WO2013080994A1 - 促進輸送膜の製造方法 - Google Patents

促進輸送膜の製造方法 Download PDF

Info

Publication number
WO2013080994A1
WO2013080994A1 PCT/JP2012/080709 JP2012080709W WO2013080994A1 WO 2013080994 A1 WO2013080994 A1 WO 2013080994A1 JP 2012080709 W JP2012080709 W JP 2012080709W WO 2013080994 A1 WO2013080994 A1 WO 2013080994A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
membrane
facilitated transport
forming solution
facilitated
Prior art date
Application number
PCT/JP2012/080709
Other languages
English (en)
French (fr)
Inventor
岡田 治
英治 神尾
伸彰 花井
井崎 博和
奨平 笠原
Original Assignee
株式会社ルネッサンス・エナジー・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ルネッサンス・エナジー・リサーチ filed Critical 株式会社ルネッサンス・エナジー・リサーチ
Priority to JP2013547180A priority Critical patent/JP5881737B2/ja
Publication of WO2013080994A1 publication Critical patent/WO2013080994A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/062Tubular membrane modules with membranes on a surface of a support tube
    • B01D63/063Tubular membrane modules with membranes on a surface of a support tube on the inner surface thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/142Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Definitions

  • the present invention relates to a method for producing a facilitated transport film having a function of selectively permeating a specific gas species such as carbon dioxide and water vapor.
  • CO 2 separation and recovery process can be configured compared to the current chemical absorption method and the more expensive PSA method.
  • CO 2 capture from power generation exhaust, steelmaking exhaust, cement exhaust, etc., and next generation energy processes such as CTL (Coal to Liquids) It can be applied to small-scale chemical plants and facilities that could not be applied to the field of decarboxylation, and CO 2 can be easily separated and recovered, which is expected to contribute greatly to a low-carbon society.
  • the membrane area is several thousand m 2 or more. Modularization is necessary.
  • the membrane separation module having a large area, there is generally a restriction on the installation space. Therefore, it is necessary to fill a large membrane area in the smallest possible space.
  • the module container is small, and there is an advantage that the cost is reduced. Therefore, it is very important in terms of economy.
  • tubular modules and hollow fiber modules are one of the common structures because of their high membrane packing density and ease of maintenance.
  • the cylindrical membranes constituting these modules are useful for space saving necessary for realizing a large-scale module because the packing density can be increased when the inner diameter is smaller.
  • the cylindrical CO 2 facilitated transport membrane described in Patent Document 1 is formed by dip-coating a gel solution added with a CO 2 carrier on the outside of a porous ceramic cylindrical support to form a separation functional layer.
  • the dip coating method is one of the most common methods for forming a separation functional layer on a support. In this method, a uniform separation functional layer can be formed inside a support having a small inner diameter. Have difficulty.
  • a step of adding a carrier that selectively reacts with a specific gas in the membrane forming liquid or in the separation functional layer after film formation is provided.
  • a high-performance membrane through which a specific gas selectively permeates can be easily produced.
  • a CO 2 carrier if desired to selectively transmit CO 2
  • steam and a steam carrier if desired to selectively transmit (water vapor)
  • the SO 2 carrier if it is desired to selectively transmit the SO 2 Addition is possible, and free design is possible for each purpose.
  • the facilitated transport membrane 1 has a two-layered cylindrical shape in which a separation functional layer 4 is formed on the inner peripheral surface of the porous support 3. Both ends of the cylinder are sealed with respect to the upper and lower surfaces of the cell 7 so that the processing space 5 inside the cylinder of the facilitated transport film 1 and the processing space 6 outside the cylinder constitute separate spaces, respectively. (Seal), the facilitated transport membrane 1 is fixed inside the cell 7, and the membrane module 2 is configured.
  • the feed gas FG is to include steam gas to supply water to the separating functional layer 4 at a predetermined partial pressure
  • the CO 2 permeance depends on the relative humidity of the raw material gas FG (the ratio of the steam partial pressure of the raw material gas FG to the saturated water vapor pressure at the evaluation temperature).
  • the treatment space 5 inside the porous support 3 is filled with the film-forming solution, and the inner peripheral surface of the porous support 3 is covered with the film-forming solution.
  • a gas for example, an inert gas such as Ar gas
  • the film forming solution is brought into close contact with the inner peripheral surface of the porous support 3 (step 4).
  • the pressurized state is maintained for a predetermined period (5 to 30 minutes).
  • Step 1 the film-forming solution is prepared (Step 1), defoamed (Step 2), and the porous support 3 is fixed in the cell 7 (Step). 3).
  • Steps 1 to 3 are the same as those in the first embodiment described above, and a description thereof will be omitted.
  • gas for example, inert gas such as Ar gas
  • inert gas such as Ar gas
  • Step 1 2 g of PVA / PAA salt copolymer was added to 80 g of water and stirred at room temperature for 3 days or more, and 9.11 g of cesium carbonate as a CO 2 carrier was further added and dissolved in the resulting solution. To prepare a film-forming solution.
  • the film-forming solution prepared in this way is referred to as a film-forming solution A.
  • ⁇ Film Forming Solution B In step 1, PVA / PAA salt copolymer in water 80g and added 2g stirring over 3 days at room temperature, the resulting solution was further added cesium carbonate 4.66g as CO 2 carrier, dissolved To prepare a film-forming solution.
  • the film-forming solution prepared in this way is referred to as a film-forming solution B.
  • the film forming solution B is a film in which the weight ratio of the specific carrier and the hydrophilic polymer is different from that of the film forming solution A.
  • Step 1 2 g of PVA / PAA salt copolymer was added to 80 g of water and stirred at room temperature for 3 days or more. Further, 3 g of glycine and 5 moles of cesium hydroxide as a CO 2 carrier were added to the resulting solution. .99 g was added and stirred until dissolved to prepare a film forming solution.
  • the film-forming solution prepared in this way is referred to as a film-forming solution C.
  • Step 1 add 2 g of PVA / PAA salt copolymer to 80 g of water and stir at room temperature for 3 days or more. Add 0.35 g of cesium chloride as a steam carrier to the resulting solution until dissolved. A film-forming solution was prepared by stirring.
  • the film-forming solution prepared in this way is referred to as a film-forming solution E.
  • FIG. 6 shows the film forming solution used for forming each film used for confirming the effect of the method of the present invention, the pressurizing condition during film forming, the measured CO 2 permeance [10 ⁇ 4 mol / m 2 ⁇ s ⁇ kPa], H 2 permeance [10 ⁇ 6 mol / m 2 ⁇ s ⁇ kPa], and CO 2 / H 2 selectivity (ratio of CO 2 permeance to H 2 permeance) are shown as lists, respectively. . Further, FIG.
  • the method for producing the facilitated transport film is as follows.
  • the film-forming solution A prepared in step 1 is filled in the processing space 5 inside the porous support 3 made of ceramic (here, alumina), and then an inert gas is poured to pressurize the processing space 5 to 500 kPa. did. Thereafter, the pressurized state was maintained for 5 to 30 minutes.
  • the membrane pressurized for 5 minutes, facilitated transport membrane 1a, The membrane pressurized for 10 minutes, facilitated transport membrane 1b, The membrane pressurized for 20 minutes, facilitated transport membrane 1c, The membrane pressurized for 30 minutes is referred to as a facilitated transport membrane 1d.
  • This film is referred to as a comparative film 13a.
  • FIG. 6A shows the CO 2 permeance, H 2 permeance, and CO 2 / H 2 selectivity (ratio of CO 2 permeance to H 2 permeance) of the facilitated transport membranes 1a to 1e and the comparative membrane 13a.
  • the results measured at 160 ° C. are shown. At this time, the relative humidity of the raw material gas FG was 48%.
  • the film 13a of the comparative example formed without applying pressure has extremely low H 2 barrier properties (that is, high H 2 permeance), and the dense separation function layer 4 is not formed.
  • H 2 barrier properties that is, high H 2 permeance
  • the facilitated transport film 1e has a smaller applied pressure during film formation than the facilitated transport films 1a to 1d, but in this case, the H 2 permeance is relatively large even when the applied time is 2 hours.
  • the thickness of the separation functional layer 4 of the facilitated transport film 1e was approximately the same as that of the facilitated transport film 1a ( ⁇ 14 ⁇ m). From the above, even if the film thickness of the separation functional layer 4 after film formation is approximately the same, in the film 1a formed by pressure at 500 kPa and the film 1e formed by pressure at 200 kPa, the density of the separation function layer 4 is high. It is suggested that sex is different.
  • Method for producing a facilitated transport membrane is as follows.
  • the film-forming solution C prepared in step 1 is filled in the processing space 6 outside the porous support 3 made of ceramic (here, alumina), and then an inert gas is poured into the processing space 6 at 300 kPa for 15 minutes. Pressurized. About other processes, such as a drying process, it is the same as that of a 2nd embodiment mentioned above.
  • the film formed by the above method is referred to as a facilitated transport film 11a.
  • a method for producing a facilitated transport film by the dip coating method is shown below.
  • the porous support 3 is immersed in the film-forming solution C at room temperature for 15 hours in a state where the film-forming solution does not flow inside the porous support 3, and then at a rate of 100 mm / min. Raised. Then, after drying for 30 minutes in a 65 degreeC thermostat, it was further dried at 120 degreeC for 2 hours.
  • the film formed by the above method is referred to as a comparative film 13b.
  • FIG. 6 (b) shows the results of the film 13b of a comparative example with the above facilitated transport membrane 11a, CO 2 permeance, H 2 permeance, CO 2 / H 2 selectivity ratio was measured at 110 ° C.. At this time, the relative humidity of the raw material gas FG was 70%.
  • film 13b of the comparative example was formed a separating functional layer 4 on the outer side of the porous support 3 by a dip coating method, H 2 permeance is very high, as a result CO 2 / H 2 selective The rate is very small. This is because the dense separation functional layer 4 is not formed.
  • the facilitated transport film 11a in which the separation functional layer 4 is formed on the outside of the porous support 3 by pressure film formation has low H 2 permeance. This is presumably because the dense separation functional layer 4 is formed.
  • the dense separation functional layer 4 can be formed not only inside but also outside the porous support 3 by pressure film formation.
  • a method for producing a facilitated transport film dried without applying pressure is shown below.
  • the film-forming solution B prepared in step 1 is filled into the processing space 5 inside the porous support 3 made of ceramic (here, alumina), and then an inert gas is poured into the processing space 5 at 500 kPa for 30 minutes. Pressurized. Other steps are the same as those in the first embodiment described above.
  • the film formed by the above method is referred to as a facilitated transport film 1f.
  • a facilitated transport film 1g when the film-forming solution carried on the inner peripheral surface of the porous support 3 is dried after pressing, 500 kPa An inert gas was allowed to flow into the processing space 5 through the vents 8a and 8b.
  • the film formed by the above method is referred to as a facilitated transport film 1g.
  • FIG. 6C shows the results of measuring the facilitated transport membrane 1f and 1 g of the CO 2 permeance, H 2 permeance, and CO 2 / H 2 selectivity at 160 ° C.
  • the relative humidity of the raw material gas FG was 90%.
  • the facilitated transport membrane 1f and 1g are different facilitated transport membrane 1a ⁇ 1e above, 11a, 13a, 13b, or the later-described facilitated transport membrane 1h ⁇ 1i (thickness 0.5mm of the porous support 3)
  • the porous support 3 is a large membrane having a thickness of 1.5 mm.
  • the facilitated transport film 1g dried under pressure has higher hydrogen barrier properties (that is, lower H 2 permeance) and a denser separation function layer 4 is formed. .
  • Method for producing a facilitated transport membrane is as follows.
  • the film-forming solution B prepared in step 1 is filled into the processing space 5 inside the porous support 3 made of ceramic (here, alumina), and then an inert gas is poured into the processing space 5 at 500 kPa for 30 minutes. Pressurized. About other processes, such as a drying process, it is the same as that of a 1st embodiment mentioned above.
  • the film formed by the above method is referred to as a facilitated transport film 1h.
  • the film-forming solution D prepared in step 1 is filled in the processing space 5 inside the porous support 3 made of ceramic (here, alumina), and then an inert gas is poured to fill the processing space 5 with 500 kPa. For 30 minutes. About other processes, such as a drying process, it is the same as that of a 1st embodiment mentioned above.
  • the membrane formed by the above method is referred to as a facilitated transport membrane 1i.
  • the facilitated transport films 1h and 1i are films formed by the same production method except that the film forming liquid is different in the facilitated transport film 1d.
  • the facilitated transport membrane 1h is made of a PVA / PAA salt copolymer as a membrane material
  • the facilitated transport membrane 1i is made of PVA as a membrane material, but the other film forming conditions are the same for the facilitated transport membrane 1f and 1g. It is.
  • the weight ratio of the polymer and the cesium carbonate that is the CO 2 carrier in the film-forming solution is also 3: 7. Therefore, it is possible to see the influence of the difference in polymer on the CO 2 separation performance due to the same weight ratio of the membrane constituent materials.
  • the PVA / PAA salt copolymer film (facilitated transport film 1h) is a hydrogel film.
  • FIG. 7 (a) shows that both the facilitated transport membranes 1h and 1i have high CO 2 / N 2 selectivity, but are membranes obtained by adding a CO 2 carrier to a PVA / PAA salt copolymer that is a hydrogel.
  • a certain facilitated transport film 1h has a CO 2 permeance three times higher than that of the facilitated transport film 1i.
  • CO 2 -facilitated transport The film water is necessary for the reaction of cesium carbonate and CO 2 which is a carrier in, that a gel layer comprising a separation function layer 4 of a highly water-retentive hydrogel membrane, separating functional layer 4 It is a factor that the facilitated transport membrane 1h has higher CO 2 selectivity than 1i that it can retain a larger amount of water that contributes to CO 2 facilitated transport.
  • the film-forming solution C prepared in Step 1 is filled into the processing space 5 inside the porous support 3 made of ceramic (here, alumina), and then an inert gas is poured into the processing space 5 at 300 kPa. Pressurized for 15 minutes. About other processes, such as a drying process, it is the same as that of a 1st embodiment mentioned above.
  • the film formed by the above method is referred to as a facilitated transport film 1j.
  • FIG. 7B shows the results of measuring the CO 2 permeance, N 2 permeance, and CO 2 / N 2 selectivity of the facilitated transport membrane 1j at 110 ° C.
  • the relative humidity of the raw material gas FG was 70%.
  • the facilitated transport membrane 1j is an evaluation result of N 2 selectivity with respect to a membrane in which a dense separation functional layer 4 is formed inside the porous support 3, and has a very high CO 2 / N 2 selectivity of 5000.
  • Method for producing a facilitated transport membrane is as follows.
  • the film-forming solution E prepared in step 1 is filled into the processing space 5 inside the porous support 3 made of ceramic (here, alumina), and then an inert gas is poured into the processing space 5 at 300 kPa for 15 minutes. Pressurized. About other processes, such as a drying process, it is the same as that of a 1st embodiment mentioned above.
  • the membrane formed by the above method is referred to as a facilitated transport membrane 1k.
  • FIG. 8 shows the results of measuring the steam permeance, the CO 2 permeance, and the steam / CO 2 selectivity of the facilitated transport membrane 1k at 130 ° C.
  • the facilitated transport membranes 1a to 1j also contain cesium carbonate or cesium hydroxide as a carrier that reacts with water vapor, and thus have high steam permeance, but at the same time select CO 2 having high CO 2 permeance. Since it is a permeable membrane, it is not suitable for applications in which steam is selectively permeated to CO 2 .
  • the steam permeance is 3.0 ⁇ 10 ⁇ 4 mol / (m 2 ⁇ s ⁇ kPa) and the CO 2 permeance is 5.8 ⁇ 10 ⁇ under the above-described measurement condition of 130 ° C.
  • a method for producing a facilitated transport film using the ceramic porous support 3 is shown below.
  • the film-forming solution C prepared in step 1 is filled in the processing space 5 inside the porous support 3 made of ceramic (here, alumina), and then an inert gas is poured into the processing space 5 at 300 kPa to 600 kPa. Pressurized for 15 minutes.
  • the film was pressurized and dried at the same pressure as in the film formation (step 3).
  • Other steps are the same as those in the first embodiment described above.
  • Membranes formed by the above method are collectively called facilitated transport membrane 1l.
  • a facilitated transport film was formed in the same manner as the facilitated transport film 1 l by using polysulfone hydrophilized as the porous support 3.
  • Membranes formed by the above method are collectively called facilitated transport membrane 1m.
  • FIG. 9 shows the measurement results of CO 2 permeance of the facilitated transport film 1 l formed by pressurizing at 300 kPa, 400 kPa, 500 kPa, and 600 kPa for 15 minutes, respectively
  • FIG. 10 shows 300 kPa, 400 kPa, 500 kPa, 550 kPa, and 600 kPa, respectively.
  • the measurement result of CO 2 permeance of the facilitated transport film 1 m formed by pressurizing for 15 minutes is shown.
  • the relative humidity of the raw material gas FG at this time is 99%, 63%, 42%, 28%, 19%, 14 at temperatures of 60 ° C., 70 ° C., 80 ° C., 90 ° C., 100 ° C. and 110 ° C. %Met.
  • the CO 2 facilitated transport membrane water is required for the facilitated transport of CO 2 by the carrier, and the moisture in the separation functional layer 4 decreases as the relative humidity decreases, so that the CO 2 permeation rate decreases at a high temperature. That is, as shown in FIGS. 9 and 10, the CO 2 permeance tends to decrease with increasing temperature.
  • the facilitated transport film 11 formed by pressurizing to 300 kPa has substantially the same film forming conditions as the aforementioned facilitated transport film 1j, but the CO 2 permeance of the facilitated transport film 1l shown in FIG. It is very small compared with the CO 2 permeance of the facilitated transport film 1j shown in b). This is because the steam partial pressure of the raw material gas FG at the time of measurement is lower in the facilitated transport film 1l than in the facilitated transport film 1j. Reducing the steam partial pressure of the feed gas FG, the relative humidity of the separating functional layer 4 is lowered, as described above, CO 2 permeance is reduced, sometimes satisfactory membrane performance can not be obtained.
  • a dense separation functional layer can be formed on the inner wall surface of the support, which is high for a specific gas.
  • a facilitated transport membrane having selective permeation performance can be easily produced.
  • the membrane module 2 or 12 includes one cylindrical porous support 3 and the separation functional layer 4 is formed on the inner peripheral surface or the outer peripheral surface of the cylinder.
  • the present invention is not limited to this.
  • the membrane module 20 shown in the cross-sectional structure diagram of FIG. 11 is a hollow fiber-like module in which a plurality of (seven in the figure) cylindrical facilitated transport membranes 1 are bundled and fixed in a cell 7 by a partition plate 10. is there.
  • the processing space 5 in which the source gas FG flows through the separation functional layer 4 of the facilitated transport film 1 the specific gas selectively permeates into the processing space 6 in which the sweep gas SG flows and becomes a part of the sweep gas SG ′ and is discharged from the vent 9b.
  • the membrane area of the facilitated transport membrane 1 can be increased, and the permeation amount of the specific gas per hour can be increased.
  • the porous support 3 has a columnar hollow portion, and the separation functional layer 4 is formed on the inner wall surface of the hollow portion.
  • a dense separation functional layer 4 can be formed by applying the pressure film formation method of the present invention and forming the separation functional layer 4 on the inner wall surface of the porous support 3 while pressurizing the hollow interior.
  • the facilitated transport membrane 1 is produced by producing a layered product of the separation functional layer 4 on the inner peripheral surface of the cylindrical porous support 3, and thereafter A plurality of membranes may be fixed to the partition plate 10 to form a membrane module, or after the plurality of cylindrical porous supports 3 are fixed to the partition plate 10, the inner periphery of the plurality of cylinders may be formed by pressure film formation.
  • the separation functional layer 4 may be formed on the surface at the same time, or any of them may be used.
  • the porous support body 3 was made into cylindrical shape, as long as it has a hollow part inside a support body, it is not limited to the shape.
  • it may be a polygonal cylinder.
  • the porous support 3 by forming the porous support 3 into a regular hexagonal cylinder, the plurality of porous supports 3 can be arranged in a honeycomb shape without gaps, and the separation functional layer 4 is formed. earn that membrane area.
  • porous support 3 is a flat plate and the separation module 4 is formed on one surface of the flat porous support 3, the pressure is applied during film formation.
  • a dense separation functional layer can be formed.
  • the partial pressure of the specific gas of the source gas FG is made higher than the partial pressure of the sweep gas SG so that a partial pressure difference of the specific gas occurs between the source gas FG and the sweep gas SG.
  • the partial pressure of the source gas FG is sufficiently high, a partial pressure difference that is a permeation propulsion force can be obtained without flowing the sweep gas SG, and therefore it is not necessary to flow the sweep gas SG.
  • the separation function layer 4 is formed by injecting the film-forming solution into the processing space inside (or outside) the porous support 3 and then pressurizing it to make the film-forming solution porous. It is made to adhere to the inner peripheral surface (or outer peripheral surface) of the porous support 3, and then the pressure is reduced to flow out the film-forming solution, and the film-forming solution supported on the porous support 3 is dried. .
  • the viscosity of the film-forming solution is high, the film-forming solution is supported on the porous support 3 even if the film-forming solution is poured out without being pressurized after injecting the film-forming solution.
  • the film-forming solution can be brought into close contact with the porous support 3 by subsequent pressurization.
  • FIG. 12 shows a flowchart of a method for producing a facilitated transport film according to this method.
  • the method for producing a facilitated transport membrane according to the present invention can be used for separation of a gas such as carbon dioxide, and is particularly useful for producing a facilitated transport membrane in which a separation functional layer is formed inside a hollow portion. .

Abstract

 筒状の多孔性支持体の内側に分離機能層を製膜することが容易に可能な促進輸送膜の製造方法を提供する。多孔性支持体3と分離機能層4からなる、特定ガスを選択的に透過させる促進輸送膜の製造方法であって、中空部分を有する柱状の多孔性支持体3の内壁面を、親水性ポリマーと特定ガスと選択的に反応するキャリアが添加された製膜液で被覆するとともに、多孔性支持体3の当該内壁面側を加圧した後、当該内壁面上に担持された製膜液を乾燥させ、分離機能層4を多孔性支持体3の内壁面に形成する。

Description

促進輸送膜の製造方法
 本発明は、二酸化炭素や水蒸気等、特定のガス種を選択的に透過させる機能を備える促進輸送膜の製造方法に関する。
 従来、その応用範囲の広さから、二酸化炭素(CO)を選択的に分離する方法が種々検討されている。例えば、燃料電池用等の改質ガスから二酸化炭素を選択的に分離することで、水素の純度を向上させることができる。また、地球温暖化の原因の一端となっている二酸化炭素を選択的に分離して地中に貯留させることで温暖化の進展を鈍化させることができるのではないかと期待されている。
 現在、COの分離回収技術として実用化され、最も一般的に用いられているのは湿式化学吸収法であり、主として水素製造プラントやアンモニア製造プラント等の大規模化学プラントの脱炭酸プロセスとして幅広く用いられている。
 既存の化学吸収法は、熱炭酸カリ等のアルカリ水溶液中へのCOの吸収工程と生成したアルカリ炭酸塩の熱分解によるCO吸収液の再生工程とから構成されている。吸収塔を出たアルカリ炭酸塩水溶液は再生塔に供給され、再生塔に供給されたアルカリ炭酸塩水溶液はスチームを熱源として加熱され、熱分解によりCOと同伴水を放出する。COを放出した熱アルカリ水溶液は循環ポンプで再び吸収塔に供給される。
 このように、化学吸収法による脱炭酸工程は、プロセスが複雑であるだけでなく、再生塔の熱源として供給されるスチームと循環ポンプ動力で多くのエネルギーが消費されている。
 これに対し、膜分離法を用いたCO分離回収プロセスは、分圧差を駆動エネルギーとして膜を透過するガスの速度差によって分離を行うものであり、相変化を伴わないこともあり、省エネルギープロセスとして期待されている。また、化学吸収法、吸着分離法等に比べて取り扱いが非常に容易であり、装置体積の大半を膜モジュールが担っているという特徴により、他のガス分離装置と比べて非常にコンパクトなものとなる。
 分離膜は、膜材料の違いにより有機膜と無機膜に大別される。有機膜は無機膜に比べて安価であり成形性に優れるという利点がある。ガス分離に用いられる有機膜は、相転換法により作製された高分子膜が一般的であり、分離のメカニズムは、ガスの膜材料への溶解性、及び、ガスの膜内での拡散速度の違いによりガスを分離する溶解・拡散機構に基づく。
 溶解・拡散機構は、ガスはまず高分子膜の膜表面に溶解して、この溶解した分子が高分子膜中の高分子鎖間隙を拡散していくという考え方である。ガス成分Aの透過係数をP、溶解度係数をS、拡散係数をDとすると、P=S×Dの関係式が成り立つ。理想的分離係数αA/Bは、成分Aと成分Bの透過係数の比をとり、αA/B=P/Pとして表されるため、αA/B=(S/S)/(D/D)となる。ここで、S/Sは溶解度選択性、D/Dは拡散選択性と呼ばれる。
 拡散係数は分子径が小さいほど大きく、また、一般的にガス分離においては拡散選択性の寄与は溶解度選択性の寄与よりも大きいため、分子径の異なる多成分のガスから分子径の小さな気体をバリアして、分子径の大きなガスを選択的に透過させることは困難である。
 従って、特にCOを含む混合ガスから、気体分子の中で最も分子径の小さなHに対して高い選択性を有するCO選択透過膜を作製することは極めて困難であり、水素製造プラント等の脱炭酸プロセスでの実用化に耐える100℃以上の高温下で機能するCO選択透過膜を作製することは更に困難であった。
 特許文献1に開示されたCO促進輸送膜は、ゲル膜中にCOと選択的に反応するキャリアを含有させた構造になっている。かかるCO促進輸送膜では、COは溶解・拡散機構による物理透過に加えて、キャリアとの反応生成物としても透過するため透過速度が促進される。一方、キャリアと反応しないN、H等のガスは溶解・拡散機構のみでしか透過しないため、これらのガスに対するCOの分離係数は極めて大きい。また、COとキャリアの反応時に発生するエネルギーはキャリアがCO放出するためのエネルギーに利用されるため、外部からエネルギーを供給する必要がなく、本質的に省エネルギープロセスである。
 省エネルギー効果が高いだけではなく、非常にコンパクトであり、量産化ができれば、現状の化学吸収法や更に高価なPSA法に比べ、はるかに低コストなCO分離・回収プロセスが構成できるため、前述の脱炭酸プロセスの他、発電排ガス、製鉄排ガス、セメント排ガス等からのCO回収、更に、CTL(Coal to Liquids: 石炭からの液体燃料製造)分野のような次世代型のエネルギープロセスや、既存の脱炭酸分野が適用できなかった小規模な化学プラントや設備にも適用でき、容易にCOを分離・回収できるようになるので、低炭素社会に大いに貢献できると期待されている。
 上記のCO促進輸送膜は、CO透過型メンブレンリアクターへの応用を考えた場合に、使用温度、COパーミアンス、CO/H選択率等に対して、一定以上の性能が要求される。具体的には、100℃以上の高温において、2×10-5mol/(m・s・kPa)=60GPU程度以上のCOパーミアンス、90~100程度以上のCO/H選択率が必要とされている。
国際公開第2009/093666号公報
 前述のとおり、省エネルギープロセスとして有用な促進輸送膜を用いた膜分離法であるが、例えば、大規模水素製造装置やアンモニア製造プロセスで実用化するためには、膜面積として数千m以上のモジュール化が必要である。そして、大面積の膜分離モジュールを設置するためには、一般に設置スペースの制約があるため、出来る限り小さなスペースに大きな膜面積を充填することが必要となる。また、モジュールがコンパクトであれば、モジュール容器が小型で済み、コストダウンとなる利点もあるため、経済性の面でも非常に重要である。
 膜分離モジュールには、いくつかの種類があるが、膜の充填密度の大きさ及びメンテナンスの容易性から、管状モジュール、中空糸モジュールは一般的な構造の一つである。これらのモジュールを構成する筒状の膜は、内径が小さい方が充填密度を高くすることができるため、大規模モジュールの実現に必要な省スペース化を図るために有用である。
 ところで、上記特許文献1に記載の円筒型CO促進輸送膜は、多孔性のセラミック円筒型支持体の外側にCOキャリアを添加したゲル溶液をディップコーティングして分離機能層を形成させることで作製されている。ディップコーティング法は、支持体上に分離機能層を形成させる方法として最も一般的な方法の一つであるが、この方法では内径の小さな支持体の内側に均一な分離機能層を形成させることが困難である。
 内径が小さな支持体でも、支持体の外側へディップコーティングすることで製膜が可能であるが、コーティング層を傷つけてしまう虞があり取り扱いに不便である。また、効率的に量産化していく上での障害にもなり、作製した膜を多数本束ねてモジュール化する上でも適していない。従って、支持体の内側に分離機能層を形成することが好ましい。
 また、モノリス型の支持体(蜂の巣状に複数の径の小さな孔を持つ形状の支持体)を用いれば、単位体積あたりの膜面積を大きくすることができるが、支持体の内側に分離機能層を形成できなければ、その利点を活かすことができない。
 更に、ディップコーティング法では、膜厚の制御が困難であり、特に内径の小さな支持体の内側に分離機能層を形成させる場合、膜厚の制御はほぼ不可能である。
 分離膜においては、膜厚が薄い方が透過物質の膜内での拡散速度が速くなるという利点がある。しかし、その一方で膜厚が薄すぎると膜に欠陥が生じ易く、選択性の低下および耐久性の低下を招来してしまう。従って、膜厚が薄く、かつ欠陥のない緻密な分離機能膜を形成する方法を確立することが、高性能で耐久性に優れた分離膜を作製するために極めて重要な要素である。
 本発明は、上述の問題点に鑑み、多孔性支持体の内側に分離機能層を製膜することが容易に可能な促進輸送膜の製造方法を提供することをその目的とする。
 上記目的を達成するための本発明に係る促進輸送膜の製造方法は、特定ガスを選択的に透過させる促進輸送膜の製造方法であって、
 親水性ポリマーを含む製膜液を調製する工程と、
 支持体となる多孔性膜の一方の第1面を前記製膜液で被覆するとともに、前記多孔性膜の前記第1面側を加圧し、前記製膜液を前記第1面上に密着させる加圧工程と、
 前記多孔性膜の前記第1面上に担持された前記製膜液を乾燥させ、分離機能層を形成する乾燥工程と、
 前記製膜液内または前記分離機能層内に、前記特定ガスと選択的に反応するキャリアを添加する工程を含むことを第1の特徴とする。
 上記第1の特徴の本発明に係る促進輸送膜の製造方法によれば、製膜時に所定の圧力を加えることで、50μm以下の薄く緻密な分離機能層を多孔性支持体上に形成することができる。
 多孔性支持体の表面を、親水性ポリマーを含む製膜液で被覆することで、支持体の細孔内が製膜液で満たされる。加圧しながら製膜することで、多孔性支持体の表面のみならず細孔内にもポリマーが入り込むため、欠陥が少なく、緻密な分離機能層を製膜することができる。
 また、圧力が、加圧対象の全ての範囲内に均一に作用するため、曲率や凹凸などの支持体の構造に依らず、圧力が印加される全ての多孔性支持体表面上に均一に分離機能層を形成させることができる。この点、曲率や凹凸によって分離機能層の膜厚が不均一になるディップコーティング法とは対照的である。
 更に、本発明では、分離機能膜を使用する目的に応じて、製膜液内または製膜後の分離機能層内に、特定の気体と選択的に反応するキャリアを添加する工程を有することで、特定の気体が選択的に透過する高性能な膜を容易に作製することができる。例えば、COを選択的に透過させたい場合はCOキャリアを、スチーム(水蒸気)を選択的に透過させたい場合はスチームキャリアを、SOを選択的に透過させたい場合はSOキャリアを添加すれば良く、目的毎に自由な設計が可能である。
 尚、ここで「キャリア」とは、その物質が膜内に含有されることで、ある特定のガスの透過速度を速くする効果を有する物質であり、特定ガスとキャリアの化学反応により当該特定ガスの透過が促進される場合のほか、後述するスチームキャリアである塩化セシウムのように、ガス種とキャリアとの物理吸着特性の差に起因して特定ガスの透過が促進される場合等がある。
 上記第1の特徴の本発明に係る促進輸送膜の製造方法は、更に、前記加圧工程において、前記多孔性膜の前記第1面側からガスを流し入れることで、前記多孔性膜の前記第1面側を加圧することを第2の特徴とする。
 上記第1又は第2の特徴の本発明に係る促進輸送膜の製造方法は、更に、
 前記支持体が、柱状の中空部分を有し、
 前記加圧工程において、前記製膜液を前記中空内部に充填し、前記中空内部を加圧することにより前記製膜液を前記中空部分の内壁面である前記第1面上に担持させることを第3の特徴とする。
 上記第3の特徴の本発明に係る促進輸送膜の製造方法は、更に、
 前記支持体が円筒状であり、
 前記加圧工程において、前記製膜液を前記円筒の内側に充填し、前記円筒内部を加圧することにより前記製膜液を前記円筒の内周面である前記第1面上に担持させることを第4の特徴とする。
 上記第3又は第4の特徴の本発明に係る促進輸送膜の製造方法によれば、内径の小さな中空部分の内壁面に緻密な分離機能層を形成できるため、径の細い管状、あるいは中空糸状の膜モジュールを作製可能になる。
 上記第1乃至4の何れかの特徴の本発明に係る促進輸送膜の製造方法は、更に、前記乾燥工程において、前記多孔性膜の前記第1面側を加圧しながら、前記製膜液を乾燥させることを第5の特徴とする。
 上記第5の特徴の本発明に係る促進輸送膜の製造方法によれば、加圧しながら乾燥させることで、より緻密で、欠陥の少ない分離機能層を製膜できる。
 上記第1乃至5の何れかの特徴の本発明に係る促進輸送膜の製造方法は、更に、前記分離機能層が、ハイドロゲルからなるゲル層であることを第6の特徴とする。
 膜内に水分が無い場合でも特定ガス(例えば、二酸化炭素)は促進輸送されるが、その透過速度は一般に非常に小さいため、高い透過速度を得るには膜内の水分が不可欠となる。上記第6の特徴の本発明に係る促進輸送膜の製造方法によれば、分離機能層となるゲル層を保水性の高いハイドロゲルで構成することにより、分離機能層内の水分が少なくなる高温下においても、可能な限り膜内に水分を保持することが可能となり、100℃以上の高温において高い選択透過性能を実現できる。
 尚、ハイドロゲルは、親水性ポリマーが架橋することで形成された三次元網目構造物であり、水を吸収することで膨潤する性質を有している。
 尚、ハイドロゲル膜としては、ポリビニルアルコール-ポリアクリル酸(PVA/PAA)塩共重合体ゲル膜を採用することが好ましい。ここで、当業者において、ポリビニルアルコール-ポリアクリル酸塩共重合体は、ポリビニルアルコール-ポリアクリル酸共重合体と呼ばれることもある。
 上記第1乃至6の何れかの特徴の本発明に係る促進輸送膜の製造方法は、更に、前記多孔性膜が、親水性のポリマーからなることを第7の特徴とする。
 上記第7の特徴の本発明に係る促進輸送膜の製造方法によれば、支持体を保水性の高い親水性の多孔膜とすることで、分離機能層内の水分が少なくなる高温下においても、膜内に水分を保持することが可能となり、100℃以上の高温において高い選択性能を実現できる。尚、親水性ポリマーの多孔性膜としては、ポリスルフォン、ポリエーテルスルフォン、セルロースエステル、ポリカーボネイト、ポリイミド、ポリエーテルイミド、芳香族ポリアミド、ポリエーテルエーテルケトン等を使用することができ、ポリテトラフルオロエチレン(PTFE)等の疎水性ポリマーの多孔質膜の表面を親水化処理した膜も含まれる。
 上記第1乃至7の何れかの特徴の本発明に係る促進輸送膜の製造方法は、更に、前記キャリアが、二酸化炭素と選択的に反応する化合物であることを第8の特徴とする。
 上記第8の何れかの特徴の本発明に係る促進輸送膜の製造方法は、更に、前記キャリアが、セシウム若しくはルビジウムの炭酸化物、重炭酸化物、若しくは水酸化物、2,3‐ジアミノプロピオン酸(DAPA)、又は、グリシン、の何れかを含んでなることを第9の特徴とする。
 例えば、COを選択的に透過させるキャリアとしては、グリシン、2,3‐ジアミノプロピオン酸(DAPA)等のアミノ酸、又は、炭酸セシウム、重炭酸セシウム、炭酸ルビジウム、重炭酸ルビジウム等のアルカリ金属の炭酸塩が、本願発明者らにより明らかにされている。また、水酸化セシウムは、二酸化炭素と反応することで下記の化1で表される反応により、炭酸セシウムが生成されるため、COキャリアとして機能する。同様に、水酸化ルビジウムも、二酸化炭素と反応して炭酸ルビジウムが生成されるため、COキャリアとして機能する。
 (化1)
 CO + CsOH → CsHCO
 CsHCO + CsOH → CsCO + H
 ところで、一般にアミノ酸は水に溶解するとアミノ基(NH)がプロトン化され、NH となって水中に溶解する。ところが、グリシンやDAPA等のアミノ酸をCOキャリアとして利用する場合、二酸化炭素はNH と反応せず、フリーのNHと反応することが知られている。このため、COキャリアとしてグリシンやDAPA等のアミノ酸を用いる場合、アミノ酸に対して同モル数以上のアルカリを添加して、後述の製膜液中に溶解したNH を脱プロトン化してNHに変換する必要がある。当該アルカリとしては、プロトン化したNH からプロトンを奪い、NHに変換できるだけの強塩基性を有するものであれば良く、アルカリ金属元素の水酸化物または炭酸塩を好適に利用できる。
 尚、等モル以上にアルカリが添加された場合、余剰のアルカリが二酸化炭素と反応し、例えばCsOHの場合上記(化1)に示すように炭酸塩が生成されるが、当該炭酸塩も二酸化炭素キャリアとして機能する場合がある。
 上記第1乃至7の何れかの特徴の本発明に係る促進輸送膜の製造方法は、更に、前記キャリアが、水蒸気と選択的に反応する化合物であることを第10の特徴とする。
 上記第10の何れかの特徴の本発明に係る促進輸送膜の製造方法は、更に、前記キャリアが、塩化セシウム若しくは硝酸セシウム若しくは塩化ルビジウム若しくは硝酸ルビジウムの何れかを含んでなることを第11の特徴とする。
 スチーム(水蒸気)を選択的に透過させるキャリアとしては、塩化セシウム、硝酸セシウム、炭酸セシウム等のセシウム塩、塩化ルビジウム、硝酸ルビジウム、炭酸ルビジウム等のルビジウム塩が挙げられる。更に、一般に吸湿効果を有する化合物は、スチームキャリアとして利用できると考えられる。ただし、上記のセシウム塩のうち、炭酸セシウムは上述の通りCOキャリアとしても機能するため、COに対してスチームのみを選択的に透過させたい用途では、塩化セシウムもしくは硝酸セシウムを用いることが好ましい。もっとも、二酸化炭素およびスチームの両方を選択的に透過させたい用途では、炭酸セシウムを用いることができる。ルビジウム塩についても同様であり、スチームのみを選択的に透過させたい用途では、塩化ルビジウムもしくは硝酸ルビジウムを用いることが好ましい。
 上記第1乃至7の何れかの特徴の本発明に係る促進輸送膜の製造方法は、更に、前記キャリアが、硫黄酸化物と選択的に反応する化合物であることを第12の特徴とする。
 硫黄酸化物(SO)を選択的に透過させるキャリアとしては、亜硫酸リチウム、亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸ルビジウム、亜硫酸セシウム等のアルカリ金属の亜硫酸塩を挙げることができる。
 尚、これらのキャリアは、製膜液に予め添加しておき、水溶液としたもので多孔性支持体の表面を被覆し、加圧製膜してもよいし、分離機能層を加圧製膜後、当該膜をキャリアを含む水溶液に含浸させることで、分離機能層内にキャリアを添加しても構わない。しかしながら、製膜液にキャリアを添加しておくことで、膜材料に対するキャリアの配分を適正に調整した製膜液を予め準備しておくことが可能なため、最終的な分離機能層内のキャリアの配合比率の適正化を簡易に実現でき、膜性能の高性能化を実現できる。
 従って、本発明に係る促進輸送膜およびその製造方法によれば、多孔性支持体の内側に分離機能層が製膜され、且つ、高い選択性能を有する促進輸送膜を製造することが可能になる。
本発明により製造される促進輸送膜、及び、当該促進輸送膜を備えた膜モジュールの一実施形態における構造を模式的に示す断面図 特定ガスの分離における膜モジュール内のガスの流れの様子を模式的に示す断面図。 本発明に係る促進輸送膜の製造工程を示すフローチャート 本発明により製造される促進輸送膜、及び、当該促進輸送膜を備えた膜モジュールの一実施形態における構造を模式的に示す断面図 本発明に係る促進輸送膜の製造工程を示すフローチャート 本発明により製造した促進輸送膜の膜性能を評価した結果を示す表 本発明により製造した促進輸送膜の膜性能を評価した結果を示す表 本発明により製造した促進輸送膜の膜性能を評価した結果を示す表 本発明により製造した促進輸送膜の膜性能を評価した結果を示す図 本発明により製造した促進輸送膜の膜性能を評価した結果を示す図 本発明の別実施形態に係る膜モジュールの構造を模式的に示す断面図 本発明の別実施形態に係る促進輸送膜の製造工程を示すフローチャート
 以下において、本発明に係る促進輸送膜の製造方法(以降、適宜「本発明方法」と称する)の実施の形態につき、図面に基づいて説明する。
 〈第1実施形態〉
 本発明方法により製造される促進輸送膜1、並びに、促進輸送膜1を備えた膜モジュール2の構成例を、一実施形態として図1に示す。図1(a)に上面の断面図、図1(b)に側面の断面図を示す。尚、図1に示す断面図では、要部が強調して示されており、図面上の各構成部分の寸法比(特に、多孔性支持体3と分離機能層4の膜厚)と実際の寸法比とは必ずしも一致するものではない。これは以降に示す断面図についても同様である。
 促進輸送膜1は、多孔性支持体3の内周面に分離機能層4が製膜された2層構造の円筒状の形状をしている。当該促進輸送膜1の円筒内部の処理空間5と円筒の外側の処理空間6が、夫々、別個の分離された空間を構成するように、円筒の両端部がセル7の上下面に対して密封(シール)され、促進輸送膜1がセル7内部に固定され、膜モジュール2が構成されてなる。
 円筒状のセル7の上部および下部には、夫々、処理空間5内にガスを流出入するための通気口8aと8bが設けられている。一方、セル7の側部には、処理空間6内にガスを流出入するための通気口9aと9bが設けられている。
 分離機能層4は、特定ガスと選択的に反応するキャリア(以降、適宜「特定キャリア」と称す)が添加された親水性ポリマーの層であり、処理空間5から分離機能層4と多孔性支持体3を介して処理空間6へ、或いは、処理空間6から多孔性支持体3と分離機能層4を介して処理空間5へ、ガスが透過する際のガス種による透過速度の差を利用して、特定ガスを選択的に透過させる。
 上記の膜モジュール2を用いて特定ガスの分離に利用する場合、図2に示すように、通気口8aから処理空間5を介して通気口8bへ、所定の流量、所定の圧力で、特定ガスを含む原料ガスFGを流す。このとき、原料ガスFGのうち、特定ガスを含む一部のガスが、促進輸送膜1を透過して処理空間6へ流れ込む。この結果、通気口8aから流入した原料ガスFGは、促進輸送膜1を介して透過した分だけ特定ガスの分圧が減少し、原料ガスFG’となって通気口8bへ排出される。
 一方、通気口9aから処理空間6を介して通気口9bへ、所定の流量、所定の圧力でスイープガスSGを流す。スイープガスSGは、分離機能層4を介した特定ガスの透過推進力を維持するため、当該特定ガスの分圧を処理空間5内の原料ガスFGよりも低くしてなる。通気口9aから流入したスイープガスSGは、促進輸送膜1を介して透過した特定ガスと併せて、スイープガスSG’となって通気口9bへ排出される。本実施形態では、スイープガスSGとしてArガスを、通気口9aから通気口9bに流れるように、処理空間6内に供給している。
 尚、原料ガスFGとスイープガスSGの関係は、図2とは逆であってもよい。即ち、通気口9a(9b)から処理空間6を介して通気口9b(9a)へ原料ガスFGを流し、通気口8a(8b)から処理空間5を介して通気口8b(8a)へスイープガスSGを流しても構わない。換言すると、促進輸送膜1のうち原料ガスFGに直接接触する膜が分離機能層4であっても、多孔性支持体3であっても、どちらでもよい。
 また、特定ガスが二酸化炭素の場合、COの促進輸送に水が必要であるため、原料ガスFGには、分離機能層4に水分を供給するためのスチームガスを所定の分圧で含ませる必要がある。したがって、COパーミアンスは、原料ガスFGの相対湿度(原料ガスFGのスチーム分圧の、評価温度における飽和水蒸気圧に対する割合)に依存する。
 以下に、促進輸送膜1の製造方法につき、図3のフローチャートを参照して詳細に説明する。
 先ず、親水ポリマーを含む製膜液を調製する(工程1)。本実施形態では、親水性ポリマーとしてポリビニルアルコール‐ポリアクリル酸(PVA/PAA)塩共重合体またはポリビニルアルコール(PVA)を使用し、水溶液を調製する。このとき、更に、得られた水溶液に特定キャリアを添加して溶解するまで攪拌し、親水性ポリマーと特定キャリアを含む水溶液を調製することが好ましい。その後、製膜液中の気泡を除去するために、遠心分離(例えば、回転数5000rpmで30分間)を行っておく(工程2)。
 次に、多孔性支持体3をセル7内に装着し、多孔性支持体3の円筒の両端部をシールし、固定する(工程3)。
 次に、多孔性支持体3の内側の処理空間5を製膜液で満たし、多孔性支持体3の内周面を製膜液で被覆する。その後、通気口8aと通気口8bの一方を塞ぎ、他方からガス(例えば、Arガス等の不活性ガス)を流し入れることで、多孔性支持体3の内側の処理空間5を所定の圧力で加圧し、製膜液を多孔性支持体3の内周面上に密着させる(工程4)。そして、所定の期間(5~30分間)、加圧された状態を維持する。
 このとき、多孔性支持体3内部から外周面に染み出す液を乾燥させるために、通気口9aと9bを介して、処理空間6内にガス(例えば、Arガス等の不活性ガス)を流しておく。
 その後、速やかに減圧して処理空間5内の製膜液を流し出し、多孔性支持体3の内周面上に担持された製膜液を乾燥させる(工程5)。具体的には、例えば膜モジュール2を恒温槽内に入れ、通気口8a、8bを介して、処理空間5内にガスを流しながら、85℃~120℃で、1~2時間乾燥させる。これにより、多孔性支持体3の円筒内周面に特定キャリアを含有する分離機能層4が形成される。
 このとき、処理空間5内にガスを流しながら乾燥させる際に、処理空間5を加圧した状態で乾燥させることが好ましい。
 尚、工程1において、製膜液中に特定キャリアを溶解させない場合は、工程5の後、特定キャリアの水溶液を流し入れ、処理空間5を当該水溶液で満たす。これにより、加圧製膜された分離機能層4が、水を含むことにより膨潤し、分離機能層4内に特定キャリアを導入することができる。その後、水溶液を流し出し、再度乾燥させることで、特定キャリアを含有する分離機能層4を形成できる。
 〈第2実施形態〉
 また、上記の製造方法は多孔性支持体3の内周に分離機能層4を形成する場合の例であるが、多孔性支持体3の外周に分離機能層4を形成することも可能である。多孔性支持体3の外周に分離機能層4が製膜された促進輸送膜11、並びに、促進輸送膜11を備えた膜モジュール12の構成例を、一実施形態として図4に示す。図4(a)に上面の断面図、図4(b)に側面の断面図を示す。
 以下に、促進輸送膜11の製造方法につき、図5のフローチャートを参照して説明する。先ず、第1実施形態における促進輸送膜1の製造方法と同様、製膜液を調整し(工程1)、脱泡し(工程2)、多孔性支持体3をセル7内に固定する(工程3)。上記工程1から工程3については、夫々、上述した第1実施形態と同様であり、説明を割愛する。
 次に、多孔性支持体3の外側の処理空間6を製膜液で満たし、多孔性支持体3の外周面を製膜液で被覆する。その後、通気口9aと9bの一方を塞ぎ、他方からガス(例えば、Arガス等の不活性ガス)を流し入れ、多孔性支持体3の外側の処理空間6を加圧し、製膜液を多孔性支持体3の外周面上に密着させる(工程4)。そして、所定の期間(5~30分間)、加圧された状態を維持する。
 このとき、多孔性支持体3内部から内周面に染み出す液を乾燥させるために、通気口8aと8bを介して、処理空間5内にガス(例えば、Arガス等の不活性ガス)を流しておく。
 その後、速やかに減圧して処理空間5内の製膜液を流し出し、多孔性支持体3の外周面上に担持された製膜液を乾燥させる(工程5)。具体的には、例えば膜モジュール12を恒温槽内に入れ、通気口9aと9bを介して、処理空間6内にガスを流しながら、85℃~120℃で、1~2時間乾燥させる。これにより、多孔性支持体3の円筒外周面に特定キャリアを含有する分離機能層4が形成される。
 以下に、本発明方法で製造した輸送促進膜1又は11の膜性能を評価・比較した結果について説明する。
 〈製膜液の調製〉
 先ず、工程1における製膜液として、特定キャリア、親水性ポリマー、或いは、特定キャリアと親水性ポリマーの重量比が異なる、下記の5つの製膜液A~Eを用意し、膜性能の評価・比較を行った。
 《製膜液A》
 工程1において、水80gにPVA/PAA塩共重合体を2g添加して室温で3日以上攪拌し、得られた溶液に、更にCOキャリアとして炭酸セシウム9.11gを添加して、溶解するまで攪拌して製膜液を調製した。以下、このようにして調製された製膜液を、製膜液Aと称する。
 《製膜液B》
 工程1において、水80gにPVA/PAA塩共重合体を2g添加して室温で3日以上攪拌し、得られた溶液に、更にCOキャリアとして炭酸セシウム4.66gを添加して、溶解するまで攪拌して製膜液を調製した。以下、このようにして調製された製膜液を、製膜液Bと称する。尚、製膜液Bは、特定キャリアと親水性ポリマーの重量比が製膜液Aと異なる膜である。
 《製膜液C》
 工程1において、水80gにPVA/PAA塩共重合体を2g添加して室温で3日以上攪拌し、得られた溶液に、更にCOキャリアとしてグリシン3gとグリシンと等モルの水酸化セシウム5.99gを添加して、溶解するまで攪拌して製膜液を調整した。以下、このようにして調製された製膜液を、製膜液Cと称する。
 《製膜液D》
 工程1において、水9gにPVA1gを添加して90℃で溶解するまで攪拌し、溶液1を得た。併せて、水10gにCOキャリアとして炭酸セシウム2.33gを加えて溶解するまで攪拌し、溶液2を得た。そして、溶液1と溶液2を混合して均一になるまで攪拌して製膜液を調整した。以下、このようにして調製された製膜液を、製膜液Dと称する。製膜液Dは、親水性ポリマーがPVAである点で、親水性ポリマーがPVA/PAA塩共重合体である製膜液A~C及び後述の製膜液Eとは異なる。しかしながら、特定キャリアと親水性ポリマーの重量比は、製膜液Dと製膜液Bで同一である。
 《製膜液E》
 工程1において、水80gにPVA/PAA塩共重合体を2g添加して室温で3日以上攪拌し、得られた溶液に、更にスチームキャリアとして塩化セシウム0.35gを添加して、溶解するまで攪拌して製膜液を調製した。以下、このようにして調製された製膜液を、製膜液Eと称する。
 図6に、本発明方法の効果確認に用いた各膜の製膜に用いた製膜液、製膜時の加圧条件、測定されたCOパーミアンス[10-4mol/m・s・kPa]、Hパーミアンス[10-6mol/m・s・kPa]、及び、CO/H選択率(Hパーミアンスに対するCOパーミアンスの比)の測定結果を、夫々、一覧として示す。また、図7に、本発明方法の効果確認に用いた各膜の製膜に用いた製膜液、製膜時の加圧条件、測定されたCOパーミアンス[10-4mol/m・s・kPa]、Nパーミアンス[10-7mol/m・s・kPa]、及び、CO/N選択率(Nパーミアンスに対するCOパーミアンスの比)の測定結果を、夫々、一覧として示す。また、図8に、本発明方法の効果確認に用いた膜の製膜に用いた製膜液、製膜時の加圧条件、測定されたスチームパーミアンス[10-2mol/m・s・kPa]、COパーミアンス[10-4mol/m・s・kPa]、スチーム/CO選択率(COパーミアンスに対するスチームパーミアンスの比)の測定結果を、夫々、一覧として示す。以下に、図6~図8に示した各膜の膜性能を比較した結果について、詳細に説明する。
 〈性能評価結果1〉
 先ず、加圧時間が異なる複数の促進輸送膜1を製膜し、膜性能を評価した結果を示す。尚、以降の膜の製造方法の説明において、加圧した圧力は、ゲージ圧ではなく絶対圧を表示している。
 促進輸送膜の製造方法は以下の通りである。工程1において調製した製膜液Aを、セラミック(ここでは、アルミナ)製の多孔性支持体3の内側の処理空間5に満たし、その後、不活性ガスを流し入れて処理空間5を500kPaに加圧した。その後、5~30分間、加圧された状態を維持した。乾燥工程等、その他の工程については、上述した第1実施形態と同様である。
 うち、5分間加圧した膜を、促進輸送膜1aと、
 10分間加圧した膜を、促進輸送膜1bと、
 20分間加圧した膜を、促進輸送膜1cと、
 30分間加圧した膜を、促進輸送膜1dと、夫々称する。
 同様に、製膜液Aを多孔性支持体3の内側の処理空間5に充填し、200kPaで2時間加圧し製膜した膜を用意した。当該膜を、促進輸送膜1eと称する。
 更に、比較例として、加圧せず、製膜液Aを多孔性支持体3の内側の処理空間5に充填した状態を30分維持し、その後製膜液Aを流し出して製膜した膜を用意した。当該膜を、比較例の膜13aと称する。
 図6(a)に、上記の促進輸送膜1a~1eと比較例の膜13aの、COパーミアンス、Hパーミアンス、CO/H選択率(Hパーミアンスに対するCOパーミアンスの比)を、160℃において測定した結果を示す。尚、このときの原料ガスFGの相対湿度は48%であった。
 図6(a)の、促進輸送膜1a~1dの結果から、印加圧力の増加に伴ってHパーミアンスが減少し、この結果として100以上のCO/H選択率を有する膜が得られることが分かる。これは、製膜時に加圧することで、ポリマー粒子が多孔性支持体の細孔内に入り込み、緻密な分離機能層4が形成された結果であり、分離機能層4が緻密であることにより水素の拡散透過を効率的にブロックするためと考えられる。
 これに対し、加圧せずに製膜した比較例の膜13aは、Hバリア性が著しく低く(即ち、Hパーミアンスが高く)、緻密な分離機能層4が形成されていないといえる。実際に、分離機能層4の厚さをSEMにより断面観察したところ、膜厚が薄い個所で0.5μm、厚い個所で10μmでばらつきがあり、分離機能層4が均一に形成できていないことが分かった。
 促進輸送膜1eは、促進輸送膜1a~1dと比べて製膜時の印加圧力が小さいが、この場合、印加時間が2時間であっても、Hパーミアンスが比較的大きい。一方、SEMによる断面観察の結果、促進輸送膜1eの分離機能層4の厚さは、促進輸送膜1aと同程度(~14μm)であった。以上より、製膜後の分離機能層4の膜厚が同程度であっても、500kPaで加圧製膜した膜1aと、200kPaで加圧製膜した膜1eでは、分離機能層4の緻密性が異なることが示唆される。
 従って、製膜時に製膜液と接触する多孔性支持体3の内側を加圧せず、多孔性支持体3の外側を減圧することによっては、100以上のCO/H選択率を達成できる程度の緻密な分離機能膜4を形成することができないといえる。
 〈性能比較結果2〉
 次に、本発明方法とディップコーティング法による製膜方法とを比較した結果を以下に示す。
 促進輸送膜の製造方法は以下の通りである。工程1において調製した製膜液Cを、セラミック(ここでは、アルミナ)製の多孔性支持体3の外側の処理空間6に満たし、その後、不活性ガスを流し入れて処理空間6を300kPaで15分間加圧した。乾燥工程等、その他の工程については、上述した第2実施形態と同様である。上記の方法で製膜した膜を、促進輸送膜11aと称する。
 これに対し、ディップコーティング法による促進輸送膜の製造方法を以下に示す。製膜液Cを調整後、多孔性支持体3の内側に製膜液が流入しない状態で、多孔性支持体3を製膜液Cに室温で15時間浸した後、100mm/分の速度で引き上げた。その後、65℃の恒温槽内で30分間乾燥させた後、更に120℃で2時間乾燥させた。上記の方法で製膜した膜を、比較例の膜13bと称する。
 図6(b)に、上記の促進輸送膜11aと比較例の膜13bの、COパーミアンス、Hパーミアンス、CO/H選択率を、110℃において測定した結果を示す。尚、このときの原料ガスFGの相対湿度は70%であった。
 図6(b)より、ディップコーティング法により多孔性支持体3の外側に分離機能層4を製膜した比較例の膜13bは、Hパーミアンスが非常に高く、この結果CO/H選択率が非常に小さい。これは、緻密な分離機能層4が形成されていないためである。これに対し、加圧製膜により多孔性支持体3の外側に分離機能層4を製膜した促進輸送膜11aは、Hパーミアンスが低い。緻密な分離機能層4が形成されているためと考えられる。
 以上から、加圧製膜により、多孔性支持体3の内側だけでなく、外側にも緻密な分離機能層4を形成できることが分かる。
 〈性能比較結果3〉
 次に、加圧後、多孔性支持体3に担持された製膜液を乾燥させる(工程5)際に、再度加圧しながら乾燥させた場合の結果を示す。
 比較のため、加圧せずに乾燥させた促進輸送膜の製造方法の一例を以下に示す。工程1において調製した製膜液Bを、セラミック(ここでは、アルミナ)製の多孔性支持体3の内側の処理空間5に満たし、その後、不活性ガスを流し入れて処理空間5を500kPaで30分間加圧した。その他の工程については、上述した第1実施形態と同様である。上記の方法で製膜した膜を、促進輸送膜1fと称する。
 これに対し、加圧しながら乾燥させる場合、上記の促進輸送膜1fの製造方法において、加圧後、多孔性支持体3の内周面上に担持された製膜液を乾燥させる際に、500kPaの圧力を加えた状態で、通気口8a、8bを介して処理空間5内に不活性ガスを流した。上記の方法で製膜した膜を、促進輸送膜1gと称する。
 図6(c)に、上記の促進輸送膜1fと1gのCOパーミアンス、Hパーミアンス、CO/H選択率を、160℃において測定した結果が示されている。尚、このときの原料ガスFGの相対湿度は90%であった。尚、上記促進輸送膜1fと1gは、上述の促進輸送膜1a~1e、11a、13a、13b、あるいは後述する促進輸送膜1h~1i(多孔性支持体3の厚さ0.5mm)と異なり、多孔性支持体3の厚さが1.5mmの大型の膜である。
 図6(c)から、加圧しながら乾燥させた促進輸送膜1gの方が、水素バリア性が高く(即ち、Hパーミアンスが低く)、より緻密な分離機能層4が形成されることが分かる。
 〈性能比較結果4〉
 次に、製膜液に添加する親水性ポリマーの違いによる膜性能の違いを検討した結果を以下に示す。
 促進輸送膜の製造方法は以下の通りである。工程1において調製した製膜液Bを、セラミック(ここでは、アルミナ)製の多孔性支持体3の内側の処理空間5に満たし、その後、不活性ガスを流し入れて処理空間5を500kPaで30分間加圧した。乾燥工程等、その他の工程については、上述した第1実施形態と同様である。上記の方法で製膜した膜を、促進輸送膜1hと称する。
 同様に、工程1において調製した製膜液Dを、セラミック(ここでは、アルミナ)製の多孔性支持体3の内側の処理空間5に満たし、その後、不活性ガスを流し入れて処理空間5を500kPaで30分間加圧した。乾燥工程等、その他の工程については、上述した第1実施形態と同様である。上記の方法で製膜した膜を、促進輸送膜1iと称する。
 即ち、促進輸送膜1hと1iは、促進輸送膜1dにおいて製膜液が異なることを除き、他は同様の製造方法で製膜した膜である。促進輸送膜1hは、PVA/PAA塩共重合体を膜材料とするもの、促進輸送膜1iはPVAを膜材料とするものであるが、他の製膜条件は促進輸送膜1fと1gで同じである。また、製膜液におけるポリマーとCOキャリアである炭酸セシウムの重量比も3:7で同じである。従って、膜構成物質の重量比が同一であることにより、ポリマーの違いがCO分離性能に及ぼす影響を見ることができる。うちPVA/PAA塩共重合体膜(促進輸送膜1h)は、ハイドロゲル膜である。
 図7(a)に、上記の促進輸送膜1hと1iの、COパーミアンス、Nパーミアンス、CO/N選択率(Nパーミアンスに対するCOパーミアンスの比)を、130℃において測定した結果を示す。尚、このときの原料ガスFGの相対湿度は83%であった。
 図7(a)より、促進輸送膜1hと1i共に、高いCO/N選択率を有しているが、ハイドロゲルであるPVA/PAA塩共重合体にCOキャリアを添加した膜である促進輸送膜1hの方が、促進輸送膜1iよりもCOパーミアンスが3倍以上高い。CO促進輸送膜ではキャリアである炭酸セシウムとCOの反応に水が必要であるが、分離機能層4を保水性の高いハイドロゲル膜からなるゲル層とすることで、分離機能層4内のCO促進輸送に寄与する水分量をより多く保持できることが、促進輸送膜1hが1iよりも高いCO選択性を有する要因である。
 〈性能比較結果5〉
 更に、工程1において調製した製膜液Cを、セラミック(ここでは、アルミナ)製の多孔性支持体3の内側の処理空間5に満たし、その後、不活性ガスを流し入れて処理空間5を300kPaで15分間加圧した。乾燥工程等、その他の工程については、上述した第1実施形態と同様である。上記の方法で製膜した膜を、促進輸送膜1jと称する。
 図7(b)に、上記の促進輸送膜1jのCOパーミアンス、Nパーミアンス、CO/N選択率を、110℃において測定した結果を示す。尚、このときの原料ガスFGの相対湿度は70%であった。促進輸送膜1jは、多孔性支持体3の内側に緻密な分離機能層4を製膜した膜の対N選択性の評価結果であり、5000という非常に高いCO/N選択率を有していることが分かる。これに対し、上述した溶解・拡散機構に基づく高分子膜では、通常数十程度のCO/N選択率しか得られない。
 〈性能比較結果6〉
 次に、スチーム(水蒸気)を選択的に透過させる促進輸送膜1を加圧製膜し、膜性能を評価した結果を示す。
 促進輸送膜の製造方法は以下の通りである。工程1において調製した製膜液Eを、セラミック(ここでは、アルミナ)製の多孔性支持体3の内側の処理空間5に満たし、その後、不活性ガスを流し入れて処理空間5を300kPaで15分間加圧した。乾燥工程等、その他の工程については、上述した第1実施形態と同様である。上記の方法で製膜した膜を、促進輸送膜1kと称する。
 図8に、上記の促進輸送膜1kのスチームパーミアンス、COパーミアンス、スチーム/CO選択率を、130℃において測定した結果を示す。スチームキャリアを含む製膜液を用いて加圧製膜することで、非常に高いスチーム選択透過性能を有する分離機能層4を製膜することができる。
 尚、上記の促進輸送膜1a~1jも、水蒸気と反応するキャリアとして炭酸セシウムまたは水酸化セシウムを含んでいるため、高いスチームパーミアンスを有しているが、同時に高いCOパーミアンスを有するCO選択透過膜であるため、COに対してスチームを選択的に透過させるといった用途には不向きである。例えば、上述した促進輸送膜1hでは、上述した130℃の測定条件において、スチームパーミアンスは3.0×10-4mol/(m・s・kPa)、COパーミアンスは5.8×10-5mol/(m・s・kPa)であり、スチーム/CO選択率は5.2であった。これに対して、促進輸送膜1kでは、スチーム/CO選択率としては1000以上の非常に高いスチーム選択透過性能が得られている。
 上記のスチーム選択透過膜は、COを選択的に透過する促進輸送膜と組み合わせることで、CO変成反応を用いて炭化水素から水素を取り出す水素ステーション用改質システムに利用されるCO透過型メンブレンリアクターにおいて、スチームをリサイクルすることが可能になる(例えば、特願2010-287262号参照)。
 〈性能比較結果7〉
 次に、多孔性支持体3に親水性の材料を用いた場合の促進輸送膜1の性能比較結果を示す。
 比較のため、セラミックス製の多孔性支持体3を用いた促進輸送膜の製造方法の一例を以下に示す。工程1において調製した製膜液Cを、セラミック(ここでは、アルミナ)製の多孔性支持体3の内側の処理空間5に満たし、その後、不活性ガスを流し入れて処理空間5を300kPa~600kPaで15分間加圧した。更に、上記促進輸送膜1lと同様、乾燥工程(工程4)において製膜時(工程3)と同じ圧力で加圧し、乾燥させた。その他の工程については、上述した第1実施形態と同様である。上記の方法で製膜した膜を、促進輸送膜1lと総称する。
 これに対し、多孔性支持体3として親水化したポリスルフォンを用い、促進輸送膜1lと同様の方法で促進輸送膜を製膜した。上記の方法で製膜した膜を、促進輸送膜1mと総称する。
 図9に、夫々、300kPa、400kPa,500kPa,600kPaで15分加圧して製膜した促進輸送膜1lのCOパーミアンスの測定結果を、図10に、夫々、300kPa、400kPa,500kPa,550kPa,600kPaで15分加圧して製膜した促進輸送膜1mのCOパーミアンスの測定結果を示す。尚、このときの原料ガスFGの相対湿度は、温度が60℃、70℃、80℃、90℃、100℃、110℃において、99%、63%、42%、28%、19%、14%であった。
 CO促進輸送膜ではキャリアによるCOの促進輸送に水が必要であり、相対湿度が低いほど分離機能層4中の水分が少なくなるため、高温ではCOの透過速度は低下する。即ち、図9及び図10に示すように、温度上昇に伴いCOパーミアンスは低下する傾向にある。
 しかしながら、親水性のポリスルフォンを多孔性支持体3に用いた促進輸送膜1mでは、図10に示すように、図9に示す促進輸送膜1lと比べて、温度上昇に伴うCOパーミアンスの低下が抑えられていることが分かる。これは、多孔性支持体3に保水性の高い親水性の材料を用いることで、分離機能層4内のCO促進輸送に寄与する水分量をより多く保持できるためである。
 尚、300kPaに加圧して製膜した促進輸送膜1lは、上述した促進輸送膜1jと製膜条件が略同一となるが、図8に示す促進輸送膜1lのCOパーミアンスは、図7(b)に示す促進輸送膜1jのCOパーミアンスと比較して非常に小さい。これは、測定時の原料ガスFGのスチーム分圧が、促進輸送膜1lの方が促進輸送膜1jよりも低いことによる。原料ガスFGのスチーム分圧を下げると、分離機能層4内の相対湿度が低下するため、上述の通り、COパーミアンスが低下し、満足する膜性能が得られないことがある。
 換言すると、図10の結果は、低湿度の条件でCOの分離を行わざるを得ない場合であっても、親水性の多孔性支持体3を用いて膜モジュールを構成することで、高いCOパーミアンスを実現できることを示すものである。即ち、親水性の多孔性支持体3上に分離機能層4を形成した促進輸送膜は、低湿度の混合ガスからのCOの分離に非常に有用である。
 以上より、加圧した状態で分離機能層4を多孔性支持体3上に製膜することで、支持体の内壁面に緻密な分離機能層を形成することができ、特定ガスに対して高い選択透過性能を有する促進輸送膜を容易に製造することが可能になる。
 以下に、本発明に係る促進輸送膜の製造方法の別実施形態につき説明する。
 〈1〉上記実施形態では、膜モジュール2又は12において、円筒状の多孔性支持体3を1本備え、当該円筒の内周面上あるいは外周面上に分離機能層4を製膜する場合を例示したが、本発明はこれに限られるものではない。
 図11の断面構造図に示す膜モジュール20は、セル7内に複数(図では7本)の円筒状の促進輸送膜1が、仕切り板10により束ねられ、固定されてなる中空糸状のモジュールである。通気口8aから通気口8bへ原料ガスFGを流し、通気口9aから通気口9bへスイープガスSGを流すと、促進輸送膜1の分離機能層4を介して、原料ガスFGが流れる処理空間5から、スイープガスSGが流れる処理空間6へ、特定ガスが選択透過し、スイープガスSG’の一部となって通気口9bから排出される。
 このように構成することで、促進輸送膜1の膜面積を大きくすることができ、特定ガスの時間あたりの透過量を高めることができる。
 上記図11示す膜モジュール20は、多孔性支持体3が柱状の中空部分を有し、中空部分の内壁面上に分離機能層4が製膜されている。本発明の加圧製膜法を適用し、中空内部を加圧しながら分離機能層4を多孔性支持体3の内壁面上に製膜することで、緻密な分離機能層4を形成することができ、特定ガスに対して高い選択透過性能を有する促進輸送膜を容易に製造することが可能になる。
 尚、上記膜モジュール20において、促進輸送膜1の製造方法は、円筒状の多孔性支持体3の内周面に分離機能層4を加圧製膜したものを1本毎に作製し、その後、複数本を仕切り板10に固定して膜モジュールを構成してもよいし、複数の円筒状の多孔性支持体3を仕切り板10に固定後、加圧製膜により複数の円筒の内周面上に同時に分離機能層4を製膜してもよいし、どちらでも構わない。
 尚、第1及び第2実施形態、並びに、図11において、多孔性支持体3を円筒状としたが、支持体内部に中空部分を有する限り、その形状には限定されない。例えば、多角形の筒状であっても構わない。特に、図11において、多孔性支持体3を正6角形の筒状とすることで、複数の多孔性支持体3を隙間無く、ハニカム状に配置することができ、分離機能層4が形成される膜面積を稼げる。
 或いは、多孔性支持体3が平板状であり、当該平板状の多孔性支持体3の一方の面に分離機能層4が製膜された膜モジュールであっても、製膜時の加圧により、緻密な分離機能層を形成することができる。
 〈2〉上記実施形態において例示した、製膜液A~Eの調製工程における各成分の混合比率、加圧時の圧力や加圧時間、乾燥時の温度や時間等は、本発明の理解を容易にするための例示であり、本発明はそれらの数値で規定される製造方法に限定されるものではない。例えば、上記実施形態では、原料ガスFGとスイープガスSGとの間に特定ガスの分圧差が生じるように、原料ガスFGの特定ガスの分圧がスイープガスSGの分圧よりも高くなるようにしているが、原料ガスFGの分圧が十分高い場合には、スイープガスSGを流さなくとも透過推進力である分圧差が得られるため、スイープガスSGを流す必要はない。
 〈3〉上記実施形態では、分離機能層4の製膜を、製膜液を多孔性支持体3内側(あるいは外側)の処理空間に製膜液を注入後、加圧して製膜液を多孔性支持体3の内周面(あるいは外周面)に密着させ、その後、減圧して製膜液を流し出し、多孔性支持体3上に担持された製膜液を乾燥させるものとなっている。しかしながら、製膜液の粘度が高い場合には、製膜液を注入後、加圧せずに製膜液を流し出しても、製膜液は多孔性支持体3上に担持されるため、その後の加圧により製膜液を多孔性支持体3上に密着させることができる。この場合、加圧工程において加熱したガスを流し入れ、例えば、80℃程度の温度条件で加圧することにより、加圧工程と乾燥工程を同時に行うことができる。図12にこの方法による促進輸送膜の製造方法のフローチャートを示す。
 本発明に係る促進輸送膜の製造方法は、二酸化炭素等のガスの分離に利用可能であり、特に、中空部分の内側に分離機能層が形成された促進輸送膜を製造する場合に有用である。
 1(1a~1m),11(11a): 本発明方法により製造された促進輸送膜
 2,12,20: 膜モジュール
 3: 多孔性質支持体
 4: 分離機能層(ゲル層)
 5、6: 処理空間
 7: セル
 8a,8b,9a,9b: 通気口
 10: 仕切り板
 13(13a,13b):促進輸送膜(比較例)
 FG,FG’: 原料ガス
 SG,SG’: スイープガス

Claims (12)

  1.  特定ガスを選択的に透過させる促進輸送膜の製造方法であって、
     親水性ポリマーを含む製膜液を調製する工程と、
     支持体となる多孔性膜の一方の第1面を前記製膜液で被覆するとともに、前記多孔性膜の前記第1面側を加圧し、前記製膜液を前記第1面上に密着させる加圧工程と、
     前記多孔性膜の前記第1面上に担持された前記製膜液を乾燥させ、分離機能層を形成する乾燥工程と、
     前記製膜液内または前記分離機能層内に、前記特定ガスと選択的に反応するキャリアを添加する工程を含むことを特徴とする促進輸送膜の製造方法。
  2.  前記加圧工程において、前記多孔性膜の前記第1面側からガスを流し入れることで、前記多孔性膜の前記第1面側を加圧することを特徴とする請求項1に記載の促進輸送膜の製造方法。
  3.  前記支持体が、柱状の中空部分を有し、
     前記加圧工程において、前記製膜液を前記中空内部に充填し、前記中空内部を加圧することにより前記製膜液を前記中空部分の内壁面である前記第1面上に担持させることを特徴とする請求項1又は2に記載の促進輸送膜の製造方法。
  4.  前記支持体が円筒状であり、
     前記加圧工程において、前記製膜液を前記円筒の内側に充填し、前記円筒内部を加圧することにより前記製膜液を前記円筒の内周面である前記第1面上に担持させることを特徴とする請求項3に記載の促進輸送膜の製造方法。
  5.  前記乾燥工程において、前記多孔性膜の前記第1面側を加圧しながら、前記製膜液を乾燥させることを特徴とする請求項1~4の何れか一項に記載の促進輸送膜の製造方法。
  6.  前記分離機能層が、ハイドロゲルからなるゲル層であることを特徴とする請求項1~5の何れか一項に記載の促進輸送膜の製造方法。
  7.  前記多孔性膜が、親水性のポリマーからなることを特徴とする請求項1~6の何れか一項に記載の促進輸送膜の製造方法。
  8.  前記キャリアが、二酸化炭素と選択的に反応する化合物であることを特徴とする請求項1~7の何れか一項に記載の促進輸送膜の製造方法。
  9.  前記キャリアが、セシウム若しくはルビジウムの炭酸化物、重炭酸化物、若しくは水酸化物、2,3‐ジアミノプロピオン酸(DAPA)、又は、グリシン、の何れかを含んでなることを特徴とする請求項8に記載の促進輸送膜の製造方法。
  10.  前記キャリアが、水蒸気と選択的に反応する化合物であることを特徴とする請求項1~7の何れか一項に記載の促進輸送膜の製造方法。
  11.  前記キャリアが、塩化セシウム若しくは硝酸セシウム若しくは塩化ルビジウム若しくは硝酸ルビジウムの何れかを含んでなることを特徴とする請求項10に記載の促進輸送膜の製造方法。
  12.  前記キャリアが、硫黄酸化物と選択的に反応する化合物であることを特徴とする請求項1~7の何れか一項に記載の促進輸送膜の製造方法。
PCT/JP2012/080709 2011-12-01 2012-11-28 促進輸送膜の製造方法 WO2013080994A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013547180A JP5881737B2 (ja) 2011-12-01 2012-11-28 促進輸送膜の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011263734 2011-12-01
JP2011-263734 2011-12-01

Publications (1)

Publication Number Publication Date
WO2013080994A1 true WO2013080994A1 (ja) 2013-06-06

Family

ID=48535445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080709 WO2013080994A1 (ja) 2011-12-01 2012-11-28 促進輸送膜の製造方法

Country Status (2)

Country Link
JP (2) JP5881737B2 (ja)
WO (1) WO2013080994A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019018169A (ja) * 2017-07-19 2019-02-07 旭化成株式会社 複合分離膜
JP2019084464A (ja) * 2017-11-01 2019-06-06 旭化成株式会社 ガス分離膜

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10981122B2 (en) 2016-02-25 2021-04-20 Kyushu University, National University Corporation Monolayer, composite, gas separation material, filter, gas separation device and method for manufacturing composite
WO2017154519A1 (ja) * 2016-03-09 2017-09-14 株式会社ルネッサンス・エナジー・リサーチ 燃焼システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182806A (ja) * 1984-09-28 1986-04-26 Sumitomo Electric Ind Ltd 液体膜
JPS61149205A (ja) * 1984-12-24 1986-07-07 Sumitomo Electric Ind Ltd 液体膜
JPS6261619A (ja) * 1985-09-10 1987-03-18 Sumitomo Electric Ind Ltd 液体膜
JPH01242124A (ja) * 1988-03-22 1989-09-27 Agency Of Ind Science & Technol 気体分離膜
WO2009093666A1 (ja) * 2008-01-24 2009-07-30 Renaissance Energy Research Corporation Co2促進輸送膜及びその製造方法
JP2011161387A (ja) * 2010-02-10 2011-08-25 Fujifilm Corp ガス分離膜その製造方法、それらを用いたガス混合物の分離方法、ガス分離膜モジュール、気体分離装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568643B2 (ja) * 1973-11-13 1981-02-25
JPS54135673A (en) * 1978-04-06 1979-10-22 Nippon Synthetic Chem Ind Co Ltd:The Preparation of membranous substance for separation of liquid mixture
JPH0745010B2 (ja) * 1990-03-16 1995-05-17 日本碍子株式会社 セラミック膜フイルタ
JP3905461B2 (ja) * 1995-11-24 2007-04-18 株式会社ノリタケカンパニーリミテド ゼオライト膜の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182806A (ja) * 1984-09-28 1986-04-26 Sumitomo Electric Ind Ltd 液体膜
JPS61149205A (ja) * 1984-12-24 1986-07-07 Sumitomo Electric Ind Ltd 液体膜
JPS6261619A (ja) * 1985-09-10 1987-03-18 Sumitomo Electric Ind Ltd 液体膜
JPH01242124A (ja) * 1988-03-22 1989-09-27 Agency Of Ind Science & Technol 気体分離膜
WO2009093666A1 (ja) * 2008-01-24 2009-07-30 Renaissance Energy Research Corporation Co2促進輸送膜及びその製造方法
JP2011161387A (ja) * 2010-02-10 2011-08-25 Fujifilm Corp ガス分離膜その製造方法、それらを用いたガス混合物の分離方法、ガス分離膜モジュール、気体分離装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019018169A (ja) * 2017-07-19 2019-02-07 旭化成株式会社 複合分離膜
JP2019084464A (ja) * 2017-11-01 2019-06-06 旭化成株式会社 ガス分離膜

Also Published As

Publication number Publication date
JP5996742B2 (ja) 2016-09-21
JPWO2013080994A1 (ja) 2015-04-27
JP2016000402A (ja) 2016-01-07
JP5881737B2 (ja) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5796136B2 (ja) Co2促進輸送膜及びその製造方法並びにco2分離方法及び装置
EP2656899B1 (en) Gas separation device, membrane reactor, and hydrogen production device
US8715392B2 (en) Catalyzed CO2-transport membrane on high surface area inorganic support
EP2647420B1 (en) Method for removing carbon dioxide using a gel membrane containing a carbon-dioxide carrier
EP2985072B1 (en) Method for manufacturing a facilitated co2 transport membrane
JP5996742B2 (ja) 促進輸送膜の製造方法
JP2013027850A (ja) 二酸化炭素分離膜、二酸化炭素分離膜の製造方法及び二酸化炭素分離膜を用いた二酸化炭素分離モジュール
WO2021079609A1 (ja) Co2促進輸送膜及びその製造方法並びにco2分離方法及び装置
CN105727764A (zh) 光聚合改性的聚烯丙基胺固载膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853263

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013547180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853263

Country of ref document: EP

Kind code of ref document: A1