WO2009087975A1 - NdFeB焼結磁石の製造方法及びNdFeB焼結磁石 - Google Patents

NdFeB焼結磁石の製造方法及びNdFeB焼結磁石 Download PDF

Info

Publication number
WO2009087975A1
WO2009087975A1 PCT/JP2009/000068 JP2009000068W WO2009087975A1 WO 2009087975 A1 WO2009087975 A1 WO 2009087975A1 JP 2009000068 W JP2009000068 W JP 2009000068W WO 2009087975 A1 WO2009087975 A1 WO 2009087975A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
grain boundary
magnet
ndfeb
boundary diffusion
Prior art date
Application number
PCT/JP2009/000068
Other languages
English (en)
French (fr)
Inventor
Masato Sagawa
Naoki Fujimoto
Original Assignee
Intermetallics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intermetallics Co., Ltd. filed Critical Intermetallics Co., Ltd.
Priority to EP09700197.8A priority Critical patent/EP2239747A4/en
Priority to CN200980101615.0A priority patent/CN101911227B/zh
Priority to US12/812,379 priority patent/US8562756B2/en
Publication of WO2009087975A1 publication Critical patent/WO2009087975A1/ja
Priority to US13/778,324 priority patent/US10854380B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Definitions

  • the present invention relates to a method for producing a NdFeB sintered magnet having a high coercive force and the NdFeB sintered magnet.
  • NdFeB sintered magnets are expected to increase in demand in the future for use in motors such as hybrid cars, and the coercive force H cJ is required to be further increased.
  • H cJ coercive force
  • a method of replacing part of Nd with Dy or Tb is known, but Dy and Tb resources are scarce and unevenly distributed worldwide. Further, there is a problem that the residual magnetic flux density Br and the maximum energy product (BH) max of the NdFeB sintered magnet are reduced by substitution of these elements.
  • Patent Document 1 discloses that Nd, Pr, Dy, Ho, and Tb are formed on the surface of the NdFeB sintered magnet in order to prevent a decrease in coercive force that occurs when the surface of the NdFeB sintered magnet is processed for the purpose of thinning the film. It is described that at least one kind is deposited. Patent Document 2 describes that irreversible demagnetization that occurs at high temperatures is suppressed by diffusing at least one of Tb, Dy, Al, and Ga on the surface of the NdFeB sintered magnet.
  • Patent Document 4 alloy powders of Dy and Tb and other metals have been deposited on the surface of sintered NdFeB magnets (Patent Document 4), and fluoride powders of Dy and Tb and one or more selected from Al, Cu, and Zn are used.
  • Patent Document 5 A method of realizing a high coercive force by depositing a mixed powder with a powder (Patent Document 5) and then performing a heat treatment has been found.
  • Patent Documents 1 and 2 have a low effect of improving the coercive force.
  • a method of attaching a component containing Dy or Tb to the magnet surface by sputtering or ion plating is expensive and is not practical.
  • the method of attaching a component containing Dy or Tb by applying a powder of DyF 3 or Dy 2 O 3 or TbF 3 or Tb 2 O 3 to the magnet surface (Patent Document 3) is inexpensive. Although advantageous in some respects, the coercivity values that can be reached by this method are not very large.
  • the methods of Patent Documents 4 and 5 are not particularly advantageous compared to the methods of Patent Document 3 and Non-Patent Document 4, and the coercive force value obtained is also small.
  • the conventional technologies shown in (3) and (4) use Dy, which is far more abundant than Tb in terms of resources, for practical applications with a thickness of 3 mm or more and a sufficiently large magnetic pole area. It was impossible to obtain a coercive force of 1.6 MA / m or more by using a base material not containing Dy or Tb (NdFeB sintered magnet before the grain boundary diffusion treatment) by the grain boundary diffusion treatment.
  • Non-Patent Document 4 it can be read from the graph therein that when the thickness is 3 mm, HcJ ⁇ 1.2 MA / m by the grain boundary diffusion treatment with TbF 3 . Compared with TbF 3 , DyF 3 is much less effective at increasing the coercive force due to grain boundary diffusion, so when DyF 3 is applied to the same 3 mm NdFeB sintered magnet, the resulting H cJ is 1.2 MA. It is assumed that it is much smaller than / m. In Patent Document 4, an Nd, Dy, Al, Cu, B, Fe, Co alloy containing 15 at% (about 30 mass%) of Dy is compared with a 2 mm thick NdFeB sintered magnet that does not contain Dy or Tb.
  • H cJ 1.178 MA / m can be obtained by performing grain boundary diffusion treatment with powder. Even in an example using an alloy powder containing 15 at% (about 30 mass%) of Dy and added with various additive elements, the maximum reachable H cJ is 1.290 MA / m for a 2.5 mm thick NdFeB sintered magnet. .
  • H cJ obtained by the grain boundary diffusion treatment by mixed powder of a powder of DyF 3 powder and Al is 1.003 ⁇ 1.082MA / m. It is said that a maximum of 1.472 MA / m HcJ can be obtained by a grain boundary diffusion method using a mixed powder of Zn powder and DyF 3 powder for a 4 mm thick NdFeB sintered body containing no Dy or Tb.
  • Patent Document 6 a slit is provided on the surface of a thick magnet and the effect of grain boundary diffusion is exerted on the deep part of the magnet, and in Patent Document 7, only the vicinity of the surface of a thick magnet is made highly coercive by the grain boundary diffusion method. Attempts have been made to increase the heat resistance of magnets.
  • Patent Document 6 causes disadvantages in use, such as an increase in processing costs and surface treatment costs, or a decrease in mechanical strength.
  • Patent Document 7 cannot be used for applications that require high reliability. Increasing the coercive force of NdFeB sintered magnets has become more important with the expansion of applications to relatively large motors and generators. In these applications, there is a great demand for magnets with a thickness of 5 mm or more or 6 mm or more, and meeting that need is an extremely important issue.
  • the problem to be solved by the present invention is that a NdFeB sintered magnet can obtain a high coercive force that has not been achieved by the conventional technology by a grain boundary diffusion method, and a relatively thick magnet having a thickness of 4 mm or more.
  • high squareness is achieved, and a means capable of increasing the coercive force even for a thick NdFeB sintered magnet having a thickness of 5 mm or more or 6 mm or more is obtained.
  • the target for the coercive force is Nd or Pr only as a rare earth component.
  • the present invention makes it possible to stably produce a high coercivity NdFeB sintered magnet. Since the results of the present invention can be applied to Tb, if the present invention is implemented using Tb, the present invention becomes a useful technique for special applications that require higher H cJ . In addition, by using a substrate in which Dy or Tb is used, the value of HcJ can be further increased according to the application. By applying the method of the present invention, it becomes possible to produce NdFeB sintered magnets with a combination of high B r and high H cJ , which was impossible until now, and solved the resource problems of Dy and Tb. Will be.
  • the first aspect of the method for producing a sintered NdFeB magnet according to the present invention which has been made to solve the above-mentioned problems, is that after forming a layer containing Dy and / or Tb on the surface of the NdFeB sintered magnet body base material NdFeB for performing a grain boundary diffusion treatment in which Dy and / or Tb in the layer is diffused into the inside of the magnet base material through the crystal grain boundary of the magnet base material by heating to a temperature below the sintering temperature of the magnet base material.
  • the layer is a powder layer formed by powder deposition; c) The powder layer contains 50 mass% or more of metallic Dy and / or Tb, It is characterized by that.
  • metal rare earth means a rare earth element constituting a metal in the NdFeB sintered magnet.
  • the metal refers to an intermetallic compound including a pure metal, an alloy, and an Nd 2 Fe 14 B phase which is a parent phase. Excludes compounds having ionic or covalent bonds such as rare earth oxides, fluorides, carbides and nitrides.
  • Dy and / or Tb in a metal state where the powder layer is 50 mass% or more means that the powder layer is Dy and / or Tb in a metal state, that is, the powder layer is 100 mass%, Dy and / or Tb.
  • Dy and / or Tb in the metal state means Dy and / or Tb constituting the metal in the powder layer applied to the base material for the grain boundary diffusion treatment.
  • the metal includes pure metals, alloys, and intermetallic compounds, and does not include these rare earth fluorides, carbides, oxides, and nitrides.
  • These rare earth hydrides or hydrides of intermetallic compounds containing these rare earths are a kind of intermetallic compounds, and the rare earths constituting them are considered to be in a metallic state.
  • Most of the hydrogen contained in these hydrides separates from the powder layer before Dy and Tb begin to diffuse into the substrate. Therefore, hydrogen in the hydride is not included in the calculation of the composition of the powder layer. When the composition is expressed in mass%, the difference in atomic weight between the rare earth and hydrogen is very large, so the calculated value hardly changes depending on whether or not hydrogen is actually included in the composition calculation.
  • NdFeB sintered magnet Nd rich phase and B rich phase exist in addition to the main phase Nd 2 Fe 14 B phase.
  • the present inventor has found that a sufficient amount of the Nd-rich phase in the metal state needs to be present in the crystal grain boundary in order for the grain boundary diffusion method of the NdFeB sintered magnet to work effectively.
  • Dy and Tb are fed from the layer containing a large amount of Dy and Tb formed on the surface to the inside of the sintered compact substrate through the grain boundary.
  • the condition of a) is indispensable in order to increase the diffusion rate of Dy and Tb through the grain boundary and accelerate the diffusion to the deep part of the substrate. If there is a certain amount of rare earth in excess of the metal phase than the stoichiometric composition of the main phase, a thick melted Nd-rich phase passage is formed at the grain boundary during the grain boundary diffusion treatment, and Dy and Fast diffusion of Tb into the base material becomes possible.
  • the amount of the rare earth in the metallic state necessary as a base material to obtain a high coercive force of 1.6 MA / m or 1.7 MA / m or more is calculated from the total rare earth amount contained in the sintered body base material by oxidation, carbonization. And the amount of rare earths that have been nitrided and changed to rare earth oxides, carbides and nitrides.
  • the present inventor has 12.7 at% in excess of the rare earth amount of 11.76 at% as the stoichiometric composition of the Nd 2 Fe 14 B phase, which is about 1 at% excess. We found that it is necessary to be more than%.
  • the base material contains a sufficient amount of rare earth in the metal state, a large amount of Nd-rich phase is formed at the grain boundary, and the grain boundary diffusion is effectively performed. As a result, a high coercive force, which was impossible with the conventional grain boundary diffusion method, can be achieved, and the grain boundary diffusion method is effective even for thick substrates.
  • the coercive force of the base material itself is increased by reducing the oxygen content of the NdFeB sintered magnet base material
  • the increase in the coercive force due to the low oxygen content of the base material is compared with the effect of the present invention.
  • a NdFeB sintered magnet having a remarkably large coercive force can be produced by the grain boundary diffusion method, the effect of increasing the coercive force by the grain boundary diffusion process occurs even in a thick magnet, and a relatively square magnet also has a high square shape.
  • the NdFeB sintered magnet base material used a large amount of rare earth in the metal state is contained, and a large amount of Nd-rich phase is formed at the grain boundary. This is because grain boundary diffusion of Tb and Tb is likely to occur, and the coercive force increasing effect of these elements penetrates deep into the base material.
  • the amount of rare earth in the metal state is analyzed and calculated as follows. First, the total rare earth content, oxygen content, carbon content, and nitrogen content contained in the NdFeB sintered magnet are chemically analyzed. Assuming that these oxygen, carbon, and nitrogen form R 2 O 3 , RC, and RN, respectively (R is a rare earth element), the total rare earth amount is subtracted from the rare earth amount that is not in the metallic state by oxygen, carbon, and nitrogen. It is assumed that the difference is the amount of rare earth metal.
  • the amount of rare earth in the substrate thus obtained is 12.7 at% or more as described above, the inventor has a large magnetic pole area and a thickness of 3 mm for a substrate not containing Dy or Tb. It was found that a high coercive force of 1.6 MA / m and further 1.7 MA / m can be obtained by the grain boundary diffusion treatment with Dy even when it is relatively thick.
  • condition b This condition is necessary to industrially implement the grain boundary diffusion method for NdFeB sintered magnets.
  • Conventionally known sputtering methods have low productivity and are too expensive to process, resulting in no industrial value.
  • the barrel painting method (see Japanese Patent Application Laid-Open No. 2004-359873) is optimal as a method for applying the powder to the substrate surface.
  • a coating method using a solvent such as a spray method is also possible.
  • the present invention satisfies the condition a)
  • a sufficient amount of rare earth in the metal state is present in the substrate, and a large amount of rare earth-rich phase is present at the grain boundary, a large amount of metal is present on the surface of the substrate.
  • a layer containing Dy and Tb in the state is deposited, a large amount of these metals diffuses into the base material deep through the grain boundary, and as a result, an NdFeB sintered magnet having a high coercive force that could not be achieved so far can be obtained.
  • a second aspect of the method for producing a NdFeB sintered magnet according to the present invention is characterized in that, in the production method of the first aspect, the powder layer is 7 mg or more per 1 cm 2 of the surface of the magnet substrate. To do. As a result, a large amount of Dy or Tb in a metallic state can be deposited on the surface of the base material, so that a higher coercive force can be achieved.
  • a third aspect of the method for producing an NdFeB sintered magnet according to the present invention is characterized in that in the production method of the first or second aspect, the powder layer contains 1 mass% or more of Al. Thereby, the higher coercive force of the NdFeB magnet can be achieved.
  • the powder layer contains a total of 10 mass% or more of Co and / or Ni. It is characterized by. Thereby, corrosion resistance can be given to the surface layer formed on the substrate surface after the grain boundary diffusion. That is, the NdFeB sintered magnet manufactured according to the fourth aspect is characterized in that a surface layer in close contact with the base material is formed after grain boundary diffusion, and this surface layer contains a certain amount of Co and Ni. The surface layer exhibits the anticorrosive effect of the substrate.
  • the powder layer is melted during grain boundary diffusion treatment. To do.
  • the powder used in each embodiment of the present invention is characterized by a high rare earth composition ratio (including 50% or more and 100% rare earth) (c) of the first embodiment) .
  • a high rare earth composition ratio including 50% or more and 100% rare earth
  • the amount of transition elements such as Fe, Co, Ni, Mn, Cr, and other metal elements such as Al and Cu is increased in addition to rare earth elements such as Nd and Dy, the melting point rapidly decreases, and in certain compositions When a eutectic is formed (eutectic point) and the amount of the element added is increased beyond the composition of the eutectic point, the melting point increases.
  • the present inventor made 1.6 MA / m or 1.7 MA / m when the grain boundary diffusion method using only Dy was performed on a substrate not containing Dy or Tb.
  • the applied powder layer containing Dy had a high rare earth composition containing pure Dy, and it was desirable to melt all or at least half of the powder layer by eutectic phenomenon. did. That is, during the grain boundary diffusion treatment, the powder layer applied to the base material reacts with itself or with the components of the base material, reaches the composition around the eutectic point, and melts.
  • the applied Dy-containing layer When the applied Dy-containing layer is in such a molten state during the grain boundary diffusion treatment, the applied layer and the Nd-rich phase present in the crystal grain boundary reaching the surface from the inside of the substrate are in a liquid state. In this way, Dy in the coating layer is transported into the substrate with high efficiency.
  • the powder layer to be applied needs to have a high rare earth composition.
  • the powder layer contains Dy and / or Tb in a metallic state at a high concentration of 50 mass% or more, the liquid in which the powder layer is melted is normal at the grain boundary diffusion treatment. Since it is sufficiently high, it does not flow down from the surface of the substrate.
  • the composition of the powder layer may be pure Dy.
  • the melting point of pure Dy is 1412 ° C, which is higher than the sintering temperature of the NdFeB sintered magnet, but the applied Dy reacts with the Fe of the base material to lower the melting point, and for grain boundary diffusion treatment At a heating temperature of 800-1000 ° C, it forms a eutectic with Fe and melts.
  • a preferred range of the composition of the powder layer is a composition range in which the melting point is 1000 ° C. or less before and after the eutectic point on the phase diagram.
  • the powder layer and component elements such as Fe contained in the base material form a eutectic and the melting point is Therefore, the applied powder layer melts during the grain boundary diffusion process (usually 1000 ° C. or less), and efficient Dy diffusion occurs.
  • the additive element to Dy is increased and the eutectic point is passed and the melting point of the powder layer becomes a composition of 1000 ° C. or higher, the powder layer is heated during grain boundary diffusion treatment.
  • the powder layer does not melt completely, and the grain boundary diffusion process proceeds while containing the solid component.
  • the applied powder layer remains as a powder layer without melting during the grain boundary diffusion treatment step.
  • the composition and heating conditions of the powder layer containing Dy and Tb and melting the powder layer during the grain boundary diffusion treatment it is possible to achieve a high coercivity of the NdFeB sintered magnet.
  • the surface layer formed on the surface of the NdFeB sintered magnet base material after the grain boundary diffusion treatment can be adhered to the base material. If the surface layer is easily removed from the base material, it must be removed practically, but if the surface layer is in close contact with the base material, it can be used as it is, or surface treatment can be performed on the surface layer. Reduce the cost of machining.
  • Ni or Co is included in the powder layer, the surface layer formed after the grain boundary diffusion treatment comes to have an anticorrosive effect on the base material, and the surface treatment cost can be reduced.
  • the first aspect of the NdFeB sintered magnet according to the present invention is a NdFeB sintered magnet in which Dy and / or Tb is diffused by a grain boundary diffusion process.
  • the magnet base is a plate magnet base with a thickness of 3.5 mm or more,
  • the amount of rare earth in the metal state contained in the plate-like magnet base material is 12.7 at% or more, SQ value indicating the squareness of the magnetization curve is 90% or more, It is characterized by that.
  • the SQ value is defined as a value H k / H cJ obtained by dividing the absolute value H k of the magnetic field when the magnetization is reduced by 10% from the maximum value in the magnetization curve by the coercive force H cJ .
  • An SQ value of 90% or more means that Dy and / or Tb has diffused to the vicinity of the center of the magnet base material. In this way, a high SQ value of 90% or more was obtained by using a thick plate-like magnet base material of 3.5 mm or more, and the amount of rare earth metal contained in the magnet base material was 12.7 at% or more. This is because Dy and / or Tb easily diffuses into the grain boundary during the grain boundary diffusion treatment.
  • the second aspect of the NdFeB sintered magnet according to the present invention is characterized in that in the NdFeB sintered magnet of the first aspect, Al is contained near the grain boundary and near the surface.
  • a third aspect of the NdFeB sintered magnet according to the present invention is characterized in that in the NdFeB sintered magnet according to the first or second aspect, Co and / or Ni is contained near the grain boundary and near the surface. To do.
  • NdFeB sintered magnet manufacturing method of the first aspect and the NdFeB sintered magnet of the first aspect an NdFeB sintered magnet having a high coercive force and a high remanent magnetization, which could not be achieved by the conventional grain boundary diffusion method, Furthermore, even for thick NdFeB sintered magnets that have been impossible with the grain boundary diffusion method so far, it is possible to produce NdFeB sintered magnets with high squareness and high coercivity. Further, the characteristics can be further improved by the NdFeB sintered magnet manufacturing method of the second to fifth embodiments and the NdFeB sintered magnet of the second to third embodiments.
  • FIG. 6 is a table showing the composition of the powder used for the grain boundary diffusion treatment in Examples 1 to 3 of the NdFeB sintered magnet according to the present invention and Comparative Example. 6 is a table showing compositions of NdFeB sintered magnet base materials used in Examples 1 to 4 and Comparative Examples.
  • surface which shows the result of having measured the coercive force about the NdFeB sintered magnet of Example 1 and a comparative example.
  • FIG. 6 is a table showing the results of measuring the coercivity and squareness index SQ values of the magnetization curves for relatively thick (5-6 mm thick) substrates for the NdFeB sintered magnets of Example 2 and Comparative Example.
  • the NdFeB sintered magnet base material used in the present invention is produced in the same manner as a conventional NdFeB sintered magnet. That is, it is produced by the steps of alloy melting, elementary pulverization, fine pulverization, orientation in a magnetic field, molding, and sintering. However, in the sintered body after sintering, consideration should be given to adjusting the alloy composition so that the amount of rare earth in the metal state is 12.7 at% or more, preferential reduction of rare earths generated during the process, and prevention of impurity contamination Have to do.
  • the preferential reduction of the rare earth is a decrease due to evaporation or oxidation of the metallic rare earth component or reaction with the crucible when the alloy is melted, or the Nd-rich phase is pulverized too finely during the pulverization.
  • a decrease due to not being collected in the collection container is considered.
  • the amount of rare earth in the metallic state is greatly reduced before and after grinding.
  • the amount of rare earth in the metal state is also reduced by the chemical reaction of the rare earth in the powder with impurities after the alloy is pulverized.
  • the impurities are mainly oxygen, carbon, and nitrogen.
  • Oxygen is mainly due to oxidation of the powder during and after alloy grinding, carbon remains in the lubricant added to lubricate the powder, and nitrogen reacts with nitrogen in the air, causing the product to react with nitrogen in the air. Is taken in.
  • it is necessary to suppress the reduction of the rare earth amount in the metallic state during the process as much as possible and to suppress the contamination by the impurity element as much as possible. If this is not possible, the amount of rare earth in the alloy must be increased in advance.
  • the base material of No. 6 in Example 1 described later is an example in which the amount of rare earth is low, so that contamination by oxygen and carbon is suppressed as much as possible. This is an example in which the amount of rare earth in the metallic state is adjusted within the scope of the present invention by increasing the amount of rare earth.
  • the lower limit of the amount of rare earth in the alloy is 12.7 at% added to the decrease in the amount of rare earth during grinding and the amount of rare earth consumed by oxygen, carbon, and nitrogen during or after grinding. If the amount of rare earth in the alloy is large, the present invention can be carried out even if there is a certain amount of contamination by these elements, but if it is too large, the NdFeB sintered magnet will have decreased magnetization and maximum energy product, which is valuable. It will decline. Practically, the upper limit of the amount of rare earth in the alloy is 16 at%. Further, as a kind of rare earth in the alloy, Nd is a main component, but a part of Nd may be substituted with Pr depending on the circumstances of the raw material. Depending on the required coercivity of the final product, part of Nd can be replaced by Dy or Tb.
  • the NdFeB sintered body produced in this way is processed into the shape and dimensions required for the final product by machining. Thereafter, the surface is chemically or mechanically cleaned before the grain boundary diffusion treatment.
  • the NdFeB sintered magnet thus produced is the base material finally used in the present invention.
  • the powder used in the present invention needs to contain 50 mass% or more of Dy and / or Tb in a metallic state.
  • alloy powder or mixed powder is used as the powder.
  • the alloy powder is obtained by preparing an alloy of Dy or Tb with another metal in advance and then pulverizing it.
  • the mixed powder is a pure metal powder of Dy or Tb or a mixture of these pure metal powders and other metal powders.
  • These alloy powders or mixed powders may be hydrogenated for pulverization. It is well known that rare earths or alloys containing rare earths become brittle and easy to grind when hydrogenated.
  • the hydrogen contained in these metals or alloys can be removed by heating the powder before applying the powder to the base material before the grain boundary diffusion treatment. However, even if some hydrogen remains in the powder, if the powder is applied to the base material for grain boundary diffusion treatment and then heated, the hydrogen will be dispersed before the grain boundary diffusion starts. I leave my body. As the composition of the powder, hydrogen that is released before the grain boundary diffusion, the gas component adsorbed on the powder, or the resin component used for powder coating is not included in the calculation.
  • Components other than Dy and Tb of the powder applied to the substrate surface include wettability of the rare earth elements other than Dy and Tb, 3d transition elements such as Fe, Co and Ni, and alloys such as Al and Cu to the substrate. Elements that are considered to be improved, such as B contained in the NdFeB magnet, are appropriately selected. The amount of these elements added is adjusted so that at least half of the powder layer is melted during grain boundary diffusion treatment after powder application. By selecting a powder having such a composition, the object of the present invention can be achieved. A preferred particle size of the powder is 0.1 to 100 ⁇ m.
  • An optimum powder coating method for carrying out the present invention is a barrel painting method (see Japanese Patent Application Laid-Open No. 2004-359873).
  • an adhesive layer is formed on a NdFeB sintered magnet substrate having a clean surface.
  • the optimum thickness of the adhesive layer is 1-5 ⁇ m.
  • the adhesive layer forming substance is an adhesive substance and may be anything as long as it does not corrode the substrate surface. Most commonly, liquid organic substances such as epoxy and paraffin are used. When using epoxy or the like, no curing agent is required.
  • this adhesive layer coating method a small amount of a liquid organic substance is added and stirred in a container filled with a ceramic or metal ball (referred to as impact media) having a diameter of 0.5 to 1 mm, and then the above-mentioned base material is charged.
  • the adhesive layer is formed on the substrate surface by vibrating the entire container.
  • the base material on which the adhesive layer is formed is put into the container, the whole container is vibrated, and the powder is applied to the surface of the base material.
  • a body layer is formed.
  • the amount of powder applied in this way is about 2 mg to about 30 mg per 1 cm 2 of the substrate surface.
  • the amount of the powder becomes a certain amount or more. Adjusted to A preferable range of the amount of powder to be applied is 5 mg to 25 mg per 1 cm 2 of the substrate surface.
  • the powder coating process is desirably performed in an inert gas in order to prevent oxidation of the powder.
  • the powder layer is grown while hitting the powder layer with impact media (ceramic or metal spheres) at the time of powder layer formation.
  • the formed powder layer has a relatively high density.
  • a method of pressing the powder layer onto the base material with a rubber plate or the like from the powder layer formed by the method implemented in Patent Document 4 is conceivable.
  • the base material coated with powder containing Dy or Tb is heated in a heating furnace.
  • the atmosphere of the heating furnace is a vacuum or a high purity inert gas atmosphere.
  • the gas adsorbed on the powder and the liquid substance components used in barrel painting are released from the powder.
  • hydrogen in the powder is released.
  • the temperature exceeds 700 ° C.
  • the powder reacts with the substrate surface and grain boundary diffusion begins to occur.
  • the heating temperature for grain boundary diffusion is desirably 1000 ° C. or lower.
  • Standard heating conditions are 800 ° C for 10 hours, or 900 ° C for 3 hours. After heating under such conditions, a heat treatment known as normal post-sintering heat treatment or aging treatment is performed.
  • the NdFeB sintered magnet produced by the above-described process has a high coercive force and a high remanent magnetization exceeding the limit of characteristics of the NdFeB sintered magnet produced by the conventional grain boundary diffusion method.
  • high-quality NdFeB sintered magnets with high squareness of the magnetization curve can be produced by grain boundary diffusion treatment even for relatively thick magnets.
  • the conventional grain boundary diffusion method could not be applied to thick magnets, a high coercivity can be achieved for magnets as thick as 5 to 6 mm by the above-described process.
  • the squareness of the magnetization curve is poor. This is a typical symptom of a magnet in which a high coercive force portion and a low coercive force portion are mixed, and was seen as a product of low quality. According to the present invention, even if the NdFeB sintered magnet is a relatively thick product, the squareness of the magnetization curve is high, and a high-quality product can be produced.
  • the NdFeB sintered magnet produced by the method of the present invention has a powder layer applied for grain boundary diffusion treatment, which melts during grain boundary diffusion and adheres closely to the base material. There is no need to remove.
  • the surface layer formed on the surface has an anticorrosive effect on the substrate.
  • NdFeB sintered magnet powder is prepared by alloy preparation using the strip casting method, hydrogen cracking, lubricant mixing, and fine pulverization using a jet mill using nitrogen gas, and the powder is mixed with the lubricant.
  • Ten steps of NdFeB sintered magnet blocks (base materials) with different compositions were prepared by performing each step of orientation in the magnetic field, molding and sintering (FIG. 1). Of these, those with “(ratio)” in the “base number” column of FIG. 1 are base materials of comparative examples, and other base materials (base numbers 1 to 6) are base materials used in this example. It is.
  • the composition shown in FIG. 1 is a chemical analysis value of the sintered body after sintering.
  • the composition of the sintered body was changed by changing the composition of the strip cast alloy, the purity of the nitrogen gas used during jet mill grinding or the amount of oxygen added, and the type and amount of lubricant added before and after jet mill grinding. .
  • the particle size of the fine powder after jet milling was adjusted so that the median value (D 50 ) of the particle size distribution measured by the laser diffraction method was 5 ⁇ m.
  • All of these 10 types of sintered magnets have a composition close to that of NdFeB sintered magnets that are produced in large quantities by each magnet manufacturer as a material having the largest maximum magnetic energy product because the rare earth is composed only of Nd. However, among these magnets, those with the base material numbers 1 to 6 are produced by devising to minimize contamination by impurities.
  • the substrate numbers “(ratio) 1 to (ratio) 4” have a composition close to that of commercially available products.
  • the MR value indicates the amount of rare earth in the metallic state, and is calculated from the chemical analysis value of the sintered magnet. That is, the MR value is a value obtained by subtracting the amount of rare earth consumed (non-metalized) by oxygen, carbon, and nitrogen from the total amount of rare earth in the analysis value.
  • these impurity elements are calculated assuming that they form a compound of R 2 O 3 , RC, and RN, respectively, with a rare earth (R represents a rare earth element).
  • FIG. 2 shows the composition of the powder used in the experiment.
  • the powder number with “(ratio)” is the powder of the comparative example.
  • Powder numbers 1 to 6 and 13 to 15 were prepared by mixing powders of each component element.
  • Dy powder of hydride DyH 3 was used.
  • DyH 3 hydrogen is discharged out of the system at a temperature lower than the temperature at which grain boundary diffusion is started. Went.
  • DyH 3 has a particle size of about 30 ⁇ m, and other component element powders have a particle size of 5 to 10 ⁇ m. Powder Nos.
  • a cuboid sample was cut out from the 10 types of sintered body blocks in FIG. 1 so that the length direction was 7 mm ⁇ width 7 mm ⁇ thickness 3.5 mm and the thickness direction was the magnetization direction, and an experiment of grain boundary diffusion was performed. Powder coating was performed as follows. A 200 cm 3 plastic beaker was charged with 100 cm 3 of 1 mm diameter zirconia spheres, and 0.1 to 0.5 g of liquid paraffin was added and stirred. An NdFeB sintered magnet cuboid sample was put into this, and an adhesive layer (liquid paraffin) was applied to the surface of the cuboid sample by bringing the beaker into contact with a vibrator.
  • an adhesive layer liquid paraffin
  • the powder coating is limited to the magnetic pole surface. Since the present invention aims to be applied to a relatively large motor, it must be an effective technique for a magnet having a somewhat large magnetic pole area. However, the area of the magnetic pole is limited due to the convenience of the magnetization curve measuring instrument. Therefore, a sample with a relatively small magnetic pole area of 7 mm square is used, but by not applying powder on the side surface, the same situation as when conducting a grain boundary diffusion method on a sample with a large magnetic pole area is used. did.
  • FIG. 3 shows the measurement results of the coercive force for the samples of various combinations of the base material, the powder, and the amount of the powder applied thus produced.
  • samples within the scope of the present invention are 1.6 MA / m or more and samples with a coating amount of 7 mg / cm 2 or more by the Dy grain boundary diffusion method. It can be seen that it has a high coercive force of MA / m or more.
  • the NdFeB sintered magnet base material does not contain Dy or Tb, and is a relatively thick 3.5 mm sample with a large magnetic pole area. There was no. It was also confirmed that a larger coercive force could be obtained when the applied powder contained metallic Tb (Sample No. 15).
  • Example 2 The same experiment as in Example 1 was performed on a relatively thick substrate.
  • the sample is a rectangular parallelepiped with a pole face of 7 mm on a side and a thickness of 5 mm or 6 mm (described in FIG. 4), and the magnetization direction is the thickness direction.
  • the powder other than the magnetic pole surface is masked so that the powder containing Dy is applied only to the magnetic pole surface, and the powder is formed by barrel painting under the same conditions as in Example 1.
  • Application was performed. Grain boundary diffusion treatment conditions and aging treatment conditions are the same as in Example 1.
  • FIG. 4 shows the measurement results of magnetic properties of a sample manufactured under conditions within the scope of the present invention and a sample manufactured under conditions outside the scope of the present invention.
  • H k / H cJ is represented by a symbol of SQ (Squerness).
  • the NdFeB sintered magnet (sample number 20 to 25) produced by the method of the present invention has a high coercive force of 1.6 MA / m or more even when the thickness is 5 mm or 6 mm.
  • the SQ value of these samples is over 90%.
  • a large SQ value indicates that grain boundary diffusion has spread to the center of the sample.
  • a sample with a thickness of 6 mm was coated with a powder containing Dy only on the magnetic pole surface, and a sample with a large SQ value was produced.
  • the Dy in the powder applied to the surface was heated at 900 ° C. This indicates that 3 mm penetrated from both sides. This goes beyond the common sense of conventional grain boundary diffusion methods. This indicates that if the conditions of the present invention are satisfied, the grain boundary diffusion of Dy and Tb reaches deeper than the conventional common sense.
  • Sample numbers “(ratio) 5 to (ratio) 8” shown as comparative examples are cases where the powder applied to the base material does not satisfy the conditions of the present invention.
  • Sample numbers “(ratio) 9 to (ratio) ) 11 ” shows the experimental results when the NdFeB sintered magnet base material does not satisfy the conditions of the present invention. That is, sample numbers “(ratio) 5 to (ratio) 8” are cases where the Dy or / and Tb content in the powder applied to the substrate is low, and the coercive force and SQ achieved by the grain boundary diffusion treatment. The value is low.
  • Sample numbers “(ratio) 9 to (ratio) 11” are samples in which the amount of rare earth in the metal state contained in the used NdFeB magnet base material is lower than 12.7 at%, and the sample subjected to grain boundary diffusion treatment Has a lower coercive force and SQ value than the sample prepared under the conditions of the present invention.
  • Example 1 A powder containing no Al (powder numbers 13 to 15) was applied to the same substrate as in Example 1, and a grain boundary diffusion experiment was performed under the same conditions as in Example 1. The results are shown in FIG. When compared with the results of Example 1 and Example 3, it can be seen that in the present invention, a higher coercive force can be obtained when Al is contained in the applied powder. Al is presumed to work effectively to melt the applied powder.
  • Example 1 the effectiveness of the present invention was shown when Dy and Tb were not included in the base material.
  • the thickness of the sample is set to 3.5 mm, the powder coating conditions, the grain boundary diffusion treatment conditions, etc. These show the result of having experimented by producing a sample on the same conditions as Example 1.
  • FIG. FIG. 7 shows the results of this example compared to the case where the substrate does not contain Dy. From FIG. 7, when a base material containing Dy is used in the present invention, the increase in coercive force of the base material itself by adding Dy to the base material is added to the increase in coercive force due to the grain boundary diffusion treatment.
  • a part of the sample produced in the experiment of Example 1 was subjected to a corrosion resistance test.
  • samples No. 3, 5, 6 as the first group samples No. 1, 13 as the second group and NdFeB sintered magnet samples without grain boundary diffusion treatment are left in 70 ° C steam saturated air Went.
  • rust was observed in the second group of magnets, but no rust was observed in the first group of magnets.
  • all magnets showed rust, but the degree of corrosion was milder in the first group of magnets than in the second group.
  • the first group of magnets contains a total of 10% or more of Ni or / and Co in the powder applied for grain boundary diffusion, but the second group of magnets is not subjected to grain boundary diffusion treatment.
  • the powder applied for grain boundary diffusion contains neither Ni nor Co.
  • the surface layer after the grain boundary diffusion treatment serves as an anticorrosive film. I understand that it works. This anti-corrosion effect is not effective in a severe corrosive environment, but when a magnet is processed, stored or transported before surface treatment, rust is generated on the magnet surface during transportation, making it unusable as a product. It works to prevent this.
  • the sample surface after grain boundary diffusion is smooth, the surface layer is strongly adhered to the substrate, and the powder layer applied to the substrate is It was confirmed that it melted during heating for grain boundary diffusion.
  • the temperature and time of the grain boundary diffusion treatment were set to 900 ° C. and 3 hours, but it was confirmed that good results could be obtained by adjusting the time at a temperature between 800 ° C. and 1000 ° C. did.

Abstract

 本発明は従来よりも保磁力及び磁化曲線の角型性が高いNdFeB焼結磁石の製造方法を提供することを目的としている。本発明は、NdFeB焼結磁石基材の表面にDy及び/又はTbを含む層を形成した後に前記磁石基材の焼結温度以下の温度に加熱することにより前記層中のDy及び/又はTbを前記磁石基材の結晶粒界を通じて前記磁石基材内部に拡散させる粒界拡散処理を行うNdFeB焼結磁石の製造方法において、a)前記磁石基材中に含まれる金属状態の希土類量が12.7at%以上であり、b)前記層が粉末の堆積により形成される粉体層であり、c)前記粉体層が50mass%以上の金属状態のDy及び/又はTbを含有することを特徴とする。

Description

NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
 本発明は高い保磁力を有するNdFeB焼結磁石の製造方法及びそのNdFeB焼結磁石に関する。
 NdFeB焼結磁石は、ハイブリッドカーなどのモータ用として今後ますます需要が拡大することが予測され、その保磁力HcJを一段と大きくすることが要望されている。NdFeB焼結磁石の保磁力HcJを増大させるためにはNdの一部をDyやTbで置換する方法が知られているが、DyやTbの資源は世界的に乏しくかつ偏在しており、またこれらの元素の置換によりNdFeB焼結磁石の残留磁束密度Brや最大エネルギー積(BH)maxが低下することが問題である。
 特許文献1には、薄膜化等を目的としてNdFeB焼結磁石の表面を加工した際に生じる保磁力の低下を防ぐために、NdFeB焼結磁石の表面にNd、Pr、Dy、Ho、Tbのうち少なくとも1種を被着させることが記載されている。また、特許文献2には、NdFeB焼結磁石の表面にTb、Dy、Al、Gaのうち少なくとも1種類を拡散させることにより、高温時に生じる不可逆減磁を抑制することが記載されている。
 また、最近、スパッタリングによりNdFeB焼結磁石の表面にDyやTbを付着させ、700~1000℃で加熱すると、磁石のBrをほとんど低下させることなくHcJを大きくできることが見出された(非特許文献1~3)。磁石表面に付着させたDyやTbは、焼結体の粒界を通じて焼結体内部に送り込まれ、粒界から主相R2Fe14B(Rは希土類元素)の各粒子の内部に拡散していく(粒界拡散)。この時、粒界のRリッチ相は加熱により液化するので、粒界中のDyやTbの拡散速度は、粒界から主相粒子内部への拡散速度よりもずっと速い。この拡散速度の差を利用して、熱処理温度と時間を調整することにより、焼結体全体にわたって、焼結体中の主相粒子の粒界にごく近い領域(表面領域)においてのみDyやTbの濃度が高い状態を実現することができる。NdFeB焼結磁石の保磁力HcJは主相粒子の表面領域の状態によって決定されるので、表面領域のDyやTbの濃度が高い結晶粒を持つNdFeB焼結磁石は高保磁力を持つことになる。またDyやTbの濃度が高くなると磁石のBrが低下するが、そのような領域は各主相粒子の表面領域だけであるため、主相粒子全体としてはBrは殆ど低下しない。こうして、HcJが大きく、BrはDyやTbを置換しないNdFeB焼結磁石とあまり変わらない高性能磁石が製造できる。この手法は粒界拡散法と呼ばれている。
 粒界拡散法によるNdFeB焼結磁石の工業的製造方法として、DyやTbのフッ化物や酸化物微粉末層をNdFeB焼結磁石の表面に形成して加熱する方法や、DyやTbのフッ化物の粉末と水素化Caの粉末の混合粉末の中にNdFeB焼結磁石を埋めこんで加熱する方法がすでに発表されている(非特許文献4、5、特許文献3)。
 さらに最近DyやTbとその他の金属との合金粉末をNdFeB焼結磁石体表面に堆積させたり(特許文献4)、DyやTbのフッ化物粉末とAl、Cu、Znから選ばれる1種以上の粉末との混合粉末を堆積させて(特許文献5)、その後熱処理を行うことにより高保磁力化を実現する方法が見出された。
特開昭62-074048号公報 特開平01-117303号公報 国際公開WO2006/043348号パンフレット 特開2007-287875号公報 特開2007-287874号公報 K. T. Park他、「Nd-Fe-B薄膜焼結磁石の保磁力への金属被覆と加熱の効果」、第16回希土類磁石とその応用に関する国際会議会議録、社団法人日本金属学会発表、2000年、第257-264頁(K. T. Park et al., "Effect of Metal-Coating and Consecutive Heat Treatment on Coercivity of Thin Nd-Fe-B Sintered Magnets", Proceeding of the Sixteenth International Workshop on Rare-Earth Magnets and their Applications (2000), pp. 257-264.) 石垣尚幸 他、「ネオジム系微小焼結磁石の表面改質と特性向上」、NEOMAX技報、株式会社NEOMAX発行、2005年、第15巻、第15-19頁 町田憲一 他、「Nd-Fe-B系焼結磁石の粒界改質と磁気特性」、粉体粉末冶金協会平成16年春季大会講演概要集、粉体粉末冶金協会発行、1-47A 廣田晃一 他、「粒界拡散法によるNd-Fe-B系焼結磁石の高保磁力化」、粉体粉末冶金協会平成17年春季大会講演概要集、粉体粉末冶金協会発行、第143頁 町田憲一 他、「粒界改質型Nd-Fe-B系焼結磁石の磁気特性」、粉体粉末冶金協会平成17年春季大会講演概要集、粉体粉末冶金協会発行、第144頁
 上述した従来法技術には次のような問題があった。
 (1) 特許文献1及び2に記載の方法は保磁力向上の効果が低い。
 (2) スパッタリング法やイオンプレーティング法により磁石表面にDyやTbを含む成分を付着させる方法は、処理費が高価であり実用的でない。
 (3) DyF3やDy2O3あるいはTbF3やTb2O3の粉末を磁石表面に塗布することによりDyやTbを含む成分を付着させる方法(特許文献3)は、処理費が安価である点では有利であるがこの方法により到達できる保磁力の値があまり大きくない。
 (4) さらに特許文献4及び5の方法は、特許文献3や非特許文献4の方法に比べて特に利点がなく、やはり得られる保磁力の値が小さい。
 すなわち(3)と(4)に示す従来技術では、資源的にTbに比べてはるかに豊富なDyを使って、厚さ3mm以上で十分に磁極面積の大きいサイズの実用的な用途に対して、粒界拡散処理により、DyやTbを含有しない基材(粒界拡散処理前のNdFeB焼結磁石)を使用して、保磁力1.6MA/m以上を得ることは不可能であった。
 粒界拡散法に関して、これまでに公表された文献において、厚さ3mm以上でかつ十分に大きい磁極面積を持つ大きさのNdFeB焼結磁石に対して、基材にDyやTbを含まない場合、HcJが1.5MA/mに達する例は報告されていない。特許文献3の実施例2では、厚さ3mmの磁石に対してDyの酸フッ化物粉末による粒界拡散によりHcJ=1.47MA/mの例が示されているが、この例では基材にTbが1at%含まれている。
 非特許文献4では、その中のグラフから、厚さ3mmのとき、TbF3による粒界拡散処理によりHcJ≒1.2MA/mであることが読取れる。DyF3はTbF3に比べて粒界拡散による高保磁力化の効果は格段に小さいので、DyF3により粒界拡散処理を同じ3mmのNdFeB焼結磁石に施したときには、得られるHcJは1.2MA/mよりずっと小さいことが推察される。特許文献4では、厚さ2mmのDyやTbを含まないNdFeB焼結磁石に対して、Dyを15at%(約30mass%)含む、Nd, Dy, Al, Cu, B, Fe, Coからなる合金粉末による粒界拡散処理を施すことにより、HcJ=1.178MA/mが得られることが示されている。Dyを15at%(約30mass%)含み、各種添加元素が添加された合金粉末による実施例でも、厚さ2.5mmのNdFeB焼結磁石に対して、到達できるHcJは最大1.290MA/mである。
 特許文献5では厚さ2mmのDyを含まないNdFeB焼結磁石に対して、DyF3粉末とAlの粉末の混合粉による粒界拡散処理により得られるHcJは1.003~1.082MA/mである。厚さ4mmのDyやTbを含まないNdFeB焼結体に対してZn粉末とDyF3粉末の混合粉による粒界拡散法により最高1.472MA/mのHcJが得られるとされている。
 またこれまでのどの文献でも、厚さが5mm以上、あるいは6mm以上の比較的厚いNdFeB焼結磁石に対しては、粒界拡散法による保磁力増大効果はきわめて小さい。そこで、例えば特許文献6では、厚い磁石の表面にスリットを設けて粒界拡散の効果を磁石深部に及ぼすアイデアや、特許文献7では粒界拡散法により、厚い磁石の表面付近のみを高保磁力して、磁石の耐熱性を上げる試みが提案されている。しかし、特許文献6のアイデアは加工費や表面処理費の増大あるいは機械的強度の低下など、使用上の不利益をきたす。また特許文献7の提案は高度の信頼性を要求される用途には使えない。NdFeB焼結磁石の高保磁力化は比較的大型のモータや発電機への応用の拡大に伴い重要性を増してきた。これらの応用では、厚さが5mm以上あるいは6mm以上の磁石の需要は大きく、そのニーズに応えることはきわめて重要な課題である。
 さらに粒界拡散法に関する課題として、比較的厚い磁石に対して磁化曲線の角型性が高いNdFeB焼結磁石の作製ができなかったことである。角型性が悪いのは粒界拡散の効果が磁石全体に均一に行き渡っていないためである。すなわちDyやTbの粒界拡散が基材の表面付近で多く、内部に行くにしたがって少なくなっているためである。高い角型性を持つことは、高品質な磁石としてぜひ必要な条件である。
 本発明が解決しようとする課題は、NdFeB焼結磁石において、粒界拡散法により、これまでの技術では達成されなかった高保磁力を得ることができ、厚さが4mm以上の比較的厚い磁石に対して、高角型性が達成され、厚さが5mm以上あるいは6mm以上の厚いNdFeB焼結磁石に対しても高保磁力化が可能な手段を得ることである。保磁力の目安となる目標は、希土類成分としてNdあるいはPrのみからなり、DyやTbを含有しないNdFeB焼結磁石基材を使用して、Dyを含む粉末による粒界拡散法によりHcJ>1.6MA/mさらには1.7MA/mを達成することである。
 DyはTbより資源的にはるかに豊富に存在するので、本発明により高保磁力NdFeB焼結磁石が安定して生産できるようになる。本発明の成果はTbに対しても適用できるので、Tbを使って本発明を実施すればさらに高いHcJが要求される特殊な用途に対して本発明は有用な技術になる。また、基材にDyやTbを入れたものを使用することにより、用途に応じてHcJの値をさらに大きくすることができる。本発明の方法を適用することにより、これまで不可能であった高Br、高HcJの組合せを持つNdFeB焼結磁石の生産が可能になり、かつDyやTbの資源的な問題が解消されることになる。
 (5) もうひとつ付加的な問題として、粒界拡散法を実施するために形成される表面層を、粒界拡散処理後に除去する費用がかかることである。DyやTbのフッ化物や酸化物、あるいは粒界拡散処理中に溶融しない高融点のDyやTbの合金を使用して粒界拡散処理を実施すると、粒界拡散処理後、基材表面に残渣が浮遊層を形成する。この残渣は、その後の表面処理形成に有害なため、除去しなくてはならない。粒界拡散前に精密な加工をして、粒界拡散処理後再度浮遊層除去のために機械加工することは、余分な費用を要し好ましくない。
 上記課題を解決するために成された本発明に係るNdFeB焼結磁石の製造方法の第1の態様は、NdFeB焼結磁石体基材の表面にDy及び/又はTbを含む層を形成した後に前記磁石基材の焼結温度以下の温度に加熱することにより前記層中のDy及び/又はTbを前記磁石基材の結晶粒界を通じて前記磁石基材内部に拡散させる粒界拡散処理を行うNdFeB焼結磁石の製造方法において、
 a) 前記磁石基材中に含まれる金属状態の希土類量が12.7at%以上であり、
 b) 前記層が粉末の堆積により形成される粉体層であり、
 c) 前記粉体層が50mass%以上の金属状態のDy及び/又はTbを含有する、
ことを特徴とする。
 本発明において「金属状態の希土類」は、NdFeB焼結磁石の中で金属を構成している希土類元素を意味する。ここで金属とは、純金属、合金、及び母相であるNd2Fe14B相を含む金属間化合物を指す。希土類の酸化物、フッ化物、炭化物、窒化物などのイオン結合性あるいは共有結合性を持つ化合物は含まない。
 「粉体層が50mass%以上の金属状態のDy及び/又はTb」は、粉体層が全て金属状態のDy及び/又はTbである場合、即ち粉体層が100mass%、Dy及び/又はTbから成る場合を含む。
 「金属状態のDy及び/又はTb」とは、粒界拡散処理のために基材に塗布された粉体層のなかで、金属を構成しているDy及び/あるいはTbという意味である。ここにおいても金属は純金属、合金及び金属間化合物を含み、これらの希土類のフッ化物、炭化物、酸化物、窒化物は含まない。これらの希土類の水素化物、あるいはこれらの希土類を含む金属間化合物の水素化物は、金属間化合物の一種であり、これを構成する希土類は金属状態であるとみなす。これらの水素化物に含まれる水素はほとんど、DyやTbが基材に粒界拡散し始める前に、粉体層から離脱していく。したがって、粉体層の組成の計算には、水素化物中の水素は計算に入れないものとする。なお、組成を質量%で表現すると希土類と水素の原子量の差はきわめて大きいので、実際には組成計算に水素を入れるか入れないかによって計算値はほとんど変わらない。
 a)の「金属状態の希土類量が12.7at%以上である」ことの技術的意義を説明する。NdFeB磁石の主相はNd2Fe14B化合物であり、Nd:Fe:B=2:14:1の化学量論組成では、希土類量は原子比で2/17=11.76at%である。NdFeB焼結磁石では主相Nd2Fe14B相以外にNdリッチ相とBリッチ相が存在する。本発明者はNdFeB焼結磁石の粒界拡散法が有効に働くためには十分な量の金属状態のNdリッチ相が結晶粒界に存在する必要があることを見出した。粒界拡散処理においては、表面に形成したDyやTbを多く含む層からDyやTbが粒界を通じて、焼結体基材の内部に送りこまれる。この粒界を通路とするDyやTbの拡散の速度を上げ、基材深部への拡散を加速するために、このa)の条件が不可欠である。主相の化学量論組成より過剰の金属状態の希土類量がある一定量以上存在すると、粒界拡散処理中に粒界に太い溶融したNdリッチ相の通路が形成され、表面付近からのDyやTbの基材深部への速い拡散が可能になる。本発明において、1.6MA/mあるいは1.7MA/m以上の高保磁力を得るために基材として必要な金属状態の希土類の量は、焼結体基材に含まれる全希土類量から、酸化、炭化及び窒化されて希土類の酸化物、炭化物及び窒化物に変化している希土類量を減じた量である。本発明者は粒界拡散処理が有効に働くためには、この金属状態の希土類量が、Nd2Fe14B相の化学量論組成としての希土類量11.76at%より約1at%過剰な12.7at%以上であることが必要であることを見出した。基材中に十分な量の金属状態の希土類が含まれていると、粒界に多量のNdリッチ相が形成され、粒界拡散が効果的に行われる。その結果、従来の粒界拡散法では不可能であった、高保磁力が達成でき、厚い基材についても粒界拡散法が有効になる。
 NdFeB焼結磁石基材の低酸素化により、基材自体の保磁力が増大することが知られているが、この基材の低酸素化による保磁力増大分は、本発明の効果に比べるとかなり小さい。本発明において、粒界拡散法により、きわめ大きい保磁力を持つNdFeB焼結磁石が作製できること、粒界拡散処理による保磁力増大効果が厚い磁石でも起こることと、比較的厚い磁石についても高い角型性が得られることは、使用するNdFeB焼結磁石基材中において、金属状態の希土類が多量に含まれ、粒界に多量のNdリッチ相が形成されることにより、基材表面に塗布したDyやTbの粒界拡散が起こりやすくなり、これらの元素による保磁力増大効果が基材内部深くまで浸透するためである。
 ここで金属状態の希土類量は次のようにして分析し、算出される。まずNdFeB焼結磁石中に含まれる全希土類量、酸素量、炭素量、窒素量が化学分析される。これらの酸素、炭素及び窒素がそれぞれR2O3、RC、RNを形成するとして(Rは希土類元素)、全希土類量から酸素、炭素、窒素によって金属状態ではなくなる希土類量を差し引いて求められる。その差が金属状態の希土類量であるとする。本発明者はこのようにして求めた基材中の希土類量が上述したように12.7at%以上のとき、DyやTbを含まない基材に対して、広い磁極面積をもち、厚さが3mm以上と比較的厚いときでも、Dyによる粒界拡散処理により1.6MA/m、さらには1.7MA/mの高保磁力が得られることを見出した。
 次に、b)の条件の技術的意義を説明する。この条件は、NdFeB焼結磁石の粒界拡散法を工業的に実施するために必要である。従来から知られているスパッタリング法は生産性が低く、処理費用が高価になりすぎて工業的価値がない。粉末を基材表面に塗布する方法はバレルペインティング法(特開2004-359873号公報参照)が最適である。その他にスプレー法など溶媒を使って塗布する方法も可能である。
 次に、c)の条件の技術的意義を説明する。これまでの粒界拡散法に関する文献において見逃されていたことは、基材表面に塗布するDyあるいはTbの量が重要であるということである。本発明者は、a)の条件が満たされ、基材中に十分な量の金属状態の希土類が存在して、粒界に多量の希土類リッチ相が存在すれば、基材表面に多量の金属状態のDyやTbを含む層を堆積させると、多量のこれらの金属が粒界を通じて基材深部に拡散し、その結果、これまで達成できなかった高保磁力を持つNdFeB焼結磁石ができ、また厚い磁石の高保磁力化も可能になる。多量の金属状態のDyやTbを基材表面に堆積させるために、c)の条件が必要である。ここでa)の条件が満たされない基材の表面にDyやTbを多量に堆積させても、これらの金属の粒界拡散は、きわめて遅いか、表面近傍のみに限定され、粒界拡散による高保磁力化は小さく、また厚い磁石には有効ではない。従来技術としての特許文献4において、実施例のすべてについて、基材にDyやTbを含まないとき、粒界拡散処理によって達成される保磁力は1.290MA/m以下であるのは、使用されている粉体中に含まれるDy量が15~20at%(約30~38mass%)と低いことが一因であると推定される。
 本発明に係るNdFeB焼結磁石の製造方法の第2の態様は、第1の態様の製造方法において、前記粉体層が、前記磁石基材の表面1cm2あたり7mg以上であることを特徴とする。これにより、多量の金属状態のDyやTbを基材表面に堆積させることができるため、さらに高保磁力化が可能になる。
 本発明に係るNdFeB焼結磁石の製造方法の第3の態様は、第1又は第2の態様の製造方法において、前記粉体層がAlを1mass%以上含むことを特徴とする。これにより、NdFeB磁石の一層の高保磁力化が図られる。
 本発明に係るNdFeB焼結磁石の製造方法の第4の態様は、第1~第3のいずれかの態様の製造方法において、前記粉体層がCo及び/又はNiを合計10mass%以上含むことを特徴とする。これにより、粒界拡散後に基材表面に形成される表面層に耐食性を与えることができる。即ち、第4の態様によって製造されるNdFeB焼結磁石は、粒界拡散後、基材に密着した表面層が形成されるのが特徴であり、この表面層にCoやNiが一定以上含まれていると、表面層が基材の防食効果を発揮する。
 本発明に係るNdFeB焼結磁石の製造方法の第5の態様は、第1~第4のいずれかの態様の製造方法において、前記粉体層を粒界拡散処理中に溶融させることを特徴とする。
 第5の態様のNdFeB焼結磁石製造方法の技術的意義について説明する。本発明の各態様で使用する粉体は希土類の組成比が高い(50%以上であって、希土類100%の場合を含む)ことが特徴の1つである(第1の態様のc))。NdやDyなどの希土類元素に、Fe、Co、Ni、Mn、Crなどの遷移元素、その他AlやCuなどの金属元素の添加量を増加させていくと融点が急速に低下し、ある組成において共晶を形成し(共晶点)、この共晶点の組成を越えて上記元素の添加量を増加させていくと融点は上昇する。本発明者は、NdFeB焼結磁石の粒界拡散法において、DyやTbを含まない基材に対してDyのみを使用した粒界拡散法を行った場合に1.6MA/mあるいは1.7MA/mの高保磁力を得るためには、塗布したDyを含む粉体層が、純Dyを含む高希土類組成で、共晶現象により粉体層の全部又は少なくとも半分以上を溶融させることが望ましいことを発見した。即ち、粒界拡散処理の際に、基材に塗布した粉体層がそれ自身あるいは基材の成分と反応し、共晶点周辺の組成に達して溶融するのである。粒界拡散処理時に、塗布したDyを含む層がこのような溶融状態にあると、塗布した層と、基材内部から表面に達している結晶粒界に存在するNdリッチ相とが、液体状態のまま連結されて、塗布層中のDyが高効率で基材内部に輸送される。上述した現象が起こるためには、塗布する粉体層は高希土類組成である必要がある。ここで、粉体層が50mass%以上という高い濃度で金属状態のDy及び/又はTbを含有していることにより、粒界拡散処理における通常の処理温度では粉体層が溶融した液体は粘性が十分高いため基材の表面から流れ落ちない。
 粉体層の組成は純Dyでもよい。純Dyの融点は1412℃でありNdFeB焼結磁石の焼結温度よりも高温であるが、塗布したDyは、基材のFeなどと反応して融点が低下し、粒界拡散処理のための加熱温度800~1000℃で、Feなどとの共晶を形成して溶融する。
 塗布する粉体の組成として、純Dyに、Fe、Ni、Co、Mn、Cr、Al、Cuなどが添加されると、粉体層としての融点が低下していき、添加量の増加と共に共晶点に達し、その後さらに添加量を増加していくと粉体層としての融点は上昇していく。粉体層の組成の好ましい範囲は、状態図上において共晶点の前後で融点が1000℃以下になる組成範囲である。
 共晶点よりも高Dy側の組成で融点が1000℃以上であっても、上述のように、粉体層と基材に含まれるFeなどの成分元素とが共晶を形成して融点が低下するので、塗布した粉体層は粒界拡散処理中(通常は1000℃以下)に溶融し、効率的なDyの拡散が起こる。Dyへの添加元素を増量してゆき、共晶点を過ぎて、粉体層としての融点が1000℃以上の組成になると粉体層は粒界拡散処理のための加熱中、粒界拡散温度がほぼ上限の1000℃でも、粉体層は全部溶融することなく、固体成分を含んだまま粒界拡散工程が進む。
 粒界拡散法により目標とする高保磁力を得るためには、粒界拡散処理工程中に、塗布した粉体層が溶けずに粉体層のまま残留する状態はあまり好ましくない。DyやTbを含む粉体層の組成や加熱条件などを適切に調整して、粒界拡散処理中に粉体層を溶融させるようにすることにより、NdFeB焼結磁石の高保磁力化が達成でき、さらに、粒界拡散処理後にNdFeB焼結磁石基材表面に形成される表面層を基材に密着させるようにすることができる。表面層が基材から脱落しやすいと実用上除去する必要があるが、表面層が基材に密着していればそのまま使用したり、表面層の上に表面処理を施したりすることができるので、機械加工の費用を削減できる。また粉体層にNiやCoを含ませておくと、粒界拡散処理後に形成される表面層が基材の防食効果を持つようになり、表面処理費用を削減できるようになる。
 本発明に係るNdFeB焼結磁石の第1の態様は、粒界拡散法を用いた処理によりDy及び/又はTbを粒界拡散させたNdFeB焼結磁石において、
 磁石基材が3.5mm以上の厚さを持つ板状磁石基材であり、
 前記板状磁石基材に含まれる金属状態の希土類量が12.7at%以上であり、
 磁化曲線の角型性を示すSQ値が90%以上である、
ことを特徴とする。
 ここでSQ値は、磁化曲線で磁化が最大値から10%低下したときの磁界の絶対値Hkを保磁力HcJで除した値Hk/HcJで定義される。SQ値が90%以上であるということは、磁石基材の中心付近にまでDy及び/又はTbが粒界拡散していることを意味している。このように3.5mm以上という厚い板状磁石基材を用いて90%以上という高いSQ値を得ることができたのは、磁石基材に含まれる金属状態の希土類の量を12.7at%以上にしたことで粒界拡散処理時にDy及び/又はTbが粒界に拡散しやすくなったことによる。
 本発明に係るNdFeB焼結磁石の第2の態様は、第1の態様のNdFeB焼結磁石において、粒界付近及び表面付近にAlが含まれていることを特徴とする。
 本発明に係るNdFeB焼結磁石の第3の態様は、第1又は第2の態様のNdFeB焼結磁石において、粒界付近及び表面付近にCo及び/又はNiが含まれていることを特徴とする。
 第1の態様のNdFeB焼結磁石製造方法及び第1の態様のNdFeB焼結磁石により、これまでの粒界拡散法では達成できなかった、高保磁力でかつ、高残留磁化のNdFeB焼結磁石が得られ、さらに、これまで粒界拡散法では不可能であった厚いNdFeB焼結磁石についても、高角型性を持ち、高保磁力のNdFeB焼結磁石の生産が可能になる。また第2~5の態様のNdFeB焼結磁石製造方法及び第2~3の態様のNdFeB焼結磁石により、さらに特性の改良が可能である。
本発明に係るNdFeB焼結磁石の実施例1~3及び比較例において粒界拡散処理に用いた粉末の組成を示す表。 実施例1~4及び比較例において使用したNdFeB焼結磁石基材の組成を示す表。 実施例1及び比較例のNdFeB焼結磁石につき、保磁力を測定した結果を示す表。 実施例2及び比較例のNdFeB焼結磁石につき、比較的厚い(厚さ5~6mm)基材について保磁力及び磁化曲線の角型性の指標SQ値を測定した結果を示す表。 Alを含まない粉体を用いて粒界拡散処理を行った(実施例3)NdFeB焼結磁石の保磁力を測定した結果を示す表。 実施例4において粒界拡散処理に用いた粉末の組成を示す表。 実施例4のNdFeB焼結磁石について保磁力及びSQ値を測定した結果を示す表。
 本発明に使用するNdFeB焼結磁石基材は従来のNdFeB焼結磁石と同様の方法で作製される。すなわち、合金の溶解、素粉砕、微粉砕、磁界中配向、成形、焼結の工程によって作製される。ただし焼結後の焼結体中において、金属状態の希土類量が12.7at%以上になるように、合金組成の調整、及び工程中に生じる希土類の優先的な減少や不純物混入の防止などの配慮をしなければならない。ここで希土類の優先的な減少とは、合金を溶解するとき金属状態の希土類成分の蒸発や酸化あるいは坩堝との反応による減少、又は粉砕中にNdリッチ相があまり微細に粉砕され過ぎることで捕集容器に捕集されないことによる減少が考えられる。粉砕前後で金属状態の希土類量が大きく減少することはよく知られている。また金属状態の希土類量は合金を粉砕後、粉末中の希土類の、不純物との化学反応によっても減少する。ここで不純物とは主に、酸素、炭素、窒素である。酸素は主として合金粉砕中及び粉砕後における粉末の酸化により、炭素は粉末の潤滑のために添加される潤滑剤が残留することにより、窒素は粉末が空気中の窒素と反応することにより、製品中に取り込まれる。本発明に使用する焼結磁石基材を作製するためには、工程中の金属状態の希土類量の減少を極力抑え、また不純物元素による汚染を極力抑制する必要がある。それができない場合は、合金中の希土類量をあらかじめ増量しておかなくてはならない。後述の実施例1における番号6の基材は希土類量が低いため酸素や炭素による汚染を極力抑えて作製した例であり、番号5の基材は工程中の炭素による汚染が低くできないため合金中の希土類量を増量することで金属状態の希土類量を本発明の範囲内に調整した例である。
 合金中の希土類量の下限は、粉砕中の希土類量の減少分と、粉砕中あるいは粉砕後に酸素、炭素、窒素により消費される希土類量に12.7at%を加えたものである。合金中の希土類量が多ければ、これらの元素による汚染がある程度多くても、本発明を実施できるが、あまり多すぎると、NdFeB焼結磁石として、磁化や最大エネルギー積が低下して、価値が低下してしまう。実用的には合金中の希土類量上限は16at%である。また合金中の希土類の種類としては、Ndが主成分であるが、原料の事情によりNdの一部がPrによって置換されてもよい。要求される最終製品の保磁力に従って、Ndの一部をDyやTbによって置換することができる。
 このように作製されたNdFeB焼結体は機械加工により最終製品として要求される形状と寸法に加工される。その後、粒界拡散処理前に、化学的にあるいは機械的に、表面の清浄化が行われる。このようにして作製されたNdFeB焼結磁石が、最終的に本発明に使用される基材である。
 次に、粒界拡散処理のために基材表面に塗布する粉体について説明する。本発明で使用する粉体は金属状態のDyあるいは/及びTbを50mass%以上含む必要がある。粉体は合金粉あるいは混合粉が用いられる。合金粉はあらかじめDyやTbと他の金属との合金を作製して、その後粉砕したものである。混合粉はDyやTbの純金属粉末あるいは、これらの純金属粉末と他の金属粉末との混合物である。これらの合金粉あるいは混合粉は粉砕のために水素化されていてもよい。希土類あるいは希土類を含む合金は水素化すると脆くなり粉砕しやすくなることはよく知られている。これらの金属あるいは合金中に含まれる水素は、粒界拡散処理前のために基材に粉体を塗布する前に、粉体を加熱することにより除去することができる。しかし、粉体中に水素が一部残留していても、粒界拡散処理のために基材に粉体を塗布した後、加熱していくと、粒界拡散が始まる前に、水素は粉体から離脱していく。粉体の組成として、このように粒界拡散前に離脱していく水素や、粉体に吸着している気体成分あるいは粉体塗布のため使用される樹脂成分は計算に入れないことにする。
 基材表面に塗布する粉体のDyやTb以外の成分としては、DyやTb以外の希土類元素、Fe, Co, Niなどの3d遷移元素、AlやCuなど合金の基材への濡れ性を改善すると考えられる元素、NdFeB磁石中にも含まれているBなどが適宜選ばれる。これらの元素の添加量は、粉体塗布後、粒界拡散処理中に粉体層が少なくとも半分以上溶融するように調整する。このような組成を持つ粉体を選ぶことにより、本発明の目的を達成できる。好ましい粉体の粒径は0.1~100μmである。
 次に、粉体塗布方法について説明する。本発明を実施するための最適の粉体塗布方法はバレルペインティング法(特開2004-359873号公報参照)である。まず清浄な表面を持つNdFeB焼結磁石基材に粘着層を形成する。粘着層の厚さは1~5μmが最適である。粘着層形成物質は粘着性を持つ物質で、基材表面を腐食するようなものでなければ何でもよい。最も一般的にはエポキシやパラフィンなどの液状の有機物が用いられる。エポキシなどを使用するときは、硬化剤は不要である。この粘着層塗布方法では、直径0.5~1mmのセラミックあるいは金属製の球(インパクトメディアと呼ぶ)を満たした容器に少量の液状有機物質を添加して攪拌した後、上述した基材を投入して、容器全体を振動させることにより、基材表面に粘着層が形成される。次に、同様のインパクトメディアを満たした容器に塗布したい粉体を添加して攪拌した後、粘着層を形成した基材を容器に投入して、容器全体を振動させて、基材表面に粉体層を形成する。このようにして塗布される粉体の量は、基材表面1cm2あたり2mg程度から30mg程度までである。本発明では粘着層形成時にインパクトメディアに添加される液状物質の量、及び粉体塗布時にインパクトメディアに添加される粉体の量を調整することにより、粉体量がある一定量以上になるように調整される。塗布する粉体の量の好ましい範囲は基材表面1cm2あたり5mg以上25mg以下である。粉体塗布工程は、粉末の酸化を防止するために、不活性ガス中で行うことが望ましい。
 粉体はできるだけ高密度で基材に塗布することが好ましい。塗布した粉体が低密度であると、粒界拡散処理の際に、塗布した粉体のすべてが基材に吸収されるとは限らない。このような時、塗布された粉体のうち、基材に接しているわずかの粉体だけが粒界拡散に参加するだけで、粉体層の表面付近に存在する粉体は役目を果たすことなく取り残されることが考えられる。本発明において実施される粉体塗布方法は粉体層形成時に、インパクトメディア(セラミックや金属製の小球)で粉体層をたたきながら、粉体層を成長させて行くので、このようにして形成された粉体層は比較的高密度になる。高密度粉体層形成方法として他に、例えば特許文献4で実施された方法で形成された粉体層の上からゴム板などで粉体層を基材に押し付ける方法が考えられる。
 次に、DyやTbを含む粉体を塗布した基材を加熱炉に入れて加熱する。加熱炉の雰囲気は真空あるいは高純度の不活性ガス雰囲気とする。炉の温度上昇にしたがって、粉体に吸着しているガスや、バレルペインティングで使用した液状物質成分が粉体から離脱する。さらに温度を上げていくと粉体中の水素が離脱する。その後700℃を越える頃から、粉体が基材表面と反応して粒界拡散が起こり始める。効果的な粒界拡散が起こるためには、塗布した粉体は溶けて基材と密着することが望ましい。このような状態にするためには800℃以上の加熱が必要である。温度が1000℃を越えると、粒界拡散だけでなく粒内拡散も速くなりすぎて、粒界近傍だけDyやTbを高濃度にするという微細構造の形成ができなくなる。したがって、粒界拡散のための加熱温度は1000℃以下が望ましい。標準的な加熱条件は800℃で10時間、あるいは900℃で3時間である。このような条件で加熱した後、通常の焼結後熱処理あるいは時効処理として知られる熱処理が施される。
 上述した工程により作製されたNdFeB焼結磁石は、従来の粒界拡散法により作製されたNdFeB焼結磁石の特性の限界を超えて高保磁力、高残留磁化を持つ。また比較的厚い磁石に対しても粒界拡散処理により、磁化曲線の角型性の高い、高品質のNdFeB焼結磁石が作製できる。さらに、従来の粒界拡散法は厚い磁石に対して適用できなかったが、上述の工程により5~6mmもの厚い磁石に対して高保磁力が達成できる。すなわち、従来の方法では厚い磁石に対しては、基材の表面付近だけが高保磁力化されて、内部は粒界拡散の効果が及ばなかったので、磁化曲線の角型性が悪かった。これは高保磁力部分と低保磁力部分が混ざった磁石の典型的な症状であり、品質の低い製品と見られるものであった。本発明により、NdFeB焼結磁石は比較的厚い製品でも磁化曲線の角型性が高く、高品質の製品が作製できる。また本発明の方法により作製されるNdFeB焼結磁石は粒界拡散処理のために塗布された粉体層が粒界拡散中に溶けて基材に密着しており、粒界拡散処理後表面層を除去する必要性がない。粒界拡散処理のためにNiやCoを粉体に添加した場合には、表面に形成される表面層は基材に対して防食効果を持つ。
 ストリップキャスティング法を用いた合金作製、水素解砕、潤滑剤混合及び窒素ガスを使用したジェットミルを用いた微粉砕によりNdFeB焼結磁石の粉末を作製し、この粉末に潤滑剤を混合したうえで磁界中配向、成形及び焼結の各工程を行い、組成が異なる10種類のNdFeB焼結磁石ブロック(基材)を作製した(図1)。このうち図1の「基材番号」の欄に「(比)」と付したものは比較例の基材であり、それ以外(基材番号1~6)は本実施例で使用する基材である。図1に示す組成は、焼結後の焼結体の化学分析値である。焼結体の組成は、ストリップキャスト合金の組成、ジェットミル粉砕時に使用する窒素ガスの純度あるいは添加する酸素の量、ジェットミル粉砕前後に添加する潤滑剤の種類と量を変えて、変化させた。ジェットミル粉砕後の微粉末の粒径は、どの場合も、レーザ回折法で測定した粒度分布の中央値(D50)が5μmになるように調整した。これら10種類の焼結磁石は、いずれも希土類はNdのみからなり、最大磁気エネルギー積がもっとも大きい材質として各磁石メーカで大量に生産されているNdFeB焼結磁石に近い組成である。しかし、これらの磁石のうち基材番号1~6のものは不純物による汚染を最小限にする工夫をして作製したものである。一方、基材番号「(比)1~(比)4」のものは市販されている製品に近い組成を持っている。図1において、MR値は金属状態の希土類量を示し、焼結磁石の化学分析値から算出される。すなわちMR値は分析値の全希土類量から、酸素、炭素、窒素によって消費される(非金属化される)希土類量を差し引いた値である。ここで、これらの不純物元素は、希土類と、それぞれR2O3、RC、及びRNの化合物を作るものとして算出する(Rは希土類元素を示す。)。
 次に、粒界拡散法を実施するためにNdFeB焼結磁石基材の表面に塗布する粉体について述べる。図2に、実験に使用した粉体の組成を示す。なお、粉体番号に「(比)」と付したものは比較例の粉体である。粉体番号1~6及び13~15は各成分元素の粉末を混合して作製した。ただしDyについては、水素化物DyH3の粉末を使用した。DyH3の水素は粒界拡散処理のための加熱時に、粒界拡散が開始される温度よりも低温で系外に排出されるので、水素は粉体に含まれないものとして各粉体の調合を行った。DyH3の粒径は約30μm、他の成分元素粉末の粒径は5~10μmである。粉体番号7~12及び「(比)1~(比)3」は、ストリップキャスティング法によって厚さ80μmの薄い薄帯合金を作製して、水素解砕せずに薄帯をそのままジェットミルに投入して微粉砕することによって得た。微粉末の粒径中央値D50を5μmとした。
 図1の10種類の焼結体ブロックから、縦7mm×横7mm×厚さ3.5mmで、厚さ方向が磁化方向となるように直方体試料を切り出して、粒界拡散の実験を行った。粉体塗布は次のようにして行った。200cm3のプラスティック製ビーカに直径1mmのジルコニア製小球を100cm3入れ、その中に流動パラフィンを0.1~0.5g加えて攪拌した。この中にNdFeB焼結磁石直方体試料を投入し ビーカを振動機に接触させることにより、直方体試料の表面に粘着層(流動パラフィン)を塗布した。次に10cm3のガラスびんに、直径1mmのステンレス製小球を8cm3入れ、図2に示す粉末を1~5g加えて、先に粘着層を塗布した焼結体直方体試料をこの中に投入した。ただし、このとき直方体試料の側面(磁極面以外の面)にプラスティック板製のマスキングを施して、磁石側面に粉体が付着しないようにした。このマスキングされ粘着層が形成された直方体試料を入れたガラスびんを前記振動機に接触させて、Dyを含む粉体が磁極面のみに塗布されたNdFeB焼結磁石を作製した。粉体塗布量は、上述の工程で、添加する流動パラフィン及び粉体の量によって変化させた。
 粉体塗布を磁極面のみに限定した理由は次のとおりである。本発明は比較的大型のモータへの応用を目指しているので、ある程度大きい磁極面積を持つ磁石に対して有効な技術でなくてはならない。ところが磁化曲線測定器の都合で磁極面積に制限がある。そこで、7mm角という比較的小さい磁極面積の試料を使用するが、側面に粉体を塗布しないことにより、大きい磁極面積の試料について粒界拡散法の実験をするときの状況と同じになるようにした。
 粉体を塗布した試料を、側面のうちの1面を下側にしてモリブデンの板の上に乗せ、10-4Paの真空中で加熱した。加熱温度は900℃で3時間とした。その後室温付近まで急冷して、500~550℃で2時間加熱して、再度室温まで急冷した。このようにして作製した、基材、粉体、粉体塗布量の各種組み合わせの試料について、保磁力の測定結果を図3に示す。
 図3の結果から、本発明の範囲内の試料(試料番号1~19)は、Dyによる粒界拡散法で、1.6MA/m以上、塗布量が7mg/cm2以上の試料については、1.7MA/m以上の高保磁力を持つことが分かる。NdFeB焼結磁石基材にDyもTbも含まれず、しかも3.5mmという比較的厚い、かつ大きい磁極面積を持つ試料で、Dyによる粒界拡散法によりこれほど大きい保磁力が得られたことは従来はなかった。塗布する粉末に金属状態のTbが含まれていると、さらに大きい保磁力が得られることも確認された(試料番号15)。基材に含まれる金属状態の希土類量が12.7at/%以下であると、1.6MA/m以上の高い保磁力は得られないことが、試料番号「(比)1~(比)4」に対する実験結果から分かる。
 比較的厚い基材について、実施例1と同様の実験を行った。試料は、磁極面が一辺7mm の正方形、厚さが5mm又は6mm(図4中に記載)の直方体であり、磁化方向は厚さ方向である。実施例1のときと同様に、Dyを含む粉体を磁極面だけに塗布するように、磁極面以外の面にマスキングをして、実施例1と同じ条件でバレルペインティング法により、粉体塗布を行った。粒界拡散処理条件、及び時効処理条件は実施例1と同じである。図4に本発明の範囲内の条件で作製した試料と、本発明の範囲外の条件で作製した試料について、磁気特性の測定結果を示す。この図では、保磁力HcJ以外に、残留磁束密度Br、磁化が10%低下するときの減磁界Hk、及び磁化曲線の角型性の指標としてよく使われるHk/HcJの値を示した。Hk/HcJはSQ(Squerness)の記号で表す。
 図4の結果から、本発明の方法で作製されたNdFeB焼結磁石(試料番号20~25)は、厚さが5mmのときでも、6mmのときでも1.6MA/m以上の高保磁力を持つことが分かる。さらに、これらの試料のSQ値が90%を越えていることは画期的なことである。SQ値が大きいということは、粒界拡散が試料の中心部までいきわたっていることを示している。厚さが6mmの試料で、磁極面にだけDyを含む粉体を塗布して、SQ値が大きい試料が作製できたということは、表面に塗布した粉体中のDyが、900℃の加熱により、両側から3mm浸透したことを表している。これは従来の粒界拡散法についての常識を超えるものである。このことは、本発明の条件が満たされれば、DyやTbの粒界拡散は従来の常識を超えて、深くまで達するものであることを示している。
 比較例として示した、試料番号「(比)5~(比)8」は、基材に塗布する粉体が本発明の条件を満たさない場合であり、試料番号「(比)9~(比)11」は、NdFeB焼結磁石基材が本発明の条件を満足しない場合についての実験結果を示した。すなわち、試料番号「(比)5~(比)8」は基材に塗布する粉体中のDy又は/及びTbの含有量が低い場合で、粒界拡散処理によって達成される保磁力及びSQ値が低い。また、試料番号「(比)9~(比)11」は、使用したNdFeB磁石基材中に含まれる金属状態の希土類量が12.7at%よりも低い場合であり、粒界拡散処理された試料は、本発明の条件で作製された試料に比べて低い保磁力及びSQ値を持っている。これらの結果は、基材に塗布した粉体層中のDyやTbを基材深くまで浸透させて、高保磁力、かつ大きいSQ値を持つNdFeB焼結磁石を、比較的厚い磁石について実現するためには、本発明の条件を満たすことが必須であることを示している。
 Alを含まない粉体(粉体番号13~15)を、実施例1の場合と同様の基材に塗布して、実施例1と同じ条件で、粒界拡散の実験を行った。結果を図5に示す。実施例1と実施例3の結果と比較すると、本発明において、塗布する粉体にAlが含まれていた方が高い保磁力が得られることが分かる。Alは塗布する粉体が溶融するのに有効に働いているものと推定される。
 実施例1~3では、基材中にDyやTbを含まない場合について本発明の有効性を示した。本実施例では、図6に示す組成のNdFeB焼結磁石を使用して、基材中にDyを含む場合について、試料の厚さを3.5mmとし、粉体塗布条件、粒界拡散処理条件などは、実施例1と同じ条件で試料を作製して、実験を行った結果を示す。図7に、基材にDyを含まない場合と比較して、本実施例の結果を示した。図7より、本発明においてDyを含有する基材を使用すると、基材にDyを含有させることによる基材自体の保磁力上昇分が粒界拡散処理による保磁力上昇分と加算されて、きわめて高い特性のNdFeB焼結磁石が得られることを示している。基材にDyを含む場合でも、金属状態の希土類量が十分に高くないと大きい粒界拡散の効果が得られないのは、基材にDyやTbを含まない場合と同じである。図7の試料番号32~35のものにおいて、きわめて高い保磁力、大きいSQ値が得られたのは、図6に示すように、Dyを含む基材11及び12が両方、大きいMR値を持っているためである。
 実施例1の実験で作製した試料の一部について、耐食性のテストを行った。第1のグループとして試料番号3, 5, 6の試料、第2のグループとして試料番号1, 13 及び粒界拡散処理をしないNdFeB焼結磁石試料を、70℃の水蒸気飽和空気中に放置する実験を行った。1時間経過後、第2のグループの磁石にはさびが観察されたが、第1のグループの磁石にはさびが観察されなかった。3時間経過後にはすべての磁石にさびの発生が見られたが、腐食の程度は第1のグループの磁石のほうが、第2のグループの磁石に比べて軽度であった。第1のグループの磁石は、粒界拡散のために塗布した粉体にNiあるいは/及びCoが合計10%以上含まれているが、第2のグループの磁石は粒界拡散処理をしていないか、粒界拡散のために塗布した粉体にNiもCoも含まれていない。本実施例の結果から、本発明の試料で、粒界拡散のために塗布する粉体にNiあるいは/及びCoが10%以上含まれていると、粒界拡散処理後表面層が防食膜として働くことが分かる。この防食効果はあまり厳しい腐食環境に対して有効ではないが、磁石を加工後、保存中あるいは表面処理前に輸送するとき、輸送中に磁石表面にさびが発生して、製品として使い物にならなくなることを防止する働きをする。
 また、本発明の条件を満たす方法で作製されたすべての試料について、粒界拡散後の試料表面はなめらかで、表面層は基材に強く密着しており、基材に塗布した粉体層は、粒界拡散のための加熱中に溶けたことが確認された。
 なお、すべての実施例において、粒界拡散処理の温度及び時間を900℃及び3時間としたが、800~1000℃の間の温度で、時間を調整することにより良い結果が得られることを確認した。
 上記各実施例の大半はDyを用いた実験結果を示したものであるが、DyとTbの保磁力への効果の違いはDy2Fe14B相とTb2Fe14B相の結晶磁気異方性の差に基づくものであり、Dyにより実験の結果はTbを用いた場合にも適用できる。両者の差は保磁力の絶対値に反映されるだけであり、本実施例と比較例の効果の差はDy,Tbのいずれを用いた場合にも同様に得ることができる(もちろん、Tbを使用した方が更に良い結果が得られる。)。従って、Dyを用いた実験結果から、本発明の効果を十分に実証することができると考えてよい。

Claims (8)

  1.  NdFeB焼結磁石基材の表面にDy及び/又はTbを含む層を形成した後に前記磁石基材の焼結温度以下の温度に加熱することにより前記層中のDy及び/又はTbを前記磁石基材の結晶粒界を通じて前記磁石基材内部に拡散させる粒界拡散処理を行うNdFeB焼結磁石の製造方法において、
     a) 前記磁石基材中に含まれる金属状態の希土類量が12.7at%以上であり、
     b) 前記層が粉末の堆積により形成される粉体層であり、
     c) 前記粉体層が50mass%以上の金属状態のDy及び/又はTbを含有する、
    ことを特徴とするNdFeB焼結磁石の製造方法。
  2.  前記粉体層の量が、前記磁石基材の表面1cm2あたり7mg以上であることを特徴とする請求項1に記載のNdFeB焼結磁石の製造方法。
  3.  前記粉体層がAlを1mass%以上含むことを特徴とする請求項1又は2に記載のNdFeB焼結磁石の製造方法。
  4.  前記粉体層がCo及び/又はNiを合計10mass%以上含むことを特徴とする請求項1~3のいずれかに記載のNdFeB焼結磁石の製造方法。
  5.  前記粉体層を粒界拡散処理中に溶融させることを特徴とする請求項1~4のいずれかに記載のNdFeB焼結磁石の製造方法。
  6.  粒界拡散法を用いた処理によりDy及び/又はTbを粒界拡散させたNdFeB焼結磁石において、
     磁石基材が3.5mm以上の厚さを持つ板状磁石基材であり、
     前記板状磁石基材に含まれる金属状態の希土類が12.7at%以上であり、
     磁化曲線の角型性を示すSQ値が90%以上である、
    ことを特徴とするNdFeB焼結磁石。
  7.  前記粒界付近及び前記表面付近にAlが含まれることを特徴とする請求項6に記載のNdFeB焼結磁石。
  8.  前記粒界付近及び前記表面付近にCo及び/又はNiが含まれることを特徴とする請求項6又は7に記載のNdFeB焼結磁石。
PCT/JP2009/000068 2008-01-11 2009-01-09 NdFeB焼結磁石の製造方法及びNdFeB焼結磁石 WO2009087975A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09700197.8A EP2239747A4 (en) 2008-01-11 2009-01-09 PROCESS FOR PRODUCTION OF FRITTED MAGNETS NDFEB AND FRITTED MAGNETS NdFeB
CN200980101615.0A CN101911227B (zh) 2008-01-11 2009-01-09 NdFeB烧结磁体的制造方法和NdFeB烧结磁体
US12/812,379 US8562756B2 (en) 2008-01-11 2009-01-09 NdFeB sintered magnet and method for producing the same
US13/778,324 US10854380B2 (en) 2008-01-11 2013-02-27 NdFeB sintered magnet and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-004845 2008-01-11
JP2008004845A JP5328161B2 (ja) 2008-01-11 2008-01-11 NdFeB焼結磁石の製造方法及びNdFeB焼結磁石

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/812,379 A-371-Of-International US8562756B2 (en) 2008-01-11 2009-01-09 NdFeB sintered magnet and method for producing the same
US13/778,324 Continuation US10854380B2 (en) 2008-01-11 2013-02-27 NdFeB sintered magnet and method for producing the same

Publications (1)

Publication Number Publication Date
WO2009087975A1 true WO2009087975A1 (ja) 2009-07-16

Family

ID=40853089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000068 WO2009087975A1 (ja) 2008-01-11 2009-01-09 NdFeB焼結磁石の製造方法及びNdFeB焼結磁石

Country Status (5)

Country Link
US (2) US8562756B2 (ja)
EP (1) EP2239747A4 (ja)
JP (1) JP5328161B2 (ja)
CN (3) CN101911227B (ja)
WO (1) WO2009087975A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061038A (ja) * 2009-09-10 2011-03-24 Toyota Central R&D Labs Inc 希土類磁石とその製造方法および磁石複合部材
WO2012029748A1 (ja) * 2010-08-31 2012-03-08 並木精密宝石株式会社 R-Fe-B系希土類焼結磁石とその製造方法、製造装置、モータ又は発電機
EP2650887A2 (en) 2012-04-11 2013-10-16 Shin-Etsu Chemical Co., Ltd. Rare earth sintered magnet and making method
EP2555208A4 (en) * 2010-03-30 2017-10-25 TDK Corporation Sintered magnet, motor, automobile, and method for producing sintered magnet
WO2018030187A1 (ja) * 2016-08-08 2018-02-15 日立金属株式会社 R-t-b系焼結磁石の製造方法
CN107802186A (zh) * 2016-09-09 2018-03-16 三星电子株式会社 烤箱
CN108010705A (zh) * 2017-11-29 2018-05-08 宁德市星宇科技有限公司 一种钕铁硼磁体的制备方法
CN111937103A (zh) * 2018-03-29 2020-11-13 日立金属株式会社 R-t-b系烧结磁体的制造方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328161B2 (ja) * 2008-01-11 2013-10-30 インターメタリックス株式会社 NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
EP2453448A4 (en) 2009-07-10 2014-08-06 Intermetallics Co Ltd FRYED NDFEB MAGNET AND MANUFACTURING METHOD THEREOF
JP5406112B2 (ja) 2010-04-27 2014-02-05 インターメタリックス株式会社 粒界拡散処理用塗布装置
JP5854304B2 (ja) * 2011-01-19 2016-02-09 日立金属株式会社 R−t−b系焼結磁石の製造方法
CN102184776B (zh) * 2011-02-24 2012-11-14 中国计量学院 一种稀土配合物晶界改性烧结钕铁硼磁体的制备方法
US20120299398A1 (en) * 2011-05-23 2012-11-29 Nikon Corporation Motor, design method and manufacturing method of motor, stage device, and exposure apparatus
JP5572673B2 (ja) * 2011-07-08 2014-08-13 昭和電工株式会社 R−t−b系希土類焼結磁石用合金、r−t−b系希土類焼結磁石用合金の製造方法、r−t−b系希土類焼結磁石用合金材料、r−t−b系希土類焼結磁石、r−t−b系希土類焼結磁石の製造方法およびモーター
CN103650073B (zh) 2011-12-27 2015-11-25 因太金属株式会社 NdFeB系烧结磁体和该NdFeB系烧结磁体的制造方法
EP2693450B1 (en) 2011-12-27 2017-03-22 Intermetallics Co., Ltd. Sintered neodymium magnet
WO2013100011A1 (ja) 2011-12-27 2013-07-04 インターメタリックス株式会社 NdFeB系焼結磁石
JP5503086B2 (ja) * 2011-12-27 2014-05-28 インターメタリックス株式会社 NdFeB系焼結磁石
US9478332B2 (en) * 2012-01-19 2016-10-25 Hitachi Metals, Ltd. Method for producing R-T-B sintered magnet
KR20150002638A (ko) * 2012-03-30 2015-01-07 인터메탈릭스 가부시키가이샤 NdFeB계 소결 자석
JP6238444B2 (ja) * 2013-01-07 2017-11-29 昭和電工株式会社 R−t−b系希土類焼結磁石、r−t−b系希土類焼結磁石用合金およびその製造方法
CN105144321B (zh) * 2013-03-18 2017-12-22 因太金属株式会社 RFeB系磁体制造方法、RFeB系磁体以及晶界扩散处理用涂布物
JP5983598B2 (ja) * 2013-12-27 2016-08-31 トヨタ自動車株式会社 希土類磁石の製造方法
KR101534717B1 (ko) * 2013-12-31 2015-07-24 현대자동차 주식회사 희토류계 자석 제조 방법
KR101548684B1 (ko) * 2014-04-18 2015-09-11 고려대학교 산학협력단 희토류계 소결 자석의 제조방법
JP2015228431A (ja) * 2014-06-02 2015-12-17 インターメタリックス株式会社 RFeB系磁石及びRFeB系磁石の製造方法
JP6500387B2 (ja) * 2014-10-21 2019-04-17 日産自動車株式会社 高保磁力磁石の製造方法
KR101624245B1 (ko) * 2015-01-09 2016-05-26 현대자동차주식회사 희토류 영구 자석 및 그 제조방법
US10217562B2 (en) * 2015-02-27 2019-02-26 Hitachi Metals, Ltd. Method for manufacturing R-T-B based sintered magnet
CN105185498B (zh) * 2015-08-28 2017-09-01 包头天和磁材技术有限责任公司 稀土永磁材料及其制造方法
EP3182423B1 (en) * 2015-12-18 2019-03-20 JL Mag Rare-Earth Co., Ltd. Neodymium iron boron magnet and preparation method thereof
CN105761861B (zh) * 2016-05-10 2019-03-12 江西金力永磁科技股份有限公司 一种钕铁硼磁体及其制备方法
CN105632748B (zh) * 2015-12-25 2019-01-11 宁波韵升股份有限公司 一种提高烧结钕铁硼薄片磁体磁性能的方法
CN106935390B (zh) * 2015-12-31 2020-03-27 厦门钨业股份有限公司 一种稀土烧结磁铁的表面处理方法
JP6645219B2 (ja) * 2016-02-01 2020-02-14 Tdk株式会社 R−t−b系焼結磁石用合金、及びr−t−b系焼結磁石
JP6743549B2 (ja) 2016-07-25 2020-08-19 Tdk株式会社 R−t−b系焼結磁石
CN106847494B (zh) * 2017-01-13 2018-08-24 中国科学院上海应用物理研究所 高性能永磁体制备方法及含该永磁体的真空波荡器磁结构
CN110168680B (zh) * 2017-01-26 2021-10-22 日产自动车株式会社 烧结磁体的制造方法
CN108242336B (zh) * 2017-12-25 2019-12-03 江苏大学 一种高性能低成本复合磁体的制备方法
JP7314513B2 (ja) * 2018-07-09 2023-07-26 大同特殊鋼株式会社 RFeB系焼結磁石
US11527340B2 (en) * 2018-07-09 2022-12-13 Daido Steel Co., Ltd. RFeB-based sintered magnet
CN108962582B (zh) * 2018-07-20 2020-07-07 烟台首钢磁性材料股份有限公司 一种钕铁硼磁体矫顽力提升方法
CN108831655B (zh) * 2018-07-20 2020-02-07 烟台首钢磁性材料股份有限公司 一种提高钕铁硼烧结永磁体矫顽力的方法
JP7167673B2 (ja) * 2018-12-03 2022-11-09 Tdk株式会社 R‐t‐b系永久磁石の製造方法
CN110911151B (zh) * 2019-11-29 2021-08-06 烟台首钢磁性材料股份有限公司 一种提高钕铁硼烧结永磁体矫顽力的方法
CN111326307B (zh) * 2020-03-17 2021-12-28 宁波金鸡强磁股份有限公司 一种渗透磁体用的涂覆材料及高矫顽力钕铁硼磁体的制备方法
CN112017835B (zh) * 2020-08-20 2023-03-17 合肥工业大学 一种低重稀土高矫顽力烧结钕铁硼磁体及其制备方法
CN112768168B (zh) * 2020-12-25 2023-05-30 福建省长汀金龙稀土有限公司 一种钕铁硼材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274048A (ja) 1985-09-27 1987-04-04 Sumitomo Special Metals Co Ltd 永久磁石材料及びその製造方法
JPH01117303A (ja) 1987-10-30 1989-05-10 Taiyo Yuden Co Ltd 永久磁石
JP2004359873A (ja) 2003-06-06 2004-12-24 Inter Metallics Kk 粘着層形成方法
WO2006043348A1 (ja) 2004-10-19 2006-04-27 Shin-Etsu Chemical Co., Ltd. 希土類永久磁石材料の製造方法
JP2007258455A (ja) * 2006-03-23 2007-10-04 Hitachi Metals Ltd R−Fe−B系希土類焼結磁石およびその製造方法
JP2007287874A (ja) 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd 希土類永久磁石材料の製造方法
JP2007287875A (ja) 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd 希土類永久磁石材料の製造方法
WO2008032426A1 (en) * 2006-09-15 2008-03-20 Intermetallics Co., Ltd. PROCESS FOR PRODUCING SINTERED NdFeB MAGNET
WO2008139690A1 (ja) * 2007-05-01 2008-11-20 Intermetallics Co., Ltd. NdFeB系焼結磁石製造方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US716A (en) * 1838-04-28 Henry barnes
JPH0742553B2 (ja) 1986-02-18 1995-05-10 住友特殊金属株式会社 永久磁石材料及びその製造方法
JPH0696928A (ja) * 1992-06-30 1994-04-08 Aichi Steel Works Ltd 希土類焼結磁石及びその製造方法
JPH09232173A (ja) * 1996-02-27 1997-09-05 Hitachi Metals Ltd 希土類磁石の製造方法および希土類磁石
JP2000234151A (ja) * 1998-12-15 2000-08-29 Shin Etsu Chem Co Ltd R−Fe−B系希土類永久磁石材料
CN1187152C (zh) 1999-03-03 2005-02-02 株式会社新王磁材 稀土磁铁烧结用烧结箱及用该箱烧结处理的稀土磁铁制法
US7244318B2 (en) * 2001-01-30 2007-07-17 Neomax Co., Ltd. Method for preparation of permanent magnet
JP3897724B2 (ja) * 2003-03-31 2007-03-28 独立行政法人科学技術振興機構 超小型製品用の微小、高性能焼結希土類磁石の製造方法
JP2005011973A (ja) 2003-06-18 2005-01-13 Japan Science & Technology Agency 希土類−鉄−ホウ素系磁石及びその製造方法
WO2005001855A1 (ja) * 2003-06-27 2005-01-06 Tdk Corporation R-t-b系永久磁石
JP4879503B2 (ja) 2004-04-07 2012-02-22 昭和電工株式会社 R−t−b系焼結磁石用合金塊、その製造法および磁石
CN100547700C (zh) 2004-04-07 2009-10-07 昭和电工株式会社 用于r-t-b型烧结磁体的合金块其制造方法和磁体
TWI302712B (en) 2004-12-16 2008-11-01 Japan Science & Tech Agency Nd-fe-b base magnet including modified grain boundaries and method for manufacturing the same
JP4543940B2 (ja) 2005-01-25 2010-09-15 Tdk株式会社 R−t−b系焼結磁石の製造方法
JP5339722B2 (ja) * 2005-03-18 2013-11-13 株式会社アルバック 成膜方法及び成膜装置並びに永久磁石及び永久磁石の製造方法
JP4702548B2 (ja) 2005-03-23 2011-06-15 信越化学工業株式会社 傾斜機能性希土類永久磁石
MY142131A (en) 2005-03-23 2010-09-30 Shinetsu Chemical Co Functionally graded rare earth permanent magnet
MY142088A (en) * 2005-03-23 2010-09-15 Shinetsu Chemical Co Rare earth permanent magnet
WO2006112403A1 (ja) * 2005-04-15 2006-10-26 Hitachi Metals, Ltd. 希土類焼結磁石とその製造方法
CN100356487C (zh) 2005-06-06 2007-12-19 浙江大学 一种烧结钕铁硼磁体的制备方法
JP4530360B2 (ja) * 2005-06-27 2010-08-25 株式会社トンボ鉛筆 感圧転写修正テープ及びそれに用いるインク
JP4656325B2 (ja) 2005-07-22 2011-03-23 信越化学工業株式会社 希土類永久磁石、その製造方法、並びに永久磁石回転機
US7559996B2 (en) * 2005-07-22 2009-07-14 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet, making method, and permanent magnet rotary machine
EP1981043B1 (en) * 2006-01-31 2015-08-12 Hitachi Metals, Limited R-Fe-B RARE-EARTH SINTERED MAGNET AND PROCESS FOR PRODUCING THE SAME
JP2007329250A (ja) 2006-06-07 2007-12-20 Ulvac Japan Ltd 永久磁石及び永久磁石の製造方法
CN101506919B (zh) * 2006-08-23 2012-10-31 株式会社爱发科 永磁铁以及永磁铁的制造方法
JP4840606B2 (ja) 2006-11-17 2011-12-21 信越化学工業株式会社 希土類永久磁石の製造方法
MY149353A (en) * 2007-03-16 2013-08-30 Shinetsu Chemical Co Rare earth permanent magnet and its preparations
JP5274781B2 (ja) 2007-03-22 2013-08-28 昭和電工株式会社 R−t−b系合金及びr−t−b系合金の製造方法、r−t−b系希土類永久磁石用微粉、r−t−b系希土類永久磁石
EP2133891B1 (en) * 2007-03-30 2017-03-08 TDK Corporation Process for producing magnet
US20100230013A1 (en) 2007-12-13 2010-09-16 Showa Denko K.K. R-t-b alloy, process for production of r-t-b alloy, fine powder for r-t-b rare earth permanent magnets, and r-t-b rare earth permanent magnet
JP5328161B2 (ja) * 2008-01-11 2013-10-30 インターメタリックス株式会社 NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
EP2453448A4 (en) 2009-07-10 2014-08-06 Intermetallics Co Ltd FRYED NDFEB MAGNET AND MANUFACTURING METHOD THEREOF

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274048A (ja) 1985-09-27 1987-04-04 Sumitomo Special Metals Co Ltd 永久磁石材料及びその製造方法
JPH01117303A (ja) 1987-10-30 1989-05-10 Taiyo Yuden Co Ltd 永久磁石
JP2004359873A (ja) 2003-06-06 2004-12-24 Inter Metallics Kk 粘着層形成方法
WO2006043348A1 (ja) 2004-10-19 2006-04-27 Shin-Etsu Chemical Co., Ltd. 希土類永久磁石材料の製造方法
JP2007258455A (ja) * 2006-03-23 2007-10-04 Hitachi Metals Ltd R−Fe−B系希土類焼結磁石およびその製造方法
JP2007287874A (ja) 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd 希土類永久磁石材料の製造方法
JP2007287875A (ja) 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd 希土類永久磁石材料の製造方法
WO2008032426A1 (en) * 2006-09-15 2008-03-20 Intermetallics Co., Ltd. PROCESS FOR PRODUCING SINTERED NdFeB MAGNET
WO2008139690A1 (ja) * 2007-05-01 2008-11-20 Intermetallics Co., Ltd. NdFeB系焼結磁石製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
K. T. PARK ET AL.: "Effect of Metal-Coating and Consecutive Heat Treatment on Coercivity of Thin Nd-Fe-B Sintered Magnets", PROCEEDING OF THE SIXTEENTH INTERNATIONAL WORKSHOP ON RARE-EARTH MAGNETS AND THEIR APPLICATIONS, 2000, pages 257 - 264, XP008130311
KEN-ICHI MACHIDA ET AL.,: ""Nd-Fe-B Kei Shouketsu Jishaku No Ryuukai Kaishitsu To Jiki Tokusei (Grain Boundary Modification and Magnetic Characteristics of NdFeB Sintered Magnet)"", JAPAN SOCIETY OF POWDER AND POWDER METALLURGY,, pages: 1 - 47A
KEN-ICHI MACHIDA ET AL.,: ""Ryuukai Kaishitsu Gata NdFeB Sintered Magnet No Jiki Tokusei (Magnetic Characteristics of NdFeB Sintered Magnet with Modified Grain Boundary)",", JAPAN SOCIETY OF POWDER AND POWDER METALLURGY,, pages: 144
KOUICHI HIROTA ET AL.,: ""Ryuukai Kakusan Hou Ni Yoru Nd-Fe-B Kei Shouketsu Jishaku No Kou Hojiryoku-ka (Enhancement of NeFeB Sintered Magnet by Grain Boundary Diffusion)"", JAPAN SOCIETY OF POWDER AND POWDER METALLURGY,, pages: 143
NAOYUKI ISHIGAKI ET AL.: ""Ncojimu Kei Bishou Shouketsu Jishaku No Hyoumen Kaishitsu To Tokusei Koujou (Surface Improvements on Magnetic Properties for Small-Sized Nd-Fe-B Sintered Magnets)", vol. 15, 2005, KABUSHIKI KAISHA NEOMAX,, pages: 15 - 19
See also references of EP2239747A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061038A (ja) * 2009-09-10 2011-03-24 Toyota Central R&D Labs Inc 希土類磁石とその製造方法および磁石複合部材
EP2555208A4 (en) * 2010-03-30 2017-10-25 TDK Corporation Sintered magnet, motor, automobile, and method for producing sintered magnet
WO2012029748A1 (ja) * 2010-08-31 2012-03-08 並木精密宝石株式会社 R-Fe-B系希土類焼結磁石とその製造方法、製造装置、モータ又は発電機
EP2650887A2 (en) 2012-04-11 2013-10-16 Shin-Etsu Chemical Co., Ltd. Rare earth sintered magnet and making method
US10074477B2 (en) 2012-04-11 2018-09-11 Shin-Etsu Chemical Co., Ltd. Rare earth sintered magnet and making method
WO2018030187A1 (ja) * 2016-08-08 2018-02-15 日立金属株式会社 R-t-b系焼結磁石の製造方法
JPWO2018030187A1 (ja) * 2016-08-08 2018-08-16 日立金属株式会社 R−t−b系焼結磁石の製造方法
US11062844B2 (en) 2016-08-08 2021-07-13 Hitachi Metals, Ltd. Method of producing R-T-B sintered magnet
CN107802186A (zh) * 2016-09-09 2018-03-16 三星电子株式会社 烤箱
CN108010705A (zh) * 2017-11-29 2018-05-08 宁德市星宇科技有限公司 一种钕铁硼磁体的制备方法
CN108010705B (zh) * 2017-11-29 2020-08-04 宁德市星宇科技有限公司 一种钕铁硼磁体的制备方法
CN111937103A (zh) * 2018-03-29 2020-11-13 日立金属株式会社 R-t-b系烧结磁体的制造方法

Also Published As

Publication number Publication date
JP5328161B2 (ja) 2013-10-30
US10854380B2 (en) 2020-12-01
CN103354167A (zh) 2013-10-16
CN103646740A (zh) 2014-03-19
EP2239747A4 (en) 2015-08-12
US20130169394A1 (en) 2013-07-04
JP2009170541A (ja) 2009-07-30
CN101911227A (zh) 2010-12-08
EP2239747A1 (en) 2010-10-13
CN101911227B (zh) 2014-01-15
US20100282371A1 (en) 2010-11-11
US8562756B2 (en) 2013-10-22

Similar Documents

Publication Publication Date Title
JP5328161B2 (ja) NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
JP5363314B2 (ja) NdFeB系焼結磁石製造方法
KR101447301B1 (ko) NdFeB 소결자석의 제조방법
JP6005768B2 (ja) NdFeB焼結磁石及びその製造方法
TWI509642B (zh) Rare earth permanent magnet and its manufacturing method
KR101624245B1 (ko) 희토류 영구 자석 및 그 제조방법
EP1970924B1 (en) Rare earth permanent magnets and their preparation
JP5057111B2 (ja) 希土類磁石の製造方法
EP2302646B1 (en) R-t-cu-mn-b type sintered magnet
JP4677942B2 (ja) R−Fe−B系希土類焼結磁石の製造方法
CN108417334B (zh) R-t-b系烧结磁铁
US20170250015A1 (en) R-t-b based permanent magnet
JP5209349B2 (ja) NdFeB焼結磁石の製造方法
JP5348124B2 (ja) R−Fe−B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石
JP5643355B2 (ja) NdFeB焼結磁石の製造方法
CN112136192A (zh) 稀土烧结永磁体的制造方法
JP2005325450A (ja) 磁性材料の製造方法、防錆層付き磁性材料粉末及びそれを用いたボンド磁石
JPH07201623A (ja) 焼結磁石およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101615.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09700197

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12812379

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009700197

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009700197

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5479/DELNP/2010

Country of ref document: IN