WO2012111792A1 - 炭素膜付き複合体およびその製造方法 - Google Patents

炭素膜付き複合体およびその製造方法 Download PDF

Info

Publication number
WO2012111792A1
WO2012111792A1 PCT/JP2012/053762 JP2012053762W WO2012111792A1 WO 2012111792 A1 WO2012111792 A1 WO 2012111792A1 JP 2012053762 W JP2012053762 W JP 2012053762W WO 2012111792 A1 WO2012111792 A1 WO 2012111792A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous layer
carbon
ceramic
ceramic porous
carbon film
Prior art date
Application number
PCT/JP2012/053762
Other languages
English (en)
French (fr)
Inventor
積 洋二
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2012111792A1 publication Critical patent/WO2012111792A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5001Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/09Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by filtration

Definitions

  • the present invention relates to a composite with a carbon membrane and a method for producing the same, and more particularly to a composite with a carbon membrane useful in techniques such as dehydration concentration of hydrous alcohol, natural gas separation, and isomer separation in a petroleum plant, and a method for producing the same. It is.
  • a filter for separating hydrogen gas can be used for recovering hydrogen gas from off-gas generated in an oil refining plant, purge gas generated in an ammonia synthesis plant, etc.
  • the application to the removal of carbon dioxide contained in natural gas has been studied for the purpose of preventing corrosion of pipelines.
  • a filter for separating oxygen it is applied to medical equipment, sports equipment, and various combustion engines.
  • a membrane made of a polymer membrane such as an organic resin or an inorganic porous membrane such as zeolite, glass or silica membrane has been used.
  • polymer membranes generally have a large separation factor, but the gas permeation rate is low, and the heat resistance and corrosion resistance of the filter are poor. Therefore, they are used for mixed gases containing acidic and alkaline gases and high-temperature gases. There was a drawback that it was difficult.
  • the inorganic porous membrane has improved heat resistance and corrosion resistance of the filter compared with the polymer membrane, and the gas separation characteristics have been increased, but the water resistance and chemical resistance are not sufficient for application to an actual plant. There was a problem that application was accompanied by a lot of restrictions.
  • a separation membrane made of carbon has attracted particular attention as a membrane having greatly improved water resistance and chemical resistance and excellent gas permeation characteristics, and various studies have been made.
  • a composite with a carbon film in which the surface of a porous substrate is coated with a carbon film is not substantially restricted by the strength of the carbon film itself, and the range of means for improving separation characteristics is widened.
  • the formation means has been proposed.
  • Patent Document 1 by forming a composite layer having a thickness of 1 mm or less in which a carbon membrane material has penetrated into a dense layer of a porous body as a lower layer of a separation membrane at the interface between the porous body and the carbon membrane, it is disclosed that the flux can be improved, and as a method for producing such a separation membrane porous body composite, when the carbon membrane precursor solution is brought into contact with the surface of the porous body, the inside of the pores of the porous body is pressurized, It is disclosed that the carbon film and the composite layer can be formed in a thin and uniform thickness by making it difficult for the rod solution to penetrate into the pores from the surface of the porous body.
  • a precursor of the carbon film is usually provided by providing an intermediate layer having a pore diameter smaller than that of the porous body at the interface between the carbon film and the porous body. This prevents the solution from entering the porous body and suppresses the occurrence of defects such as pinholes in the carbon film.
  • the inside of the pores of the porous body is further pressurized to suppress the carbon film precursor solution from entering the porous body.
  • the carbon component penetrates only into the intermediate layer having a small pore diameter and the carbon component does not exist inside the porous body, the diffusion of the separation gas inside the pores of the porous body is caused by the pressure difference before and after the carbon membrane. Therefore, there is a problem that further improvement in the transmission speed cannot be expected.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a composite with a carbon membrane having a large permeation rate and separation factor when separating a specific component from various mixed fluids.
  • the composite with a carbon film of the present invention includes a ceramic porous substrate in which a plurality of ceramic porous layers made of ceramic particles having different average particle diameters are laminated, and a ceramic porous layer located in the outermost layer of the ceramic porous substrate.
  • a carbon film containing glassy carbon provided on the first ceramic porous layer on the side having a smaller average particle size of the ceramic particles, and the first ceramic porous layer and the first porous layer Carbon is present in the pores of the second ceramic porous layer adjacent to the one ceramic porous layer.
  • the method for producing a composite with a carbon film of the present invention comprises: preparing a ceramic porous substrate in which a plurality of ceramic porous layers made of ceramic particles having different average particle diameters are laminated; and The step of immersing the first ceramic porous layer on the side having a smaller average particle size of the ceramic particles in the outermost ceramic porous layer in a glassy carbon precursor solution and drying the ceramic porous layer; and The glass ceramic precursor solution is further applied to the surface of the first ceramic porous layer, dried, and then heat-treated in a non-oxidizing atmosphere or under vacuum.
  • the carbon is a first ceramic porous layer located in the outermost layer provided with the carbon film containing glassy carbon, and the second ceramic porous layer adjacent to the first ceramic porous layer.
  • the separation component preferentially permeating the carbon membrane is transferred from the first ceramic porous layer provided with the carbon membrane to the second ceramic porous layer side. It can be moved quickly and efficiently discharged out of the system. As a result, the permeation rate and separation factor of the separated components can be increased.
  • At least the first ceramic porous layer on the side having a smaller average particle diameter of the ceramic particles out of the ceramic porous layer located on the outermost layer of the ceramic porous substrate is made of glass.
  • the glassy carbon precursor is infiltrated into the first ceramic porous layer and the second ceramic porous layer adjacent to the first ceramic porous layer and dried. After solidifying, by applying a glassy carbon precursor to the surface of the first ceramic porous layer, carbon is introduced into the pores of the first ceramic porous layer and the second ceramic porous layer. While forming, the composite with a carbon film in which the thin and uniform carbon film containing glassy carbon was formed in the surface of the 1st ceramic porous layer can be obtained.
  • the composite A with a carbon film of the present embodiment has a ceramic porous substrate 4 in which a plurality of ceramic porous layers 1 and 2 made of ceramic particles having different average particle diameters are laminated, Of the ceramic porous layers 1 and 2 located in the outermost layer of the ceramic porous substrate 4, the first ceramic porous layer 1 (hereinafter simply referred to as the porous layer 1) on the side where the average particle diameter of the ceramic particles is small. And a carbon film 3 containing glassy carbon provided thereon.
  • the second ceramic porous layer 2 (hereinafter sometimes simply referred to as the porous layer 2) having an average particle size of ceramic particles larger than that of the first ceramic porous layer 1 is a single layer.
  • the ceramic porous layer is used, a multilayer structure including two or more ceramic porous layers may be used.
  • ceramics such as alumina, mullite, cordierite, zirconia, magnesia, silicon carbide, silicon nitride can be suitably used.
  • difference in thermal expansion, heat resistance, mechanical strength, wear resistance between the porous layer 1 and the carbon film 3 on the side where the average particle diameter of the ceramic particles is small. can improve thermal shock resistance, chemical resistance, and corrosion resistance.
  • the average particle diameter of the ceramic particles constituting the porous layer 2 is preferably 1 to 10 ⁇ m, and more preferably 1 to 5 ⁇ m. By setting the average particle size of the porous layer 2 in such a range, the mechanical strength of the porous layer 2 can be maintained high, and at the same time, the surface of the porous layer 2 is more than the porous layer 2.
  • the porous layer 1 having a small average particle size of the ceramic particles can be easily formed.
  • the average particle diameter of the ceramic particles constituting the porous layer 2 can be determined by, for example, an intercept method from a cross-sectional photograph of the porous layer 2 by a scanning electron microscope (SEM).
  • the average pore diameter of the porous layer 2 is preferably 0.1 to 5 ⁇ m, more preferably 0.3 to 3 ⁇ m, and the porosity of the porous layer 2 is 30 to 60%, more preferably 30 to 50%. Preferably there is.
  • the average pore diameter and porosity of the porous layer 2 can be determined by a mercury intrusion method.
  • the composite A with a carbon film in which the carbon film was formed heat-processes the composite A with a carbon film on the conditions which can be removed by oxidizing a carbon component, for example, the conditions of 800 degreeC and about 30 minutes in the air.
  • a carbon component for example, the conditions of 800 degreeC and about 30 minutes in the air.
  • the porous layer 2 portion may be cut out and the average pore diameter may be measured.
  • Examples of the material of the first ceramic porous layer 1 having an average particle size of ceramic particles smaller than that of the second ceramic porous layer 2 include ceramics such as alumina, mullite, cordierite, zirconia, magnesia, silicon carbide, and silicon nitride. Can be suitably used.
  • the average particle diameter of the ceramic particles constituting the porous layer 1 is smaller than the average particle diameter of the ceramic particles constituting the porous layer 2, and is preferably smaller than 1.0 ⁇ m, more preferably 0.5 ⁇ m. The following is more preferable.
  • the average particle size of the ceramic particles constituting the porous layer 1 is 0.02 ⁇ m or more from the viewpoint of suppressing aggregation of the raw material powder particles. It is desirable that
  • the average pore diameter of the porous layer 1 is smaller than the average pore diameter of the porous layer 2, and is preferably 0.01 to 0.5 ⁇ m, more preferably 0.02 to 0.1 ⁇ m. Further, the porosity of the porous layer 1 is preferably 30 to 60%, more preferably 30 to 50%. By setting the average pore diameter and porosity of the porous layer 1 within such ranges, the glassy carbon precursor can penetrate into the porous layer 1 and the porous layer 2 adjacent thereto, A thin and uniform carbon film 3 can be formed on the upper surface of the material layer 1, and a composite A with a carbon film having a high permeation rate can be obtained.
  • the average pore diameter and porosity of the porous layer 1 can be determined by a mercury intrusion method.
  • the carbon component was removed in the same manner as when measuring the average pore diameter of the porous layer 2, and then the porous layer 1 portion was cut out to obtain the average pore diameter. Can be measured.
  • the thickness of the porous layer 1 may be a thickness that can cover the unevenness present on the surface of the porous layer 2 adjacent thereto with the porous layer 1. From the viewpoint of preventing surface defects such as pinholes from remaining on the porous layer 1 and increasing the transmission speed, the thickness of the porous layer 1 constitutes the surface of the porous layer 2 adjacent thereto. It is preferably in the range of 1 to 50 times the average particle size of the ceramic particles, and more preferably in the range of 2 to 20 times.
  • the average particle diameter is smaller than 1.0 ⁇ m.
  • a raw material powder composed of ceramic particles of 0.5 ⁇ m or less is appropriately weighed and dispersed in water using a hydrophilic dispersant, for example, and porous using a coating means such as a dip coating method (dip coating method).
  • a method of applying heat treatment to the surface of the layer 2 and drying it can be used.
  • the carbon film 3 formed on the upper surface of the porous layer 1 contains glassy carbon, and the glassy carbon does not have an internal structure such as a grain boundary or the like when observed at the optical microscope level. And is completely different from carbon particles.
  • the glassy carbon referred to in the present specification has a molecular sieving action in which a large number of fine pores are present, and among the components of a fluid consisting of gas or liquid, the molecular diameter is glassy carbon. Components smaller than the pores pass through the glassy carbon pores constituting the carbon film 3.
  • the separation factor ⁇ of the separation component is determined by using the R value (D band peak intensity / G band peak intensity) calculated from the Raman spectrum of the carbon film 3 (laser wavelength: 514.3 nm) as the type of the separation component. It can also be increased by controlling accordingly.
  • R value D band peak intensity / G band peak intensity
  • the reason for this is not clear, but generally, with respect to carbon materials, an increase in R value means disorder of the graphite structure and a decrease in crystallite size, and the microstructure of the carbon film 3 having an amorphous structure is It is considered that the graphene sheet is a layered amorphous material in which several sheets are laminated, and the size of the layered amorphous material corresponds to the crystallite size.
  • the pores in the carbon membrane 3 through which the separation component permeates are considered to correspond to the voids between the crystallites. Therefore, by controlling the size of the crystallites within a certain range, the size of the voids between the crystallites is controlled, that is, the pore diameter of the carbon membrane 3 is a size capable of selectively allowing the separation component to permeate. It is considered that the separation coefficient ⁇ is improved by controlling to.
  • the R value is preferably in the range of 0.840 to 0.920, particularly in the range of 0.870 to 0.915.
  • the water separation coefficient ⁇ can be increased.
  • the thickness of the carbon film 3 is preferably in the range of 0.01 to 5 ⁇ m, particularly in the range of 0.1 to 3 ⁇ m from the viewpoint of suppressing the occurrence of defects such as pinholes and increasing the transmission rate. Preferably there is.
  • carbon 5 exists inside the pores of the porous layer 1 in contact with the carbon film 3 and the porous layer 2 adjacent to the porous layer 1. Since the separation component preferentially permeating through the carbon membrane 3 by gas separation or pervaporation separation has high affinity for carbon 5, the porous layer 1 in contact with the carbon membrane 3 and the porous layer adjacent to the porous layer 1 The presence of carbon 5 inside the pores 2 makes it possible for the separation component to move inside the pores via the carbon 5 and quickly moves from the porous layer 1 to the porous layer 2 adjacent to the porous layer 1. Furthermore, the porous layer 2 is efficiently discharged out of the system.
  • the permeation rate and the separation factor can be increased.
  • the separation component can rapidly move on the surface of the carbon 5 which is the inner surface of the pores by surface diffusion.
  • the carbon 5 may not cover all the inner surfaces of the pores of the porous layer 1 and the porous layer 2 adjacent to the porous layer 1.
  • Whether or not carbon 5 is present on the inner surfaces of the pores of the porous layer 1 in contact with the carbon film 3 and the porous layer 2 adjacent thereto is determined by, for example, Pt in the cross section of the porous layer 1 and the porous layer 2 adjacent thereto. Can be confirmed by analyzing whether or not a peak derived from carbon exists by energy dispersive X-ray analysis (EDS).
  • EDS energy dispersive X-ray analysis
  • the carbon 5 existing inside the pores of the porous layer 1 in contact with the carbon film 3 and the carbon film 3 are connected. Furthermore, it is desirable that the carbon 5 existing inside the pores of the porous layer 1 and the carbon 5 existing inside the pores of the porous layer 2 adjacent to the porous layer 1 are connected. Since the carbon 5 existing inside the pores of the porous layer 1 and the carbon membrane 3 are connected, the separation component preferentially permeating the carbon membrane 3 is efficiently transferred to the porous layer 1. Furthermore, since carbon 5 existing inside the pores of the porous layer 1 and the porous layer 2 is connected, the separation component can be further separated from the porous layer 2 adjacent to the porous layer 1. The transmission speed and separation factor can be increased as a result.
  • the carbon 5 filled in the pores of the porous layer 1 is glassy like the carbon film 3. It preferably contains carbon.
  • a porous body 2 made of ceramic particles having an average particle diameter of 1 to 10 ⁇ m, an average pore diameter of 0.1 to 5 ⁇ m, and a porosity of 30 to 60% is prepared.
  • the porous layer 1 made of ceramic particles having an average particle size of 1.0 ⁇ m or less is formed (substrate preparation step).
  • the porous layer 1 is prepared by appropriately weighing a raw material powder made of ceramic particles having an average particle diameter of less than 1.0 ⁇ m, such as alumina, mullite, cordierite, zirconia, magnesia, silicon carbide, silicon nitride, and the like, for example, a hydrophilic dispersant. Is applied to one main surface of the porous body 1 using an application means such as a dip coating method (dip coating method), dried, and then heat-treated. At this time, the ceramic particles constituting the formed porous layer 1 need only be partially bonded by the neck, and the particle size thereof is substantially equal to the particle size of the raw material powder.
  • a raw material powder made of ceramic particles having an average particle diameter of less than 1.0 ⁇ m, such as alumina, mullite, cordierite, zirconia, magnesia, silicon carbide, silicon nitride, and the like, for example, a hydrophilic dispersant.
  • At least the porous layer 1 side of the obtained ceramic porous substrate 4 is glassy with aromatic polyimide, polypyrrolone, polyfurfuryl alcohol, polyvinylidene chloride, phenol resin, lignin derivative, wood tar, bamboo tar, etc. dissolved in a solvent.
  • Dip coat as a carbon precursor solution and dry (coating process 1).
  • a glassy carbon precursor solution is further dip-coated on the surface of the porous layer 1 of the ceramic porous substrate 4 and dried (application step 2), and in a non-oxidizing atmosphere or vacuum, 550 to 950 ° C.
  • the carbon film 3 is formed on the upper surface of the porous layer 1 and the carbon 5 is formed inside the pores of the porous body 2 adjacent to the porous layer 1.
  • the composite A with a carbon film can be obtained.
  • the carbon film 3 and the carbon 5 thus formed are considered to have a functional group on the pore wall, and when separating various specific components having affinity for the functional group from the mixed fluid. It is considered that the separation performance is excellent.
  • coating process 2 it is desirable that it is equal to or more than the glassy carbon precursor solution used in the application
  • region in which the carbon 5 exists in the inside of the pore of the porous layer 2 adjacent to the porous layer 1, and the formation state of the carbon 5 in the inside of the pore are the glassy carbon precursor used in the coating step 1. It can be adjusted according to the kind of solution, the concentration in the solution, and the immersion time. Further, by adjusting the pore diameter of glassy carbon constituting the carbon film 3 according to the type of glassy carbon precursor, the concentration in the solution, and the heat treatment conditions, various gases and liquids having different molecular diameters can be separated. Is possible.
  • the composite A with a carbon membrane of the present embodiment has high water resistance and chemical resistance, and also has a high permeation rate and separation factor, so dehydration / concentration of low-concentration alcohol, dehydration / concentration of acetic acid, petroleum refining Excellent separation performance can be exhibited under severe conditions such as hydrogen gas recovery in plants and ammonia synthesis plants, carbon dioxide removal from natural gas, and oxygen enrichment.
  • alumina powder (average particle size 0.02 to 0.9 ⁇ m), which is a raw material for the porous layer in contact with the carbon film, was dispersed in water and polyvinyl alcohol (PVA) to prepare an alumina slurry.
  • PVA polyvinyl alcohol
  • As the porous body an alumina single layer porous tube (outer diameter 12 mm, inner diameter 9 mm, length 100 mm, manufactured by Kyocera) having the average particle diameter, average pore diameter, and porosity as shown in Table 1 is used. It was. After sealing the opening at the end of these porous tubes, it is immersed in the previously prepared alumina slurry and pulled up at a constant rate, and the average particle size of the ceramic particles is larger than the porous tube on the outer surface of the porous tube.
  • a film to be a small first ceramic porous layer was formed and dried. Thereafter, the entire porous tube was heat-treated at 1100 ° C. to produce an alumina porous substrate in which a first ceramic porous layer having an average particle size of ceramic particles smaller than that of the porous tube was formed on the outer surface. From the cross-sectional photograph of this alumina porous substrate taken by a scanning electron microscope (SEM), the thickness and porosity of the first ceramic porous layer (hereinafter also referred to simply as the porous layer) formed on the outer surface of the porous tube The average particle size of the ceramic particles constituting the layer was determined and listed in Table 1. The average particle size of the ceramic particles was calculated by the intercept method.
  • a phenol resin solution having a concentration of 20% was prepared by dissolving phenol resin powder in tetrahydrofuran (THF) as a glassy carbon precursor solution (hereinafter also referred to simply as a precursor solution) used in the coating step 1. .
  • THF tetrahydrofuran
  • the alumina porous substrate is immersed in the precursor solution under the conditions shown in Table 1, pulled up at a rate of 100 mm / min, and penetrates the glassy carbon precursor solution into the porous layer and the porous tube adjacent thereto. And dried at 130 ° C. for 10 minutes.
  • the sample in which the end portion is not sealed is one in which the end portion of the porous tube sealed in the substrate manufacturing step is opened before being immersed in the precursor solution.
  • a phenol resin solution having a concentration of 35% was prepared in the same manner as in the coating step 1.
  • the alumina porous substrate that has undergone the coating process 1 is immersed in this precursor solution and held for 1 minute, and then pulled up at a rate of 100 mm / min to form a phenolic resin film on the upper surface of the porous layer at 130 ° C. Dry for 10 minutes. Thereafter, the entire porous substrate was heat-treated at 850 ° C. for 10 minutes in a nitrogen atmosphere to produce a composite with a carbon film.
  • the sample which opened the edge part of the porous tube in the application process 1 is also immersed in the state which sealed the edge part again.
  • the carbon film formed on the porous layer was made of glassy carbon because the internal structure such as grain boundaries could not be confirmed for any sample in the observation with an optical microscope.
  • the thickness of the carbon film was measured by depositing Pt on the cross-section of the composite with the produced carbon film, and using a scanning electron microscope (SEM) with an energy dispersive X-ray analysis (EDS) function. .
  • SEM scanning electron microscope
  • EDS energy dispersive X-ray analysis
  • the distance to the portion where the carbon-derived peak was no longer detected on the porous tube side was defined as the thickness t of the region where carbon was present inside the pores of the porous tube.
  • the pores of the porous layer were filled with carbon, and the carbon was glassy carbon having no internal structure and a uniform appearance.
  • the pervaporation measurement of water / ethanol mixed solution was performed with the supply side (carbon membrane side of the composite with carbon membrane) at atmospheric pressure and the permeation side (with carbon membrane) Permeate the water / ethanol mixed solution on the outside of the carbon membrane of the composite with carbon membrane to the porous body side using the pressure difference between the supply side and the permeation side as the driving force. Then, the separation coefficient ⁇ and the permeation speed Q at that time were compared.
  • the feed solution had a water / ethanol (EtOH) ratio of 10/90 (mass%) and a temperature of 75 ° C.
  • the contents (mass%) of ethanol and water on the supply side and the permeation side were measured using a gas chromatograph GC-2014 (Shimadzu Corporation).
  • the separation factor ⁇ and the transmission rate Q were calculated using the following equations.
  • sample No. In No. 11 since the coating process 1 was omitted, carbon was not detected from the inside of the porous tube adjacent to the porous layer, and the separation characteristics were inferior.
  • A Composite with carbon membrane 1 ... First ceramic porous layer 2 ... Second ceramic porous layer 3 ... Carbon membrane 4 ... Ceramic porous substrate 5 ... Carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】 各種の混合流体から特定成分を分離するに際して、耐水性、耐薬品性に優れ、透過速度が大きい炭素膜付き複合体およびその製造方法を提供する。 【解決手段】 異なる平均粒径を有するセラミック粒子からなる複数のセラミック多孔質層が積層されているセラミック多孔質基体と、前記セラミック多孔質基体の最外層に位置するセラミック多孔質層のうち、前記セラミック粒子の平均粒径が小さい側の第一のセラミック多孔質層上に設けられたガラス状炭素を含む炭素膜とを有し、前記第一のセラミック多孔質層および該第一のセラミック多孔質層に隣接する第二のセラミック多孔質層の気孔の内部に炭素が存在する。

Description

炭素膜付き複合体およびその製造方法
 本発明は、炭素膜付き複合体およびその製造方法に関し、特に、含水アルコールの脱水濃縮、天然ガス分離、石油プラントにおける異性体分離等の技術において有用な炭素膜付き複合体およびその製造方法に関するものである。
 従来より、各種ガスを含有する混合気体中から特定ガスを分離するフィルタや、含水アルコールから水分を除去するフィルタ、触媒を担持したメンブレンリアクター等が用いられているが、安全かつ簡便なことからその適用範囲が拡がり、今やこれらの分離濃縮技術は各種燃焼機関をはじめ、食品工業や医療用機器、化学プラントや石油精製プラントの蒸留の一部代替、更には溶剤の回収処理、廃棄物処理等の分野でも注目されている。
 例えば、水素ガスを分離するフィルタとしては、石油精製プラントにおいて発生するオフガスや、アンモニア合成プラントにおいて発生するパージガスからの水素ガスの回収などに、また二酸化炭素を分離するフィルタとしては、燃費の向上およびパイプラインの腐食防止を目的に天然ガスに含まれる二酸化炭素の除去への応用が研究されている。さらに、酸素を分離するフィルタとしては、医療機器、スポーツ機器、各種燃焼機関用として応用されている。
 従来、この種の分離膜としては、有機樹脂等の高分子膜や、ゼオライト、ガラスあるいはシリカ膜等の無機多孔質膜からなるものが使用されてきた。しかしながら、高分子膜は一般に分離係数は大きいが、ガスの透過速度が小さく、またフィルタの耐熱性および耐食性が悪いために酸性やアルカリ性のガスを含む混合ガスや高温のガスに対しては使用することが困難であるといった欠点があった。一方無機多孔質膜は、高分子膜に比べフィルタの耐熱性および耐食性が向上しガス分離特性は大きくなったものの、実際のプラントに適用するには耐水性、耐薬品性が十分でなく、その適用には多大の制約を伴うといった問題があった。
 近年、耐水性、耐薬品性が大幅に改善され、かつガス透過特性の優れた膜として炭素からなる分離膜が特に注目されるようになり種々検討されている。特に多孔質基体の表面に炭素膜を被覆した炭素膜付き複合体は、炭素膜自体の強度の制約をほとんど受けず、分離特性の改善手段の幅が広がるため、種々の炭素膜付き複合体やその形成手段が提案されている。
 例えば、特許文献1には、多孔質体と炭素膜との界面に分離膜の下層として、多孔質体の緻密層に炭素膜材料が浸透した厚さ1mm以下の複合層を形成することで、フラックスを向上できることが開示され、このような分離膜多孔質体複合体の製法として、炭素膜前躯体溶液を多孔質体の表面に接触させる際、多孔質体の細孔内を加圧し、前躯体溶液が多孔質体の表面から細孔内へ浸透し難くすることで、炭素膜および複合層を薄く均一な厚さで形成することが可能となることが開示されている。
特表2010-509035号公報
 多孔質体の表面に炭素膜を被覆した炭素膜付き複合体においては、通常炭素膜と多孔質体の界面に、多孔質体より細孔径の小さな中間層を設けることで、炭素膜の前駆体溶液が多孔質体に進入するのを防ぎ、炭素膜にピンホール等の欠陥が発生するのを抑えている。特許文献1ではさらに多孔質体の細孔内を加圧することで、多孔質体への炭素膜前駆体溶液の進入を抑制している。しかしながら、細孔径の小さな中間層のみに炭素成分が浸透し、多孔質体内部に炭素成分が存在しない場合は、多孔質体の細孔内部における分離気体の拡散は、炭素膜前後の圧力差に依存するため、透過速度のさらなる向上が見込めないという問題があった。
 本発明は上記の課題に鑑みなされたもので、各種の混合流体から特定成分を分離するに際して、透過速度および分離係数が大きい炭素膜付き複合体を提供することを目的とする。
 本発明の炭素膜付き複合体は、異なる平均粒径を有するセラミック粒子からなる複数のセラミック多孔質層が積層されているセラミック多孔質基体と、前記セラミック多孔質基体の最外層に位置するセラミック多孔質層のうち、前記セラミック粒子の平均粒径が小さい側の第一のセラミック多孔質層上に設けられたガラス状炭素を含む炭素膜とを有し、前記第一のセラミック多孔質層および第一のセラミック多孔質層に隣接する第二のセラミック多孔質層の気孔の内部に炭素が存在することを特徴とする。
 本発明の炭素膜付き複合体の製造方法は、異なる平均粒径を有するセラミック粒子からなる複数のセラミック多孔質層が積層されているセラミック多孔質基体を準備する工程と、前記セラミック多孔質基体の最外層に位置するセラミック多孔質層のうち、少なくとも前記セラミック粒子の平均粒径が小さい側の第一のセラミック多孔質層をガラス状炭素前躯体溶液の中に浸漬し、乾燥させる工程と、前記第一のセラミック多孔質層の表面に、さらに前記ガラス状炭素前躯体溶液を塗布し、乾燥した後、非酸化性雰囲気または真空下で熱処理する工程と、を有することを特徴とする。
 本発明の炭素膜付き複合体では、炭素が、ガラス状炭素を含む炭素膜が設けられた最外層に位置する第一のセラミック多孔質層および第一のセラミック多孔質層に隣接する第二のセラミック多孔質層の気孔の内部に存在することにより、炭素膜を優先的に透過してきた分離成分を、炭素膜が設けられた第一のセラミック多孔質層から第二のセラミック多孔質層側へ速やかに移動させ、さらに系外に効率的に排出することができ、結果として分離成分の透過速度および分離係数を大きくできる。
 本発明の炭素膜付き複合体の製造方法では、セラミック多孔質基体の最外層に位置するセラミック多孔質層のうち、少なくともセラミック粒子の平均粒径が小さい側の第一のセラミック多孔質層をガラス状炭素前躯体溶液の中に浸漬して、第一のセラミック多孔質層と、第一のセラミック多孔質層に隣接する第二のセラミック多孔質層とにガラス状炭素前駆体を浸透させ、乾燥固化させた後、第一のセラミック多孔質層の表面に、さらにガラス状炭素前駆体を塗布することで、炭素を第一のセラミック多孔質層および第二のセラミック多孔質層の気孔の内部に形成するとともに、第一のセラミック多孔質層の表面に、ガラス状炭素を含む薄く均一な炭素膜が形成された、炭素膜付き複合体を得ることができる。
本実施形態における炭素膜付き複合体の概略断面図である。
 本実施形態の炭素膜付き複合体Aは、図1に示すように、異なる平均粒径を有するセラミック粒子からなる複数のセラミック多孔質層1、2が積層されているセラミック多孔質基体4と、セラミック多孔質基体4の最外層に位置するセラミック多孔質層1、2のうち、セラミック粒子の平均粒径が小さい側の第一のセラミック多孔質層1(以下、単に多孔質層1と呼ぶこともある)上に設けられたガラス状炭素を含む炭素膜3とを有している。なお図1では、第一のセラミック多孔質層1よりもセラミック粒子の平均粒径が大きい第二のセラミック多孔質層2(以下、単に多孔質層2と呼ぶこともある)は、単層のセラミック多孔質層としているが、2層以上のセラミック多孔質層からなる多層構造としてもよい。
 多孔質層2の材料としてはアルミナ、ムライト、コージェライト、ジルコニア、マグネシア、炭化珪素、窒化珪素などのセラミックスを好適に用いることができる。多孔質層1の材料としてこのようなセラミックスを用いることで、セラミック粒子の平均粒径が小さい側の多孔質層1および炭素膜3との熱膨張差、耐熱性、機械的強度、耐摩耗性、耐熱衝撃性、耐薬品性、耐蝕性を向上できる。
 多孔質層2を構成するセラミック粒子の平均粒径は、1~10μmであることが好ましく、更には1~5μmがより好ましい。多孔質層2の平均粒径をこのような範囲とすることにより、多孔質層2の機械的強度を高く維持することができると同時に、多孔質層2の表面に、多孔質層2よりもセラミック粒子の平均粒径が小さい多孔質層1を容易に形成することができる。多孔質層2を構成するセラミック粒子の平均粒径は、走査型電子顕微鏡(SEM)による多孔質層2の断面写真から、例えばインターセプト法により求めることができる。
 多孔質層2の平均細孔径は、0.1~5μm、更には0.3~3μmであることが好ましく、多孔質層2の気孔率は、30~60%、更には30~50%であることが好ましい。多孔質層2の平均細孔径および気孔率をこのような範囲とすることで、分離成分の透過速度を大きくすると同時に多孔質層2の機械的強度を高く維持することができる。多孔質層2の平均細孔径および気孔率は、水銀圧入法で求めることができる。なお、炭素膜が形成された炭素膜付き複合体Aについては、炭素成分を酸化することにより除去可能な条件、例えば空気中で800℃、30分程度の条件で炭素膜付き複合体Aを熱処理するなどして、炭素膜付き複合体Aの表面および細孔内部から炭素成分を除去した後、多孔質層2部分を切り出し、平均細孔径を測定すればよい。
 第二のセラミック多孔質層2よりもセラミック粒子の平均粒径が小さい第一のセラミック多孔質層1の材料としては、アルミナ、ムライト、コージェライト、ジルコニア、マグネシア、炭化珪素、窒化珪素などのセラミックスを好適に用いることができる。
 多孔質層1を構成するセラミック粒子の平均粒径は、多孔質層2を構成するセラミック粒子の平均粒径よりも小さいものであり、1.0μmよりも小さいことが好ましく、更には0.5μm以下であることがより好ましい。多孔質層1の平均粒径を、多孔質層2を構成するセラミック粒子の平均粒径よりも小さく、かつ1.0μmよりも小さくすることにより、多孔質層1の上面に形成する炭素膜3の厚みを薄くすることができ、透過速度の大きな炭素膜付き複合体Aとすることができる。なお、多孔質層1をディッピングやスピンコート等の方法により形成する場合、原料粉末の粒子の凝集を抑制するという観点から、多孔質層1を構成するセラミック粒子の平均粒径は0.02μm以上であることが望ましい。
 多孔質層1の平均細孔径は、多孔質層2の平均細孔径よりも小さいものであり、0.01~0.5μm、さらには0.02~0.1μmであることが好ましい。また、多孔質層1の気孔率は30~60%、更には30~50%であることが好ましい。多孔質層1の平均細孔径および気孔率をこのような範囲とすることで、ガラス状炭素前駆体を多孔質層1の内部およびそれに隣接する多孔質層2の内部にまで浸透させるとともに、多孔質層1の上面に薄く均一な炭素膜3を形成することができ、透過速度の大きな炭素膜付き複合体Aとすることができる。多孔質層1の平均細孔径および気孔率は、水銀圧入法で求めることができる。なお、炭素膜が形成された炭素膜付き複合体Aについては、多孔質層2の平均細孔径を測定する場合と同様に炭素成分を除去した後、多孔質層1部分を切り出し、平均細孔径を測定すればよい。
 多孔質層1の厚さは、それに隣接する多孔質層2の表面に存在する凹凸を多孔質層1で覆うことができる厚さであればよい。多孔質層1上にピンホール等の表面欠陥が残留するのを防ぎ、かつ透過速度を大きくするという点から、多孔質層1の厚さは、それに隣接する多孔質層2の表面を構成するセラミック粒子の平均粒径の1~50倍の範囲であることが好ましく、更には2~20倍の範囲であることがより好ましい。
 多孔質層2の表面上に多孔質層1を形成するには、例えば、アルミナ、ムライト、コージェライト、ジルコニア、マグネシア、炭化珪素、窒化珪素等の、平均粒径が1.0μmよりも小さい、より好ましくは0.5μm以下セラミック粒子からなる原料粉末を適宜秤量し、例えば親水性の分散剤を用いて水に分散させ、例えばディップコート法(浸漬塗布法)等の塗布手段を用いて多孔質層2の表面に塗布し、乾燥した後、熱処理するなどの方法を用いることができる。
 多孔質層1の上面に形成される炭素膜3はガラス状炭素を含むもので、ガラス状炭素とは、光学顕微鏡レベルで観察したとき、粒界等の内部構造をもたず均一な外観からなる炭素と定義され、炭素粒子とは全く異なる。なお、本明細書にいうガラス状炭素とは、内部に微細な細孔が多数存在する分子ふるい作用を有するものであり、気体または液体からなる流体の成分のうち、分子直径がガラス状炭素の細孔よりも小さい成分は、炭素膜3を構成するガラス状炭素の細孔を透過することになる。
 なお、分離成分の分離係数αは、炭素膜3のラマンスペクトル(レーザー波長:514.3nm)から計算されるR値(Dバンドのピーク強度/Gバンドのピーク強度)を、分離成分の種類に応じて制御することにより高めることもできる。その理由は明らかではないが、一般的に、炭素材料に関して、R値の増加はグラファイト構造の乱れや結晶子サイズの減少を意味しており、非晶質構造を有する炭素膜3の微細構造は、グラフェンシートが何枚か積層した層状アモルファスであり、その層状アモルファスの大きさが結晶子サイズに対応すると考えられる。ここで、分離成分が透過する炭素膜3中の細孔は、結晶子と結晶子の間の空隙に対応すると考えられる。従って、結晶子のサイズをある範囲に制御することにより、結晶子間の空隙の大きさを制御する、すなわち炭素膜3の細孔径を、分離成分を選択的に透過させることが可能な大きさに制御することで分離係数αが向上すると考えられる。
 例えば、エタノールから水を分離する炭素膜3については、R値が0.840~0.920の範囲、特に0.870~0.915の範囲にあることが好ましい。炭素膜3のR値を0.840~0.920の範囲とすることで、水の分離係数αを高くすることができる。
 炭素膜3の厚さは、ピンホール等の欠陥発生を抑制し、透過速度を大きくするという点から、0.01~5μmの範囲であることが好ましく、特には0.1~3μmの範囲であることが好ましい。
 本実施形態の炭素膜付き複合体Aにおいては、炭素膜3と接する多孔質層1および多孔質層1に隣接する多孔質層2の気孔の内部に、炭素5が存在している。炭素膜3をガス分離または浸透気化分離により優先的に透過してきた分離成分は、炭素5に対する親和性が高いため、炭素膜3と接する多孔質層1および多孔質層1に隣接する多孔質層2の気孔の内部に炭素5が存在することにより、分離成分が炭素5を介して気孔の内部を移動することが可能となり、多孔質層1からそれに隣接する多孔質層2側へ速やかに移動し、さらに多孔質層2から効率的に系外に排出される。その結果、本実施形態の炭素膜付き複合体Aでは、透過速度および分離係数を大きくすることができる。特に、炭素5が多孔質層1および多孔質層2の気孔の内面を覆うように存在する場合は、分離成分が気孔の内面である炭素5の表面を表面拡散により速やかに移動することが可能となり、さらに透過速度が向上する。なお、炭素5は、多孔質層1および多孔質層1に隣接する多孔質層2の気孔の内面全てを覆っていなくても構わない。炭素膜3と接する多孔質層1およびそれに隣接する多孔質層2の気孔の内面に炭素5が存在するか否かは、多孔質層1およびそれに隣接する多孔質層2の断面に、例えばPtを蒸着し、エネルギー分散型X線分析(EDS)により炭素由来のピークが存在するか否かを分析することで確認できる。
 また、本実施形態の炭素膜付き複合体Aでは、炭素膜3に接する多孔質層1の気孔の内部に存在する炭素5と、炭素膜3とがつながっていることが望ましい。またさらに、多孔質層1の気孔の内部に存在する炭素5と、多孔質層1に隣接する多孔質層2の気孔の内部に存在する炭素5とがつながっていることが望ましい。多孔質層1の気孔の内部に存在する炭素5と、炭素膜3とがつながっていることにより、炭素膜3を優先的に透過してきた分離成分を、多孔質層1の方へ効率的に移動させることができ、またさらに、多孔質層1および多孔質層2の気孔の内部に存在する炭素5がつながっていることにより、分離成分をさらに多孔質層1に隣接する多孔質層2の方へ効率的に移動させることができ、結果として透過速度および分離係数を大きくできる。なお、多孔質層1の気孔の内部に炭素5が充填されていることにより、より薄く均一な炭素膜3を形成することが可能となる。なお、熱処理時に生じる応力により炭素膜3に発生するクラックや炭素膜3の剥離を抑制するため、多孔質層1の気孔の内部に充填されている炭素5は、炭素膜3と同様にガラス状炭素を含んでいることが好ましい。
 本実施形態の炭素膜付き複合体Aの製法について説明する。まず、例えば平均粒径1~10μmのセラミック粒子からなり、平均細孔径が0.1~5μm、気孔率が30~60%の多孔質体2を準備し、この多孔質体2の一方の主面上に、例えば、平均粒径1.0μm以下のセラミック粒子からなる多孔質層1を形成する(基体作製工程)。多孔質層1は、アルミナ、ムライト、コージェライト、ジルコニア、マグネシア、炭化珪素、窒化珪素などの平均粒径1.0μmよりも小さいセラミック粒子からなる原料粉末を適宜秤量し、例えば親水性の分散剤を用いて水に分散させ、例えばディップコート法(浸漬塗布法)などの塗布手段を用いて多孔質体1の一方の主面上に塗布し、乾燥した後、熱処理する。このとき、形成された多孔質層1を構成するセラミック粒子はネックにより部分的に結合していれば良く、その粒径は原料粉末の粒径にほぼ等しい。
 得られたセラミック多孔質基体4の少なくとも多孔質層1側に、溶媒に溶かした芳香族ポリイミド、ポリピロロン、ポリフルフリルアルコール、ポリ塩化ビニリデン、フェノール樹脂、リグニン誘導体、木タール、竹タール等をガラス状炭素前駆体溶液としてディップコートし、乾燥する(塗布工程1)。その後、さらにセラミック多孔質基体4の多孔質層1の表面にガラス状炭素前駆体溶液をディップコートし、乾燥して(塗布工程2)、非酸化性雰囲気中または真空中で、550~950℃の温度で熱処理することにより、多孔質層1上面に炭素膜3が形成され、多孔質層1および多孔質層1に隣接する多孔質体2の気孔の内部に炭素5が形成された本実施形態の炭素膜付き複合体Aを得ることができる。このようにして形成された炭素膜3および炭素5は、細孔壁に官能基を有していると考えられ、この官能基と親和性のある各種の特定成分を混合流体から分離する際に優れた分離性能を発揮すると考えられる。なお、塗布工程2において使用するガラス状炭素前駆体溶液中のガラス状炭素前駆体の濃度は、塗布工程1にて使用したガラス状炭素前駆体溶液と同等またはそれ以上であることが望ましい。これにより、多孔質層1上面に薄く均一な炭素膜3を形成することができる。なお、多孔質層1に隣接する多孔質層2の気孔の内部に炭素5が存在する領域の厚さや、気孔の内部における炭素5の形成状態は、塗布工程1で使用するガラス状炭素前駆体の種類や溶液中の濃度、浸漬時間により調整できる。また、ガラス状炭素前駆体の種類や溶液中の濃度、熱処理条件により、炭素膜3を構成するガラス状炭素の細孔径を調整することで、分子直径の異なる種々の気体や液体を分離することが可能である。
 本実施形態の炭素膜付き複合体Aでは、高い耐水性、耐薬品性を有し、また透過速度および分離係数も大きいため、低濃度のアルコールの脱水・濃縮、酢酸の脱水・濃縮、石油精製プラントやアンモニア合成プラントでの水素ガス回収、天然ガスからの二酸化炭素除去、酸素富化など過酷な条件下において優れた分離性能を発揮できる。
 まず、炭素膜と接する多孔質層の原料であるアルミナ粉末(平均粒径0.02~0.9μm)を水とポリビニルアルコール(PVA)に分散させ、アルミナスラリーを作製した。多孔質体として、表1に記載したような平均粒径、平均細孔径、気孔率を有するアルミナ製の単層の多孔質管(外径12mm、内径9mm、長さ100mm、京セラ製)を用いた。これらの多孔質管の端部の開口部を密閉した後に、先に作製したアルミナスラリーに浸漬して一定速度で引き上げ、多孔質管の外表面に多孔質管よりもセラミック粒子の平均粒径が小さい第一のセラミック多孔質層となる被膜を形成し、乾燥した。その後、多孔質管全体を1100℃で熱処理し、外表面に多孔質管よりもセラミック粒子の平均粒径が小さい第一のセラミック多孔質層が形成されたアルミナ多孔質基体を作製した。このアルミナ多孔質基体の走査型電子顕微鏡(SEM)による断面写真から、多孔質管の外表面に形成された第一のセラミック多孔質層(以下、単に多孔質層ともいう)の厚さと多孔質層を構成するセラミック粒子の平均粒径を求め、表1に記載した。なお、セラミック粒子の平均粒径はインターセプト法で算出した。
 次に、塗布工程1に用いるガラス状炭素前駆体溶液(以下、単に前駆体溶液という場合もある)として、フェノール樹脂粉末をテトラヒドロフラン(THF)に溶解させて濃度20%のフェノール樹脂溶液を作製した。そして、表1に示すような条件でアルミナ多孔質基体を前駆体溶液に浸漬し、100mm/分の速度で引上げて、ガラス状炭素前駆体溶液を多孔質層およびそれに隣接する多孔質管に浸透させ、130℃で10分間乾燥させた。ここで、端部を密閉しなかった試料とは、基体作製工程において密閉した多孔質管の端部を、前駆体溶液中に浸漬する前に開口したものである。
 塗布工程2に用いるガラス状炭素前駆体溶液として、塗布工程1の場合と同様にして濃度35%のフェノール樹脂溶液を作製した。この前駆体溶液に、塗布工程1を経たアルミナ多孔質基体を浸漬して1分間保持した後、100mm/分の速度で引上げて、多孔質層上面にフェノール樹脂の被膜を形成し、130℃で10分間乾燥させた。その後、多孔質基体全体を窒素雰囲気中850℃で10分間熱処理し、炭素膜付き複合体を作製した。なお、塗布工程2では、塗布工程1において多孔質管の端部を開口した試料も、再度端部を密閉した状態で浸漬処理を施している。
 作製した種々の炭素膜付き複合体について以下のような評価を行い、その結果を表2に記載した。
 多孔質層上に形成された炭素膜は、光学顕微鏡による観察において、いずれの試料についても粒界等の内部構造は確認できず、ガラス状炭素からなるものであった。
 炭素膜の厚さは、作製した炭素膜付き複合体の断面にPtを蒸着して、エネルギー分散型X線分析(EDS)機能付きの走査型電子顕微鏡(SEM)を用いて分析し、測定した。同時に、エネルギー分散型X線分析(EDS)を用いて多孔質層およびそれに隣接する多孔質管の内部において炭素由来のピークが存在することを確認し、多孔質層と多孔質管の界面部分から、多孔質管側に炭素由来のピークが検出されなくなった部分までの距離を、多孔質管の気孔内部に炭素が存在する領域の厚さtとした。なお、いずれの試料も、多孔質層の気孔の内部には炭素が充填されており、その炭素は内部構造をもたず均一な外観を有するガラス状炭素であった。
 作製した炭素膜付き複合体の分離特性の評価として、水/エタノール混合溶液の浸透気化分離測定を、供給側(炭素膜付き複合体の炭素膜側)を大気圧とし、透過側(炭素膜付き複合体の多孔質体側)を真空として、炭素膜付き複合体の炭素膜の外側にある水/エタノール混合溶液を、供給側と透過側との圧力差を駆動力にして多孔質体側へと透過させ、そのときの分離係数αと透過速度Qを比較した。供給液は、水/エタノール(EtOH)比を10/90(質量%)とし、温度を75℃とした。供給側と透過側のエタノールと水の含有量(質量%)はガスクロマトグラフGC-2014(島津製作所)を用いて測定した。分離係数αと透過速度Qは以下の式を用いて計算した。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 試料No.1~10では、炭素が多孔質層に隣接する多孔質管の気孔の内面から検出され、水/エタノール混合溶液の浸透気化分離測定の結果、透過速度Qが0.8kg/m・h以上、分離係数αが800以上と、優れた分離特性を示すものであった。
 一方、試料No.11では、塗布工程1を省いたために多孔質層に隣接する多孔質管内部から炭素が検出されず、分離特性に劣るものであった。
A・・・炭素膜付き複合体
1・・・第一のセラミック多孔質層
2・・・第二のセラミック多孔質層
3・・・炭素膜
4・・・セラミック多孔質基体
5・・・炭素

Claims (5)

  1.  異なる平均粒径を有するセラミック粒子からなる複数のセラミック多孔質層が積層されているセラミック多孔質基体と、
    前記セラミック多孔質基体の最外層に位置するセラミック多孔質層のうち、前記セラミック粒子の平均粒径が小さい側の第一のセラミック多孔質層上に設けられたガラス状炭素を含む炭素膜とを有し、
    前記第一のセラミック多孔質層および該第一のセラミック多孔質層に隣接する第二のセラミック多孔質層の気孔の内部に炭素が存在することを特徴とする炭素膜付き複合体。
  2.  前記第一のセラミック多孔質層の気孔の内部に存在する前記炭素と、前記炭素膜とがつながっていることを特徴とする請求項1に記載の炭素膜付き複合体。
  3.  前記第一のセラミック多孔質層の気孔の内部に存在する前記炭素と、前記第二のセラミック多孔質層の気孔の内部に存在する前記炭素とがつながっていることを特徴とする請求項1または2に記載の炭素膜付き複合体。
  4.  前記第一の多孔質層の気孔の内部に、前記炭素が充填されていることを特徴とする請求項1乃至3のうちいずれかに記載の炭素膜付き複合体。
  5.  異なる平均粒径を有するセラミック粒子からなる複数のセラミック多孔質層が積層されているセラミック多孔質基体を準備する工程と、
    前記セラミック多孔質基体の最外層に位置するセラミック多孔質層のうち、少なくとも前記セラミック粒子の平均粒径が小さい側の第一のセラミック多孔質層をガラス状炭素前躯体溶液の中に浸漬し、乾燥させる工程と、
    前記第一のセラミック多孔質層の表面に、さらに前記ガラス状炭素前躯体溶液を塗布し、乾燥した後、非酸化性雰囲気または真空下で熱処理する工程と、を有することを特徴とする炭素膜付き複合体の製造方法。
PCT/JP2012/053762 2011-02-17 2012-02-17 炭素膜付き複合体およびその製造方法 WO2012111792A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-032157 2011-02-17
JP2011032157 2011-02-17

Publications (1)

Publication Number Publication Date
WO2012111792A1 true WO2012111792A1 (ja) 2012-08-23

Family

ID=46672703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053762 WO2012111792A1 (ja) 2011-02-17 2012-02-17 炭素膜付き複合体およびその製造方法

Country Status (1)

Country Link
WO (1) WO2012111792A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016530073A (ja) * 2013-06-11 2016-09-29 テクノロジ アバンセ エ メンブラン アンデュストリエレ 積層造形法による濾過膜の製造方法及び得られる膜
JP2020082011A (ja) * 2018-11-29 2020-06-04 京セラ株式会社 気体分離部材および気体分離装置
CN112805264A (zh) * 2018-10-15 2021-05-14 住友化学株式会社 多孔质陶瓷层叠体以及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087355A1 (ja) * 2004-03-12 2005-09-22 Ngk Insulators, Ltd. 炭素膜積層体及びその製造方法、並びにvoc除去装置
WO2008010452A1 (fr) * 2006-07-20 2008-01-24 Ngk Insulators, Ltd. Filtre céramique
WO2011004660A1 (ja) * 2009-07-10 2011-01-13 日本碍子株式会社 炭素膜の製造方法、炭素膜、及び分離装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087355A1 (ja) * 2004-03-12 2005-09-22 Ngk Insulators, Ltd. 炭素膜積層体及びその製造方法、並びにvoc除去装置
WO2008010452A1 (fr) * 2006-07-20 2008-01-24 Ngk Insulators, Ltd. Filtre céramique
WO2011004660A1 (ja) * 2009-07-10 2011-01-13 日本碍子株式会社 炭素膜の製造方法、炭素膜、及び分離装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016530073A (ja) * 2013-06-11 2016-09-29 テクノロジ アバンセ エ メンブラン アンデュストリエレ 積層造形法による濾過膜の製造方法及び得られる膜
CN112805264A (zh) * 2018-10-15 2021-05-14 住友化学株式会社 多孔质陶瓷层叠体以及其制造方法
JP2020082011A (ja) * 2018-11-29 2020-06-04 京セラ株式会社 気体分離部材および気体分離装置
JP7118871B2 (ja) 2018-11-29 2022-08-16 京セラ株式会社 気体分離部材および気体分離装置

Similar Documents

Publication Publication Date Title
JP6723265B2 (ja) 水及びガス分離のための炭素含有膜
US20100304953A1 (en) Zeolite Membranes for Separation of Mixtures Containing Water, Alcohols, or Organics
JP5523560B2 (ja) 炭素膜複合体およびその製造方法ならびに分離膜モジュール
US20080093291A1 (en) Ceramic porous membrane and ceramic filter
WO2009119292A1 (ja) セラミックフィルタ
JP6436974B2 (ja) モノリス型分離膜構造体及びモノリス型分離膜構造体の製造方法
EP2091633A2 (en) Separation membrane-porous material composite and method for manufacturing the same
JP5897458B2 (ja) 浸透気化分離方法
WO2009001970A1 (ja) 分離膜複合体及び分離膜複合体の製造方法
US20140199478A1 (en) Method for producing carbon membrane
WO2012111792A1 (ja) 炭素膜付き複合体およびその製造方法
CN115945075A (zh) 沸石膜结构体
JP2013237015A (ja) 炭素膜付き多孔質体およびその製造方法
JP2002066280A (ja) ガス分離フィルタおよびその製造方法
WO2011018919A1 (ja) 混合物用分離膜、それを用いた混合物の組成変化方法、及び混合物分離装置
JP2013173131A (ja) 炭素膜付き多孔質体およびその製造方法
JP2010274174A (ja) 炭素膜複合体および分離膜モジュール
WO2016104048A1 (ja) ガス分離方法
JP2011201753A (ja) 炭素膜の製造方法
CN107427784B (zh) 二氧化硅膜及分离膜过滤器
WO2016104049A1 (ja) ガス分離方法
JP2013027823A (ja) 炭素膜付き多孔質体およびその製造方法
WO2016148131A1 (ja) シリカ膜フィルタ
WO2013145863A1 (ja) 炭素膜、炭素膜の製造方法、及び炭素膜フィルタ
JP2019098211A (ja) 炭素膜付き多孔質体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP