WO2019049629A1 - 発電システム - Google Patents

発電システム Download PDF

Info

Publication number
WO2019049629A1
WO2019049629A1 PCT/JP2018/030448 JP2018030448W WO2019049629A1 WO 2019049629 A1 WO2019049629 A1 WO 2019049629A1 JP 2018030448 W JP2018030448 W JP 2018030448W WO 2019049629 A1 WO2019049629 A1 WO 2019049629A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
carbon dioxide
concentration
methane
mixed gas
Prior art date
Application number
PCT/JP2018/030448
Other languages
English (en)
French (fr)
Inventor
岡田 治
伸彰 花井
純弥 宮田
英晃 松尾
Original Assignee
株式会社ルネッサンス・エナジー・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ルネッサンス・エナジー・リサーチ filed Critical 株式会社ルネッサンス・エナジー・リサーチ
Priority to US16/642,003 priority Critical patent/US11214746B2/en
Priority to JP2019540858A priority patent/JP6742656B2/ja
Priority to CN201880058095.9A priority patent/CN111094725B/zh
Priority to EP18853791.4A priority patent/EP3680470A4/en
Publication of WO2019049629A1 publication Critical patent/WO2019049629A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0634Determining a density, viscosity, composition or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0227Means to treat or clean gaseous fuels or fuel systems, e.g. removal of tar, cracking, reforming or enriching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/032Producing and adding steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/55Compounds of silicon, phosphorus, germanium or arsenic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/05Biogas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/04Specifically adapted fuels for turbines, planes, power generation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/02Combustion or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/26Composting, fermenting or anaerobic digestion fuel components or materials from which fuels are prepared
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/548Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/58Control or regulation of the fuel preparation of upgrading process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/60Measuring or analysing fractions, components or impurities or process conditions during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/103Sulfur containing contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a gas engine which generates kinetic energy by consuming a fuel gas containing carbon dioxide mainly containing methane and generating kinetic energy, and a power generation system comprising a generator driven by the kinetic energy generated by the gas engine and generating electric power.
  • the present invention relates to a power generation system using, as a fuel gas, a mixed gas mainly composed of methane and carbon dioxide derived from biogas generated by methane fermentation of organic matter such as biomass and organic waste.
  • biogas obtained by methane fermentation of organic wastes such as biomass and sewage sludge has attracted attention as a new energy source.
  • the biogas is used in applications such as power generation or boilers as a substitute for fossil fuels.
  • Biogas is mainly composed of methane and carbon dioxide, and the concentration of methane is about 50% to 75% and the concentration of carbon dioxide is about 25% to 50% depending on the production conditions (fermentation conditions) of methane gas and the species of raw materials. Can vary. In addition, it contains a slight amount of a sulfur compound such as siloxane and hydrogen sulfide, and needs to be removed at the time of use.
  • a sulfur compound such as siloxane and hydrogen sulfide
  • a gas engine fueled by a mixed gas mainly composed of methane such as biogas it is assumed that a biogas engine assuming that biogas is used directly as fuel and natural gas as fuel are used. Natural gas engine. In order to use biogas as a fuel for a natural gas engine, it is necessary to reduce the carbon dioxide concentration in the biogas in advance in order to raise the purity of methane to about 90% or more. Further, in the case of a biogas engine, the carbon dioxide concentration in the mixed gas is set, for example, to about 35% to 40% as a specification value.
  • biogas power generation that controls the total number of gas engines to be driven and driving of an excess gas combustion apparatus according to the following Patent Document 1 An apparatus is disclosed.
  • Patent Document 2 after carbon dioxide and hydrogen sulfide in biogas are absorbed and separated using an alkali absorbing solution to purify the biogas, the methane concentration is stably increased to 90% or more.
  • a power generation system which is used as a fuel for an engine-type power generation device using a waste engine or a gas turbine, or a fuel cell-type power generation device using a fuel cell.
  • carbon dioxide concentration and methane concentration of the mixed gas obtained are necessarily stable even if carbon dioxide is removed or separated at a constant carbon dioxide removal rate for biogas in which carbon dioxide concentration and methane concentration greatly fluctuate.
  • the fluctuation of the methane concentration causes a reduction in the service life of the engine.
  • the present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a fuel gas containing carbon dioxide mainly containing methane to an engine to generate electric power, thereby generating carbon dioxide concentration of the fuel gas. It is an object of the present invention to provide a power generation system capable of prolonging the life of the engine by reducing the load on the engine by suppressing the fluctuation of the methane concentration.
  • a power generation system comprises a gas engine generating kinetic energy by consuming a fuel gas containing carbon dioxide mainly composed of methane and a generator driven by the kinetic energy generated by the gas engine to generate electric power.
  • the concentration of at least one target component gas of methane and carbon dioxide in the mixed gas relative to the mixed gas mainly composed of methane and carbon dioxide supplied from the outside
  • a fuel gas supply device for controlling the concentration of the target component gas in the fuel gas of the gas engine within the setting range and supplying the gas gas as the fuel gas, carbon dioxide concentration and methane concentration of the mixed gas
  • a gas concentration sensor that measures the concentration of at least one of
  • the fuel gas supply device includes a carbon dioxide removal device that removes carbon dioxide in the mixed gas, and an operating condition control device that controls operating conditions that affect the increase and decrease of the carbon dioxide removal rate of the carbon dioxide removal device.
  • the gas concentration sensor is disposed at least one of a front stage and a rear stage of the carbon dioxide removal apparatus,
  • the operation condition control device controls the concentration of methane and carbon dioxide in the mixed gas by controlling the operation condition of the carbon dioxide removal device based on the measurement result of the gas concentration sensor. It is characterized by 1.
  • the carbon dioxide of the carbon dioxide removal device Since it is possible to control to increase or decrease the removal rate according to the concentration change, a mixed gas whose methane concentration or carbon dioxide concentration is controlled within the set range according to the gas engine used is supplied to the gas engine as fuel gas. Therefore, even if the above-mentioned concentration fluctuation of the mixed gas supplied from the outside is large, the load on the gas engine can be greatly reduced, and the life of the gas engine can be prolonged.
  • the mixed gas is stably supplied at a certain carbon dioxide concentration and methane concentration, and the carbon dioxide removal device removes carbon dioxide at a certain carbon dioxide removal rate with respect to the mixed gas to obtain carbon dioxide.
  • the concentration of the mixed gas is reduced by decreasing the concentration, increasing the methane concentration, controlling at least one of the carbon dioxide concentration and the methane concentration within the setting range of the gas engine, and operating the gas engine stably.
  • the operating condition control device controls the operating conditions of the carbon dioxide removal apparatus to increase the carbon dioxide removal rate, thereby increasing the carbon dioxide concentration of the mixed gas.
  • the stable gas engine operation described above can be maintained.
  • the operating condition control device controls the operating conditions of the carbon dioxide removal device to lower the carbon dioxide removal rate, similarly, The stable gas engine operation described above can be maintained.
  • concentration measurement or concentration control is also possible. Therefore, it is not always necessary to perform concentration measurement and concentration control separately by using both carbon dioxide and methane as target component gases, but performing concentration measurement and concentration control separately by using both as target component gases. May be
  • the concentration sensor for at least one of the carbon dioxide concentration and the methane concentration, either before or after the concentration of the target component gas is controlled within the set range in the fuel gas supply device. It may be one or both mixed gas.
  • the carbon dioxide removal device selectively separates carbon dioxide contained in the mixed gas with respect to methane, and A first processing chamber and a second processing chamber separated by the carbon dioxide separation membrane;
  • the first receiving port for receiving the mixed gas into the first processing chamber and the mixed gas in the first processing chamber in which the concentration of the target component gas is controlled are discharged as the fuel gas into the first processing chamber.
  • a first outlet is provided,
  • the second processing chamber is provided with a second discharge port for discharging the gas that has permeated from the first processing chamber to the second processing chamber via the carbon dioxide separation membrane,
  • the pressure in the second processing chamber, the ambient temperature of the carbon dioxide separation membrane, and at least one of the control target operating condition candidates including the membrane area of the carbon dioxide separation membrane are based on the measurement result of the gas concentration sensor Control is a second feature.
  • the second processing chamber has a second receiving port for receiving a sweep gas into the second processing chamber
  • the carbon dioxide separation membrane is The gas having passed through the first processing chamber to the second processing chamber and the sweep gas are discharged from the second discharge port via the first processing chamber, and the control target operation condition candidate is set in the second processing chamber.
  • a third feature is that the flow rate of the supplied sweep gas is included.
  • the operating condition control device controls the operating conditions of the carbon dioxide removal device to increase or decrease the carbon dioxide removal rate by the plurality of operations of the carbon dioxide separation membrane as described above.
  • one or two or more can be used in combination according to the degree of fluctuation of carbon dioxide concentration and methane concentration, and more accurate control of carbon dioxide concentration and methane concentration becomes possible. .
  • a carbon dioxide carrier is added to which the carbon dioxide separation membrane selectively reacts with carbon dioxide without reacting with methane.
  • the "carbon dioxide carrier” is a substance having an effect that the membrane permeation rate of carbon dioxide is promoted by the facilitated transport mechanism by containing the substance constituting the carrier in the membrane.
  • the carbon dioxide carrier in the facilitated transport film selectively reacts with carbon dioxide in the mixed gas to selectively separate carbon dioxide from methane. It enables efficient separation of methane and carbon dioxide. That is, it is possible to efficiently lower the carbon dioxide concentration of the mixed gas and increase the methane concentration.
  • the energy generated when the carbon dioxide reacts with the carrier is used for the energy for the carrier to release the carbon dioxide, so it is not necessary to supply the energy from the outside, and energy saving is essentially achieved. Because of this, energy saving of concentration control for methane and carbon dioxide in the mixed gas can be achieved.
  • the carbon dioxide separation membrane enables efficient carbon dioxide separation with a small membrane area, particularly in the case of a facilitated transport membrane, the device can be miniaturized compared to other carbon dioxide removal devices. As a result, the entire power generation system can be miniaturized.
  • water vapor is contained in at least one of the mixed gas supplied into the first processing chamber and the sweep gas supplied into the second processing chamber. Is preferred. However, if the sweep gas contains water vapor, it is limited to the case where the sweep gas has the third feature. As a result, the water necessary for the carbon dioxide facilitated transport mechanism is secured in the membrane, so that the original performance as the facilitated transport membrane is exhibited.
  • a fifth feature is to provide a steam supply unit for supplying steam to one of the target gases.
  • the target gas includes the sweep gas
  • the present invention is limited to the case where the target gas has the third feature.
  • the water necessary for the carbon dioxide facilitated transport mechanism is secured in the membrane, so the original performance as the facilitated transport membrane is exhibited.
  • the operating condition control device controls the amount of water vapor addition from the water vapor supply unit to the target gas as one of the control object operating condition candidates. Thereby, control of the relative humidity of the target gas can be easily performed.
  • the water vapor supply unit supplies water vapor generated by heating water by heat exchange with the high temperature exhaust gas discharged from the gas engine to the target gas.
  • the water vapor supply unit supplies the water vapor contained in the exhaust gas discharged from the gas engine to the target gas.
  • the mixed gas includes a gas derived from biogas generated by methane fermentation of an organic substance, and is included in the mixed gas.
  • the sixth feature of the present invention is to provide a desulfurization apparatus using a super high-order desulfurization catalyst that removes sulfur components.
  • the influence of the sulfur component contained in the mixed gas on the carbon dioxide carrier can be eliminated in advance, the original performance as the facilitated transport film is maintained.
  • the concentration of the target component gas is lower than the set range, or A first gas supply device for supplying a first concentration adjusting gas mainly composed of methane to the mixed gas, wherein the concentration of the target component gas is higher than the setting range when the target component gas is methane; If the target component gas is carbon dioxide and the concentration of the target component gas of the mixed gas is higher than the setting range, or the first gas supply device determines that the target component gas is carbon dioxide based on the measurement result of the gas concentration sensor When the component gas is methane and the concentration of the target component gas of the mixed gas is lower than the set range, the first concentration adjusting gas is supplied to the mixed gas, and methane and carbon dioxide in the mixed gas are supplied.
  • the seventh feature is to control the concentration.
  • the operation condition control device Control of the operating conditions of the carbon dioxide removal apparatus alone can not sufficiently cope with the concentration fluctuation, and when it is difficult to control the carbon dioxide concentration or the methane concentration within the set range, further, the operating condition control device or carbon dioxide Even if the removal device does not function for any reason, supplying the first concentration adjusting gas to the mixed gas makes it possible to directly suppress the decrease in the methane concentration and the increase in the carbon dioxide concentration. It is possible to control the carbon dioxide concentration or the methane concentration within the set range.
  • the first gas supply device further includes a second carbon dioxide removal device that selectively separates carbon dioxide contained in the mixed gas with respect to methane; It is preferable to further comprise: a first container for storing the first concentration adjusting gas prepared in advance by separating carbon dioxide from the mixed gas by using the carbon dioxide removing device of No. 2.
  • the first concentration adjustment gas can be prepared in advance using a mixed gas supplied from the outside to the fuel gas supply device, so high purity methane gas such as natural gas is separately prepared for the first concentration adjustment gas. There is no need.
  • the concentration of the target component gas is higher than the set range, or A second gas for supplying carbon dioxide or a second concentration adjusting gas mainly composed of methane and carbon dioxide to the mixed gas, wherein the concentration of the target component gas is lower than the setting range when the target component gas is methane; Equipped with a feeding device,
  • the second gas supply device may be based on the measurement result of the gas concentration sensor, or the target
  • An eighth feature is to supply the second concentration adjusting gas to the mixed gas when the component gas is methane and the concentration of the target component gas of the mixed gas is higher than the set range.
  • the operation condition control device Control of the operating conditions of the carbon dioxide removal apparatus alone can not sufficiently cope with the concentration fluctuation, and when it is difficult to control the carbon dioxide concentration or the methane concentration within the set range, further, the operating condition control device or carbon dioxide Even if the removal device does not function for any reason, it is possible to directly suppress the increase in the methane concentration and the decrease in the carbon dioxide concentration by supplying the second concentration adjusting gas to the mixed gas, It is possible to control the carbon dioxide concentration or the methane concentration within the set range.
  • the second gas supply device includes a second container for storing the second concentration adjusting gas, and the second concentration adjusting gas is generated by the carbon dioxide removing device. It is preferred to include carbon dioxide removed from the gas mixture. Thereby, the carbon dioxide removal device can recycle carbon dioxide removed from the mixed gas, and it is not necessary to separately prepare carbon dioxide for the second concentration adjusting gas. In addition, in the case where carbon dioxide removed from the mixed gas by the carbon dioxide removal apparatus partially contains methane contained in the mixed gas, effective use of the methane can also be achieved.
  • a power generation system comprises a gas engine generating kinetic energy by consuming a fuel gas containing carbon dioxide mainly composed of methane and a generator driven by the kinetic energy generated by the gas engine to generate electric power.
  • the concentration of at least one target component gas of methane and carbon dioxide in the mixed gas relative to the mixed gas mainly composed of methane and carbon dioxide supplied from the outside
  • a fuel gas supply device for controlling the concentration of the target component gas in the fuel gas of the gas engine within the setting range and supplying the gas gas as the fuel gas, carbon dioxide concentration and methane concentration of the mixed gas
  • a gas concentration sensor that measures the concentration of at least one of When the target component gas is carbon dioxide, the fuel gas supply device has a concentration of the target component gas lower than the setting range, or when the target component gas is methane, the target component gas has a concentration of the target component gas
  • a first gas supply device for supplying a first concentration adjusting gas mainly composed of methane to the mixed gas having a high concentration, and when the target component
  • a second gas supply device If the target component gas is carbon dioxide and the concentration of the target component gas of the mixed gas is higher than the setting range, or the first gas supply device determines that the target component gas is carbon dioxide based on the measurement result of the gas concentration sensor When the component gas is methane and the concentration of the target component gas of the mixed gas is lower than the set range, the first concentration adjusting gas is supplied to the mixed gas, and methane and carbon dioxide in the mixed gas are supplied.
  • the second gas supply device may be based on the measurement result of the gas concentration sensor, or the target When the component gas is methane and the concentration of the target component gas of the mixed gas is higher than the set range, the second concentration adjusting gas is supplied to the mixed gas to mix methane and carbon dioxide in the mixed gas.
  • the ninth feature is to control the concentration.
  • the concentration fluctuation Since any one of the first concentration adjusting gas and the second concentration adjusting gas can be supplied to the mixed gas to control the concentrations of methane and carbon dioxide in the mixed gas, the concentration of methane or carbon dioxide is Since the mixed gas controlled within the setting range according to the gas engine to be used is supplied to the gas engine as the fuel gas, even if the above concentration fluctuation of the mixed gas supplied from the outside is large, the load applied to the gas engine It can be greatly reduced and the service life of the gas engine can be extended.
  • the mixed gas when the mixed gas is stably supplied at a certain carbon dioxide concentration and methane concentration and the carbon dioxide concentration of the mixed gas increases and the methane concentration decreases in a situation where the gas engine is operating stably.
  • the first gas supply device can supply the first concentration adjusting gas to the mixed gas to suppress an increase in carbon dioxide concentration in the mixed gas and a decrease in methane concentration
  • the above-described stable gas engine Can maintain the operation of
  • the second gas supply device supplies a second concentration adjusting gas to the mixed gas to reduce the carbon dioxide concentration of the mixed gas, Since the increase in the methane concentration can be suppressed, the stable gas engine operation described above can be maintained as well.
  • the fuel gas supply device selectively removes carbon dioxide contained in the mixed gas with respect to methane, and the carbon dioxide removal device It is preferable to provide a first container and a second container for separately storing the first concentration adjusting gas and the second concentration adjusting gas, which are prepared in advance by separating carbon dioxide from the mixed gas by using the first concentration adjusting gas and the second concentration adjusting gas.
  • the carbon dioxide concentration of the mixed gas is reduced and the methane concentration is increased, so that the first concentration adjusting gas can be prepared, and the carbon dioxide removal device
  • the second concentration adjusting gas can be prepared by recovering the carbon dioxide separated in step (d), and the first concentration adjusting gas and the second concentration adjusting gas prepared in advance are separately stored in the first container and the second container. It can be stored in a container and can be used for the utilization of the first gas supply device and the second gas supply device.
  • the mixed gas contains a gas derived from biogas generated by methane fermentation of an organic substance. This makes it possible to realize a long-lived power generation system using biogas.
  • the power generation system in a power generation system which generates a fuel gas containing carbon dioxide mainly containing methane to the engine to generate electricity, the fluctuation of the carbon dioxide concentration and the methane concentration of the fuel gas is suppressed and stabilized. Operation of the gas engine can be maintained, and a long-lived power generation system can be realized.
  • FIG. 8 is a block diagram schematically showing another configuration example of the water vapor supply unit. Graph showing the CH 4 purity of the CO 2 recovery rate and the fuel gas CO 2 removal device, the simulation results of the relationship between the feed gas flow rate Ff.
  • the graph which shows the result of having simulated the relationship between the CO 2 recovery rate of a CO 2 removal apparatus, CH 4 purity of fuel gas, and supply side pressure Pf.
  • Graph showing the CH 4 purity of the CO 2 recovery rate and the fuel gas CO 2 removal device the simulation results of the relationship between the permeate side pressure Ps.
  • Graph showing the CH 4 purity of the CO 2 recovery rate and the fuel gas CO 2 removal device the simulation results of the relationship between the sweep gas flow rate Fs.
  • Graph showing the CH 4 purity of the CO 2 recovery rate and the fuel gas CO 2 removal device the simulation results of the relationship between the ambient temperature Ta.
  • Graph showing the CH 4 purity of the CO 2 recovery rate and the fuel gas CO 2 removal device the simulation results of the relationship between the membrane area Sm.
  • FIG. 10 is a list showing conditions used to obtain each simulation result shown in FIG. 5 to FIG.
  • FIG. 5 is a block diagram schematically showing a configuration example of a fuel gas supply device and an operating condition control device according to a second embodiment.
  • the block diagram which shows typically the structural example of the 1st gas supply apparatus which concerns on 2nd Embodiment.
  • the block diagram which shows typically the structural example of the 2nd gas supply apparatus which concerns on 2nd Embodiment.
  • the block diagram which shows typically the schematic structural example of the electric power generation system which concerns on 3rd Embodiment.
  • FIG. 8 is a block diagram schematically showing a configuration example of a fuel gas supply device according to a third embodiment.
  • the present system a power generation system (hereinafter, appropriately referred to as “the present system”) according to some embodiments of the present invention will be described with reference to the drawings.
  • FIG. 1 is a block diagram schematically showing a schematic configuration example of the present system 10.
  • the system 10 includes a gas engine 11, a generator 12, a fuel gas supply device 13, and a gas concentration sensor 14.
  • a gas engine 11 and one generator 12 are provided.
  • a plurality of gases are assumed.
  • the engine 11 or a plurality of sets of the gas engine 11 and the generator 12 may be provided.
  • the arrow in FIG. 1 simplifies and shows the flow path and direction through which gas flows.
  • the description of the three-way valve, the mixing valve, etc. required in the gas flow path is omitted.
  • the same reference numeral is given to the same component, and the description thereof may be omitted.
  • the gas engine 11 mixes fuel gas FG containing carbon dioxide such as biogas or natural gas with carbon dioxide as a main component with air, burns it in the combustion chamber, and moves heat energy generated by the combustion reaction of the fuel gas FG. It is a biogas engine or natural gas engine that converts it into energy and outputs it. Operation control of the gas engine 11 (for example, control of supply amount and supply timing of fuel gas FG, ignition timing, throttle opening (air supply amount), valve timing (opening and closing timing of intake valve and exhaust valve), etc.)
  • the engine control unit to perform is attached as a part of gas engine 11, and illustration is abbreviate
  • the generator 12 is configured using an alternator such as a synchronous generator or an induction generator having a rotor and a stator, and converts kinetic energy supplied from the gas engine 11 into electric energy to convert AC power. Output.
  • alternator such as a synchronous generator or an induction generator having a rotor and a stator
  • the structure and type of alternator are not limited to any particular structure and type.
  • the AC power output from the generator 12 is output to the inverter device 15 as necessary, and after the primary AC power output from the generator 12 is once converted to DC power in the inverter device 15, desired
  • the secondary AC power is converted to a secondary AC power of the form (single-phase or three-phase), supplied to a predetermined power load, and is also grid-connected as required.
  • the inverter device 15 is not necessarily a component of the system 10, but may be part of the system 10.
  • the fuel gas supply device 13 controls the concentration of at least one target component gas of methane and carbon dioxide in the mixed gas MG with respect to the mixed gas MG having methane and carbon dioxide supplied from the outside as main components.
  • the base is controlled to be within the setting range for the concentration (the dry base) of the target component gas in the fuel gas FG of the gas engine 11, and is supplied to the gas engine 11 as the fuel gas FG.
  • mixed gas derived from biogas obtained by methane fermentation of organic waste such as biomass and sewage sludge is used as mixed gas MG.
  • the mixed gas MG derived from biogas is an impurity such as hydrogen sulfide or siloxane, an impurity removing device (not shown) such as an existing desulfurization device or a siloxane removal device of activated carbon adsorption type. It is removed in advance before being supplied to the fuel gas supply device 13.
  • an impurity removing device such as an existing desulfurization device or a siloxane removal device of activated carbon adsorption type. It is removed in advance before being supplied to the fuel gas supply device 13.
  • the carbon dioxide concentration and the methane concentration of the mixed gas MG, the fuel gas FG, and the like are the concentrations on a dry basis.
  • a wet desulfurization method using an absorbing solution or an adsorption desulfurization method using a sulfur adsorbent such as zinc oxide or iron oxide can be used.
  • sulfur adsorbent such as zinc oxide or iron oxide
  • sulfur adsorbent such as zinc oxide or iron oxide
  • sulfur can be completely removed to the ppb level or less.
  • the promoted transport film may be affected by hydrogen sulfide depending on the type of carrier used and the concentration thereof, so a superhigh-order desulfurization catalyst is used Is preferred.
  • the mixed gas MG is directly supplied to the fuel gas supply device 13 from the biogas production facility through the pipeline and the above-mentioned impurity removing device or the like, or the biogas from the biogas production facility to the storage tank After temporarily storing, various supply modes such as a configuration to be supplied to the fuel gas supply device 13 through the pipeline and the above-mentioned impurity removal device can be used.
  • the fuel gas supply device 13 controls the operating conditions that affect the increase and decrease of the carbon dioxide removal rate of the CO 2 removal device 16 that removes carbon dioxide in the mixed gas MG and the CO 2 removal device 16. 17 is provided.
  • CO 2 removal device 16 various gas separation methods such as membrane separation, chemical absorption, pressure swing adsorption (PSA), temperature swing adsorption (TSA), etc. can be used.
  • PSA pressure swing adsorption
  • TSA temperature swing adsorption
  • a CO 2 separation membrane 20 by a membrane separation method is provided.
  • the CO 2 removing device 16 has a first processing chamber 21 and a second processing chamber 21 separated by a CO 2 separation membrane 20 and a CO 2 separation membrane 20.
  • the processing chamber 22 is provided.
  • the mixed gas controlled within the above setting range (the setting range Wch4 of methane concentration or the setting range Wco2 of carbon dioxide concentration) is discharged to the outside of the first processing chamber 21 as the fuel gas FG in a manner described later.
  • a first outlet 21b is provided.
  • FIG. 2A is a cross-sectional view of two types schematically showing the schematic structure of the CO 2 removing device 16 when the CO 2 separation membrane 20 is flat.
  • the cross section of each cross-sectional view of FIG. 2A is orthogonal to the CO 2 separation film 20 and orthogonal to each other.
  • FIG. 2B is a cross-sectional view of two types schematically showing the schematic structure of the CO 2 removing device 16 when the CO 2 separation membrane 20 has a cylindrical shape.
  • the cross section of each cross-sectional view of FIG. 2A is a cross section passing through the axial center of the cylindrical CO 2 separation film 20 and a cross section orthogonal to the axial center. Therefore, the dimensional ratio of each part of FIG. 2 (A) and (B) does not necessarily correspond with the dimensional ratio of each part of the actual CO 2 removal apparatus 16. Arrows in FIGS. 2A and 2B schematically indicate the flowing direction of the gas in each part.
  • the gas engine 11 is a biogas engine, for example, 65% ⁇ 5% or 70% ⁇ 5% is assumed as the setting range Wch4 of methane concentration, and when the gas engine 11 is a natural gas engine, for example, 80% ⁇ 5% or 85% ⁇ 5% etc. are assumed. Further, if the gas engine 11 is a biogas engine, for example, 35% ⁇ 5% or 30% ⁇ 5% is assumed as the setting range Wco2 of the carbon dioxide concentration, and if the gas engine 11 is a natural gas engine For example, 20% ⁇ 5% or 15% ⁇ 5% are assumed. However, when setting both the methane concentration setting range Wch4 and the carbon dioxide concentration setting range Wco2, if the methane concentration is within the setting range Wch4, the carbon dioxide concentration is also set within the setting range Wco2 There is a need to.
  • a CO 2 -promoting transport membrane in which a known CO 2 carrier selectively reacting with carbon dioxide without reacting with methane is added to the gel membrane.
  • CO 2 -facilitated transport membrane carbon dioxide is permeated as a reaction product with a CO 2 carrier in addition to physical permeation by a dissolution / diffusion mechanism, so that the permeation rate is promoted.
  • gases such as methane, nitrogen and hydrogen which do not react with the CO 2 carrier permeate only by the dissolution / diffusion mechanism, the separation coefficient of carbon dioxide to these gases is extremely large.
  • CO 2 carrier for example, cesium carbonate or bicarbonate, or carbonate or bicarbonate of an alkali metal such as rubidium carbonate or rubidium bicarbonate can be mentioned.
  • hydroxides of alkali metals such as cesium hydroxide or rubidium hydroxide can also be said to be equivalent because they react with carbon dioxide to form carbonates and carbonates.
  • amino acids such as 2,3-diaminopropionate (DAPA) and glycine are known to exhibit high CO 2 selective permeation performance.
  • the CO 2 -facilitated transport film can be configured by supporting a gel layer, which is configured to include the above-mentioned CO 2 carrier in a gel film, on a hydrophilic or hydrophobic porous film.
  • a gel layer which is configured to include the above-mentioned CO 2 carrier in a gel film, on a hydrophilic or hydrophobic porous film.
  • the film material constituting the gel film include polyvinyl alcohol (PVA) film, polyacrylic acid (PAA) film, polyvinyl alcohol-polyacrylic acid (PVA / PAA) salt copolymer film, and the like.
  • CO 2 -facilitated transport membrane of the structure are known to exhibit a high CO 2 selective permeability (e.g., Japanese Patent 4621295, JP 2008-036463, patent publications such as JP 2013-049048, published See patent publication).
  • the CO 2 -facilitated transport membrane has a very low permeation rate of carbon dioxide when there is no moisture in the membrane, and the moisture in the membrane is essential for obtaining a high permeation rate.
  • the gel membrane is preferably a hydrogel membrane.
  • the gel membrane By configuring the gel membrane with a high water-retention hydrogel membrane, it is possible to retain water in the membrane as much as possible even in an environment in which water in the gel membrane decreases (for example, high temperature of 100 ° C. or higher). It is possible to realize high CO 2 permeance.
  • the polyvinyl alcohol-polyacrylic acid (PVA / PAA) salt copolymer membrane and the polyacrylic acid membrane are hydrogel membranes.
  • the hydrogel is a three-dimensional network structure formed by crosslinking a hydrophilic polymer by chemical crosslinking or physical crosslinking, and has a property of swelling by absorbing water.
  • the CO 2 removing device 16 includes a steam supply unit 18 that supplies steam (water vapor) to both the mixed gas MG and the sweep gas SG.
  • the steam supply unit 18 generates steam internally or receives supply of steam from the outside, and as shown in FIG. 3, a first supply pipe 23a connected to the first receiving port 21a, and a second receiving pipe 23a.
  • the steam is separately supplied to the second supply pipe 24a connected to the inlet 22a.
  • each relative humidity of mixed gas MG and sweep gas SG can be separately set to arbitrary predetermined values.
  • the steam supply unit 18 When the steam supply unit 18 generates steam inside, the water may be heated by heat exchange with the high temperature exhaust gas discharged from the gas engine 11 to generate the steam. Thereby, the waste heat of the said exhaust gas can be used effectively.
  • steam is added to the mixed gas MG from the steam supply unit 18, steam (water vapor) is also included in the fuel gas FG immediately after being discharged from the first discharge port 21b.
  • the water vapor removing portion is connected to the first exhaust pipe 23b connected to the first discharge port 21b. 19 is installed.
  • the water vapor removal unit 19 can use a known configuration that uses a water-vapor permeable membrane such as one using a condenser or a perfluoro-based membrane (or a perfluorosulfonic acid-based membrane).
  • a water-vapor permeable membrane such as one using a condenser or a perfluoro-based membrane (or a perfluorosulfonic acid-based membrane).
  • steam is recovered not in the cooled liquid state but in a gaseous state (with latent heat), so at least a portion of the removed steam is directly supplied to the water vapor supply portion It can be returned to 18 and reused as steam mixed with the mixed gas MG and the sweep gas SG (see FIG. 3). It is also possible to use the above-mentioned facilitated transport membrane as the water vapor permeable membrane.
  • the facilitated transport membrane may be composed of a material different from that of the CO 2 separation membrane 20 or may be composed of the same material.
  • An example of a water vapor permselective membrane using a facilitated transport membrane is disclosed in WO 2012/014900.
  • a steam separation unit 18 a may be provided on the flow path of the exhaust gas XG discharged from the gas engine 11 to separate the water vapor contained in the exhaust gas XG.
  • the separated steam is supplied to the steam supply unit 18 and can be added to the mixed gas MG and the sweep gas SG.
  • the water vapor separation unit 18a can use a known configuration using a water vapor permeable membrane.
  • a facilitated transport film can also be used for the water vapor separation unit 18a.
  • various shapes such as a flat plate shape or a cylindrical shape (for example, a cylindrical shape) can be considered as the CO 2 -facilitated transport film.
  • the CO 2 -promoting transport film is configured by forming a gel film containing a CO 2 carrier on the outer peripheral side surface or the inner peripheral side surface of the cylindrical porous support, the cylindrical CO 2 -promoting transport One of the first processing chamber 21 and the second processing chamber 22 is formed inside the membrane, and the other of the first processing chamber 21 and the second processing chamber 22 is formed outside the first processing chamber 21 or the second processing chamber 22.
  • a plurality of CO 2 promoting transport films are provided in one housing, and a plurality of at least one of the first processing chamber 21 and the second processing chamber 22 are formed to make the plurality of first processing chambers 21 communicate with each other, or The plurality of second processing chambers 22 may be communicated with each other, or both of them may be performed to increase the membrane area.
  • the operating condition control device 17 is an operating condition that affects the increase or decrease in the carbon dioxide removal rate of the CO 2 removal device 16, that is, the carbon dioxide removal rate of the CO 2 separation membrane (CO 2 -fa
  • the flow rate of the mixed gas MG supplied into the first processing chamber 21 supply gas flow rate Ff
  • the pressure in the first processing chamber 21 supply side pressure Pf
  • the second processing chamber 22 the pressure of the inner (permeate side pressure Ps)
  • membrane area of ambient temperature Ta CO 2 separation membrane 20 of the second flow rate of sweep gas SG to be supplied into the processing chamber 22
  • weep gas flow rate Fs CO 2 separation membrane 20
  • At least one of the control target operation condition candidates including Sm is controlled based on the measurement result of the gas concentration sensor 14 described later.
  • the operating condition control device 17 increases or decreases the carbon dioxide removal rate of the CO 2 removing device 16 by controlling at least one of the operating conditions included in the control target operating condition candidate, and as a result, the fuel gas Control is performed to maintain the methane concentration or carbon dioxide concentration of FG within the setting range Wch4 or the setting range Wco2.
  • the gas concentration sensor 14 is, as shown in FIGS. 1 and 3, the first supply pipe 23a connected to the first inlet 21a, that is, the methane concentration of the mixed gas MG installed at the front stage of the CO 2 removing device 16 It is a gas sensor that measures the concentration of at least one of (dry basis) and carbon dioxide concentration (dry basis).
  • the mixed gas MG is derived from biogas, so on a dry basis, the methane concentration fluctuates in the range of about 50% to 75% above the explosive upper limit concentration (15 vol%), and the carbon dioxide concentration May vary in the range of about 25% to 50%, so the gas concentration sensor 14 measures high concentration that covers the above variation range, regardless of whether the target component gas is methane or carbon dioxide.
  • the mixed gas MG is derived from biogas, so on a dry basis, the methane concentration fluctuates in the range of about 50% to 75% above the explosive upper limit concentration (15 vol%), and the carbon dioxide concentration May vary in the range of about 25% to 50%, so the gas concentration sensor 14 measures high concentration that covers the
  • the gas concentration sensor 14 may be disposed downstream of the CO 2 removal device 16.
  • the methane concentration of the mixed gas (fuel gas FG) after passing through the CO 2 removing device 16 is controlled within the setting range Wch4, and the carbon dioxide concentration is controlled within the setting range Wco2.
  • the concentration sensor 14 uses a well-known gas sensor capable of high concentration measurement which covers the above-mentioned set range, regardless of whether the target component gas is methane or carbon dioxide. Even if the target component gas is either methane or carbon dioxide, in the mixed gas MG derived from biogas, the concentration fluctuation of methane and carbon dioxide mainly occurs, and when one increases, the other decreases accordingly.
  • the gas concentration sensor 14 may measure only one of the methane concentration and the carbon dioxide concentration and derive the other from the one measurement result. In the following description, including the case of deriving the other from the measurement result of one of the methane concentration and the carbon dioxide concentration, it is collectively referred to as “measurement etc.”.
  • the operating condition control device 17 sets the flow rate of the mixed gas MG to the first supply pipe 23a connected to the first receiving port 21a.
  • the back pressure valve 26 is interposed in the first exhaust pipe 23 b connected to the first discharge port 21 b, and the back pressure valve 26 is installed.
  • the pressure gauge 27 is provided on the upstream side of the mass flow controller, which controls the flow rate of the sweep gas SG to the second supply pipe 24a connected to the second receiving port 22a when using the sweep gas flow rate Fs as the above operation condition
  • the back pressure valve 29 is interposed in the second exhaust pipe 24b connected to the second discharge port 22b, and the upstream side of the back pressure valve 29 is used.
  • the pressure gauge 30 is provided to further mass flow controller 25 and 28, a control unit 17a for controlling the back pressure valve 26 and 29 or the like, and controllable constituting the respective operating conditions.
  • the mass flow controllers 25 and 28 also function as mass flow meters, control states of the supply gas flow rate Ff and the sweep gas flow rate Fs by the mass flow controllers 25 and 28 can be confirmed by themselves.
  • the pressure gauge 27 is for confirming the control state of the supply side pressure Pf by the back pressure valve 26, and the pressure gauge 30 is for confirming the control state of the permeation side pressure Ps by the back pressure valve 29. . Therefore, the mass flow controller 25, the back pressure valve 26, and the pressure gauge 27 are used depending on which operation condition of the supply gas flow rate Ff, supply side pressure Pf, sweep gas flow rate Fs, and permeation side pressure Ps is used as a control target.
  • the control unit 17a is a control device capable of processing digital signals or analog signals and the like configured to include a microcomputer, programmable logic, and the like.
  • the operating condition controller 17 When the ambient temperature Ta of the CO 2 separation membrane 20 is used as the above-mentioned operating condition, the operating condition controller 17 further installs the operating condition controller 17 in, for example, a constant temperature bath, and CO as the above-mentioned operating condition. 2
  • the CO 2 separation membrane 20 is divided into a plurality of membrane units, and the first processing chamber 21 and the second processing chamber 22 are provided in each of the membrane units to mix them.
  • the number of film units supplying the gas MG can be increased or decreased, and the operating conditions of the ambient temperature Ta and the film area Sm can be controlled from the control unit 17a.
  • FIGS. 5 to 10 simulation results showing that each of the above operating conditions can actually control the increase and decrease of the carbon dioxide removal rate are shown in FIGS. 5 to 10 according to the operating conditions.
  • 5 shows the case where the operating condition is the supplied gas flow rate Ff
  • FIG. 6 shows the case where the operating condition is the supply side pressure Pf
  • FIG. 7 shows the case where the operating condition is the permeation side pressure Ps
  • FIG. 9 shows the simulation results when the operation condition is the ambient temperature Ta
  • FIG. 10 shows the simulation results when the operation condition is the film area Sm.
  • the vertical axes in FIG. 5 to FIG. 10 indicate the CO 2 recovery rate [%] of the CO 2 removal device 16 and the CH 4 purity [%] of the fuel gas FG, and the horizontal axes indicate the respective operating conditions.
  • the CO 2 recovery rate [%] is calculated as a value (percentage) obtained by dividing the flow rate of carbon dioxide in the mixed gas EG discharged from the second outlet 22 b by the flow rate of carbon dioxide in the mixed gas MG, It represents the carbon removal rate.
  • the CH 4 purity [%] is calculated as a value (percentage) obtained by dividing the flow rate of methane in the fuel gas FG discharged from the first outlet 21 b by the flow rate (dry base) of the fuel gas FG.
  • FIG. 11 The conditions used for each simulation are summarized in FIG. In FIG. 11, the value of the item which is the operating condition is displayed as "variable".
  • the composition ratio (volume ratio) of the mixed gas MG is shown on a dry basis, but steam (steam) is maintained so that the relative humidity is maintained at 70% under the temperature condition and pressure condition shown in FIG. ) Is added.
  • the composition ratio (volume ratio: wet base) of the sweep gas SG is set such that the relative humidity is maintained at 70% under the same temperature and pressure conditions. Therefore, in FIG. 7, the composition ratio of the sweep gas SG is omitted according to the transmission side pressure Ps when the relative humidity is fixed at 70%, and therefore the display is omitted.
  • the relative humidity of the mixed gas MG and sweep gas SG is fixed to 70%, by eliminating the influence of the variation of the relative humidity, CO 2 of each operating condition is CO 2 remover 16 This is to make it possible to evaluate only the recovery rate [%] and the influence of the fuel gas FG on CH 4 purity [%].
  • the controller 17a supplies the mass flow controller 25.
  • the controller 17a supplies the mass flow controller 25.
  • the controller 17a supplies the back pressure valve 26 By performing control to increase the side pressure Pf to increase the CO 2 recovery rate, it is possible to maintain the methane concentration of the fuel gas FG in the setting range Wch4 or the carbon dioxide concentration in the setting range Wco2.
  • the controller 17a supplies the back pressure valve 26 By performing control to lower the side pressure Pf to lower the CO 2 recovery rate, it is possible to maintain the methane concentration of the fuel gas FG within the setting range Wch4 or the carbon dioxide concentration within the setting range Wco2.
  • control unit 17a permeates the back pressure valve 29.
  • the control unit 17a permeates the back pressure valve 29.
  • control unit 17a sweeps the mass flow controller 28. By performing control to lower the gas flow rate Fs and lowering the CO 2 recovery rate, it is possible to maintain the methane concentration of the fuel gas FG in the above setting range Wch4 or the carbon dioxide concentration in the above setting range Wco2.
  • control unit 17a controls the ambient temperature with respect to the thermostatic bath It is possible to maintain the methane concentration of the fuel gas FG in the set range Wch4 or the carbon dioxide concentration in the set range Wco2 by performing control to reduce Ta and reducing the CO 2 recovery rate.
  • the control unit 17a sends the CO 2 removing device 16 Control to increase the number of membrane units (membrane area Sm) to be used to increase the CO 2 recovery rate, the methane concentration of the fuel gas FG is in the above setting range Wch 4 or the carbon dioxide concentration is in the above setting range Can be maintained at Wco2.
  • the control unit 17a sends a signal to the CO 2 removal device 16 Control to reduce the number of membrane units (membrane area Sm) to be used to reduce the CO 2 recovery rate, the methane concentration of the fuel gas FG is in the above setting range Wch 4 or the carbon dioxide concentration is in the above setting range Can be maintained at Wco2.
  • any operating condition of supply gas flow rate Ff, supply side pressure Pf, permeation side pressure Ps, sweep gas flow rate Fs, ambient temperature Ta, and film area Sm is used because positive or negative correlation exists between each operating condition and CO 2 recovery rate [%] and CH 4 purity [%], it is possible to control increase or decrease in carbon dioxide removal rate I understand.
  • the relative humidity of the mixed gas MG and the sweep gas SG is fixed at a constant value in each of the above simulations.
  • the relative humidity of the mixed gas MG and the sweep gas SG does not necessarily have to be fixed at a constant value, and each relative humidity is set at a constant value in the first processing chamber 21 and the second processing chamber 22. It is difficult to maintain. For example, when the pressure (supply side pressure Pf or permeation side pressure Ps) in the first processing chamber 21 or the second processing chamber 22 is increased, the water vapor partial pressure in the first processing chamber 21 or the second processing chamber 22 is increased.
  • the relative humidity in the first processing chamber 21 or the second processing chamber 22 rises and the ambient temperature Ta of the CO 2 separation film 20 rises, the saturated vapor pressure in the first processing chamber 21 or the second processing chamber 22 As it increases, the relative humidity in the first process chamber 21 or the second process chamber 22 decreases. As the relative humidity in the first processing chamber 21 and the second processing chamber 22 is higher, the facilitated transport function of the CO 2 facilitated transport film is exhibited, the CO 2 permeance is increased, and the CO 2 recovery rate is increased.
  • the relative humidity in the first processing chamber 21 and in the second processing chamber 22 corresponds to the pressure in the first processing chamber 21 or the second processing chamber 22 (supply side pressure Pf or permeation side pressure Ps) and the CO 2 separation membrane 20.
  • supply side pressure Pf or permeation side pressure Ps supply side pressure
  • CO 2 separation membrane 20 CO 2 separation membrane 20.
  • the ambient temperature Ta it changes according to the amount of steam (steam) added to the mixed gas MG and the sweep gas SG.
  • the amount of added water vapor to the mixed gas MG and the sweep gas SG is also the operating condition used by the operating condition control device 17, the supply gas flow rate Ff, supply side pressure Pf, permeation side
  • the pressure Ps, the sweep gas flow rate Fs, the ambient temperature Ta, and the film area Sm can be added to the above-mentioned operating condition candidate for control target, and the operating condition control device 17 And at least one of the above operating conditions may be used.
  • the CO 2 recovery rate [%] and the CH 4 purity [%] have a negative correlation with the permeation side pressure Ps, but on the other hand, they are supplied into the second processing chamber 22
  • the composition ratio (partial pressure ratio) of water vapor in the sweep gas SG to be measured is constant
  • the relative humidity in the second processing chamber 22 increases (or decreases) as the permeation pressure Ps increases (or decreases).
  • the CO 2 recovery rate [%] and the CH 4 purity [%] have a positive correlation that increases (or decreases). That is, the effect of the increase and decrease of the permeation pressure Ps is suppressed by the change of the relative humidity in the second processing chamber 22.
  • the water vapor supply unit 18 is adjusted according to the change of the permeation side pressure Ps so that the relative humidity of the sweep gas SG is maintained constant as in the simulation. It is preferable to perform control to change the water vapor partial pressure of the sweep gas SG by adjusting the amount of water vapor supplied from the above.
  • the CO 2 recovery rate [%] and the CH 4 purity [%] have a positive correlation with the supply side pressure Pf, while the first processing chamber 21
  • the composition ratio (partial pressure ratio) of steam in the mixed gas MG supplied to the inside is constant, the relative humidity in the first processing chamber 21 increases (or decreases) when the supply pressure Pf increases (or decreases).
  • the CO 2 recovery rate [%] and the CH 4 purity [%] have a positive correlation that increases (or decreases). That is, the effect of the increase or decrease of the supply side pressure Pf is enhanced by the change of the relative humidity in the first processing chamber 21. Therefore, when the supply side pressure Pf is used as the operation condition, it is not necessary to control the water vapor partial pressure of the mixed gas MG so that the relative humidity of the mixed gas MG is maintained constant.
  • the CO 2 recovery rate [%] and the CH 4 purity [%] have a positive correlation with the ambient temperature Ta, while on the other hand, in the first processing chamber 21.
  • the composition ratio (partial pressure ratio) of water vapor in the supplied mixed gas MG and the composition ratio (partial pressure ratio) of water vapor in the sweep gas SG supplied into the second processing chamber 22 is constant,
  • the temperature Ta rises (or falls) the saturated water vapor pressure rises (or falls), so the relative humidity in at least one of the first processing chamber 21 and the second processing chamber 22 falls (or increases), CO 2 recovery [%] and CH 4 purity [%] have a negative correlation with decreasing (or increasing).
  • the effect due to the increase or decrease of the ambient temperature Ta is suppressed by the change in the relative humidity of at least one of the inside of the first processing chamber 21 and the inside of the second processing chamber 22. Therefore, when the ambient temperature Ta is used as the above operating condition, as in the simulation, the water vapor is adjusted according to the change of the ambient temperature Ta so that the relative humidity of the mixed gas MG and the sweep gas SG is maintained constant. It is preferable to perform control to adjust the amount of water vapor supplied from the supply unit 18 and change the water vapor partial pressures of the mixed gas MG and the sweep gas SG.
  • the relationship between at least one of the concentration and the carbon dioxide concentration, and the concentration of the target component gas (methane or carbon dioxide) in the fuel gas FG whose concentration is controlled by the CO 2 removal device 16 is obtained by experiments in advance. Get it.
  • the operating condition control device 17 controls the fuel based on at least one of the methane concentration and the carbon dioxide concentration measured by the gas concentration sensor 14 during operation of the system 10.
  • the above operating conditions necessary to maintain the concentration of the target component gas (methane or carbon dioxide) in the gas FG within the above setting range (methane concentration setting range Wch4 or carbon dioxide concentration setting range Wco2)
  • the value of is controlled to a value derived from the relationship previously obtained by experiments or the like.
  • the operating condition control device 17 measures the gas concentration sensor 14 that measures the concentration of the target component gas (methane or carbon dioxide) in the fuel gas FG.
  • the concentration of the target component gas in the fuel gas FG is in the above-mentioned setting range (methane concentration based on the measurement result of the gas concentration sensor 14 by adding or moving downstream of the back pressure valve 26 of the first exhaust pipe 23b. It is good also as composition of performing control of a feedback type which carries out increase and decrease of the value of the above-mentioned operating conditions so that it may be maintained in setting range Wch4 of this, or setting range Wco2 of a carbon dioxide concentration.
  • the operating condition control device 17 normally uses the number of the operating conditions to be used. It is also preferable to increase or decrease the carbon dioxide removal rate of the CO 2 removal device 16 more quickly by increasing the number.
  • the fuel gas FG supplied from the first processing chamber 21 toward the gas engine 11 is The flow rate or pressure changes in accordance with the change of the supply gas flow rate Ff or the supply side pressure Pf. Therefore, as shown in FIG. 3, in the case where the supply gas flow rate Ff is used as the above-mentioned operation condition, mass flow for adjusting the flow rate to the predetermined value to the first supply pipe 23a in order to suppress the flow rate fluctuation of the fuel gas FG.
  • a pressure adjusting device 32 such as a pressure adjusting valve for adjusting the pressure to a predetermined value is interposed.
  • the schematic configuration of the present system 10a according to the second embodiment is basically the same as the present system 10 according to the first embodiment.
  • the system 10a and the system 10 includes a fuel gas supply apparatus 13a of the system 10a is, as shown in FIG. 12, includes a first gas supply unit 40 and a second gas supply unit 50, the CO 2 remover 16 In the first exhaust pipe 23b connected to the first exhaust port 21b, however, the first gas supply device 40 performs the first concentration adjustment downstream of the first exhaust pipe 23b when the back pressure valve 26 is interposed.
  • the difference is that a configuration is provided in which the gas BG1 is supplied and the second gas supply device 50 supplies the second concentration adjustment gas BG2.
  • the parts common to the fuel gas supply apparatus 13 other than the added first gas supply apparatus 40 and the second gas supply apparatus 50 are the same as in the first embodiment, and therefore, the fuel gas supply apparatus 13a is the same as the first embodiment. I will omit it.
  • the gas engine 11, the generator 12, and the gas concentration sensor 14 are the same as those in the first embodiment, duplicate descriptions will be omitted.
  • the first gas supply device 40 makes the carbon dioxide concentration lower than the setting range Wco2 of the carbon dioxide concentration according to whether the target component gas is methane or carbon dioxide
  • the first concentration adjusting gas BG1 generated in advance so that the methane concentration is higher than the setting range Wch4 of the methane concentration or both of them may be stored in the first container 45, and the control unit
  • the first concentration adjusting gas BG1 in the first container 45 is configured to be supplied to the first exhaust pipe 23b in accordance with an instruction from 17a.
  • the control unit 17a causes the first gas supply device 40 to generate the carbon dioxide concentration.
  • the control unit 17 a calculates.
  • the first gas supply device 40 includes a CO 2 separation device 41 that generates the first concentration adjustment gas BG1 in advance.
  • CO 2 separation device 41 the same configuration as CO 2 removal unit 16, a CO 2 separation membrane 42 of the CO 2 -facilitated transport membrane, the first processing chamber 43 and the second processing chamber separated by the CO 2 separation membrane 42 It comprises 44.
  • the mixed gas MG derived from the same biogas as the mixed gas MG supplied to the first processing chamber 21 of the CO 2 removing device 16 is any of the various supply modes described in the first embodiment. It is supplied using The mixed gas MG supplied to the first processing chamber 43 has a carbon dioxide concentration by selectively permeating carbon dioxide to the second processing chamber 44 side via the CO 2 separation membrane 42 of the CO 2 facilitated transport film.
  • the mixed gas MG1 that has dropped significantly is discharged from the first processing chamber 43, and is stored in the first container 45 as a first concentration adjustment gas BG1.
  • the sweep gas SG1 is supplied to the second processing chamber 44 in the same manner as the CO 2 removal device 16, and a mixed gas of a part of the mixed gas MG permeated from the first processing chamber 43 to the second processing chamber 44 and the sweep gas SG1.
  • SG1 ' is discharged from the second processing chamber 44.
  • the CO 2 / CH 4 selection ratio of the facilitated transport film used for the CO 2 separation membrane 42 is, for example, 100 or more, adjusting the operating conditions of the CO 2 separation device 42 results in an extremely high carbon dioxide removal rate. realizable. Therefore, by setting the carbon dioxide removal rate high according to the setting range Wch4 and the setting range Wco2, the mixed gas MG1 discharged from the first processing chamber 43 has a predetermined value (for example, a carbon dioxide concentration) in the setting range Wco2. It is possible to lower the concentration by 5 to 10 vol% or more or to increase the methane concentration by a predetermined value (for example, 5 to 10 vol%) or more than the set range Wch4.
  • a predetermined value for example, 5 to 10 vol%
  • the carbon dioxide concentration and the methane concentration of the mixed gas MG 1 change with the concentration fluctuation of carbon dioxide and methane in the mixed gas MG supplied to the first processing chamber 43, but the first stored in the first container 45
  • the condition that the carbon dioxide concentration and the methane concentration of the concentration adjustment gas BG1 are lower than the set range Wco2 by the predetermined value or more and higher than the set range Wch4 by the predetermined value or more is satisfied.
  • the first container 45 is provided with a gas concentration sensor 46 similar to the gas concentration sensor 14, and the measured values of carbon dioxide concentration and methane concentration of the first concentration adjusting gas BG1 Is notified to the control unit 17a. Then, the control unit 17a calculates the necessary flow rate taking into consideration the measurement result of the gas concentration sensor 46.
  • the second gas supply device 50 makes the carbon dioxide concentration higher than the setting range Wco2 of the carbon dioxide concentration depending on whether the target component gas is methane or carbon dioxide
  • the second concentration adjusting gas BG2 generated in advance so that the methane concentration is lower than the setting range Wch4 of the methane concentration or both of them may be stored in the second container 56, and the control unit
  • the second concentration adjusting gas BG2 in the second container 56 is configured to be supplied to the first exhaust pipe 23b in accordance with an instruction from 17a.
  • the controller 17 a causes the second gas supply device 50 to generate the carbon dioxide concentration.
  • the control unit 17 a calculates.
  • the second gas supply device 50 includes a CO 2 separation device 51 and a water vapor removal unit 55 that generate the second concentration adjustment gas BG 2 in advance.
  • the water vapor removal unit 55 can use the same configuration as that of the water vapor removal unit 19 described in the first embodiment, and therefore redundant description will be omitted.
  • the CO 2 separation device 51 has the same configuration as the CO 2 removal device 16 and includes a CO 2 separation film 52 of a CO 2 -facilitated transport film, and a first treatment chamber 53 and a second treatment chamber separated by the CO 2 separation film 52. It comprises 54.
  • the first processing chamber 53 is supplied with the mixed gas EG having an increased carbon dioxide concentration, which is discharged from the second processing chamber 22 of the CO 2 removing device 16.
  • the mixed gas EG supplied to the first processing chamber 53 is the sweep gas SG supplied to the second processing chamber 22 of the CO 2 removal device 16 and the mixed gas MG transmitted from the first processing chamber 21 to the second processing chamber 22.
  • the component gas of the sweep gas SG for example, an inert gas such as argon
  • the gas is selectively permeated to the second processing chamber 54 side and separated, and is discharged from the second processing chamber 54 as the mixed gas SG2 ′ together with the sweep gas SG2 supplied to the second processing chamber 53. Since the mixed gas SG2 ′ discharged from the second processing chamber 54 contains carbon dioxide and water vapor, it is stored in the second container 56 as the second concentration adjustment gas BG2 after the water vapor removal unit 55 removes the water vapor. .
  • the inert gas or the like is mixed in the second concentration adjusting gas BG2
  • the pressure in the second processing chamber 54 it is necessary to control the pressure in the second processing chamber 54 to be equal to or less than the saturated water vapor pressure at the temperature in the second processing chamber 54.
  • the steam of the sweep gas SG2 can be supplied from the water vapor supply unit 18. Further, the water vapor removed by the water vapor removal unit 55 can be supplied to the water vapor supply unit 18 for reuse.
  • the methane concentration of the mixed gas EG is extremely low, and further, the mixed gas with a low methane concentration The amount of methane in EG passing through the CO 2 separation membrane 52 is extremely small. Therefore, by setting the carbon dioxide removal rate of the CO 2 removal device 51 high according to the setting range Wch4 and the setting range Wco2, the methane concentration of the mixed gas SG2 ′ is set to a predetermined value (for example, 5 to 10 vol.) From the setting range Wch4.
  • the carbon dioxide concentration of the mixed gas SG2 ′ can be set higher than the set range Wco2 by a predetermined value (eg, 5 to 10 vol%) or more.
  • a predetermined value eg, 5 to 10 vol% or more.
  • the condition that the carbon dioxide concentration and the methane concentration of the second concentration adjusting gas BG2 stored in the second container 56 are higher than the set range Wco2 by the predetermined value or more and lower than the set range Wch4 by the predetermined value or more is satisfied.
  • the second container 56 is provided with a gas concentration sensor 57 similar to the gas concentration sensor 14, and the carbon dioxide concentration and the methane concentration of the second concentration adjusting gas BG2 are The measured value is configured to be notified to the control unit 17a. Then, the control unit 17a calculates the necessary flow rate taking into consideration the measurement result of the gas concentration sensor 46.
  • the first gas supply device 40 supplies the first concentration adjustment gas BG1 downstream of the back pressure valve 26 and upstream of the water vapor removal unit 19 to supply the second gas.
  • the device 50 supplies the second concentration adjusting gas BG2
  • the supply of the first concentration adjusting gas BG1 and the second concentration adjusting gas BG2 is performed downstream of the water vapor removal unit 19 as shown in FIG. It is also preferred to do.
  • the first gas supply device 40 has a water vapor removal unit 47 interposed between the first processing chamber 43 and the first container 45, and the mixed gas discharged from the first processing chamber 43. It is also preferable that the water vapor removal unit 47 remove water vapor contained in the MG1.
  • the first gas supply device 40 includes the CO 2 separation device 41 and generates the first concentration adjusting gas BG1 in advance
  • the first concentration adjusting gas BG1 is not provided.
  • high purity methane gas such as natural gas supplied from the outside may be used.
  • the second gas supply device 50 includes the CO 2 separation device 51, and uses the mixed gas EG in which the carbon dioxide concentration increased and discharged from the second processing chamber 22 of the CO 2 removal device 16 is used.
  • the configuration for generating the second concentration adjusting gas BG2 in advance has been described, but instead of or in addition to the mixed gas EG, the exhaust gas containing carbon dioxide exhausted from the gas engine is transmitted to the first processing chamber 53 of the CO 2 separation device 51 May be supplied to the
  • the present system 10 b is configured to include a gas engine 11, a generator 12, a fuel gas supply device 60, and a gas concentration sensor 14.
  • the present system 10b includes a fuel gas supply device 60 in place of the fuel gas supply devices 13 and 13a of the present systems 10 and 10a in comparison with the present systems 10 and 10a of the first and second embodiments. It is different.
  • the gas engine 11, the generator 12, and the gas concentration sensor 14 of the present system 10b are the same as those of the first embodiment, and thus redundant description will be omitted.
  • the fuel gas supply device 60 includes a control unit 61, a first gas supply device 62, a second gas supply device 63, and a gas mixing unit 64.
  • the control unit 61 is configured to include a microcomputer, a programmable logic, and the like, similarly to the control unit 17a of the first and second embodiments.
  • the first gas supply device 62 supplies the first concentration adjusting gas BG1 generated in advance to the gas mixing unit 64 in accordance with an instruction from the control unit 61.
  • the second gas supply device 63 supplies the second concentration adjusting gas BG2 generated in advance to the gas mixing unit 64 in accordance with an instruction from the control unit 61.
  • the gas mixing unit 64 is configured of, for example, a four-way valve having three inlets and one outlet, and the mixed gas MG, the first concentration adjusting gas BG1, and the second concentration adjusting gas BG2 are respectively provided from the three inlets.
  • a mixed gas which is separately supplied and in which one of the first concentration adjusting gas BG1 and the second concentration adjusting gas BG2 is added to the mixed gas MG in the gas mixing section 64 is used as the fuel gas FG in the gas engine 11 Supplied.
  • the first concentration adjusting gas BG1 like the first concentration adjusting gas BG1 described in the second embodiment, has a carbon dioxide concentration corresponding to the above carbon dioxide concentration depending on whether the target component gas is methane or carbon dioxide It is prepared so as to be lower than the setting range Wco2 of the above, or so that the methane concentration becomes higher than the setting range Wch4 of the above-mentioned methane concentration, or both of them.
  • the second concentration adjusting gas BG2 has a carbon dioxide concentration corresponding to the above carbon dioxide concentration depending on whether the target component gas is methane or carbon dioxide. It is prepared to be higher than the setting range Wco2 of the above, or so that the methane concentration is lower than the setting range Wch4 of the above-mentioned methane concentration, or both.
  • the control unit 61 controls the first concentration adjusting gas BG1 and the first concentration adjusting gas BG1 with respect to one of the first gas supply device 62 and the second gas supply device 63 according to the carbon dioxide concentration or the methane concentration measured by the gas concentration sensor 14 or the like. It is instructed to supply one of the two concentration adjusting gas BG2 to the gas mixing unit 64 at a predetermined flow rate. Specifically, when the carbon dioxide concentration or the methane concentration measured by the gas concentration sensor 14 is higher than the set range Wco2 or lower than the set range Wch 4, the control unit 61 sends the first gas supply device 62.
  • the first concentration adjusting gas BG1 is instructed to be supplied to the gas mixing unit 64 at a flow rate required for the carbon dioxide concentration or the methane concentration to fall within the set range Wco2 or within the set range Wch4.
  • the necessary flow rate is a flow rate necessary for the carbon dioxide concentration or the methane concentration of the mixed gas obtained by adding the first concentration adjusting gas BG1 to the mixed gas MG to be within the set range Wco2 or within the set range Wch4.
  • the control unit 61 calculates in consideration of the measurement result of the gas concentration sensor 14 and the supply flow rate of the mixed gas MG and the like.
  • the control unit 61 sets the second gas supply device 63 to carbon dioxide It is instructed to supply the second concentration adjusting gas BG2 to the gas mixing unit 64 at a flow rate required for the carbon concentration or the methane concentration to fall within the set range Wco2 or within the set range Wch4.
  • the necessary flow rate is a flow rate necessary for the carbon dioxide concentration or the methane concentration of the mixed gas obtained by adding the second concentration adjustment gas BG2 to the mixed gas MG to be within the set range Wco2 or within the set range Wch4.
  • the control unit 61 calculates in consideration of the measurement result of the gas concentration sensor 14 and the supply flow rate of the mixed gas MG and the like. For this reason, in the present embodiment, a flow meter 65 such as a mass flow meter that measures the supply flow rate of the mixed gas MG is provided.
  • the fuel gas supply device 60 uses the mixed gas MG derived from the same biogas as the mixed gas MG supplied to the gas mixing unit 64 to use the first concentration adjusted gas BG1 and the second concentration adjusted gas BG2 in advance.
  • the structure which is produced and stored in the 1st container 70 and the 2nd container 73 is demonstrated with reference to FIG.
  • the fuel gas supply device 60 includes a CO 2 separation device 66, a first container 70, a second container 73, and a water vapor removal unit 72 as the first gas supply device 62 and the second gas supply device 63.
  • the first gas supply device 62 is composed of the CO 2 separation device 66 and the first container 70
  • the second gas supply device 63 is composed of the CO 2 separation device 66, the second container 73 and the water vapor removal unit 72
  • the second separation device 66 is commonly used by the first gas supply device 62 and the second gas supply device 63.
  • the CO 2 separation device 66 has the same configuration as the CO 2 removal device 16 described in the first embodiment, and the first treatment separated from the CO 2 separation film 67 of the CO 2 facilitated transport film by the CO 2 separation film 67
  • a chamber 68 and a second processing chamber 69 are provided.
  • the first processing chamber 68 is supplied with the mixed gas MG derived from the same biogas as the mixed gas MG supplied to the gas mixing unit 64 using any of the various supply modes described in the first embodiment.
  • Ru. Steam (water vapor) is supplied as sweep gas SG3 to the second processing chamber 69, and part of the mixed gas MG transmitted from the first processing chamber 68 to the second processing chamber 69 and mixed gas SG3 'of the sweep gas SG3 , And is discharged from the second processing chamber 69.
  • the pressure in the second processing chamber 69 is controlled so that the temperature in the second processing chamber 69 becomes less than or equal to the saturated water vapor pressure, since steam (water vapor) is used as the sweep gas SG3.
  • the steam of the sweep gas SG3 can be supplied from the water vapor supply unit by providing the water vapor supply unit in the same manner as the water vapor supply unit 18 of the first embodiment.
  • the water vapor removed by the water vapor removal unit 72 can be supplied to the water vapor supply unit and reused.
  • the mixed gas MG supplied to the first treatment chamber 68 has a carbon dioxide concentration by selectively permeating carbon dioxide to the second treatment chamber 69 side via the CO 2 separation film 67 of the CO 2 facilitated transport film.
  • the greatly lowered mixed gas MG ′ is discharged from the first processing chamber 68 and stored in the first container 70 as a first concentration adjusting gas BG1.
  • the sweep gas SG3 (steam) supplied to the second processing chamber 69 and a part (mainly carbon dioxide and water vapor, and a trace amount of methane) of the mixed gas MG permeated from the first processing chamber 68 side 2 is mixed in the processing chamber 69 and discharged from the second processing chamber 54 as a mixed gas SG3 ′ having a very high carbon dioxide concentration, and after the water vapor is removed by the water vapor removal unit 72, the second concentration adjusting gas BG2 is used as a second It is stored in the container 73.
  • CO 2 / CH 4 selectivity of facilitated transport membrane used in the CO 2 separation device 66 for example, because it is more than 100, by adjusting the operating conditions of the CO 2 separation device 66, a very high carbon dioxide removal rate realizable. Therefore, by setting the carbon dioxide removal rate high according to the setting range Wch4 and the setting range Wco2, the carbon dioxide concentration of the mixed gas MG 'is set to a predetermined value (for example, 5 to 10 vol%) or more from the setting range Wco2.
  • the methane concentration can be made lower than the set range Wch4 by a predetermined value (for example, 5 to 10 vol%) or more, and the methane concentration of the mixed gas SG3 ′ can be set to a predetermined value (for example, The carbon dioxide concentration can be lowered by 5 to 10 vol% or more or higher by a predetermined value (for example, 5 to 10 vol%) than the set range Wco2.
  • the carbon dioxide concentration and the methane concentration of the mixed gas MG 'and the mixed gas SG3' change with the concentration fluctuation of carbon dioxide and methane in the mixed gas MG supplied to the first processing chamber 68. Therefore, the condition that the carbon dioxide concentration and the methane concentration of the first concentration adjustment gas BG1 stored in the first container 70 are lower than the set range Wco2 by the predetermined value or more and higher than the set range Wch4 by the predetermined value or more is satisfied.
  • the first container 70 is provided with a gas concentration sensor 71 similar to the gas concentration sensor 14, and the carbon dioxide concentration and the methane concentration of the first concentration adjusting gas BG1 are The measurement value of the is transmitted to the control unit 61.
  • the control unit 61 calculates the necessary flow rate of the first concentration adjusting gas BG1 taking into consideration the measurement result of the gas concentration sensor 71 as well. Similarly, the condition that the carbon dioxide concentration and the methane concentration of the second concentration adjusting gas BG2 stored in the second container 73 are higher than the set range Wco2 by the predetermined value or more and lower than the set range Wch4 by the predetermined value or more is satisfied. Although the actual concentration is unknown, the second container 73 is provided with a gas concentration sensor 74 similar to the gas concentration sensor 14, and the carbon dioxide concentration and the methane concentration of the second concentration adjusting gas BG2 are The measurement value of the is transmitted to the control unit 61. Then, the control unit 61 calculates the above-mentioned necessary flow rate of the second concentration adjusting gas BG2 in consideration of the measurement result of the gas concentration sensor 74.
  • the CO 2 removing devices 16, 41, 51, 66 include the CO 2 separation membranes 20, 42, 52, 67 of the CO 2 facilitated transport membrane. film but at least any one of the CO 2 removing device 16,41,51,66 is not limited to this configuration, for example, having a CO 2 separation membrane other than CO 2 -facilitated transport membrane It may be a separation type configuration, a configuration employing a chemical absorption method, a PSA device, a TSA device, or the like.
  • the amount of absorption liquid, the amount of circulation of the absorption liquid, and the like can be used as operating conditions that affect the increase and decrease of the carbon dioxide removal rate.
  • the amount of adsorbent, pressure, and the like can be used as operating conditions that affect the increase and decrease of the carbon dioxide removal rate.
  • the amount of adsorbent, temperature, and the like can be used as operating conditions that affect the increase and decrease of the carbon dioxide removal rate.
  • the steam (water vapor) is supplied from the water vapor supply unit 18 to the mixed gas MG, but the mixed gas MG supplied to the fuel gas supply devices 13 and 13a is described. If steam is already contained therein, it is not necessary to supply steam to the mixed gas MG according to the configuration.
  • the CO 2 removing devices 16, 41, 51, 66 include the CO 2 separation membranes 20, 42, 52, 67 of the CO 2 facilitated transport membrane, and the second treatment chamber
  • the sweep gases SG, SG1, SG2 and SG3 are supplied into 22, 44, 45, and 69 to generate a partial pressure difference of CO 2 between the supply side and the permeation side of the CO 2 separation membranes 20, 42, 52, and 67.
  • the second processing chamber 22, 44, of the sweep gas SG, SG1, SG2, SG3 in at least one of the CO 2 removal devices 16, 41, 51, 66 is assumed.
  • the pressure in the first processing chambers 21, 43, 53, 68 of the CO 2 separation membranes 20, 42, 52, 67 is not supplied into the chambers 54, 69, or the second processing chambers 22, 44, 54 and reducing the pressure in 69, CO 2 separation membrane 2 ,
  • a configuration may be adopted by the operation method that causes the CO 2 partial pressure difference between the permeate side and feed side of 42,52,67 (pressurized or vacuum type).
  • a pressure reducing type in which the inside of the second processing chamber 22, 44, 44, 69 is depressurized, it is preferable to install a vacuum pump on the downstream side of the second processing chamber 22, 44, 54, 69.
  • the configuration by the sweep gas method may be combined with the configuration by the pressure type or the pressure reduction type.
  • the configuration by the sweep gas method is not used as the CO 2 removal device 16 and the configuration by the pressurization type or the pressure reduction type is adopted, the flow rate of the sweep gas SG (the sweep gas flow rate is Fs) not included.
  • the use of the mixed gas derived from the biogas obtained by methane fermentation of the organic substance as the mixed gas MG is assumed, but the present invention is not necessarily limited to the mixed gas derived from the biogas It is not a thing.
  • the mixed gas MG is not derived from biogas when it is a mixed gas mainly composed of methane and carbon dioxide and the concentration of methane and / or carbon dioxide can vary depending on the production conditions of the mixed gas, etc. Also, by using the present system 10, 10a, 10b, it is possible to suppress the concentration fluctuation.
  • the first gas supply device 40 and the second gas supply device 50 since the first gas supply device 40 and the second gas supply device 50 respectively generate the first concentration adjustment gas BG1 and the second concentration adjustment gas BG2, CO 2 separation is performed.
  • the case where the device 41 and the CO 2 separation device 51 are separately provided has been described.
  • the CO 2 separation device 41 and the CO 2 separation device 51 do not necessarily need to be separately provided.
  • the first gas supply device 40 and the second gas supply device 50 may be configured to include one CO 2 separation device.
  • the power generation system of the present invention can be used for a power generation system equipped with a gas engine that consumes a fuel gas containing carbon dioxide mainly containing methane and generates kinetic energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Treatment Of Sludge (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

発電システムは、メタンと二酸化炭素を含む混合ガスMGに対して、メタン濃度または二酸化炭素濃度を、ガスエンジン11の燃料ガス中の当該濃度に対する設定範囲内に制御して、燃料ガスとして、ガスエンジン11に供給する燃料ガス供給装置13と、混合ガスMGの二酸化炭素濃度またはメタン濃度を計測するガス濃度センサ14を備える。燃料ガス供給装置13は、混合ガスMG中の二酸化炭素を除去する二酸化炭素除去装置16と、二酸化炭素除去装置16の二酸化炭素除去率の増減に影響する運転条件を制御する運転条件制御装置17を備え、運転条件制御装置17が、ガス濃度センサ14の計測結果に基づいて、二酸化炭素除去装置16の該運転条件を制御することにより、混合ガス中のメタンと二酸化炭素の濃度を制御する。

Description

発電システム
 本発明は、メタンを主成分として二酸化炭素を含む燃料ガスを消費して運動エネルギを発生するガスエンジンと、前記ガスエンジンが発生する前記運動エネルギにより駆動され発電する発電機を備えた発電システムに関し、特に、バイオマスや有機性廃棄物等の有機物のメタン発酵により生成されたバイオガスに由来するメタンと二酸化炭素を主成分とする混合ガスを燃料ガスとして使用する発電システムに関する。
 近年、バイオマスや下水汚泥等の有機性廃棄物のメタン発酵によって得られるバイオガスを新エネルギ源として活用することが注目されている。当該バイオガスは、化石燃料を代替するものとして、発電又はボイラ等の用途で利用されている。
 バイオガスは、メタンと二酸化炭素を主成分とし、メタンガスの製造条件(発酵条件)及び原料種によって、メタン濃度が約50%~75%程度、二酸化炭素濃度が約25%~50%程度の範囲で変動し得る。また、シロキサン、硫化水素等の硫黄化合物を微量に含んでおり、利用時に除去する必要がある。
 一方、バイオガス等のメタンを主成分とする混合ガスを燃料とするガスエンジンとしては、バイオガスを直接燃料として使用することを想定したバイオガスエンジンと、天然ガスを燃料として使用することを想定した天然ガスエンジンがある。天然ガスエンジンの燃料として、バイオガスを使用するためには、メタンの純度を90%程度以上に上げるために、バイオガス中の二酸化炭素濃度を予め低減させておく必要がある。また、バイオガスエンジンの場合、混合ガス中の二酸化炭素濃度を、仕様値として、例えば35%~40%程度に設定し許容している。
 バイオガスエンジンを用いた発電装置として、例えば、下記の特許文献1に、バイオガスをエンジンに供給する圧力に応じて、駆動するガスエンジンの総数及び余剰ガス燃焼装置の駆動を制御するバイオガス発電装置が開示されている。
 また、下記の特許文献2には、バイオガス中の二酸化炭素及び硫化水素を、アルカリ吸収液を用いて吸収分離してバイオガスを精製し、メタン濃度を安定的に90%以上に高めてから、カスエンジンやガスタービンを用いたエンジン式の発電装置、または、燃料電池を用いた燃料電池式の発電装置の燃料として利用する発電システムが開示されている。
特開2010-209706号公報 特開2002-275482号公報
 上述のバイオガス等のメタンを主成分とする混合ガスを燃料とするバイオガスエンジン及び天然ガスエンジン等のガスエンジンでは、メタン濃度の変動は、エンジンの出力変動の要因となるだけではなく、エンジンに大きな負荷が掛かり、エンジンの耐用年数を低下させる要因となる。
 また、二酸化炭素濃度及びメタン濃度が大きく変動するバイオガスに対して、一定の二酸化炭素除去率で二酸化炭素の除去または分離を行っても、得られる混合ガスの二酸化炭素濃度及びメタン濃度は必ずしも安定しておらず、結果として、当該メタン濃度の変動がエンジンの耐用年数を低下させる要因となる。
 本発明は、上述の問題点に鑑みてなされたものであり、その目的は、メタンを主成分として二酸化炭素を含む燃料ガスをエンジンに供給して発電する発電システムにおいて、燃料ガスの二酸化炭素濃度及びメタン濃度の変動を抑制して、エンジンに掛かる負荷を低減して、エンジンの高寿命化が可能な発電システムを提供することにある。
 本発明に係る発電システムは、メタンを主成分として二酸化炭素を含む燃料ガスを消費して運動エネルギを発生するガスエンジンと、前記ガスエンジンが発生する前記運動エネルギにより駆動され発電する発電機を備えた発電システムであって、外部から供給されるメタンと二酸化炭素を主成分とする混合ガスに対して、前記混合ガス中のメタンと二酸化炭素の少なくとも何れか一方の対象成分ガスの濃度を、前記ガスエンジンの前記燃料ガス中の前記対象成分ガスの濃度に対する設定範囲内に制御して、前記燃料ガスとして、前記ガスエンジンに供給する燃料ガス供給装置と、前記混合ガスの二酸化炭素濃度とメタン濃度の少なくとも何れか一方の濃度を計測するガス濃度センサと、を更に備え、
 前記燃料ガス供給装置が、前記混合ガス中の二酸化炭素を除去する二酸化炭素除去装置と、前記二酸化炭素除去装置の二酸化炭素除去率の増減に影響する運転条件を制御する運転条件制御装置を備え、
 前記ガス濃度センサが、前記二酸化炭素除去装置の前段及び後段の少なくとも何れか一方に配置され、
 前記運転条件制御装置が、前記ガス濃度センサの計測結果に基づいて、前記二酸化炭素除去装置の前記運転条件を制御することにより、前記混合ガス中のメタンと二酸化炭素の濃度を制御することを第1の特徴とする。
 上記第1の特徴の発電システムによれば、燃料ガス供給装置に外部から供給される混合ガスのメタン濃度及び二酸化炭素濃度がバイオガスのように大きく変動しても、二酸化炭素除去装置の二酸化炭素除去率を当該濃度変動に応じて増減させる制御が可能であるので、メタン濃度または二酸化炭素濃度が使用するガスエンジンに応じた設定範囲内に制御された混合ガスが、燃料ガスとしてガスエンジンに供給されるため、外部から供給される混合ガスの上記濃度変動が大きくてもガスエンジンに掛かる負荷を大幅に軽減でき、ガスエンジンの長寿命化を図ることができる。例えば、混合ガスが、或る二酸化炭素濃度及びメタン濃度で安定的に供給されており、二酸化炭素除去装置が当該混合ガスに対して或る二酸化炭素除去率で二酸化炭素を除去して、二酸化炭素濃度を低下させ、メタン濃度を高めて、二酸化炭素濃度とメタン濃度の少なくとも何れか一方をガスエンジンの設定範囲に制御して、安定的にガスエンジンの運転を行っている状況において、混合ガスの二酸化炭素濃度が増加し、メタン濃度が低下した場合、運転条件制御装置が、二酸化炭素除去装置の運転条件を制御して、二酸化炭素除去率を増加させることで、混合ガスの二酸化炭素濃度の増加、及び、メタン濃度の低下を抑制することができるため、上述の安定的なガスエンジンの運転を維持することができる。混合ガスの二酸化炭素濃度が低下し、メタン濃度が増加した場合には、運転条件制御装置が、二酸化炭素除去装置の運転条件を制御して、二酸化炭素除去率を低下させることで、同様に、上述の安定的なガスエンジンの運転を維持することができる。
 尚、二酸化炭素濃度が低下または増加すると、メタン濃度は増加または低下する関係にあるので、二酸化炭素とメタンの何れか一方を濃度計測または濃度制御の対象(対象成分ガス)とすれば、他方の濃度計測または濃度制御も可能となる。従って、二酸化炭素とメタンの両方を夫々対象成分ガスとして、各別に濃度計測と濃度制御を行うことは必ずしも必要ではないが、当該両方を夫々対象成分ガスとして、各別に濃度計測と濃度制御を行ってもよい。
 また、ガス濃度センサが二酸化炭素濃度とメタン濃度の少なくとも何れか一方の濃度を計測する対象となる混合ガスは、燃料ガス供給装置において、対象成分ガスの濃度が設定範囲内に制御される前後何れか一方、または、前後両方の混合ガスであってもよい。
 更に、本発明に係る発電システムは、上記第1の特徴に加えて、前記二酸化炭素除去装置が、前記混合ガス中に含まれる二酸化炭素をメタンに対して選択的に分離する二酸化炭素分離膜と、前記二酸化炭素分離膜によって隔てられた第1処理室と第2処理室を備えて構成され、
 前記第1処理室に、前記混合ガスを前記第1処理室内に受け入れる第1受入口と、前記対象成分ガスの濃度が制御された前記第1処理室内の前記混合ガスを前記燃料ガスとして排出する第1排出口が設けられ、
 前記第2処理室に、前記二酸化炭素分離膜を介して前記第1処理室から前記第2処理室へ透過したガスを排出する第2排出口が設けられ、
 前記運転条件制御装置が、前記二酸化炭素分離膜の二酸化炭素除去率の増減に影響する運転条件として、前記第1処理室内に供給される前記混合ガスの流量、前記第1処理室内の圧力、前記第2処理室内の圧力、前記二酸化炭素分離膜の周囲温度、及び、前記二酸化炭素分離膜の膜面積を含む制御対象運転条件候補の内の少なくとも1つを、前記ガス濃度センサの計測結果に基づいて制御することを第2の特徴とする。
 更に、本発明に係る発電システムは、上記第2の特徴に加えて、前記第2処理室が、スイープガスを前記第2処理室内に受け入れる第2受入口を有し、前記二酸化炭素分離膜を介して前記第1処理室から前記第2処理室へ透過したガスと前記スイープガスが前記第2排出口から排出されるように構成され、前記制御対象運転条件候補に、前記第2処理室内に供給される前記スイープガスの流量が含まれていることを第3の特徴とする。
 上記第2または第3の特徴の発電システムによれば、運転条件制御装置が二酸化炭素除去装置の運転条件を制御して行う二酸化炭素除去率の増減は、二酸化炭素分離膜の上記した複数の運転条件の中から、二酸化炭素濃度とメタン濃度の変動の程度に応じて、1つまたは2つ以上を組み合わせて使用することができ、より精度の高い二酸化炭素濃度とメタン濃度の制御が可能となる。
 更に、本発明に係る発電システムは、上記第2または第3の特徴に加えて、前記二酸化炭素分離膜が、メタンと反応せずに二酸化炭素と選択的に反応する二酸化炭素キャリアが添加された促進輸送膜であり、前記制御対象運転条件候補に、前記第1処理室内の相対湿度及び前記第2処理室内の相対湿度の少なくとも何れか一方の増減に影響する1以上の運転条件が含まれていることを第4の特徴とする。
 ここで、「二酸化炭素キャリア」とは、当該キャリアを構成する物質が膜内に含有されることで、促進輸送機構によって、二酸化炭素の膜透過速度が促進されるという効果を有する物質である。
 上記第4の特徴の発電システムによれば、促進輸送膜中の二酸化炭素キャリアが、混合ガス中の二酸化炭素に対して選択的に反応し、メタンに対して二酸化炭素を選択的に分離するため、メタンと二酸化炭素の効率的な分離が可能となる。つまり、効率的に、混合ガスの二酸化炭素濃度を低下させ、メタン濃度を増加させることが、可能となる。また、促進輸送膜では、二酸化炭素とキャリアの反応時に発生するエネルギはキャリアが二酸化炭素を放出するためのエネルギに利用されるため、外部からエネルギを供給する必要がなく、本質的に省エネルギであるので、混合ガス中のメタンと二酸化炭素に対する濃度制御の省エネルギ化が図れる。更に、二酸化炭素分離膜は、促進輸送膜の場合は特に、小さい膜面積で効率的な二酸化炭素の分離が可能であるため、他の二酸化炭素除去装置に比べて、装置の小型化が可能であり、結果として、発電システム全体の小型化が可能となる。
 更に、上記第4の特徴の発電システムは、前記第1処理室内に供給される前記混合ガス、及び、前記第2処理室内に供給される前記スイープガスの少なくとも何れか一方に水蒸気が含まれていることが好ましい。但し、前記スイープガスに水蒸気が含まれている場合は、上記第3の特徴を有する場合に限る。これにより、二酸化炭素の促進輸送機構に必要な水分が膜中に確保されるため、促進輸送膜としての本来の性能が発揮される。
 更に、本発明に係る発電システムは、上記第4の特徴に加えて、前記第1処理室内に供給される前記混合ガス、及び、前記第2処理室内に供給される前記スイープガスの少なくとも何れか一方の対象ガスに水蒸気を供給する水蒸気供給部を備えることを第5の特徴とする。但し、前記対象ガスが前記スイープガスを含む場合は、上記第3の特徴を有する場合に限る。
 上記第5の特徴の発電システムによれば、二酸化炭素の促進輸送機構に必要な水分が膜中に確保されるため、促進輸送膜としての本来の性能が発揮される。
 更に、上記第5の特徴の発電システムは、前記運転条件制御装置が、前記対象ガスに対する前記水蒸気供給部からの水蒸気添加量を、前記制御対象運転条件候補の1つとして制御することが好ましい。これにより、前記対象ガスの相対湿度の制御が容易に行える。
 更に、上記第5の特徴の発電システムは、前記水蒸気供給部は、前記ガスエンジンから排出される高温の排出ガスとの熱交換により水を加熱して生成された水蒸気を、前記対象ガスに供給すること、または、前記水蒸気供給部は、前記ガスエンジンから排出される排出ガスに含まれる水蒸気を、前記対象ガスに供給することが好ましい。これにより、排出ガス中の廃熱または廃水蒸気の有効利用が図れ、発電システム全体での省エネルギ化が一層図れる。
 更に、本発明に係る発電システムは、上記第4または第5の特徴に加えて、前記混合ガスが、有機物のメタン発酵により生成されたバイオガスに由来するガスを含み、前記混合ガス中に含まれる硫黄成分を除去する超高次脱硫触媒を用いた脱硫装置を備えることを第6の特徴とする。
 上記第6の特徴の発電システムによれば、混合ガス中に含まれる硫黄成分が二酸化炭素キャリアに及ぼす影響を予め排除できるため、促進輸送膜としての本来の性能が維持される。
 更に、本発明に係る発電システムは、上記何れかの特徴に加えて、前記燃料ガス供給装置が、前記対象成分ガスが二酸化炭素の場合は前記設定範囲より前記対象成分ガスの濃度の低い、または、前記対象成分ガスがメタンの場合は前記設定範囲より前記対象成分ガスの濃度の高い、メタンを主成分とする第1濃度調整ガスを前記混合ガスに供給する第1ガス供給装置を備え、
 前記第1ガス供給装置が、前記ガス濃度センサの計測結果に基づいて、前記対象成分ガスが二酸化炭素で、前記混合ガスの前記対象成分ガスの濃度が前記設定範囲より高い場合、または、前記対象成分ガスがメタンで、前記混合ガスの前記対象成分ガスの濃度が前記設定範囲より低い場合に、前記混合ガスに前記第1濃度調整ガスを供給して、前記混合ガス中のメタンと二酸化炭素の濃度を制御することを第7の特徴とする。
 上記第7の特徴の発電システムによれば、混合ガスのメタン濃度の低下及び二酸化炭素濃度の増加の変動幅が大きい場合、または、当該変動が急激に発生した場合等において、運転条件制御装置による二酸化炭素除去装置の運転条件の制御だけでは、当該濃度変動に対して十分に対応できず、二酸化炭素濃度またはメタン濃度を設定範囲内に制御困難な場合、更には、運転条件制御装置または二酸化炭素除去装置が何らかの理由で機能しない場合であっても、第1濃度調整ガスを混合ガスに供給することで、直接的に、メタン濃度の低下及び二酸化炭素濃度の増加を抑制することが可能となり、二酸化炭素濃度またはメタン濃度を設定範囲内に制御することが可能となる。
 更に、上記第7の特徴の発電システムは、前記第1ガス供給装置が、前記混合ガス中に含まれる二酸化炭素をメタンに対して選択的に分離する第2の二酸化炭素除去装置と、前記第2の二酸化炭素除去装置を用いて前記混合ガスから二酸化炭素を分離して予め準備した前記第1濃度調整ガスを貯蔵する第1容器と、を備えていることが好ましい。これにより、第1濃度調整ガスを、燃料ガス供給装置に外部から供給する混合ガスを用いて予め準備しておけるので、第1濃度調整ガス用に別途天然ガス等の高純度のメタンガスを準備する必要がない。
 更に、本発明に係る発電システムは、上記何れかの特徴に加えて、前記燃料ガス供給装置が、前記対象成分ガスが二酸化炭素の場合は前記設定範囲より前記対象成分ガスの濃度の高い、または、前記対象成分ガスがメタンの場合は前記設定範囲より前記対象成分ガスの濃度の低い、二酸化炭素またはメタンと二酸化炭素を主成分とする第2濃度調整ガスを前記混合ガスに供給する第2ガス供給装置を備え、
 前記第2ガス供給装置が、前記ガス濃度センサの計測結果に基づいて、前記対象成分ガスが二酸化炭素で、前記混合ガスの前記対象成分ガスの濃度が前記設定範囲より低い場合、または、前記対象成分ガスがメタンで、前記混合ガスの前記対象成分ガスの濃度が前記設定範囲より高い場合に、前記混合ガスに前記第2濃度調整ガスを供給することを第8の特徴とする。
 上記第8の特徴の発電システムによれば、混合ガスのメタン濃度の増加及び二酸化炭素濃度の低下の変動幅が大きい場合、または、当該変動が急激に発生した場合等において、運転条件制御装置による二酸化炭素除去装置の運転条件の制御だけでは、当該濃度変動に対して十分に対応できず、二酸化炭素濃度またはメタン濃度を設定範囲内に制御困難な場合、更には、運転条件制御装置または二酸化炭素除去装置が何らかの理由で機能しない場合であっても、第2濃度調整ガスを混合ガスに供給することで、直接的に、メタン濃度の増加及び二酸化炭素濃度の低下を抑制することが可能となり、二酸化炭素濃度またはメタン濃度を設定範囲内に制御することが可能となる。
 更に、上記第8の特徴の発電システムは、前記第2ガス供給装置が、前記第2濃度調整ガスを貯蔵する第2容器を備え、前記第2濃度調整ガスが、前記二酸化炭素除去装置によって前記混合ガスから除去された二酸化炭素を含むことが好ましい。これにより、二酸化炭素除去装置によって混合ガスから除去された二酸化炭素の再利用が図れ、第2濃度調整ガス用に、別途、二酸化炭素を準備する必要がない。また、二酸化炭素除去装置によって混合ガスから除去された二酸化炭素に、混合ガス中に含まれていたメタンが一部含まれている場合は、当該メタンの有効利用も図れる。
 本発明に係る発電システムは、メタンを主成分として二酸化炭素を含む燃料ガスを消費して運動エネルギを発生するガスエンジンと、前記ガスエンジンが発生する前記運動エネルギにより駆動され発電する発電機を備えた発電システムであって、外部から供給されるメタンと二酸化炭素を主成分とする混合ガスに対して、前記混合ガス中のメタンと二酸化炭素の少なくとも何れか一方の対象成分ガスの濃度を、前記ガスエンジンの前記燃料ガス中の前記対象成分ガスの濃度に対する設定範囲内に制御して、前記燃料ガスとして、前記ガスエンジンに供給する燃料ガス供給装置と、前記混合ガスの二酸化炭素濃度とメタン濃度の少なくとも何れか一方の濃度を計測するガス濃度センサと、を更に備え、
 前記燃料ガス供給装置が、前記対象成分ガスが二酸化炭素の場合は前記設定範囲より前記対象成分ガスの濃度の低い、または、前記対象成分ガスがメタンの場合は前記設定範囲より前記対象成分ガスの濃度の高い、メタンを主成分とする第1濃度調整ガスを前記混合ガスに供給する第1ガス供給装置と、前記対象成分ガスが二酸化炭素の場合は前記設定範囲より前記対象成分ガスの濃度の高い、または、前記対象成分ガスがメタンの場合は前記設定範囲より前記対象成分ガスの濃度の低い、二酸化炭素またはメタンと二酸化炭素を主成分とする第2濃度調整ガスを前記混合ガスに供給する第2ガス供給装置と、を備え、
 前記第1ガス供給装置が、前記ガス濃度センサの計測結果に基づいて、前記対象成分ガスが二酸化炭素で、前記混合ガスの前記対象成分ガスの濃度が前記設定範囲より高い場合、または、前記対象成分ガスがメタンで、前記混合ガスの前記対象成分ガスの濃度が前記設定範囲より低い場合に、前記混合ガスに前記第1濃度調整ガスを供給して、前記混合ガス中のメタンと二酸化炭素の濃度を制御し、
 前記第2ガス供給装置が、前記ガス濃度センサの計測結果に基づいて、前記対象成分ガスが二酸化炭素で、前記混合ガスの前記対象成分ガスの濃度が前記設定範囲より低い場合、または、前記対象成分ガスがメタンで、前記混合ガスの前記対象成分ガスの濃度が前記設定範囲より高い場合に、前記混合ガスに前記第2濃度調整ガスを供給して、前記混合ガス中のメタンと二酸化炭素の濃度を制御することを第9の特徴とする。
 上記第9の特徴の発電システムによれば、燃料ガス供給装置に外部から供給される混合ガスのメタン濃度及び二酸化炭素濃度がバイオガスのように大きく変動しても、当該濃度変動に応じて、第1濃度調整ガスと第2濃度調整ガスの何れか一方を混合ガスに供給して、混合ガス中のメタンと二酸化炭素の濃度を制御することが可能であるので、メタン濃度または二酸化炭素濃度が使用するガスエンジンに応じた設定範囲内に制御された混合ガスが、燃料ガスとしてガスエンジンに供給されるため、外部から供給される混合ガスの上記濃度変動が大きくてもガスエンジンに掛かる負荷を大幅に軽減でき、ガスエンジンの長寿命化を図ることができる。例えば、混合ガスが、或る二酸化炭素濃度及びメタン濃度で安定的に供給され、ガスエンジンが安定して運転している状況において、混合ガスの二酸化炭素濃度が増加し、メタン濃度が低下した場合、第1ガス供給装置が、混合ガスに第1濃度調整ガスを供給して、混合ガスの二酸化炭素濃度の増加、及び、メタン濃度の低下を抑制することができるため、上述の安定したガスエンジンの運転を維持することができる。混合ガスの二酸化炭素濃度が低下し、メタン濃度が増加した場合には、第2ガス供給装置が、混合ガスに第2濃度調整ガスを供給して、混合ガスの二酸化炭素濃度の低下、及び、メタン濃度の増加を抑制することができるため、同様に、上述の安定したガスエンジンの運転を維持することができる。
 更に、上記第9の特徴の発電システムは、前記燃料ガス供給装置が、前記混合ガス中に含まれる二酸化炭素をメタンに対して選択的に分離する二酸化炭素除去装置と、前記二酸化炭素除去装置を用いて前記混合ガスから二酸化炭素を分離して予め準備した前記第1濃度調整ガスと前記第2濃度調整ガスを各別に貯蔵する第1容器と第2容器を備えていることが好ましい。これにより、二酸化炭素除去装置に混合ガスが供給されると、当該混合ガスの二酸化炭素濃度が低下し、メタン濃度が増加するため、第1濃度調整ガスを準備することができ、二酸化炭素除去装置で分離された二酸化炭素を回収することで、第2濃度調整ガスを準備することができ、これらの予め準備された第1濃度調整ガスと第2濃度調整ガスを各別に第1容器と第2容器に貯蔵することができ、第1ガス供給装置と第2ガス供給装置の利用に供することができる。
 更に、上記何れかの特徴の発電システムは、前記混合ガスが、有機物のメタン発酵により生成されたバイオガスに由来するガスを含むことが好ましい。これにより、バイオガスを利用した高耐用年数の発電システムが実現できる。
 本発明に係る発電システムによれば、メタンを主成分として二酸化炭素を含む燃料ガスをエンジンに供給して発電する発電システムにおいて、燃料ガスの二酸化炭素濃度及びメタン濃度の変動を抑制して、安定したガスエンジンの運転を維持することができ、高耐用年数の発電システムが実現できる。
第1及び第2実施形態に係る発電システムの概略の構成例を模式的に示すブロック図。 第1~第3実施形態で使用するCO分離膜を備えたCO除去装置の概略の構造を模式的に示す断面図 第1実施形態に係る燃料ガス供給装置、運転条件制御装置、及び、水蒸気供給部の構成例を模式的に示すブロック図。 水蒸気供給部の別の構成例を模式的に示すブロック図。 CO除去装置のCO回収率及び燃料ガスのCH純度と、供給ガス流量Ffとの間の関係をシミュレーションした結果を示すグラフ。 CO除去装置のCO回収率及び燃料ガスのCH純度と、供給側圧力Pfとの間の関係をシミュレーションした結果を示すグラフ。 CO除去装置のCO回収率及び燃料ガスのCH純度と、透過側圧力Psとの間の関係をシミュレーションした結果を示すグラフ。 CO除去装置のCO回収率及び燃料ガスのCH純度と、スイープガス流量Fsとの間の関係をシミュレーションした結果を示すグラフ。 CO除去装置のCO回収率及び燃料ガスのCH純度と、周囲温度Taとの間の関係をシミュレーションした結果を示すグラフ。 CO除去装置のCO回収率及び燃料ガスのCH純度と、膜面積Smとの間の関係をシミュレーションした結果を示すグラフ。 図5~図10に示す各シミュレーション結果を得るために使用した条件を示す一覧表。 第2実施形態に係る燃料ガス供給装置、及び、運転条件制御装置の構成例を模式的に示すブロック図。 第2実施形態に係る第1ガス供給装置の構成例を模式的に示すブロック図。 第2実施形態に係る第2ガス供給装置の構成例を模式的に示すブロック図。 第2実施形態に係る燃料ガス供給装置、及び、運転条件制御装置の別の構成例を模式的に示すブロック図。 第2実施形態に係る第1ガス供給装置の別の構成例を模式的に示すブロック図。 第3実施形態に係る発電システムの概略の構成例を模式的に示すブロック図。 第3実施形態に係る燃料ガス供給装置の構成例を模式的に示すブロック図。
 以下、本発明の幾つかの実施形態に係る発電システム(以下、適宜、「本システム」と称す。)について、図面を参照して説明する。
 [第1実施形態]
 最初に、第1実施形態に係る本システムの概略構成について図面を参照して説明する。図1は、本システム10の概略の構成例を模式的に示すブロック図である。
 図1に示すように、本システム10は、ガスエンジン11、発電機12、燃料ガス供給装置13、及び、ガス濃度センサ14を備えて構成される。本実施形態では、図1に示すように、ガスエンジン11と発電機12は、夫々1台ずつを備える場合を想定しているが、1台の燃料ガス供給装置13に対して、複数のガスエンジン11、或いは、複数組のガスエンジン11と発電機12を備える構成であってもよい。尚、図1中の矢印は、ガスが流れる流路及び向きを簡略化して示したものである。また、ガス流路において必要となる3方弁や混合弁等の記載は割愛している。これらは、以降で説明する本システムの各要部構成図についても同様とする。また、各要部構成図において、同一の構成要素については、同一の符号を付すこととし、その説明を省略することがある。
 ガスエンジン11は、バイオガス或いは天然ガス等のメタンを主成分として二酸化炭素を含む燃料ガスFGを空気と混合して燃焼室内で燃焼させ、当該燃料ガスFGの燃焼反応により発生した熱エネルギを運動エネルギに変換して出力するバイオガスエンジン或いは天然ガスエンジン等である。ガスエンジン11の運転制御(例えば、燃料ガスFGの供給量と供給タイミング、点火タイミング、スロットルの開度(空気の供給量)、バルブタイミング(吸気バルブと排気バルブの開閉タイミング)等の制御)を行うエンジン制御ユニットは、ガスエンジン11の一部として付属しており、図1では、図示を省略している。また、エンジン制御ユニットを含むガスエンジン11に運転に必要な電力を供給する補助電源(蓄電池等)も図示を省略している。
 発電機12は、回転子と固定子を備えた同期発電機または誘導発電機等の交流発電機を用いて構成され、ガスエンジン11から供給される運動エネルギを電気エネルギに変換して交流電力を出力する。交流発電機の構造及び形式は、特定の構造及び形式に限定されるものではない。発電機12から出力される交流電力は、必要に応じて、インバータ装置15に出力され、インバータ装置15において、発電機12から出力される1次交流電力が一旦直流電力に変換された後、所望の周波数、電圧、形式(単相または3相)の2次交流電力に変換され、所定の電力負荷に供給され、また、必要に応じて系統連系される。インバータ装置15は、必ずしも、本システム10の構成要素ではないが、本システム10の一部としてもよい。
 燃料ガス供給装置13は、外部から供給されたメタンと二酸化炭素を主成分とする混合ガスMGに対して、混合ガスMG中のメタンと二酸化炭素の少なくとも何れか一方の対象成分ガスの濃度(ドライベース)を、ガスエンジン11の燃料ガスFG中の対象成分ガスの濃度(ドライベース)に対する設定範囲内に制御して、燃料ガスFGとしてガスエンジン11に供給する装置である。本実施形態では、混合ガスMGとして、バイオマスや下水汚泥等の有機性廃棄物のメタン発酵によって得られるバイオガスに由来する混合ガスの使用を想定する。尚、バイオガス由来の混合ガスMGは、バイオガス由来の成分のうち、硫化水素、シロキサン等の不純物は、既存の脱硫装置、活性炭吸着方式のシロキサン除去装置等の不純物除去装置(不図示)を用いて、燃料ガス供給装置13に供給される前に予め取り除かれている。以下、特に断らない限り、各実施形態の説明において、混合ガスMG及び燃料ガスFG等の二酸化炭素濃度及びメタン濃度はドライベースの濃度である。
 脱硫装置としては吸収液を用いた湿式脱硫法や酸化亜鉛や酸化鉄等の硫黄吸着材を用いた吸着脱硫方式が使用できる。また、銅亜鉛系の超高次脱硫触媒を用いればppbレベル以下まで完全に硫黄を除去することができる。特に、後述するCO分離膜20に促進輸送膜を用いる場合、促進輸送膜は用いるキャリアの種類やその濃度によっては、硫化水素の影響を受けることがあるため、超高次脱硫触媒を用いるのが好ましい。
 混合ガスMGは、バイオガスの製造設備から、パイプライン及び上記不純物除去装置等を介して、燃料ガス供給装置13に直接供給される構成、或いは、バイオガスをバイオガスの製造設備から貯蔵タンクに一時的に貯蔵した後、パイプライン及び上記不純物除去装置等を介して、燃料ガス供給装置13に供給される構成等、種々の供給態様が利用できる。
 更に、燃料ガス供給装置13は、混合ガスMG中の二酸化炭素を除去するCO除去装置16と、CO除去装置16の二酸化炭素除去率の増減に影響する運転条件を制御する運転条件制御装置17を備える。
 CO除去装置16は、膜分離法、化学吸収法、圧力スイング吸着(PSA:PressureSwing Adsorption)法、熱スイング吸着(TSA:Temperature Swing Adsorption)法、等の種々のガス分離方式によるものが利用可能であるが、本実施形態では、膜分離法によるCO分離膜20を備えて構成される。
 具体的には、CO除去装置16は、図2(A)及び(B)に示すように、CO分離膜20と、CO分離膜20によって隔てられた第1処理室21と第2処理室22を備えて構成される。第1処理室21には、混合ガスMGを第1処理室21内に受け入れる第1受入口21aと、第1処理室21内で混合ガスMG中の上記対象成分ガス(メタンまたは二酸化炭素)の濃度が後述する要領で上記設定範囲(メタン濃度の設定範囲Wch4、または、二酸化炭素濃度の設定範囲Wco2)内に制御された混合ガスを、燃料ガスFGとして、第1処理室21外に排出する第1排出口21bが設けられている。また、第2処理室22には、スイープガスSGを第2処理室22内に受け入れる第2受入口22aと、CO分離膜20を介して第1処理室21から第2処理室22へ透過した混合ガスMGの一部とスイープガスSGの混合ガスEGを排出する第2排出口22bが設けられている。尚、図2(A)は、CO分離膜20が平板状の場合について、CO除去装置16の概略構造を夫々模式的に示した2種類の断面図である。図2(A)の各断面図の断面は、CO分離膜20に直交し、互いに直交する。図2(B)は、CO分離膜20が円筒形状の場合について、CO除去装置16の概略構造を夫々模式的に示した2種類の断面図である。図2(A)の各断面図の断面は、円筒形状のCO分離膜20に軸心を通る断面と、当該軸心と直交する断面である。よって、図2(A)及び(B)の各部の寸法比は、必ずしも、実際のCO除去装置16の各部の寸法比とは一致していない。尚、図2(A)及び(B)中の矢印は、各部のガスの流れる方向を模式的に示したものである。
 メタン濃度の設定範囲Wch4として、ガスエンジン11がバイオガスエンジンの場合は、例えば、65%±5%または70%±5%等が想定され、ガスエンジン11が天然ガスエンジンの場合は、例えば、80%±5%または85%±5%等が想定される。また、二酸化炭素濃度の設定範囲Wco2として、ガスエンジン11がバイオガスエンジンの場合は、例えば、35%±5%または30%±5%等が想定され、ガスエンジン11が天然ガスエンジンの場合は、例えば、20%±5%または15%±5%等が想定される。但し、メタン濃度の設定範囲Wch4と二酸化炭素濃度の設定範囲Wco2の両方を設定する場合には、メタン濃度が設定範囲Wch4内にある場合は、二酸化炭素濃度も設定範囲Wco2内となるように設定する必要がある。
 CO分離膜20として、本実施形態では、メタンとは反応せずに二酸化炭素と選択的に反応する周知のCOキャリアがゲル膜中に添加されたCO促進輸送膜を使用する。CO促進輸送膜では、二酸化炭素は溶解・拡散機構による物理透過に加えて、COキャリアとの反応生成物としても透過するため透過速度が促進される。一方、COキャリアと反応しないメタン、窒素、水素等のガスは溶解・拡散機構のみでしか透過しないため、これらのガスに対する二酸化炭素の分離係数は極めて大きい。アルゴン、ヘリウムのような不活性ガスについても同様であり、COキャリアと反応しないため、二酸化炭素と比較した透過性は極めて小さい。更に、二酸化炭素とCOキャリアの反応時に発生するエネルギはCOキャリアが二酸化炭素を放出するためのエネルギに利用されるため、外部からエネルギを供給する必要がなく、本質的に省エネルギプロセスとなる。
 COキャリアとしては、例えば、炭酸セシウム若しくは重炭酸セシウム、又は、炭酸ルビジウム若しくは重炭酸ルビジウム等のアルカリ金属の炭酸化物又は重炭酸化物が挙げられる。同様に、水酸化セシウム又は水酸化ルビジウム等のアルカリ金属の水酸化物も、二酸化炭素と反応して炭酸化物や重炭酸化物が生成されるため、等価物と言える。他には、2,3‐ジアミノプロピオン酸塩(DAPA)、グリシンといったアミノ酸が、高いCO選択透過性能を示すことが知られている。
 また、CO促進輸送膜は、上記COキャリアをゲル膜内に含んで構成されたゲル層を、親水性または疎水性の多孔膜に担持させて構成することができる。ゲル膜を構成する膜材料としては、例として、ポリビニルアルコール(PVA)膜、ポリアクリル酸(PAA)膜、ポリビニルアルコール-ポリアクリル酸(PVA/PAA)塩共重合体膜、等が挙げられる。当該構成のCO促進輸送膜は、高いCO選択透過性能を示すことが知られている(例えば、特許4621295号、特開2008-036463号、特開2013-049048号等の特許公報、公開特許公報を参照)。
 但し、CO促進輸送膜は、膜内に水分が無い場合には二酸化炭素の透過速度は非常に小さく、高い透過速度を得るには膜内の水分が不可欠となる。このため、ゲル膜は、ハイドロゲル膜であることが好ましい。ゲル膜を保水性の高いハイドロゲル膜で構成することにより、ゲル膜内の水分が少なくなる環境下(例えば、100℃以上の高温)においても、可能な限り膜内に水分を保持することが可能となり、高いCOパーミアンスを実現できる。上述の例において、ポリビニルアルコール-ポリアクリル酸(PVA/PAA)塩共重合体膜及びポリアクリル酸膜は、ハイドロゲル膜である。尚、ハイドロゲルは、親水性ポリマーが化学架橋または物理架橋により架橋することで形成された三次元網目構造物であり、水を吸収することで膨潤する性質を有する。
 本実施形態では、CO分離膜20としてCO促進輸送膜を使用するため、上述のようにゲル膜内に必要な水分の供給を行う。このため、CO除去装置16は、混合ガスMGとスイープガスSGの両方にスチーム(水蒸気)を供給する水蒸気供給部18を備える。水蒸気供給部18は、内部でスチームを生成するか、或いは、外部からスチームの供給を受けて、図3に示すように、第1受入口21aに接続する第1供給管23aと、第2受入口22aに接続する第2供給管24aに、上記スチームを各別に供給する。これにより、混合ガスMGとスイープガスSGの各相対湿度を、任意の所定値に各別に設定することができる。尚、水蒸気供給部18が内部でスチームを生成する場合、ガスエンジン11から排出される高温の排出ガスとの熱交換により水を加熱して当該スチームを生成してもよい。これにより、当該排出ガスの廃熱を有効に利用することができる。
 更に、本実施形態では、水蒸気供給部18から混合ガスMGにスチームが添加されるため、第1排出口21bから排出された直後の燃料ガスFG中にもスチーム(水蒸気)が含まれている。燃料ガスFGをガスエンジン11に供給する前に、当該スチームを燃料ガスFGから除去する処理を行うために、本実施形態では、第1排出口21bに接続する第1排気管23bに水蒸気除去部19を設置している。
 水蒸気除去部19は、凝縮器を用いるものや、パーフルオロ系膜(またはパーフルオロスルホン酸系膜)等の水蒸気透過膜を用いる公知の構成が利用可能である。例えば、水蒸気透過膜を用いる場合、スチームは冷却された液体状態の水ではなく、気体状態で(潜熱を有した状態で)回収されるため、除去されたスチームの少なくとも一部をそのまま水蒸気供給部18に戻し、混合ガスMGとスイープガスSGに混合するスチームとして再利用することができる(図3参照)。水蒸気透過膜として、上記の促進輸送膜を用いることも可能である。この場合、促進輸送膜は、CO分離膜20と異なる材料で構成しても、同じ材料で構成してもよい。促進輸送膜を用いた水蒸気選択透過膜の例が、国際公開第2012/014900号に開示されている。
 更に、図4に示すように、ガスエンジン11から排出される排出ガスXGの流路上に、水蒸気分離部18aを設け、排出ガスXGに含まれる水蒸気を分離するようにしてもよい。分離された水蒸気は、水蒸気供給部18に供給され、混合ガスMG及びスイープガスSGに添加することができる。水蒸気分離部18aは、上述の水蒸気除去部19と同様、水蒸気透過膜を用いる公知の構成が利用可能である。さらに、水蒸気分離部18aに、促進輸送膜を用いることもできる。
 CO促進輸送膜は、図2(A)及び(B)に示すように、平板状または筒状(例えば、円筒状)等、種々の形状が考えられる。例えば、CO促進輸送膜が、円筒形状の多孔質支持体の外周側面または内周側面にCOキャリアを含んだゲル膜を形成して構成される場合は、当該円筒状のCO促進輸送膜の内側に、第1処理室21と第2処理室22の一方が形成され、その外側に、第1処理室21と第2処理室22の他方が形成される。更に、CO除去装置16の処理能力を高めるために、CO促進輸送膜の膜面積を増大する必要がある場合には、平板状または筒状のCO促進輸送膜の個数を増やして、1つの筐体内に複数のCO促進輸送膜を設け、第1処理室21と第2処理室22の少なくとも一方を複数形成して、複数の第1処理室21を相互に連通させ、または、複数の第2処理室22を相互に連通させて、または、その両方を行い、膜面積の増大を図るようにしてもよい。
 運転条件制御装置17は、本実施形態では、CO除去装置16の二酸化炭素除去率の増減に影響する運転条件、つまり、CO分離膜(CO促進輸送膜)20の二酸化炭素除去率の増減に影響する運転条件として、第1処理室21内に供給される混合ガスMGの流量(供給ガス流量Ff)、第1処理室21内の圧力(供給側圧力Pf)、第2処理室22内の圧力(透過側圧力Ps)、第2処理室22内に供給されるスイープガスSGの流量(スイープガス流量Fs)、CO分離膜20の周囲温度Ta、CO分離膜20の膜面積Smを含む制御対象運転条件候補の内の少なくとも1つを、後述するガス濃度センサ14の計測結果に基づいて制御する。運転条件制御装置17は、上記制御対象運転条件候補に含まれる運転条件の少なくとも1つを制御することで、CO除去装置16の二酸化炭素除去率を増加または低下させ、その結果として、燃料ガスFGのメタン濃度または二酸化炭素濃度を、上記設定範囲Wch4または設定範囲Wco2内に維持する制御を行う。
 ガス濃度センサ14は、図1及び図3に示すように、第1受入口21aに接続する第1供給管23a、つまり、CO除去装置16の前段に設置された、混合ガスMGのメタン濃度(ドライベース)と二酸化炭素濃度(ドライベース)の少なくとも何れか一方の濃度を測定するガスセンサである。本実施形態では、混合ガスMGはバイオガス由来であるので、ドライベースで、メタン濃度は、爆発上限界濃度(15vol%)を超える約50%~75%程度の範囲で変動し、二酸化炭素濃度は、約25%~50%程度の範囲で変動する可能性があるので、ガス濃度センサ14は、対象成分ガスがメタンと二酸化炭素の何れであっても、上記変動範囲をカバーする高濃度測定可能な周知のガスセンサを使用する。また、ガス濃度センサ14は、CO除去装置16の後段に設置してもよい。この場合、CO除去装置16を通過後の混合ガス(燃料ガスFG)のメタン濃度は、上記設定範囲Wch4内に制御され、二酸化炭素濃度は、上記設定範囲Wco2内に制御されるため、ガス濃度センサ14は、対象成分ガスがメタンと二酸化炭素の何れであっても、上記設定範囲をカバーする高濃度測定可能な周知のガスセンサを使用する。尚、対象成分ガスがメタンと二酸化炭素の何れであっても、バイオガス由来の混合ガスMGでは、メタンと二酸化炭素の濃度変動が主として起こり、一方が増加すると、その分他方が低下する関係にあると、ガス濃度センサ14は、メタン濃度と二酸化炭素濃度の一方だけを測定して、他方を一方の測定結果から導出するようにしてもよい。以下の説明では、メタン濃度と二酸化炭素濃度の一方の測定結果から他方を導出する場合も含め、「測定等」と総称する。
 運転条件制御装置17は、図3に示すように、上記運転条件として供給ガス流量Ffを使用する場合には、第1受入口21aに接続する第1供給管23aに、混合ガスMGの流量を制御するマスフローコントローラ25を介装し、上記運転条件として供給側圧力Pfを使用する場合には、第1排出口21bに接続する第1排気管23bに背圧弁26を介装し、背圧弁26の上流側に圧力計27を設け、上記運転条件としてスイープガス流量Fsを使用する場合には、第2受入口22aに接続する第2供給管24aに、スイープガスSGの流量を制御するマスフローコントローラ28を介装し、上記運転条件として透過側圧力Psを使用する場合には、第2排出口22bに接続する第2排気管24bに背圧弁29を介装し、背圧弁29の上流側に圧力計30を設け、更に、マスフローコントローラ25及び28、背圧弁26及び29等を制御する制御部17aを備えて、上記各運転条件を制御可能な構成とする。尚、マスフローコントローラ25及び28は、マスフローメータとしても機能するので、マスフローコントローラ25及び28による供給ガス流量Ff及びスイープガス流量Fsの制御状態は、自ら確認できる。また、圧力計27は、背圧弁26による供給側圧力Pfの制御状態を確認するためのもので、圧力計30は、背圧弁29による透過側圧力Psの制御状態を確認するためのものである。従って、供給ガス流量Ff、供給側圧力Pf、スイープガス流量Fs、透過側圧力Psの内の何れの運転条件を制御対象として使用するかに応じて、マスフローコントローラ25、背圧弁26と圧力計27、マスフローコントローラ28、及び、背圧弁29と圧力計30の内の必要な組み合わせを上記所定箇所に設置する。制御部17aは、マイクロコンピュータ、プログラマブルロジック等を備えて構成されたディジタル信号またはアナログ信号等を処理可能な制御装置である。
 運転条件制御装置17は、更に、上記運転条件としてCO分離膜20の周囲温度Taを使用する場合には、運転条件制御装置17を、例えば、恒温槽内に設置し、上記運転条件としてCO分離膜20の膜面積Smを使用する場合には、CO分離膜20を複数の膜ユニットに分割し、各膜ユニットに夫々第1処理室21と第2処理室22を設けて、混合ガスMGを供給する膜ユニットの個数を増減可能に構成し、上記周囲温度Ta及び膜面積Smの各運転条件を制御部17aから制御可能な構成とする。
 次に、上記各運転条件が実際に二酸化炭素除去率の増減を制御可能であることを示すシミュレーション結果を、運転条件別に、図5~図10に示す。図5は運転条件が供給ガス流量Ffである場合の、図6は運転条件が供給側圧力Pfである場合の、図7は運転条件が透過側圧力Psである場合の、図8は運転条件がスイープガス流量Fsである場合の、図9は運転条件が周囲温度Taである場合の、図10は運転条件が膜面積Smである場合の、各シミュレーション結果を示している。図5~図10の各縦軸に、CO除去装置16のCO回収率[%]と燃料ガスFGのCH純度[%]を示し、各横軸に、各運転条件を示す。CO回収率[%]は、第2排出口22bから排出される混合ガスEG中の二酸化炭素の流量を混合ガスMG中の二酸化炭素の流量で除した値(パーセンテージ)として算出され、上記二酸化炭素除去率を表している。CH純度[%]は、第1排出口21bから排出される燃料ガスFG中のメタンの流量を同燃料ガスFGの流量(ドライベース)で除した値(パーセンテージ)として算出される。
 また、各シミュレーションに使用した条件を、図11に纏めて示す。図11中、運転条件となっている項目の値は、「変数」と表示している。図11において、混合ガスMGの組成比(体積比)は、ドライベースで表示しているが、図11に示す温度条件及び圧力条件で、相対湿度が70%に維持されるようにスチーム(水蒸気)を添加している。スイープガスSGの組成比(体積比:ウェットベース)は、同温度条件及び圧力条件で、相対湿度が70%に維持されるように設定されている。よって、図7において、スイープガスSGの組成比は、相対湿度を70%に固定した場合、透過側圧力Psに応じて変化するため、表示を省略している。尚、各シミュレーションにおいて、混合ガスMGとスイープガスSGの相対湿度を70%に固定したのは、当該相対湿度の変動の影響を排除して、上記各運転条件がCO除去装置16のCO回収率[%]と燃料ガスFGのCH純度[%]に与える影響だけを評価可能とするためである。
 尚、運転条件が周囲温度Taである場合を除き、各シミュレーションに使用したCO分離膜(CO促進輸送膜)20の膜性能として、COパーミアンス=1.5×10-5[mol/(mskPa)]、CHパーミアンス=1.0×10-7[mol/(mskPa)]、HOパーミアンス=4.0×10-5[mol/(mskPa)]を、便宜的に、夫々一定値として扱った。運転条件が周囲温度Taである場合は、COパーミアンスを、周囲温度Taの変化に合わせて、COパーミアンスを直接変化させている。実際の各膜性能は、運転条件によって変動するが、上記各運転条件と、CO除去装置16のCO回収率[%]及び燃料ガスFGのCH純度[%]との間の概略の関係をシミュレーションによって調べるには十分である。
 図5に示すように、上記運転条件として供給ガス流量Ffを使用した場合、CO回収率[%]とCH純度[%]は、供給ガス流量Ffの増加とともに低下し、負の相関関係を有していることが分かる。これにより、ガス濃度センサ14で測定等されたメタン濃度が上記設定範囲Wch4より低い場合、または、二酸化炭素濃度が上記設定範囲Wco2より高い場合は、制御部17aが、マスフローコントローラ25に対して供給ガス流量Ffを低下させる制御を行い、CO回収率を上げることで、燃料ガスFGのメタン濃度を上記設定範囲Wch4に、または、二酸化炭素濃度を上記設定範囲Wco2に維持することができる。逆に、ガス濃度センサ14で測定等されたメタン濃度が上記設定範囲Wch4より高い場合、または、二酸化炭素濃度が上記設定範囲Wco2より低い場合は、制御部17aが、マスフローコントローラ25に対して供給ガス流量Ffを増加させる制御を行い、CO回収率を下げることで、燃料ガスFGのメタン濃度を上記設定範囲Wch4に、または、二酸化炭素濃度を上記設定範囲Wco2に維持することができる。
 図6に示すように、上記運転条件として供給側圧力Pfを使用した場合、CO回収率[%]とCH純度[%]は、供給側圧力Pfの増加とともに増加し、正の相関関係を有していることが分かる。これにより、ガス濃度センサ14で測定等されたメタン濃度が上記設定範囲Wch4より低い場合、または、二酸化炭素濃度が上記設定範囲Wco2より高い場合は、制御部17aが、背圧弁26に対して供給側圧力Pfを増加させる制御を行い、CO回収率を上げることで、燃料ガスFGのメタン濃度を上記設定範囲Wch4に、または、二酸化炭素濃度を上記設定範囲Wco2に維持することができる。逆に、ガス濃度センサ14で測定等されたメタン濃度が上記設定範囲Wch4より高い場合、または、二酸化炭素濃度が上記設定範囲Wco2より低い場合は、制御部17aが、背圧弁26に対して供給側圧力Pfを低下させる制御を行い、CO回収率を下げることで、燃料ガスFGのメタン濃度を上記設定範囲Wch4に、または、二酸化炭素濃度を上記設定範囲Wco2に維持することができる。
 図7に示すように、上記運転条件として透過側圧力Psを使用した場合、CO回収率[%]とCH純度[%]は、透過側圧力Psの増加とともに低下し、負の相関関係を有していることが分かる。これにより、ガス濃度センサ14で測定等されたメタン濃度が上記設定範囲Wch4より低い場合、または、二酸化炭素濃度が上記設定範囲Wco2より高い場合は、制御部17aが、背圧弁29に対して透過側圧力Psを低下させる制御を行い、CO回収率を上げることで、燃料ガスFGのメタン濃度を上記設定範囲Wch4に、または、二酸化炭素濃度を上記設定範囲Wco2に維持することができる。逆に、ガス濃度センサ14で測定等されたメタン濃度が上記設定範囲Wch4より高い場合、または、二酸化炭素濃度が上記設定範囲Wco2より低い場合は、制御部17aが、背圧弁29に対して透過側圧力Psを増加させる制御を行い、CO回収率を下げることで、燃料ガスFGのメタン濃度を上記設定範囲Wch4に、または、二酸化炭素濃度を上記設定範囲Wco2に維持することができる。
 図8に示すように、上記運転条件としてスイープガス流量Fsを使用した場合、CO回収率[%]とCH純度[%]は、供給ガス流量Ffの増加とともに増加し、正の相関関係を有していることが分かる。これにより、ガス濃度センサ14で測定等されたメタン濃度が上記設定範囲Wch4より低い場合、または、二酸化炭素濃度が上記設定範囲Wco2より高い場合は、制御部17aが、マスフローコントローラ28に対してスイープガス流量Fsを増加させる制御を行い、CO回収率を上げることで、燃料ガスFGのメタン濃度を上記設定範囲Wch4に、または、二酸化炭素濃度を上記設定範囲Wco2に維持することができる。逆に、ガス濃度センサ14で測定等されたメタン濃度が上記設定範囲Wch4より高い場合、または、二酸化炭素濃度が上記設定範囲Wco2より低い場合は、制御部17aが、マスフローコントローラ28に対してスイープガス流量Fsを低下させる制御を行い、CO回収率を下げることで、燃料ガスFGのメタン濃度を上記設定範囲Wch4に、または、二酸化炭素濃度を上記設定範囲Wco2に維持することができる。
 図9に示すように、上記運転条件として周囲温度Taを使用した場合、CO回収率[%]とCH純度[%]は、周囲温度Taの増加とともに増加し、正の相関関係を有していることが分かる。これにより、ガス濃度センサ14で測定等されたメタン濃度が上記設定範囲Wch4より低い場合、または、二酸化炭素濃度が上記設定範囲Wco2より高い場合は、制御部17aが、恒温槽に対して周囲温度Taを増加させる制御を行い、CO回収率を上げることで、燃料ガスFGのメタン濃度を上記設定範囲Wch4に、または、二酸化炭素濃度を上記設定範囲Wco2に維持することができる。逆に、ガス濃度センサ14で測定等されたメタン濃度が上記設定範囲Wch4より高い場合、または、二酸化炭素濃度が上記設定範囲Wco2より低い場合は、制御部17aが、恒温槽に対して周囲温度Taを低下させる制御を行い、CO回収率を下げることで、燃料ガスFGのメタン濃度を上記設定範囲Wch4に、または、二酸化炭素濃度を上記設定範囲Wco2に維持することができる。
 図10に示すように、上記運転条件として膜面積Smを使用した場合、CO回収率[%]とCH純度[%]は、膜面積Smの増加とともに増加し、正の相関関係を有していることが分かる。これにより、ガス濃度センサ14で測定等されたメタン濃度が上記設定範囲Wch4より低い場合、または、二酸化炭素濃度が上記設定範囲Wco2より高い場合は、制御部17aが、CO除去装置16に対して使用する膜ユニットの個数(膜面積Sm)を増加させる制御を行い、CO回収率を上げることで、燃料ガスFGのメタン濃度を上記設定範囲Wch4に、または、二酸化炭素濃度を上記設定範囲Wco2に維持することができる。逆に、ガス濃度センサ14で測定等されたメタン濃度が上記設定範囲Wch4より高い場合、または、二酸化炭素濃度が上記設定範囲Wco2より低い場合は、制御部17aが、CO除去装置16に対して使用する膜ユニットの個数(膜面積Sm)を低下させる制御を行い、CO回収率を下げることで、燃料ガスFGのメタン濃度を上記設定範囲Wch4に、または、二酸化炭素濃度を上記設定範囲Wco2に維持することができる。
 図5~図10に示すシミュレーション結果より、供給ガス流量Ff、供給側圧力Pf、透過側圧力Ps、スイープガス流量Fs、周囲温度Ta、及び、膜面積Smの何れの運転条件を使用しても、各運転条件と、CO回収率[%]及びCH純度[%]との間に、正または負の相関関係が存在するので、二酸化炭素除去率の増減の制御が可能であることが分かる。
 ここで、注意すべき点は、上記各シミュレーションにおいて、混合ガスMGとスイープガスSGの相対湿度を一定値に固定している点である。実際の運用では、混合ガスMGとスイープガスSGの相対湿度は必ずしも一定値に固定する必要もなければ、更に、第1処理室21内及び第2処理室22内において各相対湿度を一定値に維持することは困難である。例えば、第1処理室21または第2処理室22内の圧力(供給側圧力Pfまたは透過側圧力Ps)上がると、第1処理室21または第2処理室22内の水蒸気分圧が増加して、第1処理室21または第2処理室22内の相対湿度は上昇し、CO分離膜20の周囲温度Taが上がると、第1処理室21または第2処理室22内の飽和蒸気圧が増加して、第1処理室21または第2処理室22内の相対湿度は低下する。第1処理室21内及び第2処理室22内の相対湿度が高いほど、CO促進輸送膜の促進輸送機能が発揮され、COパーミアンスが増加して、CO回収率が上昇する。
 第1処理室21内及び第2処理室22内の相対湿度は、第1処理室21または第2処理室22内の圧力(供給側圧力Pfまたは透過側圧力Ps)及びCO分離膜20の周囲温度Ta以外にも、混合ガスMGとスイープガスSGに添加されるスチーム(水蒸気)の量によって変化する。従って、上記各シミュレーションでは評価していないが、混合ガスMGとスイープガスSGに対する各水蒸気添加量も、運転条件制御装置17が使用する運転条件として、供給ガス流量Ff、供給側圧力Pf、透過側圧力Ps、スイープガス流量Fs、周囲温度Ta、及び、膜面積Smとともに、上記制御対象運転条件候補に加えることができ、運転条件制御装置17は、上記制御対象運転条件候補内の各水蒸気添加量を含む上記運転条件の少なくとも何れか1つを使用することができる。
 図7に示すように、CO回収率[%]とCH純度[%]は、透過側圧力Psとの間に負の相関関係を有するが、一方で、第2処理室22内に供給されるスイープガスSG中の水蒸気の組成比(分圧比)が一定の場合は、透過側圧力Psが増加(または低下)すると、第2処理室22内の相対湿度が増加(または低下)して、CO回収率[%]とCH純度[%]は増加(または低下)する正の相関関係を有している。つまり、透過側圧力Psの増減による効果が、第2処理室22内の相対湿度の変化によって抑制される。従って、上記運転条件として透過側圧力Psを使用する場合は、シミュレーションと同様に、スイープガスSGの相対湿度が一定に維持されるように、透過側圧力Psの変化に合わせて、水蒸気供給部18から供給される水蒸気量を調整して、スイープガスSGの水蒸気分圧を変化させる制御を行うのが好ましい。
 逆に、図6に示すように、CO回収率[%]とCH純度[%]は、供給側圧力Pfとの間に正の相関関係を有し、一方で、第1処理室21内に供給される混合ガスMG中の水蒸気の組成比(分圧比)が一定の場合は、供給側圧力Pfが増加(または低下)すると、第1処理室21内の相対湿度が増加(または低下)して、CO回収率[%]とCH純度[%]は増加(または低下)する正の相関関係を有している。つまり、供給側圧力Pfの増減による効果が、第1処理室21内の相対湿度の変化によって増強される。従って、上記運転条件として供給側圧力Pfを使用する場合は、混合ガスMGの相対湿度が一定に維持されるように、混合ガスMGの水蒸気分圧を制御する必要はない。
 更に、図9に示すように、CO回収率[%]とCH純度[%]は、周囲温度Taとの間に正の相関関係を有するが、一方で、第1処理室21内に供給される混合ガスMG中の水蒸気の組成比(分圧比)と第2処理室22内に供給されるスイープガスSG中の水蒸気の組成比(分圧比)の少なくとも一方が一定である場合、周囲温度Taが上昇(または低下)すると、飽和水蒸気圧が上昇(または低下)するため、第1処理室21内と第2処理室22内の少なくとも一方の相対湿度が低下(または増加)して、CO回収率[%]とCH純度[%]は低下(または増加)する負の相関関係を有している。つまり、周囲温度Taの増減による効果が、第1処理室21内と第2処理室22内の少なくとも一方の相対湿度の変化によって抑制される。従って、上記運転条件として周囲温度Taを使用する場合は、シミュレーションと同様に、混合ガスMGとスイープガスSGの相対湿度が夫々一定に維持されるように、周囲温度Taの変化に合わせて、水蒸気供給部18から供給される水蒸気量を調整して、混合ガスMGとスイープガスSGの各水蒸気分圧を変化させる制御を行うのが好ましい。
 本システム10の運用を開始する前に、CO除去装置16に使用するCO分離膜(CO促進輸送膜)20の属性に合わせて、供給ガス流量Ff、供給側圧力Pf、透過側圧力Ps、スイープガス流量Fs、周囲温度Ta、及び、膜面積Smの内の実際に運転条件制御装置17が使用する運転条件の制御値と、ガス濃度センサ14によって測定等される混合ガスMGのメタン濃度と二酸化炭素濃度の少なくとも何れか一方と、CO除去装置16で濃度制御された燃料ガスFG中の上記対象成分ガス(メタンまたは二酸化炭素)の濃度との間の関係を、予め実験等によって取得しておく。当該関係は、CO分離膜(CO促進輸送膜)20の属性に依存するため、当然ながら、図5~図10に示すシミュレーション結果とは異なる。また、本システム10の運用時におけるCO除去装置16の運転条件も、図11に示した各シミュレーションに使用した条件とは必ずしも一致しない。これにより、運転条件制御装置17は、本システム10の運用時において、ガス濃度センサ14によって測定等される混合ガスMGのメタン濃度と二酸化炭素濃度の少なくとも何れか一方の測定値に基づいて、燃料ガスFG中の上記対象成分ガス(メタンまたは二酸化炭素)の濃度を、上記設定範囲(メタン濃度の設定範囲Wch4、または、二酸化炭素濃度の設定範囲Wco2)内に維持するために必要な上記運転条件の値を、上記予め実験等によって取得した関係から導出した値に制御する。
 更に、運転条件制御装置17は、上述したフィードフォワード式の制御に加えて、或いは、代えて、燃料ガスFG中の上記対象成分ガス(メタンまたは二酸化炭素)の濃度を測定するガス濃度センサ14を、第1排気管23bの背圧弁26より下流側に追加或いは移動して、ガス濃度センサ14の測定結果に基づいて、燃料ガスFG中の上記対象成分ガスの濃度が、上記設定範囲(メタン濃度の設定範囲Wch4、または、二酸化炭素濃度の設定範囲Wco2)内に維持されるように、上記運転条件の値を増減させるフィードバック式の制御を行う構成としてもよい。
 更に、運転条件制御装置17は、ガス濃度センサ14が測定する上記対象成分ガスの濃度の変化が急である場合、または、過剰である場合には、使用する上記運転条件の数を、通常使用する数より増やして、CO除去装置16の二酸化炭素除去率の増減をより速やかに実施するのも好ましい。
 更に、運転条件制御装置17が使用する上記運転条件に、供給ガス流量Ffまたは供給側圧力Pfが含まれている場合、第1処理室21からガスエンジン11に向けて供給される燃料ガスFGの流量または圧力が、供給ガス流量Ffまたは供給側圧力Pfの変化に応じて変化する。よって、図3に示すように、上記運転条件として供給ガス流量Ffを使用する場合は、燃料ガスFGの流量変動を抑制するために、第1供給管23aに、流量を所定値に調整するマスフローコントローラ等の流量調整装置31を介装し、上記運転条件として供給側圧力Pfを使用する場合は、燃料ガスFGの圧力変動を抑制するために、第1供給管23aの背圧弁26より下流側に、圧力を所定値に調整する圧力調整バルブのような圧力調整装置32を介装するのが好ましい。
 [第2実施形態]
 次に、本システムの第2実施形態について、図面を参照して説明する。
 図1に示すように、第2実施形態に係る本システム10aの概略構成は、第1実施形態に係る本システム10と基本的に同じである。本システム10aと本システム10は、本システム10aの燃料ガス供給装置13aが、図12に示すように、第1ガス供給装置40と第2ガス供給装置50とを備え、CO除去装置16の第1排出口21bに接続する第1排気管23bに、但し、第1排気管23bに背圧弁26を介装されている場合はその下流側において、第1ガス供給装置40が第1濃度調整ガスBG1を供給し、第2ガス供給装置50が第2濃度調整ガスBG2を供給する構成が追加されている点で、相違する。燃料ガス供給装置13aは、当該追加された第1ガス供給装置40と第2ガス供給装置50以外の燃料ガス供給装置13と共通する部分は、第1実施形態と同じであるので、重複する説明は割愛する。また、ガスエンジン11、発電機12、及び、ガス濃度センサ14は、第1実施形態と同じであるので、重複する説明は割愛する。
 図13に示すように、第1ガス供給装置40は、対象成分ガスがメタンと二酸化炭素の何れであるかに応じて、二酸化炭素濃度が上記二酸化炭素濃度の設定範囲Wco2より低くなるように、または、メタン濃度が上記メタン濃度の設定範囲Wch4より高くなるように、または、その両方となるように予め生成された第1濃度調整ガスBG1を、第1容器45に貯蔵しておき、制御部17aからの指示に従って、第1容器45内の第1濃度調整ガスBG1を第1排気管23bに供給するように構成されている。制御部17aは、ガス濃度センサ14が測定等した二酸化炭素濃度またはメタン濃度が、設定範囲Wco2より高いか、または、設定範囲Wch4より低いと、第1ガス供給装置40に対して、二酸化炭素濃度またはメタン濃度が、設定範囲Wco2内、または、設定範囲Wch4内となるのに必要な流量で、第1濃度調整ガスBG1を第1排気管23bに供給するように指示する。当該必要な流量は、第1実施形態で説明したCO除去装置16の二酸化炭素除去率を増減(この場合は、増加)させる制御後において、二酸化炭素濃度またはメタン濃度が、設定範囲Wco2より高い状態、または、設定範囲Wch4より低い状態が解消されない場合に、当該制御後の二酸化炭素濃度またはメタン濃度を、設定範囲Wco2内、または、設定範囲Wch4内となるのに必要な流量として、ガス濃度センサ14の測定結果とCO除去装置16の上記各運転条件を考慮して、制御部17aが算出する。
 更に、第1ガス供給装置40は、第1濃度調整ガスBG1を予め生成するCO分離装置41を備える。CO分離装置41は、CO除去装置16と同様の構成で、CO促進輸送膜のCO分離膜42と、CO分離膜42によって隔てられた第1処理室43と第2処理室44を備えて構成される。第1処理室43には、CO除去装置16の第1処理室21に供給される混合ガスMGと同じバイオガス由来の混合ガスMGが、第1実施形態で説明した種々の供給態様の何れかを利用して供給される。第1処理室43に供給された混合ガスMGは、CO促進輸送膜のCO分離膜42を介して第2処理室44側へ二酸化炭素が選択的に透過することで、二酸化炭素濃度の大幅に低下した混合ガスMG1が、第1処理室43から排出され、第1濃度調整ガスBG1として第1容器45内に貯蔵される。第2処理室44には、CO除去装置16と同様にスイープガスSG1が供給され、第1処理室43から第2処理室44へ透過した混合ガスMGの一部とスイープガスSG1の混合ガスSG1’が、第2処理室44から排出される。
 CO分離膜42に使用する促進輸送膜のCO/CH選択比は、例えば、100以上であるので、CO分離装置42の運転条件を調整することで、極めて高い二酸化炭素除去率が実現できる。従って、設定範囲Wch4及び設定範囲Wco2に応じて高い二酸化炭素除去率に設定することで、第1処理室43から排出される混合ガスMG1は、二酸化炭素濃度を設定範囲Wco2より所定値(例えば、5~10vol%)以上低く、或いは、メタン濃度を設定範囲Wch4より所定値(例えば、5~10vol%)以上高くすることができる。混合ガスMG1の二酸化炭素濃度及びメタン濃度は、第1処理室43に供給された混合ガスMG中の二酸化炭素及びメタンの濃度変動に伴い変化するが、第1容器45内に貯蔵された第1濃度調整ガスBG1の二酸化炭素濃度及びメタン濃度は、設定範囲Wco2より上記所定値以上低く、設定範囲Wch4より上記所定値以上高いという条件は満足されている。しかし、その実際の濃度は不明であるので、第1容器45には、ガス濃度センサ14と同様のガス濃度センサ46が設けられ、第1濃度調整ガスBG1の二酸化炭素濃度及びメタン濃度の測定値が、制御部17aに通知される構成となっている。そして、制御部17aは、ガス濃度センサ46の測定結果も考慮に入れて、上記必要な流量の計算を行う。
 図14に示すように、第2ガス供給装置50は、対象成分ガスがメタンと二酸化炭素の何れであるかに応じて、二酸化炭素濃度が上記二酸化炭素濃度の設定範囲Wco2より高くなるように、または、メタン濃度が上記メタン濃度の設定範囲Wch4より低くなるように、または、その両方となるように予め生成された第2濃度調整ガスBG2を、第2容器56に貯蔵しておき、制御部17aからの指示に従って、第2容器56内の第2濃度調整ガスBG2を第1排気管23bに供給するように構成されている。制御部17aは、ガス濃度センサ14が測定等した二酸化炭素濃度またはメタン濃度が、設定範囲Wco2より低いか、または、設定範囲Wch4より高いと、第2ガス供給装置50に対して、二酸化炭素濃度またはメタン濃度が、設定範囲Wco2内、または、設定範囲Wch4内となるのに必要な流量で、第2濃度調整ガスBG2を第1排気管23bに供給するように指示する。当該必要な流量は、第1実施形態で説明したCO除去装置16の二酸化炭素除去率を増減(この場合は、減少)させる制御後において、二酸化炭素濃度またはメタン濃度が、設定範囲Wco2より低い状態、または、設定範囲Wch4より高い状態が解消されない場合に、当該制御後の二酸化炭素濃度またはメタン濃度を、設定範囲Wco2内、または、設定範囲Wch4内となるのに必要な流量として、ガス濃度センサ14の測定結果とCO除去装置16の上記各運転条件を考慮して、制御部17aが算出する。
 更に、第2ガス供給装置50は、第2濃度調整ガスBG2を予め生成するCO分離装置51と水蒸気除去部55を備える。水蒸気除去部55は、第1実施形態で説明した水蒸気除去部19と同様の構成のものが利用できるので、重複する説明は割愛する。
 CO分離装置51は、CO除去装置16と同様の構成で、CO促進輸送膜のCO分離膜52と、CO分離膜52によって隔てられた第1処理室53と第2処理室54を備えて構成される。第1処理室53には、CO除去装置16の第2処理室22から排出された二酸化炭素濃度の増加した混合ガスEGが供給される。第1処理室53に供給された混合ガスEGは、CO除去装置16の第2処理室22に供給されたスイープガスSGと第1処理室21から第2処理室22へ透過した混合ガスMGの一部(主として二酸化炭素と水蒸気、及び、微量のメタン)を含むため、混合ガスEG中の二酸化炭素を、スイープガスSGの成分ガス(例えば、アルゴン等の不活性ガス等)と少量のメタンに対して選択的に、第2処理室54側に透過させて分離し、第2処理室53に供給されたスイープガスSG2とともに、混合ガスSG2’として第2処理室54から排出する。第2処理室54から排出された混合ガスSG2’は二酸化炭素と水蒸気を含むため、水蒸気除去部55で水蒸気が除去された後、第2濃度調整ガスBG2として第2容器56内に貯蔵される。CO分離装置51では、スイープガスSG2としてスチーム(水蒸気)だけを使用することで、スチーム以外の不活性ガス等を使用した場合に、当該不活性ガス等が第2濃度調整ガスBG2に混入するのを防止する。但し、スイープガスSG2としてスチーム(水蒸気)だけを使用するため、第2処理室54内の圧力は、第2処理室54内の温度において飽和水蒸気圧以下になるように制御する必要がある。尚、スイープガスSG2のスチームは、水蒸気供給部18から供給することができる。また、水蒸気除去部55で除去した水蒸気を水蒸気供給部18に供給して再利用することができる。
 CO除去装置16及び51に使用する促進輸送膜のCO/CH選択比は、例えば、100以上であるので、混合ガスEGのメタン濃度は極めて低く、更に、当該メタン濃度の低い混合ガスEG中のメタンが、CO分離膜52を通過する量は極めて小さい。従って、CO除去装置51の二酸化炭素除去率を設定範囲Wch4及び設定範囲Wco2に応じて高く設定することで、混合ガスSG2’のメタン濃度を、設定範囲Wch4より所定値(例えば、5~10vol%)以上低く、或いは、混合ガスSG2’の二酸化炭素濃度を、設定範囲Wco2より所定値(例えば、5~10vol%)以上高くすることができる。しかし、第2容器56内に貯蔵された第2濃度調整ガスBG2の二酸化炭素濃度及びメタン濃度は、設定範囲Wco2より上記所定値以上高く、設定範囲Wch4より上記所定値以上低いという条件は満足されているが、その実際の濃度は不明であるので、第2容器56には、ガス濃度センサ14と同様のガス濃度センサ57が設けられ、第2濃度調整ガスBG2の二酸化炭素濃度及びメタン濃度の測定値が、制御部17aに通知される構成となっている。そして、制御部17aは、ガス濃度センサ46の測定結果も考慮に入れて、上記必要な流量の計算を行う。
 上記説明では、図12に示すように、背圧弁26の下流側、且つ、水蒸気除去部19の上流側において、第1ガス供給装置40が第1濃度調整ガスBG1を供給し、第2ガス供給装置50が第2濃度調整ガスBG2を供給する構成を説明したが、第1濃度調整ガスBG1及び第2濃度調整ガスBG2の供給は、図15に示すように、水蒸気除去部19の下流側で行うのも好ましい。
 更に、第1ガス供給装置40は、図16に示すように、第1処理室43と第1容器45の間に水蒸気除去部47を介装し、第1処理室43から排出される混合ガスMG1に含まれる水蒸気を水蒸気除去部47で除去する構成とするのも好ましい。
 また、上記説明では、第1ガス供給装置40と第2ガス供給装置50の両方を備える構成を説明したが、必要に応じて、何れか一方だけを備える構成としてもよい。
 また、上記説明では、第1ガス供給装置40がCO分離装置41を備えて、第1濃度調整ガスBG1を予め生成する構成を説明したが、当該構成を備えず、第1濃度調整ガスBG1として、外部から供給される高純度のメタンガス(天然ガス等)を使用する構成としてもよい。
 また、上記説明では、第2ガス供給装置50がCO分離装置51を備えて、CO除去装置16の第2処理室22から排出された二酸化炭素濃度の増加した混合ガスEGを使用して第2濃度調整ガスBG2を予め生成する構成を説明したが、混合ガスEGに代えてまたは加えて、ガスエンジンから排出される二酸化炭素を含む排出ガスをCO分離装置51の第1処理室53に供給する構成としてもよい。
 [第3実施形態]
 次に、本システムの第3実施形態について、図面を参照して説明する。
 図17に示すように、第3実施形態に係る本システム10bは、ガスエンジン11、発電機12、燃料ガス供給装置60、及び、ガス濃度センサ14を備えて構成される。本システム10bは、第1及び第2実施形態の本システム10,10aと比較すると、本システム10,10aの燃料ガス供給装置13,13aに代えて、燃料ガス供給装置60を備えている点で相違する。本システム10bのガスエンジン11、発電機12、及び、ガス濃度センサ14は、第1実施形態と同じであるので、重複する説明は割愛する。
図17に示すように、燃料ガス供給装置60は、制御部61、第1ガス供給装置62、第2ガス供給装置63、及び、ガス混合部64を備えて構成される。制御部61は、第1及び第2実施形態の制御部17aと同様、マイクロコンピュータ、プログラマブルロジック等を備えて構成される。第1ガス供給装置62は、制御部61からの指示に従って、予め生成された第1濃度調整ガスBG1を、ガス混合部64に供給する。第2ガス供給装置63は、制御部61からの指示に従って、予め生成された第2濃度調整ガスBG2を、ガス混合部64に供給する。ガス混合部64は、例えば、3つの入口と1つの出口を有する4方弁等で構成され、3つの入口の夫々から、混合ガスMGと第1濃度調整ガスBG1と第2濃度調整ガスBG2が各別に供給され、ガス混合部64において、混合ガスMGに、第1濃度調整ガスBG1と第2濃度調整ガスBG2の何れか一方が添加された混合ガスが、燃料ガスFGとして、ガスエンジン11に供給される。
 第1濃度調整ガスBG1は、第2実施形態で説明した第1濃度調整ガスBG1と同様に、対象成分ガスがメタンと二酸化炭素の何れであるかに応じて、二酸化炭素濃度が上記二酸化炭素濃度の設定範囲Wco2より低くなるように、または、メタン濃度が上記メタン濃度の設定範囲Wch4より高くなるように、または、その両方となるように調製されている。第2濃度調整ガスBG2は、第2実施形態で説明した第2濃度調整ガスBG2と同様に、対象成分ガスがメタンと二酸化炭素の何れであるかに応じて、二酸化炭素濃度が上記二酸化炭素濃度の設定範囲Wco2より高くなるように、または、メタン濃度が上記メタン濃度の設定範囲Wch4より低くなるように、または、その両方となるように調製されている。
 制御部61は、ガス濃度センサ14が測定等した二酸化炭素濃度またはメタン濃度に応じて、第1ガス供給装置62と第2ガス供給装置63の一方に対して、第1濃度調整ガスBG1と第2濃度調整ガスBG2の何れか一方を、所定の流量でガス混合部64に供給するように指示する。具体的には、制御部61は、ガス濃度センサ14が測定等した二酸化炭素濃度またはメタン濃度が、設定範囲Wco2より高いか、または、設定範囲Wch4より低いと、第1ガス供給装置62に対して、二酸化炭素濃度またはメタン濃度が、設定範囲Wco2内、または、設定範囲Wch4内となるのに必要な流量で、第1濃度調整ガスBG1をガス混合部64に供給するように指示する。当該必要な流量は、混合ガスMGに第1濃度調整ガスBG1が添加された混合ガスの二酸化炭素濃度またはメタン濃度が、設定範囲Wco2内、または、設定範囲Wch4内となるのに必要な流量として、ガス濃度センサ14の測定結果と混合ガスMGの供給流量等を考慮して、制御部61が算出する。更に、制御部61は、ガス濃度センサ14が測定等した二酸化炭素濃度またはメタン濃度が、設定範囲Wco2より低いか、または、設定範囲Wch4より高いと、第2ガス供給装置63に対して、二酸化炭素濃度またはメタン濃度が、設定範囲Wco2内、または、設定範囲Wch4内となるのに必要な流量で、第2濃度調整ガスBG2をガス混合部64に供給するように指示する。当該必要な流量は、混合ガスMGに第2濃度調整ガスBG2が添加された混合ガスの二酸化炭素濃度またはメタン濃度が、設定範囲Wco2内、または、設定範囲Wch4内となるのに必要な流量として、ガス濃度センサ14の測定結果と混合ガスMGの供給流量等を考慮して、制御部61が算出する。このため、本実施形態では、混合ガスMGの供給流量を測定するマスフローメータ等の流量計65を備えている。
 次に、燃料ガス供給装置60が、ガス混合部64に供給される混合ガスMGと同じバイオガス由来の混合ガスMGを使用して、第1濃度調整ガスBG1と第2濃度調整ガスBG2を予め生成して、第1容器70と第2容器73に貯蔵しておく構成について、図18を参照して説明する。燃料ガス供給装置60は、上記第1ガス供給装置62と第2ガス供給装置63として、CO分離装置66、第1容器70、第2容器73、及び、水蒸気除去部72を備える。第1ガス供給装置62が、CO分離装置66と第1容器70で構成され、第2ガス供給装置63が、CO分離装置66と第2容器73と水蒸気除去部72で構成され、CO分離装置66は、第1ガス供給装置62と第2ガス供給装置63で共通に使用される。
CO分離装置66は、第1実施形態で説明したCO除去装置16と同様の構成で、CO促進輸送膜のCO分離膜67と、CO分離膜67によって隔てられた第1処理室68と第2処理室69を備えて構成される。第1処理室68には、ガス混合部64に供給される混合ガスMGと同じバイオガス由来の混合ガスMGが、第1実施形態で説明した種々の供給態様の何れかを利用して供給される。第2処理室69には、スチーム(水蒸気)がスイープガスSG3として供給され、第1処理室68から第2処理室69へ透過した混合ガスMGの一部とスイープガスSG3の混合ガスSG3’が、第2処理室69から排出される。但し、CO分離装置66では、スチーム(水蒸気)をスイープガスSG3として使用するため、第2処理室69内の圧力は、第2処理室69内の温度において飽和水蒸気圧以下になるように制御する必要がある。スイープガスSG3のスチームは、第1実施形態の水蒸気供給部18と同様の要領で、水蒸気供給部を設けて、当該水蒸気供給部から供給することができる。また、水蒸気除去部72で除去した水蒸気は当該水蒸気供給部に供給して再利用することができる。
 第1処理室68に供給された混合ガスMGは、CO促進輸送膜のCO分離膜67を介して第2処理室69側へ二酸化炭素が選択的に透過することで、二酸化炭素濃度の大幅に低下した混合ガスMG’が、第1処理室68から排出され、第1濃度調整ガスBG1として第1容器70内に貯蔵される。一方、第2処理室69に供給されたスイープガスSG3(スチーム)と第1処理室68側から透過してきた混合ガスMGの一部(主として二酸化炭素と水蒸気、及び、微量のメタン)は、第2処理室69内で混合され、二酸化炭素濃度の極めて高い混合ガスSG3’として第2処理室54から排出され、水蒸気除去部72で水蒸気が除去された後、第2濃度調整ガスBG2として第2容器73内に貯蔵される。   
CO分離装置66に使用する促進輸送膜のCO/CH選択比は、例えば、100以上であるので、CO分離装置66の運転条件を調整することで、極めて高い二酸化炭素除去率が実現できる。従って、設定範囲Wch4及び設定範囲Wco2に応じて高い二酸化炭素除去率に設定することで、混合ガスMG’に対して、二酸化炭素濃度を設定範囲Wco2より所定値(例えば、5~10vol%)以上低く、或いは、メタン濃度を設定範囲Wch4より所定値(例えば、5~10vol%)以上高くすることができ、また、混合ガスSG3’に対して、メタン濃度を設定範囲Wch4より所定値(例えば、5~10vol%)以上低く、或いは、二酸化炭素濃度を設定範囲Wco2より所定値(例えば、5~10vol%)以上高くすることができる。
混合ガスMG’及び混合ガスSG3’の二酸化炭素濃度及びメタン濃度は、第1処理室68に供給された混合ガスMG中の二酸化炭素及びメタンの濃度変動に伴い変化する。このため、第1容器70内に貯蔵された第1濃度調整ガスBG1の二酸化炭素濃度及びメタン濃度は、設定範囲Wco2より上記所定値以上低く、設定範囲Wch4より上記所定値以上高いという条件は満足されているが、その実際の濃度は不明であるので、第1容器70には、ガス濃度センサ14と同様のガス濃度センサ71が設けられ、第1濃度調整ガスBG1の二酸化炭素濃度及びメタン濃度の測定値が、制御部61に通知される構成となっている。そして、制御部61は、ガス濃度センサ71の測定結果も考慮に入れて、第1濃度調整ガスBG1の上記必要な流量の計算を行う。同様に、第2容器73内に貯蔵された第2濃度調整ガスBG2の二酸化炭素濃度及びメタン濃度は、設定範囲Wco2より上記所定値以上高く、設定範囲Wch4より上記所定値以上低いという条件は満足されているが、その実際の濃度は不明であるので、第2容器73には、ガス濃度センサ14と同様のガス濃度センサ74が設けられ、第2濃度調整ガスBG2の二酸化炭素濃度及びメタン濃度の測定値が、制御部61に通知される構成となっている。そして、制御部61は、ガス濃度センサ74の測定結果も考慮に入れて、第2濃度調整ガスBG2の上記必要な流量の計算を行う。
 [別実施形態]
 次に、上記第1~第3実施形態の変形例(別実施形態)について説明する。
〈1〉上記第1~第3実施形態では、CO除去装置16,41,51,66として、CO促進輸送膜のCO分離膜20,42,52,67を備えた構成を想定したが、CO除去装置16,41,51,66の内の少なくとも何れか1つは、当該構成に限定されるものではなく、例えば、CO促進輸送膜以外のCO分離膜を備えた膜分離式の構成、化学吸収法を採用した構成、PSA装置、TSA装置、等であってもよい。
 CO除去装置16として、化学吸収法を採用した構成を使用する場合、二酸化炭素除去率の増減に影響する運転条件として、例えば、吸収液量、吸収液循環量、等が使用できる。また、CO除去装置16として、PSA装置を使用する場合、二酸化炭素除去率の増減に影響する運転条件として、例えば、吸着材量、圧力、等が使用できる。また、CO除去装置16として、TSA装置を使用する場合、二酸化炭素除去率の増減に影響する運転条件として、例えば、吸着材量、温度、等が使用できる。
〈2〉上記第1及び第2実施形態では、水蒸気供給部18から混合ガスMGにスチーム(水蒸気)が供給される構成について説明したが、燃料ガス供給装置13,13aに供給される混合ガスMG中に既に水蒸気が含まれている場合は、必ずしも、当該構成による混合ガスMGへのスチームの供給は必要ではない。
〈3〉上記第1~第3実施形態では、CO除去装置16,41,51,66として、CO促進輸送膜のCO分離膜20,42,52,67を備え、第2処理室22,44,54,69内に、スイープガスSG,SG1,SG2,SG3を供給して、CO分離膜20,42,52,67の供給側と透過側の間にCO分圧差を生じさせるスイープガス方式による構成を想定したが、CO除去装置16,41,51,66の内の少なくとも何れか1つにおいて、スイープガスSG,SG1,SG2,SG3の第2処理室22,44,54,69内への供給を行わずに、CO分離膜20,42,52,67の第1処理室21,43,53,68内を加圧するか、第2処理室22,44,54,69内を減圧して、CO分離膜20,42,52,67の供給側と透過側の間にCO分圧差を生じさせる運転方式(加圧式または減圧式)による構成を採用してもよい。第2処理室22,44,54,69内を減圧する減圧式の場合、第2処理室22,44,54,69の下流側に真空ポンプを設置するのが好ましい。
 また、CO除去装置16,41,51,66の内の少なくとも何れか1つにおいて、スイープガス方式による構成と加圧式または減圧式による構成を組み合わせた構成としてもよい。尚、CO除去装置16として、スイープガス方式による構成を使用せず、加圧式または減圧式による構成を採用する場合は、上記制御対象運転条件候補には、スイープガスSGの流量(スイープガス流量Fs)は含まれない。
〈4〉上記第1~第3実施形態では、混合ガスMGとして、有機物のメタン発酵によって得られるバイオガスに由来する混合ガスの使用を想定したが、必ずしも、バイオガス由来の混合ガスに限定されるものではない。メタンと二酸化炭素を主成分とする混合ガスであって、当該混合ガスの製造条件等によって、メタン濃度または二酸化炭素濃度またはその両方が変動し得る場合は、混合ガスMGがバイオガス由来でなくても、本システム10,10a,10bを使用することで、当該濃度変動を抑制することが可能である。
〈5〉上記第2実施形態では、第1ガス供給装置40と第2ガス供給装置50が、夫々、第1濃度調整ガスBG1と第2濃度調整ガスBG2を予め生成するために、CO分離装置41とCO分離装置51を各別に備える場合を説明した。しかし、第1ガス供給装置40と第2ガス供給装置50の両方を備える場合には、必ずしも、CO分離装置41とCO分離装置51を各別に備える必要はない。例えば、第3実施形態において図18を参照して説明したように、第1ガス供給装置40と第2ガス供給装置50を1つのCO分離装置を備えて構成するようにしてもよい。
 本発明の発電システムは、メタンを主成分として二酸化炭素を含む燃料ガスを消費して運動エネルギを発生するガスエンジンを備えた発電システムに利用できる。
 10,10a,10b    : 発電システム
 11            : ガスエンジン
 12            : 発電機
 13,13a,60     : 燃料ガス供給装置
 14,46,57,71,74: ガス濃度センサ
 15            : インバータ装置
 16,41,51,66   : CO除去装置
 17            : 運転条件制御装置
 17a,61        : 制御部
 18            : 水蒸気供給部
 18a           : 水蒸気分離部
 19,47,55,72      : 水蒸気除去部
 20,42,52,67   : CO分離膜(CO促進輸送膜)
 21,43,53,68   : 第1処理室
 21a           : 第1受入口
 21b           : 第11排出口
 22,44,54,69   : 第2処理室
 22a           : 第2受入口
 22b           : 第2排出口
 23a           : 第1供給管
 23b           : 第1排気管
 24a           : 第2供給管
 24b           : 第2排気管
 25,28         : マスフローコントローラ
 26,29         : 背圧弁
 27,30         : 圧力計
 31            : 流量調整装置
 32            : 圧力調整装置
 40,62         : 第1ガス供給装置
 45,70         : 第1容器
 50,63         : 第2ガス供給装置
 56,73         : 第2容器
 64            : ガス混合部
 65            : 流量計
 EG,EG’        : 混合ガス
 FG            : 燃料ガス
 MG,MG’,MG1    : 混合ガス
 SG,SG1,SG2,SG3: スイープガス
 SG1’,SG2’,SG3’: 混合ガス
 

 

Claims (20)

  1.  メタンを主成分として二酸化炭素を含む燃料ガスを消費して運動エネルギを発生するガスエンジンと、前記ガスエンジンが発生する前記運動エネルギにより駆動され発電する発電機を備えた発電システムであって、
     外部から供給されるメタンと二酸化炭素を主成分とする混合ガスに対して、前記混合ガス中のメタンと二酸化炭素の少なくとも何れか一方の対象成分ガスの濃度を、前記ガスエンジンの前記燃料ガス中の前記対象成分ガスの濃度に対する設定範囲内に制御して、前記燃料ガスとして、前記ガスエンジンに供給する燃料ガス供給装置と、
     前記混合ガスの二酸化炭素濃度とメタン濃度の少なくとも何れか一方の濃度を計測するガス濃度センサと、を更に備え、
     前記燃料ガス供給装置が、前記混合ガス中の二酸化炭素を除去する二酸化炭素除去装置と、前記二酸化炭素除去装置の二酸化炭素除去率の増減に影響する運転条件を制御する運転条件制御装置を備え、
     前記ガス濃度センサが、前記二酸化炭素除去装置の前段及び後段の少なくとも何れか一方に配置され、
     前記運転条件制御装置が、前記ガス濃度センサの計測結果に基づいて、前記二酸化炭素除去装置の前記運転条件を制御することにより、前記混合ガス中のメタンと二酸化炭素の濃度を制御することを特徴とする発電システム。
  2.  前記二酸化炭素除去装置が、前記混合ガス中に含まれる二酸化炭素をメタンに対して選択的に分離する二酸化炭素分離膜と、前記二酸化炭素分離膜によって隔てられた第1処理室と第2処理室を備えて構成され、
     前記第1処理室に、前記混合ガスを前記第1処理室内に受け入れる第1受入口と、前記対象成分ガスの濃度が制御された前記第1処理室内の前記混合ガスを前記燃料ガスとして排出する第1排出口が設けられ、
     前記第2処理室に、前記二酸化炭素分離膜を介して前記第1処理室から前記第2処理室へ透過したガスを排出する第2排出口が設けられ、
     前記運転条件制御装置が、前記二酸化炭素分離膜の二酸化炭素除去率の増減に影響する運転条件として、前記第1処理室内に供給される前記混合ガスの流量、前記第1処理室内の圧力、前記第2処理室内の圧力、前記二酸化炭素分離膜の周囲温度、及び、前記二酸化炭素分離膜の膜面積を含む制御対象運転条件候補の内の少なくとも1つを、前記ガス濃度センサの計測結果に基づいて制御することを特徴とする請求項1に記載の発電システム。
  3.  前記第2処理室が、スイープガスを前記第2処理室内に受け入れる第2受入口を有し、前記二酸化炭素分離膜を介して前記第1処理室から前記第2処理室へ透過したガスと前記スイープガスが前記第2排出口から排出されるように構成され、
     前記制御対象運転条件候補に、前記第2処理室内に供給される前記スイープガスの流量が含まれていることを特徴とする請求項2に記載の発電システム。
  4.  前記二酸化炭素分離膜が、メタンと反応せずに二酸化炭素と選択的に反応する二酸化炭素キャリアが添加された促進輸送膜であり、
     前記制御対象運転条件候補に、前記第1処理室内の相対湿度及び前記第2処理室内の相対湿度の少なくとも何れか一方の増減に影響する1以上の運転条件が含まれていることを特徴とする請求項2に記載の発電システム。
  5.  前記二酸化炭素分離膜が、メタンと反応せずに二酸化炭素と選択的に反応する二酸化炭素キャリアが添加された促進輸送膜であり、
     前記制御対象運転条件候補に、前記第1処理室内の相対湿度及び前記第2処理室内の相対湿度の少なくとも何れか一方の増減に影響する1以上の運転条件が含まれていることを特徴とする請求項3に記載の発電システム。
  6.  前記第1処理室内に供給される前記混合ガスに水蒸気が含まれていることを特徴とする請求項4に記載の発電システム。
  7.  前記第1処理室内に供給される前記混合ガスに水蒸気を供給する水蒸気供給部を備えることを特徴とする請求項4に記載の発電システム。
  8.  前記第1処理室内に供給される前記混合ガス、及び、前記第2処理室内に供給される前記スイープガスの少なくとも何れか一方に水蒸気が含まれていることを特徴とする請求項5に記載の発電システム。
  9.  前記第1処理室内に供給される前記混合ガス、及び、前記第2処理室内に供給される前記スイープガスの少なくとも何れか一方に水蒸気を供給する水蒸気供給部を備えることを特徴とする請求項5に記載の発電システム。
  10.  前記運転条件制御装置が、
     前記水蒸気供給部が前記混合ガスに水蒸気の供給する場合は、前記混合ガスに対する前記水蒸気供給部からの水蒸気添加量を、前記制御対象運転条件候補の1つとして制御し、
     前記水蒸気供給部が前記スイープガスに水蒸気の供給する場合は、前記スイープガスに対する前記水蒸気供給部からの水蒸気添加量を、前記制御対象運転条件候補の1つとして制御することを特徴とする請求項7または9に記載の発電システム。
  11.  前記水蒸気供給部は、前記ガスエンジンから排出される高温の排出ガスとの熱交換により水を加熱して生成された水蒸気を、前記対象ガスに供給することを特徴とする請求項7、9及び10の何れか1項に記載の発電システム。
  12.  前記水蒸気供給部は、前記ガスエンジンから排出される排出ガスに含まれる水蒸気を、前記対象ガスに供給することを特徴とする請求項7、9、10及び11の何れか1項に記載の発電システム。
  13.  前記混合ガスが、有機物のメタン発酵により生成されたバイオガスに由来するガスを含み、前記混合ガス中に含まれる硫黄成分を除去する超高次脱硫触媒を用いた脱硫装置を、前記燃料ガス供給装置より上流側に備えることを特徴とする請求項4~12の何れか1項に記載の発電システム。
  14.  前記燃料ガス供給装置が、前記対象成分ガスが二酸化炭素の場合は前記設定範囲より前記対象成分ガスの濃度の低い、または、前記対象成分ガスがメタンの場合は前記設定範囲より前記対象成分ガスの濃度の高い、メタンを主成分とする第1濃度調整ガスを前記混合ガスに供給する第1ガス供給装置を備え、
     前記第1ガス供給装置が、前記ガス濃度センサの計測結果に基づいて、前記対象成分ガスが二酸化炭素で、前記混合ガスの前記対象成分ガスの濃度が前記設定範囲より高い場合、または、前記対象成分ガスがメタンで、前記混合ガスの前記対象成分ガスの濃度が前記設定範囲より低い場合に、前記混合ガスに前記第1濃度調整ガスを供給して、前記混合ガス中のメタンと二酸化炭素の濃度を制御することを特徴とする請求項1~13の何れか1項に記載の発電システム。
  15.  前記第1ガス供給装置が、前記混合ガス中に含まれる二酸化炭素をメタンに対して選択的に分離する第2の二酸化炭素除去装置と、前記第2の二酸化炭素除去装置を用いて前記混合ガスから二酸化炭素を分離して予め準備した前記第1濃度調整ガスを貯蔵する第1容器と、を備えていることを特徴とする請求項14に記載の発電システム。
  16.  前記燃料ガス供給装置が、前記対象成分ガスが二酸化炭素の場合は前記設定範囲より前記対象成分ガスの濃度の高い、または、前記対象成分ガスがメタンの場合は前記設定範囲より前記対象成分ガスの濃度の低い、二酸化炭素またはメタンと二酸化炭素を主成分とする第2濃度調整ガスを前記混合ガスに供給する第2ガス供給装置を備え、
     前記第2ガス供給装置が、前記ガス濃度センサの計測結果に基づいて、前記対象成分ガスが二酸化炭素で、前記混合ガスの前記対象成分ガスの濃度が前記設定範囲より低い場合、または、前記対象成分ガスがメタンで、前記混合ガスの前記対象成分ガスの濃度が前記設定範囲より高い場合に、前記混合ガスに前記第2濃度調整ガスを供給することを特徴とする請求項1~15の何れか1項に記載の発電システム。
  17.  前記第2ガス供給装置が、前記第2濃度調整ガスを貯蔵する第2容器を備え、
     前記第2濃度調整ガスが、前記二酸化炭素除去装置によって前記混合ガスから除去された二酸化炭素を含むことを特徴とする請求項16に記載の発電システム。
  18.  メタンを主成分として二酸化炭素を含む燃料ガスを消費して運動エネルギを発生するガスエンジンと、前記ガスエンジンが発生する前記運動エネルギにより駆動され発電する発電機を備えた発電システムであって、
     外部から供給されるメタンと二酸化炭素を主成分とする混合ガスに対して、前記混合ガス中のメタンと二酸化炭素の少なくとも何れか一方の対象成分ガスの濃度を、前記ガスエンジンの前記燃料ガス中の前記対象成分ガスの濃度に対する設定範囲内に制御して、前記燃料ガスとして、前記ガスエンジンに供給する燃料ガス供給装置と、
     前記混合ガスの二酸化炭素濃度とメタン濃度の少なくとも何れか一方の濃度を計測するガス濃度センサと、を更に備え、
     前記燃料ガス供給装置が、前記対象成分ガスが二酸化炭素の場合は前記設定範囲より前記対象成分ガスの濃度の低い、または、前記対象成分ガスがメタンの場合は前記設定範囲より前記対象成分ガスの濃度の高い、メタンを主成分とする第1濃度調整ガスを前記混合ガスに供給する第1ガス供給装置と、前記対象成分ガスが二酸化炭素の場合は前記設定範囲より前記対象成分ガスの濃度の高い、または、前記対象成分ガスがメタンの場合は前記設定範囲より前記対象成分ガスの濃度の低い、二酸化炭素またはメタンと二酸化炭素を主成分とする第2濃度調整ガスを前記混合ガスに供給する第2ガス供給装置と、を備え、
     前記第1ガス供給装置が、前記ガス濃度センサの計測結果に基づいて、前記対象成分ガスが二酸化炭素で、前記混合ガスの前記対象成分ガスの濃度が前記設定範囲より高い場合、または、前記対象成分ガスがメタンで、前記混合ガスの前記対象成分ガスの濃度が前記設定範囲より低い場合に、前記混合ガスに前記第1濃度調整ガスを供給して、前記混合ガス中のメタンと二酸化炭素の濃度を制御し、
     前記第2ガス供給装置が、前記ガス濃度センサの計測結果に基づいて、前記対象成分ガスが二酸化炭素で、前記混合ガスの前記対象成分ガスの濃度が前記設定範囲より低い場合、または、前記対象成分ガスがメタンで、前記混合ガスの前記対象成分ガスの濃度が前記設定範囲より高い場合に、前記混合ガスに前記第2濃度調整ガスを供給して、前記混合ガス中のメタンと二酸化炭素の濃度を制御することを特徴とする発電システム。
  19.  前記燃料ガス供給装置が、前記混合ガス中に含まれる二酸化炭素をメタンに対して選択的に分離する二酸化炭素除去装置と、前記二酸化炭素除去装置を用いて前記混合ガスから二酸化炭素を分離して予め準備した前記第1濃度調整ガスと前記第2濃度調整ガスを各別に貯蔵する第1容器と第2容器を備えていることを特徴とする請求項18に記載の発電システム。
  20.  前記混合ガスが、有機物のメタン発酵により生成されたバイオガスに由来するガスを含むことを特徴とする請求項1~12、14~19の何れか1項に記載の発電システム。
     
PCT/JP2018/030448 2017-09-07 2018-08-16 発電システム WO2019049629A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/642,003 US11214746B2 (en) 2017-09-07 2018-08-16 Power generation system
JP2019540858A JP6742656B2 (ja) 2017-09-07 2018-08-16 発電システム
CN201880058095.9A CN111094725B (zh) 2017-09-07 2018-08-16 发电系统
EP18853791.4A EP3680470A4 (en) 2017-09-07 2018-08-16 POWER GENERATION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-171866 2017-09-07
JP2017171866 2017-09-07

Publications (1)

Publication Number Publication Date
WO2019049629A1 true WO2019049629A1 (ja) 2019-03-14

Family

ID=65633781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030448 WO2019049629A1 (ja) 2017-09-07 2018-08-16 発電システム

Country Status (5)

Country Link
US (1) US11214746B2 (ja)
EP (1) EP3680470A4 (ja)
JP (1) JP6742656B2 (ja)
CN (1) CN111094725B (ja)
WO (1) WO2019049629A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092031A1 (ja) * 2020-10-29 2022-05-05 三菱ケミカル株式会社 ガス分離方法及び装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290065B (zh) * 2020-09-25 2021-09-03 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种基于有机液体供氢的密闭空间用燃料电池发电系统
CN112555919A (zh) * 2020-11-30 2021-03-26 安徽信息工程学院 一种天然气节能减排装置
US11746693B2 (en) * 2021-12-01 2023-09-05 Smith Power Products, Inc. Natural gas engine
JP2024067676A (ja) * 2022-11-07 2024-05-17 株式会社日立製作所 ガス分離システム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275482A (ja) 2001-03-16 2002-09-25 Ebara Corp 消化ガスによる発電方法及び発電システム
JP2005002950A (ja) * 2003-06-13 2005-01-06 Kawasaki Heavy Ind Ltd 電力供給設備
JP2008036463A (ja) 2006-08-01 2008-02-21 Renaissance Energy Research:Kk Co2促進輸送膜及びその製造方法
JP2008255209A (ja) * 2007-04-04 2008-10-23 Japan Steel Works Ltd:The メタンガスの濃縮方法および装置
JP2010209706A (ja) 2009-03-06 2010-09-24 Yanmar Co Ltd バイオガス発電装置
JP4621295B2 (ja) 2008-01-24 2011-01-26 株式会社ルネッサンス・エナジー・リサーチ Co2促進輸送膜及びその製造方法
WO2012014900A1 (ja) 2010-07-26 2012-02-02 株式会社ルネッサンス・エナジー・リサーチ スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法
JP2013022581A (ja) * 2011-07-26 2013-02-04 Fujifilm Corp 二酸化炭素分離装置および二酸化炭素分離方法
JP2013049048A (ja) 2011-08-01 2013-03-14 Renaissance Energy Research:Kk Co2促進輸送膜及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4597777A (en) 1983-02-15 1986-07-01 Monsanto Company Membrane gas separation processes
JP2001000949A (ja) * 1999-06-21 2001-01-09 Mitsubishi Kakoki Kaisha Ltd 消化ガス貯蔵設備
DE10047264B4 (de) * 2000-09-23 2006-05-04 G.A.S. Energietechnologie Gmbh Verfahren zur Nutzung von methanhaltigem Biogas
JP4393002B2 (ja) * 2001-02-01 2010-01-06 ヤンマー株式会社 ガスエンジン
US7363883B2 (en) * 2004-03-19 2008-04-29 Mitsubishi Heavy Industries, Ltd. Gas engine electric power generating system effectively utilizing greenhouse gas emission credit
JP4839821B2 (ja) * 2005-12-19 2011-12-21 カシオ計算機株式会社 電源システム、電源システムの制御装置及び電源システムの制御方法
US20070282021A1 (en) * 2006-06-06 2007-12-06 Campbell Gregory A Producing ethanol and saleable organic compounds using an environmental carbon dioxide reduction process
JP2009242773A (ja) * 2008-03-14 2009-10-22 Air Water Inc メタンガス濃縮装置および方法ならびに燃料ガスの製造装置および方法
US8202349B2 (en) * 2009-06-30 2012-06-19 General Electric Company Method and apparatus for removal of carbon dioxide from pre-combustion syngas
JP5555332B2 (ja) * 2010-12-24 2014-07-23 株式会社ルネッサンス・エナジー・リサーチ ガス分離装置、メンブレンリアクター、水素製造装置
WO2012145303A2 (en) * 2011-04-18 2012-10-26 Ryncosmos, Llc Method and apparatus for removal of carbon dioxide from automobile, household and industrial exhaust gases
AT511734B1 (de) 2011-07-20 2016-02-15 Ge Jenbacher Gmbh & Co Ohg Verfahren zum betreiben einer stationären kraftanlage
EP2742207A4 (en) * 2011-08-12 2016-06-29 Mcalister Technologies Llc SYSTEMS AND METHODS FOR EXTRACTING AND PROCESSING GASES FROM SUBMERGED SOURCES
CN104941394B (zh) * 2014-03-31 2020-03-03 宇部兴产株式会社 气体分离系统及富化气体的制造方法
US10105638B2 (en) * 2015-05-29 2018-10-23 Korea Institute Of Energy Research Apparatus for separating CO2 from combustion gas using multi-stage membranes
JP6553739B2 (ja) * 2015-11-16 2019-07-31 株式会社ルネッサンス・エナジー・リサーチ ガス回収装置、ガス回収方法、及び、半導体洗浄システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275482A (ja) 2001-03-16 2002-09-25 Ebara Corp 消化ガスによる発電方法及び発電システム
JP2005002950A (ja) * 2003-06-13 2005-01-06 Kawasaki Heavy Ind Ltd 電力供給設備
JP2008036463A (ja) 2006-08-01 2008-02-21 Renaissance Energy Research:Kk Co2促進輸送膜及びその製造方法
JP2008255209A (ja) * 2007-04-04 2008-10-23 Japan Steel Works Ltd:The メタンガスの濃縮方法および装置
JP4621295B2 (ja) 2008-01-24 2011-01-26 株式会社ルネッサンス・エナジー・リサーチ Co2促進輸送膜及びその製造方法
JP2010209706A (ja) 2009-03-06 2010-09-24 Yanmar Co Ltd バイオガス発電装置
WO2012014900A1 (ja) 2010-07-26 2012-02-02 株式会社ルネッサンス・エナジー・リサーチ スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法
JP2013022581A (ja) * 2011-07-26 2013-02-04 Fujifilm Corp 二酸化炭素分離装置および二酸化炭素分離方法
JP2013049048A (ja) 2011-08-01 2013-03-14 Renaissance Energy Research:Kk Co2促進輸送膜及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3680470A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092031A1 (ja) * 2020-10-29 2022-05-05 三菱ケミカル株式会社 ガス分離方法及び装置

Also Published As

Publication number Publication date
US20200239797A1 (en) 2020-07-30
EP3680470A4 (en) 2021-06-02
US11214746B2 (en) 2022-01-04
JPWO2019049629A1 (ja) 2020-08-06
JP6742656B2 (ja) 2020-08-19
CN111094725B (zh) 2022-08-26
EP3680470A1 (en) 2020-07-15
CN111094725A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
JP6742656B2 (ja) 発電システム
US11247169B2 (en) Combustion system
JP5011673B2 (ja) 燃料電池発電システム
JP2006522588A (ja) 自給式流線型メタンおよび/または高純度水素生成システム
CN1853305A (zh) 使用化学计量的分阶段燃烧器的燃料电池关闭和起动清洁方法
JP2010212141A (ja) 燃料電池発電装置
US11834334B1 (en) Systems and methods of processing ammonia
JP2018166085A (ja) 水素製造システム
JP2017103218A (ja) 固体酸化物型燃料電池システム
JP2020087789A (ja) 反応装置、及び燃料電池発電システム
JP4592630B2 (ja) 水素ガス生成装置および水素ガス生成装置の運転制御方法
JP7377734B2 (ja) 燃料電池発電システム
JP2013522828A (ja) 燃料電池システム及び燃料電池システムの作動方法
JP2002319418A (ja) 水素供給システム
JP2005293949A (ja) 燃料ガス製造システム及びその運転方法
KR101630717B1 (ko) 수소 제조 장치의 제어 방법
JP2021138557A (ja) 水素生成装置
JP2003020205A (ja) 改質器システムおよびその制御方法
KR102038843B1 (ko) 발전 기능을 갖춘 배기가스 정화 시스템
JP2014181150A (ja) 水素生成装置及び燃料電池システム
CN115335350A (zh) 生物气利用甲烷化系统
JP2005085534A (ja) 燃料電池システム
JP2018112166A (ja) 出力装置
JP2018162197A (ja) 水素製造装置
Sudarev et al. Higher Performance, Eco-Friendliness, and Reliability for the “SOFC+ μGTE” Hybrid Engine and a Lower Cost of the Power Generated

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540858

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018853791

Country of ref document: EP

Effective date: 20200407