高温において実現可能となった。
 尚、上記第1又は第2の特徴のCO促進輸送膜において、前記多孔膜が、親水性の多孔膜であることが好ましい。ゲル層を担持する多孔膜が親水性であることにより、欠陥の少ないゲル層を安定して作製することができ、高い対水素選択率を維持できる。
 一般に、多孔膜が疎水性であると、100℃以下においてゲル膜内の水分が多孔膜内の細孔に侵入して膜性能を低下させるのを防止でき、また、100℃以上においてゲル膜内の水分が少なくなる状況でも同様の効果が期待できると考えられるため、疎水性の多孔膜の使用が推奨される。しかしながら、本実施形態のCO促進輸送膜では、以下の理由から親水性多孔膜を使用することで、欠陥が少なく高い対水素選択率を維持できるCO促進輸送膜を安定して作製できるようになった。
 親水性の多孔膜上に、ゲル膜を構成するポリマーとグリシンの水溶液からなるキャスト溶液をキャストすると多孔膜の細孔内が液で満たされ、更に、多孔膜の表面にキャスト溶液が塗布される。このキャストした膜を乾燥させると、多孔膜の表面のみならず細孔内にもゲル層が充填されるので欠陥が生じ難くなり、ゲル層の成膜成功率が高くなる。
 細孔部分の割合(多孔度)、及び、細孔が膜表面に垂直に真っ直ぐではなく曲がりくねっていること(屈曲率)を考慮すると、細孔内のゲル層はガス透過の大きな抵抗となるので、多孔膜表面のゲル層と比較して透過性は低くなり、ガスパーミアンスは低下する。他方、疎水性の多孔膜上にキャスト溶液をキャストする場合、多孔膜の細孔内は液で満たされにくく、主として多孔膜の表面のみにキャスト溶液が塗布され細孔はガスで満たされるので、疎水性多孔膜上のゲル層におけるガスパーミアンスは、親水性多孔膜と比較して水素及び二酸化炭素の両方において高くなる。
 しかし、細孔内のゲル層と比較して膜表面のゲル層は欠陥が生じ易く、ゲル層の成膜成功率は低下する。水素は二酸化炭素より分子サイズが小さいので、微小な欠陥個所或いは局所的にガスパーミアンスが高い個所では二酸化炭素より水素の方が、ガスパーミアンスが高くなる可能性があるが、ゲル層にグリシンを添加した本発明のCO促進輸送膜の場合、促進輸送機構で透過する二酸化炭素の透過速度は物理的な溶解拡散機構で透過する水素のパーミアンスよりも格段に大きいため、二酸化炭素パーミアンスは膜の局所的な欠陥の影響を殆ど受けないのに対して、水素のパーミアンスは欠陥により著しく増加する。
 結果として、親水性多孔膜を使用することで、疎水性多孔膜を使用した場合よりも優れた対水素選択率(CO/H)を得ることができる。従って、実用化の観点からは、CO促進輸送膜の安定性、耐久性が非常に重要となり、対水素選択率(CO/H)の高い親水性多孔膜を使用する方が有利となる。
 尚、疎水性多孔膜と親水性多孔膜の違いによるガスパーミアンスの差は、キャスト溶液中に予め二酸化炭素キャリアであるグリシンを添加せずにゲル化後に含侵させても、細孔内のゲル層がガス透過の大きな抵抗となる点は同じであり、同様に発現するものと推定される。
 上記第1又は第2の何れかの特徴のCO促進輸送膜は、更に、前記親水性の多孔膜に担持された前記ゲル層が疎水性の第2の多孔膜によって被覆支持されていることを第3の特徴とする。
 上記第3の特徴のCO促進輸送膜によれば、親水性の多孔膜で担持されたゲル層が疎水性の多孔膜によって保護され、使用時におけるCO促進輸送膜の強度が増す。この結果、CO促進輸送膜をCO透過型メンブレンリアクターへ応用した場合に、CO促進輸送膜の両側(反応器内外)での圧力差が大きく(例えば、2気圧以上)なっても十分な膜強度を確保できる。更に、ゲル層が疎水性の多孔膜によって被覆されるため、水蒸気が疎水性の多孔膜の膜表面に凝縮しても当該多孔膜が疎水性のために水がはじかれてゲル層内にしみ込むのを防止している。よって、疎水性の多孔膜によって、ゲル層中の二酸化炭素キャリアが水で薄められ、また、薄められた二酸化炭素キャリアがゲル層から流出することを防止できる。
 上記目的を達成するための本発明に係るCO促進輸送膜の製造方法は、上記第1の特徴のCO促進輸送膜を製造する方法であって、
 ポリビニルアルコール‐ポリアクリル酸塩共重合体、アルカリ金属元素を含む脱プロトン化剤、及び、グリシンを含む水溶液からなるキャスト溶液を作製する工程と、前記キャスト溶液を多孔膜にキャストした後に乾燥させてゲル層を作製する工程と、を有することを特徴とする。
 上記特徴のCO促進輸送膜の製造方法によれば、膜材料(PVA/PAA)に対する二酸化炭素キャリアの配分を適正に調整したキャスト溶液が予め準備されるため、最終的なPVA/PAAゲル膜内の二酸化炭素キャリアの配合比率の適正化が簡易に実現でき、膜性能の高性能化が実現できる。
 従って、本発明に係るCO促進輸送膜およびその製造方法によれば、100℃以上の使用温度、2×10-5mol/(m・s・kPa)(=60GPU)程度以上のCOパーミアンス、及び、90~100程度以上のCO/H選択率が実現でき、CO透過型メンブレンリアクターへ応用可能なCO促進輸送膜が提供可能となり、CO変成器の小型化、起動時間の短縮、及び、高速化(高SV化)が図れる。
本発明に係るCO促進輸送膜の一実施形態における構造を模式的に示す断面図 本発明に係るCO促進輸送膜の作製方法の第1実施形態を示す工程図 本発明に係るCO促進輸送膜の膜性能を評価するための実験装置の構成図 本発明に係るCO促進輸送膜のグリシン添加によるCOパーミアンスの促進効果を示す図 本発明に係るCO促進輸送膜のグリシン添加によるHパーミアンスの変化を示す図 本発明に係るCO促進輸送膜のグリシン添加によるCO/H選択率の改善効果を示す図 本発明に係るグリシン添加CO促進輸送膜において、COパーミアンス、Hパーミアンス、及びCO/H選択率のポリマー依存性を示す表 本発明に係るグリシン添加CO促進輸送膜のCOパーミアンスを、DAPA添加膜の膜性能と比較した図 本発明に係るグリシン添加CO促進輸送膜のCO/H選択率を、DAPA添加膜の膜性能と比較した図 本発明に係るグリシン添加CO促進輸送膜のCOパーミアンスを、炭酸セシウムのみ含有する膜の膜性能と比較した図 本発明に係るグリシン添加CO促進輸送膜のCO/H選択率を、単線セシウムのみ含有する膜の膜性能と比較した図 本発明に係るCO促進輸送膜のグリシン添加によるCOパーミアンスの促進効果を示す図 本発明に係るCO促進輸送膜のグリシン添加によるNパーミアンスの変化を示す図 本発明に係るCO促進輸送膜のグリシン添加によるCO/N選択率の改善効果を示す図 CO促進輸送膜を備えたCO変成器における各種ガスの流れを示す図 CO促進輸送膜を備えている場合と備えていない場合における、CO変成器の無次元化した触媒層長に対する一酸化炭素及び二酸化炭素の各濃度変化の比較図
 本発明に係るCO促進輸送膜及びその製造方法(以下、適宜「本発明膜」及び「本発明方法」という。)の実施の形態につき、図面に基づいて説明する。
 本発明膜は、水分を含むゲル膜内に二酸化炭素キャリアを含有したCO促進輸送膜であって、100℃以上の使用温度、高い二酸化炭素透過性とCO/H選択性を有するCO透過型メンブレンリアクターへ応用可能なCO促進輸送膜である。更に、本発明膜は、高いCO/H選択性を安定して実現するために、二酸化炭素キャリアを含有したゲル膜を担持する支持膜として、親水性の多孔膜を採用している。
 具体的には、本発明膜は、膜材料として、ポリビニルアルコール‐ポリアクリル酸(PVA/PAA)塩共重合体を使用し、二酸化炭素キャリアとして、最も単純なアミノ酸であるグリシンを使用する。そして、本発明膜は、図1に模式的に示すように、二酸化炭素キャリアとしてのグリシンを含有するPVA/PAAゲル膜1を担持した親水性多孔膜2が、2枚の疎水性多孔膜3,4に挟持される3層構造で構成される。以下、グリシンを含有するゲル膜1を、二酸化炭素キャリアを含有しないゲル膜と区別するために、適宜「キャリア含有ゲル膜」と略称する。
 二酸化炭素キャリアであるグリシン(NH‐CH‐COOH)は、水に溶解すると[NH ‐CH‐COO]のように解離する。しかしながら、二酸化炭素はNH と反応せず、フリーのNHと反応する。このため、二酸化炭素キャリアとしてグリシンを用いる場合、グリシンを溶解した後述のキャスト溶液に等量以上のアルカリを加えて、NH をNHに変換する必要がある。当該アルカリとしては、プロトン化したNH からプロトンを奪い、NHに変換できるだけの強塩基性を有するものであれば良く、アルカリ金属元素の水酸化物または炭酸塩を好適に利用できる。しかしながら、アルカリ金属元素の差により、本発明膜の二酸化炭素透過性やCO/H選択率に差が生じることが、以降の実施例において示される。
 尚、等量以上にアルカリが添加された場合、余剰のアルカリが二酸化炭素と反応し、例えばCsOHの場合(化2)に示すように炭酸塩が生成される。このとき、当該炭酸塩は二酸化炭素キャリアとして機能する(特許文献6参照)が、後述するように、その二酸化炭素透過性およびCO/H選択性は、グリシンを二酸化炭素キャリアとする本発明膜よりも劣る。
 (化2)
 CO + CsOH → CsHCO
 CsHCO + CsOH → CsCO + H
 また、上記(化2)より、例えば脱プロトン化剤として水酸化セシウム(CsOH)を用いても、炭酸セシウム(CsCO)を用いても、最終のpH値が同じであれば、同等物となる。但し、炭酸セシウム(CsCO)を用いた場合には、キャリア含有ゲル膜中に、炭酸イオン、炭酸水素イオンが存在することになるが、当該イオンによる二酸化炭素の促進輸送への寄与は小さいと考えられる。同様に、水酸化リチウムと炭酸リチウム、水酸化ナトリウムと炭酸ナトリウム、水酸化カリウムと炭酸カリウム、水酸化ルビジウムと炭酸ルビジウムについても、夫々、同等物の関係にある。
 親水性多孔膜2は、親水性に加えて、100℃以上の耐熱性、機械的強度、キャリア含有ゲル膜との密着性を有するのが好ましく、更に、多孔度(空隙率)が55%以上で、細孔径は0.1~1μmの範囲にあるのが好ましい。本実施形態では、これらの条件を備えた親水性多孔膜として、親水性化した四フッ化エチレン重合体(PTFE)多孔膜を使用する。
 疎水性多孔膜3,4は、疎水性に加えて、100℃以上の耐熱性、機械的強度、キャリア含有ゲル膜との密着性を有するのが好ましく、更に、多孔度(空隙率)が55%以上で、細孔径は0.1~1μmの範囲にあるのが好ましい。本実施形態では、これらの条件を備えた疎水性多孔膜として、親水性化していない四フッ化エチレン重合体(PTFE)多孔膜を使用する。
 次に、本発明膜の作製方法(本発明方法)の一実施形態について、図2を参照して説明する。
 先ず、PVA/PAA塩共重合体とグリシンを含む水溶液からなるキャスト溶液を作製する(工程1)。より詳細には、水80gにPVA/PAA塩共重合体(例えば、住友精化製のSSゲル)を2g添加して室温で3日以上攪拌し、得られた溶液10gに、更にグリシン0.366gと、グリシンと等モルの各種アルカリ金属元素を含む脱プロトン剤を添加して、溶解するまで攪拌してキャスト溶液を得る。
 次に、工程1で得たキャスト溶液中の気泡を除去するために、遠心分離(回転数5000rpmで30分間)を行う(工程2)。
 次に、工程2で得たキャスト溶液を、親水性PTFE多孔膜(例えば、アドバンテック製、H010A142C、膜厚35μm、細孔径0.1μm、空隙率70%)と疎水性PTFE多孔膜(例えば、住友電工ファインポリマー製、フロロポアFP010、膜厚60μm、細孔径0.1μm、空隙率55%)を2枚重ね合わせた層状多孔膜の親水性PTFE多孔膜側の面上に、アプリケータでキャストする(工程3)。尚、後述する実施例のサンプルでのキャスト厚は500μmである。ここで、キャスト溶液は、親水性PTFE多孔膜中の細孔内に浸透するが、疎水性のPTFE多孔膜の境界面で浸透が停止し、層状多孔膜の反対面までキャスト溶液がしみ込まず、層状多孔膜の疎水性PTFE多孔膜側面にはキャスト溶液が存在せず取り扱いが容易となる。
 次に、キャスト後の親水性PTFE多孔膜を室温で約半日自然乾燥させ、キャスト溶液をゲル化させゲル層を生成する(工程4)。本発明方法では、工程3において、キャスト溶液を層状多孔膜の親水性PTFE多孔膜側の表面にキャストするため、工程4において、ゲル層は、親水性PTFE多孔膜の表面(キャスト面)に形成されるのみならず細孔内にも充填して形成されるので、欠陥(ピンホール等の微小欠陥)が生じ難くなり、ゲル層の製膜成功率が高くなる。尚、工程4において、自然乾燥させたPTFE多孔膜を、更に、120℃程度の温度で、2時間程度熱架橋するのが望ましい。尚、後述する実施例及び比較例のサンプルでは、何れも熱架橋を行っている。
 次に、工程4で得た親水性PTFE多孔膜表面のゲル層側に、工程3で用いた層状多孔膜の疎水性PTFE多孔膜と同じ疎水性PTFE多孔膜を重ね、図1に模式的に示すように、疎水性PTFE多孔膜/ゲル層(親水性PTFE多孔膜に担持されたキャリア含有ゲル膜)/疎水性PTFE多孔膜よりなる3層構造の本発明膜を得る(工程5)。尚、図1において、キャリア含有ゲル膜1が親水性PTFE多孔膜2の細孔内に充填している様子を模式的に直線状に表示している。
 以上、工程1~工程5を経て作製された本発明膜は、CO透過型メンブレンリアクターへ応用可能な膜性能、即ち、使用温度100℃、2×10-5mol/(m・s・kPa)(=60GPU)程度以上のCOパーミアンス、及び、100程度以上のCO/H選択率が実現できる。
 また、ゲル層を疎水性PTFE多孔膜で挟持した3層構造とすることにより、一方の疎水性PTFE多孔膜は、工程3及び工程4で用いられ、キャリア含有ゲル膜を担持する親水性PTFE多孔膜の支持とキャスト溶液の浸透防止に供せられ、他方の疎水性PTFE多孔膜は、キャリア含有ゲル膜を他方面側から保護するのに用いられる。
 更に、水蒸気が疎水性PTFE多孔膜の膜表面に凝縮しても当該PTFE多孔膜が疎水性のために水がはじかれてキャリア含有ゲル膜にしみ込むのを防止している。よって、他方のPTFE多孔膜によって、キャリア含有ゲル膜中の二酸化炭素キャリアが水で薄められ、また、薄められた二酸化炭素キャリアがキャリア含有ゲル膜から流出することを防止できる。
 次に、後述する実施例、及び、比較例の各サンプルの膜性能を評価するための実験装置の構成及び実験方法について、図3を参照して説明する。
 図3に示すように、CO促進輸送膜(本発明膜)が、ステンレス製の流通式ガス透過セル11(膜面積:2.88cm)の原料ガス側室12と透過側室13の間に、2枚のフッ素ゴム製ガスケットをシール材として用いて固定されている。原料ガス(CO、H、HOからなる混合ガス)FGを、2.24×10-2mol/minの流量で原料側室12に供給し、スイープガス(Arガス)SGを、8.18×10-4mol/minの流量で透過側室13に供給する。原料ガス側室12の圧力は、排気ガスの排出路の途中の冷却トラップ14の下流側に設けられた背圧調整器15で調整される。透過側室13の圧力は大気圧である。透過側室13から排出するスイープガスSG’中の水蒸気を冷却トラップ16で除去した後のガス組成をガスクロマトグラフ17で定量し、これとスイープガスSG中のArの流量よりCO及びHのパーミアンス[mol/(m・s・kPa)]を計算し、その比より、CO/H選択率を算出する。尚、冷却トラップ16とガスクロマトグラフ17の間にも背圧調整器19が設けられており、これによって透過側室13の圧力が調整される。
 原料ガスFGは、CO変成器内における原料ガスを模擬するために、CO、H、HOからなる混合ガスを、CO:3.65%、H:32.85%、HO:63.5%の混合比率(モル%)に調整した。具体的には、10%COと90%H(モル%)よりなる混合ガス流(25℃、1atmでの流量:200cm/min、8.18×10-3mol/min)に水を定量送液ポンプ18で送入し(流量:0.256cm/min、1.42×10-2mol/min)、100℃以上に加熱して水分を蒸発させて、上記混合比率の混合ガスを調製し、これを原料ガス側室12に供給した。
 スイープガスSGは、本発明膜を透過する被測定ガス(CO、H)の透過側室の分圧を低くして、透過推進力を維持するために供給され、被測定ガスと異なるガス種(Arガス)を用いる。具体的には、Arガス(25℃での流量:20cm/min、8.18×10-4mol/min)を透過側室13に供給した。
 尚、図示していないが、サンプル膜の使用温度、及び、原料ガスFGとスイープガスSGの温度を一定温度に維持するために、実験装置は、上記ガスを加熱する予熱器を有し、サンプル膜を固定した流通式ガス透過セルは、恒温槽内に設置している。
 以下に、具体的な実施例、及び、比較例の膜性能について説明する。
 〈性能比較結果1〉
 先ず、図4~図6において、キャリア含有ゲル膜を担持する多孔膜として、親水性PTFE多孔膜を使用し、工程1においてアルカリ金属元素の水酸化物を添加して作成された各サンプルのCOパーミアンスRCO2、HパーミアンスRH2、及びCO/H選択率を、110℃~140℃の温度範囲内で測定した結果を示す。尚、原料ガス側室12内の原料ガスFGの加圧状態は200kPaである。
 尚、当該各サンプルは、上述の作製方法により、水酸化物を構成するアルカリ金属元素を変えたものを複数用意した。測定を行った各サンプルの、PVA/PAA、グリシン、アルカリ水酸化物の配合比率は以下の通りである。
 (実施例1)
 先ず、キャスト溶液を作製する工程1において、PVA/PAA塩共重合体水溶液10gに対し、グリシンを0.366g、LiOH・HOを0.204g添加し、キャスト溶液を得た。以降、これにより作製されたLiOHを含有する本発明膜を、実施例1の本発明膜と称する。
 (実施例2)
 同様に、キャスト溶液を作製する工程1において、PVA/PAA塩共重合体水溶液10gに対し、グリシンを0.366g、NaOHを0.195g添加し、キャスト溶液を得た。以降、これにより作製されたNaOHを含有する本発明膜を、実施例2の本発明膜と称する。
 (実施例3)
 同様に、キャスト溶液を作製する工程1において、PVA/PAA塩共重合体水溶液10gに対し、グリシンを0.366g、KOHを0.273g添加し、キャスト溶液を得た。以降、これにより作製されたKOHを含有する本発明膜を、実施例3の本発明膜と称する。
 (実施例4)
 同様に、キャスト溶液を作製する工程1において、PVA/PAA塩共重合体水溶液10gに対し、グリシンを0.366g、RbOHを0.499g添加し、キャスト溶液を得た。以降、これにより作製されたRbOHを含有する本発明膜を、実施例4の本発明膜と称する。
 (実施例5)
 同様に、キャスト溶液を作製する工程1において、PVA/PAA塩共重合体水溶液10gに対し、グリシンを0.366g、CsOHを0.731g添加し、キャスト溶液を得た。以降、これにより作製されたCsOHを含有する本発明膜を、実施例5の本発明膜と称する。
 図4より、COパーミアンスは、温度上昇と共に減少する傾向にあるが、KOH,RbOH,CsOHを含有する本発明膜(実施例3~5)のCOパーミアンスは温度依存性が僅かであり、結果、110℃~140℃の全ての温度範囲において、3.33×10-4mol/(m・s・kPa)以上、即ち1000GPU程度以上の大きなCOパーミアンスが実現されていることが分かる。一方、LiOH,NaOHを含有する本発明膜(実施例1,2)では、温度上昇に伴ってCOパーミアンスが大きく減少してゆくが、それでも、110℃~130℃の温度範囲に渡って、2×10-5mol/(m・s・kPa)(=60GPU)程度以上のCOパーミアンスを実現できている。
 図5より、KOH,RbOH,CsOHを含有する本発明膜(実施例3~5)のHパーミアンスは、温度上昇と共に僅かに減少する傾向にある。このため、CO/H選択率は、KOH,RbOH,CsOHを含有する本発明膜では、図6に示すように、110℃~140℃の全ての温度範囲に渡って、300程度以上の非常に高いCO/H選択率が実現されている。
 一方、図5より、LiOH,NaOHを含有する本発明膜(実施例1,2)のHパーミアンスは温度上昇と共に大きく上昇する。この結果、図6に示すCO/H選択率は、LiOH,NaOHを含有する膜では、温度上昇と共に大きく減少する。それでも、110℃近傍の温度範囲において、100程度以上の高いCO/H選択率が実現できている。
 〈性能比較結果2〉
 次に、膜材料として、ポリビニルアルコール‐ポリアクリル酸(PVA/PAA)塩共重合体のほか、ポリアクリル酸(PAA)塩重合体、及び、ポリビニルアルコール(PVA)を用いた膜の膜性能について説明する。うちPVA/PAA膜については、上述したCsOHを含有する実施例5の本発明膜と同一の構成である。
 (実施例6)
 PAA塩重合体膜の作製方法は以下の通りである。先ず、水80gにPAA塩重合体(例えば、サンダイヤポリマー社製のサンフレッシュST-500MPSA)を2g添加して室温で3日以上攪拌し、得られた溶液10gに、更にグリシン0.366gと、グリシンと等モル(0.731g)のCsOHを添加し、溶解するまで攪拌してキャスト溶液を得た。その後の工程は、上述した本発明膜の作製方法の工程2~5と同様である。以降、この方法で作製された膜を、実施例6の本発明膜と称する。
 更に、本実施形態では、膜材料としてポリビニルアルコール(PVA)を用いた膜を作製し、本発明膜との性能比較を行った。更に、本実施形態では、キャスト溶液中の水とPVAの比が異なる2種類のPVA膜を作製し、本発明膜との性能比較を行った。比較例としてのPVA膜の作製方法は以下の通りである。
 (比較例1)
 先ず、水9gにPVA1gを添加して90℃で溶解するまで攪拌し、溶液1を得た。併せて、水10gにグリシン1.5gとCsOH2.995gを加えて溶解するまで攪拌し、溶液2を得た。そして、溶液1と溶液2を混合して均一になるまで攪拌してキャスト溶液を得た。当該キャスト溶液を用いて、上述した本発明膜の作製方法の工程2~5と同様の方法で、PVA膜を作成した。以降、この方法で作製された膜を、比較例1の膜と称する。
 (比較例2)
 同様に、水9gにPVA1gを添加して90℃で溶解するまで攪拌し、溶液3を得た。更に、水15.5gにグリシン0.75gとCsOH1.498gを加えて溶解するまで攪拌した溶液4を用意し、溶液3を5g採取して、溶液4と混合して均一になるまで攪拌してキャスト溶液を得た。当該キャスト溶液を用いて、上述した本発明膜の作製方法の工程2~5と同様の方法で、PVA膜を作成した。以降、この方法で作製された膜を、比較例2の膜と称する。キャスト溶液中の水とPVAの重量比は、比較例1の場合HO:PVAが19:1であり、比較例2の場合HO:PVAが40:1となっている。
 上記のPAA塩重合体膜(実施例6)、及び、2種類のPVA膜(比較例1、2)ともに、キャスト溶液中に含まれるポリマーとグリシンとCsOHの重量比は18:27:55であり、実施例5のPVA/PAA塩共重合体膜と同一となっている。従って、膜構成物質の重量比が同一であることにより、ポリマーの違いがCO分離性能に及ぼす影響を見ることができる。うちPVA/PAA塩共重合体膜(実施例5)およびPAA塩重合体膜(実施例6)は、ハイドロゲル膜である。
 図7に各種ポリマーを用いて作製した実施例5、6の本発明膜、及び、比較例1、2の膜の110℃におけるガス透過性能を示す。原料ガスFGやスウィープガスSGの流量等、他の測定条件は図4~図6と同様である。図7より、ハイドロゲルを用いた膜(実施例5、6)の方が、PVA膜(比較例1,2)に対し、COパーミアンス、H2バリア性ともに優れていることが分かる。そして、比較例1、2の膜では、CO/H選択率が100未満であるのに対し、ハイドロゲル膜を用いる本発明の構成とすることで、100以上のCO/H選択率を実現でき、CO透過型メンブレンリアクターへの応用が可能となることが分かる。
 〈性能比較結果3〉
 次に、二酸化炭素キャリアとして特許文献5に記載のDAPAを含有する膜を作製し、本発明膜との性能比較を行った結果を示す。
 (比較例3)
 比較例としてのDAPA膜の作製方法は以下の通りである。先ず、水80gにPVA/PAA塩共重合体(例えば、住友精化製のSSゲル)を2g添加して室温で3日以上攪拌し、得られた溶液10gに、更にDAPA0.655gと、DAPAの2倍のモル数のCsOHを添加して、溶解するまで攪拌してキャスト溶液を得た。その後の工程は、上述した本発明膜の作製方法の工程2~5と同様である。尚、DAPAの添加量は実施例5の本発明膜におけるグリシンの添加モル数と同一となっている。また、グリシンはアミノ基を1つ有するのに対し、DAPAはアミノ基を2つ有している。このため、DAPAに対して2倍のモル数のCsOHを添加している。以降、この方法で作製された膜を、比較例3の膜と称する。
 図8と図9に、DAPAを添加した比較例3の膜、及び、グリシンを添加した実施例5の本発明膜のCOパーミアンスRCO2、Hパーミアンス、及びCO/H選択率を、110℃~140℃の温度範囲内で測定した結果を示す。尚、原料側室12内の原料ガスFGの加圧状態は200kPaである。DAPAを添加した比較例3の膜と比較して、実施例5の本発明膜の方が、COパーミアンス、対水素選択性ともに著しく高い値を示している。
 グリシンはDAPAと比べて安価であるので、グリシンを二酸化炭素キャリアとして用いることで、低コストで、優れたCO輸送特性を有するCO促進輸送膜を実現でき、且つ、高性能のCO透過型メンブレンリアクターが実現可能となる。
 〈性能比較結果4〉
 次に、二酸化炭素キャリアとして特許文献6に記載の炭酸セシウムのみ含有し、グリシンを含有しない膜、及び、グリシンと炭酸セシウムまたは水酸化セシウムを含有する膜を作製し、性能比較を行った結果を示す。
 (実施例7)
 グリシンと炭酸セシウムを含有する本発明膜の作成方法は以下の通りである。先ず、水80gにPVA/PAA塩共重合体(例えば、住友精化製のSSゲル)を2g添加して室温で3日以上攪拌し、得られた溶液10gに、グリシン0.366gと、グリシンの1/2のモル数(0.794g)のCsCOを添加して溶解するまで攪拌してキャスト溶液を得た。その後の工程は、上述した本発明膜の作製方法の工程2~5と同様である。尚、CsCOの添加量をグリシンと等モルではなく1/2モルとしたのは、Csのモル数をグリシンのモル数と同一にするためである。以降、この方法で作製された膜を、実施例7の本発明膜と称する。
 (比較例4)
 また、炭酸セシウムのみ含有する膜の作製方法は以下の通りである。先ず、水80gにPVA/PAA塩共重合体(例えば、住友精化製のSSゲル)を2g添加して室温で3日以上攪拌し、得られた溶液10gに、CsCOを1.16g添加して溶解するまで攪拌してキャスト溶液を得た。その後の工程は、上述した本発明膜の作製方法の工程2~5と同様である。尚、CsCOの添加量は、グリシンの添加による影響を調べるため、実施例7の本発明膜におけるグリシンとCsCOの添加量の和と同一重量としている。以降、この方法で作製された膜を、比較例4の膜と称する。
 図10と図11に、グリシンと水酸化セシウムを含有する実施例5の本発明膜、グリシンと炭酸セシウムを含有する実施例7の本発明膜、及び、炭酸セシウムのみ含有する比較例4の膜について、COパーミアンスRCO2、Hパーミアンス、及び、CO/H選択率を、110℃~140℃の温度範囲内で測定した結果を示す。尚、原料側室12内の原料ガスFGの加圧状態は200kPaである。
 図10と図11より、グリシンと水酸化セシウムを含有する実施例5の本発明膜と、グリシンと炭酸セシウムを含有する実施例7の本発明膜では、ほぼ同等の性能を有していることが分かる。
 次に、炭酸セシウムのみ含有する比較例4の膜と炭酸セシウムとともにグリシンを含有する実施例7の本発明膜を比較すると、グリシンを膜内に含有する膜の方が、COパーミアンス、対水素選択性ともに著しく高い値を示している。
 そして、グリシンと水酸化セシウムを含有する本発明膜と、グリシンと炭酸セシウムを含有する本発明膜は、どちらも110℃~140℃の全ての温度範囲に渡って、1000GPU(3.33×10-4mol/(m・s・kPa))を超える大きなCOパーミアンスが実現され、300程度以上の非常に高いCO/H選択率が実現されていることが分かる。
 〈性能比較結果5〉
 次に、本発明膜の対窒素選択性について、図12~図14に、水酸化セシウムを含有する実施例5の本発明膜と同一の方法で作成した膜(以降、適宜「実施例8の本発明膜」と称する)について、COパーミアンスRCO2、NパーミアンスRN2、及びCO/N選択率を、110℃~140℃の温度範囲内で測定した結果を示す。尚、原料側室12内の原料ガスFGの加圧状態は200kPaである。
 図12~図14より、実施例8の本発明膜は、高い対水素選択性を有するとともに、対窒素選択性においても高性能を有していることが分かる。窒素分子は水素分子よりも分子径が大きいため、対水素選択性に優れる膜は、対窒素選択性にも優れることが当然に予想されるが、本実験結果によりそれを確認できた。
 以上より、二酸化炭素キャリアとしてのグリシンを添加することにより、100℃以上の使用温度において、従来のDAPA添加膜や炭酸セシウム含有膜と比較しても著しく高い二酸化炭素透過性とCO/H選択率を有し、CO透過型メンブレンリアクターへ応用可能なCO促進輸送膜が実現される。
 以下に、本発明に係るCO促進輸送膜の別実施形態につき説明する。
 〈1〉上記実施形態では、本発明膜は、PVA/PAA塩共重合体と二酸化炭素キャリアとしてのグリシンを含む水溶液からなるキャスト溶液を、ゲル膜担持用の親水性PTFE多孔膜にキャストした後にゲル化して作製したが、本発明膜は、当該作製方法以外の作製方法で作製しても構わない。例えば、PVA/PAA塩共重合体ゲル膜に、グリシンを後から含浸させて作製しても構わない。
 〈2〉上記実施形態では、本発明膜は、疎水性PTFE多孔膜/ゲル層(親水性PTFE多孔膜に担持されたキャリア含有ゲル膜)/疎水性PTFE多孔膜よりなる3層構造としたが、本発明膜の支持構造は、必ずしも当該3層構造に限定されない。例えば、疎水性PTFE多孔膜/ゲル層(親水性PTFE多孔膜に担持されたキャリア含有ゲル膜)よりなる2層構造でも構わない。また、上記実施形態では、ゲル層が親水性PTFE多孔膜に担持されたキャリア含有ゲル膜からなる場合を説明したが、ゲル層が疎水性の多孔膜に担持されていても構わない。
 〈3〉上記実施形態において、本発明膜は、二酸化炭素キャリアとしてのグリシンに加えて、二酸化炭素透過性を促進するための添加剤をゲル膜内に含有することが好ましい。この場合、当該添加剤は、ゲル膜中のポリマーとグリシンと添加剤の全重量を基準として、キャリア含有ゲル膜中において、ポリマーは約20~80重量%の範囲で存在し、グリシンは約20~80重量%の範囲で存在し、添加剤は約0~30重量%の範囲で存在する。
 当該添加剤は、イオン性流体やオリゴマー等の低蒸気圧の液体であって、親水性、熱安定性、二酸化炭素に対する親和性、及び、二酸化炭素キャリアであるグリシンの相溶性が必要とされる。かかる特性を備えたイオン性流体として、下記のカチオン、アニオンの組合せよりなる化合物から選択される化学物質が利用できる。
 カチオン:1,3位に以下の置換基を有するイミダゾリウムで、置換基としてアルキル基、ヒドロキシアルキル基、エーテル基、アリル基、アミノアルキル基を有するもの、または、第4級アンモニウムカチオンで、置換基としてアルキル基、ヒドロキシアルキル基、エーテル基、アリル基、アミノアルキル基を有するもの。
 アニオン:塩化物イオン、臭化物イオン、四フッ化ホウ素イオン、硝酸イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ヘキサフルオロリン酸イオン、または、トリフルオロメタンスルホン酸イオン。
 また、当該イオン性流体の具体例として、1‐アリル‐3‐エチルイミダゾリウムブロミド、1‐エチル‐3-メチルイミダゾリウムブロミド、1‐(2‐ヒドロキシエチル)‐3‐メチルイミダゾリウムブロミド、1‐(2‐メトキシエチル)‐3‐メチルイミダゾリウムブロミド、1‐オクチル‐3‐メチルイミダゾリウムクロリド、N,N‐ジエチル‐N‐メチル‐N‐(2‐メトキシエチル)アンモニウムテトラフルオロボラート、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-エチル-3-メチルイミダゾリウムビストリフルオロメタンスルホン酸、1-エチル-3-メチルイミダゾリウムジシアナミド、及び、塩化トリヘキシルテトラデシルホスホニウム等が利用できる。
 他の例として、イオン性流体以外に、グリセリン、ポリグリセリン、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンオキサイド、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、及び、ポリアクリル酸の中から選択される化学物質が利用できる。
 上記添加剤をゲル膜内に含有することで、二酸化炭素透過性が促進され、100℃以上のPVA/PAAゲル膜内の水分が少なくなる高温下においても、高いCOパーミアンスが実現できる。CO促進輸送膜を100℃以上の高温環境で使用すると、PVA/PAAゲル膜の架橋が更に進行し、二酸化炭素キャリアによる二酸化炭素の促進輸送が阻害され二酸化炭素透過性が低下する虞があるところ、当該添加剤が含まれることで、架橋の進行が抑制される結果、高温下での使用による二酸化炭素透過性の低下が抑制されることが、高COパーミアンスの理由として考えられる。
 また、親水性の添加剤を使用することにより、可能な限り膜内に水分を保持することが可能となり、二酸化炭素透過性が促進される。また、二酸化炭素キャリアとの相容性と二酸化炭素との親和性を兼ね備えた添加剤を使用することで、二酸化炭素キャリアであるグリシンによる二酸化炭素の促進輸送を阻害することなく、添加剤がグリシンとともに膜内に均質に分布でき、二酸化炭素透過性が促進される。
 〈4〉上記実施形態では、本発明膜がCO透過型メンブレンリアクターへ応用される場合を想定したが、本発明膜は、CO透過型メンブレンリアクター以外にも、二酸化炭素を選択的に分離する目的で使用可能である。従って、本発明膜に供給される原料ガスは、上記実施形態に例示した混合ガスに限定されるものではない。
 〈5〉上記実施形態において例示した、本発明膜の組成における各成分の混合比率、膜の各部の寸法等は、本発明の理解を容易にするための例示であり、本発明はそれらの数値のCO促進輸送膜に限定されるものではない。
 本発明に係るCO促進輸送膜は、二酸化炭素の分離に利用可能であり、特に、水素を主成分とする燃料電池用等の改質ガスに含まれる二酸化炭素を水素に対する高い選択比で分離可能なCO促進輸送膜に利用可能であり、更には、CO透過型メンブレンリアクターに有用である。
 1:      二酸化炭素キャリアを含有するゲル膜(ゲル層)
 2:      親水性多孔膜
 3、4:    疎水性多孔膜
 10:     CO促進輸送膜(本発明膜)
 11:     流通式ガス透過セル
 12:     原料ガス側室
 13:     透過側室
 14、16:  冷却トラップ
 15、19:  背圧調整器
 17:     ガスクロマトグラフ
 18:     定量送液ポンプ
 FG:     原料ガス
 SG、SG’: スイープガス
 

Claims (8)

  1.  100℃以上の温度条件下でCO/H選択性を有するCO促進輸送膜であって、
     グリシン、及び、前記グリシンのアミノ基のプロトン化を防止する脱プロトン化剤をハイドロゲル膜に含んで構成されたゲル層を、100℃以上の耐熱性を有した多孔膜に担持させてなることを特徴とするCO促進輸送膜。
  2.  前記脱プロトン化剤が、アルカリ金属元素の水酸化物または炭酸塩を含んでなることを特徴とする請求項1に記載のCO促進輸送膜。
  3.  前記脱プロトン化剤に含まれるアルカリ金属元素が、カリウム若しくはセシウム若しくはルビジウムの何れかであることを特徴とする請求項2に記載のCO促進輸送膜。
  4.  前記ハイドロゲル膜が、ポリビニルアルコール-ポリアクリル酸塩共重合体ゲル膜であることを特徴とする請求項1~3の何れか一項に記載のCO促進輸送膜。
  5.  110℃から140℃までの温度範囲のうち少なくとも特定の温度範囲内において、
     Hのパーミアンスに対するCOのパーミアンスの比で表されるCO/H選択率が、300以上を有することを特徴とする請求項1~4の何れか一項に記載のCO促進輸送膜。
  6.  前記多孔膜が、親水性の多孔膜であることを特徴とする請求項1~5の何れか一項に記載のCO促進輸送膜。
  7.  前記親水性の多孔膜に担持された前記ゲル層が疎水性の第2の多孔膜によって被覆支持されていることを特徴とする請求項6に記載のCO促進輸送膜。
  8.  請求項1~7の何れか一項に記載のCO促進輸送膜の製造方法であって、
     ポリビニルアルコール‐ポリアクリル酸塩共重合体、アルカリ金属元素を含む脱プロトン化剤、及び、グリシンを含む水溶液からなるキャスト溶液を作製する工程と、
     前記キャスト溶液を多孔膜にキャストした後に乾燥させてゲル層を作製する工程と、
     を有することを特徴とするCO促進輸送膜の製造方法。
     
PCT/JP2012/069023 2011-08-01 2012-07-26 Co2促進輸送膜及びその製造方法 WO2013018659A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/235,663 US20140352540A1 (en) 2011-08-01 2012-07-26 Co2-facilitated transport membrane and production method of same
CN201280035380.1A CN104168988A (zh) 2011-08-01 2012-07-26 Co2促进传送膜及其制造方法
KR1020147005349A KR101591207B1 (ko) 2011-08-01 2012-07-26 Co₂촉진 수송막 및 그 제조 방법
EP12820658.8A EP2742993A4 (en) 2011-08-01 2012-07-26 CO2 SUPPORTED TRANSPORT MEMBRANE AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011168458 2011-08-01
JP2011-168458 2011-08-01

Publications (1)

Publication Number Publication Date
WO2013018659A1 true WO2013018659A1 (ja) 2013-02-07

Family

ID=47629184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069023 WO2013018659A1 (ja) 2011-08-01 2012-07-26 Co2促進輸送膜及びその製造方法

Country Status (6)

Country Link
US (1) US20140352540A1 (ja)
EP (1) EP2742993A4 (ja)
JP (1) JP5553421B2 (ja)
KR (1) KR101591207B1 (ja)
CN (1) CN104168988A (ja)
WO (1) WO2013018659A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156183A1 (ja) * 2013-03-29 2014-10-02 富士フイルム株式会社 酸性ガス分離用複合体の製造方法および製造装置
WO2014156185A1 (ja) * 2013-03-29 2014-10-02 富士フイルム株式会社 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
WO2015015803A1 (ja) * 2013-07-30 2015-02-05 富士フイルム株式会社 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール
WO2015015802A1 (ja) * 2013-07-30 2015-02-05 富士フイルム株式会社 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール
EP2979745A4 (en) * 2013-03-29 2016-06-15 Fujifilm Corp PROCESS FOR PRODUCING ACIDIC GAS SEPARATION COMPOSITE MEMBRANE AND ACID GAS SEPARATION MEMBRANE MODULE

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2910581A4 (en) 2012-10-22 2016-07-13 Sumitomo Chemical Co COPOLYMER AND CARBON DIOXIDE GAS SEPARATION MEMBRANE
KR20150134315A (ko) 2013-03-29 2015-12-01 가부시키가이샤 르네상스 에너지 리서치 Co2 촉진 수송막, 그 제조 방법 및 당해 제조 방법에 사용되는 수지 조성물, 그리고 co2 분리 모듈, co2 분리 방법 및 장치
JP6160862B2 (ja) * 2013-07-25 2017-07-12 国立大学法人神戸大学 アミノ酸イオン性液体含有高分子ゲルおよびその製造方法
JP6067649B2 (ja) * 2013-12-26 2017-01-25 富士フイルム株式会社 酸性ガス分離モジュール
JP6223255B2 (ja) * 2014-03-28 2017-11-01 次世代型膜モジュール技術研究組合 ガス分離膜
EP3181214A4 (en) 2014-08-11 2018-03-21 Sumitomo Chemical Company Limited Composition for co2 gas separation membrane, co2 gas separation membrane and method for producing same, and co2 gas separation membrane module
US10744454B2 (en) 2014-11-18 2020-08-18 Sumitomo Chemical Company, Limited Carbon dioxide gas separation membrane, method for manufacturing same, and carbon dioxide gas separation membrane module
MY186087A (en) * 2015-10-22 2021-06-21 Uop Llc Dual layer-coated membranes for gas separations
KR102205760B1 (ko) * 2016-03-04 2021-01-21 아사히 가세이 가부시키가이샤 가스 분리용 모듈 및 가스 분리 방법
FI3427811T3 (fi) * 2016-03-09 2023-01-31 Polttojärjestelmä
EP3441132A4 (en) 2016-04-04 2019-12-11 Sumitomo Chemical Company Limited SAUERGASTRENNMEMBRAN AND SAUERGASTRENNÖFAFAHEN WITH, SAUERGASTRENNMODUL AND SAUERGASTRENNVORRICHTUNG
US11084001B2 (en) * 2016-09-04 2021-08-10 Ariel Scientific Innovations Ltd. Selectively-permeable membrane
CN106268380B (zh) * 2016-09-19 2019-07-09 石河子大学 一种基于甘氨酸钠的聚电解质膜及其制备方法和应用
JP2018172563A (ja) * 2017-03-31 2018-11-08 住友化学株式会社 相互貫入網目構造を有するゲル
JP6742656B2 (ja) 2017-09-07 2020-08-19 株式会社ルネッサンス・エナジー・リサーチ 発電システム
DE102017123342A1 (de) 2017-10-09 2019-04-11 Schott Ag TO-Gehäuse mit hoher Reflexionsdämpfung
KR102043348B1 (ko) 2017-11-06 2019-11-13 한국에너지기술연구원 금속-유기 다면체가 함유된 박막층을 포함하는 기체 분리막 및 이의 제조방법
JP6633595B2 (ja) 2017-11-07 2020-01-22 住友化学株式会社 ガス分離装置及びガス分離方法
CN111699031B (zh) * 2017-12-27 2022-10-28 株式会社新生能源研究 Co2除去方法和装置
CN108744987B (zh) * 2018-06-20 2023-09-01 华北电力大学 一种用于气体膜分离的补水微结构以及系统
EP3851184A4 (en) * 2018-09-14 2022-06-08 Sumitomo Chemical Company Limited PROCESS FOR MAKING A MEMBRANE FOR ACID GAS SEPARATION
JPWO2020241563A1 (ja) * 2019-05-29 2020-12-03
JP7264722B2 (ja) * 2019-05-29 2023-04-25 住友化学株式会社 組成物、ガス分離膜及びその製造方法、並びにガス分離装置
JP2023021800A (ja) * 2021-08-02 2023-02-14 環境工学株式会社 二酸化炭素透過剤、二酸化炭素透過装置、及び二酸化炭素透過方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11509251A (ja) * 1995-07-07 1999-08-17 エクソン リサーチ アンド エンジニアリング カンパニー 親水性ポリマー中にアミノ酸の塩を含む膜
JP2000229219A (ja) 1999-02-09 2000-08-22 Agency Of Ind Science & Technol 二酸化炭素の吸収剤
JP2001511430A (ja) 1997-08-01 2001-08-14 エクソンモービル リサーチ アンド エンジニアリング カンパニー Co2選択膜プロセスおよび燃料を燃料電池用の水素に改質するためのシステム
JP2001519711A (ja) * 1997-03-14 2001-10-23 エクソン リサーチ アンド エンジニアリング カンパニー ポリアミンポリマーおよびブレンド中にアミノ酸塩を含んでなる膜
JP2008036463A (ja) 2006-08-01 2008-02-21 Renaissance Energy Research:Kk Co2促進輸送膜及びその製造方法
WO2009044588A1 (ja) * 2007-10-01 2009-04-09 Research Institute Of Innovative Technology For The Earth 新規ガス分離膜およびその製造方法ならびにそれを用いるガス処理方法
WO2009093666A1 (ja) 2008-01-24 2009-07-30 Renaissance Energy Research Corporation Co2促進輸送膜及びその製造方法
JP2009195900A (ja) * 2008-01-24 2009-09-03 Renaissance Energy Research:Kk 二酸化炭素分離装置
WO2011122581A1 (ja) * 2010-03-29 2011-10-06 富士フイルム株式会社 ガス分離膜その製造方法、それらを用いたガス混合物の分離方法、ガス分離膜モジュール、気体分離装置
WO2012086836A1 (ja) * 2010-12-24 2012-06-28 株式会社ルネッサンス・エナジー・リサーチ ガス分離装置、メンブレンリアクター、水素製造装置
WO2012096055A1 (ja) * 2011-01-12 2012-07-19 富士フイルム株式会社 二酸化炭素分離膜形成用組成物、二酸化炭素分離膜及びその製造方法、並びに二酸化炭素分離装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE624440A (ja) * 1961-11-06
US5556619A (en) * 1992-08-20 1996-09-17 The Du Pont Merck Pharmaceutical Company Crosslinked polymeric ammonium salts
US7981261B2 (en) * 2000-06-28 2011-07-19 Uchicago Argonne, Llc Integrated device and substrate for separating charged carriers and reducing photocorrosion and method for the photoelectrochemical production of electricity and photocatalytic production of hydrogen
US9597632B2 (en) * 2012-02-06 2017-03-21 Renaissance Energy Research Corporation Selectively CO 2-permeable membrane, method for separating CO2 from mixed gas, and membrane separation equipment
KR20150020597A (ko) * 2012-10-02 2015-02-26 가부시키가이샤 르네상스 에너지 리서치 Co2 촉진 수송막 및 그 제조 방법 그리고 co2 분리 방법 및 장치
KR20150134315A (ko) * 2013-03-29 2015-12-01 가부시키가이샤 르네상스 에너지 리서치 Co2 촉진 수송막, 그 제조 방법 및 당해 제조 방법에 사용되는 수지 조성물, 그리고 co2 분리 모듈, co2 분리 방법 및 장치

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11509251A (ja) * 1995-07-07 1999-08-17 エクソン リサーチ アンド エンジニアリング カンパニー 親水性ポリマー中にアミノ酸の塩を含む膜
JP3697265B2 (ja) 1995-07-07 2005-09-21 エクソンモービル リサーチ アンド エンジニアリング カンパニー 親水性ポリマー中にアミノ酸の塩を含む膜
JP2001519711A (ja) * 1997-03-14 2001-10-23 エクソン リサーチ アンド エンジニアリング カンパニー ポリアミンポリマーおよびブレンド中にアミノ酸塩を含んでなる膜
JP2001511430A (ja) 1997-08-01 2001-08-14 エクソンモービル リサーチ アンド エンジニアリング カンパニー Co2選択膜プロセスおよび燃料を燃料電池用の水素に改質するためのシステム
US6579331B1 (en) 1997-08-01 2003-06-17 Exxonmobil Research And Engineering Company CO2-Selective membrane process and system for reforming a fuel to hydrogen for a fuel cell
JP2000229219A (ja) 1999-02-09 2000-08-22 Agency Of Ind Science & Technol 二酸化炭素の吸収剤
JP2008036463A (ja) 2006-08-01 2008-02-21 Renaissance Energy Research:Kk Co2促進輸送膜及びその製造方法
WO2009044588A1 (ja) * 2007-10-01 2009-04-09 Research Institute Of Innovative Technology For The Earth 新規ガス分離膜およびその製造方法ならびにそれを用いるガス処理方法
WO2009093666A1 (ja) 2008-01-24 2009-07-30 Renaissance Energy Research Corporation Co2促進輸送膜及びその製造方法
JP2009195900A (ja) * 2008-01-24 2009-09-03 Renaissance Energy Research:Kk 二酸化炭素分離装置
WO2011122581A1 (ja) * 2010-03-29 2011-10-06 富士フイルム株式会社 ガス分離膜その製造方法、それらを用いたガス混合物の分離方法、ガス分離膜モジュール、気体分離装置
WO2012086836A1 (ja) * 2010-12-24 2012-06-28 株式会社ルネッサンス・エナジー・リサーチ ガス分離装置、メンブレンリアクター、水素製造装置
WO2012096055A1 (ja) * 2011-01-12 2012-07-19 富士フイルム株式会社 二酸化炭素分離膜形成用組成物、二酸化炭素分離膜及びその製造方法、並びに二酸化炭素分離装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2742993A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2979745A4 (en) * 2013-03-29 2016-06-15 Fujifilm Corp PROCESS FOR PRODUCING ACIDIC GAS SEPARATION COMPOSITE MEMBRANE AND ACID GAS SEPARATION MEMBRANE MODULE
WO2014156183A1 (ja) * 2013-03-29 2014-10-02 富士フイルム株式会社 酸性ガス分離用複合体の製造方法および製造装置
JP2014195760A (ja) * 2013-03-29 2014-10-16 富士フイルム株式会社 酸性ガス分離用複合体の製造方法および製造装置
JP2014208325A (ja) * 2013-03-29 2014-11-06 富士フイルム株式会社 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
US10022675B2 (en) 2013-03-29 2018-07-17 Fujifilm Corporation Method of producing composite for acid gas separation and apparatus for producing same
US9839882B2 (en) 2013-03-29 2017-12-12 Fujifilm Corporation Method for producing acid gas separation composite membrane, and acid gas separation membrane module
WO2014156185A1 (ja) * 2013-03-29 2014-10-02 富士フイルム株式会社 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
US9718030B2 (en) 2013-03-29 2017-08-01 Fujifilm Corporation Method for producing acid gas separation composite membrane, and acid gas separation membrane module
CN105431220A (zh) * 2013-07-30 2016-03-23 富士胶片株式会社 酸性气体分离用层积体和具备该层积体的酸性气体分离用组件
JP2015044189A (ja) * 2013-07-30 2015-03-12 富士フイルム株式会社 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール
US9452384B2 (en) 2013-07-30 2016-09-27 Fujifilm Corporation Acidic gas separation laminate and acidic gas separation module provided with laminate
US9457319B2 (en) 2013-07-30 2016-10-04 Fujifilm Corporation Acidic gas separation laminate and acidic gas separation module provided with laminate
JP2015044187A (ja) * 2013-07-30 2015-03-12 富士フイルム株式会社 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール
WO2015015802A1 (ja) * 2013-07-30 2015-02-05 富士フイルム株式会社 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール
WO2015015803A1 (ja) * 2013-07-30 2015-02-05 富士フイルム株式会社 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール

Also Published As

Publication number Publication date
EP2742993A1 (en) 2014-06-18
JP5553421B2 (ja) 2014-07-16
CN104168988A (zh) 2014-11-26
JP2013049048A (ja) 2013-03-14
EP2742993A4 (en) 2015-06-17
KR20140042922A (ko) 2014-04-07
US20140352540A1 (en) 2014-12-04
KR101591207B1 (ko) 2016-02-18

Similar Documents

Publication Publication Date Title
JP5553421B2 (ja) Co2促進輸送膜及びその製造方法
JP4965927B2 (ja) Co2促進輸送膜及びその製造方法
JP4965928B2 (ja) 二酸化炭素分離装置及び方法
CA2790195C (en) Method for using a co2-facilitated transport membrane to remove carbon dioxide from a gas
JP5474172B2 (ja) 二酸化炭素分離装置
KR101330336B1 (ko) 가스 분리 장치, 멤브레인 리액터, 수소 제조 장치, 가스 분리 방법, 수소 제조 방법
US10858248B2 (en) Method for separating CO2 using facilitated CO2 transport membrane
Okada et al. CO2-facilitated transport membrane and method for producing the same
WO2021079609A1 (ja) Co2促進輸送膜及びその製造方法並びにco2分離方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820658

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147005349

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14235663

Country of ref document: US