WO2012014900A1 - スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法 - Google Patents

スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法 Download PDF

Info

Publication number
WO2012014900A1
WO2012014900A1 PCT/JP2011/066983 JP2011066983W WO2012014900A1 WO 2012014900 A1 WO2012014900 A1 WO 2012014900A1 JP 2011066983 W JP2011066983 W JP 2011066983W WO 2012014900 A1 WO2012014900 A1 WO 2012014900A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
membrane
compound
mixed gas
alkali metal
Prior art date
Application number
PCT/JP2011/066983
Other languages
English (en)
French (fr)
Inventor
岡田 治
英治 神尾
伸彰 花井
美和子 小濱
Original Assignee
株式会社ルネッサンス・エナジー・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ルネッサンス・エナジー・リサーチ filed Critical 株式会社ルネッサンス・エナジー・リサーチ
Priority to AU2011283590A priority Critical patent/AU2011283590B2/en
Priority to JP2012526519A priority patent/JP6009940B2/ja
Priority to RU2013108261/05A priority patent/RU2579125C2/ru
Priority to EP11812489.0A priority patent/EP2599539B1/en
Priority to US13/812,042 priority patent/US9827535B2/en
Priority to KR1020137004148A priority patent/KR101780848B1/ko
Priority to CN201180036285.9A priority patent/CN103108690B/zh
Priority to CA2804302A priority patent/CA2804302A1/en
Publication of WO2012014900A1 publication Critical patent/WO2012014900A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/268Drying gases or vapours by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/363Vapour permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/142Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking

Definitions

  • the present invention relates to a steam permselective membrane and a method for separating steam from a mixed gas using the same.
  • Patent Literature As a method for selectively separating steam from a mixed gas containing steam, a method has been proposed in which a separation membrane having a gel layer manufactured from a metal organic compound or a metal inorganic compound is used as a steam selective permeable membrane (Patent Literature). 1).
  • an object of the present invention is to provide a steam permselective membrane that can permeate steam with high permeation speed and high selectivity.
  • the steam permselective membrane according to the present invention contains a crosslinked hydrophilic polymer.
  • the steam permselective membrane preferably further contains an alkali metal compound.
  • the steam permselective membrane according to the present invention may contain a hydrophilic polymer and an alkali metal compound.
  • the steam permselective membrane according to the present invention it is possible to permeate steam with a high permeation rate and high selectivity.
  • the alkali metal compound may contain at least one selected from the group consisting of a cesium compound, a potassium compound and a rubidium compound.
  • the concentration of cesium based on the total mass of the hydrophilic polymer and the alkali metal compound may be 0.003 mol / g or less.
  • the alkali metal compound includes a potassium compound and / or a rubidium compound, the total concentration of potassium and rubidium based on the total mass of the hydrophilic polymer and the alkali metal compound may be 0.005 mol / g or less.
  • the present invention relates to a method for separating steam from a mixed gas.
  • the method according to the present invention comprises the step of separating steam from the mixed gas by allowing the steam permeation membrane according to the present invention to permeate steam in the mixed gas containing steam.
  • the steam permeation membrane according to the present invention permeate steam in the mixed gas containing steam.
  • the partial pressure of steam on the other surface side of the steam permselective membrane can be made lower than the partial pressure of steam in the mixed gas without substantially using a sweep gas.
  • the steam permselective membrane according to the present invention can permeate steam at a high permeation rate and high selectivity.
  • the steam permselective membrane of the present invention can exhibit a high permeation rate and selectivity even at a high temperature exceeding 100 ° C.
  • the steam permselective membrane according to the present invention is an organic membrane, and has advantages such as easy molding and low cost per membrane area as compared with an inorganic membrane.
  • Relationship between the steam permeance and temperature and is a graph showing the relationship between the steam / CO 2 selectivity and Cs concentration. Relationship between the steam permeance and temperature, and is a graph showing the relationship between the steam / CO 2 selectivity and Cs concentration. Relationship between the steam permeance and temperature, and is a graph showing the relationship between the steam / CO 2 selectivity and Cs concentration. Relationship between the steam permeance and temperature, and is a graph showing the relationship between the steam / CO 2 selectivity and K concentrations. Relationship between the steam permeance and temperature, and is a graph showing the relationship between the steam / CO 2 selectivity and K concentrations.
  • Relationship between the steam permeance and temperature and is a graph showing the relationship between the steam / CO 2 selectivity and Rb concentrations.
  • Relationship between the steam permeance and temperature and is a graph showing the relationship between the steam / CO 2 selectivity and Rb concentrations.
  • Relationship between the steam permeance and Feed side pressure and is a graph showing the relationship between the steam / CO 2 selectivity and Feed side pressure.
  • FIG. 1 is a cross-sectional view showing an embodiment of a membrane laminate including a steam permselective membrane.
  • a membrane laminate 10 shown in FIG. 1 includes a steam selective permeable membrane 1 and porous membranes 2 a and 2 b provided on both sides of the steam selective permeable membrane 1.
  • the steam permselective membrane 1 has a gel-like hydrophilic polymer layer containing a crosslinked hydrophilic polymer.
  • the hydrophilic polymer layer is a hydrogel in which a hydrophilic polymer is crosslinked to form a three-dimensional network structure. Hydrogels often have the property of swelling by absorbing water.
  • the hydrophilic polymer is selected from, for example, polyvinyl alcohol-polyacrylate copolymer (PVA-PAA salt copolymer), polyvinyl alcohol, polyacrylic acid, chitosan, polyvinylamine, polyallylamine, and polyvinylpyrrolidone.
  • the degree of crosslinking of the hydrogel of PVA-PAA salt copolymer and the hydrogel of polyvinyl alcohol can be further controlled by a dialdehyde compound such as glutaraldehyde and / or an aldehyde compound such as formaldehyde.
  • a dialdehyde compound such as glutaraldehyde and / or an aldehyde compound such as formaldehyde.
  • the PVA-PAA salt copolymer is sometimes referred to as a PVA-PAA copolymer.
  • the hydrophilic polymer layer preferably contains at least one alkali metal compound selected from the group consisting of a cesium compound, a potassium compound and a rubidium compound.
  • This alkali metal compound functions as a carrier that promotes selective permeation of moisture.
  • the alkali metal compound is, for example, an alkali metal hydroxide, carbonate, nitrate, carboxylate (acetate, etc.) or chloride selected from cesium (Cs), potassium (K), and rubidium (Rb).
  • the hydrophilic polymer layer may further contain a lithium compound and / or a sodium compound in addition to an alkali metal compound selected from a cesium compound, a potassium compound and a rubidium compound.
  • the concentration of cesium based on the total mass of the hydrophilic polymer and the alkali metal compound is preferably 0.003 mol / g or less.
  • the alkali metal compound contains a potassium compound and / or a rubidium compound
  • the total concentration of potassium and rubidium based on the total mass of the hydrophilic polymer and the alkali metal compound is preferably 0.005 mol / g or less.
  • the lower limit of the concentration of at least one alkali metal selected from the group consisting of a cesium compound, a potassium compound and a rubidium compound is not particularly limited, but is preferably 0.001 based on the total mass of the hydrophilic polymer and the alkali metal compound. It is at least mol / g.
  • the steam permselective membrane 1 may have a hydrophilic polymer layer containing an uncrosslinked hydrophilic polymer and at least one alkali metal compound selected from the group consisting of a cesium compound, a potassium compound and a rubidium compound. Good.
  • the hydrophilic polymer used in this case is selected from, for example, polyvinyl alcohol, polyacrylic acid, chitosan, polyvinylamine, polyallylamine, and polyvinylpyrrolidone.
  • the alkali metal compound the same ones as described above can be used.
  • the preferable concentration range of the alkali metal is the same as described above.
  • the steam permselective membrane 1 is preferably composed of the hydrophilic polymer layer and a porous membrane, and at least a part of the hydrophilic polymer layer is preferably filled in the porous membrane.
  • This porous membrane is preferably hydrophilic.
  • the hydrophilic porous membrane include a hydrophilized polytetrafluoroethylene porous membrane (hydrophilic PTFE porous membrane) and a hydrophilic ceramic porous membrane (alumina porous membrane, etc.).
  • the porous membranes 2a and 2b are preferably hydrophobic.
  • the hydrophobic porous membrane include a polytetrafluoroethylene porous membrane (hydrophobic PTFE porous membrane) that has not been made hydrophilic.
  • the porous membranes 2a and 2b are not necessarily provided.
  • the film laminate 10 is formed, for example, by preparing a cast solution containing a hydrophilic polymer and, if necessary, an alkali metal compound and water in which they are dissolved, and a film of the cast solution on one porous film 2a. It can be produced by a method comprising a step, a step of drying a cast solution membrane to form a hydrophilic polymer layer, and a step of providing the other porous membrane 2b on the hydrophilic polymer layer.
  • the cast solution can be prepared by dissolving a hydrophilic polymer and an alkali metal compound in water.
  • the hydrophilic polymer can be chemically crosslinked by adding a crosslinking agent such as glutaraldehyde to the cast solution.
  • the casting solution is heated as necessary to allow the crosslinking of the hydrophilic polymer to proceed.
  • Cast film can be cast to form a cast solution film. Casting can be performed by an ordinary method using an applicator or the like. By placing a hydrophilic porous film on the hydrophobic porous film 2a and casting the cast solution on the hydrophilic porous film, a part of the cast solution is filled into the hydrophilic porous film.
  • the gel-like hydrophilic polymer layer is formed by removing water from the cast solution film. Thereafter, the hydrophilic polymer may be further crosslinked by heating.
  • the membrane laminate 10 is obtained by laminating the porous membrane 2b on the steam selective permeable membrane 1 having a hydrophilic polymer layer.
  • the film laminate according to the present embodiment can be used for separating steam from a mixed gas containing steam and other gases.
  • a mixed gas containing steam is supplied to the porous membrane 2a side (Feed side), and the steam selectively permeable membrane 1 is permeated through the steam, and the permeated steam is separated to the porous membrane 2b side.
  • the steam can be efficiently transmitted to the steam permselective membrane 1 Can be transmitted through.
  • a sweep gas such as Ar gas may be continuously supplied to the porous film 2b side.
  • the steam recovered from the mixed gas is reused, it is preferable to adjust the steam partial pressure difference without substantially using the sweep gas.
  • the partial pressure difference of the steam can be adjusted by a method such as making the total pressure on the porous membrane 2a side higher than the total pressure on the porous membrane 2b side.
  • the steam permselective membrane 1 can also be used for purposes other than the reuse of steam, such as dehumidification of a mixed gas.
  • the steam permselective membrane 1 When permeating steam, the steam permselective membrane 1 is preferably heated to 100 to 200 ° C.
  • the steam permselective membrane according to this embodiment can exhibit high steam permeability and high steam selectivity even at such a high temperature. Therefore, high-temperature steam can be recovered and reused without being liquefied by cooling. According to this method, compared with the case where water liquefied by cooling is heated again and reused as steam, the latent heat of steam can be used more effectively, so that higher energy efficiency can be realized.
  • transmitted the steam selective permeable membrane is not reused as steam, the recovered steam may be liquefied by cooling and recovered.
  • the steam permselective membrane 1 is particularly preferably used for separating steam from a mixed gas containing steam and CO 2 .
  • the steam permselective membrane 1 is particularly preferably used for separating steam from a mixed gas containing steam and CO 2 .
  • the method employing a combination of can be recovered CO 2 at high energy efficiency from a gas containing CO 2.
  • the steam permselective membrane is not limited to the embodiment described above, and can be appropriately modified without departing from the gist of the present invention.
  • the steam permselective membrane may be formed in a cylindrical shape.
  • FIG. 2 is a cross-sectional view showing an embodiment of a gas processing apparatus provided with a cylindrical steam selective permeable membrane.
  • 2A shows a cross section perpendicular to the longitudinal direction of the gas processing apparatus
  • FIG. 2B shows a cross section parallel to the longitudinal direction of the gas processing apparatus.
  • a gas processing apparatus 20 shown in FIG. 2 includes a cylindrical steam permselective membrane 1 and a cylindrical container 5 that accommodates the steam permselective membrane 1.
  • the steam permselective membrane 1 is composed of a cylindrical hydrophilic polymer layer 3 and a cylindrical porous membrane 4 provided on the inside thereof. A part of the hydrophilic polymer layer 3 is filled in the porous film 4.
  • the hydrophilic polymer layer 3 may be supported on the inner peripheral surface side of the porous film 4.
  • the cross-sectional shape of the cylindrical steam permselective membrane does not necessarily have to be a perfect circle, and can be deformed to an arbitrary shape such as an ellipse.
  • the container 5 and the steam permselective membrane 1 are divided into the space 11 on the Feed side into which the mixed gas 30 containing steam flows and the steam permeated through the steam permselective membrane 1. And the space 12 on the sweep side containing the exhaust gas 35 containing the.
  • the container 5 is provided with an opening 21 provided at one end for allowing the feed-side space 11 to communicate with the outside of the container 5, and a feed-side space 11 provided at the other end for the outside of the container 5. And an opening 25 for communicating the space 12 on the side of the sweep to the outside of the container 5.
  • the mixed gas 30 is supplied from the opening 21 to the space 11 on the Feed side and is discharged from the opening 22.
  • the steam that permeates the steam selective permeable membrane 1 and is separated from the mixed gas 30 is collected in the exhaust gas 35 that is discharged from the opening 25. Steam gas may be flowed into the space 12 on the sweep side in the same manner as described above.
  • a hydrophobic PTFE porous membrane (Sumitomo Electric, Fluoropore FP-010) was placed on a glass plate, and a hydrophilic PTFE porous membrane (Sumitomo Electric, WPW-020-80) was placed thereon.
  • the cast solution was cast to a thickness of 500 ⁇ m using a Baker applicator. At this time, a part of the cast solution was filled in the hydrophilic PTFE porous membrane. Thereafter, the cast casting solution was dried for about 12 hours in a dry box maintained at a humidity of about 5% to form a gel layer. After drying, the formed gel layer was placed in a thermostat kept at 120 ° C.
  • a steam selective permeable membrane composed of a hydrophilic PTFE porous membrane and a gel layer.
  • a hydrophobic PTFE porous membrane was laminated on the steam selective permeable membrane to obtain a membrane laminate having a three-layer structure of hydrophobic PTFE porous membrane / steam selective permeable membrane / hydrophobic PTFE porous membrane.
  • PVA-PAA salt copolymer / CsOH 2.0 g of PVA-PAA salt copolymer (SS gel) was dissolved in 80.0 g of ion-exchanged water at room temperature. 0.064g of 25 mass% glutaraldehyde aqueous solution was added to the obtained SS gel aqueous solution. Subsequently, the solution was heated at 95 ° C. for 12 hours to allow chemical crosslinking with glutaraldehyde to proceed. Thereafter, CsOH was added as a carrier and dissolved to obtain a cast solution. The amount of CsOH was adjusted such that the concentration of CsOH with respect to the total mass of SS gel and CsOH was 30% by mass. At this time, the molar concentration of Cs is 0.002 mol / g based on the total mass of SS gel and CsOH.
  • a hydrophobic PTFE porous membrane (Sumitomo Electric, Fluoropore FP-010) was placed on a glass plate, and a hydrophilic PTFE porous membrane (Sumitomo Electric, WPW-020-80) was placed thereon.
  • the cast solution was cast to a thickness of 500 ⁇ m using a Baker applicator. Thereafter, the cast casting solution was dried for about 12 hours in a dry box maintained at a humidity of about 5% to form a gel layer. After drying, the formed gel layer was placed in a thermostat kept at 120 ° C.
  • a steam selective permeable membrane composed of a hydrophilic PTFE porous membrane and a gel layer.
  • a hydrophobic PTFE porous membrane was laminated on the steam selective permeable membrane to obtain a membrane laminate having a three-layer structure of hydrophobic PTFE porous membrane / steam selective permeable membrane / hydrophobic PTFE porous membrane.
  • a hydrophobic PTFE porous membrane (Sumitomo Electric, Fluoropore FP-010) was placed on a glass plate, and a hydrophilic PTFE porous membrane (Sumitomo Electric, WPW-020-80) was placed thereon.
  • the cast solution was cast to a thickness of 500 ⁇ m using a Baker applicator. Thereafter, the cast casting solution was dried for about 12 hours in a dry box maintained at a humidity of about 5% to form a steam selective permeable membrane composed of a hydrophilic PTFE porous membrane and a PVA layer. .
  • hydrophobic PTFE porous membrane was laminated on the steam selective permeable membrane to obtain a membrane laminate having a three-layer structure of hydrophobic PTFE porous membrane / steam selective permeable membrane / hydrophobic PTFE porous membrane.
  • PVA comparative membrane
  • a hydrophobic PTFE porous membrane (Sumitomo Electric Fluoropore FP-010) was placed on a glass plate, and a hydrophilic PTFE porous membrane (Sumitomo Electric WPW-020-80) was placed thereon.
  • a 5 mass% PVA aqueous solution was cast so as to have a thickness of 500 ⁇ m using a Baker applicator. Thereafter, the cast aqueous PVA solution was dried for about 12 hours in a dry box maintained at a humidity of about 5% to form a steam selective permeable membrane composed of a hydrophilic PTFE porous membrane and a PVA layer.
  • hydrophobic PTFE porous membrane was laminated on the steam selective permeable membrane to obtain a membrane laminate having a three-layer structure of hydrophobic PTFE porous membrane / steam selective permeable membrane / hydrophobic PTFE porous membrane.
  • the membrane laminate was attached to a membrane evaluation apparatus, and gas permeation performance was evaluated. While heating the film stack to a predetermined temperature, a raw material gas containing CO 2 , N 2 and H 2 O (steam) is supplied to one surface side (Feed side) of the film stack, opposite to the Feed side. Ar gas as a sweep gas was allowed to flow on the side (Sweep side). A membrane that is an index of the steam permeation rate based on the amount of water collected from the exhaust gas containing Ar gas and gas permeated from the Feed side to the Sweep side by recovering water with a cooling trap. The steam permeance [mol / (m 2 ⁇ s ⁇ kPa)] was calculated.
  • the composition of the remaining exhaust gas was quantified by gas chromatography, and the CO 2 permeance [mol / (m 2 ⁇ s ⁇ kPa)] of the membrane was calculated from the result and the Ar gas flow rate. Furthermore, the ratio of steam permeance for CO 2 permeance (the steam permeance / CO 2 permeance) was calculated as the selectivity of the steam transmission for CO 2 permeability (steam / CO 2 selectivity).
  • the evaluation conditions for gas permeation performance are shown in the following table.
  • FIG. 3 is a graph showing the relationship between steam permeance and temperature and the relationship between steam / CO 2 selectivity and temperature for each membrane of SS gel only, SS gel / CsOH, PVA / CsOH, and PVA only.
  • the membrane using SS gel showed particularly high steam / CO 2 selectivity in a high temperature region.
  • Example 2 Production of a membrane laminate including a steam selective permeable membrane Using CsOH, Cs 2 CO 3 , CsNO 3 , CH 3 COOCs or CsCl as a carrier, a steam selection containing a carrier having the concentrations shown in the following tables and an SS gel A membrane laminate including a permeable membrane was produced in the same procedure as in Study 1.
  • Cs concentration is the ratio of the number of moles of Cs to the total mass (g) of SS gel and carrier (CsOH)
  • the carrier concentration is the ratio of the mass of carrier to the total mass of SS gel and carrier.
  • FIG. 13 is a graph showing the relationship between steam permeance and Feed side pressure, and the relationship between steam / CO 2 selectivity and Feed side pressure. As shown in FIG. 13, it is confirmed that a high steam permeance and steam / CO 2 selectivity can be obtained by providing a difference in steam partial pressure between the Feed side and the Sweep side without using a sweep gas. It was done.
  • Example 5 An apparatus having the same configuration as the gas processing apparatus shown in FIG. 2 was prepared.
  • a cylindrical ceramic porous film (alumina porous film) was used as the porous film 4, and a hydrophilic polymer layer 3 containing SS gel and CsCl as a carrier was supported on the outer peripheral surface thereof.
  • the carrier concentration was 15% by mass.
  • gas permeation performance was evaluated under the conditions shown in the following table.
  • the CO 2 flow rate and Ar flow rate in the table are shown as volume flow rates of 25 ° C. and 1 atm.
  • H 2 O supply amount was shown as the supply amount of of H 2 O liquid. Liquid H 2 O was vaporized by heating, and a gas mixture of vaporized H 2 O and CO 2 was supplied to the Feed side.
  • the steam fraction of the mixed gas was 82%.
  • the pressures shown in the table are absolute pressures.
  • the steam permeance was 3.1 ⁇ 10 ⁇ 3 [mol / (m 2 ⁇ s ⁇ kPa)], and the steam / CO 2 selectivity was 2.9 ⁇ 10 3 . From this result, it was confirmed that the cylindrical steam selective permeable membrane also has very excellent steam permeability and steam / CO 2 selectivity.
  • the steam permselective membrane according to the present invention can be used for selectively separating steam from a mixed gas containing steam.
  • SYMBOLS 1 Steam selective permeable membrane, 2a, 2b ... Porous membrane, 3 ... Hydrophilic polymer, 4 ... Porous membrane of a layer steam selective permeable membrane, 10 ... Membrane laminated body, 20 ... Gas processing apparatus, 30 ... Mixed gas containing steam .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)

Abstract

 架橋された親水性ポリマーを含有する、スチーム選択透過膜。スチーム洗濯透過膜は、セシウム化合物、カリウム化合物及びルビジウム化合物からなる群より選ばれる少なくとも1種のアルカリ金属化合物を更に含有してもよい。

Description

スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法
 本発明は、スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法に関する。
 スチームを含む混合ガスからスチームを選択的に分離する方法として、金属有機化合物又は金属無機化合物から製造されたゲル層を有する分離膜をスチーム選択透過膜として使用する方法が提案されている(特許文献1)。
特開2004-50129号公報
 従来のスチーム選択透過膜は、スチームの透過速度、及び、CO等の他のガスの共存下でスチームを選択的に透過するための選択性の点で、必ずしも十分なものではなかった。
 そこで、本発明は、高い透過速度及び高い選択性でスチームを透過することが可能なスチーム選択透過膜を提供することを目的とする。
 本発明に係るスチーム選択透過膜は、架橋された親水性ポリマーを含有する。このスチーム選択透過膜は、アルカリ金属化合物を更に含有することが好ましい。あるいは、本発明に係るスチーム選択透過膜は、親水性ポリマーと、アルカリ金属化合物と、を含有していてもよい。
 上記本発明に係るスチーム選択透過膜によれば、高い透過速度及び高い選択性でスチームを透過することが可能である。
 スチームの透過速度及び選択性の向上の観点から、上記アルカリ金属化合物は、セシウム化合物、カリウム化合物及びルビジウム化合物からなる群より選ばれる少なくとも1種を含んでいてもよい。アルカリ金属化合物がセシウム化合物を含む場合、親水性ポリマー及びアルカリ金属化合物の合計質量を基準とするセシウムの濃度は0.003モル/g以下であってもよい。アルカリ金属化合物がカリウム化合物及び/又はルビジウム化合物を含む場合、親水性ポリマー及びアルカリ金属化合物の合計質量を基準とするカリウム及びルビジウムの合計濃度は0.005モル/g以下であってもよい。
 別の側面において、本発明はスチームを混合ガスから分離する方法に関する。本発明に係る方法は、上記本発明に係るスチーム選択透過膜に、スチームを含む混合ガス中のスチームを透過させることにより、混合ガスからスチームを分離する工程を備える。例えば、スチーム選択透過膜の一方の面側にスチームを含む混合ガスを供給し、スチーム選択透過膜の他方の面側におけるスチームの分圧を混合ガスにおけるスチームの分圧よりも低くすることにより、スチーム選択透過膜にスチームを透過させることが好ましい。この場合、当該スチーム選択透過膜の他方の面側におけるスチームの分圧を、スイープガスを実質的に用いることなく混合ガスにおけるスチームの分圧よりも低くすることができる。
 本発明に係る方法によれば、スチームを含む混合ガスから、高い透過速度及び高い選択性でスチームを分離することが可能である。
 本発明に係るスチーム選択透過膜は、COに対する高い選択性でスチームを透過可能であることから、スチーム及びCOガスを含む混合ガスからスチームを分離するときに、本発明に係る方法は特に有用である。
 本発明に係るスチーム選択透過膜によれば、高い透過速度及び高い選択性でスチームを透過することが可能である。本発明のスチーム選択透過膜は100℃を超える高温においても高い透過速度及び選択性を発揮し得る。また、本発明に係るスチーム選択透過膜は有機膜であり、無機膜と比較して、成形加工が容易であること、膜面積当たりのコストが低いことなどの利点も有している。
スチーム選択透過膜を備える膜積層体の一実施形態を示す断面図である。 スチーム選択透過膜を備えるガス処理装置の一実施形態を示す断面図である。 スチームパーミアンスと温度との関係、及びスチーム/CO選択性と温度との関係を示すグラフである。 スチームパーミアンスと温度との関係、及びスチーム/CO選択性とCs濃度との関係を示すグラフである。 スチームパーミアンスと温度との関係、及びスチーム/CO選択性とCs濃度との関係を示すグラフである。 スチームパーミアンスと温度との関係、及びスチーム/CO選択性とCs濃度との関係を示すグラフである。 スチームパーミアンスと温度との関係、及びスチーム/CO選択性とCs濃度との関係を示すグラフである。 スチームパーミアンスと温度との関係、及びスチーム/CO選択性とCs濃度との関係を示すグラフである。 スチームパーミアンスと温度との関係、及びスチーム/CO選択性とK濃度との関係を示すグラフである。 スチームパーミアンスと温度との関係、及びスチーム/CO選択性とK濃度との関係を示すグラフである。 スチームパーミアンスと温度との関係、及びスチーム/CO選択性とRb濃度との関係を示すグラフである。 スチームパーミアンスと温度との関係、及びスチーム/CO選択性とRb濃度との関係を示すグラフである。 スチームパーミアンスとFeed側圧力との関係、及びスチーム/CO選択性とFeed側圧力との関係を示すグラフである。
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 図1は、スチーム選択透過膜を備える膜積層体の一実施形態を示す断面図である。図1に示す膜積層体10は、スチーム選択透過膜1と、スチーム選択透過膜1の両側に設けられた多孔膜2a及び2bとから構成される。
 スチーム選択透過膜1は、架橋された親水性ポリマーを含有するゲル状の親水性ポリマー層を有する。親水性ポリマー層は、親水性ポリマーが架橋されて三次元網目構造を形成しているハイドロゲルである。ハイドロゲルは、水を吸収することにより膨潤する性質を有する場合が多い。親水性ポリマーは、例えば、ポリビニルアルコール-ポリアクリル酸塩共重合体(PVA-PAA塩共重合体)、ポリビニルアルコール、ポリアクリル酸、キトサン、ポリビニルアミン、ポリアリルアミン、及びポリビニルピロリドンから選ばれる。PVA-PAA塩共重合体のハイドロゲル、及びポリビニルアルコールのハイドロゲルの架橋度は、グルタルアルデヒド等のジアルデヒド化合物、及び/又は、ホルムアルデヒドなどのアルデヒド化合物により、更に調節することができる。当業者において、PVA-PAA塩共重合体は、PVA-PAA共重合体と呼ばれることもある。
 親水性ポリマー層は、好ましくは、セシウム化合物、カリウム化合物及びルビジウム化合物からなる群より選ばれる少なくとも1種のアルカリ金属化合物を含有する。このアルカリ金属化合物は、水分の選択的な透過を促進するキャリアとして機能する。アルカリ金属化合物は、例えば、セシウム(Cs)、カリウム(K)及びルビジウム(Rb)から選ばれるアルカリ金属の水酸化物、炭酸塩、硝酸塩、カルボン酸塩(酢酸塩等)又は塩化物である。親水性ポリマー層は、セシウム化合物、カリウム化合物及びルビジウム化合物から選ばれるアルカリ金属化合物に加えて、リチウム化合物及び/又はナトリウム化合物を更に含有していてもよい。
 アルカリ金属化合物がセシウム化合物を含む場合、親水性ポリマー及びアルカリ金属化合物の合計質量を基準とするセシウムの濃度は0.003モル/g以下であることが好ましい。アルカリ金属化合物がカリウム化合物及び/又はルビジウム化合物を含む場合、親水性ポリマー及びアルカリ金属化合物の合計質量を基準とするカリウム及びルビジウムの合計濃度は、0.005モル/g以下であることが好ましい。スチーム選択透過膜におけるアルカリ金属の濃度がこれら数値範囲内にあることにより、COに対してより高い選択性でスチームを透過することが可能になる。ただし、これら濃度の計算において、リチウム化合物及びナトリウム化合物の質量は、アルカリ金属化合物の合計質量には含めない。
 セシウム化合物、カリウム化合物及びルビジウム化合物からなる群より選ばれる少なくとも1種のアルカリ金属の濃度の下限は特に制限はないが、好ましくは、親水性ポリマー及びアルカリ金属化合物の合計質量を基準として0.001モル/g以上である。
 スチーム選択透過膜1は、未架橋の親水性ポリマーと、セシウム化合物、カリウム化合物及びルビジウム化合物からなる群より選ばれる少なくとも1種のアルカリ金属化合物とを含有する親水性ポリマー層を有していてもよい。この場合に用いられる親水性ポリマーは、例えば、ポリビニルアルコール、ポリアクリル酸、キトサン、ポリビニルアミン、ポリアリルアミン、及びポリビニルピロリドンから選ばれる。アルカリ金属化合物としては、上記と同様のものが用いられ得る。アルカリ金属の好ましい濃度範囲も上記と同様である。
 スチーム選択透過膜1が、上記親水性ポリマー層と、多孔膜とから構成され、親水性ポリマー層のうち少なくとも一部が多孔膜中に充填されていることが好ましい。この多孔膜は好ましくは親水性である。親水性の多孔膜としては、例えば、親水性化されたポリテトラフルオロエチレン多孔膜(親水性PTFE多孔膜)、親水性のセラミックス多孔膜(アルミナ多孔膜等)が挙げられる。
 多孔膜2a,2bは、疎水性であることが好ましい。疎水性の多孔膜としては、例えば、親水性化されていないポリテトラフルオロエチレン多孔膜(疎水性PTFE多孔膜)が挙げられる。多孔膜2a,2bは、必ずしも設けられていなくてもよい。
 膜積層体10は、例えば、親水性ポリマー及び必要によりアルカリ金属化合物と、これらが溶解する水とを含有するキャスト溶液を準備する工程と、キャスト溶液の膜を一方の多孔膜2a上に形成する工程と、キャスト溶液の膜を乾燥して親水性ポリマー層を形成する工程と、親水性ポリマー層上に他方の多孔膜2bを設ける工程と、を備える方法により製造することができる。
 キャスト溶液は、親水性ポリマー及びアルカリ金属化合物を水に溶解して準備することができる。キャスト溶液にグルタルアルデヒド等の架橋剤を加えることにより、親水性ポリマーを化学的に架橋させることができる。親水性ポリマーの架橋を進行させるために、キャスト溶液は必要により加熱される。
 キャスト溶液をキャストして、キャスト溶液の膜を形成することができる。キャストは、アプリケーター等を用いた通常の方法により行うことができる。疎水性の多孔膜2a上に親水性の多孔膜を置き、親水性の多孔膜上にキャスト溶液をキャストすることにより、キャスト溶液の一部が親水性の多孔膜中に充填される。
 キャスト溶液の膜から水を除去することにより、ゲル状の親水性ポリマー層が形成される。その後、加熱により親水性ポリマーを更に架橋してもよい。
 親水性ポリマー層を有するスチーム選択透過膜1上に多孔膜2bを積層して、膜積層体10が得られる。
 本実施形態に係る膜積層体は、スチーム及び他のガスを含む混合ガスからスチームを分離するために用いることができる。スチームを含む混合ガスを多孔膜2a側(Feed側)に供給し、スチームにスチーム選択透過膜1を透過させ、透過したスチームを多孔膜2b側に分離する。膜積層体10の多孔膜2aとは反対側におけるスチームの分圧を多孔膜2a側に供給される混合ガスにおけるスチームの分圧よりも低くすることにより、スチーム選択透過膜1にスチームを効率的に透過させることができる。多孔膜2b側にArガス等のスイープガスを連続的に供給してもよい。ただし、例えば混合ガスから回収したスチームを再利用する場合、スイープガスを実質的に用いることなく、スチームの分圧差を調整することが好ましい。スイープガスを用いないことにより、高純度のスチームを特に容易に再利用することができる。スチームの分圧差は、多孔膜2a側の全圧を多孔膜2b側の全圧より高くするなどの方法により調整することができる。スチーム選択透過膜1は、混合ガスの除湿等、スチームの再利用以外の用途に使用することも可能である。
 スチームを透過させる際、スチーム選択透過膜1は、好ましくは100~200℃に加熱される。本実施形態に係るスチーム選択透過膜は、このような高温においても、高いスチーム透過性及び高いスチーム選択性を発揮することができる。そのため、高温のスチームを、冷却により液化することなく回収して再利用することが可能である。この方法によれば、冷却により液化した水を再度加熱してスチームとして再利用する場合と比較して、スチームの潜熱を有効に利用できるため、より高いエネルギー効率を実現できる。なお、スチーム選択透過膜を透過したスチームを、スチームのまま再利用しない場合等には、回収されたスチームを冷却により液化して回収してもよい。
 本実施形態に係るスチーム選択透過膜1は、スチーム及びCOを含む混合ガスからスチームを分離するために特に好適に用いられる。例えば、COガスを含む原料ガス中のCOガスにCO選択透過膜を透過させ、透過したCOガスをスイープガスとしてのスチームとともに回収することと、スチーム及びCOガスを含む混合ガス中のスチームにスチーム選択透過膜を透過させて、混合ガスからスチームを分離することと、分離されたスチームをスイープガスとして再利用することとを組み合わせることができる。係る組み合わせを採用した方法により、COを含むガスから高いエネルギー効率でCOを回収することができる。
 スチーム選択透過膜は以上説明した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限り適宜変形が可能である。例えば、スチーム選択透過膜は、筒状に成形されていてもよい。
 図2は、筒状のスチーム選択透過膜を備えるガス処理装置の一実施形態を示す断面図である。図2の(a)は、ガス処理装置の長手方向に垂直な断面を示し、図2の(b)は、ガス処理装置の長手方向に平行な断面を示す。図2に示すガス処理装置20は、円筒状のスチーム選択透過膜1と、スチーム選択透過膜1を収容する円筒状の容器5とを備える。スチーム選択透過膜1は、円筒状の親水性ポリマー層3と、その内側に設けられた円筒状の多孔膜4とから構成される。親水性ポリマー層3の一部は、多孔膜4中に充填されている。図2の親水性ポリマー層3及び多孔膜4は、それぞれ、図1のスチーム選択透過膜1を構成する親水性ポリマー層及び多孔膜と同様の材料から形成され得る。親水性ポリマー層3は、多孔膜4の内周面側に担持されてもよい。筒状のスチーム選択透過膜の断面形状は、必ずしも真円である必要はなく、楕円等の任意の形状に変形が可能である。
 容器5及びスチーム選択透過膜1は、スチーム選択透過膜1が容器5の内部を仕切ることにより、スチームを含む混合ガス30が流入するFeed側の空間11と、スチーム選択透過膜1を透過したスチームを含む排出ガス35を含むSweep側の空間12とを形成している。容器5は、一方の端部に設けられた、Feed側の空間11を容器5の外部に通じさせる開口部21と、他方の端部に設けられた、Feed側の空間11を容器5の外部に通じさせる開口部21、及びSeep側の空間12を容器5の外部に通じさせる開口部25とを有する。混合ガス30は、開口部21からFeed側の空間11に供給され、開口部22から排出される。スチーム選択透過膜1を透過して混合ガス30から分離されたスチームは、開口部25から排出される排出ガス35中に回収される。Sweep側の空間12に、上述と同様にスチームガスを流してもよい。
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
(検討1)
1.スチーム選択透過膜を含む膜積層体の作製
(1)PVA-PAA塩共重合体
 PVA-PAA塩共重合体(住友精化製、以下「SSゲル」という。)2.0gを室温でイオン交換水80.0gに溶解させた。得られたSSゲル溶液に、25質量%のグルタルアルデヒド水溶液を0.064g加えた。続いて、溶液を95℃で12時間加熱して、グルタルアルデヒドによる化学的な架橋を進行させて、キャスト溶液を得た。
 ガラス板に疎水性PTFE多孔膜(住友電工製、Fluoropore FP-010)を載せ、その上に親水性PTFE多孔膜(住友電工製、WPW-020-80)を載せた。親水性PTFE多孔膜上に、ベーカーアプリケーターを用いて上記キャスト液を厚み500μmとなるようにキャストした。このとき、キャスト溶液の一部は親水性PTFE多孔膜内に充填された。その後、キャストされたキャスト液を湿度が約5%に保たれたドライボックス内で約12時間かけて乾燥させて、ゲル層を形成させた。乾燥後、形成されたゲル層を、ガラス板とともに120℃に保った恒温槽に入れ、2時間熱架橋を行い、親水性PTFE多孔膜及びゲル層から構成されるスチーム選択透過膜を形成させた。さらに、スチーム選択透過膜の上に疎水性PTFE多孔膜を積層して、疎水性PTFE多孔膜/スチーム選択透過膜/疎水性PTFE多孔膜の3層構成を有する膜積層体を得た。
(2)PVA-PAA塩共重合体/CsOH
 PVA-PAA塩共重合体(SSゲル)2.0gを室温でイオン交換水80.0gに溶解させた。得られたSSゲル水溶液に、25質量%のグルタルアルデヒド水溶液を0.064g加えた。続いて、溶液を95℃で12時間加熱して、グルタルアルデヒドによる化学的な架橋を進行させた。その後、キャリアとしてCsOHを加え、それを溶解させて、キャスト溶液を得た。CsOHの量は、SSゲル及びCsOHの合計質量に対するCsOHの濃度が30質量%となるように調整した。このとき、Csのモル濃度はSSゲル及びCsOHの合計質量を基準として0.002モル/gである。
 ガラス板に疎水性PTFE多孔膜(住友電工製、Fluoropore FP-010)を載せ、その上に親水性PTFE多孔膜(住友電工製、WPW-020-80)を載せた。親水性PTFE多孔膜上に、ベーカーアプリケーターを用いて上記キャスト液を厚み500μmとなるようにキャストした。その後、キャストされたキャスト液を湿度が約5%に保たれたドライボックス内で約12時間かけて乾燥させて、ゲル層を形成させた。乾燥後、形成されたゲル層を、ガラス板とともに120℃に保った恒温槽に入れ、2時間熱架橋を行い、親水性PTFE多孔膜及びゲル層から構成されるスチーム選択透過膜を形成させた。さらに、スチーム選択透過膜の上に疎水性PTFE多孔膜を積層して、疎水性PTFE多孔膜/スチーム選択透過膜/疎水性PTFE多孔膜の3層構成を有する膜積層体を得た。
(3)PVA/CsOH
 5質量%のPVA水溶液10.25gに、キャリアとしてのCsOH0.219gを溶解させて、キャスト溶液を得た。このとき、Csのモル濃度はPVA及びCsOHの合計質量を基準として0.002モル/gである。
 ガラス板に疎水性PTFE多孔膜(住友電工製、Fluoropore FP-010)を載せ、その上に親水性PTFE多孔膜(住友電工製、WPW-020-80)を載せた。親水性PTFE多孔膜上に、ベーカーアプリケーターを用いて上記キャスト液を厚み500μmとなるようにキャストした。その後、キャストされたキャスト液を湿度が約5%に保たれたドライボックス内で約12時間かけて乾燥させて、親水性PTFE多孔膜及びPVA層から構成されるスチーム選択透過膜を形成させた。さらに、スチーム選択透過膜の上に疎水性PTFE多孔膜を積層して、疎水性PTFE多孔膜/スチーム選択透過膜/疎水性PTFE多孔膜の3層構成を有する膜積層体を得た。
(4)PVA(比較用膜)
 ガラス板に疎水性PTFE多孔膜(住友電工製、Fluoropore FP-010)を載せ、その上に親水性PTFE多孔膜(住友電工製、WPW-020-80)を載せた。親水性PTFE多孔膜上に、ベーカーアプリケーターを用いて、5質量%のPVA水溶液を厚み500μmとなるようにキャストした。その後、キャストされたPVA水溶液を湿度が約5%に保たれたドライボックス内で約12時間かけて乾燥させて、親水性PTFE多孔膜及びPVA層から構成されるスチーム選択透過膜を形成させた。さらに、スチーム選択透過膜の上に疎水性PTFE多孔膜を積層して、疎水性PTFE多孔膜/スチーム選択透過膜/疎水性PTFE多孔膜の3層構成を有する膜積層体を得た。
2.ガス透過性能の評価
 膜積層体をメンブレン評価装置に取り付け、ガス透過性能の評価を行った。膜積層体を所定の温度に加熱しながら、膜積層体の一方の面側(Feed側)にCO、N及びHO(スチーム)を含む原料ガスを供給し、Feed側とは反対側(Sweep側)にスイープガスとしてのArガスを流した。Feed側からSweep側に透過したガス及びArガスを含む排出ガスから、冷却トラップにより水を回収してその量を一定時間毎に定量し、その量に基づいて、スチーム透過速度の指標である膜のスチームパーミアンス[mol/(m・s・kPa)]を計算した。残りの排出ガスの組成をガスクロマトグラフィーにより定量し、その結果とArガス流量から膜のCOパーミアンス[mol/(m・s・kPa)]を計算した。さらに、COパーミアンスに対するスチームパーミアンスの比(スチームパーミアンス/COパーミアンス)を、CO透過に対するスチーム透過の選択性(スチーム/CO選択性)として算出した。ガス透過性能の評価条件を下記表に示す。
Figure JPOXMLDOC01-appb-T000001
 図3は、SSゲルのみ、SSゲル/CsOH、PVA/CsOH、PVAのみの各膜について、スチームパーミアンスと温度との関係、及びスチーム/CO選択性と温度との関係を示すグラフである。SSゲルのみ、SSゲル/CsOH、及びPVA/CsOHのいずれの膜も、PVAのみから形成された比較用膜と比較して高いスチームパーミアンスを示した。いずれの膜もある程度以上のスチーム/CO選択性を示しており、スチーム選択透過膜として使用できることが確認された。なかでも、SSゲルを用いた膜は、高温領域で特に高いスチーム/CO選択性を示した。
(検討2)
1.スチーム選択透過膜を含む膜積層体の作製
 CsOH、CsCO、CsNO、CHCOOCs又はCsClをキャリアとして用いて、下記の各表に示す濃度のキャリアと、SSゲルとを含むスチーム選択透過膜を備える膜積層体を、検討1と同様の手順で作製した。各表中、Cs濃度はSSゲル及びキャリア(CsOH)の合計質量(g)に対するCsのモル数の割合であり、キャリア濃度はSSゲル及びキャリアの合計質量に対するキャリアの質量の割合である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
2.ガス透過性能の評価
 検討1と同様の手順及び条件で、各膜のCOパーミアンス及びスチーム/CO選択性を評価した。図4、5、6、7及び8は、それぞれ、CsOH、CsCO、CsNO、CHCOOCs又はCsClをキャリアとして用いた膜について、スチームパーミアンスと温度との関係、及びスチーム/CO選択性とCs濃度との関係を示すグラフである。いずれの膜も、高いスチームパーミアンス及びスチーム/CO選択性を示していることから、各種のCs化合物が、透過性能を向上させるためのキャリアとして有用であることが確認された。Cs濃度がある程度大きくなるとスチーム/CO選択性が低下する傾向が認められたものの、スチームを選択的に透過し得る程度の選択性は維持された。
(検討3)
1.スチーム選択透過膜を含む膜積層体の作製
 KOH、KCO、RbOH又はRbCOをキャリアとして用いて、下記の各表に示す濃度のキャリアと、SSゲルとを含むスチーム選択透過膜を備える膜積層体を、検討1と同様の手順で作製した。表7~10において、キャリア量はKOH、KCO、RbOH又はRbCOの量であり、K濃度等はSSゲル及びキャリア(KOH等)の合計質量(g)に対するK等のモル数の割合であり、キャリア濃度はSSゲル及びキャリア(KOH等)の合計質量に対するキャリアの質量の割合である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
2.ガス透過性能の評価
 検討1と同様の手順及び条件で、各膜のCOパーミアンス及びスチーム/CO選択性を評価した。図9、10、11及び12は、それぞれ、KOH、KCO、RbOH及びRbCOをキャリアとして用いた膜について、スチームパーミアンスと温度との関係、及びスチーム/CO選択性とCs濃度との関係を示すグラフである。いずれの膜も、高いスチームパーミアンス及びスチーム/CO選択性を示した。図9~12に示される結果から、K化合物又はRb化合物を用いることにより、SSゲルのみの膜と比較して高温領域でのスチームパーミアンスがさらに向上することが確認された。Rb等の濃度がある程度大きくなるとスチーム/CO選択性が低下する傾向が認められたものの、スチームを選択的に透過し得る程度の選択性は維持された。
(検討4)
 検討1と同様の手順で作製したSSゲルのみの膜について、スイープガスを用いることなく、下記表に示す条件でガス透過性能の評価を行った。
Figure JPOXMLDOC01-appb-T000011
 図13は、スチームパーミアンスとFeed側圧力との関係、及びスチーム/CO選択性とFeed側圧力との関係を示すグラフである。図13に示されるように、スイープガスを用いなくても、Feed側とSweep側とでスチームの分圧に差を設けることにより、高いスチームパーミアンス及びスチーム/CO選択性が得られることが確認された。
(検討5)
 図2に示すガス処理装置と同様の構成を有する装置を準備した。多孔膜4として円筒状のセラミックス多孔膜(アルミナ多孔膜)を用い、その外周面上にSSゲルと、キャリアとしてのCsClとを含む親水性ポリマー層3を担持させた。キャリア濃度は15質量%であった。準備した装置を用いて、下記表に示す条件でガス透過性能の評価を行った。表中のCO流量、Ar流量は、25℃、1atmの体積流量として示した。HO供給量は液状のHOの供給量として示した。液状のHOは加熱により気化され、気化したHOとCOとの混合ガスをFeed側に供給した。混合ガスのスチーム分率は82%であった。表に示される圧力は絶対圧である。
Figure JPOXMLDOC01-appb-T000012
 ガス透過性能評価の結果、スチームパーミアンスは3.1×10-3[mol/(m・s・kPa)]で、スチーム/CO選択性は2.9×10であった。この結果から、円筒状のスチーム選択透過膜も、非常に優れたスチーム透過性及びスチーム/CO選択性を有していることが確認された。
 本発明に係るスチーム選択透過膜は、スチームを含む混合ガスからスチームを選択的に分離するために用いることができる。
 1…スチーム選択透過膜、2a,2b…多孔膜、3…親水性ポリマー、4…層スチーム選択透過膜の多孔膜、10…膜積層体、20…ガス処理装置、30…スチームを含む混合ガス。

Claims (9)

  1.  架橋された親水性ポリマーを含有する、スチーム選択透過膜。
  2.  セシウム化合物、カリウム化合物及びルビジウム化合物からなる群より選ばれる少なくとも1種のアルカリ金属化合物を更に含有する、請求項1に記載のスチーム選択透過膜。
  3.  親水性ポリマーと、セシウム化合物、カリウム化合物及びルビジウム化合物からなる群より選ばれる少なくとも1種のアルカリ金属化合物と、を含有する、スチーム選択透過膜。
  4.  前記アルカリ金属化合物がセシウム化合物を含み、前記親水性ポリマー及び前記アルカリ金属化合物の合計質量を基準とするセシウムの濃度が0.003モル/g以下である、請求項2又は3に記載のスチーム選択透過膜。
  5.  前記アルカリ金属化合物がカリウム化合物及び/又はルビジウム化合物を含み、前記親水性ポリマー及び前記アルカリ金属化合物の合計質量を基準とするカリウム及びルビジウムの合計濃度が0.005モル/g以下である、請求項2又は3に記載のスチーム選択透過膜。
  6.  請求項1~5のいずれか一項に記載のスチーム選択透過膜に、スチームを含む混合ガス中のスチームを透過させることにより、スチームを前記混合ガスから分離する工程を備える、スチームを混合ガスから分離する方法。
  7.  当該スチーム選択透過膜の一方の面側にスチームを含む前記混合ガスを供給し、当該スチーム選択透過膜の他方の面側におけるスチームの分圧を前記混合ガスにおけるスチームの分圧よりも低くすることにより、前記スチーム選択透過膜にスチームを透過させる、請求項6に記載の方法。
  8.  当該スチーム選択透過膜の前記他方の面側におけるスチームの分圧を、スイープガスを実質的に用いることなく前記混合ガスにおけるスチームの分圧よりも低くする、請求項7に記載の方法。
  9.  前記混合ガスがCOガスを含む、請求項6~8のいずれか一項に記載の方法。
PCT/JP2011/066983 2010-07-26 2011-07-26 スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法 WO2012014900A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2011283590A AU2011283590B2 (en) 2010-07-26 2011-07-26 Steam permselective membrane, and method using same for separating steam from mixed gas
JP2012526519A JP6009940B2 (ja) 2010-07-26 2011-07-26 スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法
RU2013108261/05A RU2579125C2 (ru) 2010-07-26 2011-07-26 Мембрана с селективной паропроницаемостьюи способ ее использования для отделения пара от газовой смеси
EP11812489.0A EP2599539B1 (en) 2010-07-26 2011-07-26 Steam permselective membrane, and method using same for separating steam from mixed gas
US13/812,042 US9827535B2 (en) 2010-07-26 2011-07-26 Steam permselective membrane, and method using same for separating steam from mixed gas
KR1020137004148A KR101780848B1 (ko) 2010-07-26 2011-07-26 스팀 선택 투과막, 및 이를 이용하여 스팀을 혼합 가스로부터 분리하는 방법
CN201180036285.9A CN103108690B (zh) 2010-07-26 2011-07-26 水蒸汽选择透过膜及使用该透过膜从混合气体中分离水蒸汽的方法
CA2804302A CA2804302A1 (en) 2010-07-26 2011-07-26 Steam permselective membrane, and method using same for separating steam from mixed gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010167135 2010-07-26
JP2010-167135 2010-07-26

Publications (1)

Publication Number Publication Date
WO2012014900A1 true WO2012014900A1 (ja) 2012-02-02

Family

ID=45530105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066983 WO2012014900A1 (ja) 2010-07-26 2011-07-26 スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法

Country Status (9)

Country Link
US (1) US9827535B2 (ja)
EP (2) EP3002053A1 (ja)
JP (1) JP6009940B2 (ja)
KR (1) KR101780848B1 (ja)
CN (1) CN103108690B (ja)
AU (1) AU2011283590B2 (ja)
CA (1) CA2804302A1 (ja)
RU (1) RU2579125C2 (ja)
WO (1) WO2012014900A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150151244A1 (en) * 2012-06-20 2015-06-04 Fujifilm Corporation Acidic gas separation module and production method therefor, acidic gas separation layer, production method and facilitated transport membrane therefor, and acidic gas separation system
WO2015098404A1 (ja) * 2013-12-27 2015-07-02 日東電工株式会社 透湿性濾材
WO2016080400A1 (ja) * 2014-11-18 2016-05-26 住友化学株式会社 二酸化炭素ガス分離膜及びその製造方法、並びに二酸化炭素ガス分離膜モジュール
US9550151B2 (en) * 2013-08-13 2017-01-24 Fujifilm Corporation Spiral-type acidic gas separation module
US20170232398A1 (en) 2014-08-11 2017-08-17 Sumitomo Chemical Company, Limited Composition for co2 gas separation membrane, co2 gas separation membrane and method for producing same, and co2 gas separation membrane module
JP2018028011A (ja) * 2016-08-17 2018-02-22 日本バルカー工業株式会社 新規親水性多孔質フッ素樹脂膜の製造方法
JP2018043244A (ja) * 2017-12-22 2018-03-22 日東電工株式会社 透湿性濾材
WO2019049629A1 (ja) 2017-09-07 2019-03-14 株式会社ルネッサンス・エナジー・リサーチ 発電システム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5865317B2 (ja) * 2012-09-28 2016-02-17 富士フイルム株式会社 二酸化炭素分離用複合体、二酸化炭素分離用モジュール、及び二酸化炭素分離用複合体の製造方法
KR102090864B1 (ko) 2012-10-02 2020-03-18 가부시키가이샤 르네상스 에너지 리서치 Co2 촉진 수송막 및 그 제조 방법 그리고 co2 분리 방법 및 장치
TWI602834B (zh) * 2012-10-22 2017-10-21 住友化學股份有限公司 共聚物及二氧化碳分離膜
WO2014157069A1 (ja) * 2013-03-29 2014-10-02 株式会社ルネッサンス・エナジー・リサーチ Co2促進輸送膜、その製造方法及び当該製造方法に用いられる樹脂組成物、並びに、co2分離モジュール、co2分離方法及び装置
US9358508B2 (en) * 2013-04-25 2016-06-07 Lockheed Martin Corporation Dryer and water recovery/purification unit employing graphene oxide or perforated graphene monolayer membranes
JP5990556B2 (ja) * 2013-07-30 2016-09-14 富士フイルム株式会社 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール
JP5990225B2 (ja) * 2013-07-30 2016-09-07 富士フイルム株式会社 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール
KR20160067440A (ko) 2014-12-04 2016-06-14 한국전기연구원 결빙 억제용 초발수 용액, 용액 제조방법 및 이를 이용한 초발수 표면 제조방법
US10502438B2 (en) * 2015-05-13 2019-12-10 The Research Foundation For The State University Of New York Latent and sensible cooling membrane heat pump
CN115943194B (zh) * 2021-06-08 2024-06-14 日本碍子株式会社 液体燃料合成系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159025A (ja) * 1987-09-09 1989-06-22 Nederland Centr Org Toegepast Natuur Onder ガス/水蒸気混合物から水蒸気を除去する方法
JPH10113531A (ja) * 1996-08-14 1998-05-06 Bend Res Inc 蒸気透過方法
JP2004050129A (ja) 2002-07-23 2004-02-19 Mitsubishi Heavy Ind Ltd 分離膜エレメント及び分離装置
WO2009093666A1 (ja) * 2008-01-24 2009-07-30 Renaissance Energy Research Corporation Co2促進輸送膜及びその製造方法
JP2010005515A (ja) * 2008-06-25 2010-01-14 Japan Gore Tex Inc 複合膜及びそれを用いた水分量調整モジュール
JP2010082619A (ja) * 2008-10-02 2010-04-15 Sulzer Chemtech Gmbh 水分離のための複合膜及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2072047B (en) * 1979-08-21 1984-03-14 Lidorenko N S Gas-permeable membrane method of making it and blood oxygenator based on the use thereof
US5171449A (en) * 1992-01-06 1992-12-15 Texaco Inc. Membrane and method of separation
US5445669A (en) * 1993-08-12 1995-08-29 Sumitomo Electric Industries, Ltd. Membrane for the separation of carbon dioxide
NL9401233A (nl) * 1994-03-25 1995-11-01 Tno Werkwijze voor membraangasabsorptie.
US6635104B2 (en) * 2000-11-13 2003-10-21 Mcmaster University Gas separation device
US20050211624A1 (en) * 2004-03-23 2005-09-29 Vane Leland M Hydrophilic cross-linked polymeric membranes and sorbents
US7985279B2 (en) * 2004-05-18 2011-07-26 Asahi Kasei Chemicals Corporation Gas separator and operating method for the same
JP2006150323A (ja) * 2004-11-01 2006-06-15 Japan Gore Tex Inc 隔膜およびその製法、並びに該隔膜を備えた熱交換器
WO2007058698A2 (en) * 2005-09-13 2007-05-24 Rasirc Method of producing high purity steam
JP4965928B2 (ja) * 2006-08-01 2012-07-04 株式会社ルネッサンス・エナジー・リサーチ 二酸化炭素分離装置及び方法
JP4965927B2 (ja) 2006-08-01 2012-07-04 株式会社ルネッサンス・エナジー・リサーチ Co2促進輸送膜及びその製造方法
JP5443773B2 (ja) * 2008-01-24 2014-03-19 株式会社ルネッサンス・エナジー・リサーチ 二酸化炭素分離装置
EP2274079A4 (en) 2008-03-31 2011-08-10 Commw Scient Ind Res Org MEMBRANE AND METHOD FOR STEAM DEPOSITION, CLEANING AND RECOVERY
WO2010117845A2 (en) * 2009-04-06 2010-10-14 Entegris, Inc. Non-dewetting porous membranes
WO2011060088A1 (en) * 2009-11-10 2011-05-19 Porous Media Corporation Gel-filled membrane device and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159025A (ja) * 1987-09-09 1989-06-22 Nederland Centr Org Toegepast Natuur Onder ガス/水蒸気混合物から水蒸気を除去する方法
JPH10113531A (ja) * 1996-08-14 1998-05-06 Bend Res Inc 蒸気透過方法
JP2004050129A (ja) 2002-07-23 2004-02-19 Mitsubishi Heavy Ind Ltd 分離膜エレメント及び分離装置
WO2009093666A1 (ja) * 2008-01-24 2009-07-30 Renaissance Energy Research Corporation Co2促進輸送膜及びその製造方法
JP2010005515A (ja) * 2008-06-25 2010-01-14 Japan Gore Tex Inc 複合膜及びそれを用いた水分量調整モジュール
JP2010082619A (ja) * 2008-10-02 2010-04-15 Sulzer Chemtech Gmbh 水分離のための複合膜及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2599539A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150151244A1 (en) * 2012-06-20 2015-06-04 Fujifilm Corporation Acidic gas separation module and production method therefor, acidic gas separation layer, production method and facilitated transport membrane therefor, and acidic gas separation system
US9550151B2 (en) * 2013-08-13 2017-01-24 Fujifilm Corporation Spiral-type acidic gas separation module
US9770692B2 (en) 2013-12-27 2017-09-26 Nitto Denko Corporation Moisture permeable filter medium
WO2015098404A1 (ja) * 2013-12-27 2015-07-02 日東電工株式会社 透湿性濾材
JP2015127023A (ja) * 2013-12-27 2015-07-09 日東電工株式会社 透湿性濾材
US10507434B2 (en) 2014-08-11 2019-12-17 Sumitomo Chemical Company, Limited Composition for CO2 gas separation membrane, CO2 gas separation membrane and method for producing same, and CO2 gas separation membrane module
US20170232398A1 (en) 2014-08-11 2017-08-17 Sumitomo Chemical Company, Limited Composition for co2 gas separation membrane, co2 gas separation membrane and method for producing same, and co2 gas separation membrane module
JPWO2016080400A1 (ja) * 2014-11-18 2017-08-31 住友化学株式会社 二酸化炭素ガス分離膜及びその製造方法、並びに二酸化炭素ガス分離膜モジュール
WO2016080400A1 (ja) * 2014-11-18 2016-05-26 住友化学株式会社 二酸化炭素ガス分離膜及びその製造方法、並びに二酸化炭素ガス分離膜モジュール
US10744454B2 (en) 2014-11-18 2020-08-18 Sumitomo Chemical Company, Limited Carbon dioxide gas separation membrane, method for manufacturing same, and carbon dioxide gas separation membrane module
JP2018028011A (ja) * 2016-08-17 2018-02-22 日本バルカー工業株式会社 新規親水性多孔質フッ素樹脂膜の製造方法
WO2019049629A1 (ja) 2017-09-07 2019-03-14 株式会社ルネッサンス・エナジー・リサーチ 発電システム
JP2018043244A (ja) * 2017-12-22 2018-03-22 日東電工株式会社 透湿性濾材

Also Published As

Publication number Publication date
EP2599539A4 (en) 2014-08-06
AU2011283590A1 (en) 2013-03-07
KR101780848B1 (ko) 2017-10-10
US20130199370A1 (en) 2013-08-08
US9827535B2 (en) 2017-11-28
JP6009940B2 (ja) 2016-10-19
CA2804302A1 (en) 2012-02-02
EP2599539A1 (en) 2013-06-05
CN103108690B (zh) 2017-02-15
AU2011283590B2 (en) 2016-07-21
RU2013108261A (ru) 2014-09-10
KR20130137133A (ko) 2013-12-16
CN103108690A (zh) 2013-05-15
EP3002053A1 (en) 2016-04-06
RU2579125C2 (ru) 2016-03-27
JPWO2012014900A1 (ja) 2013-09-12
EP2599539B1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
JP6009940B2 (ja) スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法
TWI659776B (zh) 二氧化碳氣體分離膜用組成物、二氧化碳氣體分離膜及其製造方法,以及二氧化碳氣體分離膜模組
JP5738710B2 (ja) 二酸化炭素分離膜の製造方法及び二酸化炭素分離モジュール
US9839882B2 (en) Method for producing acid gas separation composite membrane, and acid gas separation membrane module
TWI710460B (zh) 二氧化碳氣體分離膜及其製造方法,以及二氧化碳氣體分離膜模組
JP5796136B2 (ja) Co2促進輸送膜及びその製造方法並びにco2分離方法及び装置
JP6964070B2 (ja) 酸性ガス分離膜及びこれを用いた酸性ガス分離方法、並びに酸性ガス分離モジュール及び酸性ガス分離装置
JP6715575B2 (ja) 二酸化炭素分離方法及び二酸化炭素分離装置
WO2019131304A1 (ja) 複合中空糸膜、及び複合中空糸膜の製造方法
JP2019115897A (ja) 複合中空糸膜、及び複合中空糸膜の製造方法
JP4022341B2 (ja) 除湿方法およびその装置
JP2015181990A (ja) カルボキシメチルセルロース複合分離膜及びそれを用いた膜分離方法
KR102045108B1 (ko) 역삼투막 및 그 제조방법
JP7350273B2 (ja) ガス分離方法及び装置
JP2015112502A (ja) 積層体及びガス分離膜並びに積層体の製造方法
JP6013127B2 (ja) ガス分離複合膜、これを用いた分離膜モジュールおよびガス分離システム
KR101778351B1 (ko) 수처리 분리막의 제조 방법 및 이를 이용하여 제조된 수처리 분리막
KR0166150B1 (ko) 물 투과성 분리막 및 그의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036285.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812489

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526519

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2804302

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011812489

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137004148

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013108261

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011283590

Country of ref document: AU

Date of ref document: 20110726

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13812042

Country of ref document: US