JP2010209706A - バイオガス発電装置 - Google Patents

バイオガス発電装置 Download PDF

Info

Publication number
JP2010209706A
JP2010209706A JP2009053987A JP2009053987A JP2010209706A JP 2010209706 A JP2010209706 A JP 2010209706A JP 2009053987 A JP2009053987 A JP 2009053987A JP 2009053987 A JP2009053987 A JP 2009053987A JP 2010209706 A JP2010209706 A JP 2010209706A
Authority
JP
Japan
Prior art keywords
pressure
gas
biogas
engine
gas engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009053987A
Other languages
English (en)
Inventor
Hideki Toki
秀樹 時
Keito Itakura
啓人 板倉
Eriko Tanaka
江梨子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2009053987A priority Critical patent/JP2010209706A/ja
Publication of JP2010209706A publication Critical patent/JP2010209706A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

【課題】バイオガスをガスエンジンへ供給する圧力の変動によって当該ガスエンジンの始動及び停止を制御することができるバイオガス発電装置を提供する。
【解決手段】圧力Vを予め設定したエンジン始動圧力V1・V3・V5、エンジン駆動最大圧力V7、エンジン駆動最低圧力V2・V4・V6と照合して、前記バイオガスの圧力Vがエンジン始動圧力V1・V3・V5以上になった場合は、駆動することができる最大の台数のガスエンジン発電機を駆動し、全ての台数のガスエンジン発電機を駆動している状態で、前記バイオガスの圧力がエンジン駆動最大圧力V7以上になった場合は、余剰ガス燃焼装置17を駆動し、前記バイオガスの圧力がエンジン駆動最低圧力V2・V4・V6以下になった場合には、余剰ガス燃焼装置17及び駆動することができないガスエンジン発電機61・62・63を停止するように制御する。
【選択図】図3

Description

本発明は、バイオガス発電装置の技術に関し、特にメタン発酵槽で発生したバイオガスを使用してガスエンジンを駆動させ、該ガスエンジンに付設した発電機で発電するバイオガス発電装置の技術に関する。
従来、下水汚泥、有機性廃水、厨芥類などの食品残渣及び糞尿等の廃棄されていた有機性廃棄物を、嫌気性細菌を利用してメタン発酵することでメタンガス(気体状態のメタン)を主成分とした混合気体であるバイオガスを発生させ、該バイオガスを炭化水素系化石燃料ガスの代わりに使用して、発電等に利用するバイオガス発電装置が公知となっている(例えば、特許文献1参照)。また、前記バイオガス発電装置の一例として、該バイオガスを炭化水素系化石燃料ガスの代わりに使用して、ガスエンジン発電機を駆動させ、発電するバイオガス発電装置は公知となっている(例えば、特許文献2または特許文献3参照)。
特開2006−272160号公報 特開2004−293465号公報 特開2000−152799号公報
しかし、メタン発酵より得られるバイオガスの成分はメタンガスの他、二酸化炭素、シロキサン(ケイ素化合物)、硫化水素、及び精製装置にて注入されることのある酸素等が含まれており、このままガスエンジンの燃料として使用した場合、人体へ悪影響を及ぼしたり、ガスエンジンの故障の原因となったりすることがある。
また、メタン発酵によるバイオガスの供給は常に一定ではなく発生量の変動により、ガスエンジンへ供給されるバイオガスの圧力が変動してガスエンジンの故障の原因となっていた。
また、余剰バイオガスの発生時やガスエンジン発電機のメンテナンス時に環境負荷の高いメタンガスが放散されることがある。
そこで、本発明は、かかる課題に鑑み、バイオガスをガスエンジンへ供給する圧力の変動によって当該ガスエンジンの始動及び停止を制御することができるバイオガス発電装置を提供する。
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
即ち、請求項1においては、有機廃棄物よりメタンガスを主成分とするバイオガスを発生させるメタン発酵槽と、前記メタン発酵槽で発生したバイオガスから有害な気体を分離して除去する精製装置と、有害な気体及び酸素の濃度を連続的に確認する連続モニタリング装置と、前記バイオガスの圧力を検出する圧力検出装置と、前記メタン発酵槽から発生したバイオガスを貯蔵するガス貯蔵装置と、前記ガス貯蔵装置から供給されるバイオガスと空気とを燃焼させて、ガスエンジンを駆動して発電機を駆動させる複数のガスエンジン発電機と、前記ガスエンジン発電機への余剰バイオガスを燃焼させる余剰ガス燃焼装置と、前記圧力検出装置の検出値、及び連続モニタリング装置の計測値を入力してガスエンジン発電機と余剰ガス燃焼装置の始動及び停止を制御する制御装置と、を具備するバイオガス発電装置において、前記制御装置によって、前記圧力検出装置で検出したバイオガスの圧力を予め設定したエンジン始動圧力、エンジン駆動最大圧力、エンジン駆動最低圧力と照合して、前記バイオガスの圧力がエンジン始動圧力以上になった場合は、当該バイオガス中のメタンガスで駆動することができる最大の台数のガスエンジン発電機を駆動し、全ての台数のガスエンジン発電機を駆動している状態で、前記バイオガスの圧力がエンジン駆動最大圧力以上になった場合は、余剰ガス燃焼装置を駆動し、前記バイオガスの圧力がエンジン駆動最低圧力以下になった場合には、余剰ガス燃焼装置及び当該バイオガス中のメタンガスで駆動することができないガスエンジン発電機を停止する、ように制御するものである。
本発明の効果として、以下に示すような効果を奏する。
請求項1においては、バイオガスの供給量に合わせて、該供給量で駆動することができる最大の台数のガスエンジン発電機を駆動させることができる。また、全てのガスエンジン発電機が駆動している時に、必要とする以上のバイオガスが供給された場合には、その余剰バイオガス中のメタンガスを余剰ガス燃焼装置によって燃焼させるため、環境負荷の高いメタンガスを空気中に排出することを防止できる。
本発明の一実施例に係るバイオガス発電装置の全体的な構成を示したブロック図。 制御装置のブロック図。 圧力によるガスエンジン発電機の始動・停止制御及び余剰ガス燃焼装置の点火制御のフローチャート図。 圧力によるガスエンジン発電機の始動・停止制御及び余剰ガス燃焼装置の点火制御のフローチャート図。 連続モニタリングによるガスエンジン発電機の始動・停止制御及び余剰ガス燃焼装置の点火制御のフローチャート図。
次に、発明の実施の形態を説明する。
図1は本発明の一実施例に係るバイオガス発電装置の全体的な構成を示したブロック図、図2は制御装置のブロック図、図3は圧力によるガスエンジン発電機の始動・停止制御及び余剰ガス燃焼装置の点火制御のフローチャート図である。図4は圧力によるガスエンジン発電機の始動・停止制御及び余剰ガス燃焼装置の点火制御のフローチャート図、図5は連続モニタリングによるガスエンジン発電機の始動・停止制御及び余剰ガス燃焼装置の点火制御のフローチャート図である。
まず、本発明にかかるバイオガス発電装置1について説明する。
図1に示すように、バイオガス発電装置1は、有機廃棄物よりメタンガスを主成分とする混合気体であるバイオガスを発生させるメタン発酵槽11と、メタン発酵槽11で発生したバイオガスから有害な気体を分離して除去する精製装置12と、有害な気体及び酸素の濃度を連続的に確認するために有害な気体及び酸素の濃度の計測を行う連続モニタリング装置14と、バイオガスの圧力を検出する圧力検出装置13と、バイオガスを貯蔵するガス貯蔵装置15と、ガス貯蔵装置15から供給されるバイオガスに含まれるメタンガスを燃焼して、第一ガスエンジン41、第二ガスエンジン42及び第三ガスエンジン43を駆動して第一発電機51、第二発電機52及び第三発電機53を駆動させる複数のガスエンジン発電機である第一ガスエンジン発電機61、第二ガスエンジン発電機62、及び第三ガスエンジン発電機63と、第一ガスエンジン発電機61、第二ガスエンジン発電機62、及び第三ガスエンジン発電機63駆動時に必要とする以上のバイオガスが供給された場合には、そのバイオガス中のメタンガスを燃焼させる余剰ガス燃焼装置17と、圧力検出装置13の検出値、及び連続モニタリング装置14の計測値を入力して第一ガスエンジン発電機61、第二ガスエンジン発電機62、第三ガスエンジン発電機63及び余剰ガス燃焼装置17の始動及び停止を制御する制御装置18とを具備する。
<メタン発酵槽>
メタン発酵槽11は、食品工場廃水等の有機性廃棄物を投入し、メタン発酵を行いバイオガスを発生させるものである。メタン発酵槽11の一例として、沈降速度の大きい粒子化(グラニュール化)したメタン発酵菌を高濃度に保持し、廃水を高効率にメタン発酵処理するという特徴を持つ菌体グラニュールを使用した廃水処理方法、例えばUASB(Upflow Anaerobic Sludge Blanket)法を使用した発酵槽がある。メタン発酵槽11より発生したメタンガスを含む混合気体であるバイオガスは配管21を通って精製装置12へと送られる。
配管21には、手動弁23が設けられており、第一ガスエンジン発電機61、第二ガスエンジン発電機62、第三ガスエンジン発電機63及び余剰ガス燃焼装置17が全て停止している際には、手動弁23を閉じることによりメタン発酵槽11からのバイオガスの供給を停止させることが可能となっている。
<精製装置>
精製装置12において、触媒や吸着等の作用によってバイオガスから硫化水素が除去され、シロキサン(ケイ素化合物)が除去される。前記バイオガスからシロキサンが除去されることにより、第一ガスエンジン41、第二ガスエンジン42及び第三ガスエンジン43内部でシロキサンが固化するのを防止することができる。
<ガス貯蔵装置>
精製装置12と連通する配管22には蓄圧手段となるガス貯蔵装置15が連通している。ガス貯蔵装置15は、例えば、前記バイオガスの圧力が高くなると大きく膨らみ、バイオガスの圧力が低下すると小さく萎むガス不透過物で構成されている。ガス貯蔵装置15は球状や円筒状に構成されて、二重構造となっており外側の袋と内側の袋との間に一定の圧力で圧力調整気体を充填しておくことにより、前記圧力調整気体の圧力よりもバイオガスの圧力が大きい場合にはガス貯蔵装置15は膨らみバイオガスが貯蔵され、一方、第一ガスエンジン発電機61の駆動等により、前記圧力調整気体の圧力よりもバイオガスの圧力が小さくなった場合にはガス貯蔵装置15は萎んで、ガス貯蔵装置15から配管22へと貯蔵されていたバイオガスが供給されることとなる。但し、この構成は限定するものではなく、必要とするガス量を収容できる容器内を弾性体膜で仕切る構成としたりすることもできる。
<ガスエンジン発電機>
精製装置12に複数のガスエンジン発電機が配管22を介して連通されている。ここで本実施例ではガスエンジン発電機は三台設けており、バイオガス中のメタンガスが増えるにつれて始動する順に第一ガスエンジン発電機61、第二ガスエンジン発電機62、及び第三ガスエンジン発電機63とする。
なおガスエンジン発電機の数は三台に限定するものではなく、前記バイオガス発電装置1は四台以上のガスエンジン発電機を具備する構成とすることも可能である。
配管22には、ガス貯蔵装置15と第一ガスエンジン発電機61、第二ガスエンジン発電機62、及び第三ガスエンジン発電機63との間にそれぞれ第一電磁弁71、第二電磁弁72及び第三電磁弁73が介装され、第一電磁弁71、第二電磁弁72及び第三電磁弁73にそれぞれ設けた第一ソレノイド71a、第二ソレノイド72a及び第三ソレノイド73aは前記制御装置18と接続されている。
次に第一ガスエンジン発電機61の構成について説明する。
第一ガスエンジン発電機61は、第一ガスエンジン41、第一発電機51、及び第一始動・停止装置81とを具備している。第一ガスエンジン41と第一発電機51は直結して配設されており、第一ガスエンジン41の出力軸の回転により第一発電機51の磁石またはコイルが回転されることによって発電が可能となる。第一ガスエンジン41には第一始動・停止装置81が設けられて、制御装置18と接続されている。制御装置18は圧力検出装置13による検出値が第一エンジン始動圧力V1以上であると第一ソレノイド71aに信号を送り第一電磁弁71を開き、第一始動・停止装置81により第一ガスエンジン41を始動する。第一エンジン駆動最低圧力V2以下となると第一電磁弁71を閉じて第一ガスエンジン41も停止させる。
また、第二ガスエンジン発電機62は、第二ガスエンジン42、第二発電機52、第二始動・停止装置82とを具備しており、それぞれの構成は第一ガスエンジン発電機61と同様の構成であるので省略する。
また、第三ガスエンジン発電機63は、第三ガスエンジン43、第三発電機53、第三始動・停止装置83とを具備しており、それぞれの構成は第一ガスエンジン発電機61と同様の構成であるので省略する。
<余剰ガス燃焼装置>
また、精製装置12に余剰ガス燃焼装置17が配管22を介して連通されている。配管22には精製装置12と余剰ガス燃焼装置17との間に燃焼装置用電磁弁75が介装され、燃焼装置用電磁弁75の燃焼装置用ソレノイド75aは制御装置18と接続されている。余剰ガス燃焼装置17は、第一ガスエンジン41、第二ガスエンジン42、及び第三ガスエンジン43を駆動した時に必要とする以上の余剰バイオガスに含まれるメタンガスを燃焼させることにより二酸化炭素及び水を生成して、環境に負荷を与えず、バイオガスを排出するための装置である。
余剰ガス燃焼装置17には、点火装置91が設けられており、制御装置18と接続されている。点火装置91は、圧力検出装置13による検出値がエンジン駆動最大圧力V7以上であると燃焼装置用ソレノイド75aに信号を送り燃焼装置用電磁弁75を開き、点火装置91を作動させ、余剰ガスを燃焼させる。また、エンジン駆動最大圧力V7以下になると、燃焼装置用ソレノイド75aに信号を送り燃焼装置用電磁弁75を閉じて余剰ガス燃焼装置17を停止させる構成となっている。
また、精製装置12とガス貯蔵装置15、第一ガスエンジン発電機61、第二ガスエンジン発電機62、第三ガスエンジン発電機63、及び余剰ガス燃焼装置17と連通する配管22の中途部には、配管22内のバイオガスの圧力Vを計測する圧力検出装置13が設けられている。前記圧力検出装置13は検出した圧力Vを制御装置18へと入力する。
また、精製装置12とガス貯蔵装置15、第一ガスエンジン発電機61、第二ガスエンジン発電機62、第三ガスエンジン発電機63、及び余剰ガス燃焼装置17と連通する配管22の中途部には、連続モニタリング装置14が設けられている。連続モニタリング装置14は精製装置12によって精製されたバイオガスを連続モニタリングし、有害物質である硫化水素H2Sの濃度CH2Sを計測するものである。また、連続モニタリング装置14はバイオガスに含まれる酸素O2の濃度CO2を計測するものである。連続モニタリング装置14は検出した硫化水素の濃度CH2S及び酸素の濃度CO2を制御装置18へと入力する。硫化水素の濃度及び酸素の濃度が設定値以上となると、制御装置18は第一ガスエンジン発電機61、第二ガスエンジン発電機62、及び第三ガスエンジン発電機63を停止させ、設定値以下となると駆動させる。
<制御装置>
次に制御装置18について説明する。
図2に示すように制御装置18は入力側に圧力検出装置13及び連続モニタリング装置14が接続されており、出力側には第一始動・停止装置81、第二始動・停止装置82、第三始動・停止装置83、点火装置91、第一ソレノイド71a、第二ソレノイド72a、第三ソレノイド73a、及び燃焼装置用ソレノイド75aが接続されている。
<制御手段>
次に、制御装置18による制御の流れについて図3から図5のフローチャートを用いて説明する。
まず、バイオガスの圧力Vによる第一ガスエンジン発電機61、第二ガスエンジン発電機62、及び第三ガスエンジン発電機63の始動・停止制御、及び、余剰ガス燃焼装置17の点火制御について図3から図4のフローチャートを用いて説明する。
まず、図3に示すように配管22内のバイオガスの圧力Vが第一エンジン始動圧力V1以上であるか否かを判断する(ステップS10)。バイオガスの圧力Vが第一エンジン始動圧力V1未満であった場合には、第一電磁弁71、第二電磁弁72、第三電磁弁73、及び、燃焼装置用電磁弁75が閉じられ、引き続きバイオガスの圧力Vを圧力検出装置13で検出して、ステップS10を処理する。バイオガスの圧力Vが第一エンジン始動圧力V1以上であった場合には、第一ガスエンジン発電機61を駆動するのに十分な圧力があるものと判断し、第一ソレノイド71aに信号を送り、第一電磁弁71を開いて、第一始動・停止装置81を「ON」にして、第一ガスエンジン発電機61を始動させる(ステップS20)。
次に、第一ガスエンジン発電機61が始動しているときに圧力Vが第二エンジン始動圧力V3以上になっているか否かを判断する(ステップS30)。
圧力Vが第二エンジン始動圧力V3未満である場合には、続いて圧力Vが第一エンジン駆動最低圧力V2以下であるかを判断する(ステップS31)。圧力Vが第一エンジン駆動最低圧力V2より大きい場合には、再びステップS30を行う。また、圧力Vが第一エンジン駆動最低圧力V2以下の場合には、第一ガスエンジン発電機61の駆動に必要な圧力が供給されていないとして、第一ソレノイド71aに信号を送り第一電磁弁71を閉じて、第一始動・停止装置81を「OFF」にして、第一ガスエンジン発電機61を停止する(ステップS32)。そして、再びステップS10へ戻る。
また、ステップS30において圧力Vが第二エンジン始動圧力V3以上である場合には、バイオガス中のメタンガスがまだ十分に有り、第二ガスエンジン発電機62を駆動するのに十分な圧力があるものと判断し、第二ソレノイド72aに信号を送り、第二電磁弁72を開いて、第二始動・停止装置82を「ON」にして、第二ガスエンジン発電機62を始動させる(ステップS40)。
次に第一ガスエンジン発電機61及び第二ガスエンジン発電機62が始動しているときに圧力Vが第三ガスエンジン発電機63を始動するのに十分な第三エンジン始動圧力V5以上になっているか否かを判断する(ステップS50)。
圧力Vが第三エンジン始動圧力V5未満である場合には、続いて圧力Vが第二ガスエンジン発電機62を駆動するのに必要な第二エンジン駆動最低圧力V4以下であるかを判断する(ステップS51)。圧力Vが第二エンジン駆動最低圧力V4より大きい場合には、再びステップS50を処理する。また、圧力Vが第二エンジン駆動最低圧力V4以下の場合には、第二ガスエンジン発電機62の駆動に必要な圧力が供給されていないとして、第二ソレノイド72aに信号を送り第二電磁弁72を閉じて、第二始動・停止装置82を「OFF」にして、第二ガスエンジン発電機62を停止する(ステップS52)。
さらに、圧力Vが第一エンジン駆動最低圧力V2以下であるかを判断する(ステップS53)。圧力Vが第一エンジン駆動最低圧力V2以下である場合には、第一ガスエンジン発電機61の駆動に必要な圧力が供給されていないとして、ステップS32で、第一ソレノイド71aに信号を送り第一電磁弁71を閉じて、第一始動・停止装置81を「OFF」にして、第一ガスエンジン発電機61を停止する。ステップS32以降の制御フローは前記と同様であるので省略する。
また、ステップS53において圧力Vが第一エンジン駆動最低圧力V2より大きい場合には、圧力Vが第二エンジン始動圧力V3以上になっているか否かを判断する(ステップS54)。圧力Vが第二エンジン始動圧力V3未満である場合には、ステップS53へ戻り、圧力Vが第一エンジン駆動最低圧力V2以下であるかを判断する。
圧力Vが第二エンジン始動圧力V3以上であった場合には、バイオガス中のメタンガスがまだ十分に有り、第二ガスエンジン発電機62を駆動するのに十分な圧力があるものと判断し、第二ソレノイド72aに信号を送り、第二電磁弁72を開いて、第二始動・停止装置82を「ON」にして、第二ガスエンジン発電機62を始動させる(ステップS40)。
また、ステップS50において前記圧力Vが第三エンジン始動圧力V5以上である場合には、バイオガス中のメタンガスがまだ十分に有り、第三ガスエンジン発電機63を駆動するのに十分な圧力があるものと判断し、第三ソレノイド73aに信号を送り、第三電磁弁73を開いて、第三始動・停止装置83を「ON」にして、第三ガスエンジン発電機63を始動させる(ステップS60)。
次に、第一ガスエンジン発電機61、第二ガスエンジン発電機62、及び第三ガスエンジン発電機63が始動しているときに圧力Vがエンジン駆動最大圧力V7以上になっているか否かを判断する(ステップS70)。
圧力Vがエンジン駆動最大圧力V7未満である場合には、続いて圧力Vが第三ガスエンジン発電機63を駆動するのに必要な第三エンジン駆動最低圧力V6以下であるかを判断する(ステップS71)。圧力Vが第三エンジン駆動最低圧力V6より大きい場合には、再びステップS70を処理する。また、圧力Vが第三エンジン駆動最低圧力V6以下の場合には、第三ガスエンジン発電機63の駆動に必要な圧力が供給されていないとして、第三ソレノイド73aに信号を送り第三電磁弁73を閉じて、第三始動・停止装置83を「OFF」にして、第三ガスエンジン発電機63を停止する(ステップS72)。
さらに、圧力Vが第二エンジン駆動最低圧力V4以下であるかを判断する(ステップS73)。圧力Vが第二エンジン駆動最低圧力V4以下である場合には、第二ガスエンジン発電機62の駆動に必要な圧力が供給されていないとして、ステップS52で、第二ソレノイド72aに信号を送り第二電磁弁72を閉じて、第二始動・停止装置82を「OFF」にして、第二ガスエンジン発電機62を停止する。ステップS52以降の制御フローは前記と同様であるので省略する。
また、ステップS73において圧力Vが第二エンジン駆動最低圧力V4より大きい場合には、圧力Vが第三エンジン始動圧力V5以上になっているか否かを判断する(ステップS74)。圧力Vが第三エンジン始動圧力V5未満である場合には、ステップS73へ戻り、圧力Vが第二エンジン駆動最低圧力V4以下であるかを判断する。
圧力Vが第三エンジン始動圧力V5以上であった場合には、バイオガス中のメタンガスがまだ十分に有り、第三ガスエンジン発電機63を駆動するのに十分な圧力があるものと判断し、第三ソレノイド73aに信号を送り、第三電磁弁73を開いて、第三始動・停止装置83を「ON」にして、第三ガスエンジン発電機63を始動させる(ステップS60)。
また、ステップS70において前記圧力Vがエンジン駆動最大圧力V7以上である場合には、第一ガスエンジン発電機61、第二ガスエンジン発電機62及び第三ガスエンジン発電機63の駆動に必要なバイオガス中のメタンガス以上の余剰ガスが発生しているものと判断し、燃焼装置用ソレノイド75aに信号を送り燃焼装置用電磁弁75を開いて、点火装置91を「ON」にして余剰ガス燃焼装置17を始動させる(ステップS80)。
次に、第一ガスエンジン発電機61、第二ガスエンジン発電機62、第三ガスエンジン発電機63、及び余剰ガス燃焼装置17が始動しているときに圧力Vがエンジン駆動最大圧力V7以下になっているか否かを判断する(ステップS90)。
圧力Vがエンジン駆動最大圧力V7より大きい場合には、引き続きバイオガスの圧力Vを圧力検出装置13で検出して、ステップS90を処理する。圧力Vがエンジン駆動最大圧力V7以下の場合には、第一ガスエンジン発電機61、第二ガスエンジン発電機62、及び第三ガスエンジン発電機63の駆動に必要なバイオガス中のメタンガス以上のガスが発生していないとして、燃焼装置用ソレノイド75aに信号を送り燃焼装置用電磁弁75を閉じて、余剰ガス燃焼装置17を停止する(ステップS92)。
さらに、圧力Vが第三エンジン駆動最低圧力V6以下であるかを判断する(ステップS93)。圧力Vが第三エンジン駆動最低圧力V6以下である場合には、第三ガスエンジン発電機63の駆動に必要な圧力が供給されていないとして、ステップS72で、第三ソレノイド73aに信号を送り第三電磁弁73を閉じて、第三始動・停止装置83を「OFF」にして、第三ガスエンジン発電機63を停止する。ステップS72以降の制御フローは前記と同様であるので省略する。
また、ステップS93において圧力Vが第三エンジン駆動最低圧力V6より大きい場合には、圧力Vがエンジン駆動最大圧力V7以上になっているか否かを判断する(ステップS94)。圧力Vがエンジン駆動最大圧力V7未満である場合には、ステップS93へ戻り、圧力Vが第三エンジン駆動最低圧力V6以下であるかを判断する。
ステップS94において前記圧力Vがエンジン駆動最大圧力V7以上である場合には、第一ガスエンジン発電機61、第二ガスエンジン発電機62及び第三ガスエンジン発電機63の駆動に必要なバイオガス中のメタンガス以上のガスが発生しているものと判断し、燃焼装置用ソレノイド75aに信号を送り燃焼装置用電磁弁75を開いて、点火装置91を「ON」にして余剰ガス燃焼装置17を始動させる(ステップS80)。
なお、第一エンジン始動圧力V1、第二エンジン始動圧力V3、第三エンジン始動圧力V5、第一エンジン駆動最低圧力V2、第二エンジン駆動最低圧力V4、第三エンジン駆動最低圧力V6、及びエンジン駆動最大圧力V7は制御装置18の記憶手段に記憶され、設定操作手段によりそれぞれの値を変更可能に構成している。また、第一エンジン始動圧力V1、第二エンジン始動圧力V3、及び第三エンジン始動圧力V5は同じ値とすることもできる。また、第一エンジン駆動最低圧力V2、第二エンジン駆動最低圧力V4、及び第三エンジン駆動最低圧力V6は同じ値とすることもできる。また、第一エンジン始動圧力V1は第一エンジン駆動最低圧力V2よりも大きい値である。同様に、第二エンジン始動圧力V3は第二エンジン駆動最低圧力V4よりも大きい値である。また、第三エンジン始動圧力V5は第三エンジン駆動最低圧力V6よりも大きい値である。
このように構成することにより、バイオガスの供給量に合わせて、該供給量で駆動することができる最大の台数のガスエンジン発電機を駆動させることができる。また、全てのガスエンジン発電機が駆動している時に、必要とする以上のバイオガスが供給された場合には、その余剰バイオガス中のメタンガスを余剰ガス燃焼装置17によって燃焼させるため、環境負荷の高いメタンガスを空気中に排出することを防止できる。
また、バイオガスの圧力が個々のガスエンジン発電機のガスエンジン駆動最低圧力以下である場合には、個々のガスエンジン発電機の回転不足により所望電圧が得られなかったり、電圧変動が生じたりすることを防止することが出来る。
本実施例のバイオガス発電装置1は、三台のガスエンジン発電機を具備しているが、ガスエンジン発電機の数はこれに限定するものではなく、例えば、四台目、五台目のガスエンジン発電機を具備する構成とすることも可能である。
この場合、前記ステップS70とステップS80との間にステップS40からステップS60と同様の処理を行うことで四台目以降のガスエンジン発電機を制御することができる。
次に連続モニタリング装置14による制御について説明する。
連続モニタリング装置14による制御は、連続モニタリング装置14によって計測された硫化水素の濃度CH2S及び酸素の濃度CO2をモニタリングし、該計測値より第一ガスエンジン発電機61、第二ガスエンジン発電機62及び第三ガスエンジン発電機63及び余剰ガス燃焼装置17を緊急停止するものである。
まず、図5に示すように、連続モニタリング装置14により硫化水素の濃度CH2S及び酸素の濃度CO2が第一設定濃度C1または第二設定濃度C2以上であるか否かを判断する(ステップS210)。硫化水素の濃度CH2Sが第一設定濃度C1未満であり、かつ、酸素の濃度CO2が第二設定濃度C2未満ならば、継続して連続モニタリング装置14によってモニタリングを行い、ステップS210のループ処理を行う。一方、硫化水素の濃度CH2Sが第一設定濃度C1以上、または、酸素の濃度CO2が第二設定濃度C2以上ならば、第一ガスエンジン発電機61、第二ガスエンジン発電機62、第三ガスエンジン発電機63、及び余剰ガス燃焼装置を緊急停止する(ステップS220)。
このように構成することにより、精製装置12に何らかの不具合が生じた場合であっても、人体に有害な硫化水素が残存しているバイオガスを排出することを防止し、また、硫化水素が第一ガスエンジン発電機61、第二ガスエンジン発電機62、第三ガスエンジン発電機63内に流入するのを防ぐことが可能となる。また、酸素が混合している場合に前記バイオガス発電装置1を停止することにより、メタンガスと酸素の混合による爆発の可能性を防止する。また、酸素と精製装置12内の反応済みの脱硫剤(酸化鉄)が反応して発熱するのを防止する。
1 バイオガス発電装置
11 メタン発酵槽
12 精製装置
13 圧力検出装置
14 連続モニタリング装置
15 ガス貯蔵装置
17 余剰ガス燃焼装置
18 制御装置
41 第一ガスエンジン
42 第二ガスエンジン
43 第三ガスエンジン
51 第一発電機
52 第二発電機
53 第三発電機
61 第一ガスエンジン発電機
62 第二ガスエンジン発電機
63 第三ガスエンジン発電機

Claims (1)

  1. 有機廃棄物よりメタンガスを主成分とするバイオガスを発生させるメタン発酵槽と、
    前記メタン発酵槽で発生したバイオガスから有害な気体を分離して除去する精製装置と、
    有害な気体及び酸素の濃度を連続的に確認する連続モニタリング装置と、
    前記バイオガスの圧力を検出する圧力検出装置と、
    前記メタン発酵槽から発生したバイオガスを貯蔵するガス貯蔵装置と、
    前記ガス貯蔵装置から供給されるバイオガスと空気とを燃焼させて、ガスエンジンを駆動して発電機を駆動させる複数のガスエンジン発電機と、
    前記ガスエンジン発電機への余剰バイオガスを燃焼させる余剰ガス燃焼装置と、
    前記圧力検出装置の検出値、及び連続モニタリング装置の計測値を入力してガスエンジン発電機と余剰ガス燃焼装置の始動及び停止を制御する制御装置と、
    を具備するバイオガス発電装置において、
    前記制御装置によって、
    前記圧力検出装置で検出したバイオガスの圧力を予め設定したエンジン始動圧力、エンジン駆動最大圧力、エンジン駆動最低圧力と照合して、
    前記バイオガスの圧力がエンジン始動圧力以上になった場合は、当該バイオガス中のメタンガスで駆動することができる最大の台数のガスエンジン発電機を駆動し、
    全ての台数のガスエンジン発電機を駆動している状態で、前記バイオガスの圧力がエンジン駆動最大圧力以上になった場合は、余剰ガス燃焼装置を駆動し、
    前記バイオガスの圧力がエンジン駆動最低圧力以下になった場合には、余剰ガス燃焼装置及び当該バイオガス中のメタンガスで駆動することができないガスエンジン発電機を停止する、
    ように制御することを特徴とするバイオガス発電装置。
JP2009053987A 2009-03-06 2009-03-06 バイオガス発電装置 Pending JP2010209706A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053987A JP2010209706A (ja) 2009-03-06 2009-03-06 バイオガス発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053987A JP2010209706A (ja) 2009-03-06 2009-03-06 バイオガス発電装置

Publications (1)

Publication Number Publication Date
JP2010209706A true JP2010209706A (ja) 2010-09-24

Family

ID=42970134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053987A Pending JP2010209706A (ja) 2009-03-06 2009-03-06 バイオガス発電装置

Country Status (1)

Country Link
JP (1) JP2010209706A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170836A (ja) * 2011-02-17 2012-09-10 Yanmar Co Ltd バイオガス発電装置
JP2012182876A (ja) * 2011-02-28 2012-09-20 Yanmar Co Ltd バイオガス発電装置
JP2012180753A (ja) * 2011-02-28 2012-09-20 Yanmar Co Ltd バイオガス発電装置
JP2012217896A (ja) * 2011-04-06 2012-11-12 Yanmar Co Ltd バイオガス発電装置
US8704619B2 (en) 2008-05-28 2014-04-22 Kyocera Corporation Bandpass filter and radio communication module and radio communication device using the same
US8710942B2 (en) 2008-05-28 2014-04-29 Kyocera Corporation Bandpass filter and radio communication module and radio communication device using the same
WO2019049629A1 (ja) 2017-09-07 2019-03-14 株式会社ルネッサンス・エナジー・リサーチ 発電システム
CN113030387A (zh) * 2021-03-11 2021-06-25 东方电气自动控制工程有限公司 一种测量燃气轮机排气甲烷含量的装置
US11247169B2 (en) 2016-03-09 2022-02-15 Renaissance Energy Research Corporation Combustion system
KR102511015B1 (ko) * 2022-10-28 2023-03-17 주식회사 스마트파워 IoT를 이용한 바이오가스 발전설비의 모니터링 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306680A (ja) * 2002-04-17 2003-10-31 Jfe Engineering Kk 廃棄物処理設備及び廃棄物処理設備の運転方法
JP2006036849A (ja) * 2004-07-23 2006-02-09 Kobelco Eco-Solutions Co Ltd バイオガスの処理利用システム及びバイオガスの処理利用方法
JP2006272160A (ja) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd バイオガスプラントの制御装置およびバイオガスプラントの制御方法
JP2008062138A (ja) * 2006-09-05 2008-03-21 Kanbe Ichi バイオガスの精製方法及びバイオガス精製設備

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306680A (ja) * 2002-04-17 2003-10-31 Jfe Engineering Kk 廃棄物処理設備及び廃棄物処理設備の運転方法
JP2006036849A (ja) * 2004-07-23 2006-02-09 Kobelco Eco-Solutions Co Ltd バイオガスの処理利用システム及びバイオガスの処理利用方法
JP2006272160A (ja) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd バイオガスプラントの制御装置およびバイオガスプラントの制御方法
JP2008062138A (ja) * 2006-09-05 2008-03-21 Kanbe Ichi バイオガスの精製方法及びバイオガス精製設備

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8704619B2 (en) 2008-05-28 2014-04-22 Kyocera Corporation Bandpass filter and radio communication module and radio communication device using the same
US8710942B2 (en) 2008-05-28 2014-04-29 Kyocera Corporation Bandpass filter and radio communication module and radio communication device using the same
JP2012170836A (ja) * 2011-02-17 2012-09-10 Yanmar Co Ltd バイオガス発電装置
JP2012182876A (ja) * 2011-02-28 2012-09-20 Yanmar Co Ltd バイオガス発電装置
JP2012180753A (ja) * 2011-02-28 2012-09-20 Yanmar Co Ltd バイオガス発電装置
JP2012217896A (ja) * 2011-04-06 2012-11-12 Yanmar Co Ltd バイオガス発電装置
US11247169B2 (en) 2016-03-09 2022-02-15 Renaissance Energy Research Corporation Combustion system
WO2019049629A1 (ja) 2017-09-07 2019-03-14 株式会社ルネッサンス・エナジー・リサーチ 発電システム
US11214746B2 (en) 2017-09-07 2022-01-04 Renaissance Energy Research Corporation Power generation system
CN113030387A (zh) * 2021-03-11 2021-06-25 东方电气自动控制工程有限公司 一种测量燃气轮机排气甲烷含量的装置
KR102511015B1 (ko) * 2022-10-28 2023-03-17 주식회사 스마트파워 IoT를 이용한 바이오가스 발전설비의 모니터링 시스템

Similar Documents

Publication Publication Date Title
JP2010209706A (ja) バイオガス発電装置
JP2009114886A (ja) バイオガス発電システム及びバイオガス発電の制御方法
KR101187004B1 (ko) 바이오가스 고도정제를 위한 선택적 다단 흡수 장치 및 방법
JP2006272160A (ja) バイオガスプラントの制御装置およびバイオガスプラントの制御方法
Yu et al. Formation and characteristics of a ternary pH buffer system for in-situ biogas upgrading in two-phase anaerobic membrane bioreactor treating starch wastewater
JP5698556B2 (ja) バイオガス発電装置
JP5166014B2 (ja) 嫌気性処理における溶存硫化水素の除去装置
Perez-Garcia et al. Effect of the pH influent conditions in fixed-film reactors for anaerobic thermophilic treatment of wine-distillery wastewater
JP5490578B2 (ja) バイオガスの精製システム
CN114853300B (zh) 注氧脱硫的污泥处理方法及厌氧消化池
JP7404080B2 (ja) 排水処理装置及び排水処理方法並びに処理システム
JP5636311B2 (ja) バイオガス発電装置
KR101413142B1 (ko) 배가스 내 이산화탄소의 생물학적 메탄 전환 장치
KR20150104368A (ko) 막 분리와 엔진 연소기술을 이용한 바이오메탄 및 전기 동시 생산 장치
JP5211718B2 (ja) 燃料電池発電装置
JP2010253400A (ja) 光合成を利用したpH上昇制御装置
JP5764351B2 (ja) バイオガス発電装置
JP2006110495A (ja) 水素醗酵装置
US20140305852A1 (en) Anaerobic treatment system and anaerobic treatment method
JP2012217896A (ja) バイオガス発電装置
JP2005270862A (ja) 嫌気性処理装置
KR101403057B1 (ko) 고정상 담체를 이용한 배가스 내 이산화탄소 저감용 생물학적 메탄 전환장치
JP2005330334A (ja) 燃料電池発電装置用の燃料ガス供給装置
JP5829182B2 (ja) メタン発酵システム及びメタン発酵方法
JP5329499B2 (ja) 生物学的排水処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625