JP7118871B2 - 気体分離部材および気体分離装置 - Google Patents

気体分離部材および気体分離装置 Download PDF

Info

Publication number
JP7118871B2
JP7118871B2 JP2018223525A JP2018223525A JP7118871B2 JP 7118871 B2 JP7118871 B2 JP 7118871B2 JP 2018223525 A JP2018223525 A JP 2018223525A JP 2018223525 A JP2018223525 A JP 2018223525A JP 7118871 B2 JP7118871 B2 JP 7118871B2
Authority
JP
Japan
Prior art keywords
gas separation
layer
separation member
thickness
porous substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018223525A
Other languages
English (en)
Other versions
JP2020082011A (ja
Inventor
正憲 神村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2018223525A priority Critical patent/JP7118871B2/ja
Publication of JP2020082011A publication Critical patent/JP2020082011A/ja
Application granted granted Critical
Publication of JP7118871B2 publication Critical patent/JP7118871B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

本開示は、気体分離部材および気体分離装置に関する。
近年、環境、省エネルギーの観点からバイオマス発電が注目されている。バイオマス発電は水蒸気によってタービンを回転させて発電を起こす方法のうちの一つである。水蒸気は炭化水素を燃焼させることによって発生させる。炭化水素の例としては、メタンまたはエタンがある。メタンまたはエタンなどの炭化水素は、廃材または生ゴミなどを腐敗させることにより発生する。廃材や生ゴミなどを腐敗させた場合には混合気体が発生する。混合気体は、炭化水素とともに、二酸化炭素および水蒸気を含む。二酸化炭素および水蒸気は不燃性の気体である。炭化水素による燃焼効率を上げるためには、混合気体から二酸化炭素および水蒸気など不燃性の気体を取り除く必要がある。複数の気体を含んだ混合気体から特定の気体を選択的に分離するために、気体分離部材が使用されている(例えば、特許文献1を参照)。
特開2006-326555号公報
実施形態の一態様に係る気体分離部材は、セラミック製の多孔質基材層と、炭素材により構成される炭素質層と、を有しており、前記多孔質基材層は、長尺状を成しており、前記多孔質基材層と前記炭素質層とは、積層構造を成しており、前記多孔質基材層は、厚み方向に前記炭素材が入り込んだ浸透層を有しており、前記浸透層の厚みは、前記多孔質基材層の長さ方向に変化しており、前記多孔質基材層を長さ方向に2等分したときに、2等分された領域間で前記浸透層の厚みが異なり、有底筒状を成しており、前記有底筒状の外空間において入口側である前記有底筒状の底側から出口側である前記有底筒状の開口側へ流れる、二酸化炭素を含む混合流体から、前記有底筒状の内空間へ二酸化炭素を分離し浸透させることによって、二酸化炭素を選択的に分離する気体分離部材であって、前記外空間と前記内空間との間での二酸化炭素の濃度差が、前記出口側の方が前記入口側よりも小さく、前記浸透層は、前記出口側の厚みが前記入口側の厚みよりも薄い。
実施形態の一態様に係る気体分離装置は、上記の気体分離部材と、混合気体を供給するための供給部とを有しており、該供給部が筐体管に導入口および排出口を備えており、前記気体分離部材が前記筐体管を貫通するように設置されている。
実施形態に係る気体分離装置を模式的に示す斜視図である。 図1のii-ii線断面図である。 図2に示した気体分離部材のP1部を示す斜視図である。 図3のiv-iv線断面図である。 図4に示したP2部の拡大図である。 実施形態に係る気体分離部材の他の態様を示す斜視図である。 図6のvii-vii線断面図である。 図7に示したP3部の拡大図である。
以下に示す実施形態は、混合流体から選択的に分離される気体の回収効率を高めることのできる気体分離部材および気体分離装置を提供するものである。以下、混合気体から分離される気体のことを分離気体と表記する場合がある。一方、混合流体から分離気体が除かれた後の流体を流体残と表記する場合がある。図1は、本開示の実施形態に係る気体分離装置を模式的に示す斜視図である。図2は、図1のii-ii線断面図である。
気体分離装置AAは、気体分離部材Aと供給部Bとを有する。供給部Bは、混合気体を供給するためのものである。気体分離部材Aは、混合流体から分離された特定の気体を分離して回収する部材である。供給部Bは、筐体管1と、混合流体の導入口3と、流体残が排出される排出口5とを有する。筐体管1の2つの端面には蓋部7a、7bが設けられている。導入口3は、筐体管1の蓋部7a側に設けられている。排出口5は、筐体管1の蓋部7b側に設けられている。図1および図2に示した気体分離装置AAは、筐体管1の形状が円筒状であるが直方体状のような多面体の形状でもよい。
気体分離部材Aは、筐体管の蓋部7a側から蓋部7b側に向かう方向の軸と軌を一にするように設置されている。気体分離部材Aは、筐体管1の蓋部7aおよび蓋部7bを貫通するように設けられている。気体分離部材Aの一方の端部9aは閉じられた状態にある。つまり、気体分離部材Aは形状が有底筒状である。気体分離部材Aの閉じられた方の端部9aは、後述する多孔質基材層の材料および炭素質層の材料によって蓋10をするように形成されている。この端部9aの多孔質基材層の材料および炭素質層の材料によって形成された蓋10の表面には、必要に応じて樹脂材が塗布される場合がある。この樹脂材は気体分離部材Aが筐体管1の外に突き出た部分にも塗布されていてもよい。気体分離部材Aの他方の端部9bは解放された状態にある。混合流体は、白抜きの矢印で示しているように、筐体管1に設けられた導入口3側から排出口5側に向けて流れるものとする。筐体管1の気体分離部材Aとの間の空間を便宜上外空間Ouとして表した。気体分離部材Aの内側を便宜上内空間Inとして表した。
図3は、図2に示した気体分離部材のP1部を示す斜視図である。図4は、図3のiv-iv線断面図である。図5は、図4に示したP2部の拡大図である。
実施形態の気体分離部材Aは、多孔質基材層11と炭素質層13とを有する。多孔質基材層11は長尺状である。多孔質基材層11と炭素質層13とは積層構造を成している。炭素質層13は炭素材13aによって形成されている。炭素質層13は、炭素材13aが緻密化した膜である。多孔質基材層11には、厚み方向に炭素材13aが入り込んだ部分が存在する。多孔質基材層11の中で炭素材13aが入り込んだ領域を浸透層13Aとする。図4では、浸透層13Aの厚みが異なる状態を示すために、t、tを用いている。この場合、浸透層13Aの厚みの厚い場所をtとしている。浸透層13Aの厚みがtよりも薄い厚みをtで表している。炭素質層13の厚みはtとして表している。多孔質基材層1の厚みはtとして表している。図4からわかるように、浸透層13Aの厚みは、多孔質基材層11の長さ方向に向かって変化している。言い換えると、浸透層13Aの厚みは多孔質基材層11の底の方向に向けて変化している。
ここで、多孔質基材層11を、図4に示すように、長さ方向に仮想的に2等分する。
多孔質基材層11を長さ方向に2等分した領域を符号11A、11Bで表している。
符号Enの入口側が11Aである。符号Exの出口側が11Bである。気体分離部材Aは、多孔質基材層11を長さ方向に2等分したときに、浸透層13Aの厚みが、2等分した領域11A、11B間で異なる。気体分離部材Aは、浸透層13Aの厚みの厚い方が供給部Bの導入口3側となるように設置される。
また、気体分離部材Aの外空間Ouに混合流体を流す場合を想定する。混合流体としては、炭化水素に少なくとも二酸化炭素を含んだものを例とする。混合流体は供給部Bの導入口3から供給する。このとき、混合流体は、筐体管1の内部の外空間Ouで気体分離部材Aの炭素質層13に接触する。
次いで、混合流体に含まれる気体成分のうち、二酸化炭素は炭素質層13から多孔質基
材層11を通過して気体分離部材Aの内空間Inに入ってくる。こうして混合流体から二酸化炭素を選択的に分離することができる。
以下、炭素質層13によって二酸化炭素を分離できる理由について説明する。炭素材13aによって緻密化した炭素膜層13は、二酸化炭素の分子長に近い孔を有する微細な多孔質膜である。二酸化炭素の分子は直線的な構造である。二酸化炭素の分子の長さは0.23nmである。一方、水蒸気(水)の分子は、酸素に結合した2つの水素間の角度が104°程度である。酸素と水素の間の長さは0.096nm程度であるが、水は極性を有する分子である。このため、水の分子のサイズは、酸素のファンデルワールス半径(0.14nm)と水素のファンデルワールス半径(0.12nm)とが合計された長さ(0.26nm)となり、しかも球体に近い立体的な形状である。つまり、水の分子は二酸化炭素の分子よりも実質的に大きい。このため、二酸化炭素は炭素質層13を通過しやすいが、水の分子は炭素質層13を通過し難い。炭化水素については、例えば、メタン(CH4)は、1つの炭素原子と4つの水素原子とで正4面体の構造を成している。メタンも水分子と同様に立体的な構造である。このため、メタンも炭素質層13に形成された孔を通過し難い。炭化水素に二酸化炭素および水蒸気を含んだ混合流体を気体分離部材Aの外側を通過するように、圧力をかけて流した場合には、二酸化炭素だけを選択的に分離することができる。
また、この気体分離部材Aは、上述したように、多孔質基材層11を長さ方向に2等分したときに、浸透層13の厚みが、2等分した領域11A、11B間で異なる。混合流体を筐体管1の外空間Ouに流した場合には、この場合、混合流体中に含まれる二酸化炭素の濃度は気体分離部材Aの外空間Ouの入口En側では高くなっている。つまり、気体分離部材Aの入口En側では、気体分離部材Aの外空間Ouと内空間Inとで二酸化炭素の濃度の差が大きい。このため多孔質基材層11の隙間に炭素材13aが入り込むことによって形成された浸透層13Aの厚みtが厚くても二酸化炭素は通過できる。一方、気体分離部材Aの出口Ex側では、気体分離部材Aの外空間Ouと内空間Inとで、二酸化炭素の濃度の差が入口En側よりも小さくなっている。気体分離部材Aの外空間Ouと内空間Inとで、二酸化炭素の濃度の差が入口En側よりも小さくなっている状況においても、気体分離部材Aの出口Ex側では浸透層13Aの厚みが薄いために、二酸化炭素が浸透層13Aを厚み方向に通過しやすい。こうして、気体分離部材Aによれば、入口En側から出口Ex側の全体において、二酸化炭素が通過しやすいために、混合気体から分離した二酸化炭素(分離ガス)の回収率を高めることができる。
多孔質基材層11は、複数のセラミック粒子が焼結した密度の低いセラミック焼結体である。例えば、気孔率は10%以上25%以下であるのがよい。多孔質基材層11を構成するセラミック粒子を以下第1セラミック粒子11aと表記する場合がある。なお、気孔率は水銀圧入法によって求める。
セラミック粒子11aの材料としては、アルミナに代表される高強度のセラミックスが好適なものとなるが、アルミナ以外に、ジルコニア、シリカ、ムライト、コージエライトおよびエンスタタイトの群から選ばれるいずれかを適用しても良い。この場合、炭素材13aが多孔質基材層11に入り込む量を調整できるという点から、第1セラミック粒子11aの平均粒径は0.15μm以上0.5μm以下であるのが良い。炭素質層13は炭素成分が焼結した膜である。ここで、炭素成分としては、無定形炭素を主成分とするものが良いが、気体分離部材Aの特性が所定のレベル以上であれば、結晶質の炭素を含んでいても良い。無定形炭素とは、微小な黒鉛結晶の構造をした不規則な炭素の集合体である。結晶質の炭素としては、規則的な原子配列を持つものであり、例として、ダイヤモンド・グラファイト(黒鉛)・グラフェンなどを挙げることができる。図1および図2に示した気体分離装置AAは、気体分離部材として断面が円形状であるものを例示しているが、気体
分離部材の形状はこれに限らず多角形の形状であっても同様に適用できる。
また、気体分離部材Aでは、浸透層13Aは、多孔質基材層11の長さ方向に向けて次第に変化している傾斜構造を有していてもよい。浸透層13Aがこのような構造であると、気体分離部材Aの外空間Ouに混合流体を流したときに、混合流体中に含まれる二酸化炭素(分離ガス)を気体分離部材Aの長さ方向に徐々に透過させて回収することが可能になる。この場合、気体分離部材Aにおける浸透層13Aは、多孔質基材層11の長さに対する浸透層の厚みの比が、0.1/15000以上0.4/15000以下の傾きを有するのが良い。また、気体分離部材Aでは、炭素質層13の厚みtは浸透層13Aの厚みtよりも薄くても良い。気体分離部材Aの表層側に、浸透層13Aの厚みtよりも薄い炭素質層13を設けることで、混合流体から分離したい気体(ここでは、二酸化炭素)が炭素質層13に入り込みやすくなり、二酸化炭素が炭素質層13を透過する際の流体抵抗を抑えることが可能になる。これにより分離したい気体の透過速度とともに回収率を上げることができる。この場合、多孔質基材層13は、厚みが3μm以上8μm以下であるのがよい。炭素質層13の厚みtは0.5μm以上15μm以下であるのがよい。炭素質層13の厚み差の最大値は0.1μm以下であるのがよい。また、気体分離部材Aは多孔質支持体17を有していても良い。
図6は、実施形態に係る気体分離部材の他の態様を示す斜視図である。図7は、図6のvii-vii線断面図である。図8は、図7に示したP3部の拡大図である。気体分離部材Aに多孔質支持体17を設けた気体分離部材を、以下、気体分離部材Cと表記する。気体分離部材Cは、多孔質基材層11の内空間In側に多孔質支持体17を有する。言い換えると、気体分離部材Cは、多孔質支持体17の表面上に多孔質基材層11を有する。また、この多孔質基材層11の外空間Ou側の表面上に炭素質層13を有する。多孔質支持体17は、多孔質基材層11の炭素質層13が設けられた表面とは反対側の表面上に設けられている。多孔質支持体17の多孔質基材層11との境界領域19は、多孔質支持体17の厚み方向の他の領域よりも、多孔質基材層11を構成している微粒の第1セラミック粒子11aが多孔質支持体17の表面に形成された気孔(空隙)に充填されている。つまり、多孔質支持体17の多孔質基材層11との境界付近は、境界付近よりも厚み方向に深い領域において第1セラミック粒子11aの充填性が高い。多孔質支持体17の多孔質基材層11との境界領域19に、第1セラミック粒子11aが局部的に充填された構造が形成されていると、その境界領域19は第1セラミック粒子11aが多孔質支持体17の表面に存在する孔に埋まった状態となる。これにより多孔質支持体17と多孔質基材層11との間の結合が強固になる。その結果、外界から荷重などの負荷を受けても曲がり難くい気体分離部材Bを得ることができる。これにより気体分離部材Bは耐久性が高くなり、気体分離部材Cを供給部Bに装着する場合などにハンドリングしやすくなる。
第1セラミック粒子11aが局部的に充填された境界付近の厚みとしては、機械的強度を高めるという点から第1セラミック粒子11aの平均粒径の1/2以上であるのがよい。一方、境界付近において、二酸化炭素の透過性を維持するという点から、第1セラミック粒子1aの平均粒径の5個分以下が良い。また、多孔質支持体7の厚みtは多孔質基材層1の厚みtよりも厚くしてもよい。多孔質支持体7の厚みtを厚くすることで、より機械的強度の高い気体分離部材Cを形成することができる。この場合、多孔質支持体7の厚みtは500μm以上2000μm以下であるのがよい。多孔質支持体7の厚みtが500μm以上であると、多孔質支持体7の機械的強度をさらに高めることが可能になる。多孔質支持体7の厚みtが2000μm以下であると、二酸化炭素が厚み方向に通過しやすくなるため、二酸化炭素の回収速度を高めることができる。
また、気体分離部材Cを構成する多孔質基材層11と多孔質支持体17とは気孔径が異なっていてもよい。例えば、多孔質支持体17の平均の気孔径が多孔質基材層1の平均の
気孔径よりも大きいときには、気体分離部材Cの炭素質層3側から内空間Inへ移動する二酸化炭素が多孔質支持体17中で詰まりにくい。これにより混合流体から分離した二酸化炭素の回収率を高めることができる。多孔質支持体17は、複数の第2セラミック粒子17aが焼結した密度の低いセラミック焼結体である。例えば、気孔率は20%以上60%以下であるのがよい。気孔率の測定は、上記した気体分離部材Aと同様の測定法により求めることができる。気孔率が20%以上であると、二酸化炭素が透過しやすくなり、二酸化炭素の回収率を高めることができる。気孔率が60%以下であると、多孔質支持体17の機械的強度を高く保つことができる。
この場合、多孔質支持体17を構成する複数の第2セラミック粒子17aの平均粒径は、多孔質基材層11を構成する第1セラミック粒子11aの平均粒径よりも大きくても良い。第2セラミック粒子17aの粒径が大きいと、隣接する複数の第2セラミック粒子17aによって形成される気孔径を大きくすることができる。また、気孔の形状を細長い形状にできる。これにより多孔質支持体17中における二酸化炭素の透過性をさらに高めることができる。この場合、多孔質支持体17は、多孔質基材層11を構成する第1セラミック粒子11aの平均粒径と同等の気孔径を持つ孔を有していても良い。多孔質支持体7に形成された孔の気孔径が多孔質基材層11を構成する第1セラミック粒子11aの平均粒径と同等であると、多孔質支持体17に形成された孔に対して、第1セラミック粒子11aが入り難くなる。また、孔よりも小さいサイズの異物も孔に入りにくくなる。これにより多孔質支持体17を長期間に亘って使用できるようになる。多孔質支持体17を構成する第2セラミック粒子17aの材料としては、耐候性が高いという点から多孔質基材層1を構成する第1セラミック粒子1aと同様のセラミック材料を適用するのが良い。
次に、気体分離装置の製造方法について説明する。ここでは、気体分離部材Cを備えた気体分離装置AAを例にして説明するが本開示はこれに限られるものではない。まず、供給部Bを準備する。供給部BはSUSなどの金属部材を加工して作製する。また、気体分離部材Cを作製する。
多孔質支持体17は、例えば、以下の方法によって作製する。多孔質支持体17は、いわゆる多孔質管である。多孔質管は、まず、アルミナなどのセラミック粉末に有機バインダを添加して溶剤を混合して成形体用の坏土から作製する。次に、作製した坏土を押出成形によって管状の成形体を作製する。次に、この成形体を所定の条件で焼成することによって多孔質支持体17となる多孔質管を得ることができる。
次に、作製した多孔質支持体17となる多孔質管の表面に多孔質基材層11となるセラミック膜を形成する。多孔質支持体17となる多孔質管の表面に多孔質基材層11となるセラミック膜を形成した成形体を以下、管状成形体という場合がある。多孔質基材層11となるセラミック膜の形成には、例えば、アルミナなどのセラミック粉末に有機バインダを添加し、溶剤を混合して調製したスラリを用いるのが良い。次に、調製したスラリを多孔質支持体17となる多孔質管の表面に塗布し、乾燥させて作製する。こうして管状成形体を得ることができる。管状成形体は必要に応じて焼成処理を行っても良い。この場合、多孔質基材層11となるセラミック膜に用いるセラミック粉末としては、多孔質支持体17となる多孔質管用に用いたセラミック粉末よりも平均粒径の小さいセラミック粉末を用いるのが良い。多孔質基材層11となるセラミック膜に用いるセラミック粉末として、多孔質支持体17となる多孔質管用に用いたセラミック粉末よりも平均粒径の小さいセラミック粉末を用いることにより、多孔質基材層11を本来構成する第1セラミック粒子11aが多孔質支持体17との境界領域19に他の部分よりも密に充填された構造を形成することができる。多孔質基材層11となるセラミック膜を形成する方法としては、多孔質支持体17を多孔質基材層11用に調製したスラリ中に浸漬する方法、スラリを刷毛により塗る方法、スラリをスプレーによって吹きかける方法のいずれかを用いることができる。
この場合、多孔質基材層11の表面粗さを小さくできるという点および厚みを均一にできるという点からスラリ中に浸漬する方法を採用するのが良い。
次に、多孔質支持体17となる多孔質管の表面にセラミック膜を形成した管状成形体の表面に炭素質層13となる炭素膜を形成する。多孔質基材層11となるセラミック膜の表面に形成された炭化水素化合物の膜のことを、以下、炭素膜という場合がある。炭素質層13となる炭素膜を形成するための原料には液体状の炭化水素化合物を用いるのが良い。管状成形体の表面に炭素膜を形成する場合、原料である液体状の炭化水素化合物の一部が多孔質基材層11の表面から所定の厚みの範囲に及ぶように塗布する。炭化水素化合物としては、芳香族ポリイミド、ポリプロピレン、ポリ古フリルアルコール、ポリ塩化ビニリデンおよびフェノール樹脂の群から選ばれる少なくとも1種を用いることができる。この中で、官能基の数が多く、二酸化炭素の吸着力が高いという点でフェノール樹脂が良い。炭化水素化合物として、芳香族ポリイミド、ポリプロピレン、ポリフルフリルアルコール、ポリ塩化ビニリデンおよびフェノール樹脂の群から選ばれる少なくとも1種を用いることにより、無定形炭素を主成分とする炭素質層13を形成することができる。炭素質層となる炭素膜の厚みおよび浸透膜の厚みは、管状成形体を炭素膜前駆体溶液に浸漬する時間および引き上げ速度によって調整するのが良い。
次に、炭化水素化合物を多孔質基材層11となるセラミック膜の表面に塗布した後、加熱処理を行う。この場合、加熱処理の温度としては700~1000℃が良い。最高温度での保持時間は10分以上90分以下が良い。昇温速度は1℃/分以上10℃/分以下が良い。加熱処理する最高温度での保持時間は1分以上30分以下が良い。加熱処理時の雰囲気としては、炭素成分の蒸発を抑えることができるという点から非酸化性の雰囲気が良い。非酸化性の雰囲気を形成するガスとしては不活性ガスが良い。不活性ガスとしては、窒素、ヘリウムおよびアルゴンの群から選ばれる1種を挙げることができる。なお、非酸化性雰囲気中での加熱処理を行う前に、空気中において熱処理を行っても良い。空気中での熱処理の温度としては、150℃以上350℃以下が良い。空気中での熱処理の時間としては、30分以上90分以下が良い。空気中での熱処理の時間が30分以上であると、炭化水素化合物の重合度を高めることができる。これにより炭素質層13自体の機械的強度を高めることができる。また。炭素質層13と多孔質基材層11との間の接着力、並びに、多孔質基材層11と多孔質支持体17との間の接着力を高めることができる。このような条件で加熱処理を行うことにより、透過係数の高い炭素質膜3を有する気体分離部材Cを得ることができる。この後、作製した気体分離部材Cを供給部Bに固定することにより気体分離装置AAが得られる。
気体分離装置を具体的に作製して気体分離部材による二酸化炭素の回収効率を評価した。二酸化炭素の選択性および回収効率は二酸化炭素の透過特性から評価した。まず、多孔質支持体として、アルミナ質セラミックス製の多孔質管を準備した。多孔質管は、外径が12mm、内径が9mm、長さが150mmであった。多孔質管の平均の気孔径は1μmであった。気孔率は40%であった。次に、多孔質支持体となる多孔質管の表面に多孔質基材層となるセラミック膜を形成した。このとき多孔質管の一方の端部はセラミック膜用に調製したスラリによって封止した。多孔質基材層となるセラミック膜は、多孔質支持体を多孔質基材層用に調製したスラリ中に浸漬する方法により作製した。スラリはアルミナ粉末100質量部に対して、ポリビニルアルコール10質量部および水1900質量部を添加して調製した。アルミナ粉末は平均粒径が0.2μmのものを用いた。この後、セラミック膜を有する多孔質管を温度80℃、保持時間30分の条件で乾燥させた。こうして多孔質管の表面にセラミック膜を有する管状成形体を作製した。
次に、管状成形体の表面に炭素質層となる炭素膜を形成した。炭素膜の原料には、フェ
ノール樹脂粉末100質量部とテトラヒドロフラン230質量部とを混合して調製した炭素膜前駆体溶液を用いた。炭素膜前駆体溶液では、フェノール樹脂粉末はテトラヒドロフランに溶解した状態となっていた。
次に、管状成形体を、封止した端部側から炭素膜前駆体溶液中に浸漬して、管状成形体の表面に炭素質層となる炭素膜を形成した。炭素質層となる炭素膜の厚みおよび浸透膜の厚みは、表1に示すように、管状成形体を炭素膜前駆体溶液に浸漬する時間、引き上げ速度および引上げ回数によって調整した。この後、炭素膜を有する管状成形体を、温度80℃、保持時間10分の条件で乾燥処理を行った。次いで、炭素膜を有する管状成形体の加熱処理を行った。加熱処理は、以下の条件で行った。加熱処理時の雰囲気の調整には窒素を用いた。昇温速度は5℃/分とした。最高温度は800℃とした。最高温度での保持時間は10分間とした。こうして気体分離部材を得た。
得られた気体分離部材は、多孔質基材層の気孔率が15%であった。多孔質基材層の平均の厚みは7μmであった。また、多孔質基材層の平均の気孔径は、多孔質支持体の平均の気孔径がよりも小さいものであった。多孔質基材層の平均のセラミック粒子の平均粒径は、多孔質支持体のセラミック粒子の平均粒径よりも小さいものとなっていた。気孔率は水銀圧入法により求めた。気孔径およびセラミック粒子の平均粒径は走査型電子顕微鏡により撮影した断面写真から求めた。作製した気体分離部材の試料を図1および図2に示すように供給部に固定した。気体分離部材は筐体管の蓋部に開けた開口部に設置した。気体分離部材は多孔質基材層の断面を観察したときに、浸透層の厚みが厚い方を導入口側となるように設置した。気体分離部材の筐体管から突き出た部分にはシリコーン樹脂を塗布した。
次に、得られた気体分離部材の各試料に対して、二酸化炭素およびメタンの透過試験を行うことによって透過特性を調べた。透過試験は、図1に示した筐体管の導入口側から二酸化炭素およびメタンを含む混合流体を供給するようにした。このとき筐体管の外空間の圧力は大気圧よりも0.1MPaだけ高い圧力になるように圧力を調整した。一方、気体分離部材の内空間の圧力は大気圧となるように開放した状態に設定した。透過試験は温度30℃の条件で行った。二酸化炭素およびメタンの透過係数は、石鹸膜流量計およびガスクロマトグラフ分析装置を気体分離部材の開放端側に設置して求めた。
次に、透過試験を行った試料に対して、多孔質基材層における導入口側の厚みtおよび排出口側の厚みt、炭素質膜の厚みtおよび多孔質支持体の厚みtをそれぞれ測定した。これらの厚みを測定する試料は、気体分離部材を縦割りに切断した断面を観察して求めた。気体分離部材の切断にはダイヤモンドホイールを用いた。厚みの測定は、試料の断面を走査型電子顕微鏡により観察し、撮影した写真から求めた。多孔質基材層における浸透層の導入口側の厚みtおよび浸透層の排出口側の厚みt、炭素質膜の厚みtおよび多孔質支持体の厚みtは、気体分離部材を筐体管に設置したときに2つの蓋部の間で測定した。多孔質基材層における浸透層の導入口側の厚みtおよび浸透層の排出口側の厚みtは、2つの蓋部の位置の厚みを測定して求めた。浸透層が傾斜構造を有しているか否かの判定は、気体分離部材を長さ方向に10等分して、計11か所を測定した結果から行った。浸透層が傾斜構造を有しているという状態は、浸透層の厚みtが導入口側から排出口側にかけて逐次小さくなる値であった場合とした。炭素質膜の厚みtおよび多孔質支持体の厚みtは、11か所測定した値の平均値から求めた。炭素質膜の厚みtの厚み差の最大値は0.09μmであった。結果を表1に示した。
Figure 0007118871000001
表1に示した結果から明らかなように、作製した気体分離部材のうち、気体分離部材を長さ方向に2等分したときに、炭素材の浸透厚みが異なる試料(試料No.1~No.8)は、二酸化炭素の透過係数が8.9×10-7mol/msPa以上であった。試料No.9~11に対して二酸化炭素の透過係数が7割以上高かった。試料No.1~No.8の中で、試料No.1、試料No.3~試料No.6は、浸透層が多孔質基材層の長さ方向に向けて次第に変化している傾斜構造を有していた。試料No.1および試料No.3~試料No.6は、他の試料に比べて、二酸化炭素の透過係数とメタンの透過係数との差が大きかった。試料No.1および試料No.3~試料No.6の浸透層は、多孔質基材層の長さ方向に250nm/15000μm~400nm/15000μmの傾きを有するものとなっていた。
AA・・・・・・気体分離装置
A、C・・・・・気体分離部材
B・・・・・・・供給部
1・・・・・・・筐体管
3・・・・・・・導入口
5・・・・・・・排出口
11・・・・・・多孔質基材層
13・・・・・・炭素質層
13A・・・・・浸透層
13a・・・・・炭素材
17・・・・・・多孔質支持体

Claims (9)

  1. セラミック製の多孔質基材層と、
    炭素材により構成される炭素質層と、を有しており、
    前記多孔質基材層は、長尺状を成しており、
    前記多孔質基材層と前記炭素質層とは、積層構造を成しており、
    前記多孔質基材層は、厚み方向に前記炭素材が入り込んだ浸透層を有しており、
    前記浸透層の厚みは、前記多孔質基材層の長さ方向に変化しており、
    前記多孔質基材層を長さ方向に2等分したときに、2等分された領域間で前記浸透層の厚みが異なり、有底筒状を成しており、
    前記有底筒状の外空間において入口側である前記有底筒状の底側から出口側である前記有底筒状の開口側へ流れる、二酸化炭素を含む混合流体から、前記有底筒状の内空間へ二酸化炭素を分離し浸透させることによって、二酸化炭素を選択的に分離する気体分離部材であって、
    前記外空間と前記内空間との間での二酸化炭素の濃度差が、前記出口側の方が前記入口側よりも小さく、
    前記浸透層は、前記出口側の厚みが前記入口側の厚みよりも薄い、気体分離部材。
  2. 前記浸透層は、前記厚みが底に向けて次第に変化している傾斜構造を有している、請求項1に記載の気体分離部材。
  3. 前記多孔質基材層は、前記炭素質層が設けられた面とは反対側の面に配置されたセラミック製の多孔質支持体上に設けられており、
    前記多孔質支持体は、前記多孔質基材層よりも厚みが厚く、
    前記多孔質基材層と前記多孔質支持体とは気孔径が異なり、
    前記多孔質支持体における平均気孔径は、前記多孔質基材層における平均気孔径よりも大きい、請求項1または2に記載の気体分離部材。
  4. 前記浸透層は、前記多孔質基材層の長さに対する浸透層の厚みの比が、0.1/15000以上0.4/15000以下の傾きを有する、請求項1乃至3のうちいずれかに記載の気体分離部材。
  5. 前記多孔質支持体は、厚みが500μm以上2000μm以下である、請求項1乃至4のうちいずれかに記載の気体分離部材。
  6. 前記多孔質基材層は、厚みが3μm以上8μm以下である、請求項1乃至5のうちいずれかに記載の気体分離部材。
  7. 前記炭素質層は、厚みが0.5μm以上15μm以下である、請求項1乃至6のうちいずれかに記載の気体分離部材。
  8. 前記炭素質層は、厚み差の最大値が0.1μm以下である、請求項1乃至7のうちいずれかに記載の気体分離部材。
  9. 請求項1乃至8のうちいずれかに記載の気体分離部材と、
    混合気体を供給するための供給部と、を有しており、
    該供給部が筐体管に導入口および排出口を備えており、
    前記気体分離部材が前記筐体管を貫通するように設置されている、気体分離装置。
JP2018223525A 2018-11-29 2018-11-29 気体分離部材および気体分離装置 Active JP7118871B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018223525A JP7118871B2 (ja) 2018-11-29 2018-11-29 気体分離部材および気体分離装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018223525A JP7118871B2 (ja) 2018-11-29 2018-11-29 気体分離部材および気体分離装置

Publications (2)

Publication Number Publication Date
JP2020082011A JP2020082011A (ja) 2020-06-04
JP7118871B2 true JP7118871B2 (ja) 2022-08-16

Family

ID=70905457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018223525A Active JP7118871B2 (ja) 2018-11-29 2018-11-29 気体分離部材および気体分離装置

Country Status (1)

Country Link
JP (1) JP7118871B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231512A (ja) 2003-01-31 2004-08-19 Inst Fr Petrole 炭素を含有する多孔質無機膜、それを調製するための方法、およびその使用
JP2006326555A (ja) 2005-05-30 2006-12-07 Honda Motor Co Ltd 気体分離部材及びこれに用いる気体分離部材用支持体
JP2007255808A (ja) 2006-03-24 2007-10-04 Toyota Motor Corp 加湿装置および燃料電池システム
JP2010069483A (ja) 1999-08-04 2010-04-02 Technologies Avancees & Membran Industrielle Sa フィルタ用メンブレンおよびフィルタ用メンブレン製造方法
US20120079944A1 (en) 2010-10-01 2012-04-05 Basf Se Process for producing carbon membranes
WO2012111792A1 (ja) 2011-02-17 2012-08-23 京セラ株式会社 炭素膜付き複合体およびその製造方法
JP2013173131A (ja) 2012-01-26 2013-09-05 Kyocera Corp 炭素膜付き多孔質体およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717780A (ja) * 1993-07-02 1995-01-20 Sumitomo Electric Ind Ltd 多孔質セラミックス膜の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069483A (ja) 1999-08-04 2010-04-02 Technologies Avancees & Membran Industrielle Sa フィルタ用メンブレンおよびフィルタ用メンブレン製造方法
JP2004231512A (ja) 2003-01-31 2004-08-19 Inst Fr Petrole 炭素を含有する多孔質無機膜、それを調製するための方法、およびその使用
JP2006326555A (ja) 2005-05-30 2006-12-07 Honda Motor Co Ltd 気体分離部材及びこれに用いる気体分離部材用支持体
JP2007255808A (ja) 2006-03-24 2007-10-04 Toyota Motor Corp 加湿装置および燃料電池システム
US20120079944A1 (en) 2010-10-01 2012-04-05 Basf Se Process for producing carbon membranes
WO2012111792A1 (ja) 2011-02-17 2012-08-23 京セラ株式会社 炭素膜付き複合体およびその製造方法
JP2013173131A (ja) 2012-01-26 2013-09-05 Kyocera Corp 炭素膜付き多孔質体およびその製造方法

Also Published As

Publication number Publication date
JP2020082011A (ja) 2020-06-04

Similar Documents

Publication Publication Date Title
JP5368981B2 (ja) 分離膜多孔質体複合体の製造方法及び多孔質体の表面への分離膜形成方法
JP4675883B2 (ja) 炭素膜積層体及びその製造方法
US8038887B2 (en) Membranes for nanometer-scale mass fast transport
JP6378786B2 (ja) 分離膜構造体及び窒素濃度低減方法
Borchardt et al. Preparation and application of cellular and nanoporous carbides
US20200001250A1 (en) Zeolite membrane composite and process for producing zeolite membrane composite
JP5523560B2 (ja) 炭素膜複合体およびその製造方法ならびに分離膜モジュール
JP2011131174A (ja) ゼオライト膜の製造方法、及びゼオライト膜
JPWO2008010452A1 (ja) セラミックフィルタ
JPWO2009001970A1 (ja) 分離膜複合体及び分離膜複合体の製造方法
JPWO2010070992A1 (ja) 液体混合物の分離方法、及び液体混合物分離装置
CN111867710B (zh) 沸石膜复合体及沸石膜复合体的制造方法
WO2015146354A1 (ja) モノリス型分離膜構造体及びモノリス型分離膜構造体の製造方法
JP7118871B2 (ja) 気体分離部材および気体分離装置
JP2005028248A (ja) 流体分離フィルタおよびその製造方法と燃料電池システム
CN111902202A (zh) 陶瓷支撑体、沸石膜复合体、沸石膜复合体的制造方法以及分离方法
WO2011018919A1 (ja) 混合物用分離膜、それを用いた混合物の組成変化方法、及び混合物分離装置
CN113490541A (zh) 沸石膜复合体、沸石膜复合体的制造方法及分离方法
CN111902203B (zh) 沸石膜复合体、沸石膜复合体的制造方法以及分离方法
JP2010274174A (ja) 炭素膜複合体および分離膜モジュール
WO2012111792A1 (ja) 炭素膜付き複合体およびその製造方法
US20080142432A1 (en) Bag tube shaped body with porous multilayer structure
CN111699032A (zh) 气体分离装置、气体分离方法及气体分离膜
JP4471556B2 (ja) 多孔質セラミック材及びその製造方法
JP2016175063A (ja) 膜の再生方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210510

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220803

R150 Certificate of patent or registration of utility model

Ref document number: 7118871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150