WO2022092031A1 - ガス分離方法及び装置 - Google Patents

ガス分離方法及び装置 Download PDF

Info

Publication number
WO2022092031A1
WO2022092031A1 PCT/JP2021/039318 JP2021039318W WO2022092031A1 WO 2022092031 A1 WO2022092031 A1 WO 2022092031A1 JP 2021039318 W JP2021039318 W JP 2021039318W WO 2022092031 A1 WO2022092031 A1 WO 2022092031A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas separation
membrane
membrane module
raw material
Prior art date
Application number
PCT/JP2021/039318
Other languages
English (en)
French (fr)
Inventor
直樹 野口
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN202180072666.6A priority Critical patent/CN116547057A/zh
Priority to JP2022559127A priority patent/JPWO2022092031A1/ja
Priority to EP21886149.0A priority patent/EP4238631A4/en
Publication of WO2022092031A1 publication Critical patent/WO2022092031A1/ja
Priority to US18/308,352 priority patent/US20230264142A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/144Purification; Separation; Use of additives using membranes, e.g. selective permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/05Biogas

Definitions

  • the present invention relates to a method and an apparatus for separating a flammable component from a gas containing a flammable component by using a selective gas permeable membrane (hereinafter, may be referred to as a membrane).
  • a membrane selective gas permeable membrane
  • organic membranes which have been widely used for gas separation, have low separation performance (selectivity between flammable gas and non-flammable gas), so that the permeation side contains a large amount of flammable gas.
  • concentration of flammable gas is high, if air is mixed in from the outside due to a leak, it easily enters the explosion range.
  • Patent Document 2 describes that in the membrane separation method for flammable organic vapor-containing exhaust gas, an inert gas is flowed on the permeation side through which the flammable organic vapor permeates in order to avoid an explosion range.
  • the separation performance is usually high, so the content of the substance to be selectively separated decreases in the latter stage of separation.
  • the partial pressure that is the driving force for separation is reduced, and the amount of gas that permeates is extremely reduced. Therefore, it is usually necessary to increase the pressure on the non-permeation side or reduce the pressure on the permeation side in order to increase the pressure difference between the permeation side and the non-permeation side of the membrane.
  • the power of the compressor or the like becomes large, which is economically disadvantageous.
  • the pressure on the permeation side is reduced, some air may be mixed into the permeation gas due to leakage.
  • the concentration of the flammable component is extremely low, so that it usually does not fall within the explosion range.
  • the inventors have focused on the fact that the explosion range is entered only when a leak occurs and when a rapid increase in the concentration of flammable components occurs due to film breakage or the like, and the present invention is made.
  • the present invention is a method and an apparatus for membrane separation processing of a gas containing a flammable component by a membrane module, in which the operation of the membrane module is immediately stopped when a flammable component is mixed in the permeated gas. And to provide the device.
  • the gist of the present invention is as follows.
  • the raw material gas containing flammable components is pressurized and supplied to the primary side of the membrane module, the secondary side of the membrane module is depressurized to a lower pressure than the atmospheric pressure, and the primary gas having a high concentration of flammable components and flammable.
  • a gas separation method including a gas separation operation for separating a membrane into a secondary gas having a low sex component concentration, the composition of the secondary gas is detected, and when the composition falls within a specified range, the gas separation operation is performed.
  • a gas separation method characterized by stopping.
  • the raw material gas containing a flammable component is pressurized and supplied to the primary side of the membrane module, the secondary side of the membrane module is depressurized to a lower pressure than the atmospheric pressure, and the primary gas having a high concentration of flammable components and flammable.
  • a gas separation method including a gas separation operation that separates a membrane into a secondary gas having a low sex component concentration, the pressure or flow rate on the secondary side is detected, and when the detected pressure or flow rate exceeds the reference value, A gas separation method comprising stopping the gas separation operation.
  • a gas separation method comprising a combination of [1] and [2] or [3].
  • Valves are provided in the supply line of the raw material gas to the membrane module and the decompression line of the membrane module, respectively, and when the composition falls within the specified range, these valves are closed [1] or. [4] Gas separation method.
  • the specified range is the gas separation method according to any one of [1], [4] and [5], which is an explosion range.
  • a membrane module that separates a raw material gas containing a flammable component into a primary gas having a high flammable component concentration and a secondary gas having a low flammable component concentration, and the primary side of the membrane module.
  • a membrane separation device having a supply line having a pressurizing pump for pressurizing and supplying a raw material gas to a membrane module and a permeation line having a decompression pump for depressurizing the secondary side of the membrane module.
  • a gas separation device having a composition detecting means and a control means for stopping the pressurizing pump and the depressurizing pump when the composition falls within a specified range.
  • a membrane module that separates the raw material gas containing a flammable component into a primary gas having a high flammable component concentration and a secondary gas having a low flammable component concentration, and the primary side of the membrane module.
  • a membrane separation device having a supply line having a pressurizing pump for pressurizing and supplying the raw material gas, and a permeation line having a decompression pump for depressurizing the secondary side of the membrane module, the pressure on the secondary side is said to be
  • a gas separation device having a flow rate detecting means and a control means for stopping the pressurizing pump and the depressurizing pump when the pressure or the flow rate on the secondary side becomes larger than a specified value.
  • a gas separator composed of a combination of [12] and [13] or [14].
  • Valves are provided in the supply line of the raw material gas to the membrane module and the decompression line of the membrane module, respectively, and valve control means for closing these valves when the composition is within the specified range.
  • the gas separator of [12] or [15] having.
  • the specified range is the gas separation device according to any one of [12], [15] and [16], which is an explosion range.
  • the operation of the membrane module can be stopped immediately when a flammable component is mixed in the permeated gas.
  • the gas (raw material gas) to be treated in the present invention includes a flammable component and a non-flammable component.
  • the flammable component include hydrocarbon gases such as methane, ethane and propane, hydrogen and ammonia
  • examples of the non-flammable component include carbon dioxide (CO 2 ), nitrogen and halogen gas. Not limited.
  • Examples of the raw material gas containing such a flammable component and a non-flammable component include, but are not limited to, biogas, landfill gas, hot spring gas, coal mine gas, and natural gas.
  • Biogas is a gas obtained by methane fermentation of biomass. Biomass derived from landfills is landfill gas, sewage sludge is derived from digestion gas, food waste or livestock waste. It may be subdivided into biogas and called.
  • the concentration of combustible components in the raw material gas is 30 to 70% (volume%; the same applies hereinafter) for biogas and the concentration of flammable components excluding saturated water vapor, depending on the sampling method. It is about 20% to 70%, and in the case of hot spring gas, it is about 10 to 90% of methane.
  • the concentration of the flammable component in the raw material gas is preferably 20 to 95% from the viewpoint of economy and explosion avoidance.
  • a large number of tubular separation membranes are arranged inside the vessel, and the raw material gas is allowed to flow outside the tubular separation membrane to allow non-flammable components to permeate inside the tubular separation membrane, or inside the tubular separation membrane.
  • a material in which a raw material gas is passed through the membrane to allow a non-flammable component to permeate the outside of the tubular separation membrane is preferable, but it can also be applied to a honeycomb structure, a hollow fiber structure, a sheet structure and the like, and is not limited thereto.
  • tubular separation membrane one having a molecular sieve membrane as a selective gas permeable membrane on the inner peripheral surface and / or the outer peripheral surface of the tubular porous substrate is suitable.
  • the porous substrate functions as a support for supporting the molecular sieve membrane.
  • the material constituting the porous substrate is not particularly limited, and various materials such as glass, ceramics, metal, carbon molded body, and resin can be applied.
  • a ceramic support any porous inorganic substance having chemical stability capable of crystallizing zeolite into a film on the surface thereof may be used. Specific examples thereof include ceramic sintered bodies such as silica, ⁇ -alumina, ⁇ -alumina, mullite, zirconia, titania, itria, silicon nitride, and silicon carbide.
  • alumina and mullite such as ⁇ -alumina and ⁇ -alumina are preferable, and alumina is particularly preferable.
  • alumina and mullite such as ⁇ -alumina and ⁇ -alumina are preferable, and alumina is particularly preferable.
  • the porous substrate itself does not need to have molecular sieving ability.
  • the porous substrate has fine pores (pores, voids) that communicate the outer wall side (outer peripheral surface) and the inner wall side (inner peripheral surface).
  • the porous substrate has a porosity of usually 20% or more, preferably 25% or more, more preferably 30% or more, usually 80% or less, preferably 60% or less, more preferably 50% or less, and an average thereof.
  • the pore diameter is usually 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more, preferably 0.1 ⁇ m or more, and the upper limit is usually 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • a porous substrate having such pores can appropriately support the molecular sieving membrane with sufficient strength, and can allow molecules that have permeated the molecular sieving membrane to permeate at a sufficient speed. Alternatively, the molecules can reach the molecular sieve membrane at a sufficient rate.
  • the porosity and pore diameter of the porous substrate can be easily specified by a mercury intrusion method, observation of a cross section by SEM, or the like. The same applies to the average pore diameter, but it can also be calculated from the volume and mass using the true specific gravity.
  • the maximum diameter of the openings of the through pores extending from the outer peripheral surface to the inner peripheral surface of the porous substrate for forming the zeolite membrane as the molecular sieve membrane is usually 10 ⁇ m or less, preferably 8 ⁇ m or less.
  • the lower limit of the maximum diameter is preferably 0.05 ⁇ m or more.
  • all the penetrating portions extending from the outer peripheral surface to the inner peripheral surface may have the same pore diameter, and for example, as described in Japanese Patent Application Laid-Open No. 2005-2708887, the pore diameters are partially or stepwise different. May be used.
  • the tubular porous substrate has a circular cross section perpendicular to the tube axis direction on both the outer peripheral surface and the inner peripheral surface.
  • the thickness of the tubular porous substrate is not particularly limited. Although it varies depending on the material, porosity, etc., for example, the thickness is preferably 0.5 mm or more, more preferably 0.8 mm or more, still more preferably 1.0 mm or more.
  • the inner diameter of the tubular porous substrate is not particularly limited. Although it varies depending on the material, porosity, etc., for example, the ratio of the inner diameter (diameter) to the thickness of the above-mentioned porous substrate (inner diameter (mm) / thickness (mm)) is preferably 20 or less, more preferably 17 or less. , More preferably 13 or less, and particularly preferably 9 or less. In the case of a porous substrate made of a ceramic sintered body, the inner diameter is preferably 3 mm or more, particularly 5 mm or more, and preferably 20 mm or less, particularly 15 mm or less.
  • the length (axial length) of the porous substrate is not particularly limited.
  • the molecular sieve membrane is formed on the outer peripheral surface and / or the inner peripheral surface of the porous substrate.
  • the form of the molecular sieving membrane is not particularly limited as long as it can appropriately exert its molecular sieving ability.
  • the molecular sieve membrane may be either an organic membrane or an inorganic membrane, but an inorganic membrane is preferable.
  • the inorganic membrane is preferably any one of a zeolite membrane, a silica membrane, and a carbon membrane, or a combination thereof, and among them, a zeolite membrane or a silica membrane is preferable, and a zeolite membrane is particularly preferable from the viewpoint of separation performance, water resistance, and durability. Is preferable.
  • the zeolite is preferably an aluminosilicate, but Ga, Fe, B, Ti, Zr, Sn, Zn, etc. are used instead of Al as long as the performance of the membrane is not significantly impaired. May be used, and elements such as Ga, Fe, B, Ti, Zr, Sn, Zn, and P may be contained together with Al.
  • the skeleton of the crystalline zeolite forming the pores of the zeolite membrane is preferably a ring having an oxygen 8-membered ring or less, and more preferably an oxygen 6-8-membered ring.
  • Zeolite structures include, for example, AEI, AFG, ANA, CHA, DDR, EAB, ERI, ESV, FAR, FRA, GIS, ITE, KFI, LEV, LIO, LOS, LTA, LTN, MAR, MWF, PAU, RHO. , RTH, SOD, STI, TOR, UFI and the like.
  • n of the zeolite having an oxygen n-membered ring refers to the one having the largest number of oxygen atoms among the pores composed of the zeolite skeleton and the T element (element other than oxygen constituting the skeleton).
  • an organic template (structure-determining agent) can be used as needed, but usually there is no particular limitation as long as the template can create the desired zeolite structure, and there is no template. It is not necessary to use it if it can be synthesized with.
  • the silica content in the silica film is not particularly limited as long as the effect of the present invention is not significantly impaired, but for example, in the silicon oxide composition, for all positive elements including silicon.
  • the ratio of silicon is usually 50 mol% or more.
  • the silica film is formed on an inorganic porous substrate by a sol-gel method, a CVD method, a polymer precursor method, or the like.
  • a silica film can be formed by reacting a metal alkoxide with water on an inorganic porous substrate to form a gel by hydrolysis and dehydration condensation.
  • the opposed diffusion CVD method for example, when the inorganic porous substrate is a porous tubular substrate, oxygen is circulated inside and a silica source is circulated outside to form an amorphous silica layer in the pores of the substrate.
  • a silica film can be formed by vapor deposition.
  • a silica precursor such as alkoxysilane or polysilazane can be coated on an inorganic porous substrate and then heat-treated to form a silica film.
  • a carbon membrane precursor solution is dip-coated (immersed and coated) on a porous substrate, heat-treated at about 600 to 800 ° C., and dried to form a carbon membrane.
  • the carbon film precursor include aromatic polyimide, polypyrrolone, polyflufuryl alcohol, polyvinylidene chloride, phenol resin, lignin derivative, wood tar, bamboo tar and the like.
  • the solvent an organic solvent such as tetrahydrofuran, acetone, methanol, ethanol and N-methylpyrrolidone can be preferably used.
  • the thickness of the molecular sieve membrane is not particularly limited, but the lower limit of the thickness of the zeolite membrane is usually 0.01 ⁇ m or more.
  • the upper limit of the thickness is preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the silica film may be a film composed of a single layer or a film composed of two or more layers, and the thickness thereof is preferably 1 nm or more.
  • the thickness is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the thickness of the carbon film is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or less.
  • the upper limit of the thickness is preferably 5 mm or less, more preferably 500 ⁇ m or less, but the film thickness is preferably thin as long as the film performance is not significantly impaired.
  • the method for forming the molecular sieve membrane on the surface of the porous substrate is not limited to the above-mentioned method.
  • a method of fixing a substance that can form a molecular sieve membrane to the surface of a porous substrate with a binder or the like and (2) impregnating a slurry or solution in which a substance that can form a molecular sieve membrane is dispersed with a porous substrate.
  • Examples thereof include a method of fixing the substance to the surface of the porous substrate, and (3) a method of crystallizing a substance (particularly zeolite) that can form a molecular sieve membrane on the surface of the porous substrate into a film. See, for example, International Publication No. 2013/1256060 pamphlet, etc.).
  • a form in which the molecular sieve membrane is formed only on the outer peripheral surface of the porous substrate a form in which the molecular sieve membrane is formed only on the inner peripheral surface of the porous substrate, and a molecular sieve on both the outer peripheral surface and the inner peripheral surface of the porous substrate. It may be in any form in which a film is formed. Usually, it is desirable that a molecular sieve membrane is formed on the outer peripheral surface of the porous substrate from the viewpoint that the coating material has an inward shrinkage force.
  • the separation coefficient ⁇ of the film is preferably 80 or more, preferably 100 or more, and particularly preferably 150 or more.
  • the separation coefficient ⁇ is expressed by the following equation.
  • the separation coefficient ⁇ may change depending on the separation conditions, but the separation coefficient ⁇ here is a value under the separation conditions in the separation operation of each membrane module.
  • the secondary side (permeation side) of the membrane module is depressurized by using a decompression pump so that the pressure is lower than the atmospheric pressure. Then, the gas composition, pressure, flow rate, etc. on the secondary side are analyzed by detecting them online or in-line, and the gas composition on the secondary side is within the specified range (for example, of combustible components) due to damage such as film breakage.
  • the specified range for example, of combustible components
  • the raw material gas supply and the decompression pump are stopped. Further, the valves installed on the raw material gas inflow side and the permeation gas outflow side of the membrane module may be closed. Any cause may fall within the above-mentioned specified range, but it is considered that the mixing of the raw material gas is most likely to occur. If the separation membrane is damaged during the separation operation, or if the separation membrane is not sufficiently sealed, the raw material gas may be mixed.
  • the reference value of the gas pressure on the secondary side is, for example, a value 10 kPa higher than the initial value or a value of the decompression degree specified by the secondary side 4b. Further, the reference value of the gas flow rate on the secondary side is, for example, a value 50% higher than the initial value.
  • stopping the pump means stopping the supply of the raw material gas and depressurization, and also includes the state in which the supply of substances by the pump, pressurization, and depressurization are not performed, such as in an idling state.
  • FIG. 1 shows an example of a gas separation device equipped with a membrane module.
  • the raw material gas containing the flammable component is introduced into the primary side 4a of the membrane module 4 via the pipe 1 having the pressurizing pump 2 and the valve (emergency isolation valve) 3.
  • the inside of the membrane module 4 is separated into a primary side 4a and a secondary side 4b by a membrane 4m.
  • the raw material gas contains methane (CH 4 ) as a flammable component and carbon dioxide gas (CO 2 ) as a non-flammable component
  • the membrane 4 m is a zeolite membrane.
  • Carbon dioxide gas permeates the zeolite membrane 4 m, and methane hardly permeates the zeolite membrane 4 m. Therefore, the methane-rich primary side outflow gas flows out to the pipe 5 from the primary side outlet of the membrane module 4.
  • a pipe 10 having a pressure sensor 6, a valve (emergency isolation valve) 7, a pressure reducing pump 8 and a methane sensor 9 for detecting methane concentration is connected to the secondary side 4b of the membrane module 4, and is connected by the pressure reducing pump 8.
  • the secondary side 4b is preferably depressurized to -30 kPaG or less, and particularly preferably -50 kPaG or less to a specified depressurization degree or less.
  • Any means other than the methane sensor may be used as long as it can detect the composition, and a gas sensor of a known method may be used. From the viewpoint of detecting flammable gas, it is preferable to use a methane sensor.
  • the carbon dioxide gas permeates the zeolite membrane 4 m and is taken out from the pipe 10 as a CO 2 rich gas.
  • the detection signals of the pressure sensor 6 and the methane sensor 9 are input to the control device 11, and the control device 11 is configured to stop the pumps 2 and 8 and close the valves 3 and 7 in an emergency. There is. Regarding the stop operation in an emergency, any operation other than the stop of the pump may be used as long as the separation operation is stopped.
  • the amount of raw material gas supplied per unit time is 40 mol parts of CO 2 and 460 mol parts of CH, and the raw material gas is pressurized to 600 kPaG by the pressurizing pump 2 and supplied to the membrane module 4.
  • the absolute pressure on the permeation side of the membrane is reduced to -30 kPaG, the permeence of CO 2 is 2.0E-06 mol / m 2 / Pa / s, the membrane area is 2.6 m 2 , and the separation coefficient ⁇ of the membrane is 83.
  • the amount of methane-rich gas, which is the primary outflow gas, per unit time is 23 mol parts of CO and 458 mol parts of CH.
  • the amount of CO 2 rich gas, which is the secondary outflow gas, per unit time is 37 mol parts of CO 2 and 42 mol parts of CH.
  • the zeolite separation membrane has high separation performance, when the supply pressure of the raw material gas is low, the partial pressure of the substance to be separated, which is the driving force for separation, becomes lower toward the outlet side of the primary chamber 4a. Separation performance is low. Therefore, in this embodiment, the decompression pump 8 is used.
  • the methane sensor 9 when the inflow of methane into the secondary side 4b is detected by the methane sensor 9 and the methane concentration falls within a specified range (for example, a range in which the methane concentration exceeds 20 vol% or an explosion range). It is determined that an abnormality such as film breakage has occurred, and the pressurizing pump 2 and the depressurizing pump 8 are stopped. Further, the valves 3 and 7 may be further closed.
  • a specified range for example, a range in which the methane concentration exceeds 20 vol% or an explosion range.
  • the separation operation may be stopped by stopping the pumps 2 and 8 when the detected flow rate exceeds the reference value (for example, a value 50% higher than the initial value). Further, the valves 3 and 7 may be further closed.
  • the reference value may be set in advance according to the separation conditions of the gas to be separated.
  • the pressure is further set to the reference value (for example, a value 10 kPa higher than the initial value).
  • the reference value for example, a value 10 kPa higher than the initial value.
  • the pressurizing pump 2 and the depressurizing pump 8 May be stopped. Further, the valves 3 and 7 may be closed.
  • JP-A-2020-192482 method specified by using a Pitot tube
  • (4) Replace the damaged separation membrane.
  • (5) Close the module.
  • (6) Perform preliminary operation. After the decompression pump 8 is operated, the raw material gas is introduced from the pipe 1, and the separation operation is restarted after the permeation amount or composition on the secondary side is stabilized. (7) Resume separation.
  • the composition changes from the point c to the point X. Therefore, there is a risk of entering the explosion range. Therefore, when the raw material gas contains methane or carbon dioxide as the main component, the inflow of methane to the secondary side 4b is detected by a methane sensor, a pressure sensor, or a flow meter as in the above embodiment, and the methane concentration.
  • the effect of stopping the pressurizing pump 2 and the depressurizing pump 8 is great when the pressure or the flow rate exceeds the reference value or the pressure or the flow rate exceeds the reference value. Further, if the valves 3 and 7 are configured to be closed, the effect is further enhanced.
  • the number of modules is one, but a connection method in which a plurality of modules are connected in series, a connection method in which a plurality of modules are connected in parallel, or a connection method in which series and parallel are used in combination may be used.
  • the composition, the flow rate, or the pressure may be detected in each module, or a specific number may be collectively detected in the composition, the flow rate, or the pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

透過ガス中へ可燃性成分混入が生じた場合に、直ちに膜モジュールの稼働を停止するガス分離方法及び装置が提供される。可燃性成分を含む原料ガスを加圧ポンプによって膜モジュールの一次側に供給し、膜モジュールの二次側を減圧ポンプによって大気圧よりも低圧に減圧し、可燃性成分濃度の高い一次側ガスと可燃性成分濃度の低い二次側ガスとに膜分離するガス分離方法において、該二次側ガスの組成を分析し、該組成が規定範囲になった場合に、前記加圧ポンプ及び減圧ポンプを停止することを特徴とするガス分離方法。

Description

ガス分離方法及び装置
 本発明は、可燃性成分を含むガスから選択的ガス透過膜(以下、膜ということがある。)を用いて可燃性成分を分離する方法及び装置に関する。
 メタン等の可燃性成分を含むガスから可燃性成分と他のガス成分とを膜分離することは広く行われている(例えば特許文献1,2)。
 従来、ガス分離に多く使用されてきた有機膜は、分離性能(可燃性ガスと非可燃性ガスの選択性)が低いため、透過側に可燃性ガスが多く含まれる。可燃性ガス濃度が高い場合に、リークにより外部から空気が混入すると、容易に爆発範囲に入る。
 特許文献2には、可燃性有機蒸気含有排ガスの膜分離方法において、爆発範囲を避けるために可燃性有機蒸気が透過する透過側に不活性ガスを流すことが記載されている。
特開平4-96995号公報 特開平5-293328号公報
 無機膜の場合は、通常、分離性能が高いため、分離の後段になると、選択分離される物質の含有量が低下する。それにより、分離の駆動力となる分圧が低下し、透過するガス量が極端に低下する。そのため、通常は膜の透過側と非透過側の分圧差を大きくするため、非透過側の圧力を高くするか、あるいは透過側を減圧する必要がある。圧力を高くするには、コンプレッサー等の動力が大きくなり経済的に不利となる。一方、透過側を減圧にすると、リークにより若干の空気が透過ガスに混入する可能性がある。しかしながら、分離性能が高い場合は、可燃性成分の濃度が極めて低くなっているため、通常は爆発範囲に入らない。爆発範囲に入るのは、リークが起こった場合に、更に膜破損などにより、急激な可燃性成分濃度の上昇が起こった場合のみであることに発明者らは注目し、本願発明を成した。
 すなわち、本発明は、可燃性成分を含むガスを膜モジュールにより膜分離処理する方法及び装置において、透過ガス中への可燃性成分混入が生じた場合に直ちに膜モジュールの稼働を停止するガス分離方法及び装置を提供することを課題とする。
 本発明の要旨は次の通りである。
[1] 可燃性成分を含む原料ガスを加圧して膜モジュールの一次側に供給し、膜モジュールの二次側を大気圧よりも低圧に減圧し、可燃性成分濃度の高い一次側ガスと可燃性成分濃度の低い二次側ガスとに膜分離するガス分離操作を含むガス分離方法において、該二次側ガスの組成を検知し、該組成が規定範囲に入った場合に、前記ガス分離操作を停止することを特徴とするガス分離方法。
[2] 可燃性成分を含む原料ガスを加圧して膜モジュールの一次側に供給し、膜モジュールの二次側を大気圧よりも低圧に減圧し、可燃性成分濃度の高い一次側ガスと可燃性成分濃度の低い二次側ガスとに膜分離するガス分離操作を含むガス分離方法において、該二次側の圧力又は流量を検出し、検出圧力、又は流量が基準値を超えたときに、前記ガス分離操作を停止することを特徴とするガス分離方法。
[3] 前記基準値が、検出圧力の場合は初期値より10kPaG以上高い値であり、流量の場合は初期値より50%以上大きい値である、[2]に記載のガス分離方法。
[4] [1]と[2]又は[3]との組み合わせからなるガス分離方法。
[5] 前記膜モジュールへの原料ガスの供給ライン及び膜モジュールの減圧ラインにそれぞれ弁が設けられており、前記組成が規定範囲に入った場合に、これらの弁を閉とする[1]または[4]のガス分離方法。
[6] 前記規定範囲は、爆発範囲である[1],[4]及び[5]のいずれかのガス分離方法。
[7] 前記可燃性成分がメタンである[1]~[6]のいずれかのガス分離方法。
[8] 前記二次側の圧力を大気圧よりも30kPa以上低い圧力とする[1]~[7]のいずれかのガス分離方法。
[9] 前記膜モジュールの膜の分離係数が80以上である[1]~[8]のいずれかのガス分離方法。
[10] 前記原料ガスの混入により、前記組成が前記規定範囲に入る、[1]~[9]のいずれかのガス分離方法。
[11] 前記原料ガスがバイオガスである、[1]~[10]のいずれかのガス分離方法。
[12] 可燃性成分を含む原料ガスを膜分離して可燃性成分濃度の高い一次側ガスと、可燃性成分濃度の低い二次側ガスとに分離する膜モジュールと、該膜モジュールの一次側に原料ガスを加圧して供給する加圧ポンプを有する供給ラインと、該膜モジュールの二次側を減圧するための減圧ポンプを有する透過ラインとを有する膜分離装置において、該二次側ガスの組成の検知手段と、該組成が規定範囲になった場合に、前記加圧ポンプ及び減圧ポンプを停止する制御手段とを有するガス分離装置。
[13] 可燃性成分を含む原料ガスを膜分離して可燃性成分濃度の高い一次側ガスと、可燃性成分濃度の低い二次側ガスとに分離する膜モジュールと、該膜モジュールの一次側に原料ガスを加圧して供給する加圧ポンプを有する供給ラインと、該膜モジュールの二次側を減圧するための減圧ポンプを有する透過ラインとを有する膜分離装置において、前記二次側の圧力又は流量の検出手段と、前記二次側の圧力又は流量が規定値よりも大きくなったときに、前記加圧ポンプ及び減圧ポンプを停止する制御手段とを有するガス分離装置。
[14] 前記基準値が、検出圧力の場合は初期値より10kPaG以上高い値であり、流量の場合は初期値より50%以上大きい値である、[13]に記載のガス分離装置。
[15] [12]と[13]又は[14]との組み合わせからなるガス分離装置。
[16] 前記膜モジュールへの原料ガスの供給ライン及び膜モジュールの減圧ラインにそれぞれ弁が設けられており、前記組成が規定範囲になった場合に、これらの弁を閉とする弁制御手段を有する[12]又は[15]のガス分離装置。
[17] 前記規定範囲は、爆発範囲である[12]、[15]及び[16]のいずれかのガス分離装置。
[18] 前記可燃性成分がメタンである[12]~[17]のいずれかのガス分離装置。
[19] 前記減圧ポンプにより二次側の圧力を-30kPaG以下とする[12]~[18]のいずれかのガス分離装置。
[20] 前記膜モジュールの膜の分離係数が80以上である[12]~[19]のいずれかのガス分離装置。
[21] 前記原料ガスの混入により、前記組成が前記規定範囲に入る、[12]~[20]のいずれかのガス分離装置。
[22] 前記原料ガスがバイオガスである、[12]~[21]のいずれかのガス分離装置。
 本発明のガス分離方法及び装置によると、透過ガス中への可燃性成分混入が生じた場合に直ちに膜モジュールの稼働を停止することができる。
ガス分離装置の構成図である。 ガスの三元組成図である。
 以下、本発明について詳細に説明する。
 本発明で処理対象とするガス(原料ガス)は、可燃性成分と不燃性成分とを含む。可燃性成分としては、メタン、エタン、プロパンなど炭化水素ガス、水素、アンモニア等が例示され、不燃性成分としては、炭酸ガス(CO)、窒素、ハロゲンガス等が例示されるが、これらに限定されない。
 このような可燃性成分及び不燃性成分を含む原料ガスとしては、バイオガス、ランドフィルガス、温泉ガス、炭鉱ガス、天然ガスなどが例示されるが、これらに限定されない。なお、バイオガスは、バイオマスをメタン発酵させて得られるガスで、バイオマスがごみ埋め立て地由来のものをランドフィルガス、下水汚泥由来のものを消化ガス、食品廃棄物または畜産廃棄物由来のものをバイオガスと細分化して呼称することもある。
 原料ガス中の可燃性成分の濃度は、飽和水蒸気分を除いた組成で、バイオガスでは30~70%(体積%。以下、同様。)、ランドフィルガスでは、採取の方法にもよるが、20%~70%、温泉ガスでは、メタン10~90%程度である。
 原料ガス中の可燃性成分の濃度は、経済性、爆発回避の観点から、好ましくは20~95%である。
 膜モジュールとしては、ベッセル内に多数本の管状分離膜を配置し、管状分離膜の外側に原料ガスを流し、管状分離膜の内側に非可燃性成分を透過させるか、又は管状分離膜の内側に原料ガスを流し、管状分離膜の外側に非可燃性成分を透過させるものが好適であるが、ハニカム構造、中空糸構造、シート構造などにも適用でき、限定するものではない。
 管状分離膜としては、管状の多孔質基体の内周面及び/又は外周面に選択的ガス透過膜として分子篩膜を有するものが好適である。
<多孔質基体>
 多孔質基体は、分子篩膜を支持する支持体として機能する。多孔質基体を構成する材料は特に限定されるものではなく、ガラス、セラミックス、金属、カーボン成型体、又は樹脂等の種々の材料を適用可能である。セラミックス支持体の場合は、その表面などにゼオライトを膜状に結晶化できるような化学的安定性がある多孔質の無機物質であればいかなるものであってもよい。具体的には、例えば、シリカ、α-アルミナ、γ-アルミナ、ムライト、ジルコニア、チタニア、イットリア、窒化珪素、炭化珪素などのセラミックス焼結体などが挙げられる。中でも、α-アルミナ、γ-アルミナ等のアルミナやムライトが好ましく、アルミナが特に好ましい。これらの支持体を用いれば、部分的なゼオライト化が容易であるため、支持体とゼオライトの結合が強固になり緻密で分離性能の高い膜が形成されやすくなる。
 本発明において、多孔質基体それ自体は分子篩能を有する必要はない。多孔質基体は、外壁側(外周面)と内壁側(内周面)とを連通する細かな気孔(空孔、空隙)を有する。
 多孔質基体は、気孔率が、通常20%以上、好ましくは25%以上、より好ましくは30%以上であり、通常80%以下、好ましくは60%以下、より好ましくは50%以下で、その平均細孔径が通常0.01μm以上、好ましくは0.05μm以上より好ましくは0.1μm以上、上限は通常20μm以下、好ましくは10μm以下、より好ましくは5μm以下である。このような気孔を有する多孔質基体であれば、十分な強度を有して分子篩膜を適切に支持することができ、また、分子篩膜を透過した分子を十分な速度で透過させることが可能、或いは、分子篩膜へと分子を十分な速度で到達させることが可能である。尚、多孔質基体の気孔率や細孔径は、水銀圧入法、断面をSEMで観察することなどによって容易に特定可能である。平均細孔径についても同様であるが、真比重を用いて体積と質量から計算することもできる。
 分子篩膜としてゼオライト膜を製膜する際の多孔質基体は、外周面から内周面に亘る貫通細孔の開口の最大径が通常10μm以下であり、好ましくは8μm以下である。前記最大径の下限値は、0.05μm以上が好ましい。また、外周面から内周面に亘る貫通部が全て同一の細孔径を有していてもよく、例えば、特開2005-270887号公報に記載のように、部分的又は段階的に異なる細孔径を有するものを用いてもよい。
 管状の多孔質基体は、管軸方向と垂直な断面が、外周面及び内周面ともに円形であることが好ましい。管状の多孔質基体の厚み(外周面の半径と内周面の半径との差)は特に限定されるものではない。材質や気孔率等によっても異なるが、例えば、厚みは0.5mm以上であることが好ましく、より好ましくは0.8mm以上、さらに好ましくは1.0mm以上である。
 管状の多孔質基体の内径は、特に限定されるものではない。材質や気孔率等によっても異なるが、例えば、上記した多孔質基体の厚みに対する内径(直径)の比(内径(mm)/厚み(mm))は20以下が好ましく、より好ましくは17以下であり、さらに好ましくは13以下であり、特に好ましくは9以下である。セラミックス焼結体製多孔質基体の場合、内径は3mm以上、特に5mm以上で、20mm以下、特に15mm以下であることが好ましい。
 多孔質基体の長さ(軸方向長さ)は特に限定されるものではない。
<分子篩膜>
 分子篩膜は、多孔質基体の外周面及び/又は内周面に形成される。分子篩膜は、適切に分子篩能を発揮できれば、その形態は特に限定されるものではない。
 分子篩膜は、有機膜、無機膜のいずれでもよいが、無機膜が好適である。無機膜としては、ゼオライト膜、シリカ膜、及び炭素膜のいずれか、又はその組み合わせであることが好ましく、中でもゼオライト膜またはシリカ膜が好ましく、特に分離性能、耐水性、耐久性の観点でゼオライト膜が好ましい。
 ここで、分子篩膜としてゼオライト膜を用いる場合、ゼオライトはアルミノケイ酸塩であることが好ましいが、膜の性能を大きく損なわない限りAlの代わりにGa、Fe、B、Ti、Zr、Sn、Zn等の金属元素を用いてもよく、Alと共にGa、Fe、B、Ti、Zr、Sn、Zn、P等の元素を含んでいてもよい。
 また、ゼオライト膜の細孔を形成する結晶ゼオライトの骨格が酸素8員環以下の環であることが好ましく、酸素6~8員環であることがより好ましい。
 ゼオライトの構造としては、例えばAEI、AFG、ANA、CHA、DDR、EAB、ERI、ESV、FAR、FRA、GIS、ITE、KFI、LEV、LIO、LOS、LTA、LTN、MAR、MWF、PAU、RHO、RTH、SOD、STI、TOL、UFIなどが挙げられる。これらのうち、AEI、CHA、DDR、ERI、KFI、LEV、MWF、PAU、RHO、RTH、SOD、LTA、UFI型ゼオライトにより構成される膜を用いることが好ましく、CHA、DDR、MWF、RHO、SOD型ゼオライトにより構成される膜を用いることがより好ましい。なお、酸素n員環を有するゼオライトのnの値は、ゼオライト骨格とT元素(骨格を構成する酸素以外の元素)で構成される細孔の中で最も酸素原子の数が大きいものをさす。
 分子篩膜としてゼオライト膜を合成する場合、必要に応じて有機テンプレート(構造規定剤)を用いることができるが、通常は目的とするゼオライト構造を作成可能なテンプレートであれば特に制限はなく、テンプレートなしで合成可能であれば用いなくてもよい。
 分子篩膜としてシリカ膜を用いる場合、シリカ膜中のシリカ含有量は、本発明の効果を著しく損なわない限り、特に制限はないが、例えば、酸化ケイ素組成において、ケイ素を含む、すべての陽性元素に対するケイ素の割合が、通常50mol%以上である。
 シリカ膜は、ゾルゲル法やCVD法、ポリマープレカーサー法等により無機多孔質基体上に製膜される。ゾルゲル法では、無機多孔質基体上で、金属アルコキシドと水を反応させて加水分解と脱水縮合からゲルを形成し、シリカ膜を製膜することができる。また、対向拡散CVD法では、例えば、無機多孔質基体が多孔質の管状基材の場合、内側に酸素を、外側にシリカ源を流通させて、基材細孔内に非晶質シリカ層を蒸着させてシリカ膜を製膜することができる。またポリマープリカーサー法では、アルコキシシランやポリシラザンなどのシリカ前駆体を無機多孔質基体に塗膜した後、熱処理を行ってシリカ膜を製膜することができる。
 分子篩膜として炭素膜を用いる場合、炭素膜前駆体溶液を多孔質基材上にディップコート(浸漬塗布)し、600~800℃程度で熱処理し、乾燥して炭素膜とする。炭素膜前駆体としては、例えば、芳香族ポリイミド、ポリピロロン、ポリフルフリルアルコール、ポリ塩化ビニリデン、フェノール樹脂、リグニン誘導体、木タール、竹タール等が挙げられる。また溶媒としては、テトラヒドロフラン、アセトン、メタノール、エタノール、N-メチルピロリドンなどの有機溶剤を好適に使用することができる。
 分子篩膜の厚みは、特に限定されないが、ゼオライト膜では通常、厚みの下限値は、0.01μm以上である。厚みの上限値は、30μm以下が好ましく、10μm以下がより好ましい。シリカ膜では、単層からなる膜でも、2層以上からなる膜でもよく、その厚みは、1nm以上が好ましい。厚みは、10μm以下が好ましく、1μm以下がより好ましい。炭素膜では、厚みは、0.05μm以上が好ましく、0.1μm以下がより好ましい。厚みの上限値は、5mm以下が好ましく、500μm以下がより好ましいが、膜性能を大きく損なわない限り膜厚は薄いことが好ましい。
 多孔質基体の表面に分子篩膜を形成する方法としては上述した方法に限定されるものではない。例えば、(1)多孔質基体の表面に、分子篩膜を構成し得る物質をバインダー等で固着させる方法、(2)分子篩膜を構成し得る物質を分散させたスラリー又は溶液に多孔質基体を含浸させて、多孔質基体表面に当該物質を固着させる方法、(3)多孔質基体の表面において、分子篩膜を構成し得る物質(特に、ゼオライト)を膜状に結晶化させる方法等が挙げられる(例えば、国際公開第2013/125660号パンフレット等を参照)。
 多孔質基体の外周面にのみ分子篩膜が形成されている形態、多孔質基体の内周面にのみ分子篩膜が形成されている形態、多孔質基体の外周面と内周面との双方に分子篩膜が形成されている形態のいずれであってもよい。通常、被覆材が内側への収縮力を有している観点から、多孔質基体の外周面に分子篩膜が形成されているのが望ましい。
 膜の分離係数αは、80以上、好ましくは100以上、特に150以上が好適である。
ここで、分離係数αとは、以下の式で表される。
Figure JPOXMLDOC01-appb-M000001
 分離係数αは、分離条件により変わり得るが、ここでの分離係数αは、各膜モジュールの分離操作における分離条件での値とする。
 本発明の一態様では、膜モジュールの二次側(透過側)を、減圧ポンプを用いて大気圧より低圧となるように減圧する。そして、該二次側のガス組成、圧力、流量などを、オンラインまたはインラインで検知することで分析し、膜の破損などの損傷などにより二次側のガス組成が規定範囲(例えば可燃性成分の濃度が20vol%を超える範囲、または爆発範囲)に入った時、あるいは、二次側の酸素濃度が規定範囲(例えば1vol%を超える範囲、または爆発範囲)に入った時、及び/または、二次側のガスの圧力、流量の少なくとも一方が基準値を超えた場合に、原料ガス供給及び減圧ポンプを停止する。さらに、膜モジュールの原料ガス流入側及び透過ガス流出側にそれぞれ設置した弁を閉としてもよい。
 前記規定範囲に入る原因は何でも良いが、原料ガスの混入が最も起こり得ると考えられる。分離操作中に分離膜が破損した場合、または分離膜のシールが充分でなくなった場合に、原料ガスの混入が起こり得る。
 二次側のガスの圧力の基準値とは、例えば、初期値より10kPa高い値、または二次側4bの規定した減圧度の値である。また、二次側のガスの流量の基準値とは、例えば、初期値より50%高い値である。
 ここで、ポンプの停止とは、原料ガスの供給及び減圧を停止するということであり、アイドリング状態などの、ポンプによる物質の供給や加圧、減圧を行わない状態にすることも含む。
 膜モジュールを備えたガス分離装置の一例を図1に示す。
 可燃性成分を含む原料ガスは、加圧ポンプ2及び弁(緊急遮断弁)3を有する配管1を介して膜モジュール4の一次側4aに導入される。膜モジュール4内は、膜4mによって一次側4aと二次側4bとに隔てられている。
 この実施の形態では、原料ガスは、可燃性成分としてメタン(CH)、不燃性成分として炭酸ガス(CO)を含んでおり、膜4mはゼオライト膜である。炭酸ガスはゼオライト膜4mを透過し、メタンはゼオライト膜4mを殆ど透過しない。そのため、メタンリッチな一次側流出ガスが膜モジュール4の一次側出口からは配管5へ流出する。
 膜モジュール4の二次側4bには、圧力センサ6、弁(緊急遮断弁)7、減圧ポンプ8及びメタン濃度検出用のメタンセンサ9を有する配管10が接続されており、該減圧ポンプ8によって二次側4bが好ましくは-30kPaG以下、特に好ましくは-50kPaG以下の規定した減圧度以下に減圧されている。メタンセンサ以外であっても、組成を検知できる手段であれば何でも良く、公知の方式のガスセンサを用いてもよい。可燃性ガスの検知の観点で、メタンセンサを用いることが好ましい。
 炭酸ガスはゼオライト膜4mを透過し、COリッチガスとして配管10から取り出される。
 圧力センサ6及びメタンセンサ9の検出信号は、制御装置11に入力されており、緊急時に該制御装置11によってポンプ2,8が停止され、且つ弁3,7が閉とされるよう構成されている。緊急時の停止操作に関しては、ポンプの停止以外であっても、分離操作が停止する操作であれば何でも良い。
 図1の膜分離装置の定常時の運転条件(物質収支等)の一例を次に説明する。
 単位時間当りの原料ガス供給量は、CO40モル部、CH60モル部であり、加圧ポンプ2で該原料ガスを600kPaGに加圧して膜モジュール4に供給する。膜の透過側の絶対圧を-30kPaGとなるよう減圧し、COのパーミエンスが2.0E-06mol/m/Pa/s、膜面積が2.6mで、膜の分離係数αが83のとき、一次側流出ガスであるメタンリッチガスの単位時間当りの流出量はCO3モル部、CH58モル部である。
 二次側流出ガスであるCOリッチガスの単位時間当りの流出量は、CO37モル部、CH2モル部である。
 一般に、ゼオライト分離膜は分離性能が高いため、原料ガスの供給圧が低い場合、一次室4aの流出口側の方で、分離の駆動力となる、分離対象物質の分圧が低くなるので、分離性能が低くなる。そこで、この実施の形態では、減圧ポンプ8が用いられている。
 二次側4bを減圧する構成の場合、リークにより二次側4bに空気が漏れこむと、分離膜に破損等の損傷が生じた際などに、二次側4bにメタンが流入し、二次側4bのガスの組成が爆発範囲に入ってしまうおそれがある。
 そこで、この実施の形態では、二次側4bへのメタンの流入を、メタンセンサ9によって検知し、メタン濃度が規定範囲(例えばメタン濃度が20vol%を超える範囲、または爆発範囲)に入った場合には、膜破損等の異常が生じたものと判定し、加圧ポンプ2及び減圧ポンプ8を停止する。また、さらに弁3,7を閉めてもよい。なお、配管10に圧力センサ6及び/または流量計を設置し、圧力が基準値(例えば、初期値より10kPa高い値、または二次側4bの規定した減圧度の値)を超えた場合、及び/または検出流量が基準値(例えば初期値より50%高い値)を超えたときにポンプ2,8を停止することにより分離操作を停止してもよい。また、さらに弁3,7を閉めるようにしてもよい。基準値は、分離対象ガスの分離条件に応じて、予め設定しておけばよい。
 二次側4bのガスのメタン濃度が規定範囲に入った場合(例えばメタン濃度が20vol%を超える範囲、または爆発範囲)であって、さらに圧力が基準値(例えば、初期値より10kPa高い値、または二次側4bの規定した減圧度の値)を超えた場合、及び/または検出流量が基準値(例えば初期値より50%高い値)を超えた場合に、加圧ポンプ2及び減圧ポンプ8を停止するようにしてもよい。また、さらに、弁3,7を閉めるようにしてもよい。
<装置停止後に装置を再稼働させる場合の手順>
 装置を停止した場合、以下の(1)~(7)の手順によって再稼働させる。
(1)ガスを排出する。
 一次側は、弁3及び弁7を閉止してから、配管5から残存ガスを放出し、モジュール内部の圧力を常圧に戻す。
 二次側は、膜を透過したガスを用いて復圧してもよく、別途設けたラインから空気により復圧してもよい。
 続いて、配管1から窒素などの不活性ガスや空気を導入し、モジュール内のガスを置換する。その際に、減圧ポンプ8を起動してもよい。
(2)モジュールを開放する。
(3)損傷した分離膜を特定する。
 たとえば、特開2020-192482に記載の方法(ピトー管を用いて特定する方法)が適用できる。
(4)損傷した分離膜を交換する。
(5)モジュールを閉める。
(6)予備運転をする。
 減圧ポンプ8を稼働してから配管1から原料ガスを導入し、二次側の透過量または組成が安定してから、分離操作を再開する。
(7)分離を再開する。
 一般に、メタン(CH)、炭酸ガス(CO)、酸素(O)三元系の場合、分離膜の分離性能が高ければ、ゼオライト膜透過ガス中にはCHは殆ど含まれていない。そのため、減圧の際のリークにより、透過ガスに空気が混入しても、図2の点aから点Xに向かって組成が変化するので、爆発範囲に入ることはない。CH濃度がおおよそ20%以下の場合も、減圧の際のリークにより、透過ガスに空気が混入しても点bから点Xに向かって組成が変化するので、爆発範囲には殆ど入らない。しかし、減圧の際のリークに加えて、膜の破損や傷付きなどにより、透過ガスに、原料ガスに由来するメタン、及び酸素が混入したときには、点cから点Xに向かって組成が変化するので、爆発範囲に入るおそれがある。そのため、原料ガスがメタンや二酸化炭素を主成分とする場合には、上記実施の形態のように、二次側4bへのメタンの流入をメタンセンサ又は圧力センサや流量計によって検知し、メタン濃度が基準範囲に入ったり、圧力又は流量が基準値を超えたりした場合に加圧ポンプ2及び減圧ポンプ8を停止することの効果が大きい。さらに、弁3,7を閉めるように構成すると、よりその効果が高まる。
 本実施形態では、モジュールの数を1個としたが、複数を直列とする接続方法としても、複数を並列とする接続方法としても、直列と並列の併用をした接続方法としてもよい。複数のモジュールを接続する場合、各モジュールで組成、流量、または圧力を検知してもよく、特定の個数をまとめて組成、流量、または圧力を検知してもよい。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2020年10月29日付で出願された日本特許出願2020-181559に基づいており、その全体が引用により援用される。
 2 加圧ポンプ
 3,7 弁
 4 膜モジュール
 6 圧力センサ
 8 減圧ポンプ
 9 メタンセンサ

 

Claims (22)

  1.  可燃性成分を含む原料ガスを加圧して膜モジュールの一次側に供給し、膜モジュールの二次側を大気圧よりも低圧に減圧し、可燃性成分濃度の高い一次側ガスと可燃性成分濃度の低い二次側ガスとに膜分離するガス分離操作を含むガス分離方法において、
     該二次側ガスの組成を検知し、該組成が規定範囲に入った場合に、前記ガス分離操作を停止することを特徴とするガス分離方法。
  2.  可燃性成分を含む原料ガスを加圧して膜モジュールの一次側に供給し、膜モジュールの二次側を大気圧よりも低圧に減圧し、可燃性成分濃度の高い一次側ガスと可燃性成分濃度の低い二次側ガスとに膜分離するガス分離操作を含むガス分離方法において、
     該二次側の圧力又は流量を検出し、検出圧力、又は流量が基準値を超えたときに、前記ガス分離操作を停止することを特徴とするガス分離方法。
  3.  前記基準値が、検出圧力の場合は初期値より10kPaG以上高い値であり、流量の場合は初期値より50%以上大きい値である、請求項2に記載のガス分離方法。
  4.  請求項1と請求項2又は3との組み合わせからなるガス分離方法。
  5.  前記膜モジュールへの原料ガスの供給ライン及び膜モジュールの減圧ラインにそれぞれ弁が設けられており、
     前記組成が規定範囲に入った場合に、これらの弁を閉とする請求項1または4のガス分離方法。
  6.  前記規定範囲は、爆発範囲である請求項1,4及び5のいずれかのガス分離方法。
  7.  前記可燃性成分がメタンである請求項1~6のいずれかのガス分離方法。
  8.  前記二次側の圧力を大気圧よりも30kPa以上低い圧力とする請求項1~7のいずれかのガス分離方法。
  9.  前記膜モジュールの膜の分離係数が80以上である請求項1~8のいずれかのガス分離方法。
  10.  前記原料ガスの混入により、前記組成が前記規定範囲に入る、請求項1~9のいずれかのガス分離方法。
  11.  前記原料ガスがバイオガスである、請求項1~10のいずれかのガス分離方法。
  12.  可燃性成分を含む原料ガスを膜分離して可燃性成分濃度の高い一次側ガスと、可燃性成分濃度の低い二次側ガスとに分離する膜モジュールと、
     該膜モジュールの一次側に原料ガスを加圧して供給する加圧ポンプを有する供給ラインと、
     該膜モジュールの二次側を減圧するための減圧ポンプを有する透過ラインと
    を有する膜分離装置において、
     該二次側ガスの組成の検知手段と、
     該組成が規定範囲になった場合に、前記加圧ポンプ及び減圧ポンプを停止する制御手段と
    を有するガス分離装置。
  13.  可燃性成分を含む原料ガスを膜分離して可燃性成分濃度の高い一次側ガスと、可燃性成分濃度の低い二次側ガスとに分離する膜モジュールと、
     該膜モジュールの一次側に原料ガスを加圧して供給する加圧ポンプを有する供給ラインと、
     該膜モジュールの二次側を減圧するための減圧ポンプを有する透過ラインと
    を有する膜分離装置において、
     前記二次側の圧力又は流量の検出手段と、
     前記二次側の圧力又は流量が規定値よりも大きくなったときに、前記加圧ポンプ及び減圧ポンプを停止する制御手段と
    を有するガス分離装置。
  14.  前記基準値が、検出圧力の場合は初期値より10kPaG以上高い値であり、流量の場合は初期値より50%以上大きい値である、請求項13に記載のガス分離装置。
  15.  請求項12と請求項13又は14との組み合わせからなるガス分離装置。
  16.  前記膜モジュールへの原料ガスの供給ライン及び膜モジュールの減圧ラインにそれぞれ弁が設けられており、
     前記組成が規定範囲になった場合に、これらの弁を閉とする弁制御手段を有する請求項12又は15のガス分離装置。
  17.  前記規定範囲は、爆発範囲である請求項12、15及び16のいずれかのガス分離装置。
  18.  前記可燃性成分がメタンである請求項12~17のいずれかのガス分離装置。
  19.  前記減圧ポンプにより二次側の圧力を-30kPaG以下とする請求項12~18のいずれかのガス分離装置。
  20.  前記膜モジュールの膜の分離係数が80以上である請求項12~19のいずれかのガス分離装置。
  21.  前記原料ガスの混入により、前記組成が前記規定範囲に入る、請求項12~20のいずれかのガス分離装置。
  22.  前記原料ガスがバイオガスである、請求項12~21のいずれかのガス分離装置。

     
PCT/JP2021/039318 2020-10-29 2021-10-25 ガス分離方法及び装置 WO2022092031A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180072666.6A CN116547057A (zh) 2020-10-29 2021-10-25 气体分离方法和装置
JP2022559127A JPWO2022092031A1 (ja) 2020-10-29 2021-10-25
EP21886149.0A EP4238631A4 (en) 2020-10-29 2021-10-25 METHOD AND DEVICE FOR GAS SEPARATION
US18/308,352 US20230264142A1 (en) 2020-10-29 2023-04-27 Gas separation method and gas separation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020181559 2020-10-29
JP2020-181559 2020-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/308,352 Continuation US20230264142A1 (en) 2020-10-29 2023-04-27 Gas separation method and gas separation apparatus

Publications (1)

Publication Number Publication Date
WO2022092031A1 true WO2022092031A1 (ja) 2022-05-05

Family

ID=81382457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039318 WO2022092031A1 (ja) 2020-10-29 2021-10-25 ガス分離方法及び装置

Country Status (5)

Country Link
US (1) US20230264142A1 (ja)
EP (1) EP4238631A4 (ja)
JP (1) JPWO2022092031A1 (ja)
CN (1) CN116547057A (ja)
WO (1) WO2022092031A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131259A (ja) * 1989-02-23 1991-06-04 Matsushita Electric Works Ltd 炭酸泉製造方法ならびに装置
JP2005270887A (ja) 2004-03-25 2005-10-06 Japan Fine Ceramics Center ケイ素基質耐水蒸気膜及びこれを用いた水素ガス分離材並びにこれらの製造方法
JP2007260629A (ja) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The 水素ガス生成装置および水素ガス生成装置の運転制御方法
WO2013125660A1 (ja) 2012-02-24 2013-08-29 三菱化学株式会社 ゼオライト膜複合体
JP2016155096A (ja) * 2015-02-25 2016-09-01 三菱化学株式会社 分離膜モジュール及びその補修方法
WO2019049629A1 (ja) * 2017-09-07 2019-03-14 株式会社ルネッサンス・エナジー・リサーチ 発電システム
JP2020181559A (ja) 2019-09-12 2020-11-05 株式会社中央サービス コインランドリーシステム、およびコインランドリーシステムにおける情報提供方法
JP2020192482A (ja) 2019-05-24 2020-12-03 三菱ケミカル株式会社 損傷管状分離膜の検出方法及び装置並びに分離膜モジュールの補修方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887300B2 (en) * 2003-01-24 2005-05-03 Cms Technology Holdings, Inc. Cyclic membrane separation process
DE102013004079A1 (de) * 2013-03-11 2014-09-11 Eisenmann Ag Verfahren zur Gewinnung von hochreinem Methan aus Biogas sowie Anlage zur Durchführung dieses Verfahrens

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131259A (ja) * 1989-02-23 1991-06-04 Matsushita Electric Works Ltd 炭酸泉製造方法ならびに装置
JP2005270887A (ja) 2004-03-25 2005-10-06 Japan Fine Ceramics Center ケイ素基質耐水蒸気膜及びこれを用いた水素ガス分離材並びにこれらの製造方法
JP2007260629A (ja) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The 水素ガス生成装置および水素ガス生成装置の運転制御方法
WO2013125660A1 (ja) 2012-02-24 2013-08-29 三菱化学株式会社 ゼオライト膜複合体
JP2016155096A (ja) * 2015-02-25 2016-09-01 三菱化学株式会社 分離膜モジュール及びその補修方法
WO2019049629A1 (ja) * 2017-09-07 2019-03-14 株式会社ルネッサンス・エナジー・リサーチ 発電システム
JP2020192482A (ja) 2019-05-24 2020-12-03 三菱ケミカル株式会社 損傷管状分離膜の検出方法及び装置並びに分離膜モジュールの補修方法
JP2020181559A (ja) 2019-09-12 2020-11-05 株式会社中央サービス コインランドリーシステム、およびコインランドリーシステムにおける情報提供方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4238631A4

Also Published As

Publication number Publication date
EP4238631A1 (en) 2023-09-06
EP4238631A4 (en) 2024-04-03
CN116547057A (zh) 2023-08-04
US20230264142A1 (en) 2023-08-24
JPWO2022092031A1 (ja) 2022-05-05

Similar Documents

Publication Publication Date Title
JP7060042B2 (ja) 多孔質支持体-ゼオライト膜複合体及び多孔質支持体-ゼオライト膜複合体の製造方法
US9216390B2 (en) Systems, compositions, and methods for fluid purification
Shu et al. High-flux MFI zeolite membrane supported on YSZ hollow fiber for separation of ethanol/water
JP6228923B2 (ja) セラミック分離膜構造体、およびその補修方法
JP6238899B2 (ja) モノリス型分離膜構造体の欠陥検出方法、補修方法、およびモノリス型分離膜構造体
JP6301313B2 (ja) ゼオライト膜の製造方法
Chen et al. Effect of substrate curvature on microstructure and gas permeability of hollow fiber MFI zeolite membranes
WO2014156579A1 (ja) セラミック分離膜構造体、およびその製造方法
JP6500499B2 (ja) 分離膜モジュール及びその運転方法
JP2015186776A (ja) ゼオライト膜の評価方法
WO2022092031A1 (ja) ガス分離方法及び装置
CN110430935B (zh) 分离膜结构体的检查方法、分离膜组件的制造方法和分离膜结构体的制造方法
JP7111850B2 (ja) 低温熱処理工程を用いたチャバサイトゼオライト分離膜の欠陥構造の調節方法
WO2011018919A1 (ja) 混合物用分離膜、それを用いた混合物の組成変化方法、及び混合物分離装置
RU2696131C2 (ru) Асимметричные, целиком покрытые оболочкой плоско-листовые мембраны для очистки H2 и обогащения природного газа
US10576414B2 (en) Gas separation method
WO2012111792A1 (ja) 炭素膜付き複合体およびその製造方法
US10688434B2 (en) Gas separation method
JP2010274174A (ja) 炭素膜複合体および分離膜モジュール
JP2012246207A (ja) 水素分離方法及び水素分離装置
JP2016159185A (ja) 多孔質支持体−ゼオライト膜複合体の製造方法
JP2002102640A (ja) ガス分離モジュールおよびガス分離装置
Nwogu et al. Advanced membrane design for improved carbon dioxide capture.
WO2010070991A1 (ja) 液体混合物用分離膜、それを用いた液体混合物の組成変化方法、及び液体混合物分離装置
JP2004033980A (ja) 流体分離フィルタ及び流体分離モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559127

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180072666.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021886149

Country of ref document: EP

Effective date: 20230530